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Nederlandstalige samenvatting

Veel geobserveerde fenomenen om ons heen kunnen wiskundig beschreven worden middels

(partiële) differentiaalvergelijkingen (PDVen). In veel gevallen is een analytische oplossing

van een dergelijke PDV niet bekend en daarom zal een numerieke benadering van de oplossing

voor die PDV gezocht moeten worden.

In dit proefschrift beschouwen we efficiënte numerieke benaderingen voor oplossingen van

hoog-dimensionale problemen. In veel toepassingen zijn drie (plaats)dimensies voor fysische

problemen voldoende, maar er bestaan ook toepassingsgebieden waar hoog-dimensionale

problemen, met een dimensie veel groter dan drie, van nature voorkomen. Die problemen

komen bijvoorbeeld voor in de financiële wiskunde waar opties geprijsd en grieken geschat

moeten worden. Voor het prijzen van een basketoptie wordt een Black–Scholes vergelijking

opgelost met een (plaats)dimensie gelijk aan het aantal onderliggende goederen in een mand

met aandelen, de basket. Een tweede toepassingsgebied waar eenvoudig hoog-dimensionale

problemen kunnen voorkomen zijn zogenaamde verstrooiingsproblemen in bijvoorbeeld foton-

ionisatie. Bij foton-ionisatie is er een systeem van atomen (of moleculen) dat onder invloed

van een lichtstraal uit elkaar valt en waarbij enkelvoudige- of meervoudige-ionisatie kan

ontstaan. De ontsnappingshoek van die elektronen kan gemeten worden en komt overeen

met een kansverdeling, de ‘far field map’. Dit wordt beschreven met de amplitude van een

golf in de ontsnappingsrichting. Deze golffunctie kan beschreven worden als de oplossing

van een Helmholtz vergelijking met een plaatsafhankelijk golfgetal. De dimensie van dit

probleem groeit met het aantal beschouwde elektronen in het systeem.

Er zijn diverse standaardtechnieken voor het numeriek oplossen van dergelijke PDVen, maar

die zijn praktisch alleen mogelijk voor laag-dimensionale problemen. Als de dimensie van

de problemen groter wordt, dan wordt het bepalen van numerieke benaderingen voor de

oplossingen van de PDVen te rekenintensief. Daarom beschouwen we in dit proefschrift

efficiënte manieren om de numerieke oplossing van de voorkomende PDVen te benaderen.

De eerste benaderingstechniek die we beschouwen is voorgesteld door Reisinger en Wittum

[71] en gebaseerd op de hoofdcomponentenanalyse, ofwel ‘principal component analysis’

(PCA), van de covariantiematrix. In veel financiële toepassingen blijkt dat de eigenwaarde

behorende bij de eerste hoofdcomponent veel groter is dan alle overige eigenwaarden. Voor

een goede benadering van de oplossing kunnen alle overige hoofdcomponenten niet volledig

genegeerd worden, maar de eerste-orde correctietermen zijn wel voldoende om een goede

analytische benadering te verkrijgen voor de exacte oplossing van een hoog-dimensionale

Black-Scholes PDV. Voor deze analytische benadering moeten in totaal slechts een één-

dimensionale PDV en (d −1) twee-dimensionale PDVen opgelost worden.

In het eerste deel van dit proefschrift zullen we deze benaderingstechniek nader bestuderen en

de discretisatiefouten analyseren voor het prijzen van Europese-stijl basketopties. Vervolgens
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kan deze benaderingstechniek verder uitgebreid worden, waarmee eveneens Bermuda-stijl en

Amerikaanse-stijl basketopties geprijsd kunnen worden. De eerlijke prijs voor een Bermuda-

stijl optie wordt beschreven middels een Black-Scholes PDV zoals ook voor een Europese-stijl

optie, maar in aanvulling daarop kan op een vast aantal afgesproken tijdspunten de optie

eenmalig vroegtijdig uitgeoefend worden. Dit resulteert in een aanvullende optimale uitoefen-

conditie die opgenomen moet worden in de tijdsdiscretisatie. Deze optimale uitoefenconditie

kan een inconsistentie opleveren voor gebruik in de PCA-gebaseerde benadering. Ook de

discretisatiefouten voor het prijzen van Bermuda-stijl basketopties worden in dit proefschrift

nader geanalyseerd.

In plaats van op een eindig aantal uitoefenmomenten kunnen Amerikaanse-stijl opties op

elk gewenst moment eenmalig uitgeoefend worden. Dit kan geformuleerd worden met een

partieel differentiaal complementariteitsprobleem (PDCP). De PCA-gebaseerde aanpak kan

uitgebreid worden om ook de oplossing van dergelijke PDCPen numeriek te benaderen.

Verschillende tijdsdiscretisatiemethoden worden beschouwd. Tevens wordt een vergelijking

gemaakt met een alternatieve benaderingstechniek, de comonotone aanpak. Deze comono-

tone aanpak blijkt een lineaire combinatie van twee speciale gevallen van de PCA-gebaseerde

aanpak te zijn.

Ten slotte wordt besproken dat de PCA-gebaseerde aanpak ook gebruikt kan worden voor het

bepalen van de grieken, ofwel de partiële afgeleide van de optieprijs naar een zekere variabele.

Zo kunnen zowel de Deltas als de Gammas benaderd worden. Dit wordt gëıllustreerd met

enkele numerieke voorbeelden voor Europese-, Bermuda- en Amerikaanse-stijl basketopties.

Het tweede deel van dit proefschrift gaat over een andere aanpak om de oplossing van

een hoog-dimensionale differentiaalvergelijking te beschrijven. In deze aanpak wordt de

rang voor de numerieke oplossing van die vergelijking beperkt. Van bijvoorbeeld een twee-

dimensionaal probleem kan de oplossing op het beschouwde plaatsrooster voorgesteld worden

middels een matrix. Van deze matrix kunnen de singuliere waarden bepaald worden door

een singuliere waarden decompositie (SVD). Er wordt opgemerkt dat de oplossing van de

Helmholtz vergelijking die we beschouwen voor de verstrooiingsproblemen een lage rang

heeft. Er blijken dus slechts een beperkt aantal singuliere waarden relevant te zijn. Dus

in plaats van het oplossen van een differentiaalvergelijking op het volledige rooster kunnen

we deze differentiaalvergelijking projecteren op een ruimte opgespannen door factormatrices

verkregen vanuit de singuliere waarden decompositie van de oplossing. Hiermee verkrijgen

we een nieuwe differentiaalvergelijking voor een lage-rang factormatrix en is dus effectief

het aantal onbekenden gereduceerd. De vergelijking voor deze factormatrix kan gerelateerd

worden aan vergelijkingen die eveneens opgelost worden in de coupled channel techniek.

Deze lage-rang benadering in twee dimensies kan uitgebreid worden naar benaderingen voor

oplossingen van hoog-dimensionale problemen.

Er wordt dan ook een korte introductie over de representatie van hoog-dimensionale data

door middel van tensoren gegeven. Er bestaan verschillende tensordecomposities die gebruikt

kunnen worden om deze lage-rank tensoren te beschrijven, zoals de Canonical Polyadic (CP)-

tensordecompositie en de Tucker-tensordecompositie. In dit proefschrift presenteren we een

alternerende projectiemethode om direct numeriek de lage-rang factoren te bepalen voor

een oplossing van een hoog-dimensionaal Helmholtz probleem. Numerieke experimenten

tonen inderdaad goede resultaten die enkelvoudige, dubbele en drievoudige ionisatie kunnen

beschrijven met slechts een lage-rang benadering voor het hoog-dimensionaal Helmholtz
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probleem.

Ten slotte verkennen we of deze alternerende projectiemethode ook gebruikt kan worden

voor het oplossen van tijdsafhankelijke differentiaalvergelijkingen. Als alternatieve methode

bestaat in elk geval de dynamische lage-rang integrator van Lubich en anderen [47]. Deze

methode kan worden gëınterpreteerd als het oplossen van een optimalisatieprobleem. Op

basis daarvan worden in dit proefschrift nog enkele alternatieve methoden geformuleerd.

Een numerieke vergelijking van alle besproken methoden laat een zekere potentie zien voor

methoden als de dynamische lage-rang integrator en mogelijk ook voor de alternerende

projectiemethode. Echter, aanvullend onderzoek zal nodig zijn om een efficiënte numerieke

methode te formuleren voor het benaderen van lage-rang oplossingen voor stijve problemen.
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Introduction

A lot of phenomena observed around us can be described in terms of mathematical problems

or equations. Although the computational power to numerically solve these problems has

extensively increased over the past decades, the mathematical equations to solve have

become more and more complicated. This thesis is about efficient numerical approximation

of such challenging problems and goes under the title ‘efficient numerical approximation

of solutions to high-dimensional partial differential equations – with applications in option

pricing and scattering problems.’ In the following, we take a first, closer look at the keywords

and provide an overview of the content of this thesis.

A thesis in mathematics often deals with solutions and equations. An unknown quantity

of interest, let us call it u, is a solution to a mathematical problem that is formulated in

terms of one or more equations. Mathematics plays a crucial role in modeling phenomena

observed in eg. physics, chemistry or financial markets.

An important mathematical tool to model a wide range of phenomena is a partial differential

equation (PDE). The unknown quantity u depends on an independent real variable, let us

call it x . If the unknown quantity u can also change over time t, then we call it time-

dependent. Partial differential equations are equations that relate the unknown dependent

quantity u(x,t), the independent variables (such as x and time t) and the dependence of u

on the independent variables (such as the partial derivatives ∂u∂x and
∂u
∂t ). Of course, next

to x , one can introduce additional independent variables which will increase the dimension

of the problem. For example, if x represents a one-dimensional space-coordinate then one

can also introduce y and z to describe phenomena in three space dimensions.

This thesis is not about modeling by partial differential equations, but focuses on the effective

numerical solution of PDEs that arise in different application areas. An (semi-)closed

analytical solution to the PDEs under consideration is almost always unknown, so one is

led to the numerical approximation of the solution to these PDEs. To get insight in the

quality of this numerical approximation an analysis of its error (measured in a certain norm)

is important.

For a lot of physical applications three-dimensional problems arise naturally. In the present

thesis, however, we deal with high-dimensional problems. Such problems, with high dimension,

appear in various application areas. In Part I of this thesis, we consider applications in option

1



2 CHAPTER 1. INTRODUCTION

pricing. Valuation of financial derivative products, like basket options, easily results in PDEs

with an arbitrarily large dimension. For example, for a basket option the dimension of the

relevant Black-Scholes PDE is equal to the number of assets in that basket. Thus a basket

option on all assets weighted in an index such as the BEL-20 leads to a 20-dimensional

problem.

A second application area where high-dimensional problems appear naturally is subject of

Part II of this thesis. There we consider applications in scattering such as atomic and

molecular breakup reactions. For example the helium atom, He, with two electrons is the

simplest system on which double ionization might occur. But, as the number of electrons

increases also the dimension of the Helmholtz problem to describe this multiple-ionization

increases accordingly. Moreover, automatic selection of basis functions, instead of the use

of spherical harmonics in (8.4), yields already a six-dimensional problem for the helium atom.

We finish with the first keyword: efficient. A standard numerical discretization of the high-

dimensional partial differential equations considered in this thesis is infeasible. This is known

in the literature as the curse of dimensionality. Let d denote the dimension of the PDE

and assume one discretizes each direction with n = 100 unknowns. Then, for example, a

d = 5 dimensional PDE is discretized with n5 = 1010 unknowns. Thus just to store only

one representation in double-precision takes already more than 74.5GB of memory. Apart

from infeasible memory consumption also the number of floating point operations (FLOPs)

or computing time is enormous, even on state-of-the-art computer architectures. In this

thesis we shall investigate two alternative approximation techniques to get around the curse

of dimensionality.

1.1 Approximating solutions to high-dimensional PDEs

The aim of this thesis is to study and develop efficient numerical methods to approximate

solutions to high-dimensional PDEs. The approximation techniques under consideration are

based upon two, distinct approaches.

The first idea replaces a single high-dimensional partial differential operator by a linear com-

bination of multiple low-dimensional partial differential operators. The d-dimensional Black–

Scholes operator in (3.2) contains a covariance matrix ΣΣΣ ∈ Rd×d . Inspired by the principal
component analysis (PCA), well-known for example in statistics, Reisinger & Wittum [71]

suggest a transformation of the covariance matrix ΣΣΣ. In financial applications the eigenvalue

corresponding to the first principal component is often dominant and this observation will be

exploited in this first approximation approach. It turns out that neglecting all other principal

components does not yield a good approximation but adding first-order corrections yields

a good PCA-based approximation for the Black–Scholes operator. The main advantage of

this PCA-based approximation approach is that an analytical approximation to the solution

of the Black–Scholes PDE is obtained in terms of the solutions to a one-dimensional PDE

and (d − 1) two-dimensional PDEs. These PDEs are independent of each other and can
therefore be solved in parallel. The PCA-based approximation approach is the subject of

Part I in this thesis.
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The second approach restricts the rank of the solution of a differential equation and derives

a differential equation for the low-rank components of that low-rank solution. For example,

a numerical representation of the solution of a two-dimensional problem on a certain grid

can be represented by a matrix. From that matrix a singular value decomposition (SVD)

can be computed to obtain the singular values with the left- and right singular vectors. It is

observed that the solution of certain Helmholtz problems that appear in scattering problems

are of low rank. Thus instead of solving a differential equation on a full grid the differential

equation is projected on the space spanned by the other factor matrices. This leads to an

equation for the remaining low-rank factor of the solution. The equation for this low-rank

factor can be related to equations that arise in the coupled channel technique. This idea

for two-dimensional problems can be extended to larger dimensional problems where we

obtain a low-rank Tucker tensor representation of the solution. This projection approach

can be extended to solve for the low-rank factors of solutions to time-dependent PDEs.

This could result in an alternative for the dynamical low-rank integrator by Lubich et al.

[47]. The approach to directly solve for low-rank factors of the solution to high-dimensional

differential equations is the subject of Part II.

1.2 Outline of the thesis

The outline of this thesis is as follows. Chapter 2 starts with a short introduction to option

valuation. Further the famous Black–Scholes model [3] and the considered financial options

through this thesis are introduced. The standard discretization of the Black–Scholes PDE

and some remediation for the non-smoothness of the initial condition are given. As an

alternative to the PDE-based methods for option valuation also a short introduction in

Monte Carlo simulation based methods is presented.

In Chapter 3 the PCA-based approximation approach is introduced and applied to valuate

European-style basket options. Further a discussion on the spatial and temporal discretiza-

tion is given and concluded with a rigorous stability analysis for the spatial and temporal

discretization. That chapter contains some numerical experiments where the total error in

the discretization and the asymptotic runtime of the PCA-based approximation approach

are analyzed.

In Chapter 4 the PCA-based approximation approach is extended to Bermudan-style basket

options. The fair value of a Bermudan-style basket option is the solution to a Black–

Scholes PDE where at certain time frames an optimal exercise condition is imposed. This

optimal exercise condition may cause some inconsistencies in the PCA-based approximation

approach. Similar to the European-style basket option, the error in the discretization is

analyzed.

In Chapter 5 the PCA-based approximation approach is extended such that the solution to

partial differential complementarity problems (PDCPs) can be approximated. These prob-

lems arise in valuation of American-style basket options. Different temporal discretizations

are considered. Also a comparison with the comonotonic approach is made, where it is

observed that the comonotonic approach can be seen as a linear combination of special

cases of the PCA-based approximation approach. A numerical comparison between these
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two methods is given in that chapter.

As the last chapter in the first part about option valuation, we consider in Chapter 6 an

extension of the PCA-based approximation approach to approximate the Greeks. Two PCA-

based approximation approaches are formulated to estimate the Deltas. Further also a PCA-

based approximation approach for the Gammas is derived. The methods are illustrated with

numerical examples for European-, Bermudan- and American-style basket options.

With Chapter 7 the second part of the thesis starts with an introduction to high-dimensional

data representation using tensors. A short overview about tensors and different tensor

decompositions such as the Canonical Polyadic (CP) decomposition and the Tucker tensor

decomposition is given. Also an outlook about the promising Tensor Train decomposition is

included.

In Chapter 8 we show that scattering solutions for single-, double- and triple-ionization

problems can be approximated by low-rank matrices and tensors. An alternating projection

method is used to directly solve for low-rank factors of the solution to high-dimensional

Helmholtz problems without the need to solve a large linear system. Numerical experiments

are shown to validate this approach.

In Chapter 9 an exploration to extend the alternating projection method is done. Instead

of solving for the low-rank factor matrices of linear time-independent problems, such as the

Helmholtz problem, in this chapter possibilities to solve for the low-rank factor matrices of

time-dependent problems are explored. A literature review of the existent dynamical low-

rank integrator is given. That method can be interpreted as solving an optimization problem.

This leads to some alternative ideas and algorithms to solve for the low-rank factors of a

time-dependent solution of a PDE. Also the alternating projection method of Chapter 8 is

extended to solve for the low-rank factors of the solution of time-dependent problems. A

numerical comparison between the derived methods is given, which show some potential for

certain methods. Additional research is needed to arrive at an efficient numerical method

to approximate the low-rank factors of solutions to stiff partial differential equations.

Finally, Chapter 10 summarizes the conclusions of this thesis and gives an outlook for possible

further research.



Part I

Financial mathematics and option
valuation
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Introduction to option valuation and

Black-Scholes model

Chapter summary:

In this chapter we give an introduction to option valuation and the Black–

Scholes model [3].

In practice, option valuation of different kind of options is done via partial

differential equations or via Monte Carlo simulations. In this chapter

we give a general introduction for both techniques. Although numerical

methods that solve partial differential equations are studied in this thesis,

a short introduction in option valuation using simulations is given.

Especially the estimation of the Greeks using pathwise derivatives [5] is

reviewed together with the valuation of American-style options using a

method proposed by Longstaff and Schwartz [52].

Finally, an outlook for the rest of this first part of the thesis is given where

we numerically approximate solutions to partial differential equations for

high-dimensional Black–Scholes problems.

2.1 Introduction to option valuation

In this first part of the thesis we will mainly focus on option valuation as widely used in

financial markets and studied in financial mathematics. A financial option is a financial

derivative product depending on an underlying asset, for example a stock of a company.

A financial option is a security or contract between two parties that gives the holder the right

to buy (i.e. a call option) or sell (i.e. a put option), from the writer, an underlying asset

subject to some contract parameters until a specified moment in time, called the maturity

time T . Remark that the holder has the right but not the obligation to buy or sell the

7



8 CHAPTER 2. INTRODUCTION TO OPTION VALUATION AND BLACK-SCHOLES

underlying asset. An example of a contract parameter is the prescribed strike price K for

which the asset can be sold or bought.

A European-style option can only be exercised at maturity time T while an American-style

option can be exercised once at any time between today (as the time of inception of the

option) and maturity. In this thesis we will also consider Bermudan-style1 options and this

style of options can be seen as something between European- and American-style options. A

Bermudan-style option can be exercised once at one of a finite number of possible exercise

dates between today and maturity as prescribed in the contract.

Instead of trading an option on a single asset, it is also possible to trade an option on

multiple assets, also called a basket of assets, for example the weighted assets in an index.

In this thesis we will consider basket options on a (weighted) arithmetic average of correlated

assets.

Because the holder of an option has a right but no obligation to buy or sell an asset, the

option has financial value. Indeed, an option can be seen as an insurance against a large

raise (in case of a call option) or a large drop (in case of a put option) in the asset price. A

natural question that arises is then: ‘what is the fair value of an option?’.

At maturity time τ = T the value of an option is known and prescribed by the payoff function

φ(s), where s is the price of the underlying asset. Assume that at time τ = T the price

of the underlying asset is given by ST . At maturity the holder can compare the price ST
with the strike price K of the option and choose to exercise the option (if it is financially

beneficial) or not. In the last case the option is worthless. For a vanilla option the payoff

function is given by

φ(s) =

{
max(K− s, 0) (put option)

max(s−K, 0) (call option)
(2.1)

where s > 0 is the asset price.

Of course ST is not known today, so to answer the question about the fair value of the

option today one has to make an assumption about the underlying asset price Sτ , where

τ ∈ (0, T ] denotes the time, with τ = 0 being the time of inception of the option. It is
common in the present literature to model the underlying asset price Sτ with a stochastic

differential equation (SDE)

dSτ = r(τ)Sτdτ +σ(τ)SτdWτ . (2.2)

Here r(τ) ≥ 0 is the given risk-free interest rate at time τ , σ(τ) > 0 is the given volatility
at time τ and W is a standard Brownian motion under the risk-neutral measure. Further,

the initial asset price S0 > 0 is given.

The solution to the stochastic differential equation (2.2) is known and given by

Sτ = S0 exp

 τ∫
0

(
r(s)− 12σ

2(s)
)
ds+

τ∫
0

σ(s)dWs

 . (2.3)

1Apart from the fact that Bermuda is located between Europe and America, these names for the different

option styles do not have any geographical meaning.
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2.1.1 Black–Scholes model

To successfully answer the question about the fair value of a vanilla option Black and Scholes

[3] and Merton [57] developed a model that is currently well-known as the Black–Scholes

model.

To arrive at the Black–Scholes formula for the fair value of a European-style option in terms

of the price of the underlying asset some ‘ideal conditions’ in the market for the asset and

for the option are made, see also [3, 35]:

1. There are no riskless arbitrage opportunities.

2. The short-term interest rate r is known and is constant over time.

3. The asset price follows a geometric Brownian motion in continuous time with a vari-

ance rate proportional to the square of the asset price. Thus the distribution of

possible asset prices at the end of any finite interval is log-normal. The volatility σ of

the return on the asset is constant.

4. The are no dividends payed during the life of the derivative.

5. There are no transaction costs in buying or selling the asset or the option. All assets

are perfectly divisible.

6. It is possible to borrow and lend any fraction of cash, at the short-term interest rate.

7. It is possible to buy or sell any fraction of the asset. There are no penalties to short

selling. (A seller who does not own a security will simply accept the price of the

security from a buyer, and will agree to settle with the buyer on some future date by

paying him an amount equal to the price of the security on that date.)

Thus in the Black–Scholes model it is assumed that the asset price Sτ follows a stochastic

process where r(τ)≡ r and σ(τ)≡ σ are constant. Then, the exact solution in (2.3) reduces
to

Sτ = S0 exp
((
r − σ22

)
τ +σ

√
τZ
)

(2.4)

for τ ∈ (0, T ] and where Z is a standard normal random variable [31, 35].

Assuming S0 > 0 yields

ln

(
Sτ
S0

)
=
(
r − σ22

)
τ +σ

√
τZ. (2.5)

Thus ln
(
Sτ
S0

)
is normally distributed with mean

(
r − σ22

)
τ and variance σ2τ ; hence Sτ

is log-normally distributed. Using this, the expected value of Sτ (under the risk-neutral

measure) is given by

E [Sτ ] = S0erτ . (2.6)

The fair value u(s, t) of an option at time till maturity t = T −τ and Sτ = s is given by the
expected value of a random variable

u(s, t) = E
[
e−r tφ(ST )

]∣∣
Sτ=s

, (2.7)
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where s > 0 denotes the asset price and the payoff function φ(s) is given by the contract.

As an alternative, the fair value u(s, t) of an option can also be seen as the solution to

a partial differential equation (PDE). Again, assume an asset price process following (2.2)

under the Black–Scholes model, thus with r(τ) ≡ r and σ(τ) ≡ σ constant. Then Itô’s
Lemma [35, 44] can be used to derive a PDE for the unique deterministic function u(s, t)

that describes the fair value of the option at time till maturity t = T −τ :

∂u(s, t)

∂t
= 12σ

2s2
∂2u(s, t)

∂s2
+ r s

∂u(s, t)

∂s
− ru(s, t) (2.8)

for s > 0 and t ∈ (0, T ]. Equation (2.8) is well-known as the Black–Scholes partial differential
equation.

2.2 Option valuation via partial differential equations

The Black–Scholes PDE (2.8) is supplemented with the initial condition

u(s, t = 0) = φ(s). (2.9)

To complete the model, also a boundary condition for s = 0 has to be imposed. At s = 0

both the diffusion and convection terms in (2.8) cancel. So, one can impose a Dirichlet

boundary condition equivalent to the boundary condition that the PDE (2.8) is also satisfied

at s = 0:

u(s = 0, t) = e−r tφ(0). (2.10)

The semi-closed analytic solution to this PDE for a vanilla European-style option is known,

see e.g. [3]:

u(s, t) = sN(d1)−Ke−r tN(d2) ,

with s > 0, t ∈ (0, T ] and

d1 =
ln
(
s
K

)
+
(
r + 12σ

2
)
t

σ
√
t

,

d2 = d1−σ
√
t,

where N(·) is the cumulative normal density function. But for Bermudan- or American-
style options and basket options in general such formulas for a semi-closed analytic solution

are generally lacking in the literature. Therefore, we study efficient and stable numerical

methods to approximate the fair values of these type of options.

2.2.1 Discretization

To discretize PDE (2.8), the spatial variable s ∈ [0, ∞) has to be limited to a finite domain.
Therefore, a parameter Smax is introduced such that s ∈ [0, Smax], where the parameter
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Smax is chosen very large, e.g. between Smax = 4K and Smax = 8K. This requires an

additional boundary condition at s = Smax, for example a linear boundary condition can be

choosen:
∂2u(s, t)

∂s2

∣∣∣∣
s=Smax

= 0. (2.11)

Then the spatial variable s can be discretized on e.g. a uniform mesh si = ih, with

i = 0,1, . . . ,m, and mesh width h = Smaxm , where m is the number of spatial discretization

points in the domain. Based upon a Taylor expansion, finite difference approximations to
∂2u
∂s2
and ∂u∂s can be used (see also e.g. [36]) to discretize PDE (2.8) on this mesh. In this

thesis second-order finite difference schemes are employed, so the truncation error is O
(
h2
)
.

Implementing also boundary conditions (2.10) and (2.11) the semi-discrete system

du(t)

dt
= Au(t)+g(t) (2.12)

is obtained, where the i-th entry of u ∈ Rm represents the approximation to the solution
u(si , t). Further A ∈ Rm×m is given and represents the discretized Black–Scholes operator
and g(t) ∈ Rd is a given time-dependent vector that depends on the Dirichlet boundary
condition (2.10).

Next, the time variable t is discretized on a uniform temporal mesh ti = i∆t, with step

size ∆t = TN , where integer N ≥ 1 is the number of time steps. For the semi-discrete one-
dimensional Black–Scholes PDE the temporal discretization is often done by the θ-method

with parameter θ ∈ [0, 1] (for other time integration methods, see also [36]). Using the
θ-method with θ = 1

2 one obtains the well-known Crank–Nicolson (CN) scheme. Under

natural assumptions on the semi-discrete system (2.12), it is unconditionally stable and has

a global temporal error O
(
∆t2

)
.

The total error of the spatial and temporal discretization with respect to the exact solution

is defined by

E(m, N) = ∥uN −u∗∥∞ (2.13)

where uN ∈ Rm denotes the vector of the numerical approximation to the solution at time
t = N∆t = T and u∗ ∈ Rm denotes the vector with i-th entry equal to the value u(si ,T ),
where u(s, t) is the exact solution to PDE (2.8).

2.2.2 Cell averaging and Backward Euler damping

Although a second-order discretization for both space and time is used for the Black–Scholes

PDE (2.8) the total discretization error can have an irregular convergence behaviour. This

is related to the non-smoothness of the initial condition. Indeed at strike K the payoff

function φ is continuous but not differentiable. Finite difference approximations assume

sufficient smoothness of the pertinent function, which is violated for most payoff functions

φ, such as given in (2.1). This will lead to an irregular behaviour in the spatial error, where

strong oscillations are observed. A smoothing technique like cell averaging can be applied

to remedy this undesirable behaviour [50, 66].
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Figure 2.1: Total discretization error for European-style vanilla call option without (left) and

with (right) cell averaging as described in Example 2.2.1.

Instead of a pointwise representation φ ∈ Rm of the payoff function φ(s) on the spatially
discretized mesh, its pointwise evaluation nearest to strike K is replaced by an average over

a certain cell. Let i ∈ {1,2, . . . ,m} denote the index such that |si −K| is minimal. Then the
value φi in vector φ is replaced by an integral

φi =
1

h

s
i+12∫
s
i− 12

φ(s)ds, (2.14)

where intermediate mesh points s
i− 12
and s

i+ 12
are defined by

s
i− 12
:=

si−1+ si
2

,

s
i+ 12
:=

si + si+1
2

.

Example 2.2.1. Consider the example of valuation of a European vanilla call option with

r = 0.03, σ = 0.2, T = 1, K = 100 and discretize with m = N space and time-discretization

points where Smax = 4K. The total discretization error (2.13) with respect to the exact

solution for a call option without and with cell averaging is shown in Figure 2.1. It is clear

that cell averaging of the payoff function can reduce the oscillation observed in the total

discretization error of this numerical approximation to the fair value of an option.

In most cases the total discretization error will be dominated by the spatial discretization

error. But also the temporal error can suffer from the non-smoothness of the initial condition

φ which may affect the convergence behaviour of time integration methods like the Crank–

Nicolson scheme. To alleviate this, Rannacher timestepping [67] (also known as Backward

Euler damping) can be applied. This is done by replacing the first timestep from t = 0 to

t = ∆t of the time integration method by two timesteps of length ∆t2 using the Backward

Euler scheme.
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2.2.3 Curse of dimensionality

The Black–Scholes PDE (2.8) for vanilla options can be extended to basket options2. There-

fore, consider a basket with d assets and let u(s, t) = u(s1, s2, . . . , sd , t) be the fair value of

a European-style basket option if at time till maturity t = T −τ the i-th asset price equals
si where i = 1,2, . . . ,d . Then u satisfies the d-dimensional Black–Scholes PDE [62, 84]

∂u

∂t
(s, t) =

1

2

d

∑
i=1

d

∑
j=1

σiσjρi jsi sj
∂2u

∂si∂sj
(s, t)+

d

∑
i=1

r si
∂u

∂si
(s, t)− ru(s, t) (2.15)

whenever (s, t) ∈ (0,∞)d × (0,T ]. Further r ≥ 0 is the given risk-free interest rate, σi > 0
(with i = 1,2, . . . ,d) are the given volatilities and ρ= (ρi j) ∈Rd×d is the correlation matrix,
where i , j = 1,2, . . . ,d , that describes the correlation between the underlying assets.

The PDE (2.15) is also satisfied if si = 0 for any given i , thus at the boundary of the spatial

domain. Next, we have the initial condition given by the payoff function

u(s,0) = φ(s), (2.16)

whenever s ∈ (0,∞)d .

For a put-on-average basket option the payoff function is given by

φ(s) = max

(
K−

d

∑
i=1

ωi si , 0

)
, (2.17)

where the prescribed weights ωi > 0 (i = 1,2, . . . ,d) are fixed, given by the contract and

such that
d

∑
i=1
ωi = 1.

The number of unknowns in the spatial discretization on the (truncated) domain (0,Smax]
d

grows exponentially in the dimension d . Indeed, if m is the number of discretization points

per asset in the domain, then the total number of discretization points equals md . This

approach is feasible for d = 1,2 and d = 3, but when d becomes moderate or large, e.g.

d ≥ 5, then numerically solving PDE (2.15) with a reasonably fine spatial mesh becomes
impractical.

Example 2.2.2. As an example to illustrate this exponential dependence of the runtime on

the dimension we consider the valuation of a European-style basket put-on-average option

with the parameters of Set A by Reisinger and Wittum [71] as given in Appendix A. For lower

dimensional problems we restrict Set A to the first d assets. The measured total runtime

for solving the d-dimensional Black–Scholes PDE for dimensions d ∈ {2,3,4,5} is shown in
Figure 2.2. In this example the number of time steps N is taken equal to the number of

discretization points per asset m. Further a model to predict the total runtime is fit on the

data to describe the asymptotic behaviour. Asymptotically, but before some out-of-memory

artifacts appear, the total runtime scales indeed approximately O(Nmd).
2For example, one can think of an option on all assets weighed in an index, such as the BEL20 where

one has d = 20 assets in a basket.
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Figure 2.2: Total runtime for solving the d-dimensional Black–Scholes PDE for dimensions

d ∈ {2,3,4,5} using a standard spatial discretization of the d-dimensional space.

2.3 Option valuation via Monte Carlo simulation

For basket options with a moderate or large number of assets, the standard approach for

numerically solving a high-dimensional PDE like (2.15) is computationally too expensive.

As an alternative, Monte Carlo (MC) simulations are often used to valuate these basket

options. The price processes of the underlying assets are simulated along different paths,

where the number of simulated paths is denoted by Npaths.

Although this thesis mainly focuses on solving partial differential equations, here a short

introduction in Monte Carlo simulations and Least Squares Monte Carlo (LSMC) simulations

is given. A main advantage of Monte Carlo simulations is that the computational cost scales

approximately linearly in the number of assets.

2.3.1 Option and Delta values for European-style basket option

For a basket with d assets we model the underlying asset price process Siτ (for i =1,2, . . . ,d)

similar to (2.2), with constant risk-free interest rate r and constant volatilities σi (where

i = 1,2, . . . ,d), using a multidimensional geometric Brownian motion which is given by a

system of stochastic differential equations (SDEs):

dSiτ = rS
i
τdτ +σiS

i
τdW

i
τ (2.18)

for 0 < τ ≤ T and i = 1,2, . . . ,d . Here W i (i = 1,2, . . . ,d) is a multidimensional standard
Brownian motion with given correlation matrix ρ= (ρi j)

d
i,j=1. The stochatic variables S

i
τ for

asset price processes Si (with i = 1,2, . . . ,d) can be represented by a d-dimensional vector

Sτ = (S
i
τ )
d
i=1. Further, the initial asset prices S

i
0 > 0 are given.
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To generate the d correlated random normal variables for the Brownian motion the Cholesky

factorization CTC = ρ can be used, where C is an upper triangular matrix [33]. Now, the

d-dimensional row vector describing the Brownian increments Wτ for the d assets can be

described as

Wτ =
√
τZC,

where Z is a row vector representing a d-dimensional standard normal random variable.

The solution to the system of stochastic differential equations (2.18) is given by

Siτ = S
i
0 exp

((
r − 12σ

2
i

)
τ +σiW

i
τ

)
, (2.19)

for i = 1,2, . . . ,d and τ ∈ (0, T ].

Written in vector notation, this is given by

Sτ = S000 ∗exp
((
re−

σ ∗σ
2

)
τ +σ ∗Wτ

)
, (2.20)

for τ ∈ (0, T ]. Here σ and Sτ ∈ Rd are interpreted as row vectors. Further the notation
x ∗ y is used for the element wise product between vectors x and y . The function exp(·)
applied on a vector is taken element wise and the vector e = [1,1, . . . ,1] ∈ Rd .

2.3.1.1 Option value for European-style basket option

Let u(s, t) = u(s1, s2, . . . , sd , t) denote the fair value of a European-style basket option if at

time till maturity t = T − τ the i-th asset price equals si , with i = 1,2, . . . ,d . Similar to
(2.7), the fair value u(s, t) of a basket option can also be seen as the expected value of a

random variable Pt :

u(s, t) = E

e−r tφ(ST )︸ ︷︷ ︸
Pt


∣∣∣∣∣∣∣
Sτ=s

, (2.21)

where s ∈ (0, ∞)d denotes the vector with asset prices and the payoff function φ(s) is given
by the contract.

Define the one-dimensional random variable ST as the pertinent linear combination of the

random variables for the values of the different assets:

ST =
d

∑
i=1

ωiS
i
T . (2.22)

The payoff function (2.17) for ST reduces to the one-asset payoff function for a vanilla put

option as given in (2.1) with the value of the asset given by ST in (2.22).

A Monte Carlo simulation for valuation of this type of basket options under a multidimen-

sional geometric Brownian motion is given in Algorithm 1 (especially lines 7 and 10).

Example 2.3.1. As an example for valuation of a European-style basket put-on-average

option we consider Set A as given in Appendix A by Reisinger and Wittum [71].
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Algorithm 1: Monte Carlo simulation for option valuation and estimation of Delta-k

(with k = 1,2, . . . ,d) of a European-style basket option under Black–Scholes model.

1 Given S000 ∈ Rd , K, r, σ ∈ Rd , ρ ∈ Rd×d , T, Npaths, φ(s), ∂φ∂sk (s);
2 CTC = chol [ρ];

3 for i = 1,2, . . . ,Npaths do

4 Z(i) ∼ [N (0, 1) , N (0, 1) , . . . , N (0, 1)];
5 W

(i)
T =

√
TZ(i)C;

6 S
(i)
T = S000 ∗exp

((
re− 12σ ∗σ

)
T +σ ∗W (i)T

)
;

7 P
(i)
T = e

−rTφ
(
S
(i)
T

)
;

8 ∆
(i)
k = e

−rT SkT
Sk0

∂φ
∂sk

(
S
(i)
T

)
;

9 end

10 Option value PT = 1
Npaths

Npaths

∑
i=1

P
(i)
T ;

11 Delta-k value ∆k =
1

Npaths

Npaths

∑
i=1
∆
(i)
k ;

We consider the valuation of this basket option with S000 = (K,K,. . . ,K) ∈ Rd . Using a
PCA-based approximation approach3 the reference option value today, P ∗T = 0.17577, is
obtained.

The Monte Carlo simulation is done with Npaths≥ 1 simulated paths. The estimations for
the mean and the variance of the option value are given by [31]

PT =
1

Npaths

Npaths

∑
i=1

P
(i)
T ,

V
2
=

1

Npaths−1

Npaths

∑
i=1

(
P
(i)
T −PT

)2
,

(2.23)

where P
(i)
T is the option value along the i-th path.

By the Central Limit Theorem, the error of the estimated mean with respect to the real

mean, approximated by P ∗T − PT , behaves like N
(
0, V 2

Npaths

)
, where V 2 is the unknown

variance of the random variable PT . Thus for a large number of simulated paths, the Monte

Carlo estimation PT approximates P
∗
T with a standard error

V√
Npaths

. Hence, the standard

error decays O (1/
√
Npaths) when Npaths increases.

Using V as estimation for V in the standard error, the 95% confidence interval (CI) for P ∗T
is estimated by

95% CI≈
[
PT −

1.96V√
Npaths

, PT +
1.96V√
Npaths

]
. (2.24)

The obtained Monte Carlo estimations for the fair option value and the PCA-based reference

value for an increasing number of simulated paths Npaths are shown in Figure 2.3a.

3For the details about this approach we refer to Chapter 3.
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Next, the difference with respect to the reference value and the Monte Carlo standard error

are shown in Figure 2.3c. Indeed, the standard error and the difference with respect to

the reference value behave O (1/
√
Npaths). We remark that this rather slow decay of the

standard error for Monte Carlo methods can be improved using for example Multilevel Monte

Carlo methods [22, 23].

2.3.1.2 Deltas for European-style basket option

Besides the fair value of an option, in financial practice also the Greeks are quantities of

main interest. The Greeks describe the sensitivity of the option value to a change in one of

the underlying financial parameters. For each asset in the basket we have a Greek Delta.

Thus, for the k-th asset, the Delta-k is defined by ∆k(s, t) =
∂u(s,t)
∂sk
, for k = 1,2, . . . ,d .

We will estimate Delta-k for European-style basket options by pathwise derivatives, a well-

known technique by Broadie and Glasserman [5] for estimating the Greeks of options. This

technique can be applied in particular to estimate the Deltas for basket options. As an

example we illustrate this for the Greek Delta-k , but other Greeks can be estimated in a

similar manner.

Using (2.21) and the definition of Delta-k it follows that

∆k(s, t) =
∂u(s, t)

∂sk
= E

[
e−r t

d

∑
i=1

∂φ(ST )

∂si

∂SiT
∂sk

]∣∣∣∣∣
Sτ=s

, (2.25)

where SiT denotes the i-th entry of the vector with random variables ST .

The derivative of Siτ with respect to sk is given by

∂Siτ
∂sk
=

exp
((
r − 12σ

2
i

)
τ +σiW

i
τ

)
=
Skτ
Sk0

if i = k

0 if i ̸= k
(2.26)

for i ,k = 1,2, . . . ,d .

Further, the partial derivatives of the payoff function φ as given in (2.17) are

∂φ(s)

∂si
=


−ωi if K >

d

∑
j=1
ωjsj

0 if K ≤
d

∑
j=1
ωjsj

, (2.27)

for i = 1,2, . . . ,d . Thus the Greek Delta-k can be expressed as the expectation of a differ-

entiated payoff function

∆k(s, t) =
∂u(s, t)

∂sk
= E

[
e−r t

SkT
Sk0

∂φ(ST )

∂sk

]∣∣∣∣
Sτ=s

. (2.28)

Thus, with exactly the same set of asset price paths it is possible to estimate both the

fair value of a basket option and its Deltas. The Monte Carlo simulation for estimation of

Delta-k for this basket option is given in Algorithm 1 (especially lines 8 and 11).
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Figure 2.3: Fair option value (left) and Delta-k , with k = 1, estimation (right) of put-on-

average European-style basket option under the Black–Scholes model using Monte Carlo

simulation.
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Example 2.3.1 (continued). Consider again Set A as given in Appendix A. For Delta-1

the reference value at S000 = (K,K,. . . ,K) ∈ Rd obtained by a PCA-based approximation
approach is given by ∆∗1 =−0.14005. The obtained Monte Carlo estimations for the value
of this Delta based on (2.28) and its difference with respect to this reference value are

shown in Figures 2.3b and 2.3d.

The results indicate indeed that the pathwise derivative technique can be successfully ap-

plied to estimate the Deltas for European-style basket options using standard Monte Carlo

simulation. It converges to the same values for Delta-k as obtained using a PDE reference

method. Again, the standard error and the difference with respect to the reference value

decay with O (1/
√
Npaths), where Npaths is the number of simulated paths.

2.3.2 Option value for American-style vanilla option

For American-style vanilla options, Longstaff and Schwartz [52] present an algorithm that

uses simulations to approximate their fair value4. The intuition behind this approach comes

from the observation that the holder of an American-style option optimally compares, at

any given time instant, the payoff from immediate exercise with the expected payoff from

continuation. The key insight of the approach by Longstaff and Schwartz is that the con-

ditional expectation of the payoff from continuing can be estimated from cross-sectional

information available from the simulation. The conditional expectation function for the ex-

pected payoff from continuation can be seen as a least squares solution over specific data.

By estimating the conditional expectation at each time instant an optimal exercise strat-

egy along each simulation path can be formulated and used to valuate the American-style

option. This technique is also called Least Squares Monte Carlo (LSMC) approach in the

literature. In [52, Section 1] an illustrative numerical example is presented to explain the

Longstaff–Schwartz approach to valuate American-style vanilla options.

We mention that the fair value of an American-style vanilla option can again be expressed

as an expectation of a discounted payoff. Assume that the American-style option for a given

asset price path is optimally exercised at time τ∗ ∈ [0, T ]. Then, the fair value of the option
can then be written as an expectation [24, 75]

u(s, t) = E

e−r(t−t∗)φ(Sτ∗)︸ ︷︷ ︸
Pt


∣∣∣∣∣∣∣
Sτ=s

, (2.29)

where t∗ = T −τ∗ depends on the asset price path.

Example 2.3.2. As an example, choose r = 0.05, σ = 0.25, S0 = 100, K = 100 and T = 1.

For approximating the American-style put option price, we take E = 100 equidistant ex-

ercise points in time. As reference value, the corresponding Bermudan-style option value

approximation from the Black–Scholes PDE discretization of Section 2.2 with m=N = 104

4Actually the fair value of a Bermudan-style vanilla option is estimated, but when the (finite) number

of exercise times for a Bermudan-style option increases the Bermudan-style option value converges to the

American-style option value.
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is employed5 (including cell averaging and backward Euler damping). With this approach

the reference value P ∗T = 7.96833 is obtained. The estimated option values and errors are
shown in Figures 2.4a and 2.4c.

The results confirm, as expected, that the Longstaff–Schwartz method can be used to

accurately valuate American-style options. The standard error behaves similarly as for a

Monte Carlo method to valuate European-style options. The difference with respect to the

reference value seems to level off when the number of simulated paths increases. Up to

a certain number of simulated paths, the Longstaff–Schwartz method seems to generate

an estimation for the American-style vanilla option value that lies close to the option value

obtained by the PDE discretization approach. From this comparison, it is not clear which of

the two approaches has the largest error that causes this observed difference. We mention

that it is well-known that the choice of basis functions for the regression may have some

impact on the accuracy of the Longstaff–Schwartz method.

2.3.3 Delta value for American-style vanilla option

The Longstaff–Schwartz approach [52] for valuation of American-style vanilla options can be

combined with pathwise derivatives [5] for estimating the Greeks similar to European-style

options.

Observe that the Longstaff–Schwartz method constructs an optimal exercise strategy for

American-style options. According to that optimal exercise strategy for all simulated paths

the payoff is evaluated, discounted and averaged to approximate the expectation of the

payoff for the option.

Instead of using the discounted payoff function for the computation of the expected value

under the optimal exercise strategy, one can also use an other function. To approximate

the Delta of an option using pathwise derivatives in the European-style context, it has been

observed (cf. Section 2.3.1.2) that this is just the expectation of an other function over the

same simulation [24]. Applying this idea here and compute

∆(s, t) =
∂u(s, t)

∂s
= E

[
e−r(t−t

∗) dφ(Sτ∗)

ds

Sτ∗

S0

]∣∣∣∣
Sτ=s

, (2.30)

where t∗ = T − τ∗ depends on the asset price path. This gives, with exactly the same set
of asset price paths, the pathwise approximation to the Delta of an American-style option.

Example 2.3.2 (continued). The reference value for the Delta of an American-style option

is approximated by the Delta value for a Bermudan-style option with E = 100 equidistant

exercise points in time. The reference value is obtained from the PDE discretization in a

similar way as in Example 2.3.2 and is given by ∆∗ =−0.40928.

The obtained Monte Carlo estimations for the Delta value and the difference with respect

to this reference value are shown in Figures 2.4b and 2.4d.

5In Section 2.2 only the valuation of European-style options is presented. This approach can be extended

to valuate Bermudan-style options by explicitly imposing the optimal exercise condition at the exercise points

in time. For the valuation of Bermudan (basket) option we refer to Chapter 4.
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Figure 2.4: Fair option value (left) and Delta estimation (right) of an American-style vanilla

put option under the Black–Scholes model using the Longstaff–Schwartz approach.
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The numerical results indicate indeed that the pathwise derivative technique can successfully

be combined with the Longstaff–Schwartz method to estimate the Greeks for American-style

vanilla options. Again, the standard error and the difference with respect to the reference

value decay with O (1/
√
Npaths), where Npaths is the number of simulated paths.

2.3.4 Option and Delta values for American-style basket option

Finally, similar to Section 2.3.1 for European-style basket options, we consider the valuation

and estimation of option and Delta-k values for American-style basket options. For a basket

with d assets we model the underlying asset price process Siτ with τ ∈ [0, T ] (for i =
1,2, . . . ,d) again using a multidimensional geometric Brownian motion, given by (2.18).

The method by Longstaff and Schwartz for American-style options on one asset, needs only

some minor modifications to adapt to American-style basket options. For the fixed prescribed

weights ωi in the payoff (2.17), consider the one-dimensional, average price process Sτ given

in (2.22). The payoff (2.17) is then clearly given by just the payoff for a vanilla put option

(2.1) on the average price.

In this modification for American-style basket options one can use the one-dimensional

averaged stock prices Sτ at time τ and the corresponding discounted cash flow received at

time τ in the regression used in the Longstaff–Schwartz approach [92].

In the following example, we observe that it yields remarkably well approximations.

Example 2.3.1 (continued). Consider again the financial parameters of Set A in Appendix A.

Let us estimate the fair option value and Delta-k of an American-style basket option. With

exactly the same random paths for the multi-asset price process the values of the option

and Delta-k can be estimated.

The reference values for the option and the Deltas at S000 = (K,K,. . . ,K) ∈Rd are obtained
using PCA-based PDE methods6. The obtained reference value for the option is given by

P ∗T = 0.18110 and the reference value for Delta-1 is given by ∆
∗
1 =−0.14624.

For this option the fair value and the Delta-1 value with the differences with respect to

their reference values are shown in Figure 2.5. The results suggest that the Longstaff–

Schwartz method can also be applied to valuate American-style basket options. Moreover,

the pathwise derivative technique can also be used to estimate the Deltas for American-style

basket options.

As mentioned already in the discussion of the Longstaff–Schwartz method for American-style

vanilla options also with the American-style basket options it is observed that the difference

with respect to the reference solution seems to level off when the number of simulated paths

increases. This behaviour is observed for both the estimation of the option and the Delta

value.

6For the details about this method we refer to Chapters 5 and 6.
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Figure 2.5: Fair option value (left) and Delta-k , with k = 1, estimation (right) of put-on-

average American-style basket option under the Black–Scholes model using the Longstaff–

Schwartz approach.
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2.4 Outlook

In this chapter we have reviewed different types and styles of financial options. Further the

Black–Scholes equation is introduced and we presented some basic techniques to numeri-

cally valuate an option using both partial differential equations and Monte Carlo simulation.

Further the pathwise derivative technique is discussed to estimate the Greeks.

In practice both PDE methods and Monte Carlo simulations are used to valuate options7.

Main advantages of PDE methods for valuation of options are the well-understood conver-

gence behaviour and the Greeks that appear naturally in the PDE. A drawback for valuation

of basket options by the numerical solution of PDEs is that standard methods are compu-

tationally too expensive when the number of assets in a basket is moderate or large.

As an alternative approach for valuation of basket options, where the number of assets

is large, Monte Carlo simulation can be applied. This approach is often straightforward to

implement and the computational cost increases linearly in the number of assets. Besides the

fact that the results using Monte Carlo simulation are probabilistic, a well-known drawback

of Monte Carlo simulation is that a lot of simulations are needed and the convergence is

rather slow in the number of simulated paths.

In the remainder of this first part of the thesis we study an analytical technique by Reisinger

and Wittum [71] to approximate the solution of a high-dimensional PDE as given in (2.15)

by a linear combination of solutions to low-dimensional PDEs. This opens up the possibility

to numerically valuate basket options with a moderate number of assets using numerical

PDE methods.

We mention also the numerical discretization technique based on sparse grids [6] that ef-

fectively reduces the number of grid points compared to a full grid solution. This technique

has been applied for the numerical valuation of basket options (e.g. in [51]) but the number

of grid points on a sparse grid is still too large for a high number of assets.

Instead, in the following we will focus on the Principal Component Analysis based (PCA-

based) approximation approach by Reisinger and Wittum [71]. This will yield an analytical

approximation to the value of the solution of (2.15). This analytical approximation con-

sists a linear combination of solutions to PDEs with low dimension. In typical financial

applications, solutions to just one- and two-dimensional PDEs are sufficient. This leads to

an approximation technique with a computational cost that is only linear in the number of

assets in the basket.

In Chapter 3 we introduce the PCA-based approximation approach of [71] and apply it to

numerically valuate European-style basket options. In Chapters 4 and 5 we extend this PCA-

based approximation approach to numerically valuate Bermudan- and American-style basket

options. The PCA-based approximation approach can also be used to numerically estimate

the Greeks for European-, Bermudan- and American-style basket options and that will be

the topic of Chapter 6. Much attention will be given to the convergence behaviour of the

numerical approximations.

7Two other important, contemporary approaches are numerical integration and machine learning, which

have not been discussed in this chapter.
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Chapter summary:

In this chapter we study the principal component analysis based approach

introduced by Reisinger and Wittum for the approximation of European-

style basket option values via high-dimensional partial differential equa-

tions (PDEs).

This PCA-based approximation approach requires the solution of just a

limited number of low-dimensional PDEs.

Next, an efficient discretization of the pertinent PDEs is presented and a

rigorous stability analysis is given for the spatial and temporal discretiza-

tions.

This approximation approach with an efficient discretization leads to a

favourable convergence behaviour.

The content of this chapter is mainly based on published work in [41] and

[39].

3.1 Introduction

In this chapter we introduce the principal component analysis based (PCA-based) approxi-

mation approach introduced by Reisinger and Wittum [71] that deals with the valuation of

European-style basket options.

Basket options constitute a popular type of financial derivatives and possess a payoff de-

pending on a weighted average of different assets. In general, exact valuation formulas for

such options are not available in the literature in semi-closed analytic form. Therefore, the

development and analysis of efficient approximation methods for their fair values is of much

importance.

25
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In this chapter, we consider the valuation of European-style basket options through partial

differential equations (PDEs). If d denotes the number of different assets in the basket, then

the pertinent PDE is d-dimensional. In this thesis, we are interested in the situation where

d is medium or large, for example d ≥ 5. It is well-known that this renders the application
of standard discretization methods for PDEs impractical, due to the curse of dimensionality.

For this style basket options, an effective approach has been introduced by Reisinger and

Wittum [71] and next studied in, e.g., Reisinger and Wissmann [68, 69, 70] and in our recent

papers [39, 41]. This approach is based on a principal component analysis (PCA) and yields

an approximation formula for the value of the basket option that requires the solution of a

limited number of only low-dimensional PDEs.

A European-style basket option is a financial contract that gives the holder the right to buy or

sell a prescribed weighted average of d assets at a prescribed maturity date T for a prescribed

strike price K. We assume in this thesis the well-known Black–Scholes model. Thus, the

asset prices Siτ (with i = 1,2, . . . ,d) for τ ∈ [0, T ] evolve according to a multidimensional
geometric Brownian motion, which is given (under the risk-neutral measure) by the system

of stochastic differential equations (SDEs)

dSiτ = rS
i
τdτ +σiS

i
τdW

i
τ (0< τ ≤ T, 1≤ i ≤ d). (3.1)

Here τ is time, with τ =0 representing the time of inception of the option, r ≥ 0 is the given
risk-free interest rate, σi > 0 (i =1,2, . . . ,d) are the given volatilities and W

i (i =1,2, . . . ,d)

is a multidimensional standard Brownian motion with given correlation matrix ρ= (ρi j)
d
i,j=1.

Further, the initial asset prices Si0 > 0 (i = 1,2, . . . ,d) are given. In essentially all financial

applications, the correlation matrix is full.

Let u(s, t) = u(s1, s2, . . . , sd , t) be the fair value of a European-style basket option if at time

till maturity t = T −τ the i-th asset price equals si (i = 1,2, . . . ,d). Financial mathematics
theory yields that u satisfies the d-dimensional time-dependent PDE [62, 84]

∂u

∂t
(s, t) =

1

2

d

∑
i=1

d

∑
j=1

σiσjρi jsi sj
∂2u

∂si∂sj
(s, t)+

d

∑
i=1

r si
∂u

∂si
(s, t)− ru(s, t) (3.2)

whenever (s, t) ∈ (0,∞)d × (0,T ].

The PDE (3.2) is also satisfied if si = 0 for any given i , thus at the boundary of the spatial

domain. At maturity time of the option its fair value is known and specified by the particular

option contract.

If φ is the given payoff function of the option, then one has the initial condition

u(s,0) = φ(s) (3.3)

whenever s ∈ (0,∞)d .

In this thesis, we shall consider the class of basket put options. These have a payoff function

given by

φ(s) = max

(
K−

d

∑
i=1

ωi si , 0

)
(3.4)
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with prescribed weights ωi > 0 (i = 1,2, . . . ,d) such that ∑
d
i=1ωi = 1.

The outline of this chapter is as follows. Following Reisinger and Wittum [71], in Sec-

tion 3.2.1 a convenient coordinate transformation is applied to the PDE (3.2) for European-

style basket options by means of a spectral decomposition of the covariance matrix. This

way, a d-dimensional time-dependent PDE for a transformed option value function is ob-

tained in which each coefficient is directly proportional to one of the eigenvalues. Using a

minor assumption on the covariance matrix in Section 3.2.1.3 a proof for Dirichlet bound-

ary conditions for the transformed domain is given. In Section 3.2.2, the feature that the

transformed option value function is obtained in a form where each coefficient is directly

proportional to one of the eigenvalues is used. This feature is exploited to derive a prin-

cipal component analysis (PCA) based approximation approach. The key property of this

approximation is that it is determined by just a limited number of one- and two-dimensional

PDEs. In Section 3.3, an efficient discretization of the one- and two-dimensional PDEs for

European-style basket options is described, which employs finite differences on a nonuniform

spatial grid followed by the Brian and Douglas Alternating Direction Implicit (ADI) scheme

on a uniform temporal grid. In Section 3.4, a rigorous stability analysis is given for the

spatial and temporal discretizations defined in Section 3.3. In Section 3.5 we study in detail

the error in the discretization described in Section 3.3 for the PCA-based approximation and

observe a favourable, near second-order convergence behaviour. Next, a runtime comparison

is included to demonstrate the computational advantage of the PCA-based approximation

approach. The final Section 3.6 presents our conclusions and outlook.

3.2 PCA-based approximation approach

3.2.1 Coordinate transformation

In this section we apply two subsequent coordinate transformations to the PDE (3.2) for a

European-style basket option. We assume here that the elementary functions ln(·), exp(·),
tan(·), arctan(·) are taken componentwise whenever their argument is a vector.

3.2.1.1 Transformation to a problem with coefficients proportional to eigenvalues

The covariance matrix ΣΣΣ =
(
Σi j
)
∈ Rd×d is given by Σi j = σiρi jσj for i , j = 1,2, . . . ,d . Let

ΛΛΛ = diag(λ1,λ2, . . . ,λd) denote a real diagonal matrix of eigenvalues of ΣΣΣ and Q a real

orthogonal matrix of eigenvectors of ΣΣΣ such that ΣΣΣ=QΛΛΛQT.

Then, following [71], we apply the coordinate transformation

x(s, t) =QT (ln(s/K)−b(t)) , (3.5)

where b(t) = (b1(t),b2(t), . . . ,bd(t))
T with bi(t) for 1≤ i ≤ d to be determined.
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The partial derivatives of the transformation given in (3.5) are given by

∂xi
∂sj
= qj i

1

sj

∂xi
∂t
=−

d

∑
j=1

qj ib
′
i(t).

(3.6)

where i , j = 1,2, . . . ,d . Let the function v be defined by

u(s, t) = v(x(s, t), t).

Then, using the chain rule the first derivative of u(s, t) to t can be written as

∂u(s, t)

∂t
=
∂v(x , t)

∂t
−
d

∑
i=1

d

∑
j=1

∂v(x , t)

∂xi
qj ib

′
j(t). (3.7)

Further, the first derivative of u(s, t) to sj (with j = 1,2, . . . ,d) is given by

∂u(s, t)

∂sj
=
1

sj

d

∑
i=1

qj i
∂v(x , t)

∂xi
. (3.8)

Finally, some more calculations for the second derivative of u(s, t) to si and sj for i , j =

1,2, . . . ,d yields

∂2u(s, t)

∂si∂sj
=


1
si

1
sj

d

∑
k=1

d

∑
l=1
qikqj l

∂2v(x ,t)
∂xk∂xl

, for i ̸= j,

1
s2i

(
d

∑
k=1

d

∑
l=1
qikqi l

∂2v(x ,t)
∂xk∂xl

−
d

∑
l=1
qi l
∂v(x ,t)
∂xl

)
for i = j.

(3.9)

An easy calculation yields that v satisfies

∂v

∂t
(x , t) −

d

∑
i ,j=1

qi jb
′
i(t)

∂v(x , t)

∂xj
=
1

2

d

∑
k=1

λk
∂2v

∂x2k
(x , t) +

d

∑
i ,j=1

(
r − 12σ

2
i

)
qi j
∂v(x , t)

∂xj
−rv(x , t)

(3.10)

whenever x ∈ Rd , t ∈ (0,T ]. Thus, choosing bi(t) with i = 1,2, . . . ,d such that

b′i(t) =
1
2σ
2
i − r (3.11)

leads to a pure diffusion equation for v , without mixed derivative terms, and with a simple

reaction term:
∂v

∂t
(x , t) =

1

2

d

∑
k=1

λk
∂2v

∂x2k
(x , t)− rv(x , t), (3.12)

whenever x ∈ Rd , t ∈ (0,T ].

The ordinary differential equation (ODE) for (3.11) for bi has a simple solution

bi(t) = bi(0)+(
1
2σ
2
i − r)t, (3.13)

for i = 1,2, . . . ,d . We choose1 bi(0) = 0 for i = 1,2, . . . ,d , thus b(t) in (3.5) is elementwise

given by

bi(t) =
(
1
2σ
2
i − r

)
t, (3.14)

for i = 1,2, . . . ,d .

1We remark that it is possible to make other choices here, e.g. bi (0) = ln(si/K) or bi (T ) = 0.
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Figure 3.1: Plot of functions p(η) and q(η) used in (3.17).

3.2.1.2 Additional transformation to a unit-cube

Following [71], we apply a second coordinate transformation, which maps the spatial domain

Rd onto the d-dimensional open unit cube D = (0, 1)d ,

y(x) = 1π arctan(x)+
1
2 . (3.15)

The partial derivative of the transformation given in (3.15) is given by

∂yi
∂xi
=
1

π

1

x2i +1
(3.16)

where i = 1,2, . . . ,d . Let the function w be defined by

v(x , t) = w(y(x), t).

Then it is readily seen that

∂w

∂t
(y , t) =

d

∑
k=1

λk

[
p(yk)

∂2w

∂y2k
(y , t)+q(yk)

∂w

∂yk
(y , t)

]
− rw(y , t) (3.17)

whenever y ∈ (0, 1)d , t ∈ (0, T ] with

p(η) =
1

2π2
sin4(πη) , q(η) =

1

π
sin3(πη)cos(πη) for η ∈ R.

These functions are plotted in Figure 3.1. The PDE (3.17) is a convection-diffusion-reaction

equation without mixed derivatives. Let ψ denote the transform of the payoff function φ,

ψ(y , t) = φ(K exp[Qx +b(t)]) with x = tan
[
π(y − 12)

]
(3.18)

whenever y ∈ (0, 1)d , t ∈ [0,T ].

Then for (3.17) one has the initial condition

w(y ,0) = ψ(y ,0). (3.19)
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Figure 3.2: Visualization of a rectangular domain in s-coordinates transformed to y -

coordinates using the coordinate transformation presented in Section 3.2.1.

At the boundary ∂D of the spatial domain D= (0,1)d we shall consider a Dirichlet condition.

Therefore we make a minor assumption that each column of the matrix Q satisfies one of

the following two conditions:

(a) All its entries are strictly positive;

(b) It has both a strictly positive and a strictly negative entry.

For any given k ∈ {1,2, . . . ,d} such that the k-th column of Q satisfies condition (a) there
holds

w(y , t) =Ke−r t (3.20)

whenever y ∈ ∂D with yk = 0 and t ∈ (0, T ]. On the complementary part of ∂D a homo-
geneous Dirichlet condition is valid.

3.2.1.3 Proof for Dirichlet boundary condition for (3.17)

A short proof of the result given in this section can also be found in [41]. Consider the

following minor assumption on the matrix Q of eigenvectors of the covariance matrix ΣΣΣ.

Assumption 1. Each column of Q satisfies one of the following two conditions:

1. all its entries are strictly positive;

2. it has both a strictly positive and a strictly negative entry.

Then we have the following result, formulated as Lemma 1:
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Figure 3.3: Visualization of a rectangular domain in y -coordinates transformed to s-

coordinates using the coordinate transformation presented in Section 3.2.1.

Lemma 1. Let the function ψ be given by (3.18) with φ defined by (3.4). Let k ∈
{1,2, . . . ,d}, t ∈ [0, T ] and y = (y1,y2, . . . ,yd)T with fixed yj ∈ (0, 1) whenever j ̸= k .

If the k-th column of Q satisfies condition 1, then ψ(y , t)→K as yk ↓ 0.

If the k-th column of Q satisfies condition 2, then ψ(y , t)→ 0 as yk ↓ 0.

Finally, ψ(y , t)→ 0 as yk ↑ 1.

Proof. Let x = tan
[
π(y − 12)

]
and s =K exp[Qx +b(t)], so that ψ(y , t) = φ(s).

Suppose first yk ↓ 0. Then xk →−∞.
If the k-th column of Q satisfies condition 1, then all entries of Qx tend to −∞. Conse-
quently, all entries of s tend to zero and thus φ(s)→K.

If the k-th column of Q satisfies condition 2, then the entries of Qx go to either −∞ or
+∞ with at least one entry that tends to +∞. It follows that the entries of s go to either
zero or +∞ with at least one entry that tends to +∞, and therefore φ(s)→ 0.

Suppose next yk ↑ 1. Then xk →+∞ and the entries of Qx go to either +∞ or −∞ with
at least one entry that tends to +∞. Hence, φ(s)→ 0.

For any given k ∈ {1,2, . . . ,d} the diffusion and convection coefficients p(yk) and q(yk) in
(3.17) vanish as yk ↓ 0 or yk ↑ 1. Accordingly, (3.17) is also satisfied on each boundary part{

y : y = (y1,y2, . . . ,yd)
T with yk = δ and yj ∈ (0, 1) whenever j ̸= k

}
for δ ∈ {0,1}.

Also the initial condition (3.19) hold on each such boundary part, upon taking the relevant

limit value for ψ(y , t) given by Lemma 1. On each part where this limit value equals K,
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Figure 3.4: Visualization of multiple simulations for two (left) and three (right) correlated

assets values under the Black–Scholes model. Further the principal components (or scaled

eigenvectors of covariance matrix ΣΣΣ) are shown. In this example there is clearly one dominant

eigenvector/eigenvalue q1.

the solution (3.20) is obtained, and on each part where the limit value equals zero, the

zero solution holds. This yields the Dirichlet boundary condition for the PDE (3.17) stated

before.

3.2.2 PCA-based approximation approach for European basket option

Assume the eigenvalues of the covariance matrix ΣΣΣ are ordered such that λ1 ≥ λ2 ≥ ·· · ≥
λd ≥ 0. In many financial applications it holds that λ1 is dominant, that is, λ1 is much
larger than λ2.

In view of this observation, Reisinger and Wittum [71] introduced a PCA-based approxima-

tion approach of the exact solution w to the d-dimensional PDE (3.17). To this purpose,

regard w also as a function of the eigenvalues and write w(y , t; λ) with λ=(λ1,λ2, . . . ,λd)
T.

Let

λ̂= (λ1,0, . . . ,0)
T

δλ= λ− λ̂= (0,λ2, . . . ,λd)T.

Under sufficient smoothness, a first-order Taylor expansion of w at λ̂ yields

w(y , t; λ)≈ w(y , t; λ̂)+
d

∑
l=2

δλl
∂w

∂λl
(y , t; λ̂). (3.21)

The partial derivative ∂w/∂λl (for 2 ≤ l ≤ d) can be approximated by a forward finite
difference,

∂w

∂λl
(y , t; λ̂)≈

w(y , t; λ̂+ δλl el)−w(y , t; λ̂)
δλl

, (3.22)
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Figure 3.5: A visualization of the domains for the PDEs in the PCA-based approximation.

where el denotes the l-th standard basis vector in Rd . From (3.21) and (3.22), it follows
that

w(y , t; λ)≈ w(y , t; λ̂)+
d

∑
l=2

[
w(y , t; λ̂+ δλlel)−w(y , t; λ̂)

]
.

Write

w (1)(y , t) = w(y , t; λ̂)

w (1,l)(y , t) = w(y , t; λ̂+ δλlel).

Then the PCA-based approximation reads

w(y , t)≈ w̃(y , t) = w (1)(y , t)+
d

∑
l=2

[
w (1,l)(y , t)−w (1)(y , t)

]
(3.23)

whenever y ∈ (0, 1)d and t ∈ (0, T ].

By construction, w (1) satisfies the PDE (3.17) with λk being set to zero for all k ̸= 1, and
w (1,l) satisfies (3.17) with λk being set to zero for all k ̸∈ {1, l}. Thus w (1) and w (1,l)
satisfy essentially a one- and two-dimensional PDE. The PDE (3.17) for w (1) and w (1,l) is

completed by the same initial and boundary conditions as for w , given above. We write

ũ(s, t) = w̃(y(x(s, t)), t)

for the PCA-based approximation in the original coordinates.

As an example, a three dimensional visualization of the domains on which these essentially

low-dimensional PDEs for w (1) and w (1,l) (with l = 2,3) need to be solved, as used in the

PCA-based approximation, is shown in Figure 3.5.

In financial practice, one is often interested in the option value at inception in the single

point s = S000, where S000 = (S
1
0 ,S

2
0 , . . . ,S

d
0 )

T is the vector of initial (spot) asset prices. Let

Y000 = y(x(S000,T )) ∈ (0, 1)d

denote the corresponding point in the y -domain with elements Y000 = (Y
1
0 ,Y

2
0 , . . . ,Y

d
0 )

T.

Then w (1)(Y000,T ) can be acquired by solving a one-dimensional PDE on the line segment

L1 in the y -domain that is parallel to the y1-axis and passes through y = Y000. Hence, yk can

be fixed at the value Y k0 whenever k ̸= 1.
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Next, w (1,l)(Y000,T ), for 2≤ l ≤ d , can be acquired by solving a two-dimensional PDE on the
plane segment Pl in the y -domain that is parallel to the (y1, yl)-plane and passes through

y = Y000. Hence, in this case, yk can be fixed at the value Y
k
0 whenever k ̸∈ {1, l}.

Determining the PCA-based approximation w̃(Y000,T ) = ũ(S000,T ) thus requires solving just

1 one-dimensional PDE and d −1 two-dimensional PDEs. This clearly constitutes a major
computational advantage, compared to solving the full d-dimensional PDE at once whenever

d is medium or large. Notice further that the different terms in the approximation (3.23)

can be computed in parallel independently of each other. Then the total computational time

equals approximately that of solving just 1 two-dimensional PDE.

We remark that instead of (3.21) also higher-order Taylor expansions of w at λ̂ can be used

to derive higher-order PCA-based approximations for the fair value of an option. This can

reduce the error made in the PCA-based approximation, but comes also with an additional

cost of solving also higher-dimensional PDEs.

A rigorous error analysis of the PCA-based approximation relevant to European-style basket

options has been given by Reisinger and Wissmann [69]. In particular, under mild assump-

tions, these authors showed that w − w̃ =O
(
λ22
)
in the maximum norm.

3.3 Discretization

To arrive at the values w (1)(Y000,T ) and w
(1,l)(Y000,T ) (for 2 ≤ l ≤ d) in the approximation

w̃(Y000,T ) of w(Y000,T ) we perform a finite difference discretization of the pertinent one-

and two-dimensional PDEs on a (Cartesian) nonuniform spatial grid, followed by a suitable

implicit time discretization.

3.3.1 Spatial discretization

Let κ0=
1
2 and κ1> 0. Note that with the choice of b(t) in (3.14) the point (κ0,κ0, . . . ,κ0)

T

in the y -domain corresponds to the point (K,K,. . . ,K)T in the s-domain if t = 0.

For any given k ∈ {1,2, . . . ,d} a nonuniform mesh 0 = yk,0 < yk,1 < .. . < yk,m+1 = 1 in the
k-th spatial direction, with m mesh points in the interior of the domain, is defined by (see

e.g. [40])

yk,i = ϕ(ξi) with ξi = ξmin+ i∆ξ, ∆ξ =
ξmax−ξmin
m+1

(for i = 0,1, . . . ,m+1),

with

ϕ(ξ) = κ0+κ1 sinh(ξ) (for ξmin ≤ ξ ≤ ξmax)

and

ξmin =−sinh−1(κ0/κ1)
ξmax = sinh

−1((1−κ0)/κ1).
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Remark that ξmax = −ξmin since κ0 = 12 . The parameter κ1 controls the fraction of mesh
points that lie in the neighborhood of κ0. We make the heuristic choice κ1 =

1
40 .

The above mesh is smooth in the sense that there exist constants C0,C1,C2> 0 (independent

of i and m) such that the mesh widths ∆yk,i = yk,i − yk,i−1 satisfy

C0∆ξ ≤ ∆yk,i ≤ C1∆ξ and |∆yk,i+1−∆yk,i | ≤ C2 (∆ξ)2 .

The spatial derivatives in (3.17) are discretized using central finite difference schemes. Let

f :R→R be any given smooth function, let · · ·<ηi−1 <ηi <ηi+1 < · · · be any given smooth
mesh and denote the mesh widths by hi = ηi −ηi−1. Then second-order approximations to
the first and second derivatives are given by

f ′(ηi)≈ βi ,−1 f (ηi−1)+βi ,0 f (ηi)+βi ,1 f (ηi+1),

f ′′(ηi)≈ γi ,−1 f (ηi−1)+γi ,0 f (ηi)+γi ,1 f (ηi+1),

with

βi ,−1 =
−hi+1

hi(hi +hi+1)
, βi ,0 =

hi+1−hi
hihi+1

, βi ,1 =
hi

hi+1(hi +hi+1)
,

and

γi ,−1 =
2

hi(hi +hi+1)
, γi ,0 =

−2
hihi+1

, γi ,1 =
2

hi+1(hi +hi+1)
.

The above two finite difference formulas are applied with ηi = yk,i for 1≤ i ≤m and 1≤ k ≤ d .

Semidiscretization of the PDE for w (1,l) on the plane segment Pl leads to a system of

ordinary differential equations (ODEs) of the form

w ′(t) = (A111+Al )w(t)+g(t) (3.24)

for t ∈ (0, T ]. Here w(t) is the vectorization of w (1,l)(t) on the plane segment Pl . So,
w(t) is a vector of dimension m2 and A111, Al are given m

2×m2 matrices that are tridiagonal
(possibly up to permutation), commute and correspond to, respectively, the first and the

l-th spatial direction. Further, g(t) = g111(t)+gl (t) is a given vector of dimension m
2, which

is obtained from the Dirichlet boundary condition stated at the end of Section 3.2.1. The

ODE system (3.24) is completed by an initial condition

w(0) = w000

where the vector w000 is determined by the function ψ(·,0) on Pl with the function ψ defined
by (3.18).

The payoff function φ given by (3.4) is continuous but not everywhere differentiable, and

hence, this also holds for the function ψ given by (3.18). It is well-known that the non-

smoothness of the payoff function can have an adverse impact on the convergence behaviour

of the spatial discretization. To alleviate this, we employ cell averaging near the points of

nonsmoothness in defining the initial vector w000, see e.g. [40, 50, 66].
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3.3.2 Temporal discretization

For the temporal discretization of the ODE system (3.24), a common Alternating Direction

Implicit (ADI) method is used. Let a step size ∆t = T/N with integer N ≥ 1 be given
and define temporal grid points tn = n∆t for n= 0,1, . . . ,N. Then the familiar second-order

Brian and Douglas ADI scheme for two-dimensional PDEs yields approximations wn ≈w(tn)
that are successively defined for n = 1,2, . . . ,N by

z000 = wn−1+∆t (A111+Al )wn−1+∆tg(tn−1),

z111 = z000+
1
2∆tA111(z111−wn−1)+

1
2∆t(g111(tn)−g111(tn−1)),

z222 = z111+
1
2∆tAl (z222−wn−1)+

1
2∆t(gl (tn)−gl (tn−1)),

wn = z222.

(3.25)

In the scheme (3.25) a forward Euler predictor stage is followed by two implicit but unidirec-

tional corrector stages, which serve to stabilize the predictor stage. The two linear systems

in each time step can be solved very efficiently by employing a priori LU factorizations of

the pertinent two matrices. The number of floating-point operations per time step is then

directly proportional to the number of spatial grid points, i.e. m2, which is optimal.

As for the spatial discretization, also the convergence of the temporal discretization can be

adversely affected by the nonsmooth payoff function. To alleviate this, we apply backward

Euler damping at the initial time, also known as Rannacher time stepping, that is, the first

time step is replaced by two half steps with the backward Euler method, see, e.g., [40, 67].

Discretization of the PDE for w (1) on the line segment L1 is done analogously to the above.

Then a semidiscrete system

w ′(t) = A111w(t)+g111(t) (3.26)

is obtained with w(t) and g111(t) vectors of dimension m and A111 is an m×m tridiagonal
matrix. Temporal discretization is performed by the Crank–Nicolson scheme with backward

Euler damping. Recall that the Crank–Nicolson scheme can be regarded as a special case

of the Brian and Douglas scheme, which is seen upon setting Al and gl both equal to zero

in (3.25).

3.4 Stability analysis

The favourable rigorous stability results for the spatial and temporal discretizations as dis-

cussed in this section has been proven in [41].

In this section stability results are presented for the spatial and temporal discretizations given

in Section 3.3. To this purpose we employ the logarithmic matrix norm. This is defined, for

any given square matrix A, by the limit

µ[A] = lim
t↓0

∥I+ tA∥−1
t

, (3.27)

where ∥ · ∥ denotes any given matrix norm that is induced by a vector norm | · | and I is the
identity matrix. The next theorem provides a key property of the logarithmic norm:
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Theorem 2 (Key property of logarithmic norm, see e.g. [36]). Let ω ∈ R. Then

µ[A]≤ ω ⇐⇒ ∥etA∥ ≤ etω

for all t ≥ 0.

By virtue of Theorem 2, a linear semidiscrete system of ODEs with matrix A is stable in the

norm | · | whenever µ[A] can be bounded by a moderate constant ω uniformly in the spatial
mesh.

Write ηi = yk,i and hi = ηi − ηi−1 as before. Let Hi = hi + hi+1 and consider the m×m
diagonal matrix H given by

H = 12diag(H1,H2, . . . ,Hm) .

For vectors v of dimensionmk we define |v |H = |H1/2v |2 (if k =1) and |v |H = |(H⊗H)1/2v |2
(if k = 2), where ⊗ is the Kronecker product. Thus | · |H constitutes a naturally scaled
Euclidean vector norm. Formk×mk matrices A, let the induced matrix norm and logarithmic
matrix norm be denoted by ∥A∥H and µH[A], respectively (k = 1,2).

The following theorem is a direct consequence of [90, Theorems 3 and 4], which generalize

two results from [43]. It yields that the semidiscrete systems derived in Section 3.3 are

stable in | · |H.

Theorem 3. Let κ0 =
1
2 and κ1 > 0. Then there exists a constant ω > 0 (independent of

m ≥ 1, λ1,λ2, . . . ,λd ≥ 0 and r ≥ 0) such that

µH[A111]≤ λ1ω

for (3.26) and

µH[A111+Al ]≤ (λ1+λl)ω

for (3.24).

For any given κ1 > 0, it is readily seen using [90] that constant ω < 4, which is indeed

moderate. We next consider the stability of the temporal discretizations of the semidiscrete

systems from Section 3.3. Let

R(z) =
1+ 12z

1− 12z
(z ∈ C).

Then the stability matrices for the Crank–Nicolson discretization of (3.26) and the Brian

and Douglas discretization of (3.24) are given by B111 and B, respectively, with

B111 = R (∆tA111) and B = R (∆tA111)R (∆tAl ) ,

where for (3.24) it has been used that A111 and Al commute. Stability of the temporal

discretizations concerns power boundedness of B111 and B with constants uniformly in the

spatial mesh and the time step. We have the following positive result.
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Theorem 4. Let κ0 =
1
2 , κ1 > 0 and let constant ω > 0 be given by Theorem 3. Then

∥Bn111∥H ≤ e2λ1ωT

∥Bn∥H ≤ e2(λ1+λl )ωT

whenever n ≥ 0, ∆t > 0, 0≤ tn ≤ T and, respectively, ∆tλ1ω ≤ 1 and ∆t(λ1+λl)ω ≤ 1.

Proof. For (3.26) there holds µH[∆tA111]≤∆tλ1ω. By applying a well-known result2 due to
von Neumann, see e.g. [36, Theorem I.2.11], we obtain

∥B111∥H = ∥R(∆tA111)∥H ≤ R(∆tλ1ω)

whenever 1− 12∆tλ1ω > 0. It is easily verified that

R(ζ)≤ 1+2ζ whenever ζ ∈ R, 0≤ ζ ≤ 1.

Hence, if n ≥ 0, ∆t > 0, 0≤ tn ≤ T and ∆tλ1ω ≤ 1, then

∥Bn111∥H ≤ (1+2∆tλ1ω)n ≤ e2λ1ωT .

Next, for (3.24) there holds µH[∆tAk ]≤∆tλkω (k = 1, l) and the bound on ∥Bn∥H follows
completely analogously.

In view of Theorem 4, the temporal discretizations from Section 3.3 are stable in | · |H under
a minor condition on the time step, which is independent of the spatial mesh.

Our final stability result deals with the maximum norm. It is first shown that the sequence

of spatial mesh widths in the interval [0, 1] is monotonically decreasing up to the midpoint
1
2 (and, by symmetry, monotonically increasing beyond this point).

Lemma 2. Let κ0 =
1
2 , κ1 > 0. Then hi+1 ≤ hi whenever ηi ≤

1
2 .

Proof. For each given i , there holds hi =ϕ(ξi)−ϕ(ξi−1)=ϕ′(εi)∆ξ with certain εi ∈ (ξi−1,ξi).
Since the function ϕ′ is monotonically decreasing on (−∞,0], it follows that hi+1 ≤ hi
whenever ηi+1 ≤ 12 = ϕ(0). In the remaining case, where ηi ≤

1
2 < ηi+1, one readily obtains

hi+1 ≤ hi by using symmetry of the mesh about the point 12 .

The following theorem reveals the favourable result that the semidiscrete systems from

Section 3.3 are contractive in the maximum norm | · |∞.

Theorem 5. Let κ0 =
1
2 , κ1 > 0. Then µ∞[A111] ≤ 0 for (3.26) and µ∞[A111+Al ] ≤ 0 for

(3.24).

2This is to be distinguished from the von Neumann stability analysis that is relevant only to normal

matrices.
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Proof. For any square matrix A= (ai j) it holds that µ∞[A] = maxi
(
ai i +∑j ̸=i |ai j |

)
, see e.g.

[36]. For (3.26) we have A= A111 with

ai ,i−1 = λ1
2p(ηi)−hi+1q(ηi)

hiHi
,

ai ,i = λ1
−2p(ηi)+(hi+1−hi)q(ηi)

hihi+1
− r,

ai ,i+1 = λ1
2p(ηi)+hiq(ηi)

hi+1Hi

and ai j = 0 whenever |i − j | ≥ 2.

We prove that the off-diagonal entries of A are all nonnegative. It is directly seen, using the

definitions of p and q, that ai ,i−1 ≥ 0 and ai ,i+1 ≥ 0 if and only if the following conditions
hold

πhi+1 ≤ tan(πηi) (whenever 0< ηi <
1
2)

πhi ≤−tan(πηi) (whenever 12 < ηi < 1).

Since tan(ζ)≥ ζ (for 0≤ ζ < π
2 ) and tan(ζ)≤ ζ−π (for

π
2 < ζ ≤ π), the above conditions

are satisfied if

hi+1 ≤ ηi (whenever 0< ηi <
1
2)

hi ≤ 1−ηi (whenever 12 < ηi < 1).

Applying Lemma 2 yields hi+1 ≤ hi ≤ ηi whenever 0 < ηi < 1
2 . Next, by symmetry of the

mesh, it also holds that hi ≤ 1− ηi whenever 12 < ηi < 1. Hence, all off-diagonal entries
of the matrix A111 are nonnegative and we arrive, by employing the above formula for the

logarithmic maximum norm, at µ∞[A111] =−r ≤ 0.

For (3.24), the result follows completely analogously, using the subadditivity of the logarith-

mic norm, that is, µ∞[A111+Al ]≤ µ∞[A111]+µ∞[Al ].

3.5 Numerical experiments

3.5.1 Discretization error of PCA-based approximation approach

In this section we investigate by ample numerical experiments the error of the discretization

described in Section 3.3 of the PCA-based approximation ũ(S000,T ) defined in Section 3.2.2.

We consider the six parameter sets for the basket option and the underlying asset price

model as given in Appendix A.

We consider a European-style basket option and study the absolute error in the discretization

of ũ(S000,T ) at the point S000 = (K,K,. . . ,K)
T.

Table 3.1 displays our reference values for the PCA-based approximation ũ(S000,T ) for the

European-style basket put option. These values have been obtained by applying the PDE

discretization from Section 3.3 with m = N = 1000 spatial and temporal grid points.
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Set ũ(((S000,T )))

A 0.17577

B 0.83257

C 0.77065

D 9.46550

E 9.10039

F 8.76358

Table 3.1: Reference values ũ(S000,T ) for European-style basket put options.

In the case of Set A, Reisinger & Wittum [71] obtain the approximation w(Y000,T )≈ 0.1759
for the European-style basket option. So this result from the literature agrees well with our

numerical value for that set.

We next study, for the European-style basket put options for Sets A–F, the absolute error

in the discretization described in Section 3.3 of the PCA-based approximation ũ(S000,T ) in

function of m =N = 10,11,12, . . . ,100. To determine the error of the discretization for the

PCA-based approximation, the reference values from Table 3.1 are used.

Figure 3.6 displays for Sets A–F the absolute error in the discretization of ũ(S000,T ) versus

1/m. As the main observation, Figure 3.6 clearly indicate (near) second-order convergence

of the discretization error in all six cases. This is a very favourable result. Additional

experiments indicate that the error stems essentially from the spatial discretization (and not

the temporal discretization).

For Sets A and D, the error drop in the (less important) regionm≤ 20 is somewhat surprising,
but it is easily explained from a change of sign in the error. Except for this the error behaviour

is always found to be regular and second-order.

3.5.2 Runtime comparison with respect to full grid discretization

Similar to Example 2.2.2, we can compute the runtime needed for the PCA-based approxi-

mation approach applied to Set A. The different measured runtimes are shown in Figure 3.7.

Further, again a model for the asymptotic behaviour of the runtime is fit on the data. Due

to the computational expensive cell averaging and backward Euler damping in the regime

with smaller number of discretization points, the asymptotic behaviour of the PCA-based

approximation approach is not yet completely visible. Neglecting the, asymptotically not im-

portant, cell averaging and backward Euler damping shows indeed the expected asymptotic

behaviour of the runtime that scales O
(
dNm2

)
. The linear dependence of the dimension is

clearly visible in the measured runtimes of the PCA-based approximation approach applied

to Set D, E and F, as shown in Figure 3.8.
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Figure 3.6: Discretization error for PCA-based approximation ũ(S000,T ) in Set A, B and C

(left; top to bottom) and D, E, and F (right; top to bottom). Reference line (dashed)

included for second-order convergence.
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Figure 3.7: Comparison of total runtime for numerical solving the 5-dimensional Black–

Scholes PDE using a standard spatial discretization and the runtime for approximating this

solution using the PCA-based approximation approach.
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Figure 3.8: Comparison of total runtime for approximating the solution of a d-dimensional

Black–Scholes PDE of Sets D, E and F, with d ∈ {5,10,15}, using the PCA-based approx-
imation approach.
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3.6 Conclusions and outlook

In this chapter we have investigated the PCA-based approximation approach by Reisinger

& Wittum [71] for the valuation of European-style basket options. This approximation

approach is highly effective as it requires the solution of only a limited number of low-

dimensional PDEs.

By numerical experiments the favourable result is shown that a common discretization of

these PDE problems leads to a second-order convergence behaviour in space and time.

This promising result gives ideas to apply this method also to Bermudan-style and American-

style basket options, which is subject of Chapters 4 and 5. Further it is interesting to explore

the possibilities to evaluate one or more of the Greeks for an basket option, like the Deltas.

This will be subject of Chapter 6.
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Bermudan-style basket options

Chapter summary:

In this chapter we study the principal component analysis (PCA) based

approach introduced by Reisinger & Wittum [71] for the approximation

of Bermudan-style basket option values via partial differential equations

(PDEs). This highly efficient approximation approach requires the so-

lution of only a limited number of low-dimensional PDEs complemented

with optimal exercise conditions.

It is demonstrated by ample numerical experiments that a common dis-

cretization of the pertinent PDE problems yields a second-order conver-

gence behaviour in space and time, which is as desired. It is also found

that this behaviour can be somewhat irregular, and insight into this phe-

nomenon is obtained.

The content of this chapter is based on published work in ‘Numerical

valuation of Bermudan basket options via partial differential equations’

by Karel in ’t Hout and Jacob Snoeijer, [41].

4.1 Introduction

This chapter deals with the valuation of Bermudan-style basket options. Basket options

have a payoff depending on a weighted average of different assets. Semi-closed analytic

valuation formulas are generally lacking in the literature for these options. Consequently,

research into efficient and stable methods for approximating their fair values is of much

interest.

Up to now three main approaches have been considered in the literature for the approximate

valuation of financial options. The first approach is by Monte Carlo methods. These

estimate the expected discounted payoff value by computing sample means. In particular

we mention in the present context the stochastic grid bundling method by Jain & Oosterlee

45
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[45]. The second approach is by numerical integration, which is employed in for example

the Carr–Madan method [7] and the COS method of Fang & Oosterlee [20]. The third

approach is to numerically solve a time-dependent partial differential equation (PDE) that

holds for the option value.

The valuation of basket options gives rise to a d-dimensional time-dependent PDE. Here

the spatial dimension d equals the number of different assets in the basket. Our interest

in this chapter is in the situation where the dimension is large, say d ≥ 5. It is well-known
that this leads to a very challenging task and only few effective computational methods are

available in the literature. Recently, research has started into the application of deep neural

networks for high-dimensional PDEs, see Sirignano & Spiliopoulos [77].

In the present chapter we shall investigate a principal component analysis based approxi-

mation approach introduced by Reisinger & Wittum [71] and subsequently studied in e.g.

[68, 69, 70] that renders this task feasible. In particular, Reisinger & Wissmann [68] applied

this approach to Bermudan contracts, namely for Bermudan swaptions in the LIBOR market

model.

A Bermudan-style basket option is a financial contract that provides the holder the right

to buy or sell a given weighted average of d assets for a specified price K at one from a

specified finite set of exercise times τ1 < τ2 < · · ·< τE = T with τ1 > 0.

Again, we assume in this chapter the well-known Black–Scholes model, similar to Chapter 3.

To describe the Bermudan-style specific characteristics of this option, let αe = T −τE−e for
e = 0,1, . . . ,E−1 and αE = T . Then the fair value function u of a Bermudan-style basket
option satisfies the PDE (3.2), with the natural boundary condition, on each time interval

(αe−1,αe) for e=1,2, . . . ,E. Next, the initial condition (3.3) holds and for e=1,2, . . . ,E−1
one has

u(s,αe) = max

(
φ(s), lim

t↑αe
u(s, t)

)
(4.1)

whenever s ∈ (0,∞)d . Condition (4.1) stems from the early exercise feature of Bermudan-
style options and represents the optimal exercise condition. Notice that it is nonlinear.

In the present chapter we shall consider the class of Bermudan-style basket put options with

payoff function of the form (3.4).

An outline of the rest of this chapter is as follows. Following Reisinger & Wittum [71], we

first apply in Section 4.2.1 a useful coordinate transformation to (3.2) by using a spectral

decomposition of the pertinent covariance matrix. This leads to a d-dimensional time-

dependent PDE for a transformed option value function w in which each coefficient is

directly proportional to one of the eigenvalues. In Section 4.2.2 this feature is employed to

define a principal component analysis (PCA) based approximation w̃ to w . The key property

of w̃ is that it is defined by only a limited number of one- and two-dimensional PDEs. In

Section 4.2.3 a note on the optimal exercise condition is given. Section 4.3 describes a

common discretization of the one- and two-dimensional PDE problems by means of finite

differences on a suitable nonuniform spatial grid followed by the Brian and Douglas ADI

scheme on a uniform temporal grid. In view of the nonsmoothness of the payoff function,

cell averaging and backward Euler damping are applied.
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The main contribution of this chapter is given in Section 4.4. Extensive numerical exper-

iments are presented where we study in detail the error of the discretization described in

Section 4.3 of the PCA-based approximation w̃ defined in Section 4.2.2 for Bermudan-style

basket options. Six financial parameter sets from the literature are considered, with number

of assets d ∈ {5,10,15}. A second-order convergence behaviour is observed, which is as
desired. It is also found that this behaviour can be somewhat irregular. Additional numerical

experiments are performed that yield insight into this phenomenon. Section 4.5 contains

our conclusions and outlook.

4.2 PCA-based approximation approach

4.2.1 Coordinate transformation

For a detailed presentation of the coordinate transformation that is used for European- and

Bermudan-style basket options we refer to Section 3.2 in the chapter about European-style

basket options.

The coordinate transformation results in, see also (3.17):

∂w

∂t
(y , t) =

d

∑
k=1

λk

[
p(yk)

∂2w

∂y2k
(y , t)+q(yk)

∂w

∂yk
(y , t)

]
− rw(y , t) (4.2)

whenever y ∈ (0,1)d , t ∈ (αe−1,αe), 1≤ e ≤ E with

p(η) =
1

2π2
sin4(πη) , q(η) =

1

π
sin3(πη)cos(πη) for η ∈ R.

Clearly, the PDE (4.2) is a convection-diffusion-reaction equation without mixed derivative

terms. Recall that the function ψ in (3.18) is defined by

ψ(y , t) = φ(K exp[Qx +b(t)]) with x = tan
[
π(y − 12)

]
(4.3)

whenever y ∈ (0, 1)d , t ∈ [0,T ]. Then for (4.2) one has the initial condition

w(y ,0) = ψ(y ,0) (4.4)

together with the optimal exercise condition

w(y ,αe) = max

(
ψ(y ,αe), lim

t↑αe
w(y , t)

)
(4.5)

for y ∈ (0,1)d and e = 1,2, . . . ,E−1.

At the boundary ∂D of the spatial domain D= (0,1)d we shall consider a Dirichlet condition.

In Section 3.2.1.3 the details of its derivation are provided, where the minor assumption

formulated in Assumption 1 on the matrix Q is made. For any given k ∈ {1,2, . . . ,d} such
that the entries of the k-th column of Q are all strictly positive there holds

w(y , t) =Ke−r(t−αe−1) (4.6)

whenever y ∈ ∂D with yk = 0 and t ∈ (αe−1,αe), 1 ≤ e ≤ E. On the complementary part
of ∂D a homogeneous Dirichlet condition is valid.
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4.2.2 PCA-based approximation approach for Bermudan basket option

The PCA-based approximation approach for the Bermudan-style basket options follows ex-

actly the same path as for European-style basket options as discussed in Section 3.2.2.

Recall (3.23), then the PCA-based approximation for Bermudan-style basket options reads

w(y , t)≈ w̃(y , t) = w (1)(y , t)+
d

∑
l=2

[
w (1,l)(y , t)−w (1)(y , t)

]
(4.7)

whenever y ∈ (0, 1)d , t ∈ (αe−1,αe), 1≤ e ≤ E.

By definition, w (1) satisfies the PDE (4.2) with λk being set to zero for all k ̸= 1 and w (1,l)
satisfies (4.2) with λk being set to zero for all k ̸∈ {1, l}, which is completed by the same
initial condition, optimal exercise condition and boundary condition as for w .

We formally write

ũ(s, t) = w̃(y(x(s, t)), t)

u(1)(s, t) = w (1)(y(x(s, t)), t)

u(1,l)(s, t) = w (1,l)(y(x(s, t)), t)

(4.8)

for the PCA-based approximation and its terms in the original coordinates.

In financial applications one is often interested in the option value at inception in the single

point S000 = (S
1
0 ,S

2
0 , . . . ,S

d
0 )

T is the vector of known asset prices. Let

Y000 = y(x(S000,T )) ∈ (0, 1)d

denote the corresponding point in the y -domain with elements Y000 = (Y
1
0 ,Y

2
0 , . . . ,Y

d
0 )

T.

Then w (1)(Y000,T ) can be obtained by solving a one-dimensional PDE on the line segment

L1 in the y -domain that is parallel to the y1-axis and passes through y = Y000. In other words,

yk can be fixed at the value Y
k
0 whenever k ̸= 1.

Next, w (1,l)(Y000,T ) with 2≤ l ≤ d can be obtained by solving a two-dimensional PDE on the
plane segment Pl in the y -domain that is parallel to the (y1, yl)-plane and passes through

y = Y000. Thus, in this case, yk can be fixed at the value Y
k
0 whenever k ̸∈ {1, l}.

In view of the above key observation, computing the PCA-based approximation (4.7) for

(y , t) = (Y000,T ) requires solving just 1 one-dimensional PDE and d − 1 two-dimensional
PDEs. This clearly yields a main computational advantage compared to solving the full

d-dimensional PDE whenever d is large.

We mention that the PCA-based approximation approach described above is directly ex-

tended to other types of multi-asset payoffs, such as for rainbow options. This requires only

straightforward modifications to the initial, boundary and optimal exercise conditions.
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4.2.3 A note regarding the optimal exercise condition

Let 1 ≤ e ≤ E− 1 and write ψe(y) = ψ(y ,αe). Let y ∈ L1, which forms the intersection
of L1 and P2, . . . ,Pd . By the optimal exercise condition (4.5), the natural approximation to

w(y , t) at t = αe based on w̃ is

w(y ,αe)≈max
(
ψe(y), lim

t↑αe
w̃(y , t)

)
= lim
t↑αe
max(ψe(y), w̃(y , t))

= lim
t↑αe
max

(
ψe(y), w

(1)(y , t)+
d

∑
l=2

[
w (1,l)(y , t)−w (1)(y , t)

])
.

On the other hand, by construction of w (1) and w (1, l) for 2≤ l ≤ d , we have

w(y ,αe)≈ w̃(y ,αe)

= w (1)(y ,αe)+
d

∑
l=2

[
w (1,l)(y ,αe)−w (1)(y ,αe)

]
= lim
t↑αe

(
max

(
ψe(y), w

(1)(y , t)
)
+
d

∑
l=2

[
max

(
ψe(y), w

(1,l)(y , t)
)
−max

(
ψe(y), w

(1)(y , t)
)])
.

It may hold that

w̃(y ,αe) ̸=max
(
ψe(y), lim

t↑αe
w̃(y , t)

)
, (4.9)

and hence, the PCA-based approximation w̃ does not satisfy the optimal exercise condition.

4.3 Discretization

To arrive at the values w (1)(Y000,T ) and w
(1,l)(Y000,T ) (for 2 ≤ l ≤ d) in the approximation

w̃(Y000,T ) of w(Y000,T ) we perform a finite difference discretization of the pertinent one-

and two-dimensional PDEs on a (Cartesian) nonuniform spatial grid, followed by a suitable

implicit time discretization.

4.3.1 Spatial discretization

The spatial discretization is exactly the same as discussed in Section 3.3.1 for European-style

basket options. Semidiscretization of the PDE for w (1,l) on the plane segment Pl leads to

a system of ordinary differential equations (ODEs) of the form

w ′(t) = (A111+Al )w(t)+g(t) (4.10)

for t ∈ (αe−1,αe), 1 ≤ e ≤ E. Here w(t) is the vectorization of w (1,l)(t) on the plane
segment Pl . So, w(t) is a vector of dimension m

2 and A111, Al are given m
2×m2 matrices
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that are tridiagonal (possibly up to permutation), commute and correspond to, respectively,

the first and the l-th spatial direction. Further, g(t) = g111(t)+ gl (t) is a given vector of

dimension m2, which stems from the Dirichlet boundary condition. The ODE system (4.10)

is completed by an initial condition

w(0) = ψ000

and, for 1≤ e ≤ E−1, an optimal exercise condition

w(αe) = max

(
ψe , lim

t↑αe
w(t)

)
. (4.11)

Here the vector ψe is determined by the function ψ(·,αe) on Pl for 0 ≤ e ≤ E− 1. The
maximum of any given two vectors is to be taken componentwise.

The payoff function φ given by (3.4) is continuous but not everywhere differentiable, and

hence, this also holds for the function ψ given by (4.3). It is well-known that the non-

smoothness of the payoff function can have an adverse impact on the convergence behaviour

of the spatial discretization. To alleviate this, we employ cell averaging near the points of

nonsmoothness in defining the initial vector ψ000, see e.g. [40, 50, 66].

4.3.2 Temporal discretization

For the temporal discretization of the ODE system (4.10) a standard Alternating Direction

Implicit (ADI) method is applied. Consider a given step size ∆t = T/N with integer N ≥ E
and define temporal grid points tn = n∆t for n = 0,1, . . . ,N.

Assume that αe = tne for some integer ne whenever e = 1,2, . . . ,E−1. Let w000 = ψ000 and

N = {n1,n2, . . . ,nE−1} .

Application of the familiar second-order Brian and Douglas ADI scheme for two-dimensional

PDEs leads to an approximation wn ≈ w(tn) that is successively defined for n = 1,2, . . . ,N
by 

z000 = wn−1+∆t (A111+Al )wn−1+∆tg(tn−1),

z111 = z000+
1
2∆tA111(z111−wn−1)+

1
2∆t(g111(tn)−g111(tn−1)),

z222 = z111+
1
2∆tAl (z222−wn−1)+

1
2∆t(gl (tn)−gl (tn−1)),

wn =

{
z222 if n ̸∈ N
max(ψe , z222) if n = ne ∈N

.

(4.12)

In the scheme (4.12) a forward Euler predictor stage is followed by two implicit but unidirec-

tional corrector stages, which serve to stabilize the predictor stage. The two linear systems

in each time step can be solved very efficiently by using a priori LU factorizations of the

pertinent matrices. The number of floating-point operations per time step is then directly

proportional to the number of spatial grid points m2, which is optimal.

Like for the spatial discretization, also the convergence behaviour of the temporal discretiza-

tion can be adversely effected by the nonsmooth payoff function. To remedy this, backward

Euler damping (or Rannacher time stepping [67]) is applied at initial time as well as at each
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Set European Bermudan (E = 10)

A 0.17577 0.18041

B 0.83257 1.05537

C 0.77065 0.99277

D 9.46550 9.81201

E 9.10039 9.44701

F 8.76358 9.11013

Table 4.1: Reference values ũ(S000,T ) for European- and Bermudan-style basket put options.

exercise date, that is, with n0 = 0, the time step from tne to tne+1, is replaced by two half

steps of the backward Euler method for e = 0,1, . . . ,E−1.

Finally, discretization of the PDE for w (1) on the line segment L1 is performed completely

analogously to the above. Then a semidiscrete system

w ′(t) = A111w(t)+g1(t) (4.13)

is obtained with w(t) and g1(t) vectors of dimension m and A111 is an m×m tridiagonal
matrix. Temporal discretization is done using the Crank–Nicolson scheme with backward

Euler damping.

4.4 Numerical experiments

In this section we investigate by ample numerical experiments the error of the discretization

described in Section 4.3 of the PCA-based approximation ũ(S000,T ) defined in Section 4.2.2.

We consider the six parameter sets for the basket option and the underlying asset price

model as defined in Appendix A.

If not otherwise specified, we consider a Bermudan-style basket option with E = 10 equidis-

tant exercise times τi = i
T
E with i =1,2, . . . ,E and study the absolute error in the discretiza-

tion of ũ(S000,T ) at the point S000 = (K,K,. . . ,K)
T. For comparison, also the results for a

European-style basket option is included in the experiments. The number of time steps is

taken as N = m for the European-style option and N = E⌈m/E⌉ for the Bermudan-style
option.

Table 4.1 provides reference values for ũ(S000,T ), which have been computed by using the

PCA-based approximation approach and choosing m= 1000. The estimated maximal abso-

lute error in this reference values is approximately 5 ·10−5.

In the case of Sets B and C, Jain & Oosterlee [45] obtain, using the stochastic grid bundling

method, the approximations u(S000,T ) ≈ 1.06 and u(S000,T ) ≈ 1.00, respectively, for the
Bermudan-style basket option. Clearly, these approximations from the literature agree well

with our corresponding values for ũ(S000,T ) given in Table 4.1.

Figures 4.1 and 4.2 display for Sets A, B, C and D, E, F, respectively, the absolute error

in the discretization of ũ(S000,T ) versus 1/m for all m = 10,11,12, . . . ,100. Here both
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Figure 4.1: Discretization error for ũ(S000,T ) in Set A (top), B (middle) and C (bottom).

Left: European-style basket option. Right: Bermudan-style basket option. Reference line

(dashed) included for second-order convergence.
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Figure 4.2: Discretization error for ũ(S000,T ) in Set D (top), E (middle) and F (bottom).

Left: European-style basket option. Right: Bermudan-style basket option. Reference line

(dashed) included for second-order convergence.
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Set European Bermudan (E = 10)

A 0.18061 0.18407

B 1.00043 1.17792

C 0.94368 1.11902

D 9.57526 9.90055

E 9.31614 9.62111

F 9.07415 9.36091

Table 4.2: Reference values for leading term u(1)(S000,T ) in PCA-based approximation for

European- and Bermudan-style basket put options.

the European- and Bermudan-style basket options are considered. The favourable result

is observed that the discretization error is always bounded from above by cm−2 with a
moderate constant c , which is as desired.

As already mentioned in Section 3.5, for the European-style basket option in Sets A and D,

we remark that the error drop in the (less important) region m ≤ 20 that corresponds to a
change of sign. Besides this the behaviour of the discretization error is always seen to be

regular.

For the Bermudan-style basket option the observed error behaviour is less regular, in partic-

ular in the interesting region of large values m. To gain more insight into this phenomenon,

we have computed separately the discretization error for the leading term u(1)(S000,T ) and

for the correction term ∑
d
l=2

[
u(1,l)(S000,T )−u(1)(S000,T )

]
in ũ(S000,T ), see (4.7) and (4.8).

Reference values for the leading term are given in Table 4.2. The obtained result for Sets

A, B, C and D, E, F is shown in Figures 4.3 and 4.4, respectively.

It is clear that, with one minor exception in the case of Set D, the error for the leading

term behaves regularly and the error for the correction term is small compared to this. For

the Bermudan-style basket option, however, the behaviour of the discretization error for the

correction term is rather irregular.

A subsequent study shows that for any given l the error e(1,l)(m) is always very close to the

error e(1)(m), which is as expected, but the difference can be both positive and negative,

leading to an irregular behaviour of the difference e(1,l)(m)− e(1)(m). This is exacerbated
when summing these differences up over l = 2,3, . . . ,d . Hence, the irregular behaviour of

the error for the correction term can adversely affect the regular behaviour of the error for

the leading term.

We remark that this has been observed in many other experiments we performed for the

Bermudan-style basket option, for example for other points S000, for other numbers of exercise

times E ≥ 2 and for other dimensions d ≥ 3 and for other covariance matrices Σ, having
λ1≫ λ2 > · · ·> λd > 0.

Application of the backward Euler method in all time steps, which is unconditionally con-

tractive in the maximum norm, does not yield an improvement.
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Figure 4.3: Discretization error for leading term ũ(1)(S000,T ) and the correction terms in Set

A (top), B (middle) and C (bottom). Left: European-style basket option. Right: Bermudan-

style basket option. Reference line (dashed) included for second-order convergence.
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leading term ũ(1)(S000,T )

correction terms

10−2 10−1
10−4

10−3

10−2

10−1

100

101
leading term ũ(1)(S000,T )
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Figure 4.4: Discretization error for leading term ũ(1)(S000,T ) and the correction terms in Set

D (top), E (middle) and F (bottom). Left: European-style basket option. Right: Bermudan-

style basket option. Reference line (dashed) included for second-order convergence.
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Indeed, also for different number of exercise times E ≥ 2 the irregular behaviour of the
discretization error of ũ(S000,T ) is observed. In a small demonstration for all Sets A–F the

number of exercise times are chosen as E ∈ {1,2,4,8}. In all these cases new reference
values of the Bermudan-style basket option are computed. Again, this is done using the

PCA-based approximation approach and choosing m = 1000. These reference values are

used in a numerical study of the discretization error of ũ(S000,T ). The results are shown in

Figures 4.5 (for set A and D), 4.6 (for set B and C) and 4.7 (for set E and F). It is clear

that the irregular behaviour of the discretization error of ũ(S000,T ) starts to appear when

E > 1. This is exactly the case where the optimal exercise condition is introduced and the

Bermudan-style basket option differs from an European-style basket option. Especially visible

in the cases of Set A, D and E one might think of the irregular behaviour of the discretization

error as some kind of oscillations that are damped and/or amplified by increasing the number

of exericse times E.

We attribute the above phenomenon to the spatial nonsmoothness of the exact Bermudan

option value function at the early exercise times.

4.5 Conclusions

In this chapter we have investigated the PCA-based approximation approach by Reisinger

& Wittum [71] for the valuation of Bermudan-style basket options. This approximation

approach is highly effective as it requires the solution of only a limited number of low-

dimensional PDEs, supplemented with optimal exercise conditions.

By numerical experiments the favourable result is shown that a common discretization of

these PDE problems leads to a second-order convergence behaviour in space and time. It

is also observed that this convergence behaviour can be somewhat irregular. Insight into

this phenomenon is obtained by regarding the total discretization error as a superposition of

discretization errors for the leading term and the correction term.

More research has to be done to explain this irregular behaviour and to determine a suitable

remedy for it. The note in Section 4.2.3 maybe helpful in finding a possible source for this

irregularity.

Another topic for future research concerns a rigorous analysis of the error in the PCA-

based approximation approach for Bermudan-style basket options. Reisinger and Wissmann

[69] have given a rigorous analysis of the error in the PCA-based approximation relevant

to European-style basket options. These results will be important to extend it also to

Bermudan-style basket options.
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Figure 4.5: Discretization error for ũ(S000,T ) of a Bermudan-style basket option with number

of exercise times E = 1 (top), E = 2 (top-middle), E = 4 (bottom-middle) and E = 8

(bottom). Left: set A. Right: set D. Reference line (dashed) included for second-order

convergence.
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Figure 4.6: Discretization error for ũ(S000,T ) of a Bermudan-style basket option with number

of exercise times E = 1 (top), E = 2 (top-middle), E = 4 (bottom-middle) and E = 8

(bottom). Left: set B. Right: set C. Reference line (dashed) included for second-order

convergence.
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Figure 4.7: Discretization error for ũ(S000,T ) of a Bermudan-style basket option with number

of exercise times E = 1 (top), E = 2 (top-middle), E = 4 (bottom-middle) and E = 8

(bottom). Left: set E. Right: set F. Reference line (dashed) included for second-order

convergence.
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American-style basket options

Chapter summary:

In this chapter we study the principal component analysis based approach

introduced by Reisinger and Wittum (2007) and the comonotonic ap-

proach considered by Hanbali and Linders (2019) for the approximation

of American-style basket option values via multidimensional partial differ-

ential complementarity problems (PDCPs).

Both approximation approaches require the solution of just a limited num-

ber of low-dimensional PDCPs. It is demonstrated by ample numerical

experiments that they define approximations that lie close to each other.

Next, an efficient discretization of the pertinent PDCPs is presented that

leads to a favourable convergence behaviour.

The content of this chapter is mainly based on published work in ‘Numer-

ical valuation of American basket options via partial differential comple-

mentarity problems’ by Karel in ’t Hout and Jacob Snoeijer, [39].

5.1 Introduction

In this chapter, we consider the valuation of American-style basket options through partial

differential complementarity problems (PDCPs). If d denotes the number of different assets

in the basket, then the pertinent PDCP is d-dimensional. In this chapter, we are interested

in the situation where d is medium or large, say d ≥ 5. It is well-known that this renders
the application of standard discretization methods for PDCPs impractical, due to the curse

of dimensionality.

In the literature, an alternative useful approach has been investigated that employs the idea

of comonotonicity. For European-style basket options, this comonotonic approach has been

developed notably by Kaas et al. [46], Dhaene et al. [17, 18], Vyncke et al. [91], Deelstra et

61
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al. [15, 16] and Chen et al. [9, 10]. Recently, an extension to American-style basket options

has been presented by Hanbali and Linders [29], who consider a comonotonic approximation

formula that requires the solution of just two one-dimensional PDCPs. In this chapter

we shall study and compare the PCA-based and comonotonic approaches for the effective

valuation of American-style basket options. To our knowledge, our paper [39] is the first

paper where these two, different but related, approaches are jointly investigated.

We assume in this chapter the well-known Black–Scholes model, as introduced in Chapter

3.

An American-style basket option is a financial contract that gives the holder the right to

buy or sell a prescribed weighted average of d assets for a prescribed strike price K at any

given single time up to and including a prescribed maturity time T . The fair value function

u of an American-style basket option satisfies the (nonlinear) d-dimensional time-dependent

PDCP

u(s, t)≥ φ(s),
∂u

∂t
(s, t)≥Au(s, t),

(u(s, t)−φ(s))
(
∂u

∂t
(s, t)−Au(s, t)

)
= 0

(5.1)

whenever (s, t) ∈ (0,∞)d × (0,T ]. Here A denotes the Black–Scholes operator, see (3.2):

Au(s, t) =
1

2

d

∑
i=1

d

∑
j=1

σiσjρi jsi sj
∂2u

∂si∂sj
(s, t)+

d

∑
i=1

r si
∂u

∂si
(s, t)− ru(s, t). (5.2)

If φ is the given payoff function of the option, then the PDCP (5.1) is provided with the

initial condition

u(s,0) = φ(s) (5.3)

whenever s ∈ (0,∞)d . Further, (5.1) also holds if si = 0 for i = 1,2, . . . ,d . In this chapter,
we shall consider the class of basket put options, with a payoff as given in (3.4).

The outline of this chapter is as follows. In Section 5.2, the PCA-based approximation

approach, for European-style basket options discussed in Section 3.2.2, is extended to

American-style basket options. This gives rise to an approximation that is defined by a

limited number of one- and two-dimensional PDCPs. The discretization of the one- and two-

dimensional PDEs for European-style basket options as discussed in Section 3.3 is adapted

in Section 5.3 to the pertinent PDCPs for American-style basket options, where the basic

explicit payoff (EP) approach as well as the more advanced Ikonen–Toivanen (IT) splitting

technique are considered. Section 5.4 collects results from the literature on the comonotonic

approach for valuing European- and American-style basket options. We consider the same

comonotonic approximation as Hanbali and Linders [29], which is determined by just two

one-dimensional PDEs (for the European-style basket option) or PDCPs (for the American-

style basket option). Section 5.5 contains the main contribution of this chapter. In this

section, we perform ample numerical experiments and obtain the positive result that the

PCA-based approximation and comonotonic approaches yield approximations to the option

value that always lie close to each other for both European- and American-style basket put
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options. We next study in detail the error in the discretization described in Section 5.3 for the

PCA-based and comonotonic approximations and observe a favourable, near second-order

convergence behaviour. The final Section 5.6 presents our conclusions and outlook.

5.2 PCA-based approximation approach

For the presentation of the coordinate transformation that is used for European- and

American-style basket options we refer to Section 3.2 in the chapter about European-style

basket options.

As also given in (3.17), this transformation results in the transformed PDE

∂w

∂t
(y , t) = Bw(y , t) :=

d

∑
k=1

λk

[
p(yk)

∂2w

∂y2k
(y , t)+q(yk)

∂w

∂yk
(y , t)

]
− rw(y , t) (5.4)

whenever y ∈ (0,1)d , t ∈ (0, T ] with

p(η) =
1

2π2
sin4(πη) , q(η) =

1

π
sin3(πη)cos(πη) for η ∈ R.

The PDE (5.4) is a convection-diffusion-reaction equation without mixed derivatives. Let

ψ denote the transform of the payoff function φ,

ψ(y , t) = φ(K exp[Qx +b(t)]) with x = tan
[
π(y − 12)

]
(5.5)

whenever y ∈ (0, 1)d , t ∈ [0, T ]. Then for (5.4) one has the initial condition

w(y ,0) = ψ(y ,0). (5.6)

Applying the coordinate transformation from Section 3.2.1 to the PDCP (5.1) for the value

function u of an American-style basket option, directly yields the following PDCP for the

transformed function w ,

w(y , t)≥ ψ(y , t),
∂w

∂t
(y , t)≥ Bw(y , t),

(w(y , t)−ψ(y , t))
(
∂w

∂t
(y , t)−Bw(y , t)

)
= 0

(5.7)

whenever y ∈ (0, 1)d , t ∈ (0, T ] with function ψ defined by (5.5) and initial condition
(5.6). As for the European-style options, a Dirichlet condition is taken at the boundary of

the spatial domain D = (0,1)d . For any given k ∈ {1,2, . . . ,d} such that the entries of the
k-th column of Q are all strictly positive there holds

w(y , t) =K (5.8)

whenever y ∈ ∂D with yk = 0 and t ∈ (0,T ]. Notice that, compared to (3.20), the discount
factor exp(−r t) is absent in (5.8). On the complementary part of ∂D, a homogeneous
Dirichlet condition is valid.
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The PCA-based approximation for the American-style basket option value function w is

given by (3.23), where by definition w (1) satisfies the PDCP (5.7) with λk being set to zero

for all k ̸= 1, and w (1,l) satisfies (5.7) with λk being set to zero for all k ̸∈ {1, l}.

5.3 Discretization

Semidiscretization of the pertinent one- and two-dimensional PDCPs in the case of American-

style basket options follows along the same lines as described in Section 3.3 for the cor-

responding PDEs in the case of European-style basket options. The relevant boundary

condition (5.8) is now independent of time, and hence, the same holds for g.

Semidiscretization of the PDCP for w (1,l) on the plane segment Pl yields

w(t)≥ ψ(t),
w ′(t)≥ (A111+Al )w(t)+g,

(w(t)−ψ(t))T
(
w ′(t)− (A111+Al )w(t)−g

)
= 0

(5.9)

for t ∈ (0, T ] and w(0) =w000. Here ψ(t) is a vector of dimension m2 that is determined by
the function ψ(·, t) on Pl . Inequalities for vectors are to be understood componentwise.

For the temporal discretization of the semidiscrete PDCP (5.9) we consider two adaptations

of the Brian and Douglas ADI scheme (3.25). They both generate successive approximations

ŵn to w(tn) for n = 1,2, . . . ,N with ŵ000 = w000.

The first adaptation is elementary and follows the so-called explicit payoff (EP) approach,

z000 = ŵn−1+∆t (A111+Al ) ŵn−1+∆tg,

z111 = z000+
1
2∆tA111(z111− ŵn−1),

z222 = z111+
1
2∆tAl (z222− ŵn−1),

wn = z222,

ŵn =max{wn, ψn} .

(5.10)

Here ψn = ψ(tn) and the maximum of two vectors is to be taken componentwise. The

adaptation (5.10) can be regarded as first carrying out a time step by ignoring the American

constraint and next applying this constraint explicitly.

The second adaptation is more advanced and employs the Ikonen–Toivanen (IT) splitting

technique [28, 37, 38],

z000 = ŵn−1+∆t (A111+Al ) ŵn−1+∆tg+∆tµ̂n−1,

z111 = z000+
1
2∆tA111(z111− ŵn−1),

z222 = z111+
1
2∆tAl (z222− ŵn−1),

wn = z222,

ŵn =max{wn−∆tµ̂n−1, ψn} ,
µ̂n =max{0, µ̂n−1+(ψn−wn)/∆t} .

(5.11)
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with µ̂000 = 0. The auxiliary vector µ̂n is often called a Lagrange multiplier. A useful interpre-

tation of this adaptation is given in [42], where is observed that this IT-splitting technique

can be seen as an additional (algebraic) Douglas splitting.

The vector ŵn and the auxiliary vector µ̂n are computed in two parts. In the first part, an

intermediate vector wn is computed. In the second part, wn and µ̂n−1 are updated to ŵn
and µ̂n by a certain simple, explicit formula.

The obtained accuracy for the adaptation by the IT approach is generally better than by the

EP approach, see, e.g., [40, 42] and also Section 5.5 below. A virtue of both adaptations

(5.10), (5.11) is that the computational cost per time step is essentially the same as that

for the standard Brian and Douglas ADI scheme as given in (3.25).

5.4 Comonotonic approach

In a variety of papers in the literature, the concept of comonotonicity has been employed

for arriving at efficiently computable approximations as well as upper and lower bounds for

option values. For European-style basket options, relevant references to the comonotonic

approach are, notably, Kaas et al. [46], Dhaene et al. [17, 18], Vyncke et al. [91], Deelstra et

al. [15, 16] and Chen et al. [9, 10]. Recently, an extension to American-style basket options

has been considered by Hanbali and Linders [29]. In this section, we review results obtained

with the comonotonic approach and applied in loc. cit. Here the assumption has been made

that the payoff function φ is convex, which is satisfied by (3.4), and that all correlations in

the SDE system (3.1) are nonnegative.

5.4.1 Comonotonic approach for European-style baskets

It follows from [46] that an upper bound for the European-style basket option value function

u is acquired by setting all correlations in (3.1) equal to one, i.e., ρi j = 1 for all i , j =

1,2, . . . ,d . Denote this upper bound by uup. Consider the same coordinate transformations

as in Section 3.2.1 and denote the obtained transformed functions by vup and wup. The

pertinent covariance matrix ΣΣΣup =
(
σiσj

)d
i,j=1

has single nonzero eigenvalue λup = ∑
d
i=1σ

2
i .

Hence, the function vup satisfies the one-dimensional PDE

∂vup

∂t
(x , t) =

1

2
λup

∂2vup

∂x21
(x , t)− rvup(x , t) (5.12)

whenever x ∈ Rd , t ∈ (0, T ]. Next, the function wup satisfies the one-dimensional PDE

∂wup

∂t
(y , t) = Bupwup(y , t) := λup

[
p(y1)

∂2wup

∂y21
(y , t)+q(y1)

∂wup

∂y1
(y , t)

]
− rwup(y , t)

whenever y ∈ (0, 1)d , t ∈ (0, T ]. The same initial and boundary conditions apply as in
Section 3.2.1, using the pertinent function ψup.
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It turns out that the upper bound above is, in general, rather crude. In the comonotonic

approach, accurate lower bounds for the European-style basket option value have been de-

rived, however. We consider here the lower bound chosen in [29], which has been motivated

by results obtained in [16, 46]. Let νi ∈ (0, 1] be given by

νi =
∑
d
j=1ωjS

j
0ρi jσj√

∑
d
j=1∑

d
k=1ωjωkS

j
0S
k
0ρjkσjσk

for 1≤ i ≤ d. (5.13)

The lower bound is acquired upon replacing the volatility σi by νiσi for 1 ≤ i ≤ d and
subsequently setting in (3.1) all correlations equal to one. Denote this bound by ulow and

the corresponding transformed functions by v low and w low. Then, with λlow = ∑
d
i=1(νiσi)

2,

the function v low satisfies the one-dimensional PDE

∂v low

∂t
(x , t) =

1

2
λlow

∂2v low

∂x21
(x , t)− rv low(x , t)

whenever x ∈ Rd , t ∈ (0, T ]. Next, the function w low satisfies the one-dimensional PDE

∂w low

∂t
(y , t) = Bloww low(y , t) := λlow

[
p(y1)

∂2w low

∂y21
(y , t)+q(y1)

∂w low

∂y1
(y , t)

]
− rw low(y , t)

whenever y ∈ (0, 1)d , t ∈ (0, T ]. The same initial and boundary conditions apply as in
Section 3.2.1, using the pertinent function ψlow.

Clearly, the comonotonic upper as well as lower bound can be viewed as obtained upon replac-

ing in the PDE (3.2) the covariance matrix ΣΣΣ by a certain matrix of rank one. For the lower

bound, this rank-one matrix is given by ΣΣΣlow= ξξT with (eigen)vector ξ = (ν1σ1,ν2σ2, . . . ,νdσd)
T

and single nonzero eigenvalue λlow = ξTξ.

Based on a result by Vyncke et al [91], a specific linear combination of the comonotonic

lower and upper bounds has been considered in [29], which approximates the value of a

European-style basket option. This comonotonic approximation reads

uapp(S000,T ) = zu
low(S000,T )+(1− z)uup(S000,T ), (5.14)

where z ≥ 0 is given by
z =

c−b
c−a

with

a =
d

∑
i=1

d

∑
j=1

ωiωjS
i
0S
j
0

(
eνiνjσiσjT −1

)
,

b =
d

∑
i=1

d

∑
j=1

ωiωjS
i
0S
j
0

(
eρi jσiσjT −1

)
,

c =
d

∑
i=1

d

∑
j=1

ωiωjS
i
0S
j
0

(
eσiσjT −1

)
.
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5.4.2 Comonotonic approach for American-style baskets

In [29], the authors next proposed (5.14) as an approximation to the value of an American-

style basket option, where ulow and uup are now defined via the solutions w low and wup to

the PDCP (5.7) with B replaced by Blow and Bup, respectively, and function ψ replaced by
ψlow and ψup, respectively. We remark that, to our knowledge, it is an open question in

the literature at present whether these functions ulow and uup form actual lower and upper

bounds for the American-style basket option value.

For the numerical solution of the pertinent PDEs and PDCPs, in [29] a finite difference

method was applied in space and the explicit Euler method in time, with the EP approach

for American-style basket options. In the following, we shall employ the spatial and temporal

discretizations described in Section 5.3. In particular this allows for much less time steps

than is required, in view of stability, by the explicit Euler method.

5.5 Numerical experiments

In this section, we perform ample numerical experiments. Our main aims are to determine

whether the PCA-based and comonotonic approaches define approximations to European-

and American-style basket put option values that lie close to each other, and next, to gain

insight into the error of the discretizations described in Section 5.3 in computing these

approximations.

We consider two parts of experiments, depending on the parameter sets chosen for the

basket option and underlying asset price model. In the first part we choose the same six

parameter sets A–F as defined Appendix A. In the second part we shall select parameter

sets similar to those in [29].

Our first numerical experiment concerns the two adaptations of the temporal discretization

scheme to PDCPs by the EP and IT approaches as described in Section 5.3 for American-

style options. Consider Set A, B and E and S000 = (K,K,. . . ,K)
T. For a fixed number

of spatial grid points, given by m = 100, we study the absolute error in the two pertinent

discretizations of the PCA-based and comonotonic approximations ũ(S000,T ) and u
app(S000,T )

in function of the number of time steps N = 10,11,12, . . . ,100.

Figure 5.1 displays for these American-style basket options the obtained errors with respect

to the values computed for a large number of time steps, N =1000. Note that these errors do

not contain the error due to spatial discretization, but only due to the temporal discretization.

Figure 5.1 clearly illustrates that, in the PCA-based as well as the comonotonic case, the

IT approach yields a (much) smaller error than the EP approach for any given N. For

Set B the error behaviour is somewhat irregular for the PCA-based approximation with the

IT approach, but for both other sets the errors behave regular in function of the number of

time steps. Further, the observed order of convergence for IT is approximately 1.5, whereas

for EP it is only approximately 1.0. The better performance of IT compared to EP is well-

known in the literature, see, e.g., [38, 40, 42]. Accordingly, in the following, we shall always

apply the IT approach.
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Figure 5.1: Error with respect to the semidiscrete values for ũ(S000,T ) and u
app(S000,T ) in

cases A (top), B (middle) and E (bottom) ifm=100 for American-style basket options. Two

reference lines included for first-order convergence (dotted) and second-order convergence

(dashed).
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Set ũ(S000,T ) uapp(S000,T ) ulow(S000,T )

A 0.17577 0.17583 0.17577

B 0.83257 0.84125 0.83942

C 0.77065 0.78083 0.77955

D 9.46550 9.46570 9.46523

E 9.10039 9.10128 9.09974

F 8.76358 8.76554 8.76255

Table 5.1: Reference values ũ(S000,T ), u
app(S000,T ), u

low(S000,T ) for European-style basket

put options for Set A–F.

Set ũ(S000,T ) uapp(S000,T ) ulow(S000,T )

A 0.18110 0.18120 0.18114

B 1.07928 1.08615 1.08431

C 1.01641 1.02435 1.02306

D 9.86176 9.86206 9.86159

E 9.49645 9.49774 9.49620

F 9.15935 9.16219 9.15920

Table 5.2: Reference values ũ(S000,T ), u
app(S000,T ), u

low(S000,T ) for American-style basket

put options for Set A–F.

Let S000 = (K,K,. . . ,K)
T as above. Table 5.1 displays our reference values for the PCA-

based and comonotonic approximations ũ(S000,T ) and u
app(S000,T ), respectively, as well as

the lower bound ulow(S000,T ) for the European-style basket put option. These values have

been obtained by applying the PDE discretization from Section 3.3 with m = N = 1000

spatial and temporal grid points. Clearly, the positive result holds that, for each given set,

the two approximations and the lower bound lie close to each other.

Similarly, Table 5.2 shows our reference values for ũ(S000,T ), u
app(S000,T ), u

low(S000,T ) for the

American-style basket put option. These values have been obtained by applying the PDCP

discretization from Section 5.3 and m = N = 1000. We find the favourable result that also

in the American case, for each given set, the PCA-based and comonotonic approximations

lie close to each other. Recall that, at present, it is not clear whether ulow(S000,T ) forms an

actual lower bound in this case.

We next study, for European- and American-style basket put options and Sets A–F, the

absolute error in the discretization described in Sections 3.3 and 5.3 of the PCA-based and

comonotonic approximations ũ(S000,T ) and u
app(S000,T ) in function ofm=N =10,11,12, . . . ,100.

To determine the error of the discretization for the PCA-based and comonotonic approxi-

mations, the corresponding reference values from Tables 5.1 and 5.2 are used.

Figures 5.2 and 5.3 display for Sets A, B, C and D, E, F, respectively, the absolute error in

the discretization of ũ(S000,T ) and u
app(S000,T ) versus 1/m, where the left column concerns

the European-style option and the right column the American-style option.

As a main observation, Figures 5.2 and 5.3 clearly indicate (near) second-order convergence
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Figure 5.2: Discretization error for ũ(S000,T ) and u
app(S000,T ) in cases A (top), B (middle)

and C (bottom). Left: European-style basket option. Right: American-style basket option.

Reference line (dashed) included for second-order convergence.
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Figure 5.3: Discretization error for ũ(S000,T ) and u
app(S000,T ) in cases D (top), E (middle)

and F (bottom). Left: European-style basket option. Right: American-style basket option.

Reference line (dashed) included for second-order convergence.
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of the discretization error in all cases, that is, for all Sets A–F, for both the European- and

American-style basket options, and for both the PCA-based and comonotonic approxima-

tions. This is a very favourable result. Additional experiments indicate that the error stems

essentially from the spatial discretization (and not the temporal discretization).

For the European-style option and Sets A and D, we remark that the error drop in the (less

important) region m ≤ 20 corresponds to a change of sign. Besides this, in the case of
the European-style basket option, the behaviour of the discretization error is always seen to

be regular.

For the American-style option, it is found that the discretization error often behaves some-

what less regular, with oscillations occurring. A similar phenomenon has also been observed

and studied for Bermudan-style basket options (see Section 4.4 or [41]) and is attributed to

the spatial nonsmoothness of the exact option value function at the early exercise boundary.

In the following we consider the second part of experiments and choose parameter sets

inspired by those from [29]. Here a basket put option with d =8 equally weighted underlying

assets is taken and S000 = (40,40, . . . ,40)
T. Next, the strike K ∈ {35,40,45} and the maturity

time T ∈ {0.5,1,2}. For the interest rate we choose1 r = 0.05. Finally, the volatilities are
given by

σ = (σi)
8
i=1 =

(
σ1 0.6 0.1 0.9 0.3 0.7 0.8 0.2

)
with σ1 ∈ {0.3,0.9}. We select correlation ρi j = 0.8 for all i ̸= j . Then, for the pertinent
two covariance matrices, the first eigenvalue is dominant. In particular, there holds

σ1 = 0.3 : λ= (λi)
8
i=1 =

(
2.1398 0.1461 0.1101 0.0796 . . .

)
,

σ1 = 0.9 : λ= (λi)
8
i=1 =

(
2.7299 0.1620 0.1396 0.1076 . . .

)
.

Further, the relevant matrices of eigenvectorsQ satisfy the assumption as stated in Assumption 1.

Tables 5.3 and 5.4 show our reference values for ũ(S000,T ), u
app(S000,T ), u

low(S000,T ) for the

European- and American-style basket put option, respectively, which have been obtained in

the same way as above. Again, we find the favourable result that, for each given parameter

set and each given (European- or American-style) option, these three values lie close to each

other.

Figure 5.4 displays, analogously to Figures 5.2 and 5.3, the absolute error in the discretiza-

tion of ũ(S000,T ) and u
app(S000,T ) for the (representative) three parameter sets given by

T ∈ {0.5,1,2}, K = 40, σ1 = 0.3. The outcomes again indicate a favourable, second-order
convergence result. The regularity of the error behaviour is seen to decrease as the maturity

time T increases. We note that for T = 2 this behaviour is partly explained from a (near)

vanishing error when m ≈ 20.
1This differs from [29] where the rate r = 0.01 is taken, but then American-style option values are often

close to their European counterpart, which is less interesting.
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Figure 5.4: Discretization error for ũ(S000,T ) and u
app(S000,T ) in cases T = 0.5 (top), T = 1

(middle) and T = 2 (bottom) where K = 40, σ1 = 0.3. Left: European-style basket option.

Right: American-style basket option. Reference line (dashed) included for second-order

convergence.
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T K σ1 ũ(S000,T ) uapp(S000,T ) ulow(S000,T )

35 0.3 2.13020 2.13271 2.12954

0.9 2.74982 2.75307 2.74963

0.5 40 0.3 4.40336 4.40715 4.40328

0.9 5.14582 5.15003 5.14595

45 0.3 7.45442 7.45827 7.45427

0.9 8.21316 8.21738 8.21313

35 0.3 3.35805 3.36599 3.35620

0.9 4.23834 4.24750 4.23731

1 40 0.3 5.78199 5.79261 5.78114

0.9 6.79656 6.80770 6.79599

45 0.3 8.75406 8.76551 8.75329

0.9 9.82315 9.83486 9.82235

35 0.3 4.71159 4.73545 4.70532

0.9 5.89254 5.91682 5.88742

2 40 0.3 7.20593 7.23607 7.20149

0.9 8.54494 8.57378 8.54048

45 0.3 10.08246 10.11611 10.07862

0.9 11.51843 11.54974 11.51371

Table 5.3: Reference values ũ(S000,T ), u
app(S000,T ), u

low(S000,T ) for European-style basket

put options for alternative testset.

5.6 Conclusions

The valuation of American-style basket options via d-dimensional PDCPs constitutes a noto-

riously challenging task whenever the number of assets d is medium or large. In this chapter,

we have studied an extension of the PCA-based approach by Reisinger and Wittum [71] to

valuate American-style basket options. This approximation approach is highly effective, as

the numerical solution of only a limited number of low-dimensional PDCPs is required. In

addition, we have considered the comonotonic approach, which was developed for basket

options notably in [9, 10, 15, 16, 17, 18, 46, 91]. We have studied the comonotonic ap-

proximation formula for American-style basket option values recently examined in Hanbali

and Linders [29]. The comonotonic approach is also highly effective, since it requires the

numerical solution of just two one-dimensional PDCPs. In this chapter these two, different

but related, approaches are jointly investigated.

For the discretization of the pertinent PDCPs, we apply finite differences on a nonuniform

spatial grid followed by the Brian and Douglas ADI scheme on a uniform temporal grid and

selected the Ikonen–Toivanen (IT) technique [28, 37, 38] to efficiently handle the comple-

mentarity problem in each time step.

As a first main result, we find in ample numerical experiments that the PCA-based and

comonotonic approaches always yield approximations to the value of an American-style (as

well as European-style) basket option that lie close to each other.
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T K σ1 ũ(S000,T ) uapp(S000,T ) ulow(S000,T )

35 0.3 2.17006 2.17293 2.16973

0.9 2.79440 2.79840 2.79494

0.5 40 0.3 4.50018 4.50506 4.50118

0.9 5.24177 5.24795 5.24387

45 0.3 7.64424 7.65063 7.64670

0.9 8.38729 8.39562 8.39142

35 0.3 3.48012 3.48874 3.47879

0.9 4.37236 4.38280 4.37246

1 40 0.3 6.01652 6.02870 6.01717

0.9 7.03281 7.04676 7.03498

45 0.3 9.14612 9.16072 9.14867

0.9 10.19561 10.21256 10.20013

35 0.3 5.06452 5.08982 5.05865

0.9 6.27930 6.30536 6.27500

2 40 0.3 7.78521 7.81748 7.78222

0.9 9.14045 9.17258 9.13855

45 0.3 10.94634 10.98327 10.94585

0.9 12.36710 12.40399 12.36770

Table 5.4: Reference values ũ(S000,T ), u
app(S000,T ), u

low(S000,T ) for American-style basket

put options for alternative testset.

As a next main result, we observe near second-order convergence of the discretization er-

ror in all numerical experiments for both the PCA-based and comonotonic approaches for

American-style (as well as European-style) basket options.

At this moment it is still open which (if any) of the two approaches, PCA-based or comono-

tonic, is to be preferred for the approximate valuation of American-style basket options on

d ≥ 5 assets. In particular, whereas in our experiments the two approaches always define
approximations that lie close to each other, it is not clear at present which approach (if

any) generally yields the smallest error with respect to the exact option value.The comono-

tonic approach requires less computational work than the PCA-based approach, but both

are computationally cheap.

A further investigation into the PCA-based and comonotonic approaches, both experimental

and analytical, will be the subject of future research. This concerns the open question above

as well as their fundamental properties, such as convergence, and their range of applications.
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Chapter 6666666666666666666666666666666666666666666666666666666666666666666666666
Approximation of the Greeks

Chapter summary:

In this chapter we study the principal component analysis (PCA) based

approach introduced by Reisinger & Wittum [71] for the approximation

of the Greeks for European-, Bermudan- and American-style basket op-

tion values via partial differential equations (PDEs) or partial differential

complementarity problems (PDCPs). This highly efficient approximation

approach requires the solution of only a limited number of low-dimensional

PDEs complemented with optimal exercise conditions.

We discuss two versions of a PCA-based approximation approach to ap-

proximate the Deltas. One of these approaches can also be extended to

approximate the Gammas. The first PCA-based approximation approach

uses terms that are already computed for option valuation. The second

PCA-based approximation approach is inspired by pathwise derivatives [5],

a concept well-known to estimate the Greeks from Monte Carlo simula-

tion.

Numerical examples illustrate the convergence behaviour of the error for

the considered methods. Similar to the PCA-based approximation ap-

proaches to valuate options some irregularities in the convergence of the

discretization error are visible, but overall again a nearly second-order con-

vergence behaviour is found.

6.1 Introduction

This chapter deals with the approximation of the Greeks for European-, Bermudan- and

American-style basket options. Besides the valuation of the fair value of an option, in

financial practice also the Greeks are quantities of main interest. The Greeks describe the

sensitivity of the option value to a change in one of the underlying financial parameters. For

example the Deltas (denoted by ∆) and Gammas (denoted by Γ) are important Greeks and

77
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can be seen as partial derivatives of the fair option value u with respect the underlying asset

value:

Delta (for asset k) : ∆k =
∂u

∂sk
,

Gamma (for assets k and l) : Γkl =
∂2u

∂sk∂sl
.

As mentioned in the previous chapters, European-, Bermudan- and American-style basket

options constitute a popular type of financial derivatives and possess a payoff depending on

a weighted average of different assets. In general, exact valuation formulas for such options

are not available in the literature in semi-closed analytic form. Moreover, computing the

Greeks for such type of options can become even more complicated. Thus the development

and analysis of efficient approximation methods for their fair values and their Greeks is of

much importance.

In this chapter, we consider the numerical approximation of the Greeks for European-,

Bermudan and American-style basket options through partial differential equations (PDEs)

or partial differential complementarity problems (PDCPs). If d denotes the number of dif-

ferent assets in the basket, then the pertinent PDE is d-dimensional. In this chapter, we

are interested in the situation where d is medium or large, say d ≥ 5. It is well-known that
this renders the application of standard discretization methods for PDEs impractical, due to

the curse of dimensionality.

For the valuation of these styles of basket options, an effective approach has been introduced

by Reisinger and Wittum [71] and next studied in, e.g., Reisinger and Wissmann [68, 69, 70]

and in our recent papers [39, 41]. This approach is based on principal component analysis

(PCA) and yields an approximation formula for the fair value of the basket option that

requires the solution of a limited number of only low-dimensional PDEs.

In this chapter this PCA-based approximation approach for the fair value of an option is also

used to numerically approximate the Greeks for high-dimensional European-, Bermudan and

American-style basket options under the Black–Scholes model, where we mainly focus on

approximating the Deltas for these type of options.

The outline of this chapter is as follows. In Section 6.2 the computed derivatives (i.e.

Greeks) of solutions to PDEs are used to approximate the Greeks, one of the advantages of

PDE-based methods. We exploit this feature and show that from the PCA-based approxi-

mation approach for the fair value of the option also the Deltas of that option can be readily

approximated. This leads to the first PCA-based version to approximate the Deltas. With

the cost of solving some additional two-dimensional PDEs this version can be extended to

approximate also the Gammas. Inspired by the pathwise derivative method [5], as widely

used in Monte Carlo simulation to estimate Greeks, in Section 6.3 a second PCA-based

version to approximate the Greeks is derived similar to the pathwise derivative method. In

Section 6.4 satisfactory numerical results for approximating the Greeks with both versions

for European-, Bermudan- and American-style basket options are obtained. The results

for the Deltas are also compared with results obtained using (Least Squares) Monte Carlo

simulation by Longstaff–Schwartz approach. In Section 6.5 conclusions and a discussion are

given.
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6.2 PCA-based approximation of Greeks (version 1)

In the Black–Scholes PDE (3.2) the Deltas and Gammas appear already as terms in that

PDE. In general, this is also one of the advantages of PDE-based methods for approx-

imating the Greeks; the Deltas and Gammas can be obtained with almost no additional

computational costs in addition to valuation of the option.

Also for approximation of the Greeks one can use the PCA-based approximation approach

for valuation of options such that only numerical solutions to low-dimensional PDEs are

used. Recall, the PCA-based approximation of the fair value of a European-style basket

option is given by w̃ in (3.23) or

w(y , t)≈ w̃(y , t) = w (1)(y , t)+
d

∑
l=2

[
w (1,l)(y , t)−w (1)(y , t)

]
(6.1)

whenever y ∈ (0, 1)d and t ∈ (0, T ].

Here w (1)(y , t) and w (1,l)(y , t) are solutions to the PDE given by (3.17) or

∂w

∂t
(y , t) =

d

∑
k=1

λk

[
p(yk)

∂2w

∂y2k
(y , t)+q(yk)

∂w

∂yk
(y , t)

]
− rw(y , t) (6.2)

whenever y ∈ (0, 1)d , t ∈ (0, T ] and λk is set to zero for k ̸= 1 or k ̸∈ {1, l}.

6.2.1 PCA-based approximation of Deltas (version 1)

The PCA-based approximation (6.1) contains sufficient terms to approximate the Deltas

for the European-style basket option. Indeed, see also (3.6) and (3.16), the Greek Delta-k

with k = 1,2, . . . ,d , denoted by ∆k(s, t), is given by

∆k(s, t) =
∂u(s, t)

∂sk
=
d

∑
i=1

∂w(y , t)

∂yi

∂yi
∂xi

∂xi
∂sk

=
1

sk

d

∑
i=1

qki
1

π

1

x2i +1

∂w(y , t)

∂yi
,

(6.3)

for (s, t) ∈ (0,∞)d × (0,T ], where transformations (3.5) and (3.15) are used.

By construction of the PCA-based approximation (see also Section 3.2), w (1)(y , t) satisfies

the PDE (6.2) with λk being set to zero for all k ̸= 1, and w (1,l)(y , t) satisfies (6.2) with λk
being set to zero for all k ̸∈ {1, l}. Thus, solving these PDEs for w (1)(y , t) and w (1,l)(y , t),
one obtains approximations to

∂w (1)(y ,t)
∂y1

,
∂w (1,l)(y ,t)
∂y1

and
∂w (1,l)(y ,t)

∂yl
with l = 2,3, . . . ,d .

Observe that multiple approximations to
∂w(y ,t)
∂y1

are available

∂w(y , t)

∂y1
≈
∂w (1)(y , t)

∂y1
,

∂w(y , t)

∂y1
≈
∂w (1,l)(y , t)

∂y1
for l = 2,3, . . . ,d.
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To approximate
∂w(y ,t)
∂y1

one can use a linear combination similar to the PCA-based approx-

imation itself:

∂w(y , t)

∂y1
≈
∂w (1)(y , t)

∂y1
+
d

∑
l=2

[
∂w (1,l)(y , t)

∂y1
−
∂w (1)(y , t)

∂y1

]
. (6.4)

For the partial derivatives
∂w(y ,t)
∂yl

with l = 2,3, . . . ,d only one approximation is known in the

PCA-based approximation and that is used to approximate
∂w(y ,t)
∂yl

:

∂w(y , t)

∂yl
≈
∂w (1,l)(y , t)

∂yl
, (6.5)

with l = 2,3, . . . ,d .

Hence, all terms in (6.3) are approximated in terms of the PCA-based approximation and

an approximation for ∆k(s, t) with k = 1,2, . . . ,d is derived.

6.2.2 PCA-based approximation of Gammas (version 1)

To approximate the Greek Gamma-(k, l), denoted by Γkl(s, t) with k, l = 1,2, . . . ,d , based

on the option valuation using the PCA-based approximation approach, similar ideas as for

the Deltas can be applied. Indeed, see also (3.9) and (3.16), Γkl(s, t) is given by

Γkl(s, t) =
∂2u(s, t)

∂sk∂sl

=


1
sk

1
sl

d

∑
i=1

d

∑
j=1
qkiql j

1
π2

1
x2i +1

1
x2j +1

∂2w(y ,t)
∂yi∂yj

, for k ̸= l ,

1
s2k

(
d

∑
i=1

d

∑
j=1
qkiqkj

1
π2

1
x2i +1

1
x2j +1

∂2w(y ,t)
∂yi∂yj

−
d

∑
i=1
qki
1
π
1
x2i +1

∂w(y ,t)
∂yi

)
for k = l .

(6.6)

for (s, t) ∈ (0,∞)d × (0,T ], where transformations (3.5) and (3.15) are used.

By construction of the PCA-based approximation, w (1)(y , t) satisfies PDE (6.2) with λi
being set to zero for all i ̸= 1, and w (1,j)(y , t) satisfies (6.2) with λi being set to zero
for all i ̸∈ {1, j}. Solving these PDEs for w (1)(y , t) and w (1,j)(y , t), yields approxima-
tions to

∂w (1)(y ,t)
∂y1

,
∂2w (1)(y ,t)

∂y21
,
∂w (1,j)(y ,t)
∂y1

,
∂2w (1,j)(y ,t)

∂y21
,
∂w (1,j)(y ,t)

∂yj
and

∂2w (1,j)(y ,t)

∂y2j
. with

j = 2,3, . . . ,d .

Multiple approximations to
∂w(y ,t)
∂y1

and
∂2w(y ,t)

∂y21
are available and a linear combination similar

to the PCA-based approximation is used to approximate these terms

∂w(y , t)

∂y1
≈
∂w (1)(y , t)

∂y1
+
d

∑
j=2

[
∂w (1,j)(y , t)

∂y1
−
∂w (1)(y , t)

∂y1

]
,

∂2w(y , t)

∂y21
≈
∂2w (1)(y , t)

∂y21
+
d

∑
j=2

[
∂2w (1,j)(y , t)

∂y21
−
∂2w (1)(y , t)

∂y21

]
.

(6.7)
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For the partial derivatives
∂w(y ,t)
∂yj

and
∂2w(y ,t)

∂y2j
with j = 2,3, . . . ,d just one approximation is

known and used to approximate the appropriate derivatives

∂w(y , t)

∂yj
≈
∂w (1,j)(y , t)

∂yj
,

∂2w(y , t)

∂y2j
≈
∂2w (1,j)(y , t)

∂y2j
,

(6.8)

with j = 2,3, . . . ,d .

In contrast to approximation of the Deltas in the previous section for the Gammas some

necessary terms are not approximated in the PCA-based approximation approach for the

option value. Indeed, for approximation of the Gammas also the cross-derivatives
∂2w(y ,t)
∂yi∂yj

with i ̸= j are needed but unknown from the (first-order) PCA-based approximation as given
in (6.1). Instead of a first-order approximation in (3.21) also higher-order approximations

could be used. This can reduce the error of the PCA-based approximation approach for

option valuation but it comes with a significant additional cost of solving three-dimensional

PDEs.

As an alternative to approximating these cross-derivatives one can also solve additional

two-dimensional PDEs for w (i ,j)(y , t) that satisfies (6.2) with λn being set to zero for all

n ̸∈ {i , j}. So, with the cost of solving (d−1)(d−2)2 additional two-dimensional PDEs (where

d is the number of assets in the basket option) it is possible to approximate

∂2w(y , t)

∂yi∂yj
≈
∂2w (i ,j)(y , t)

∂yi∂yj
, (6.9)

and approximation the Gammas Γkl(s, t) for k, l = 1,2, . . . ,d using (6.6).

Remark 1. For Bermudan- and American-style basket options a similar approximation ap-

proach for the Greeks can be derived as already discussed for European-style basket options.

For a detailed discussion about valuation of Bermudan- and American-style basket options

we refer to Chapters 4 and 5. For the valuation of Bermudan-style basket options the opti-

mal exercise condition (4.11) has to be implemented and for the valuation of American-style

basket options the PDE as given in (5.4), originally in (3.17), changes to a PDCP as given

in (5.7).

6.3 PCA-based approximation of Greeks (version 2)

Inspired by the pathwise derivative method [5], which is well-known for estimating the Greeks

using Monte Carlo simulation, one can formulate an alternative PCA-based approach to

approximate the Deltas by differentiating the PDE (3.2) and initial condition (3.3) with

respect to an sk , with k = 1,2, . . . ,d .

Let us consider a European-style basket option and differentiate PDE (3.2) for option value
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u with respect to sk , with k = 1,2, . . . ,d . This yields a new PDE for Delta-k :

∂∆k
∂t
(s, t) =

∂

∂sk

(
∂u

∂t
(s, t)

)
=
1

2

d

∑
i=1

d

∑
j=1

σiσjρi jsi sj
∂3u

∂si∂sj∂sk
(s, t)+

d

∑
i=1

σiσkρiksi
∂2u

∂si∂sk
(s, t)+

d

∑
i=1

r si
∂2u

∂si∂sk
(s, t).

for (s, t) ∈ (0,∞)d × (0,T ].

Rearranging terms yields the following PDE for Delta-k :

∂∆k
∂t
(s, t) =

1

2

d

∑
i=1

d

∑
j=1

σiσjρi jsi sj
∂2∆k
∂si∂sj

(s, t)+
d

∑
i=1

(σiσkρik + r)si
∂∆k
∂si
(s, t). (6.10)

for (s, t) ∈ (0,∞)d × (0,T ].

For the initial condition also the payoff function (3.4) has to be differentiated with respect

to sk , so

∆k(s,0) =
∂φ

∂sk
(s) =

{
−ωk if φ(s)> 0,

0 if φ(s) = 0,
(6.11)

whenever s ∈ (0,∞)d .

This initial condition is discontinuous in a (d −1)-dimensional space where K = ∑
d
i=1ωi si .

Besides that, observe that this PDE with initial condition for ∆k(s, t) has a similar form

as the PDE for u(s, t). It is again a convection-diffusion equation with exactly the same

structure in the diffusion term.

6.3.1 PCA-based approximation of Deltas (version 2)

Because PDE (6.10) for Delta-k has exactly the same structure in the diffusion term as

PDE (3.2) for the option value, a similar PCA-based approximation approach as discussed

in Section 3.2 will exist for this pathwise derivative-inspired approach of approximating Delta-

k .

We will consider the new PCA-based approach to approximate Delta-k obtained from PDE

(6.10). Assume that the elementary functions ln(·), exp(·), tan(·), arctan(·) are taken
componentwise whenever their argument is a vector.

Consider the covariance matrix ΣΣΣ=
(
Σi j
)
∈Rd×d which is elementwise given by Σi j = σiρi jσj

for i , j = 1,2, . . . ,d . The spectral decomposition is given by ΣΣΣ = QΛΛΛQT, where Q ∈ Rd×d
is an orthogonal matrix with eigenvectors of ΣΣΣ and ΛΛΛ = diag(λ1,λ2, . . . ,λd) ∈ Rd×d is a
diagonal matrix with the eigenvalues of ΣΣΣ.

Similar to Section 3.2, consider the coordinate transformation

x(s, t) =QT (ln(s/K)−b(t)) , (6.12)

where b(t) = (b1(t),b2(t), . . . ,bd(t))
T with bi(t) for 1≤ i ≤ d to be determined.
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The partial derivatives of the transformation given in (6.12) are given by

∂xi
∂sj
= qj i

1

sj

∂xi
∂t
=−

d

∑
j=1

qj ib
′
i(t).

where b′i(t) =
dbi
dt (t) for a function bi(t) to be determined for i = 1,2, . . . ,d .

Let the function δk be defined by

∆k(s, t) = δk(x(s, t), t).

Then using the chain rule the first derivative of ∆k(s, t) to t can be written as

∂∆k(s, t)

∂t
=
∂δk(x , t)

∂t
−
d

∑
i=1

d

∑
j=1

∂δk(x , t)

∂xi
qj ib

′
j(t). (6.13)

Next, the first derivative of ∆k(s, t) to sj (with j = 1,2, . . . ,d) is given by

∂∆k(s, t)

∂sj
=
1

sj

d

∑
i=1

qj i
∂δk(x , t)

∂xi
. (6.14)

Finally, the second derivative of ∆k(s, t) to si and sj for i , j = 1,2, . . . ,d is given by

∂2∆k(s, t)

∂si∂sj
=


1
si

1
sj

d

∑
l=1

d

∑
m=1

qi lqjm
∂2δk (x ,t)
∂xl∂xm

, for i ̸= j,

1
s2i

(
d

∑
l=1

d

∑
m=1

qi lqim
∂2δk (x ,t)
∂xl∂xm

−
d

∑
m=1

qim
∂δk (x ,t)
∂xm

)
for i = j.

(6.15)

An easy calculation yields that δk satisfies

∂δk
∂t
(x , t) =

1

2

d

∑
l=1

λl
∂2δk

∂xl
2
(x , t)+

d

∑
i ,l=1

(
σiσkρik + r − 12σ

2
i +b

′
i(t)
)
qi l
∂δk
∂xl
(x , t). (6.16)

whenever x ∈ Rd , t ∈ (0,T ].

Thus, there is still a degree of freedom left, which can be used to reduce this PDE to a pure

diffusion problem. Choose bi(0) = 0, which leads with the ODE for bi(t)

b′i(t) =
1
2σ
2
i − r −σiσkρik (6.17)

to a simple expression for b(t), which is elementwise given by

bi(t) =
(
1
2σ
2
i − r −σiσkρik

)
t.

This leads to a pure diffusion equation for δk , without mixed derivative terms:

∂δk
∂t
(x , t) =

1

2

d

∑
l=1

λl
∂2δk

∂x2l
(x , t), (6.18)
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whenever x ∈ Rd , t ∈ (0,T ].

It is convenient to perform a second coordinate transformation, which maps the spatial

domain Rd onto the d-dimensional open unit cube D = (0, 1)d ,

y(x) = 1π arctan(x)+
1
2 . (6.19)

This last transformation and the PCA-based approximation for Delta-k are done is exactly

the same way as described in Section 3.2.2.

Remark 2. In principle the same technique based on the pathwise method as discussed for

Delta-k can also be applied to derive a new PDE with initial condition for Gamma-(k, l),

with k, l = 1,2, . . . ,d . But, because the payoff function (3.4) is not twice differentiable it is

not clear how to define an effective initial value problem for Gamma-(k, l).

Remark 3. Also the approximation of Delta-k for Bermudan- and American-style basket

options using this pathwise derivative-based approach is not clear. For example, it is not

clear how to effectively implement the optimal exercise condition (4.11) in approximating

the Deltas for Bermudan-style basket options. Also for American-style basket options it is

unclear if a PDCP for the Deltas is valid.

6.4 Numerical experiments

In this section some numerical examples demonstrate the potential of the two different

versions of the PCA-based approaches to approximate the Greeks. The different PCA-

based approximations to the Deltas and Gammas are denoted by δ̃k(s, t) and γ̃kl(s, t),

respectively.

For a European-style basket option we can compare the approximation of ∆k (for k =

1,2, . . . ,d) using version 1 and version 2. The obtained reference values for the PCA-based

methods are compared with the (Least Squares) Monte Carlo approach where pathwise

derivatives are used to estimate the Deltas. For Bermudan- and American-style basket

options only version 1 of the PCA-based approximation approach is applicable to approximate

the Greeks ∆k (for k = 1,2, . . . ,d) and Γkl (for k, l = 1,2, . . . ,d).

In this section a numerical study of the error in the total discretization of the different PCA-

based approximations δ̃k(s, t) and γ̃kl(s, t) for respectively the Deltas and the Gammas of

European-, Bermudan- and American-style basket options is done.

As an example, consider Set A as defined in Appendix A. The reference values are computed

using the pertinent versions of the PCA-based approximation approaches for Deltas δk(S000,T )

and Gammas γkl(S000,T ) of the European-, Bermudan and American-style basket put options.

Here we choose S000 = (K,K,. . . ,K)
T. These reference values have been obtained by using

the PCA-based approximation approach with m=N =1000 spatial and temporal grid points

for European- and American-style basket options. For Bermudan-style basket options we

use E = 10 equidistant exercise times τi = i
T
E with i = 1,2, . . . ,E. The number of spatial

grid points m = 1000 and the number of temporal gridpoints is given by N = E⌈m/E⌉ for
the Bermudan-style option.
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For comparison also a Monte Carlo simulation is done to estimate the Deltas of the

European-, Bermudan- and American-style basket option via pathwise derivatives. For the

estimation of the Deltas for Bermudan- and American-style basket options the Least Squares

Monte Carlo method by Longstaff and Schwartz [52] is used. Gobet [24] showed that the

concept of pathwise derivatives to estimate the Deltas for European-style options using

Monte Carlo methods can be extended to estimate the Deltas for American-style options.

Tables 6.1a, 6.1b and 6.1c show the obtained reference values for the available PCA-based

approximations of δk(S000,T ) for Deltas of the European-, Bermudan- and American-style

basket put option of Set A. Considering the results for European-style basket options then

for all Deltas the positive result holds that the different approximations agree for the first

two or three digits. The differences between the approximations is almost always below 1%

of the Delta value. For the Bermudan- and American-style basket options the differences

between the considered methods increases slightly to 3% and 7% of the Delta value, but

also in these cases the different approximations agree for the first digits. We remark that at

least the LSMC values may contain a certain bias or error due to regressions that may not

be performing well. Similar kind of remarks on the LSMC values are also made by e.g. [29].

Similarly, Tables 6.2a, 6.2b and 6.2c show the obtained reference values for the approxima-

tion of γkl(S000,T ) using the PCA-based approximation of the option value for Gammas of

the European-, Bermudan- and American-style basket put option of Set A. Due to a lack

of good alternative reference values for these Gammas it is hard to make some quantita-

tive statements on the quality of this approximation of the Gammas using the PCA-based

approximation. Qualitatively one can observe that with some exceptions all Gammas are

positive. In the cases where the Gamma is negative the values are close to zero. Further, in

absolute value this is also smaller than the observed differences in approximating the Deltas.

As a second part of this numerical study, consider the absolute error in the PCA-based

discretizations δ̃k(S000,T ) (for k = 1,2, . . . ,d) and γ̃kl(S000,T ) (for k, l = 1,2, . . . ,d) at the

point S000 = (K,K,. . . ,K)
T.

In Figure 6.1 the discretization error with respect to the computed reference values of Set A

for the Deltas is shown. Clearly, for the PCA-based approximation approach (version 1)

the approximation of ∆k indicates second-order convergence of the discretization error for

European-, Bermudan- and American-style basket options. Furthermore, the convergence

behaviour for the Deltas of the European-style basket option is smooth, as expected from

the error behaviour for the option valuation of European-style basket options itself. As

expected from the discretization errors for valuation of the option the results are less regular

for Bermudan- and American-style basket options. But clearly, one observes again nearly

second-order convergence of the discretization error.

Finally, the PCA-based approximation approach (version 2) is only applicable for approximat-

ing the Deltas of European-style basket options, so no results are available for Bermudan-

and American-style basket options. For European-style basket options second order conver-

gence behaviour is observed, although this behaviour is not smooth. This can be explained

by the non-smoothness of the initial condition. In this case the initial condition is a step

function, which is not continuous anymore. Cell averaging of this initial condition is applied,

but due to the lack of continuity this becomes computationally more expensive.
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Set A Version 1 Version 2 Monte Carlo

∆1 -0.14145 -0.13999 -0.14008

∆2 -0.02166 -0.02271 -0.02273

∆3 -0.01987 -0.02049 -0.02051

∆4 -0.09462 -0.09395 -0.09401

∆5 -0.08389 -0.08403 -0.08407

(a) European-style basket put options using Set A. For the Monte Carlo method

Npaths= 107 is used and the antithetic paths are added.

Set A Version 1 Version 2 Monte Carlo

∆1 -0.14673 – -0.14605

∆2 -0.02308 – -0.02375

∆3 -0.02113 – -0.02141

∆4 -0.09859 – -0.09826

∆5 -0.08740 – -0.08766

(b) Bermudan-style basket put options. For the Least Squares Monte Carlo method

Npaths= 106 is used and the antithetic paths are added.

Set A Version 1 Version 2 Monte Carlo

∆1 -0.14710 – -0.15373

∆2 -0.02318 – -0.02501

∆3 -0.02121 – -0.02255

∆4 -0.09886 – -0.10350

∆5 -0.08765 – -0.09222

(c) American-style basket put options. For the Least Squares Monte Carlo method

Npaths= 5 ·105 is used and the antithetic paths are added.

Table 6.1: Reference values δ̃k(S000,T ) for Delta-k of European-, Bermudan- and American-

style basket put options of Set A using PCA-based approximation approach version 1 and

version 2.
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k

l
1 2 3 4 5

1 0.13853 -0.00250 -0.00467 0.11982 0.10806

2 -0.00250 0.00317 0.04323 0.03970 0.04751

3 -0.00467 0.04323 0.04246 0.01480 0.01952

4 0.11982 0.03970 0.01480 0.06145 0.03663

5 0.10806 0.04751 0.01952 0.03663 0.02092

(a) European-style basket put option.

k

l
1 2 3 4 5

1 0.14585 0.00028 -0.00155 0.12472 0.11215

2 0.00028 0.00516 0.04398 0.04158 0.04898

3 -0.00155 0.04398 0.04339 0.01664 0.02096

4 0.12472 0.04158 0.01664 0.06675 0.04086

5 0.11215 0.04898 0.02096 0.04086 0.02549

(b) Bermudan-style basket put option.

k

l
1 2 3 4 5

1 0.14599 0.00028 -0.00153 0.12475 0.11218

2 0.00028 0.00512 0.04394 0.04159 0.04899

3 -0.00153 0.04394 0.04335 0.01662 0.02093

4 0.12475 0.04159 0.01662 0.06681 0.04090

5 0.11218 0.04899 0.02093 0.04090 0.02555

(c) American-style basket put option.

Table 6.2: Reference values γ̃kl(S000,T ) for Gamma-(k, l) of European-, Bermudan- and

American-style basket put option of Set A using PCA-based approximation approach

version 1.
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Figure 6.1: Discretization error for PCA-based approximation δ̃k(S000,T ) in Set A using ver-

sion 1 (left) or version 2 (right). The Deltas are computed for European- (top), Bermudan-

(middle) and American- (bottom) style basket options. Reference line (dashed) included for

second-order convergence.
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Finally, in Figure 6.2 the discretization error for ∆k and Γkk using PCA-based approximation

approach version 1 for Set A are shown. Again in all cases nearly second order convergence

is observed for both the Deltas as the Gammas. This gives some first indication that

approximation of both the Deltas and the Gammas using the PCA-based approximation

approach should be possible.

6.5 Conclusions

The approximation of the Greeks, already the Deltas and Gammas of European-, Bermudan-

and American-style basket options is a challenging task when the number of assets d in the

basket is medium or large. In this chapter we considered some extensions of the PCA-based

approximation approach by Reisinger and Wittum [71] to approximation also some Greeks.

This PCA-based approximation approach is very effective, because this approximation re-

quires only the numerical solution of a limited number of low-dimensional PDEs (or PDCPs,

if an American-style basket option is considered).

We studied this PCA-based approximation approach for the fair value of an option and ob-

served that with minimal additional costs also approximations for the Deltas can be derived.

This can be applied to European-, Bermudan- and American-style basket options. When

some additional low-dimensional PDEs (or PDCPs, if an American-style basket option is

considered) are solved also approximations to the Gammas can be derived.

As an alternative approach a PDE is derived similar to the pathwise derivative method [5]

that is widely used in Monte Carlo methods to approximate the Greeks. We observed that

this PDE for Deltas and Gammas has a similar form as the Black–Scholes PDE and a

similar PCA-based method for these Greeks exists. We remarked that this is currently only

applicable for Deltas of European-style basket options and a further investigation is needed

to find a similar method for Deltas of Bermudan- and American-style basket options. Also

the initial condition for the Gammas is non-trivial which makes this approach also in a

current stage not applicable for approximating the Gammas, even not for European-style

basket options.

Finally, this chapter gives a numerical proof of principle to use PCA-based approximation

approaches also for approximation of the Greeks. A rigorous analysis of the error made

in approximation of the Greeks using the PCA-based approximation is also still an open

question for further research.
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Figure 6.2: Discretization error for PCA-based approximation (version 1) of δ̃k(S000,T ) (left)

and γ̃kk(S000,T ) (right) in Set A. The Deltas and Gammas are computed for European- (top),

Bermudan- (middle) and American- (bottom) style basket options. Reference line (dashed)

included for second-order convergence.
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Introduction to high-dimensional data

representation using tensors

Chapter summary:

This chapter gives an overview about extending vectors and matrices to

high-dimensional arrays and represent this high-dimensional data using

tensors. Further, some preliminaries, notation, properties and tensor op-

erations are discussed.

The extension of the singular value decomposition (SVD) for matrices to

tensors leads to two classes of tensor decompositions, i.e. the Canonical

Polyadic decomposition and the Tucker tensor decomposition. The CP-

decomposition constructs a rank-r decomposition for a tensor while the

Tucker tensor decomposition constructs orthonormal factor matrices.

This introduction to tensors is mainly based on the survey paper from

Kolda and Bader [14, 48, 49] and further details, results and references

about tensors can be found there.

7.1 Introduction

In many applications, tensor representations are used to describe real-valued data and almost

all results are presented for real-valued tensors, see for example [48]. The tensors in the

applications that we will consider in this second part of the thesis are often complex-valued.

Therefore, this introduction is also used to mention the concepts in the context of complex-

valued tensors. These extensions are almost always trivial due to the definition of the tensor

operations in terms of underlying matrix operations on the tensor representations.
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n1

n2

n3

(a) Visualization of a three-

dimensional tensor X ∈ Cn1×n2×n3 .

n1

n2

n3

(b) Example color coding for frontal

slices of tensor X ∈ Cn1×n2×n3 .

Figure 7.1: A visualization of a three-dimensional tensor X ∈ Cn1×n2×n3 . A tensor can be
seen as a block of data. In the right figure, if each cube represents a number then this tensor

has dimensions n1 = 4,n2 = 5 and n3 = 6.

(a) mode-1 fibers (b) mode-2 fibers (c) mode-3 fibers

Figure 7.2: A visualization of the mode-1, mode-2 and mode-3 fibers of a three-dimensional

tensor X ∈ Cn1×n2×n3 where data is stored in respectively columns, rows or tubes.

7.2 High-dimensional data representation

A vector v ∈Cn1 can be seen as a one-dimensional array where a collection of data is stored in
a single column. Further, a matrix A∈Cn1×n2 is a two-dimensional object where a collection
of data is stored in rows and columns. A tensor can be seen as further generalization where

a collection of data is stored in an high-dimensional object with more than two dimensions.

For example, a three-dimensional tensor1 X ∈ Cn1×n2×n3 as visualized in Figure 7.1 can be
seen as a cube of data. The data in this tensor can be stored in columns (mode-1 fibers),

rows (mode-2 fibers) or tubes (mode-3 fibers), as visualized in Figure 7.2. Another useful

interpretation is to view a tensor as a collection of slices, as shown in Figure 7.3.

In general for a d-dimensional tensor X one has a collection of data that can be stored in
fibers for each direction, i.e. mode-k fibers for k = 1,2, . . . ,d . The number of dimensions

of a tensor is also known as the order of a tensor.

1In this thesis we will use the convention to write scalars x in a standard lowercase font, vectors v in a

bold lowercase font, matrices A in a bold uppercase font and tensors G in a bold calligraphic uppercase font.



7.2. HIGH-DIMENSIONAL DATA REPRESENTATION 95

(a) Frontal slices (b) Horizontal slices (c) Lateral slices

Figure 7.3: A visualization of the frontal, horizontal and lateral slices of a three-dimensional

tensor X ∈ Cn1×n2×n3 .

Definition 1. The inner product of two equally sized tensors X and Y ∈ Cn1×n2×···×nd
generalizes the definition for vectors and matrices. The inner product of two tensors is

defined as the sum of the elementwise product of the entries, thus

⟨X , Y⟩ :=
n1

∑
i1=1

n2

∑
i2=1

. . .
nd

∑
id=1

xi1i2···id yi1i2···id , (7.1)

where y denotes the complex conjugate of y .

Definition 2. The (Frobenius-)norm of a tensor X ∈Cn1×n2×···×nd generalizes the Frobenius
norm for matrices, thus

∥X∥ :=
√
⟨X , X⟩=

√√√√ n1

∑
i1=1

n2

∑
i2=1

. . .
nd

∑
id=1

xi1i2···id xi1i2···id . (7.2)

Definition 3. A d-dimensional tensor X ∈ Cn1×n2×···×nd is a rank-one tensor if it can be
written as the outer product of d vectors, thus

X = u(1) ◦u(2) ◦ · · · ◦u(d), (7.3)

where ◦ represents the vector outer product and u(k) ∈ Cnk for k = 1,2, . . . ,d . Thus each
element of tensor X can be written as product of the entries of the corresponding vectors

xi1,i2,...,id = u
(1)
i1
u
(2)
i2
· · ·u(d)id ,

for all ik = 1,2, . . . ,nk and k = 1,2, . . . ,d .

Almost all tensor operations are defined in terms of different kind of matrix products. Es-

pecially the following matrix products and notations are used [78]:

Definition 4. The Hadamard product, denoted by X ◦Y , of two equally sized matrices X
and Y ∈ CM×N is a matrix Z ∈ CM×N , which is defined by the elementwise product

zi j = xi jyi j ,

where i = 1,2, . . . ,M and j = 1,2, . . . ,N.
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Definition 5. The Kronecker product, denoted by X⊗Y , of two matrices X ∈ CK×L and
Y ∈ CM×N is a matrix Z ∈ CKM×LN which is defined by

Z =X⊗Y =


x11Y x12Y · · · x1LY

x21Y x22Y · · · x2LY
...

...
. . .

...

xK1Y xK2Y · · · xKLY

 ,
=
[
x1⊗y1 x1⊗y2 x1⊗y3 · · · x2⊗y1 x2⊗y2 · · · xL⊗yN−1 xL⊗yN

]
.

Definition 6. The Khatri-Rao product, denoted by X⊙Y , of two matrices X ∈CK×N and
Y ∈ CM×N is a matrix Z ∈ CKM×N which is defined by the matching column Kronecker
product

Z =X⊙Y =
[
x1⊗y1 x2⊗y2 · · · xN ⊗yN

]
.

Some useful properties of Hadamard, Kronecker, and Khatri-Rao products and their pseudo-

inverse [25] A† of matrix A are given by [78]:

(A⊗B)(C⊗D) = (AC⊗BD) ,

(A⊗B)T = AT⊗BT,

(A⊗B)† = A†⊗B†,

(A⊙B)T (A⊙B) =
(
ATA

)
◦
(
BTB

)
,

(A⊙B)† =
[(
ATA

)
◦
(
BTB

)]†
(A⊙B)T .

7.2.1 Tensor unfoldings to matrices

Tensors can be unfolded to matrices, also called matricization or flattening, where the

elements of a tensor are reordered to a certain matrix. For example, the mode-k unfolding

of a tensor stores the mode-k fibers of that tensor into columns of a matrix. Given a tensor

X ∈ Cn1×n2×···×nd the k-th unfolding of that tensor is a matrix denoted by

X(k) ∈ Cnk×n1n2···nk−1nk+1···nd .
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Example 7.2.1. Consider a tensor X =Rn1×n2×n3 with n1 = 4,n2 = 5 and n3 = 6. Observe
that the structure of this tensor can be visualized as shown in Figure 7.1. In this example

we will use a color coding for values in different frontal slices, as indicated in Figure 7.1b.

Define n = (n1, n2, n3)
T.

Let the tensor X be given by X = reshape [1 : n1n2n3, n] or

X =
104
84

64
44

24
4

103
83

63
43

23
3

102
82

62
42

22
2

101
81

61
41

21
1

108
88

68
48

28
8

107
87

67
47

27
7

106
86

66
46

26
6

105
85

65
45

25
5

112
92

72
52

32
12

111
91

71
51

31
11

110
90

70
50

30
10

109
89

69
49

29
9

116
96

76
56

36
16

115
95

75
55

35
15

114
94

74
54

34
14

113
93

73
53

33
13

120
100
80

60
40

20

119
99

79
59

39
19

118
98

78
58

38
18

117
97

77
57

37
17

Then the first, second and third unfoldingX(1) ∈Rn1×n2n3 ,X(2) ∈Rn2×n1n3 andX(3) ∈ Rn3×n1n2
of tensor X are given by:

X(1)=


104846444244

103836343233

102826242222

101816141211

108886848288

107876747277

106866646266

105856545255

1129272523212

1119171513111

1109070503010

109896949299

1169676563616

1159575553515

1149474543414

1139373533313

12010080604020

1199979593919

1189878583818

1179777573717
,

X(2)=



104846444244 103836343233 102826242222 101816141211

108886848288 107876747277 106866646266 105856545255

1129272523212 1119171513111 1109070503010 109896949299

1169676563616 1159575553515 1149474543414 1139373533313

12010080604020 1199979593919 1189878583818 1179777573717


,

X(3)=


116

96

76

56

36

16

111

91

71

51

31

11

106

86

66

46

26

6

101

81

61

41

21

1

117

97

77

57

37

17

112

92

72

52

32

12

107

87

67

47

27

7

102

82

62

42

22

2

118

98

78

58

38

18

113

93

73

53

33

13

108

88

68

48

28

8

103

83

63

43

23

3

119

99

79

59

39

19

114

94

74

54

34

14

109

89

69

49

29

9

104

84

64

44

24

4

120

100

80

60

40

20

115

95

75

55

35

15

110

90

70

50

30

10

105

85

65

45

25

5

.
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7.2.2 Tensor multiplication by matrices

Tensors can be multiplied by matrices, which leads to the so called k-mode products. Con-

sider again the tensor X ∈ Cn1×n2×···×nd . This tensor can be multiplied in mode-k by a
matrix A ∈ Cm×nk . This tensor times matrix product is denoted by

Y = X ×k A ∈ Cn1×n2×···nk−1×m ×nk+1×···×nd

and yields again a tensor. Observe that the number of unknowns in the k-th direction may

change, depending on the dimensions of matrix A. Elementwise this operation is defined by

yi1,i2,··· ,ik−1,j,ik+1,··· ,id =
nk

∑
ik=1

xi1,i2,...,id aj ik , (7.4)

or, using the k-th unfolding of tensor X the k-th unfolding of this product is given by

Y(k) = AM(k). (7.5)

To finish this short introduction about tensor multiplication by matrices, we recall some

useful properties for the tensor times matrix product, originally already listed for real-valued

matrices:

Proposition 1 ([49, Proposition 3.4]). Let tensor G ∈ Cr1×r2×...rd .

1. Given matrices A ∈ CN×rn and B ∈ CM×rm , then

G×nA×mB = (G×nA)×mB = (G×mB)×nA (n ̸=m). (7.6)

2. Given matrices A ∈ CN×rk and B ∈ CK×N then

G×k A×k B = G×k (BA). (7.7)

3. If A ∈ CK×rk is unitary, i.e. AHA= I, then

M= G×k A⇒G =M×k AH. (7.8)

7.3 Tensor rank and tensor decompositions

Before we start with some preliminaries about different tensor decompositions, it is important

to mention that these tensor decompositions have properties that can be seen as high-

dimensional extensions of the singular value decomposition (SVD) for matrices.

For a given complex-valued matrix A ∈Cn1×n2 the SVD of matrix A is given by A= UΣΣΣV H,

where U ∈ Cn1×r and V ∈ Cn2×r have orthonormal columns and ΣΣΣ ∈ Rr×r is a diagonal
matrix. Further r ≤min(n1,n2) is called the rank of the matrix.
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Ã =

σ1

u1

v1

+

σ2

u2

v2

+ · · · +

σr

ur

vr

Ã =

ΣΣΣ

U

V H

Figure 7.4: Visualization of the singular value decomposition of a low-rank matrix Ã.

It is known that the SVD of A satisfies the following two different properties simultaneously:

1. The SVD is a rank-r decomposition. Thus, the best low-rank approximation Ã to A

with rank r ≤min(n1,n2) is given by

A≈ Ã=
r

∑
i=1

σiuiv
H
i =

r

∑
i=1

σi (ui ◦vi) , (7.9)

where ◦ denotes the outer product of two vectors and ui and vi are the i-th columns of
respectively matrices U and V . The diagonal matrix ΣΣΣ has entries σi on its diagonal.

This property of constructing a rank-r decomposition can be maintained for tensor

decompositions and this will lead to the Canonical Polyadic (CP) decomposition, as

presented in Section 7.3.1.

2. The SVD constructs orthonormal mode matrices. Thus, the factor matrices U and V

satisfy the following identities

UHU = I,

V HV = I.
(7.10)

This property can be maintained for high-dimensional data and lead to the Tucker

tensor decomposition, as presented in Section 7.3.2.

The singular value decomposition of matrix A computes the eigenvalue decomposition of

the matrices AHA and AAH that arise in the normal equation for a linear system with A.

Observe that in two dimensions both conditions are satisfied with the matrix SVD. But, for

high-dimensional tensors choosing one of these two properties will lead to a different tensor

decomposition and only one property can be satisfied.

In practice, the Canonical Polyadic decomposition is often applied to tensors for data inter-

pretation. Although this is an interesting field and with a range of applications in this thesis

we will mainly focus on the Tucker tensor decomposition. The Tucker tensor decomposition

is often used for data compression, due to the orthogonality property of the factor matrices.

This compression is also exactly our application if we derive equations to approximate the

low-rank solutions to (partial) differential equations.
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7.3.1 Canonical Polyadic decomposition

The Canonical Polyadic (CP) decomposition preserves property (7.9) and factorizes a d-

dimensional tensor X ∈ Cn1×n2×···×nd as the sum of rank-one tensors, as defined in (7.3).
Thus with the CP decomposition one wants to represent a tensor X with a rank-r tensor
X̃ :

X ≈ X̃ =
r

∑
i=1

σi

(
u
(1)
i ◦u

(2)
i ◦ · · · ◦u

(d)
i

)
, (7.11)

where ◦ is the outer (or Kronecker) product for vectors, rank r is a positive integer, σi is a
weight and vector u

(j)
i ∈ C

nj is normalized for i = 1,2, . . . , r and j = 1,2, . . . ,d . The vectors

u
(j)
i can be seen as columns of matrix U

(j) =
[
u
(j)
1 ,u

(j)
2 , · · · ,u

(j)
r

]
with j = 1,2, . . . ,d .

The matrices U(1),U(2), . . . ,U(d) are called factor matrices.

Elementwise the Canonical Polyadic decomposition is given by

xi1,i2,...,id ≈ x̃i1,i2,...,id =
r

∑
i=1

σiui
(1)
i1
ui
(2)
i2
· · ·ui (d)id , (7.12)

where ik = 1,2, . . . ,nk for k = 1,2, . . . ,d . A visualization of the CP decomposition for a

three-dimensional tensor is shown in Figure 7.5.

Using the factorization of a tensor X̃ as given in (7.11), the matrix unfoldings of X̃ can be
given in terms of Khatri-Rao products2:

X̃(k) = U
(k)D

 1⊙
l=d
l ̸=k

U(l)


H

(7.13)

where D = diag(σ) is a diagonal matrix with the values σi on its diagonal.

For example, if X is a real-valued three-dimensional tensor the unfoldings are given by

X̃(1) = U
(1)D

(
U(3)⊙U(2)

)T
,

X̃(2) = U
(2)D

(
U(3)⊙U(1)

)T
,

X̃(3) = U
(3)D

(
U(2)⊙U(1)

)T
.

7.3.1.1 The CP-rank of a tensor

The Canonical Polyadic-rank, CP-rank or rank of tensor X , denoted by r = rank(X ), is
defined as the smallest number of rank-one tensors that is needed to obtain equality in the

approximation (7.11). In contrast to the matrix rank, for the CP-rank there is no algorithm

to determine the CP-rank of a given tensor. Moreover, this problem is NP-hard [48].

2Here, the notation
1⊙
l=d

U(l) should be interpreted as
1⊙
l=d

U(l) = U(d)
⊙
U(d−1)

⊙
· · ·

⊙
U(1).
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X̃
=

σ1

u
(1)
1

u
(2)
1

u
(3)
1

+
σ2

u
(1)
2

u
(2)
2

u
(3)
2

+ · · · +
σr

u
(1)
r

u
(2)
r

u
(3)
r

Figure 7.5: A visualization of the Canonical Polyadic decomposition of a three-dimensional

tensor X̃ ∈ Cn1×n2×n3 with rank r .

7.3.1.2 Storage costs for CP-decomposition

One of the advantages of the Canonical Polyadic decomposition is that it can describe

high-dimensional, but low rank, tensors, with nd := n1n2 · · ·nd elements using only a small
number of parameters. Indeed, the number of parameters to store the CP decomposition is

only O (dnr). Here we use the convention n := d
√
nd and nd as defined before. The linear

dependence of the number of parameters on the dimension d of the representation of the

tensor clearly breaks the curse of dimensionality.

7.3.1.3 Computing the CP-decomposition

Given a tensor X , it is possible to compute an rank-r CP-decomposition X̃ of X . To obtain
low-rank matrix approximations, one can compute an SVD and select the first r singular

values and vectors to obtain the best rank-r approximation of a matrix. Such a relation does

not exist for the CP-decomposition of tensors. To obtain a rank-r CP-decomposition the

alternating least squares method (ALS) is used [8, 30, 48].

Consider the tensor X ∈ Rn1×n2×···×nd and compute the rank-r CP-decomposition X̃ that
minimizes

min
X̃

∥∥∥X −X̃∥∥∥, (7.14)

where

X̃ =
r

∑
i=1

σi

(
u
(1)
i ◦u

(2)
i ◦ · · · ◦u

(d)
i

)
.

Here, σi for i = 1,2, . . . , r and U
(l) with l = 1,2 . . . ,d are the unknowns.

The alternating least squares method iterates over k = 1,2, . . . ,d to solve for factor matrix

U(k), where matrices U(l) with l ̸= k are fixed. Thus, the minimization problem (7.14)
reduces to a linear least squares problem. When one solves for U(k), with k = 1,2, . . . ,d the

minimization problem written in the k-th unfolding reduces to

min
Û(k)

∥∥∥∥∥∥∥X(k)− Û(k)
 1⊙
l=d
l ̸=k

U(l)


T∥∥∥∥∥∥∥
F
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Algorithm 2: Alternating least squares algorithm to compute the rank-r CP decompo-

sition X̃ of tensor X .
1 Given: general tensor X ∈ Cn1×n2×···×nd and rank r ∈ N;
2 Construct initial guess for U(k) with k = 1,2, . . . ,d ;

3 while not converged do

4 for k = 1,2, . . .d do

5 Conpute Û(k) using (7.15);

6 Normalize columns of Û(k) s.t. Û(k) = U(k)diag(σ);

7 end

8 end

9 X ≈ X̃ = ∑
r
i=1σi

(
u
(1)
i ◦u

(2)
i ◦ · · · ◦u

(d)
i

)
;

where Û(k) := U(k)diag(σ). Hence, the least squares solution to this problem is given by

Û(k) =X(k)


 1⊙
l=d
l ̸=k

U(l)


T
†

,

=X(k)

 1⊙
l=d
l ̸=k

U(l)


 1◦
l=d
l ̸=k

U(l)
T
U(l)


†

.

(7.15)

This algorithm to compute the rank-r CP decomposition is summarized in Algorithm 2. A

practical and efficient implementation of this algorithm is given in e.g. [79].

7.3.2 Tucker tensor decomposition

An alternative class of tensor decompositions can be obtained by preserving property (7.10).

The Tucker tensor decomposition writes a low-rank tensor X̃ ∈ Cn1×n2×···×nd into a small
core tensor G ∈ Cr1×r2×···×rd multiplied by orthonormal factor matrices Ui ∈ Cni×ri (with
i = 1,2, . . . ,d) along each mode:

X ≈ X̃ = G×1U1×2U2×·· ·×d Ud ,

=
r1

∑
i1=1

r2

∑
i2=1

· · ·
rd

∑
id=1

gi1,i2,...,id

(
u
(1)
i1
◦u(2)i2 ◦ · · · ◦u

(d)
id

)
.

(7.16)

where u
(k)
ik
represents the ik -th column of factor matrix Uk .

With this Tucker tensor decomposition, the low-rank tensor X̃ can be written as a linear
combination of (at most) rd := r1r2 · · · rd rank-one tensors as outer products of the different
columns of the factor matrices. Elementwise the Tucker tensor decomposition is given by

xi1,i2,...,id ≈
r1

∑
j1=1

r2

∑
j2=1

· · ·
rd

∑
jd=1

gj1j2···jd
(
u1i1j1u2i2j2 · · ·ud id jd

)
, (7.17)
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X̃
=

G

U1

U2

U3

Figure 7.6: A visualization of the Tucker tensor decomposition of a three-dimensional tensor

X̃ ∈ Cn1×n2×n3 with multi-linear rank r ∈ Nd .

where ik = 1,2, . . . ,nk for k = 1,2, . . . ,d .

Note that a tensorM given in a Tucker tensor decomposition is not unique. It is possible

to choose arbitrary unitary matrices Qi ∈ Cri×ri and representM as:

M= G×1U1×2U2×·· ·×d Ud
= G×1U1QH

1Q1×2U2QH
2Q2×·· ·×d UdQH

dQd

= (G×1Q1×2Q2×·· ·×d Qd)×1U1QH
1 ×2U2QH

2 ×·· ·×d UdQH
d

(7.18)

which is also a Tucker tensor decomposition. So, without changing the tensor M it is

always possible to use a representation with unitary factor matrices Ui . The Tucker tensor

decomposition for a three-dimensional tensor is visualized in Figure 7.6.

7.3.2.1 The k-rank and multilinear of a tensor

Consider a d-dimensional tensor X ∈ Cn1×n2×···×nd . The k-rank (with 1 ≤ k ≤ d) of this
tensor, denoted by rk = rankk (X ), is defined as the column rank of the matrix X(k), i.e.

rk = rankk (X ) = rank
(
X(k)

)
, (7.19)

where the vector r = (r1, r2, . . . , rd)
T ∈ Nd is called the multilinear rank of the tensor. Note

that the different k-ranks of a tensor are not necessary equal for all k = 1,2, . . . ,d .

7.3.2.2 Storage costs for Tucker tensor decomposition

For tensors that can be described by a low multilinear rank r , also the Tucker tensor decom-

position clearly reduced the total number of parameters. But, due to the existence of the

core tensor, with rd := r1r2 · · · rd unknowns, the Tucker tensor format has still a number of
parameters that depends exponential on the dimension d . Indeed the number of parameters

to store a tensor in the Tucker tensor decomposition isO
(
rd +dnr

)
where n := d

√
n1n2 · · ·nd .
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Thus the number of parameters is still exponential in the dimension d . Indeed, nd unknowns

in the full rank tensor are exchanged for rd unknowns in the core tensor. The only advantage

of this construction is that possibly rd ≪ nd . Thus the Tucker tensor decomposition can

be beneficial for three-dimensional problems, but when the dimension d further increases

another tensor decomposition has to be considered.

7.3.2.3 Unfolding a Tucker tensors

Assume that the Tucker tensor decomposition of a d-dimensional tensor X is known and
given by X ≈M = G ×1 U1×2 U2× ·· · ×d Ud . Then, a useful explicit expression for the
tensor unfolding in terms of these matrices is known; the k-th unfolding of a tensor M
represented in Tucker tensor format is given by:

M(k) = UkG(k)

 1⊗
l=d
l ̸=k

Ul


H

. (7.20)

As a special case, we remark that also vectorization can be seen as a certain unfolding and

is written as

vec [M] = (Ud ⊗Ud−1⊗·· ·U1)vec [G] =

(
1⊗
l=d

Ul

)
vec [G] . (7.21)

7.3.2.4 Computing a Tucker tensor decomposition

A Tucker tensor decomposition of an arbitrary tensor X can be constructed using a sequence
of singular value decompositions of the unfolded matrices, also known as Higher-order SVD

[14, 86, 87] or HOSVD. Recall that for a Tucker tensor decomposition one computes the

core tensor G and the factor matrices Uk with k = 1,2, . . . ,d :

X ≈M= G×1U1×2U2×·· ·×d Ud . (7.22)

Further, the k-th unfolding of tensor X is given by

X(k) = UkG(k)

 1⊗
l=d
l ̸=k

Ul


H

. (7.23)

Thus, an SVD of X(k) yields exactly the factor matrix Uk with the orthonormality property

UH
kUk = I. This can be repeated for all k = 1,2, . . . ,d .

Finally, using (7.8) the core tensor G can be computed. The HOSVD algorithm is summa-
rized by Algorithm 3.

As mentioned before, a Tucker tensor decomposition is not unique. This gives in principle

possibilities choose some transformations to simplify the structure of the core tensor G in
some sense. This was already observed by Tucker [86] and many others [48].
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Algorithm 3: The Higher-order SVD algorithm to compute the Tucker tensor decom-

position of tensor X .
1 Given: general tensor X ∈ Cn1×n2×···×nd and multilinear rank r ∈ Nd ;
2 for k = 1,2, . . .d do

3
[
Uk ,ΣΣΣk ,Vk

]
= svd

[
X(k)

]
;

4 end

5 G = X ×1UH
1 ×2UH

2 ×·· ·×d UH
d ;

Figure 7.7: A visualization of the Tensor Train decomposition of a five-dimensional tensor

X ∈ Cn1×n2×···×n5 . All tensors have a dimension of at most three, where the size of tensor
Gk equals rk−1×nk × rk for k = 1,2, . . . ,d .

7.3.2.5 High-dimensional Tucker extension: Tensor Train decomposition

Because the Tucker tensor decomposition is less efficient to compress high-dimensional data,

due to the exponentially dependence of the number of parameters on the dimension d , other

tensor decompositions are developed and studied. For example the Tensor Train decompo-

sition by Oseledets [64] is a possibility to maintain a certain kind of ‘orthogonal factors’

combined with a number of parameters that do not scale exponentially in the dimension.

With the Tensor Train format the original tensor X is represented by a network of low-
dimensional and small tensors, in this case a linear tensor network, as visualized in Figure

7.7.

Elementwise the Tensor Train decomposition is given by

xi1,i2,...,id ≈
r1

∑
α1=1

r2

∑
α2=1

· · ·
rd−1

∑
αd−1=1

G1(α0, i1,α1)G2(α1, i2,α2) · · ·Gd(αd−1, id ,αd) (7.24)

where rk , with k = 1,2, . . . ,d , are the ranks of certain auxiliary matrices, often called com-

pression ranks or TT-ranks. Further α0 = αd = 1 and ik = 1,2, . . . ,nk for k = 1,2, . . . ,d .

Observe that G111 and Gd are matrices with size n1× r1 and rd−1×nd respectively. All other
cores Gk with k =2,3, . . . ,d−1 are three-dimensional tensors with dimensions rk−1×nk×rk .

Also in a Tensor Train context the tensor X ∈ Cn1×n2×···×nd can be reshaped to a matrix
Xk ∈ C∏

k
i=1 ni×∏

d
i=k+1 ni where the elements of tensor X in certain dimensions are stacked in

columns of matrix Ak . Actually this unfolding is just a reshape of a tensor to a matrix:

Xk = reshape

[
X ,

k

∏
i=1

ni ,
d

∏
i=k+1

ni

]
. (7.25)
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G

G̃

Figure 7.8: Visualization of a block super-diagonal core tensor H.

The existence of a Tensor Train decomposition of a certain TT-rank is given by [64] or

formulated as

Theorem 6 ([64, Theorem 2.1]). If the rank of the unfolding matrix Xk of a d-dimensional

tensor X is given by
rank(Xk) = rk (7.26)

then there exists a Tensor Train decomposition (7.24) with TT-ranks of at most rk for

k = 1,2, . . . ,d .

The number of parameters for the Tensor Train format are O
(
dnr2

)
where n := d

√
n1n2 · · ·nd

and r := d
√
r1r2 · · · rd .

7.3.3 Linear operators applied on Tucker tensors

Consider two tensorsM and M̃ given in Tucker tensor format with multi-linear ranks r and

r̃ . Let these tensors be given by

M= G×1U1×2U2×·· ·×d Ud ∈ Cn1×n2×···×nd ,

M̃= G̃ ×1 Ũ1×2 Ũ2×·· ·×d Ũd ∈ Cn1×n2×···×nd .

The addition of tensorsM and M̃ is trivially defined as the elementwise addition. But when
M and M̃ are given in Tucker tensor format then the Tucker tensor representation of the

sum has to be constructed explicitly, as given by

M+M̃=H×1 V1×2 V2×·· ·×d Vd ,

with

Vi =
[
Ui Ũi

]
∈ Cni×(ri+r̃i ),

where i = 1,2, . . . ,d and a block super-diagonal core H ∈ C(r1+r̃1)×(r2+r̃2)×···×(rd+r̃d ) with G
and G̃ as block-tensors on the main diagonal of the core tensor H [81]. A visualization of
this block super-diagonal core tensor is given in Figure 7.8.
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In general, with this construction the orthogonality of the factor matrices is lost. Further,

the multi-linear rank of the core tensor increases with each tensor addition. Orthogonality

can be restored by re-orthogonalization of the factor matrices using an QR-decomposition

and multiplying the resulting matrix R into the core tensor.

The inner product of two tensors in Tucker format can be computed in terms of smaller

matrix products: 〈
M,M̃

〉
= vec [M]H vec

[
M̃
]

= vec [G]H
(
1⊗
l=d

UH
l

)(
1⊗
l=d

Ũl

)
vec

[
G̃
]

= vec [G]H
(
1⊗
l=d

UH
l Ũl

)
vec

[
G̃
]

= vec

[
G
d

×
l=1

Ũl
H
Ul

]H
vec

[
G̃
]

=

〈
G
d

×
l=1

Ũl
H
Ul , G̃

〉
.

(7.27)

Hence, computation of the norm of a tensor in Tucker format with unitary factor matrices

reduces to the norm of the core tensor:

∥M∥ = ⟨M,M⟩= vec

[
G
d

×
l=1

UH
l Ul

]H
vec [G] = vec [G]H vec [G] = ∥G∥. (7.28)

Consider a linear operator3 L on a Tucker tensor M where the linear operator has a

Kronecker structured matrix representation. Thus, the application of the linear operator

L : Cn1×n2×...×nd → Cn1×n2×...×nd on a tensor can be represented by a matrix-vector prod-
uct with L ∈ Cnd×nd where nd :=∏

d
i=1 ni and a vectorized tensor. Here

L=
R

∑
i=1

Ld,i ⊗Ld−1,i ⊗·· ·⊗L1,i (7.29)

with Lk,i ∈ Cnk×nk for i = 1,2, . . . ,R such that

F = LM ⇔ vec [F ] = Lvec [M] . (7.30)

Hence, using (7.21) as vectorization of a tensor the application of a Kronecker structured

linear operator L to a Tucker tensorM= G
d

×
i=1

Ui is given by

LM=
R

∑
i=1

G×1L1,iU1×2L2,iU2×3 . . .×d Ld,iUd . (7.31)

3Note: both (linear) operators and tensors are denoted in a calligraphic font. From the context it will be

clear if a (linear) operator is meant or a tensor. (Linear) operators are typically denoted by A,B or L while
tensors are typically denoted by X ,Y,Z,F ,G,H orM.
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Low rank approximation of solutions for

linear time-independent PDEs

Chapter summary:

Atomic and molecular breakup reactions, such as multiple-ionization, are

described by a driven Schrödinger equation. This equation is equivalent to

a high-dimensional Helmholtz equation and it has solutions that are out-

going waves, emerging from the target. We show that these waves can

be described by a low-rank approximation. For two-dimensional problems

this is a matrix product of two low-rank matrices and for three-dimensional

problems it is a low-rank tensor decomposition. We propose an iterative

method that solves, in an alternating projection way, for these low-rank

components of the scattered wave. We illustrate the method with exam-

ples in two and three dimensions.

The content of this chapter is submitted in the paper ‘Solving for the low-

rank tensor components of a scattering wave function’ by Jacob Snoeijer

and Wim Vanroose, [80].

8.1 Introduction

An in-coincidence experiment measures simultaneously the outgoing momenta of multiple

products of a microscopic reaction [74]. It is an instrument that can study the correlations

in reactions involving multiple particles. In double ionization, for example, a single photon

ionizes, simultaneously, two electrons and the outgoing momenta of both particles are cap-

tured [1]. The reaction probes the correlation between two electrons in, for example, a

chemical bound at the moment of photon impact. The outgoing wave of the two electrons

is described by a six-dimensional correlated wave and results in a cross section that depends

on four angles, the directions of the first and the second electron.

109
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Figure 8.1: Example setup of experiments with free-electron lasers (figure taken from Desy).

Free-electron lasers, and similar experiments around the world, are expected to generate

a wealth of scattering data. This will result in high-dimensional forward and inverse wave

problems that need to be solved to interpret the data. A sketch of the setup of these kind

of experiments is shown in Figure 8.1.

The experimental cross sections are often smooth functions as a function of the angles.

Similarly, some parts of the scattering solution, such as single ionization, is localized a

limited subspace of the possible full solution domain. The scattering solution can then be

described by a low-rank wave function, a product of one-particle bound states with scattering

waves in the other coordinates.

This chapter introduces a low-rank representation for the scattering solutions, not only for

the single ionization but also for double and triple ionization waves that appear in breakup

reactions.

We also propose and analyze an alternating direction algorithm that directly solves for the

low-rank components that describe the solution. This reduces a large-scale linear system

to smaller, low-dimensional, scattering problems that are solved in a iterative sequence.

The proposed method can be generalized to high-dimensional scattering problems where a

low-rank tensor decomposition is used to represent the full scattering wave function.

Efficient low-rank tensor representations are used in quantum physics for quite some time

already [34, 58]. They are also used in the applied mathematics literature to approximate

high-dimensional problems, for a review see [26, 27, 48]. Methods such ALS [32], DMRG

[63], and AMEn [19] use in alternating directions, a small linear system to determine the

low-rank components of a tensor decomposition. These innovations have not found their

application in computational scattering theory.

To calculate cross sections, from first principles, we start from a multi-particle Schrödinger

equation. The equation is reformulated into a driven Schrödinger equation with an unknown

scattering wave function and a right hand side that describes the excitation, for example, a

dipole operator working on the initial state.
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Since the asymptotic behaviour of a scattering function for multiple charged particles is in

many cases unknown, absorbing boundary conditions [2, 76] are used. Here, an artificial

layer is added to the numerical domain that dampens outgoing waves. The outgoing wave

boundary conditions are then replaced with homogeneous Dirichlet boundary conditions at

the end of the artificial layer. This boundary do not require any knowledge about the

asymptotic behaviour, which becomes very complicated for these multiple charged particles.

The resulting equation is discretized on a grid and results in a large, sparse indefinite linear

system. It is typically solved by a preconditioned Krylov subspace method [12]. However,

the preconditioning techniques for indefinite systems are not as efficient as preconditioners

for symmetric and positive definite systems. Solving the resulting equation is still a compu-

tationally expensive task, often requiring a distributed calculation on a supercomputer.

To compare the resulting theoretical cross sections with experimental data, a further post-

processing step is necessary. The cross section is the farfield map and this is calculated

through integrals of the scattering wave function, which is the solution of the linear system,

and a Greens function [56].

The main result of the chapter is that we show that scattering waves that describe multiple

ionization can be represented by a low-rank tensor. We first show this for a two-dimensional

wave and then generalize the results to three-dimensional waves. The methodology can be

generalized to higher dimensional waves.

The outline of this chapter is a follows. In Section 8.2 we review the methodology that solves

the forward scattering problem. It results in a driven Schrödinger equation with absorbing

boundary conditions. From the solution we can extract the cross section using an integral.

In Section 8.3 we illustrate, in two dimensions, that the solution can be approximated

by a truncated low-rank approximation. We also show that these low-rank components

can be calculated directly with an iterative method. In Section 8.4 we show that this

methodology generalizes to three- and higher-dimensional problems. A truncated Tucker

tensor decomposition is used to determine the low-rank components with a similar iterative

method. A discussion of some numerical results and a comparison of the different presented

versions of the method is given in Section 8.5. Finally, in Section 8.6, we summarize some

conclusions and discuss some possible extensions of the presented method.

8.2 State of the art

This section summarizes the methodology that solves forward break-up problems with charged

particles. The methodology is developed in a series of papers [56, 73] and applied to solve the

impact-ionization problem [72] and double ionization of molecules [88, 89]. These methods

are being extended to treat, for example, water [83].

The helium atom, He, as visualized in Figure 8.2, is the simplest system on which double

ionization might occur [4]. It has two electrons with coordinates r1 ∈R3 and r2 ∈R3 relative
to the nucleus positioned at origin 000. The driven Schrödinger equation for u(r1, r2) ∈ C2
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Figure 8.2: Single and double ionization for Helium atom.

then reads(
−
h̄2

me

1

2
∆r1 −

h̄2

me

1

2
∆r2−

Ze2

4πϵ0∥r1∥
−

Ze2

4πϵ0∥r2∥
+

e2

4πϵ0∥r1− r2∥
−E

)
u(r1, r2)=µ·φ0(r1, r2),

(8.1)

forall r1, r2 ∈ R3, where Ze is the nuclear charge of the atom, thus for the helium atom
one has Z = 2. Further, h̄ = h

2π , where h is the Planck constant [J·s], me the mass of a
stationary electron [kg], e is the elementary charge [C] and ϵ0 is the vacuum permittivity

constant
[
s2·C2
m3·kg

]
.

Here, u(r1, r2) is a probability amplitude that yields a probability density for the electron

in the far field. The right hand side is the dipole operator µ working on the ground state

φ0, the eigenstate with the lowest energy λ0. The operators −12∆r1 and −
1
2∆r2 are the

Laplacian operators for the first and second electron and model the kinetic energy. The

nuclear attraction scales with −1/∥r1∥ and −1/∥r2∥ and the electron-electron repulsion
scales with 1/∥r1− r2∥.

The total energy E = h̄ν+λ0 is the energy deposited in the system by the photon, h̄ν, and

the energy λ0 of the ground state. If the E > 0, both electrons can escape simultaneously

from the system. The solution u(r1, r2) then represents a six-dimensional wave emerging

from the nucleus.

The equation can be interpreted as a Helmholtz equation with a space-dependent wave

number, k2(r1, r2), (
−∆6D−k2(r1, r2)

)
u(r1, r2) = f (r1, r2), (8.2)

where r1, r2 ∈ R3.

In this chapter we prefer to write this Helmholtz equation as(
−∆6D−k20 (1+χ(r1, r2))

)
u(r1, r2) = f (r1, r2), (8.3)

where r1, r2 ∈ R3, k20 is a constant wave number, in this case related to the total energy E,
and a space-dependent function χ : R6→ R, that goes to zero if ∥r1∥ →∞ or ∥r1∥ →∞
that represents all the potentials.
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Figure 8.3: A point in 3D space

given in spherical coordinates.

Figure 8.4: Example of a radial wave

function ul1m1,l2m2(ρ1,ρ2).

8.2.1 Expansion in spherical waves and absorbing boundary conditions

For small atomic and molecular systems, where spherical symmetry is relevant, the system

is typically written in spherical coordinates and expanded in spherical harmonics. With

r1(ρ1,θ1,ϕ1) and r2(ρ2,θ2,ϕ2) we can write

u(r1, r2) =
∞

∑
l1=0

l1

∑
m1=−l1

∞

∑
l2=0

l2

∑
m2=−l2

ul1m1,l2m2(ρ1,ρ2)Yl1m1(θ1,ϕ1)Yl2m2(θ2,ϕ2), (8.4)

where Yl1m1(θ1,ϕ1) and Yl2m2(θ2,ϕ2) are spherical harmonics, the eigenfunctions of the an-

gular part of a three-dimensional Laplacian in spherical coordinates. In practice the sum in

Equation (8.4) is truncated. The expansion is then a low-rank, truncated, tensor decompo-

sition of a six-dimensional tensor describing the solution.

For each combination of l1, m1, l2 and m2, the radial function ul1m1,l2m2(ρ1,ρ2) describes an

outgoing wave that depends on the distances ρ1 and ρ2 of the two electrons to the nucleus.

A coupled equation that simultaneously solves for all the ul1m1,l2m2(ρ1,ρ2)’s is found by

inserting the truncated sum in (8.1), multiplying with Y ∗l1m1(θ1,ϕ1) and Y
∗
l2m2
(θ2,ϕ2) and

integrating over all the angular coordinates,(
−
1

2

d2

dρ21
+
l1(l1+1)

2ρ21
−
1

2

d2

dρ22
+
l2(l2+1)

2ρ22
+Vl1m1l2m2(ρ1,ρ2)−E

)
ul1m1,l2m2(ρ1,ρ2)

+ ∑
l ′1,m

′
1,l
′
2,m

′
2

Vl1m1l2m2,l ′1m
′
1l
′
2m
′
2
(ρ1,ρ2)ul ′1m

′
1,l
′
2m
′
2
(ρ1,ρ2) = fl1m1,l2m2(ρ1,ρ2).

(8.5)

For all l1,m1, l2,m2. Further, ρ1,ρ2 ∈ [0,∞) and boundary conditions u(ρ1 = 0,ρ2) = 0 for
all ρ2 ≥ 0 and u(ρ1,ρ2 = 0) = 0 for all ρ1 ≥ 0 are applied.

The equation (8.5) is typically discretized on a spectral elements quadrature grid [73].

To reflect the physics, where electrons are emitted from the system, outgoing wave boundary

conditions need to be applied at the outer boundaries. There are many ways to implement

outgoing wave boundary conditions. Exterior complex scaling (ECS) [76] for example, is
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• usc(x)

Figure 8.5: The near-field and far-field around a molecule. The detector to measure usc(x)

is located in the far-field, on a large distance from the molecule.

frequently used in the computational atomic and molecular physics literature. In the com-

putational electromagnetic scattering a perfectly matched layer (PML) [2] is used, which

can also be interpreted as a complex scaled grid [11].

8.2.2 Calculation of the amplitudes

To correctly predict the probabilities of the arriving particles at the detector, we need the

amplitudes of the solution far away from the molecule. These are related to the asymptotic

amplitudes of the wave functions.

Let us go back to the formulation with the Helmholtz equation, as given in (8.3). Suppose

that we have solved the following Helmholtz equation with absorbing boundary conditions,

in any representation, (
−∆6D−k20 (1+χ(x))

)
usc(x) = f (x), (8.6)

for all x ∈ [−b, b]d and where f is only non-zero on the real part of the grid [−b, b]d ⊂Rd .
Similarly, χ(x) is only non-zero on the box [−b, b]d .

The calculation of the asymptotic amplitudes requires the solution usc(x) for an x outside

of the box [−b, b]d . To that end, we reorganize equation (8.6), after we have solved it, as
follows (

−∆6D−k20
)
usc = f +k

2
0 χusc. (8.7)

The right hand side of (8.7) is now only non-zero on [−b, b]d , since both f and χ are only
non-zero there. Furthermore, since we have solved (8.6) we also know usc on [−b, b]d . So
the full right hand side of (8.7) is known. The remaining left hand side of (8.7) is now a

Helmholtz equation with a constant wave number k20 . For this equation the Greens function

is known analytically. Thus, for all x ∈ Rd we have

usc(x) =

∫
G(x ,y)

(
f (y)+k20 χ(y)usc(y)

)
dy

=

∫
[−b, b]d

G(x ,y)
(
f (y)+k20 χ(y)usc(y)

)
dy ,

(8.8)



8.2. STATE OF THE ART 115

where f and χ are limited to [−b, b]d thus we can truncate the integral to the box [−b, b]d .

This methodology was successfully applied to calculate challenging break up problems, see

for example [72].

8.2.3 Single ionization versus double ionization

Let us discuss the qualitative behaviour of the solution for single and double ionization. To

illustrate the behaviour, we truncate the partial wave expansion as given in (8.4) to the first

term (i.e. l1 = l2 = 0). This is known as the s-wave expansion. The six-dimensional wave

function is then approximated by

u(r1, r2)≈ u(ρ1,ρ2)Y00(θ1,ϕ1)Y00(θ2,ϕ2). (8.9)

The radial wave, u(ρ1,ρ2), then fits a two-dimensional Helmholtz equation(
−
1

2

d2

dρ21
−
1

2

d2

dρ22
+V1(ρ1)+V2(ρ2)+V12(ρ1,ρ2)−E

)
u(ρ1,ρ2) = f (ρ1,ρ2), (8.10)

for all ρ1,ρ2 ∈ [0,∞) and where V1(ρ1) and V2(ρ2) represents the one-particle potentials
and V12(ρ1,ρ2) the two-particle repulsion. This model is known as a s-wave or Temkin-Poet

model [65, 85].

Before the photo-ionization, the atom is in a two-particle ground state. In this s-wave

model, it is the eigenstate of(
−
1

2

d2

dρ21
−
1

2

d2

dρ22
+V1(ρ1)+V2(ρ2)+V12(ρ1,ρ2)

)
φ0(ρ1,ρ2) = λ0φ0(ρ1,ρ2). (8.11)

with the lowest energy. Simultaniously, there are one-particle states that are eigenstates of(
−
1

2

d2

dρ21
+V1(ρ1)

)
φi(ρ1) = µiφi(ρ1), (8.12)

and (
−
1

2

d2

dρ22
+V2(ρ2)

)
ϕi(ρ2) = νiϕi(ρ2). (8.13)

When (8.10) is solved with the energy E = h̄ν+λ < 0, there is only single ionization. Only

one of the two coordinates ρ1 or ρ2 can become large and the solution, as can be seen in

Figure 8.6a, is localized along both axis. The solution is a product of an outgoing wave in

one coordinate and a bound state in the other coordinate. For example, along the ρ2-axis,

the solution is described by Ai(ρ2)φi(ρ1), where Ai(ρ2) is a one-dimensional outgoing wave,

with an energy E−µi and φi(ρ1) is a bound state of (8.12) in the first coordinate with
energy µi . Similary, there is a wave, along the ρ1 axis, that is an outgoing wave of the form

Bi(ρ1)ϕi(ρ2), with a scattering wave in the first coordinate, ρ1, and a bound state in the

second coordinate ρ2, where ϕi(ρ2) is the solution of (8.13).

When (8.10) is solved with energy E = h̄ν+λ≥ 0 there is also double ionization and both
coordinates ρ1 and ρ2 can become large. We see, in Figure 8.6b, a (spherical) wave in
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Figure 8.6: Left: When the energy E = h̄ν+λ0 < 0, there is only single ionization. The

solution is then localized along the edges, where the solution is a combination of an outgoing

wave in the ρ1 and a bound state in ρ2, or vice-versa. Right: For energy E > 0, there is,

in addition to single ionization with solution localized along the edges, a double ionization

wave where both coordinates can become large.

the middle of the domain, where both coordinates can be become large. To describe this

solution the full coordinate space is necessary. Note that these solutions still show single

ionization along the axes. Even for E > 0, one particle can take away all the energy and

leave the other particle as a bound state.

8.2.4 Coupled channel model for single ionization waves

In this section, we write the single ionization solution as a low-rank decomposition and derive

the equations for the low-rank components. When there is only single ionization, the total

wave can be written as

u(ρ1,ρ2) =
M

∑
m=1

φm(ρ1)Am(ρ2)+
L

∑
l=1

Bl(ρ1)ϕl(ρ2), (8.14)

where φm(ρ1) and ϕl(ρ2) are the bound state eigenstates, defined in (8.12) and (8.13).

The first term is localized along the ρ2-axis, the second term is localized along the ρ1-axis

with µi < 0 and νi < 0.

As discussed in [12], this expansion is not unique. We can add multiples of γmϕm(ρ2) to

Am(ρ2) and simultaneously subtract γlφl(ρ1) from Bl(ρ1) without contaminating the result.

Indeed, for any choice of γi ∈ C and L=M it holds that

u(ρ1,ρ2) =
M

∑
m=1

φm(ρ1)(Am(ρ2)+γiϕm(ρ2))+
L

∑
l=1

(Bl(ρ1)−γiφl(ρ1))ϕl(ρ2)) = u(ρ1,ρ2).

(8.15)

To make the expansion unique, [12] chooses to select Ai ⊥ ϕj when j ≥ i and Bj ⊥ φi when
i ≥ j . In this chapter, we choose to make the functions in the set {φm∈{1,...,M},Bl∈{1,...,L}}
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orthogonal. We also assume that

V12(ρ1,ρ2)≈
M

∑
m=1

L

∑
l=1

φm(ρ1)ϕl(ρ2)

∫∫
φ∗m(ρ1)ϕ

∗
l (ρ2)V12(ρ1,ρ2)dρ1dρ2.

Given a function f (ρ1,ρ2), a right hand side, we can now derive the equations for Am and Bl .

When we insert the low-rank decomposition of the expansion (8.14), in the two-dimensional

Helmholtz equation (8.10), multiply with φ∗m and integrate over ρ1 to find

(H2+µm−E)Am(ρ2)+
M

∑
k=1

 ∞∫
0

φ∗m(ρ1)V12(ρ1,ρ2)φk(ρ1)dρ1

Ak(ρ2)= ∞∫
0

φ∗m(ρ1)f (ρ1,ρ2)dρ1

for m = 1,2, . . . ,M and ρ2 ∈ [0,∞). We have used that φm ⊥ Bl to eliminate the second
term in the expansion (8.14).

Similarly, for Bl , we multiply with ϕ
∗
l and integrate over ρ2 to find

(H1+νl −E)Bl(ρ1)+
L

∑
k=1

 ∞∫
0

ϕ∗l (ρ2)V12(ρ1,ρ2)ϕk(ρ2)dρ2

Bk(ρ1) = ∞∫
0

ϕ∗l (ρ2)f̃ (ρ1,ρ2)dρ2

for l = 1,2, . . . ,L and ρ1 ∈ [0,∞). Where the right hand side function f is slightly changed
to f̃ to correct for φm(ρ1)Am(ρ2) terms that are not eliminated when multiplied with ϕ

∗
l .

8.3 Low-rank matrix representation of a 2D wave function

that includes both single and double ionization

8.3.1 Low rank of the double ionization solution

We now discuss the main result of the chapter and derive a coupled channel equation

that gives a low-rank approximation for the double ionization wave function, as shown in

Figure 8.6b.

Although the full coordinate space is necessary to describe the double ionization wave func-

tion, the rank of this double ionization wave function is low, see Figure 8.7. A numerical

verification with increasing low-rank approximations of this double-ionization wave function

is shown in Figure 8.8. The different contour plots illustrate indeed that a low-rank decom-

position of the wave function could be sufficient to describe the full double ionization wave

function of Figure 8.6b.

In Section 8.2.4 we have shown that the single ionization wave can be represented by a

low-rank decomposition. In this section, we show that also the double ionization wave can

be written as a similar low-rank decomposition.

We first illustrate that the solution of a two-dimensional driven Schrödinger equation that

contains both single and double ionization, it is a solution of (8.10) with E > 0, can be
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Figure 8.7: Plot of singular values of double ionization wave function.
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Figure 8.8: Contour plots of the double ionization wave function (bottom, right) and low-

rank approximations for increasing rank.
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represented by a similar low-rank decomposition. In Figure 8.9 we solve a representative

Helmholtz equation on a uniform mesh with a space-dependent wave number, k(ρ1,ρ2), in

the first quadrant where ρ1 ≥ 0 and ρ2 ≥ 0. The equation is(
−∆2D−k2(ρ1,ρ2)

)
usc(ρ1,ρ2) = f (ρ1,ρ2), (8.16)

where ∆2D is the two-dimensional Laplacian and the solution usc satisfies homogeneous

boundary conditions usc(ρ1,0) = 0 for all ρ1 ≥ 0 and usc(0,ρ2) = 0 for all ρ2 ≥ 0. On the
other boundaries outgoing boundary conditions are imposed.

The right hand side f (ρ1,ρ2) has a support that is limited to [0, b]
2 ⊂R2+, i.e. f (ρ1,ρ2) = 0,

for all ρ1 ≥ b or ρ2 ≥ b.

The wave number k(ρ1,ρ2) can be split in a constant part, k
2
0 and variable part χ(ρ1,ρ2).

The variable part is also only non-zero on [0,b)2

k2(ρ1,ρ2) =

{
k20 (1+χ(ρ1,ρ2)) if ρ1 < b and ρ2 < b,

k20 if ρ1 ≥ b or ρ2 ≥ b.
(8.17)

The domain is extended with exterior complex scaling (ECS) absorbing boundary condition

[56].

The wave function usc is discretized on the two-dimensional mesh and can be represented by

a matrix A∈Cn×n. One can compute the singular decomposition of this matrix, A=UΣΣΣV H

with U,V ∈ Cn×n where UHU = I, V HV = I and ΣΣΣ ∈ Rn×n is a diagonal matrix with the
singular values σi on the diagonal.

The results are shown in Figure 8.9 and show that the singular values decrease rapidly. Thus

the wave function can efficiently be approximated by a truncated representation,

A≈
r

∑
i=1

σiuiv
H
i , (8.18)

where ui ∈ Cn are columns of U and vi ∈ Cn are rows from V and σi are largest r singular

values. Thus A is approximated by it low-rank representation with rank r . This truncated

decomposition drops all contributions with σi < τ below a threshold τ , for example the

expected discretization error.

Finally, Figure 8.10 illustrates that a low-rank approximation to the wave function is sufficient

calculate an accurate approximation to the far field or the cross section.

8.3.2 Determining the low-rank components directly

In the example of the previous section, we have first calculated a matrix representation of

the solution, A ∈Cn×n, and then approximated it by low-rank components. The aim is now
to develop a method that calculates, directly, these components without first calculating

the full solution A. This approach avoids expensive calculations.
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Figure 8.9: The top figures show the representative double ionization wave function for two

different energies (i.e. E = 2 and E = 16). The singular values of the matrix-representation

of the discretized functions are shown in the bottom figures. We show the solution of a

two-dimensional Helmholtz equation with a space-dependent wave number k2(ρ1,ρ2) given

by k2(ρ1,ρ2) = E− e−|ρ1−ρ2|. The right hand side f (ρ1,ρ2) on the finite domain [0,b)2,
with b = 10, is given by f (ρ1,ρ2) =−e−ρ

2
1−ρ

2
2 . Finite difference discretization is done on a

uniform mesh with M = 1000 interior mesh points per direction. At the boundaries x = b

and y = b the domain is extended with exterior complex scaling under an angle π6 where

33% additional discretization points are added, so n = 1333.
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Figure 8.10: The cross section computed from low-rank approximations of the wave func-

tion.

We start from the discretized two-dimensional Helmholtz equation as given in (8.16). In

matrix form this is given by

−DxxA−ADT
yy −K ◦A= F , (8.19)

where Dxx ∈ Cn×n and Dyy ∈ Cn×n are sparse matrices that represent the discretization of
the second derivatives, K is the matrix that represents the space-dependent wave number,

k2(ρ1,ρ2), on the grid and A ∈Cn×n is the matrix that describes the unknown partial wave.
The right hand side F ∈ Cn×n is given. The Hadamard product, ◦, multiplies the matrices
point wise, element by element.

We now make the approximation A≈ UV H, with low-rank matrices U ∈Cn×r and V ∈Cn×r
where r ≪ n and write

−DxxUV H−UV HDyy −K ◦
(
UV H

)
= F . (8.20)

We start with a guess for V ∈ Cn×r with orthogonal columns such that V HV = Ir . We can

now multiply (8.20) from the right by V and obtain

−DxxUV HV −UV HDyyV −
(
K ◦

(
UV H

))
V = FV . (8.21)

where U ∈ Cn×r is now the remaining unknown.

We use the vectorizing identities

vec [A◦B] = vec [A]◦vec [B] for A,B ∈ Cl×p,
vec [AXB] =

(
BT⊗A

)
vec [X] for A ∈ Ck×l ,X ∈ Cl×m and B ∈ Cm×n,

(8.22)

to obtain

−(I⊗Dxx)vec [U]−
(
(V HDyyV )

T⊗ I
)
vec [U]−vec

[(
K ◦

(
UV H

))
V
]
= vec [FV ] . (8.23)
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The last term of the left hand side can be simplified and written as

vec
[(
K ◦

(
UV H

))
V
]
=
(
V T⊗ I

)
vec

[
K ◦

(
UV H

)]
,

=
(
V T⊗ I

)(
vec [K]◦vec

[
UV H

])
,

=
(
V T⊗ I

)
diag(vec [K])vec

[
UV H

]
,

=
(
V T⊗ I

)
diag(vec [K])

((
V H
)T⊗ I)vec [U] .

(8.24)

This results in[
−(I⊗Dxx)−

((
V HDyyV

)T⊗ I)− (V T⊗ I
)
diag(vec [K])

((
V H
)T⊗ I)]vec [U] = vec [FV ] .

(8.25)

This is a linear system for the remaining unknown columns of the matrix U ∈ Cn×r .

In (8.18), we have approximated A as UΣΣΣV H where U,V ∈Cn×r and ΣΣΣ∈Rr×r are truncated
matrices. With an orthogonal guess for V , we solve for a U in (8.25). Since we approximate

A now by the product UV H, hence U, the solution of (8.25), includes the diagonal matrix

with singular values.

We can now do a QR decomposition of U to arrive at a guess for the orthogonal matrix U.

The next step is to improve the guess for V in a similar way. The equation (8.20) becomes,

when we multiply from the left by UH,

−UHDxxUV
H−UHUV HDyy −UH

(
K ◦

(
UV H

))
= UHF . (8.26)

Using the vectorizing identities (8.22), this results in[
−
(
I⊗UHDxxU

)
−
(
DT
yy ⊗ I

)
−
(
I⊗UH

)
diag(vec [K])(I⊗U)

]
vec

[
V H
]
= vec

[
UHF

]
,

(8.27)

where we use that

UH
(
K ◦

(
UV H

))
=
(
I⊗UH

)
vec [K]◦vec

[
UV H

]
=
(
I⊗UH

)
diag(vec [K])(I⊗U)vec

[
V H
]
.

Combining the equations (8.25) and (8.27) we can now propose an algorithm that updates

U and V in an alternating way. The steps are described in the Algorithm 4.

8.3.3 Comparison between coupled channel and a low-rank decompo-

sition

We now compare the coupled channel approach from Section 8.2.4 with the low-rank ap-

proach from Section 8.3.2. In the coupled channel calculation we use the eigenfunctions

of one-particle subsystems as a basis for the expansion. After integration over one of the

coordinates this results in a coupled set of one-dimensional equations. Let us illustrate that

equation (8.25) and (8.27) reduce to a the coupled channel equations when we choose the

eigenfunctions, from (8.12) and (8.13), as columns for U or V .
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Algorithm 4: Solve for the low-rank matrix decomposition of the solution A≈ UV H of

a two-dimensional Helmholtz problem with space-dependent wave number.

1 Choose V ∈ Cn×r as initial guess;
2 [V ,R] = qr [V ,0];

3 while not converged do

4 Solve
[
−(I⊗Dxx)−

((
V HDyyV

)T⊗ I)− (V T⊗ I
)
diag(vec [K])

((
V H
)T⊗ I)]vec [U] = vec [FV ];

5 [U,R] = qr [U, 0];

6 Solve
[
−
(
I⊗UHDxxU

)
−
(
DT
yy ⊗ I

)
−
(
I⊗UH

)
diag(vec [K])(I⊗U)

]
vec

[
V H
]
= vec

[
UHF

]
;

7 [V ,R] = qr [V , 0];

8 end

9 A= URHV H;

Let use take a look at equations (8.25) and (8.27). Further, assume that the discretized

space-dependent wave number is given by

K = EI⊗ I− I⊗V1(x)−V T
2 (y)⊗ I−V12(x ,y).

For (8.25) assume that the columns of V are the eigenstates of −Dyy +V2(y) with eigen-
values νi . We can then write

−
(
V T⊗ I

)
diag(vec [K])

((
V H
)T⊗ I)=−EI⊗ I+ I⊗V1(x)+ (V HV2(y)V

)T⊗ I
+
(
V T⊗ I

)
diag(vec [V12(x ,y)])

((
V H
)T⊗ I) .

Then equation (8.25) becomes[(
I⊗ (−Dxx +V1(x)− I)

)
+
((
V H(−Dyy +V2(y))V

)T⊗ I)
+
(
V T⊗ I

)
diag(vec [V12(x ,y)])

((
V H
)T⊗ I)]vec [U] = vec [FV ] .

When we use that the columns of V are eigenfunctions of −Dyy + V2(y) with eigenvalues
νi , equation (8.25) becomes[(
diag(ν)⊗ I+ I⊗ (−Dxx +V1(x)−EI)

)
+
(
V T⊗ I

)
diag(vec [V12(x ,y)])

((
V H
)T⊗ I)]vec [U]
= vec [FV ] .

The term
(
V T⊗ I

)
diag(vec [V12(x ,y)])

((
V H
)T⊗ I) couples the columns of U. It should

be interpreted as a discretized version of
∫
ϕ∗i (ρ2)V12(ρ1,ρ2)ϕj(ρ2)dρ2, where we integrate

over one of the coordinates. The columns of V are the ϕi represented on a integration grid.

However, in general, the columns are V are not eigenfunctions of the operator. The term

diag(ν)⊗ I then becomes a matrix that also couples the different components of U.

Similarly, for (8.27) assume that the columns of U are the eigenstates of −Dxx + V1(x).
We can then write

−
(
I⊗UH

)
diag(vec [K])(I⊗U) =−E I⊗ I+ I⊗UHV1(x)U+V

T
2 (y)⊗ I

+
(
I⊗UH

)
diag(vec [V12(x ,y)])(I⊗U) .



124 CHAPTER 8. LOW RANK APPROXIMATIONS FOR TIME-INDEPENDENT PDES

Then equation (8.27) becomes[
I⊗UH

(
−Dxx +V1(x)

)
U+

(
−Dyy +V2(y)−EI

)T⊗ I
+
(
I⊗UH

)
diag(vec [V12(x ,y)])(I⊗U)

]
vec

[
V H
]
= vec

[
UHF

]
.

When we use that the columns of U are eigenfunctions of −Dxx + V1(x) with eigenvalues
µi , equation this becomes[
I⊗diag(µ)+(−Dyy +V2(y)−E I)T⊗ I+

(
I⊗UH

)
diag(vec [V12(x ,y)])(I⊗U)

]
vec

[
V H
]

= vec
[
UHF

]
.

The term
(
I⊗UH

)
diag(vec [V12(x ,y)])(I⊗U) couples the columns of V and should be

interpreted as a discretized version of
∫
φ∗i (ρ1)V12(ρ1,ρ2)φj(ρ1)dρ1, where we integrate over

one of the coordinates. The columns of U are the φi represented on a integration grid. In

general, the columns are U are not eigenfunctions of the operator. The term I⊗diag(µ)
then becomes a matrix that also couples the different components of V .

Thus in short, in each iteration of the alternating method we are solving generalized coupled

channel equations.

8.3.4 Convergence with projection operators

We will now write both linear systems, (8.25) for vec [U], and, (8.27) for vec [V ], as projec-

tion operators applied to the residual of the matrix equation, (8.19). For sufficiently large

rank k the alternating projection approach will converge to a solution with zero residual.

We denote by L the discretized two-dimensional Helmholtz operator on the full grid

L= (I⊗ (−Dxx))+((−Dyy )⊗ I)−diag(vec [K])(I⊗ I) . (8.28)

We can now explicitly write equation (8.25) in terms of projections and this linear operator:(
V T⊗ I

)
L
(
V ⊗ I

)
vec [U] =

(
V T⊗ I

)
vec [F ] . (8.29)

The residual matrix, R, is given by

R = F − (−Dxx)UV H−UV H(−Dyy )+K ◦
(
UV H

)
. (8.30)

In vector form this reads, using that U is a solution of equation (8.29),

vec [R] = vec [F ]−
(
V ⊗ (−Dxx)+(−DT

yy )V ⊗ I−diag(vec [K])
(
V ⊗ I

))
vec [U] ,

=
(
I−
(
V ⊗ (−Dxx)+(−DT

yy )V ⊗ I−diag(vec [K])
(
V ⊗ I

))[(
V T⊗ I

)
L
(
V ⊗ I

)]−1 (
V T⊗ I

))
vec [F ]

=
(
I−L

(
V ⊗ I

)[(
V T⊗ I

)
L
(
V ⊗ I

)]−1 (
V T⊗ I

))
vec [F ]

= PV vec [F ] ,
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where PV is given by

PV := I−L
(
V ⊗ I

)[(
V T⊗ I

)
L
(
V ⊗ I

)]−1 (
V T⊗ I

)
:= I−X.

(8.31)

The operator PV is a projection operator. Indeed, observe that the terms between the two

inverses cancel, in the next equation, against one of the inverse factors:

X2 = L
(
V ⊗ I

)[(
V T⊗ I

)
L
(
V ⊗ I

)]−1 (
V T⊗ I

)
L
(
V ⊗ I

)[(
V T⊗ I

)
L
(
V ⊗ I

)]−1 (
V T⊗ I

)
= L

(
V ⊗ I

)[(
V T⊗ I

)
L
(
V ⊗ I

)]−1 (
V T⊗ I

)
=X.

We then have that P 2V = (1−X)(1−X) = 1−2X+X2 = 1−X = PV .

This projection operator removes all components from the residual matrix that can be cor-

rected by the subspace spanned by V . It is similar as a deflation operator, often used in

preconditioning [21].

A similar derivation results in a projection operator PU for the update of V :

PU = I−L(I⊗U)
[(
I⊗UH

)
L(I⊗U)

]−1 (
I⊗UH

)
= I−Y .

(8.32)

This is again a projection operator.

So, Algorithm 4 repeatedly projects the residual matrix, R, on a subspace. Alternating

between a subspace that is orthogonal to the subspace spanned by the columns of V (k) at

iteration k and a subspace that is orthogonal to the columns of U(k) at iteration k . The

residual matrix R(k) after k iterations is the result of a series of projections

R(k) = PU(k)PV (k) PU(k−1)PV (k) . . . PU(0)PV (0)R
(0). (8.33)

It is similar to the method of Alternating Projections [93] that goes back to Neumann [59],

where a solution is projected on two alternating subspaces resulting in a solution that lies in

the intersection between the two spaces. However, here the columns for U(k) and V (k) are

changing each iteration.

However, when the rank of U(k) and V (k) is sufficiently large, the only intersection between

the changing subspaces is the 000 matrix. So the residual converges to 0.

8.4 Solving for the low-rank tensor approximation of 3D

Helmholtz equations

Algorithm 4, as introduced in Section 8.3.2 for two-dimensional problems, can be extended

to higher dimensions. We illustrate this extension for the three-dimensional Helmholtz prob-

lems. First, we will discuss the problem with a constant wave number and then extend the

results to space-dependent wave numbers.
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We solve the Helmholtz equation with a constant or space-dependent wave number, k2(ρ1,ρ2,ρ3),

in the first quadrant, where ρ1 ≥ 0,ρ2 ≥ 0 and ρ3 ≥ 0. The driven equation is given by(
−∆3D−k2(ρ1,ρ2,ρ3)

)
usc(ρ1,ρ2,ρ3) = f (ρ1,ρ2,ρ3), (8.34)

where ∆3D is the three-dimensional Laplacian and the solution usc satisfies homogeneous

boundary conditions usc(0,ρ2,ρ3) = 0 for all ρ2,ρ3≥ 0, usc(ρ1,0,ρ3) = 0 for all ρ1,ρ3≥ 0 and
usc(ρ1,ρ2,0) = 0 for all ρ1,ρ2 ≥ 0. On the other boundaries outgoing boundary conditions
are applied.

The right hand side f (ρ1,ρ2,ρ3) has a support that is limited to [0,b]
3⊂R3+, i.e. f (ρ1,ρ2,ρ3)=

0, for all ρ1 ≥ b, ρ2 ≥ b or ρ3 ≥ b.

The wave number k2(ρ1,ρ2,ρ3) can be split in a constant part, k
2
0 , and variable part

χ(ρ1,ρ2,ρ3). The variable part is also only non-zero on [0,b)
3

k2(ρ1,ρ2,ρ3) =

{
k20 (1+χ(ρ1,ρ2,ρ3)) if ρ1 < b and ρ2 < b and ρ3 < b,

k20 if ρ1 ≥ b or ρ2 ≥ b or ρ3 ≥ b.
(8.35)

The domain is extended with exterior complex scaling (ECS) absorbing boundary condition

[56].

The wave function is discretized on a three-dimensional mesh with n1×n2×n3 unknowns and
can be represented by a Tucker tensor decomposition [86]. The Tucker tensorM∈ Cn1×n2×n3
with multi-linear rank r = (r1, r2, r3) is given by

M= G×1U1×2U2×3U3 ∈ Cn1×n2×n3 . (8.36)

Here the tensor G ∈ Cr1×r2×r3 is called the core tensor and the factor matrices Ui ∈ Cni×ri
have orthonormal columns for i = 1,2,3. Here ri refers to the rank for each direction and

ni to the number of mesh points in each direction. So, to store this tensor only one core

tensor and d factor matrices need to be stored, so the storage costs1 scales O
(
rd +dnr

)
.

Let L be the discretization of the three-dimensional Helmholtz operator as given in (8.34).
Observe that the operator L can be written as a sum of Kronecker-products, where the
matrix representation L is of the following form

L=−I⊗ I⊗Dxx − I⊗Dyy ⊗ I−Dzz ⊗ I⊗ I−diag(vec [K])I⊗ I⊗ I. (8.37)

Here Dxx ∈ Cn1×n1 ,Dyy ∈ Cn2×n2 and Dzz ∈ Cn3×n3 are sparse matrices that represent the
discretization of the second derivatives and K is a tensor that represents the constant or
space-dependent wave number, k2(ρ1,ρ2,ρ3), discretized on the grid.

8.4.1 Helmholtz equation with constant wave number

First, consider the three-dimensional Helmholtz problem with a constant wave number, so

k2(ρ1,ρ2,ρ3) ≡ k2. The application of the Helmholtz operator L on tensor M in Tucker

1Here, we used the notation rd := ∏
d
i=1 ri and r :=

d
√
rd , to deal with possible unequal number of dis-

cretization points ni or ranks ri in different directions for a Tucker tensor.
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tensor format is given by

LM= F
LM=−G×1DxxU1×2U2×3U3

−G×1U1×2DyyU2×3U3
−G×1U1×2U2×3DzzU3
−k2G×1U1×2U2×3U3
= F

(8.38)

where UH
i Ui = I for i =1,2,3 and F is a tensor representation of the right hand side function

f discretized on the grid.

8.4.1.1 Solving for product of basis functions and core terms (version 1)

Similar to the two-dimensional case, we can derive equations to iteratively solve for the

factors U1, U2 and U3. To derive the equations for U1 we start from (8.38) and multiply

with U2 and U3 in the second and third direction, respectively:

LM×2UH
2 ×3UH

3 = F ×2UH
2 ×3UH

3 .

For a review of tensors, tensor decompositions and tensor operations like this tensor-times-

matrix product denoted by the symbol ×i we refer to Chapter 7 or [48].

Using explicitly the Tucker tensor representation for M and that the columns of Ui are

orthonormal, the following expression is derived for the Helmholtz operator applied on a

tensor in Tucker format

LM×2UH
2 ×3UH

3 = G×1 (−Dxx −k2I)U1−G×1U1×2UH
2DyyU2−G×1U1×3UH

3DzzU3.

Writing this tensor equation in the first unfolding leads to a matrix equation, recall the first

unfolding is given by M(1) = U1G(1) (U3⊗U2)H, see also [48]:

(−Dxx −k2I)U1G(1)−U1G(1)
(
I⊗UH

2DyyU2
)H−U1G(1) (UH

3DzzU3⊗ I
)H
= F(1) (U3⊗U2) .

(8.39)

To solve this equation for U1, it is written in vectorized form as

{
I⊗ (−Dxx −k2I)+

[
−
(
I⊗UH

2DyyU2
)
−
(
UH
3DzzU3⊗ I

)]
⊗ I
}
vec

U1G(1)︸ ︷︷ ︸
X1


= vec

[
F(1) (U3⊗U2)

]
.

(8.40)

Observe that this is a square system with n1× r2r3 unknowns, where the solution in matrix
form X1 could have, in general, a rank r > r1. In a similar way, equations for U2 and U3 are

derived by multiplying (8.38) with the other factor matrices in the appropriate directions:

{
I⊗ (−Dyy −k2I)+

[
−
(
I⊗UH

1DxxU1
)
−
(
UH
3DzzU3⊗ I

)]
⊗ I
}
vec

U2G(2)︸ ︷︷ ︸
X2


= vec

[
F(2) (U3⊗U1)

]
,

(8.41)
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Algorithm 5: Solve for the low-rank tensor decomposition of the solutionM of a three-
dimensional Helmholtz with constant wave number (version 1).

1 [G,U1,U2,U3] = hosvd(initial guess);
2 while not converged do

3 for i = 1, 2, 3 do

4 Solve for Xi = UiG(i) ∈ Cn×r
d−1
using (8.40), (8.41) or (8.42);

5 UiG(i) = qr [Xi(:, 1 : ri),0];

6 end

7 end

8 G = reconstruct
[
G(i), i

]
;

9 M= G×1U1×2U2×3U3;

and

{
I⊗ (−Dzz −k2I)+

[
−
(
I⊗UH

1DxxU1
)
−
(
UH
2DyyU2⊗ I

)]
⊗ I
}
vec

U3G(3)︸ ︷︷ ︸
X3


= vec

[
F(3) (U2⊗U1)

]
.

(8.42)

Alternating between solving for U1, U2 and U3 using (8.40), (8.41) or (8.42) results in

algorithm that approximates the low-rank solutions for three-dimensional problems as given

in (8.34). This algorithm is summarized in Algorithm 5. Also in the three-dimensional

case the orthogonality of the columns of U1, U2 and U3 are maintained by additional QR

factorizations. Observe that we solve for a large matrix Xi ∈Cni×r1r2r3/ri . So, in general the
rank of this matrix could be min(ni , r1r2r3/ri). But it is also known that Xi = UiG(i) which

leads to the fact that the rank of Xi should be at most ri . Selecting the first ri columns of

Xi and computing its QR decomposition is sufficient to derive a new orthonormal basis as

factor matrix U i .

Finally, observe that solving for Xi using (8.40), (8.41) or (8.42) is computationally not

efficient. In all iterations, we solve for a total of O
(
dnrd−1

)
unknowns, while there are only

O
(
rd +dnr

)
unknowns in the Tucker tensor factorization. Furthermore, solving equations

(8.40), (8.41) and (8.42) is also expensive. Indeed, computing a symmetric reverse Cuthill-

McKee permutation of the system matrix one observes a matrix with a bandwidth O
(
rd−1

)
.

For example when d = 3,ni = n = 168, ri = r = 18 one obtains the sparsity pattern on the

diagonal of the matrix as shown in Figure 8.11a. So solving a system as given in (8.40),

(8.41) or (8.42) has a computational cost of O
(
nr2(d−1)

)
.

8.4.1.2 Solving for the basis functions and the core tensor separately (version 2)

To circumvent solving the large systems in (8.40), (8.41) and (8.42), we can pre-compute

the QR factorization of the unfolding of the core tensor, G(i), and project the equations

onto the obtained Qi . Indeed, this will further reduce the number of unknowns in these

linear systems to exactly the number of unknowns that are needed for the factor matrices

U i , for i = 1,2,3.
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(a) Sparsity pattern of the top of the sym-

metric reverse Cuthill-McKee permutation of

the system matrix to solve for Xi using

(8.40). Note: only the first 4.5 of the 168

blocks are shown.

(b) Sparsity pattern of the symmetric

reverse Cuthill-McKee permutation of the

system matrix to solve for G(1) using (8.46).

Figure 8.11: Sparsity patterns of the symmetric reverse Cuthill-McKee permutation of cer-

tain system matrices (d = 3,n = 168, r = 18).

Let us discuss the details. We start again from equation (8.39) and use the QR factorization

of GH
(1):

Q1R
H
1 = qr

[
GH
(1)

]
.

This yields

(−Dxx −k2I)U1R1QH
1 −U1R1QH

1

(
I⊗UH

2DyyU2
)H−U1R1QH

1

(
UH
3DzzU3⊗ I

)H
= F(1) (U3⊗U2) .

Post multiplication of this equation by Q1 yields

(−Dxx −k2I)U1R1−U1R1QH
1

(
I⊗UH

2DyyU2
)H
Q1−U1R1QH

1

(
UH
3DzzU3⊗ I

)H
Q1

= F(1) (U3⊗U2)Q1.

To solve this equation for U1, it is written is vectorized form as

{
I⊗ (−Dxx −k2I)+QT

1

[
−
(
I⊗UH

2DyyU2
)
−
(
UH
3DzzU3⊗ I

)]
Q1⊗ I

}
vec

U1R1︸ ︷︷ ︸
X1


= vec

[
F(1) (U3⊗U2)Q1

]
.

(8.43)

In a similar way, the update equations for U2 and U3 are derived by multiplying (8.38) with

the other factor matrices in the appropriate dimensions and using the QR factorizations of
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GH
(i):

{
I⊗ (−Dyy −k2I)+QT

2

[
−
(
I⊗UH

1DxxU1
)
−
(
UH
3DzzU3⊗ I

)]
Q2⊗ I

}
vec

U2R2︸ ︷︷ ︸
X2


= vec

[
F(2) (U3⊗U1)Q2

]
(8.44)

and

{
I⊗ (−Dzz −k2I)+QT

3

[
−
(
I⊗UH

1DxxU1
)
−
(
UH
2DyyU2⊗ I

)]
Q3⊗ I

}
vec

U3R3︸ ︷︷ ︸
X3


= vec

[
F(3) (U2⊗U1)Q3

]
.

(8.45)

All these equations are cheap to solve. Indeed, vec
[
UiRi

]
has length ni ri . Computing

a symmetric reverse Cuthill-McKee permutation of these system matrices one observes a

matrix with a bandwidth O (r), so solving these equations has a computational cost O
(
nr2
)
.

Of course, this only updates the factor matrices as basis vectors in each direction. As a

single final step, we still have to compute the core tensor G. This will be the computationally
most expensive part.

The core tensor G can be obtained by multiplying (8.38) with all the d factor matrices in
the matching directions. Unfolding this equation in a certain direction (eg. the first folding)

leads again to a matrix equation. In vectorized form, it is given by{
I⊗UH

1 (−Dxx −k2I)U1+
[
−
(
I⊗UH

2DyyU2
)
−
(
UH
3DzzU3⊗ I

)]
⊗ I
}
vec

[
G(1)

]
= vec

[
UT
1F(1) (U3⊗U2)

]
.
(8.46)

Indeed, considering again an example where d = 3,ni = n = 168, ri = r = 18 one obtains a

matrix with a sparsity pattern that is shown in Figure 8.11b. Hence, this matrix has not a

limited bandwidth anymore. It coupled all functions to all other functions. Although this

equation has to be solved only once in the algorithm, when the rank increases, it will rapidly

dominate the computational cost of this algorithm.

8.4.1.3 Efficient combination of versions 1 and 2 into new algorithm (version 3)

In the first version of the algorithm, see Section 8.4.1.1 and Algorithm 5, an update for G(i)
is computed for each direction in each iteration. This leads to a too expensive algorithm.

Then we changed the algorithm such that the costs for the updates in each direction is

reduced, see Section 8.4.1.2 and Algorithm 6. But, in that version almost all information

for a full update of core tensor G is lost. Therefore a final, but potentially too expensive,
equation needs to be solved.

Observe that the expensive computation for the full core tensor, in version 2, can now be

replaced by a single solve per iteration as done in version 1. This leads to a third version

of the algorithm. It avoids repeatedly solving the large systems (like version 1) and it
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Algorithm 6: Solve for the low-rank tensor decomposition of the solutionM of a three-
dimensional Helmholtz problem with constant wave number (version 2).

1 [G,U1,U2,U3] = hosvd(initial guess);
2 while not converged do

3 for i = 1, 2, 3 do

4 Qi R̃ = qr
[
GH
(i),0

]
;

5 Solve for Xi = UiRi ∈ Cni×ri using (8.43), (8.44) or (8.45);
6 UiRi = qr [Xi ,0];

7 G = reconstruct
[
RiQ

H
i , i
]
;

8 end

9 end

10 Solve for G(1) ∈ Cr1×r2r3 using (8.46);
11 G = reconstruct

[
G(1), 1

]
;

12 M= G×1U1×2U2×3U3;

does not solve too expensive systems (like version 2). The computational complexity of

this algorithm is equal to the complexity of version 1, so O
(
nr2(d−1)

)
. Furthermore, the

systems that need to be solved, each iteration, have exactly the same number of unknowns

as the representation of the tensor in low-rank Tucker tensor format. In summary, this final

version of the algorithm is given by Algorithm 7.

8.4.1.4 Numerical comparison of three versions for 3D Helmholtz equation

Consider a three-dimensional domain Ω = [−10, 10]3 that is discretized with M = 100
equidistant mesh points per direction in the interior of the domain. The domain is extended

with exterior complex scaling to implement the absorbing boundary conditions. Hence, in

total there are n = nx = ny = nz = 168 unknowns per direction. As constant wave number

we use k2 = 4 and a right hand side f (ρ1,ρ2,ρ3) =−e−ρ
2
1−ρ

2
2−ρ

2
3 . By symmetry, we expect

a low-rank factorization with a equal rank in each direction, so we fix r = rx = ry = rx .

The convergence of the residuals of the three versions are given in the left column of

Figure 8.12. It is clear that all three versions converge to a good low-rank approximation

of the full solution. By increasing the maximal attainable rank r , a better low-rank solution

is obtained, as expected. Remarkably, for r = 30, in version 2, the final residual is larger

then the residuals obtained by both other algorithms while the compute-time for version 2

is larger than the other algorithms.

The compute-time for the most time-consuming parts in the different versions of the al-

gorithm can be measured as a function of the maximal attainable rank r . For the three

versions of the algorithm the runtimes are shown in the right column of Figure 8.12. For

all parts the expected and measured dependence on the rank r are given. For all versions of

the algorithm 10 iterations are applied.

Comparing the total runtime for the three different versions one obtains results as shown in

Figure 8.13. Indeed, as expected version 3 is approximately 3 times faster than version 1
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Figure 8.12: Left: Plot of residual per iteration for constant wave number in three-

dimensional Helmholtz problem. Right: Plot of runtime of most time consuming parts

for constant wave number in three-dimensional Helmholtz problem. Both problems have

M = 100. Top: Algorithm 5 (version 1), middle: Algorithm 6 (version 2), bottom:

Algorithm 7 (version 3).
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Algorithm 7: Solve for the low-rank tensor decomposition of the solutionM of a three-
dimensional Helmholtz problem with constant wave number (version 3).

1 [G,U1,U2,U3] = hosvd(initial guess);
2 while not converged do

3 for i = 1, 2 do

4 Qi R̃ = qr
[
GH
(i),0

]
;

5 Solve for Xi = UiRi ∈ Cni×ri using (8.43) or (8.44);
6 UiRi = qr [Xi ,0];

7 G = reconstruct
[
RiQ

H
i , i
]
;

8 end

9 Solve for X3 = U3G(3) ∈ Cn3×r
d−1
using (8.42);

10 U3G(3) = qr [X3,0];

11 G = reconstruct
[
G(3), 3

]
;

12 end

13 M= G×1U1×2U2×3U3;

and the runtime scales similar in rank r . Further, for small rank r version 2 is faster than

both other versions. But when the rank increases the expensive solve for the core tensor G
starts to dominate the runtime. The total runtime will increase dramatically.

8.4.2 Projection operator for constant wave number

Also in three dimensions we can write the linear systems (8.40) for U1, (8.41) for U2 and

(8.42) for U3 as projection operators applied to the residual of the tensor equation, (8.38).

Consider a tensor M in Tucker format and factorized as M = G ×1 U1×2 U2×3 U3, with
unknowns G,U1,U2 and U3. Discretization of (8.34) leads to a linear operator L applied on
tensors. Its matrix representation L has a sum of Kronecker products structure, as given in

(8.37).

Solving for an unknown factors U1, U2 or U3 (and the core-tensor G) using (8.40), (8.41)
or (8.42) can be interpreted as a projection operator applied on the residual. For example,

(8.40) can be interpreted as(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)vec

[
U1G(1)

]
=
(
UT
3 ⊗UT

2 ⊗ I
)
vec

[
F(1)

]
.

The residual, in tensor format, is given by

R= F −LM,

= F −G×1
(
−Dxx −k2I

)
U1×2U2×3U3+G×1U1×2DyyU2×3U3+G×1U1×2U2×3DzzU3.

Writing this tensor equation in the first unfolding leads to the following matrix equation

R(1)=F(1)−(−Dxx −k2I)U1G(1) (U3⊗U2)H+U1G(1) (U3⊗DyyU2)H+U1G(1) (DzzU3⊗U2)H ,
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Figure 8.13: Plot of runtime for 4 iteration with constant wave number in three dimensions

using the three different algorithms (M = 100).

which can be vectorized as

vec
[
R(1)

]
= vec

[
F(1)

]
−
(
(U3⊗U2⊗ (−Dxx −k2I))− (U3⊗DyyU2⊗ I)− (DzzU3⊗U2⊗ I)

)
vec

[
U1G(1)

]
= vec

[
F(1)

]
−L(U3⊗U2⊗ I)vec

[
U1G(1)

]
= vec

[
F(1)

]
−L(U3⊗U2⊗ I)

[(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)

]−1 (
UT
3 ⊗UT

2 ⊗ I
)
vec

[
F(1)

]
= P23vec

[
F(1)

]
,

where operator P23 is given by

P23 = I−L(U3⊗U2⊗ I)
[(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)

]−1 (
UT
3 ⊗UT

2 ⊗ I
)

= I−X.
(8.47)

This operator P23 is indeed a projection operator. Observe that the terms between the two

inverses cancel against one of the inverse factors:

X2 = L(U3⊗U2⊗ I)
[(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)

]−1 (
UT
3 ⊗UT

2 ⊗ I
)
L(U3⊗U2⊗ I)

[(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)

]−1 (
UT
3 ⊗UT

2 ⊗ I
)

= L(U3⊗U2⊗ I)
[(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)

]−1 (
UT
3 ⊗UT

2 ⊗ I
)

=X.

This operator is a natural extension to higher dimensions of the two dimensional operators

as derived in Section 8.3.4.

A similar derivation results in projection operators P13 and P12 for the updates in U2 and
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U3, respectively.

P23 = I−L(U3⊗U2⊗ I)
[(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)

]−1 (
UT
3 ⊗UT

2 ⊗ I
)
,

P13 = I−L(U3⊗ I⊗U1)
[(
UH
3 ⊗ I⊗UH

1

)
L(U3⊗ I⊗U1)

]−1 (
UT
3 ⊗ I⊗UT

1

)
,

P12 = I−L(I⊗U2⊗U1)
[(
I⊗UH

2 ⊗UH
1

)
L(I⊗U2⊗U1)

]−1 (
I⊗UT

2 ⊗UT
1

)
.

(8.48)

The successive application of these projection operators on the residual results in an updated

residual that lies in the intersection of all subspaces.

8.4.3 Helmholtz equation with space-dependent wave number

The presented algorithms with constant wave number can be extended to space-dependent

wave numbers. So, let us consider a three-dimensional Helmholtz problem whereK = k2(ρ1,ρ2,ρ3)
represents the space-dependent wave number on the discretized mesh.

Further, we assume that a Canonical Polyadic decomposition of the space-dependent wave

number tensor K is known, i.e.

K =
s

∑
i=1

σi

(
v
(1)
i ◦v

(2)
i ◦ · · · ◦v

(d)
i

)
, (8.49)

where s ∈N+ is the CP-rank of K and v (j)i ∈C
nj for i = 1,2, . . . , s; j = 1,2, . . . ,d are vectors.

Further, σi is a tensor generalization of a singular value and ◦ denotes the vector outer
product.

The application of the space-dependent Helmholtz operator L on tensorM is given by

LM= F
LM=−G×1DxxU1×2U2×3U3

−G×1U1×2DyyU2×3U3
−G×1U1×2U2×3DzzU3
−K◦ (G×1U1×2U2×3U3)
= F ,

(8.50)

where UH
i Ui = I for i =1,2,3 and F is a tensor representation of the right hand side function

f discretized on the used grid. Here ◦ denotes the Hadamard product for tensors.

In a similar way as in the three-dimensional constant wave number case, we can derive

equations to iteratively solve for the factors U1, U2 and U3. We start from (8.50) and

multiply with U2 and U3 in the second and third direction, respectively. Using that the

columns of Ui are orthonormal, the following expression is derived:

LM×2UH
2 ×3UH

3 =−G×1Dxx
−G×1U1×2UH

2DyyU2

−G×1U1×3UH
3DzzU3

− [K◦ (G×1U1×2U2×3U3)]×2UH
2 ×3UH

3 .
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Written in the first unfolding, the multiplication with UH
2 and U

H
3 in, respectively, the second

and third direction is equivalent to post-multiplication with the matrix(
I⊗UH

2

)H (
UH
3 ⊗ I

)H
=
(
UH
3 ⊗UH

2

)H
= (U3⊗U2) .

Most of the terms are equal to the case where we had a constant wave number, see also

(8.38). Let us focus on the last term that contains the Hadamard product with the space-

dependent wave number, i.e.:

K◦ (G×1U1×2U2×3U3) . (8.51)

For Hadamard products of tensors, Z =X ◦Y, the following property for the k-th unfolding
holds Z(k) =X(k) ◦Y(k). Thus, written in the first unfolding (8.51) is given by

K(1) ◦M(1)

K(1) ◦
(
U1G(1) (U3⊗U2)H

)
.

(8.52)

As the Hadamard product-term (8.52) is written in the first unfolding and multiplication

with UH
2 and U

H
3 in respectively the second and third dimension results in[

K(1)︸︷︷︸
K

◦
(
U1G(1)︸ ︷︷ ︸

U

(U3⊗U2)H︸ ︷︷ ︸
VH

)]
(U3⊗U2)︸ ︷︷ ︸

V

. (8.53)

The derivation of the other terms of (8.50) are equal to the constant wave number case.

The equation written in the first unfolding leads to the following matrix equation:

−DxxU1G(1)−U1G(1)
(
I⊗UH

2DyyU2
)H−U1G(1) (UH

3DzzU3⊗ I
)H

−
[
K(1) ◦

(
U1G(1) (U3⊗U2)H

)]
(U3⊗U2) = F(1) (U3⊗U2) .

(8.54)

Vectorization of the last term, i.e. (8.53), results again in an expression for the space-

dependent wave number of the form
(
K ◦

(
UV H

))
V , similar to the two-dimensional case

which was given in (8.21). Using again (8.24), the vectorization of this expression is given

by (
UT
3 ⊗UT

2 ⊗ I
)
diag

(
vec

[
K(1)

])
(U3⊗U2⊗ I)vec

[
U1G(1)

]
. (8.55)

Because K is known in a Canonical Polyadic tensor (CP tensor) decomposition2, as given
in (8.49), we have

diag
(
vec

[
K(1)

])
=
s

∑
i=1

σidiag
(
v
(3)
i

)
⊗diag

(
v
(2)
i

)
⊗diag

(
v
(1)
i

)
.

So, using the CP tensor representation of the space-dependent wave number the vectoriza-

tion in (8.55) simplifies even further:

s

∑
i=1

σi
(
UT
3 ⊗UT

2 ⊗ I
)[
diag

(
v
(3)
i

)
⊗diag

(
v
(2)
i

)
⊗diag

(
v
(1)
i

)]
(U3⊗U2⊗ I)vec

[
U1G(1)

]
,

2Otherwise a Canonical Polyadic tensor decomposition can be computed using for example an CP-ALS

algorithm [48].
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which reduces to

s

∑
i=1

σi

(
UT
3diag

(
v
(3)
i

)
U3

)
⊗
(
UT
2diag

(
v
(2)
i

)
U2

)
⊗
(
diag

(
v
(1)
i1

))
︸ ︷︷ ︸

K1

vec
[
U1G(1)

]
.

In this way the K1 operator is defined and can be applied to vec
[
U1G(1)

]
. Observe that this

expansion is only advantageous if the space-dependent wave number has low rank, which is

typical the case for our applications.

In a similar way, the K2 and K3 operators can be derived:

K1 =
s

∑
i=1

σi

(
UT
3diag

(
v
(3)
i

)
U3

)
⊗
(
UT
2diag

(
v
(2)
i

)
U2

)
⊗
(
diag

(
v
(1)
i

))
,

K2 =
s

∑
i=1

σi

(
UT
3diag

(
v
(3)
i

)
U3

)
⊗
(
UT
1diag

(
v
(1)
i

)
U1

)
⊗
(
diag

(
v
(2)
i

))
,

K3 =
s

∑
i=1

σi

(
UT
2diag

(
v
(2)
i

)
U2

)
⊗
(
UT
1diag

(
v
(1)
i

)
U1

)
⊗
(
diag

(
v
(3)
i

))
.

(8.56)

So, we find the following linear system to solve for vec
[
U1G(1)

]
:

{
−I⊗Dxx −

[(
I⊗UH

2DyyU2
)
−
(
UH
3DzzU3⊗ I

)]
⊗ I−K1

}
vec

U1G(1)︸ ︷︷ ︸
X1


= vec

[
F(1) (U3⊗U2)

]
.

(8.57)

Observe this is a square system with n1× r2r3 unknowns (where the solution in matrix form
X1 is typical for rank r > r1). In a similar way, update equations for U2 and U3 are derived

by multiplying (8.50) with the other factor matrices in the appropriate directions:

{
−I⊗Dyy +

[
−
(
I⊗UH

1DxxU1
)
−
(
UH
3DzzU3⊗ I

)]
⊗ I−K2

}
vec

U2G(2)︸ ︷︷ ︸
X2


= vec

[
F(2) (U3⊗U1)

]
,

(8.58)

and

{
−I⊗Dzz +

[
−
(
I⊗UH

1DxxU1
)
−
(
UH
2DyyU2⊗ I

)]
⊗ I−K3

}
vec

U3G(3)︸ ︷︷ ︸
X3


= vec

[
F(3) (U2⊗U1)

]
.

(8.59)

Alternating between solving for U1, U2 and U3 using (8.57), (8.58) or (8.59) results in an

algorithm to approximate low-rank tensor solutions for three-dimensional Helmholtz problems

as given in (8.34). Also in this case the orthogonality of the columns of U1, U2 and U3 are

maintained by additional QR factorizations. So, we derive the algorithm as formulated in

Algorithm 8. The generalization for dimensions d > 3 is straightforward.
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Algorithm 8: Solve for the low-rank tensor decomposition of the solutionM of a three-
dimensional Helmholtz problem with space-dependent wave number (version 1).

1 [G,U1,U2,U3] = hosvd(initial guess);
2 [ΣΣΣ,V1,V2,V3] = cp als(K);
3 while not converged do

4 for i = 1, 2, 3 do

5 Compute Ki using (8.56);

6 Solve for Xi = UiG(i) ∈ Cni×r
d−1
using (8.57), (8.58) or (8.59);

7 UiG(i) = qr [Xi(:, 1 : ri),0];

8 end

9 end

10 G = reconstruct
[
G(i), i

]
;

11 M= G×1U1×2U2×3U3;

Similar to the discussion for the constant wave number algorithms, observe that we solve

again for a large matrix Xi ∈ Cni×r1r2r3/ri . So, in general the rank of this matrix could be
min(ni , r1r2r3/ri). But it is also known that Xi = UiG(i) leads to the fact that the rank

of Xi should be at most ri . So selecting the first ri columns of Xi and computing its QR

decomposition is sufficient to derive a new orthonormal basis as factor matrix U i .

Algorithm 8 is exactly the space-dependent wave number equivalent of Algorithm 5. The

same ideas can be applied to derive space-dependent wave number alternatives of the algo-

rithms corresponding to version 2 and version 3. Again, to circumvent solving large systems,

we can pre-compute the QR factorization of G(i) and project these equations onto the ob-

tained Qi . Indeed, this will reduce the number of unknowns in these linear systems to exactly

the number of unknowns as needed for the factor matrices U1 and U2.

To discuss the details we start again from equation (8.54) and use the QR factorization of

GH
(1), given by

Q1R
H
1 = qr

[
GH
(1)

]
.

This yields

−DxxU1R1QH
1 −U1R1QH

1

(
I⊗UH

2DyyU2
)H−U1R1QH

1

(
UH
3DzzU3⊗ I

)H
−
[
K(1) ◦U1R1QH

1 (U3⊗U2)
H
]
(U3⊗U2) = F(1) (U3⊗U2) .

Post multiplication of the left hand side of this equation by Q1 yields

−DxxU1R1−U1R1QH
1

(
I⊗UH

2DyyU2
)H
Q1−U1R1QH

1

(
UH
3DzzU3⊗ I

)H
Q1

−
[
K(1) ◦U1R1QH

1 (U3⊗U2)
H
]
(U3⊗U2)Q1 = F(1) (U3⊗U2)Q1.
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To solve this equation for U1, it is written in vectorized form as

{
−I⊗Dxx +QT

1

[
−
(
I⊗UH

2DyyU2
)
−
(
UH
3DzzU3⊗ I

)]
Q1⊗ I−QT

1K1Q1

}
vec

U1R1︸ ︷︷ ︸
X1


= vec

[
F(1) (U3⊗U2)Q1

]
.

(8.60)

In a similar way, the update equations for U2 and U3 are derived by multiplying (8.50) with

the other factor matrices in the appropriate dimensions and using the QR factorizations of

GH
(i):

{
−I⊗Dyy +QT

2

[
−
(
I⊗UH

1DxxU1
)
−
(
UH
3DzzU3⊗ I

)]
Q2⊗ I−QT

2K2Q2

}
vec

U2R2︸ ︷︷ ︸
X2


= vec

[
F(2) (U3⊗U1)Q2

]
,

(8.61)

and

{
−I⊗Dzz +QT

3

[
−
(
I⊗UH

1DxxU1
)
−
(
UH
2DyyU2⊗ I

)]
Q3⊗ I

}
vec

U3R3︸ ︷︷ ︸
X3

−QT
3K3Q3

= vec
[
F(3) (U2⊗U1)Q3

]
.

(8.62)

All these equations are cheap to solve. Indeed, vec
[
UiRi

]
has length ni ri . Computing a

symmetric reverse Cuthill-McKee permutation of the system matrix one observes a matrix

with a bandwidth O (r), so solving these equations has a computational cost O
(
nr2
)
.

Alternating between solving for U1, U2 and U3 using (8.60), (8.61) or (8.59) results again

in an algorithm to approximate low-rank solutions for three-dimensional space-dependent

Helmholtz problems. Also in this case the orthogonality of the columns of U1, U2 and U3
are maintained by additional QR factorizations. So, we derive the algorithm as formulated

in Algorithm 9. Algorithm 9 is exactly the space-dependent wave number equivalent of

Algorithm 7.

8.4.4 Projection operator for space-dependent wave number

Consider a tensorM in Tucker tensor format and factorized asM= G×1U1×2U2×3U3,
with unknowns G,U1,U2 and U3. Discretization of (8.34) with a space-dependent wave
number leads to a linear operator L applied on tensors. Its matrix representation L has
again a structure as given in (8.37).

Solving for the unknown factors U1, U2 or U3 (and the core-tensor G) using (8.57), (8.58)
or (8.59) can, again, be interpreted as a projection operator applied on the residual. For

example, (8.57) can be interpreted as(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)vec

[
U1G(1)

]
=
(
UT
3 ⊗UT

2 ⊗ I
)
vec

[
F(1)

]
, (8.63)
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Algorithm 9: Solve for the low-rank tensor decomposition of the solutionM of a three-
dimensional Helmholtz problem with space-dependent wave number (version 3).

1 [G,U1,U2,U3] = hosvd(initial guess);
2 [ΣΣΣ,V1,V2,V3] = cp als(K);
3 while not converged do

4 for i = 1, 2 do

5 Compute Ki using (8.56);

6 Qi R̃ = qr
[
GH
(i),0

]
;

7 Solve for Xi = UiRi ∈ Cni×ri using (8.60) or (8.61);
8 UiRi = qr [Xi ,0];

9 G = reconstruct
[
RiQ

H
i , i
]
;

10 end

11 Compute K3 using (8.56);

12 Solve for X3 = U3G(3) ∈ Cn3×r
d−1
using (8.59);

13 U3G(3) = qr [X3,0];

14 G = reconstruct
[
G(3), 3

]
;

15 end

16 M= G×1U1×2U2×3U3;

The residual in tensor format is given by

R= F −LM,

= F +G×1DxxU1×2U2×3U3
+G×1U1×2DyyU2×3U3
+G×1U1×2U2×3DzzU3
+K◦ (G×1U1×2U2×3U3) .

(8.64)

Writing this tensor equation in the first unfolding leads to the following matrix equation

R(1) = F(1)+DxxU1G(1) (U3⊗U2)H

+U1G(1) (U3⊗DyyU2)H

+U1G(1) (DzzU3⊗U2)H

+K(1) ◦
(
U1G(1) (U3⊗U2)H

) (8.65)

which can be matricized as

vec
[
R(1)

]
= vec

[
F(1)

]
−
(
−(U3⊗U2⊗Dxx)− (U3⊗DyyU2⊗ I)− (DzzU3⊗U2⊗ I)−diag

(
vec

[
K(1)

])
(U3⊗U2⊗ I)

)
vec

[
U1G(1)

]
.

Rewriting this results in exactly the same structure and projection operator as in the constant

wave number case:

vec
[
R(1)

]
= . . .

= vec
[
F(1)

]
−L(U3⊗U2⊗ I)vec

[
U1G(1)

]
= vec

[
F(1)

]
−L(U3⊗U2⊗ I)

[(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)

]−1 (
UT
3 ⊗UT

2 ⊗ I
)
vec

[
F(1)

]
= P23vec

[
F(1)

]
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where projection operator P23 is similar to the projector in the constant wave number case,

see (8.47), and now given by

P23 = I−L(U3⊗U2⊗ I)
[(
UH
3 ⊗UH

2 ⊗ I
)
L(U3⊗U2⊗ I)

]−1 (
UT
3 ⊗UT

2 ⊗ I
)

= I−X.
(8.66)

A similar derivation results in projection operators P13 and P12 for the updates in U2 and

U3, respectively. Both are also the same as in the constant wave number case, as given in

(8.48).

8.5 Numerical results

In this section, we demonstrate the promising results of the derived algorithms with some

numerical experiments in two and three dimensions. Furthermore, we consider discretizations

of the Helmholtz equation with constant and space-dependent wave numbers.

8.5.1 2D Helmholtz problem with space-dependent wave number

First, we consider a two-dimensional Helmholtz problem with a space-dependent wave num-

ber given by k2(ρ1,ρ2) = 2+e
−ρ21−ρ

2
2 .

For this example the two-dimensional domain Ω = [−10, 10]2 is discretized with M = 1000
equidistant mesh points per direction in the interior of the domain. Further it is extended

with exterior complex scaling to implement the absorbing boundary conditions. In total, the

number of discretization points per directions equals n = n1 = n2 = 1668. As external force

f (ρ1,ρ2) =−e−ρ
2
1−ρ

2
2 is applied.

In this space-dependent wave number example it is known that the matrix representation of

the semi-exact solution of the Helmholtz equation on the full grid has a low rank. Indeed,

approximating the semi-exact solution with a low-rank matrix with rank r =17 is in this case

sufficient to obtain an error below the threshold τ = 10−6.

Starting with an random (orthonormalized) initial guess for V (0) ∈Cn×r only a small number
of iterations of Algorithm 4 is needed to obtain an error similar to the specified threshold

τ . As shown in Figure 8.14 both the residual and the error with respect to the semi-exact

solution decay in only a few iterations (i.e. in this example 4-8 iterations) to a level almost

similar to the expected tolerance.

The singular values of the approximation A(k) = U(k)R(k)
H
V (k)

H
in iteration i can be com-

puted and are shown for increasing iterations in Figure 8.14. As expected the low- rank

approximations recover the singular values of the full grid semi-exact solution. In fact R(k)

converges towards diag(σi).

The numerical rank of the matrix representation of the solution of a Helmholtz problem

with a space-dependent wave number is unknown in advance. But, the presented algorithm
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Figure 8.14: Plot of error and residual (left) and singular values (right) per iteration for

space-dependent wave number in a two-dimensional Helmholtz problem (M = 1000, r = 17).
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Figure 8.15: Plot of errors (left) and residuals (right) per iteration for space-dependent wave

number in a two-dimensional Helmholtz problem with increasing ranks (M = 1000)

is stable with respect to over- and underestimation of the numerical rank of the solution.

Figure 8.15 shows both the error and residual per iteration and illustrates this statement by

approximating the same semi-exact solution with increasing ranks r ∈ {12,18,24,36}.

In contrast to the constant coefficient wave number case the convergence with space-

dependent wave number depends also on the maximal attainable rank. For increasing maxi-

mal attainable ranks the number of needed iterations decreases. This is especially observed

when the error is considered, but it can also be seen in the figure where the residuals are

shown, Figure 8.15.
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Figure 8.16: Plot of runtime for 10 iterations for space-dependent wave number in a two-

dimensional Helmholtz problem with increasing ranks (M = 1000). Left: linlin-scale, right:

loglog-scale.

8.5.2 3D Helmholtz problem with space-dependent wave number

In this example we solve a three-dimensional Helmholtz problem with a space-dependent

wave number discretized on a DVR-grid [73]. All three versions of the three-dimensional

algorithm for space-dependent wave numbers can successfully be applied.

First, to reduce computational cost of construction of the operators K1, K2 and K3, see

(8.56), a CP-decomposition of the space-dependent wave number is constructed. As shown

in Figure 8.17 the space-dependent wave number can be well-approximated by a small number

of rank-1 tensors. For the examples discussed in this section we used a CP-rank s = 32 to

approximate this space-dependent wave number. Hence, the error in approximating the wave

number is approximately O
(
10−4

)
.

For all three versions of the algorithm we use 10 iterations of the algorithm to con-

verge to the low-rank solution. For example if we compute the low-rank solution (with

r = rx = ry = rz = 16) the residual after each iteration for all algorithms is shown in Figure

8.18.

If we increase the maximal attainable rank r of the low-rank approximation, indeed the

residual decreases as shown in Figure 8.19a. The residual for version 1 and version 3 are

good, while version 2 cannot compete with both other versions by reducing the residual

as far as the other versions. Therefore version 1 or version 3, as given in Algorithm 8 or

Algorithm 9 are preferred.

Considering the runtimes of the three versions, similar results as before are observed. In this

experiment with orderDvr = 7 the number of gridpoints equals to n = 41. For version 1

and 3, again a runtime of O
(
nr4
)
is observed. The runtime for version 2 splits into two

parts: O
(
nr2+ r9

)
. Due to the small rank r and the large number of iterations in these

examples algorithm 2 is the fastest version. The runtimes for version 1 and version 3 differ

indeed approximately a factor d , which makes version 3 better then version 1. The runtimes
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Figure 8.17: Low rank CP approximation to space-dependent wave number for three-

dimensional Helmholtz problem.
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Figure 8.18: Residual per iteration for version 1, version 2 and version 3 of three-dimensional

Helmholtz problem with space-dependent wave number (orderDvr = 7, r = 16, s = 32).
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Figure 8.19: Residual after iteration 10 iterations for all three versions of algorithm with

low-rank wave number s = 32.

with orderDvr = 7 (i.e. n = 41) are shown in Figure 8.20a and with orderDvr = 14 (i.e.

n = 90) are shown in Figure 8.20b.

Comparing the runtimes for orderDvr = 7 and orderDvr = 14 we see for version 2 (when

the rank gets larger) indeed approximately the same runtime independent of orderDvr. Also

versions 1 and 3 consume approximately twice as much time which is as expected by the

linear dependence on n for both algorithms.

An impression of the low-rank approximation to the wave function is shown in Figures 8.21b

and 8.22. In this impression the single, double and triple ionization are visible and can be

represented by a low-rank wave function.

8.6 Discussion and conclusions

In this chapter we have analyzed the scattering solutions of a driven Schrödinger equation.

These describe a break-up reaction where a quantum system is fragmented into multiple

fragments. These problems are equivalent to solving a Helmholtz equation with space-

dependent wave numbers.

We have shown, first in two dimensions and also in three dimensions, that the wave function

of multiple ionization can be well approximated by a low-rank solution. In two dimensions,

the waves can be represented as a product of two low-rank matrices. In three dimensions

the waves can be represented with a low-rank Tucker tensor decomposition.

We propose a method that determines these low-rank components of the solution directly.

We write the solution as a product of low-rank components and assume that a guess for

all but one component is given. We then write a linear system for the remaining unknown
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Figure 8.20: Runtime of 10 iterations for all three versions of algorithm for 3D Helmholtz

with space-dependent wave number of low-rank s = 32.

component. This is then repeated until each of the components is updated.

This procedure can be interpreted as a series of projections of the residual on a subspace

and a correction within that subspace.

In theory, the generalization for dimensions d > 3 is straightforward. But for dimensions

d > 3 it starts to be beneficial to change to a Tensor Train factorization [64]. It is expected

that similar strategy can also be applied to tensors in Tensor Train format.

As demonstrated by the numerical experiments, the presented algorithms are able to exploit

the low-rank structure of the solutions. This gives the advantage to reduce the number of

unknowns and shorten the computational time to solve the Helmholtz equation.

In two dimensions, the low-rank representation of the solution can be represented by only

2nr unknowns instead of the full grid of n2 unknowns. Also the linear systems to solve per

iteration have only nr unknowns.

In high-dimensional Helmholtz equations, the low-rank Tucker tensor decomposition rep-

resents the solution with O
(
rd +dnr

)
unknowns. So, the total number of unknowns is

reduced, but it is still exponential in the dimension d . For increasing dimensions this leads,

again, to systems with a number of unknowns exponential in d . Maybe other Tucker-like

tensor decompositions with a number of unknowns only polynomial in d can resolve this

problem and make the presented algorithm also applicable for higher dimensions.
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(a) Impression of a low-rank matrix approximation in two dimenions.

(b) Impression of a low-rank tensor approximation in three dimensions.

Figure 8.21: Impressions of a low-rank approximation of a matrix and a Tucker tensor rep-

resenting the wave function as solution to a two- and three-dimensional Helmholtz problem

with a space-dependent wave number.
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Figure 8.22: Visualization of a three-dimensional wave as low-rank approximation to the

Helmholtz problem with space-dependent wave number with single, double and triple ioniza-

tion.
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Low-rank approximation of solutions for

linear time-dependent PDEs

Chapter summary:

In this chapter we study low-rank approximations of solutions for linear

time-dependent partial differential equations. The dynamical low-rank

integrator by Lubich et al. [47] is studied. Further it is observed that this

can be seen as solving an optimization problem.

In this chapter we study different alternative optimization problems for

the low-rank factors and formulate algorithms to solve these optimization

problems. The alternative algorithms can both use explicit and implicit

time integration such that also stiff differential equations could efficiently

be solved.

Also the alternating algorithm that was used to solve for the low-rank

factors of the Helmholtz problem in [80] is extended to solve for the low-

rank factors of time-dependent PDEs.

A numerical study shows some preliminary results and give an overview

about promising algorithms that could be used to solve for low-rank factors

of time-dependent PDEs.

9.1 Introduction and motivation

In Chapter 8 we presented an alternating algorithm to efficiently solve for the low-rank

components of the solution to a Helmholtz problem. In that chapter the problems were

time-independent but in this chapter we explore possibilities to derive algorithms for low-

rank approximations to solutions of time-dependent problems.

One might expect that low-rank components for solutions to, for example, diffusion problems

could also be determined. Indeed, consider the Laplace transform (see eg. [82]) applied on

149



150 CHAPTER 9. LOW-RANK APPROXIMATIONS FOR TIME-DEPENDENT PDES

the time variable t of a function u(x,t):

U(x,s) =

∫ ∞
0
u(x,t)e−stdt (9.1)

where x ∈ (0,∞) and t > 0.

Let us consider a one-dimensional diffusion model problem with initial- and boundary condi-

tion as given by

∂u(x,t)

∂t
=
∂2u(x,t)

∂x2
,

u(x = 0, t) = α,

u(x,t = 0) = g(x),

(9.2)

where x ∈ (0,∞) and t > 0. So, we model, for example, the temperature of an insulated
infinite long one-dimensional pipe. At one end the temperature is fixed at α and an initial

temperature profile is given by g(x).

Applying the Laplace transform, some useful transforms are given by (see eg. [82])

u(x,t) = c → U(x,s) =
c

s
where c ∈ R is a constant,

∂u(x,t)

∂t
→ sU(x,s)−u(x,0),

∂2u(x,t)

∂x2
→

∂2U(x,s)

∂x2
,

(9.3)

where U(·, s) is the Laplace transform of u(·, t).

So, writing the Laplace transform of u(x,t) in (9.2) yields an ordinary differential equation

(ODE) for U(x,s) as given by

−
∂2U(x,s)

∂x2
+ sU(x,s) = g(x),

U(x = 0, s) =
α

s
.

(9.4)

A discretized version of (9.1) changes the integral to an infinite sum. So, if U(x,s) is low-

rank and it is a linear combination of functions u(x,t)e−st for t ∈ (0,∞) it is likely that
the function u(x,t) is also low-rank over time t. That leads to the subject of this chapter

where we search for stable evolution equations for the low-rank factors of the solution of a

time-dependent partial differential equation (PDE).

The outline of this chapter is as follows. In Section 9.2 we review the dynamical low-rank

integrator by Lubich et al. [47, 53, 54, 61]. In Section 9.3 it is observed that this approach

can be seen as an optimization problem and KKT-conditions are derive for it. In Section 9.4

we explore an alternative two-factor matrix factorization, formulate an optimization prob-

lem and we derive KKT-conditions for it. Instead of solving one system for all factors an

alternative approach similar to the alternating algorithms of Chapter 8 is presented in Sec-

tion 9.5. With this method separate linear systems for the factor matrices are solved. In
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Section 9.6 we apply the different discussed algorithms to two-dimensional model diffusion

and Schrödinger problems. This section presents some numerical results and starts a discus-

sion about possibilities for the methods. Further two promising algorithms are compared in a

second experiment with a Schrödinger model problem. In Section 9.7 a summary and prelim-

inary conclusions are given. Further an outlook for improvements and ideas for possibilities

to extend the methods to higher-dimensional problems is given.

9.2 Review of the dynamical low-rank integrator

In a variety of applications one is interested in an approximation to time-dependent repre-

sentations H(t) ∈ Rnx×ny , for varying time t, of solutions to partial differential equations.
For the applications considered in this chapter the matrix H(t) is the unknown solution of

a matrix differential equation, where f (t,H) is a known function:

Ḣ(t) = f (t,H(t)). (9.5)

The number of unknowns in these matrices can grow extensively when the dimensions nx
and ny increase. But it is observed that in the applications under consideration the rank of

matrix H(t) is low over time t. Therefore, low-rank approximations of these large matrices

are considered to reduce the number of unknowns.

For this class of applications Lubich et al. introduced the dynamical low-rank approximation

[47, 54] where matrix H(t) is approximated by a low-rank matrix Y (t), with rank r ≪
min(nx , ny ) such that ∥∥Ẏ (t)− Ḣ(t)∥∥

F
or

∥∥Ẏ (t)− f (t,Y (t))∥∥
F

(9.6)

is minimized. Here ∥·∥F stands for the Frobenius norm; thus for a matrix A the Frobenius
norm is given by ∥A∥F =

√
∑i ,j a

2
i j (or ∥A∥F =

√
∑i ,j ai jai j if matrix A has complex valued

entries).

This problem is complemented with an initial condition, for example Y (t0) = H(t0), if the

chosen rank r in the dynamical low-rank approximation is sufficient to describe H(t0). Oth-

erwise using a singular value decomposition (SVD) of H(t0) the r largest singular values with

the corresponding singular vectors can be chosen to obtain the best rank-r approximation

for H(t0) [25].

Hence Y (t) is the low-rank solution to a nonlinear differential equation for rank-r matrices

such that the defect in the differential equation for a full-rank solution is minimized. The

dynamical low-rank approximation is a numerical integration technique that is explicit and

does not suffer from ill-conditioning of matrices arising in the differential equation [47].

Lubich presents a projector splitting algorithm that leads to a simple and less expensive

time-stepping algorithm and is robust under ill-conditioning.
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9.2.1 The dynamical low-rank integrator

A rank-r approximation of a matrix can be obtained by a singular value decomposition. For

a fixed rank r , the low-rank approximation to H(t) ∈ Cnx×ny , where r ≪ min(nx , ny ), is
denoted in a unique way by

H(t)≈ Y (t) = U(t)S(t)V (t)H, (9.7)

where U(t) ∈ Cnx×r and V (t) ∈ Cny×r with both r orthonormal columns and S(t) ∈ Rr×r
is a diagonal matrix containing the r largest singular values.

To slightly weaken the conditions on this factorization we keep the constraints on U(t)

and V (t) but for S(t) ∈ Cr×r it does not necessary need to be a diagonal matrix, but it is
sufficient that it is an invertible matrix. Hence this factorization is not unique. Indeed, for

example choose Ũ = UP and Ṽ = V Q where P and Q are orthonormal r × r matrices. The
same matrix Y (t) is obtained by choosing a new matrix S̃ = PHSQ:

Y (t) = U(t)S(t)V (t)H = U(t)P (t)︸ ︷︷ ︸
Ũ(t)

P (t)HS(t)Q(t)︸ ︷︷ ︸
S̃(t)

Q(t)HV (t)H︸ ︷︷ ︸
ṼH(t)

.

Instead, a unique decomposition in the tangent space at U(t) and V (t) will be used [47].

Denote by Vn,r the set of r orthonormal vectors in Cn. The tangent space at U(t) ∈ Vnx ,r
is given by

TU(t)Vnx ,r =
{
U̇(t) ∈ Cnx×r : U̇(t)HU(t)+U(t)HU̇(t) = 0

}
.

Consider the extended tangent map of (S,U,V ) 7→ Y (t) = U(t)S(t)V (t)H, where so(r)

denotes the space of skew-symmetric r × r matrices:

Cr×r ×TU(t)Vnx ,r ×TV (t)Vny ,r →TY (t)Mr × so(r)× so(r),(
Ṡ, U̇, V̇

)
7→
(
U̇SV H+UṠV H+USV̇ H, UHU̇, V HV̇

)
.

Lubich et al. mentioned that the dimensions of the vector spaces on both sides agree, it

has a zero null-space and the map is an isomorphism [47]. Hence, all tangent matrices are

of the form

Ẏ (t) = U̇(t)S(t)V (t)H+U(t)Ṡ(t)V (t)H+U(t)S(t)V̇ (t)H,

where Ṡ(t) ∈ Cr×r , U̇(t) ∈ TU(t)Vnx ,r and V̇ (t) ∈ TV (t)Vny ,r . Further, imposing the gauge
conditions or orthogonality constraints

UH(t)U̇(t) = 0 and V H(t)V̇ (t) = 0 (9.8)

yields a uniquely defined Ṡ(t), U̇(t) and V̇ (t) determined by Ẏ (t).

The minimization condition (9.6) on the tangent space can be seen as an orthogonal pro-

jection, i.e. find Ẏ (t) ∈ TY (t)Mr (whereMr represents the rank-r matrices) that satisfies〈
Ẏ (t)− Ḣ(t), ∆Y (t)

〉
= 0 for all ∆Y (t) ∈ TY (t)Mr . (9.9)

With this formulation differential equations for the factors in (9.7) can be derived:
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Proposition 2 ([47, Proposition 2.1]). For a rank-r matrix Y (t) = U(t)S(t)V (t)H with

non-singular S(t) ∈ Cr×r and with U(t) ∈ Cnx×r and V (t) ∈ Cny×r both with orthonor-
mal columns the minimization in (9.6) or (9.9) is equivalent to Ẏ (t) = U̇(t)S(t)V (t)H+

U(t)Ṡ(t)V (t)H+U(t)S(t)V̇ (t)H, where

U̇(t) =
(
I−U(t)U(t)H

)
Ḣ(t)V (t)S(t)−1

V̇ (t) =
(
I−V (t)V (t)H

)
Ḣ(t)HU(t)S(t)−H

Ṡ(t) = U(t)HḢ(t)V (t).

(9.10)

In theory this system of differential equations for the factors can be solved numerically. But

both U̇(t) and V̇ (t) depend on the inverse of S(t). A singularity in S(t) will break these

update equations. Indeed, (nearly) singularity of S(t) is a reasonable scenario because it is

related to the actual rank of the solution. Because the actual rank is unknown, and under-

estimation will lead to a loss of accuracy, it is reasonable to arrive in situations where the

actual rank is over-estimated.

Lubich presents with the dynamical low-rank approximation a method to circumvent this

problem. Condition (9.9) can be seen as a differential equation on rank-r matrices:

Ẏ (t) = P (Y (t))Ḣ(t), (9.11)

where P (Y ) is the (solution dependent) orthogonal projector onto the tangent space TYMr .

The projector has a simple representation for Y (t) = U(t)S(t)V (t)H, as stated in [47,

Lemma 4.1] and [54]:

Lemma 3 ([47, Lemma 4.1]). The orthogonal projection onto the tangent space TYMr at

Y = USV H ∈Mr is given by

P (Y ) = I−P⊥(Y ) with P⊥(Y )Z = P⊥U ZP
⊥
V

where Z ∈ Cnx×ny .

Furthermore, the projector has a simple representation and is given by

P (Y )Z = ZV V H−UUHZV V H+UUHZ, (9.12)

where Z ∈ Cnx×ny .

Proof. Indeed, using the gauge conditions it holds that

Ẏ = U̇SV H+UṠV H+USV̇ H.

Writing out the expressions for the update equations in Proposition 2 leads to

Ẏ =
(
I−UUH

)
ḢV V H+UUHḢV V H+UUHḢ

(
I−V V H

)H
= ḢV V H−UUHḢV V H+UUHḢ

Using the notation PU =UU
H, PV = V V

H,P⊥U = I−PU and P⊥V = I−PV this can be rewritten
as

Ẏ = ḢPV −PUḢPV +PUḢ
= P (Y )Ḣ,

which holds for every matrix Z = Ḣ(t).
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Observe that all terms in (9.12) are in the tangent space TYMr . For example

P (Y )
(
ZV V H

)
= ZV V HV V H−UUHZV V HV V H+UUHZV V H

= ZV V H−UUHZV V H+UUHZV V H

= ZV V H.

(9.13)

So ZV V H ∈ TYMr . In a similar way one can find also UU
HZV V H ∈ TYMr and UU

HZ ∈
TYMr .

Note that PU is the orthogonal projector onto the range R(Y ) of Y = USV H and PV is the

orthogonal projector onto the range R
(
Y H
)
. So the projector (9.12) can also be given in

terms of orthogonal projectors onto ranges:

P (Y )Z = ZPR(YH)−PR(Y )ZPR(YH) +PR(Y )Z. (9.14)

9.2.2 Abstract formulation of the integrator

Let us first assume that Ḣ(t) is explicitly known1. Further let Y0 ≈ H(t0) be a rank-r
approximation of the initial condition. Because of the simple representation of the projector

of the form (9.14) a step of the standard Lie-Trotter splitting of (9.11) from t = t0 to

t = t1 = t0+∆t is given by

1. Solve the initial value problem

Ẏ1(t) = Ḣ(t)PR(YH
1 )

Y1(t0) = Y0.
(9.15)

on the interval t0 ≤ t ≤ t1.

2. Solve the initial value problem

Ẏ2(t) =−PR(Y2)Ḣ(t)PR(YH
2 )

Y2(t0) = Y1(t1).
(9.16)

on the interval t0 ≤ t ≤ t1.

3. Solve the initial value problem

Ẏ3(t) = PR(Y3)Ḣ(t)

Y3(t0) = Y2(t1).
(9.17)

on the interval t0 ≤ t ≤ t1.

4. Finally Y1 := Y3(t1) approximates Y (t1) as the solution to (9.11) at time t = t1.

1In this chapter we are actually interested in H(t) where it is the unknown solution to a partial differential

equation, hence Ḣ(t) is not explicitly known. But for example in applications where H(t) represents a series

of moving images both the images H(t) and updates Ḣ(t) are known and one wants to exploit the sparsity

of the updates to obtain low-rank approximations to the images over time.
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This method is only first-order accurate. Lubich et al. mention that all these differential

equations can be solved exactly as described in the following lemma:

Lemma 4 ([54, Lemma 3.1]). The solution of (9.15) is given by

Y1(t) = U1(t)S1(t)V
H
1 (t),

d

dt
(U1(t)S1(t)) = Ḣ(t)V1(t),

V̇1(t) = 0.

(9.18)

The solution of (9.16) is given by

Y2(t) = U2(t)S2(t)V
H
2 (t),

Ṡ2(t) =−U2(t)HḢ(t)V2(t),
U̇2(t) = 0

V̇2(t) = 0.

(9.19)

The solution of (9.17) is given by

Y3(t) = U3(t)S3(t)V
H
3 (t),

d

dt

(
V3(t)S3(t)

H
)
= Ḣ(t)HU3(t),

U̇3(t) = 0.

(9.20)

The solution of the differential equations (9.18), (9.19) and (9.20) are given by

U1(t)S1(t) = U1(t0)S1(t0)+(H(t)−H(t0))V1(t0),
S2(t) = S2(t0)−U2(t1)H (H(t)−H(t0))V2(t0),

V3(t)S3(t)
H = V3(t0)S3(t0)

H+(H(t)−H(t0))HU3(t0).
(9.21)

Proof. See also: [54, Lemma 3.1].

Since (9.13) results in ZV V H,UUHZV V H and UUHZ ∈ TYMr it follows that the solutions

to (9.15), (9.16) and (9.17) all stay of rank r .

Therefore Yi(t) can indeed be factorized as Yi(t) = Ui(t)Si(t)Vi(t)
H, for i = 1,2,3 where

Si(t) is an invertible matrix and Ui(t) and (((V )i(t) both have orthonormal columns.

Thus Ẏ1(t) = (U1(t)S1(t))
′ V H
1 +U1(t)S1(t)V̇ (t)

H. From (9.15) one has Ẏ1(t) = Ḣ(t)V1V
H
1

which is satisfied when (9.18) holds. Similar results holds for Ẏ2(t) and Ẏ3(t).

9.2.3 Practical algorithm for the dynamical low-rank integrator

This abstract formulation of the integrator leads to the following practical algorithm. Given

the low-rank factorization (9.7) of a rank-r matrix H(t0) ≈ Y0 = U0S0V H
0 and an explicitly

known increment ∆H =H(t1)−H(t0). A step of the integrator is presented in [54]:
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1. Define and factorize K1

K1 = U0S0+∆HV0,

U1Ŝ1 = qr [K1] ,
(9.22)

with Ŝ1 ∈ Rr×r and U1 ∈ Rnx×r has orthonormal columns.

2. Define S̃0
S̃0 = Ŝ1−UH

1∆HV0. (9.23)

3. Define and factorize L1

L1 = V0S̃0
H
+∆HHU1,

V1S
H
1 = qr [L1] ,

(9.24)

with S1 ∈ Rr×r and V1 ∈ Rny×r has orthonormal columns.

4. Application of these steps, in this sequential order also called K, S and L-steps by the

name of this auxiliary matrices, leads to the computation of a rank-r factorization of

H(t1)≈ Y1 = U1S1V H
1 . (9.25)

Observe that this Y1 is actually the same rank-r matrix as obtained in the abstract

formulation in Section 9.2.2.

Lubich mentioned already that this splitting is only first order accurate and higher order

approximations can be obtained by standard composition techniques such as symmetric

splitting or Strang splitting.

This practical algorithm can also be extended to the case where H(t) is the unknown solution

to a matrix differential equation (9.5). Lubich suggests to replace ∆H =H(t1)−H(t0) by
an expression that resembles an explicit Runge-Kutta method,

∆H :=RK [f , Y0, t0, ∆t] . (9.26)

In this notation f represents a function as given in (9.5), Y0 =U0S0V
H
0 represents a low-rank

factorization of the solution at time t = t0 and ∆t is the step size. For example, explicit

Euler is given by:

∆H := ∆tf (t0,Y0).

In the numerical experiments we will use the classical Runge-Kutta method [36] (RK-4) as

given by:

Q1 = ∆tf (t0, Y0) ,

Q2 = ∆tf
(
t0+

1
2∆t, Y0+

1
2Q1

)
,

Q3 = ∆tf
(
t0+

1
2∆t, Y0+

1
2Q2

)
,

Q4 = ∆tf (t0+∆t, Y0+Q3) ,

∆H := 1
6 (Q1+2Q2+2Q3+Q4) .

(9.27)
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Algorithm 10: Lubich’s dynamical low-rank KSL-algorithm for 2D problems.

1 Given: a low-rank approximation to H(t0)≈ Y (t0) = U(t0)S(t0)V (t0)H;
2 for t = t0, t0+∆t, t0+2∆t, , . . . ,T −∆t do
3 U0 = U(t), S0 = S(t), V0 = V (t);

4 ∆H :=RK
[
f , U0S0V

H
0 , t, ∆t

]
;

5 K1 := U0S0+∆HV0;

6 U1Ŝ1 = qr [K1];

7 S̃0 := Ŝ1−UH
1∆HV0;

8 L1 := V0S̃0
H
+∆HHU1;

9 V1S
H
1 = qr [L1];

10 U(t+∆t) = U1, S(t+∆t) = S1, V (t+∆t) = V1;

11 end

Observe that only explicit Runge-Kutta methods can be used here, because projections

of ∆H onto low-rank factors V0 and U1 need to be computed efficiently, see eg. (9.22),

(9.23) and (9.24). In case one is interested in, for example, pure diffusion problems the

spatial discretization yields stiff matrix differential equations. Therefore, the presented KSL-

algorithm is then only stable and applicable under a strong constraint on the timestep ∆t

due to the explicit nature of the time integration method used in (9.26) for these K-, S-,

and L-steps.

The algorithm, also known as the KSL-algorithm, is summarized in Algorithm 10.

In [54] a remarkable exactness result is stated for the KSL-algorithm:

Theorem 7 ([54, Theorem 4.1]). Suppose H(t) has a rank of at most r for all t ≥ t0. Using
the initial value Y0 =H(t0) the splitting algorithm of Section 9.2.3 is exact, thus Y1 =H(t1).

So, this means that in case H(t) is the unknown solution to a matrix differential equation

we can expect for the KSL-algorithm with a sufficiently large rank r a similar convergence

behaviour as the time integrator that is used to numerically approximate that underlying

differential equations for K, S and L.

9.2.4 Remarks on stability of the dynamical low-rank integrator

To analyze the stability of the dynamical low-rank integrator, let us consider a model problem

where we take a two-dimensional diffusion equation with homogeneous Dirichlet boundary

conditions on a bounded domain Ω. The partial differential equation is then given by

∂h

∂t
(x,y , t) = d11

∂2h(x,y , t)

∂x2
+d22

∂2h(x,y , t)

∂y2
, (9.28)

for some diffusion constants d11 ≥ 0 and d22 ≥ 0. For simplicity take d11 = d22 = 1.

Semi-discretization is done on a uniform spatial grid with nx ×ny unknowns, so a numerical
approximation to the solution h(x,y , t) in the meshpoints defined by that mesh can be
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represented by a matrix H(t) ∈Rnx×ny . The differential equation can now be written in the
following matrix form

Ḣ(t) =DxxH(t)+H(t)D
T
yy

where Dxx and Dyy are sparse matrices that represent the (finite difference) discretization

of the differential operators in both directions.

Applied to a low-rank approximation H(t) = U(t)S(t)V (t)H with rank r this leads to

Ḣ(t) =DxxU(t)S(t)V (t)
H+U(t)S(t)V (t)HDT

yy .

Thus, when we drop the time-dependent argument, the equation for U̇(t) in (9.10) gives

U̇ =
(
I−UUH

)
ḢV S−1

=
(
I−UUH

)(
DxxUSV

H+USV HDT
yy

)
V S−1

=
(
I−UUH

)
DxxU+

(
I−UUH

)
USV HDT

yyV S
−1

=
(
I−UUH

)
DxxU+USV

HDT
yyV S

−1−USV HDT
yyV S

−1

=
(
I−UUH

)
DxxU.

Now, we can introduce a map w that takes a matrix U ∈ Cnx×r and maps it to

W :=
(
I−UUH

)
DxxU,

to describe the right hand side of this evolution equation.

A perturbation U̇ in U leads to a perturbation ∆W in W . This perturbation is, up to first

order terms, given by

∆W =
(
I−UUH

)
Dxx U̇+

(
I− U̇UH

)
DxxU+

(
I−UU̇H

)
DxxU. (9.29)

Consider the example where U consists of two columns, i.e. r = 2. Then U, U̇ and ∆W ∈
Cnx×2. We consider the eigenvectors Z ∈Cnx×2 that are invariant under these perturbations:(

I−UUH
)
DxxZ+

(
I−ZUH

)
DxxU+

(
I−UZH

)
DxxU = λZ.

Write these eigenvectors Z as linear combination of the columns of U, thus Z = Uα, where

α ∈ R2×2. Using this expression one can obtain(
I−UUH

)
DxxUα+

(
I−UαUH

)
DxxU+

(
I−UαTUH

)
DxxU = λUα.

This equation can be projected onto the columns of U, so the following equation is derived

UH
(
I−UUH

)
DxxUα+U

H
(
I−UαUH

)
DxxU+U

H
(
I−UαTUH

)
DxxU = λU

HUα(
UH−αUH

)
DxxU+

(
UH−αTUH

)
DxxU = λα

2UHDxxU−
(
α+αT

)
UHDxxU = λα.

To simplify notation we define D̃ := UHDxxU and write a matrix eigenvalue problem:

2D̃−
(
α+αT

)
D̃ = λα.
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Recall that Dxx is a (finite difference) discretization of the second derivative operator thus

all eigenvalues are negative. Therefore also the eigenvalues of D̃ are negative.

Written as classical eigenvalue problem, this reads

2d̃i j −∑
k

αik d̃kj −∑
k

αki d̃kj = λαi j ∀i , j,

where we used the convention that d̃i j represents the i , j-th element of matrix D̃.

Written as a linear eigenvalue system for vec [α] this results in
0 −d̃21 −d̃21 0

−2d̃12 2d̃12− d̃22 −d̃22 0

0 −d̃11 2d̃21− d̃11 −2d̃21
0 −d̃12 −d̃12 0



α11
α12
α21
α22

= λ

α11
α12
α21
α22

 .
Assuming that D̃ is symmetric leads to the following eigenvalues λ

λ=



0,

2d̃12,

1
2

(
−d̃11+2d̃12− d̃22+

√(
−d̃11+2d̃12− d̃22

)2
+16d̃12

)
,

1
2

(
−d̃11+2d̃12− d̃22−

√(
−d̃11+2d̃12− d̃22

)2
+16d̃12

)
.

Hence, at least one of these eigenvalues is positive which makes this evolution equation

unstable when one wants to apply it to a pure diffusion problem.

This is also somewhat expected, because the Laplace operator can be seen as a smoother.

So high frequencies are smoothed out which can also lead to a reduction of the rank. But

this conflicts with the requirement that the columns of U(t) should stay normalized over

time and span a space with a fixed dimension r .

9.3 Dynamical low-rank as optimization problem

The equations for U̇(t), V̇ (t) and Ṡ(t) in (9.10) can also be viewed as solving an optimization

problem [60]. In this formulation it is again assumed that H(t) =U(t)S(t)V (t)H is low-rank

with rank r . So the matrix S(t) ∈Cr×r is non-singular and U(t) ∈Cnx×r and V (t) ∈Cny×r
both have orthonormal columns.

In this section we will derive the Karush–Kuhn–Tucker conditions, or KKT conditions. The

KKT conditions, are (first-order) necessary conditions for a local optimizer x∗ ∈ Rn of a
general optimization problem

min
x∈Rn

f (x)

s.t. gi(x) = 0, for i = 1,2, . . . ,p.
(9.30)
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where f is called the objective function. Here we restrict the attention to only equality

constraints for this optimization problem. Define the Lagrangian function L(x ,λ) for (9.30)
by

L(x ,λ) = f (x)−λTg(x). (9.31)

Observe that at the optimal solution x∗ there are quantities λ∗ (where λ∈Rp are called the
Lagrange multipliers) such that

∇xL(x∗,λ∗) = 0. (9.32)

For an optimal solution this condition is necessary, but not sufficient. Indeed, if we want

to minimize the objective function f also a solution that maximizes the objective function

satisfies (9.32), thus it is not a sufficient condition.

The first-order necessary conditions, or KKT conditions, for optimization problem (9.30)

are defined in eg. [60, Theorem 12.1]:

Theorem 8 ([60, Theorem 12.1]). Suppose that x∗ is a local solution of (9.30) and that
the functions f and gi are continuously differentiable and that the linear independence con-

straint qualification holds at x∗. Then there is a Lagrange multiplier vector λ∗ ∈ Rp with
components λ∗i for i =1,2, . . . ,p such that the following conditions are satisfied at (x

∗, λ∗):

∇xL(x∗, λ∗) = 0
gi(x

∗) = 0, for i = 1,2, . . . ,p.

9.3.1 Explicit evaluation of PDE constraint in optimization problem

We can now derive the KKT conditions for an optimization problem that solves for U̇(t), V̇ (t)

and Ṡ(t) similar to (9.10). The result is stated as the following lemma:

Lemma 5. Given H(t) = U(t)S(t)V (t)H the KKT-conditions of

min
∥∥U̇(t)∥∥

F
+
∥∥V̇ (t)∥∥

F

s.t. Ḣ(t) = U̇(t)S(t)V (t)H+U(t)Ṡ(t)V (t)H+U(t)S(t)V̇ (t)H
(9.33)

for a given Ḣ(t), U(t),S(t) and V (t) are

2U̇(t)+λ(t)V (t)S(t)H = 0

2V̇ (t)+λ(t)HU(t)S(t) = 0

U(t)Hλ(t)V (t) = 0

U̇(t)S(t)V (t)H+U(t)Ṡ(t)V (t)H+U(t)S(t)V̇ (t)H = Ḣ(t)

(9.34)

or, eliminating the Lagrange multiplier:

U(t)HU̇(t) = 0

V (t)HV̇ (t) = 0

U̇(t)S(t)V (t)H+U(t)Ṡ(t)V (t)H+U(t)S(t)V̇ (t)H = Ḣ(t)

(9.35)
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Proof. Let us drop the time-dependent argument in the notation.

The Lagrangian function is given by

L(U̇, Ṡ, V̇ )=
nx ,r

∑
i ,j=1

u̇2i j+
ny ,r

∑
i ,j=1

v̇2i j−
nx ,ny

∑
k,l=1

λkl

(
ḣkl −

r,r

∑
m,n=1

u̇kmsmnvln−
r,r

∑
m,n=1

ukm ṡmnvln−
r,r

∑
m,n=1

ukmsmnv̇ln

)
.

The partial derivatives of the Lagrangian w.r.t. U̇ are given by

∂L
∂u̇i j

= 2u̇i j +
nx

∑
k=1

ny

∑
l=1

r

∑
m=1

r

∑
n=1

λkl
∂u̇km
∂u̇i j

smnvln

= 2u̇i j +
ny

∑
l=1

r

∑
n=1

λi lsjnvln

∂L
∂U̇
= 2U̇+λV SH.

(9.36)

Further, the partial derivatives of the Lagrangian w.r.t. V̇ are given by

∂L
∂v̇i j
= 2v̇i j +

nx

∑
k=1

ny

∑
l=1

r

∑
m=1

r

∑
n=1

λklukmsmn
∂v̇ln
∂v̇i j

= 2v̇i j +
nx

∑
k=1

r

∑
m=1

λkiukmsmj

∂L
∂V̇
= 2V̇ +λHUS.

(9.37)

Finally, the partial derivatives of the Lagrangian w.r.t. Ṡ are given by

∂L
∂ṡi j
=
nx

∑
k=1

ny

∑
l=1

r

∑
m=1

r

∑
n=1

λklukm
∂ ṡmn
∂ṡi j

vln

=
nx

∑
k=1

ny

∑
l=1

λklukivl j

∂L
∂Ṡ
= UHλV .

(9.38)

Indeed, setting the partial derivatives w.r.t. U̇, V̇ and Ṡ to zero yields the KKT conditions

as given in (9.34).

Observe that the equality from (9.38)

U(t)Hλ(t)V (t) = 0 (9.39)

can be used to eliminate the Lagrange multiplier in (9.36) and (9.37). Therefore, the

equation from U̇ is pre-multiply with UH and equation from V̇ is pre-multiplied with V H to

obtain:

0 = 2UHU̇+UHλV SH = UHU̇,

0 = 2V HV̇ +V HλHUS = V HV̇ ,

which results in the conditions as given in (9.35).
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Indeed, the necessary conditions to satisfy this minimization problem are exactly the gauge

conditions as stated in (9.8). Using V (t)HV̇ (t) = 0 = V̇ (t)HV (t) and the vectorization

identity

vec [AXB] =
(
BT⊗A

)
vec [X]

for matrices A,X and B with appropriate sizes, equations (9.35) can be written to(
I⊗U(t)H

)
vec

[
U̇(t)

]
= 0(

V (t)T⊗ I
)
vec

[
V̇ (t)H

]
= 0(

V (t)S(t)T⊗ I
)
vec

[
U̇(t)

]
+
(
V (t)⊗U(t)

)
vec

[
Ṡ(t)

]
+(I⊗U(t)S(t))vec

[
V̇ (t)H

]
= vec

[
Ḣ(t)

]
.

So, this results in a large linear system for the unknowns U̇(t), V̇ (t) and Ṡ(t):V (t)S(t)T⊗ I V (t)⊗U(t) I⊗U(t)S(t)
I⊗U(t)H 0 0

0 0 V (t)T⊗ I


︸ ︷︷ ︸

J(t)

 vec[U̇(t)]vec
[
Ṡ(t)

]
vec

[
V̇ (t)H

]
=

vec[Ḣ(t)]0

0

 (9.40)

where J(t) is a tall matrix with dimensions (nxny +2r
2)× (nx r + r2+ny r).

Using an explicit Runge-Kutta approximation for Ḣ(t) as given in (9.26) this leads to a

linear system of equations for the updates U̇, V̇ and Ṡ.

To solve this linear system a direct method that solves the normal equations can be used.

To explicitly analyze the normal equations, consider J(t)H and drop the time-dependent

argument:

J(t)H = JH =

 SV T⊗ I I⊗U 0

V T⊗UH 0 0

I⊗SHUH 0 V ⊗ I

 .
We use the property that the product of Kronecker products of matrices with appropriate

dimensions is given by (A⊗B)(C⊗D) = (AC⊗BD) [25]. Then JHJ is given by

JHJ =

SV TV ST⊗ I+ I⊗UUH SV TV ⊗U SV T⊗US
V TV ST⊗UH V TV ⊗UHU V T⊗UHUS

V ST⊗SHUH V ⊗SHUHU I⊗SHUHUS+V V T⊗ I

 .
When U and V have orthogonal columns then JHJ reduces even further to

JHJ =

SST⊗ I+ I⊗UUH S⊗U SV T⊗US
ST⊗UH I⊗ I V T⊗S

V ST⊗SHUH V ⊗SH I⊗SHS+V V T⊗ I

 .
The right hand side of the normal equations is given by

JH

vec[Ḣ(t)]0

0

=
 (SV T⊗ I

)
vec

[
Ḣ
](

V T⊗UH
)
vec

[
Ḣ
](

I⊗SHUH
)
vec

[
Ḣ
]
=

 vec[ḢV SH]vec
[
UHḢV

]
vec

[
SHUHḢ

]
 .
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Algorithm 11: Solving the normal equations for the KKT-conditions using the factor-

ization H(t) = U(t)S(t)V (t)H with an explicit time stepping scheme for 2D problems.

1 Given: a low-rank approximation to H(t0)≈ Y (t0) = U(t0)S(t0)V (t0)H;
2 for t = t0, t0+∆t, t0+2∆t, , . . . ,T −∆t do
3 Solve (9.40), i.e. (9.41), for U̇, Ṡ and V̇ ;

4 U(t+∆t) = U(t)+ U̇;

5 S(t+∆t) = S(t)+ Ṡ;

6 V (t+∆t) = V (t)+ V̇ ;

7 end

Thus, the normal equations to solve (9.40) are summarized bySV TV ST⊗ I+ I⊗UUH SV TV ⊗U SV T⊗US
V TV ST⊗UH V TV ⊗UHU V T⊗UHUS

V ST⊗SHUH V ⊗SHUHU I⊗SHUHUS+V V T⊗ I

 vec[U̇]vec
[
Ṡ
]

vec
[
V̇ H
]
=

 vec[ḢV SH]vec
[
UHḢV

]
vec

[
SHUHḢ

]
 .

(9.41)

This algorithm is summarized in Algorithm 11.

We remark that the KSL-algorithm solves for unknowns K = US,S and L= V SH. Thus the

last equation of (9.35) can be written as

U̇(t)S(t)V (t)H+U(t)Ṡ(t)V (t)H+U(t)S(t)V̇ (t)H = Ḣ(t)

K̇(t)V (t)H−U(t)Ṡ(t)V (t)H+U(t)K̇(t)H = Ḣ(t).

Further in the KSL-algorithm the orthogonality of the columns of U and V is not enforced

in the update for the auxiliary matrices K and L but imposed afterwards with an QR-

factorization.

9.3.2 Implicit evaluation of PDE constraint in optimization problem

In this section we will explore possibilities for an implicit evaluation of Ḣ(t) instead of an

explicit evaluation of the PDE constraint in the optimization problem as we have seen in the

previous section.

As an example, consider a linear differential operator on a two-dimensional domain, such

as the Laplace operator ∆2, applied on a function h(x,y , t). Semi-discretization is done

on a uniform spatial grid with nx × ny unknowns, so a numerical approximation to the
function h(x,y , t) in the meshpoints defined by that mesh can be represented by a matrix

H(t) ∈ Rnx×ny .

Further, given a rank-r matrix factorization H(t) = U(t)S(t)V (t)H of that function dis-

cretized on the grid where the columns of U(t) ∈ Cnx×r and V (t) ∈ Cny×r are orthonormal
and S ∈ Cr×r is an invertible matrix.

Example 9.3.1. Consider the two-dimensional heat equation as model problem with ho-

mogeneous Dirichlet boundary conditions on a bounded domain Ω. The partial differential
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equation is then given by

∂h

∂t
(x,y , t) = d11

∂2h(x,y , t)

∂x2
+2d12

∂2h(x,y , t)

∂x∂y
+d22

∂2h(x,y , t)

∂y2
, (9.42)

for some diffusion constants d11 ≥ 0, d12 ≥ 0 and d22 ≥ 0. For simplicity we take d11 =
d22 = 1 and d12 = 0.

Thus, the differential equation (9.42) can now be written in matrix form as given by

Ḣ(t) =DxxH(t)+H(t)D
T
yy

where Dxx and Dyy are sparse matrices that represent the (finite difference) discretization

of the differential operators in both directions. Observe that Dxx and Dyy are symmetric.

Let us introduce the notation ∆[H(t)] that denotes the sum of these two matrix-matrix

products as discretization of the Laplace operator:

Ḣ(t) = ∆[H(t)] :=DxxH(t)+H(t)D
T
yy . (9.43)

The integral form of a function H(t) is given by

H(t) =H(t0)+

t∫
t0

Ḣ(s)ds.

Observe that in this case we can exchange the order of integration and differentiation, so

we can write

t∫
t0

Ḣ(s)ds =

t∫
t0

∆
[
U(s)S(s)V (s)H

]
ds = ∆

 t∫
t0

U(s)S(s)V (s)Hds

 .
Thus, starting from a rank-r factorization H(t) =U(t)S(t)V (t)H and defining a new rank-r

approximation of this linear differential equation for H(t+∆t) one has to satisfy

U(t+∆t)S(t+∆t)V (t+∆t)H−U(t)S(t)V (t)H = ∆

 t+∆t∫
t

U(s)S(s)V (s)Hds

 ,
where the last integral can be evaluated in different ways. For example, in an explicit or

implicit way given by:

∆

 t+∆t∫
t

U(s)S(s)V (s)Hds

≈

∆t∆

[
U(t)S(s)V (t)H

]
∆t∆

[
(1− θ)U(t)S(t)V (t)H+ θU(t+∆t)S(t+∆t)V (t+∆t)H

]
∆t∆

[
U(t+∆t)S(t+∆t)V (t+∆t)H

]
with θ ∈ [0,1]. We remark that the first and last example are a special cases of the expression
in the middle. Select θ = 0 to obtain the first example and θ = 1 for the last example.

About the notation, we mention that the ∆-symbol is used in this expression for both ∆t as

symbol for a time step and in ∆[·] as symbol for the discretized differential operator. The
meaning of this ∆-symbol should be clear from the context.
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Now we can extend the formulation of KKT-conditions using an explicit evaluation of the

PDE constraint in Section 9.3.1 with the idea of implicit time integration for the factor

matrices. As an example we will use the θ-method for time integration, so

∆

 t+∆t∫
t

U(s)S(s)V (s)Hds

≈∆t∆[(1− θ)U(t)S(t)V (t)H+ θU(t+∆t)S(t+dt)V (t+∆t)H]
(9.44)

with θ ∈ [0,1].

The optimization problem to find increments U̇, Ṡ and V̇ such that U(t+∆t) = U(t)+ U̇,

S(t+∆t) = S(t)+ Ṡ and V (t+∆t) = V (t)+ V̇ is formulated as:

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t. H(t+∆t)−H(t) = ∆t∆[(1− θ)H(t)+ θH(t+∆t)] .
(9.45)

So, using the factorization of H(t), the definition for the increments and dropping the time-

dependent arguments for the factors (i.e. U = U(t),S = S(t) and V = V (t)) we derive the

following optimization problem:

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t.
(
U+ U̇

)(
S+ Ṡ

)(
V + V̇

)H−USV H = ∆t∆
[
(1− θ)USV H+ θ

(
U+ U̇

)(
S+ Ṡ

)(
V + V̇

)H]
.

Linearization2 of the constraint yields

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t. U̇SV H+UṠV H+USV̇ H = ∆t∆
[
USV H+ θU̇SV H+ θUṠV H+ θUSV̇ H

]
.

Rearranging terms in the constraint yields

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t. U̇SV H+UṠV H+USV̇ H− θ∆t∆
[
U̇SV H+UṠV H+USV̇ H

]
= ∆t∆

[
USV H

]
.
(9.46)

Example 9.3.2 (continuing example 9.3.1). For the Laplace operator in this example the

optimization problem (9.46) is given by

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t.
∆t
(
DxxUSV

H+USV HDT
yy

)
= U̇SV H+UṠV H+USV̇ H

−θ∆t
(
Dxx U̇SV

H+DxxUṠV
H+DxxUSV̇

H+ U̇SV HDT
yy +UṠV

HDT
yy +USV̇

HDT
yy

)
.

Further the differential operators Dxx and Dyy are symmetric.

Lemma 6. The KKT conditions of optimization problem (9.46) are given by

2U̇+λV SH− θ∆t∆[λ]V SH = 0

2V̇ +λHUS− θ∆t∆[λ]HUS = 0
UHλV − θ∆tUH∆[λ]V = 0

U̇SV H+UṠV H+USV̇ H− θ∆t∆
[
U̇SV H+UṠV H+USV̇ H

]
= ∆t∆

[
USV H

]
,

(9.47)

2Instead of linearization of the constraints one can also derive the KKT-conditions for these non-linear

constrains and linearize the KKT-conditions afterwards.
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where the differential operators in ∆[·] need to be symmetric.

Eliminating the Lagrange multiplier, the compact KKT-conditions are given by:

UHU̇ = 0

V HV̇ = 0

U̇SV H+UṠV H+USV̇ H− θ∆t∆
[
U̇SV H+UṠV H+USV̇ H

]
= ∆t∆

[
USV H

]
.

(9.48)

Proof. The application of the linear operator ∆[·] on a space-discretized function H(t) =
U(t)S(t)V (t)H can be seen (or generalized) as a finite sum of s terms where matrix H(t)

is pre- and post-multiplied by some operator matrices

∆
[
ŨS̃Ṽ H

]
=∑
s

A(s)ŨS̃Ṽ HB(s), (9.49)

where A(s) and B(s) are proxies for the symmetric differential operators; further Ũ, S̃ and
Ṽ H are proxies for U, U̇,S, Ṡ,V or V̇ .

Thus the Lagrangian function is given by

L(U̇, Ṡ, V̇ )=
nx ,r

∑
i ,j=1

u̇2i j+
ny ,r

∑
i ,j=1

v̇2i j−
nx ,ny

∑
k,l

λkl


U̇SV H+UṠV H+USV̇ H

− θ∆t∑
s

A(s)
(
U̇SV H+UṠV H+USV̇ H

)
B(s)

−∆t∑
s

A(s)USV HB(s)


kl

.

The entries of a (generalized) term
(
AŨS̃Ṽ HB

)
kl
are given by

(
AŨS̃Ṽ HB

)
kl
=
nx ,r,r,ny

∑
m,n,p,q

Akmũmn s̃np ṽqpBql . (9.50)

The partial derivatives of the Lagrangian w.r.t. U̇ are given by

∂L
∂u̇i j

= 2u̇i j +
nx

∑
k=1

ny

∑
l=1

nx

∑
m=1

r

∑
n=1

r

∑
p=1

ny

∑
q=1

λkl

(
Ikm

∂u̇mn
∂u̇i j

snpvqpIql − θ∆t∑
s

A(s)km
∂u̇mn
∂u̇i j

snpvqpB(s)ql

)

= 2u̇i j +
ny

∑
l=1

r

∑
p=1

λi lsjpvlp− θ∆t
nx

∑
k=1

ny

∑
l=1

r

∑
p=1

ny

∑
q=1

λkl∑
s

A(s)ki sjpvqpB
(s)
ql

∂L
∂U̇
= 2U̇+λV SH− θ∆t∑

s

A(s)
T
λB(s)

T
V SH.

Using that A(s) and B(s) are symmetric for all s this leads to the following representation of
the partial derivative for U:

∂L
∂U̇
= 2U̇+λV SH− θ∆t∆[λ]V SH. (9.51)
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Further, the partial derivatives of the Lagrangian w.r.t. V̇ are given by

∂L
∂v̇i j
= 2v̇i j +

nx

∑
k=1

ny

∑
l=1

nx

∑
m=1

r

∑
n=1

r

∑
p=1

ny

∑
q=1

λkl

(
Ikmumnsnp

∂v̇qp
∂v̇i j
Iql − θ∆t∑

s

A(s)kmumnsnp
∂v̇qp
∂v̇i j
B(s)ql

)

= 2v̇i j +
nx

∑
k=1

r

∑
n=1

λkiuknsnj − θ∆t
nx

∑
k=1

ny

∑
l=1

nx

∑
m=1

r

∑
n=1

λkl∑
s

A(s)kmumnsnjB
(s)
i l

∂L
∂V̇
= 2V̇ +λHUS− θ∆t∑

s

B(s)λHA(s)US.

Using that A(s) and B(s) are symmetric for all s this leads to the following representation of
the partial derivative for V :

∂L
∂V̇
= 2V̇ +λHUS− θ∆t∆[λ]HUS. (9.52)

Finally, the partial derivatives of the Lagrangian w.r.t. S are given by

∂L
∂ṡi j
=
nx

∑
k=1

ny

∑
l=1

nx

∑
m=1

r

∑
n=1

r

∑
p=1

ny

∑
q=1

λkl

(
Ikmumn

∂ ṡnp
∂ṡi j

vqpIql − θ∆t∑
s

A(s)kmumn
∂ ṡnp
∂ṡi j

vqpB(s)ql

)

=
nx

∑
k=1

ny

∑
l=1

λklukivl j − θ∆t
nx

∑
k=1

ny

∑
l=1

r

∑
p=1

ny

∑
q=1

λkl∑
s

A(s)kmumivqjB
(s)
ql

∂L
∂Ṡ
= UHλV − θ∆tUH

∑
s

A(s)
T
λB(s)

T
V .

Indeed, setting the partial derivatives w.r.t. U̇, Ṡ and V̇ to zero yields indeed the KKT

conditions as given in (9.47).

Observe that the equality

UHλV − θ∆tUH∆[λ]V = 0 (9.53)

can be used to eliminate the Lagrange multiplier in (9.47). Therefore the equation from U̇

is pre-multiply with UH and equation from V̇ is pre-multiplied with V H to obtain:

0 = 2UHU̇+
(
UHλV − θ∆tUH∆[λ]V

)
SH = UHU̇

0 = 2V HV̇ +
(
V HλHU− θ∆tV H∆[λ]HU

)
S = V HV̇

which results in the conditions as given in (9.48).

So, these KKT-conditions can again be formulated in a large linear system for the unknowns

U̇, Ṡ and V̇ :(I− θ∆tL)(V ST⊗ I) (I− θ∆tL)
(
V ⊗U

)
(I− θ∆tL)(I⊗US)

I⊗UH 0 0

0 0 V T⊗ I


︸ ︷︷ ︸

J(t)

 vec[U̇]vec
[
Ṡ
]

vec
[
V̇ H
]
=

vec[Ḣ(t)]0

0


(9.54)
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Algorithm 12: Solving the normal equations for the KKT-conditions using the factor-

ization H(t) = U(t)S(t)V (t)H with an implicit time stepping scheme for 2D problems.

1 Given: a low-rank approximation to H(t0)≈ Y (t0) = U(t0)S(t0)V (t0)H;
2 for t = t0, t0+∆t, t0+2∆t, , . . . ,T −∆t do
3 Solve (9.54) for U̇, Ṡ and V̇ ;

4 U(t+∆t) = U(t)+ U̇;

5 S(t+∆t) = S(t)+ Ṡ;

6 V (t+∆t) = V (t)+ V̇ ;

7 end

where I is an identity matrix and L is the discretized linear differential operator on the full

grid. For example, the two-dimensional Laplace operator on the full grid is given by L:

L= I⊗Dxx +Dyy ⊗ I.

The matrix J(t) is again a tall matrix with dimensions (nxny +2r
2)× (nx r + r2+ny r). To

solve for U̇, Ṡ and V̇ a direct method to solve the normal equations can be used. Using this

in a time stepping scheme leads to a new algorithm as summarized in Algorithm 12.

Indeed, this optimization problem and algorithm is a implicit time stepping generalization

of the problem and algorithm as discussed in Section 9.3.1. When we choose θ = 0 (and

thus use an explicit method for time integration) the KKT-conditions of (9.47) and (9.48)

reduce indeed to respectively (9.34) and (9.35).

9.4 Two-factor matrix factorization

Instead of writing a SVD-based three-factor matrix factorization H(t) = U(t)S(t)V (t)H for

a rank-r matrix in this section we incorporate matrix S(t) in the factors U(t) and V (t).

Let us start from the singular value decomposition of the spatial discretization at t = t0,

H(t0)=U(t0)S(t0)V (t0)
H, where U(t0)∈Cnx×r and V (t0)∈Cny×r with both r orthonormal

columns and S(t0) ∈Rr×r is a diagonal matrix. Then, we can write (where the square root
of a diagonal matrix is a diagonal matrix with square roots of the diagonal on these entries)

H(t0) = U(t0)
√
S(t0)

√
S(t0)V (t0)

H

= Ũ(t0)Ṽ (t0)
H.

Now it is not longer valid that the columns of Ũ(t0) and Ṽ (t0) are orthonormal. Indeed,

Ũ(t0)
HŨ(t0) =

√
S(t0)

H
U(t0)

HU(t0)
√
S(t0) = S(t0).

To simplify notation, for the remainder of this section the ∼-symbol is dropped above U(t)
and V (t).
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9.4.1 Explicit evaluation of PDE constraint in optimization problem

Similar to Section 9.3.1 we can also formulate an optimization problem to solve for the

low-rank factors U(t) ∈ Cnx×r and V (t) ∈ Cny×r assuming that H(t) = U(t)V (t)H, where
the columns of U(t) and V (t) are orthogonal but not orthonormal. The result is stated as

the following lemma:

Lemma 7. Given H(t) = U(t)V (t)H the KKT-conditions of

min
∥∥U̇(t)∥∥

F
+
∥∥V̇ (t)∥∥

F

s.t. Ḣ(t) = U̇(t)V (t)H+U(t)V̇ (t)H
(9.55)

for a given Ḣ(t), U(t) and V (t) are

2U̇(t)+λ(t)V (t) = 0

2V̇ (t)+λ(t)HU(t) = 0

U̇(t)V (t)H+U(t)V̇ (t)H = Ḣ(t)

(9.56)

or, eliminating the Lagrange multiplier:

U(t)HU̇(t)− V̇ (t)HV (t) = 0
U̇(t)V (t)H+U(t)V̇ (t)H = Ḣ(t)

(9.57)

Proof. Let us drop the time-dependent argument in the notation.

The Lagrangian function is given by

L(U̇, V̇ ) =
nx ,r

∑
i ,j=1

u̇2i j +
ny ,r

∑
i ,j=1

v̇2i j −
nx ,ny

∑
k,l=1

λkl

(
ḣkl −

r

∑
m=1

u̇kmvlm−
r

∑
m=1

ukmv̇lm

)
.

The partial derivatives of the Lagrangian w.r.t. U̇ are given by

∂L
∂u̇i j

= 2u̇i j +
nx

∑
k=1

ny

∑
l=1

r

∑
m=1

λkl
∂u̇km
∂u̇i j

vlm

= 2u̇i j +
ny

∑
l=1

λi lvlm

∂L
∂U̇
= 2U̇+λV .

Further, the partial derivatives of the Lagrangian w.r.t. V̇ are given by

∂L
∂v̇i j
= 2v̇i j +

nx

∑
k=1

ny

∑
l=1

r

∑
m=1

λklukm
∂v̇lm
∂v̇i j

= 2v̇i j +
nx

∑
k=1

λkiukj

∂L
∂V̇
= 2V̇ +λHU.
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Indeed, setting the partial derivatives w.r.t. U̇ and V̇ to zero yields indeed the KKT condi-

tions as given in (9.56).

The Lagrange multipliers can be eliminated by pre-multiplication of the equation for U̇ with

UH and the equation from V̇ can be pre-multiplied by V H to obtain:

0 = 2UHU̇+UHλV ,

0 = 2V HV̇ +V HλHU.

Thus, using the transposed version of the second equation yields

UHU̇ = V̇ HV ,

which results in the conditions as given in (9.57).

To solve the KKT-conditions of (9.57) we can write a linear system and solve for U̇(t)

and V̇ (t). Indeed, the KKT conditions where the Lagrange multiplier is eliminated can be

written as: [
V (t)⊗ I I⊗U(t)
I⊗U(t)H −V (t)T⊗ I

]
︸ ︷︷ ︸

J(t)

[
vec

[
U̇(t)

]
vec

[
V̇ (t)H

]]= [vec[Ḣ(t)]
0

]
, (9.58)

where J(t) is a tall matrix with dimensions (nxny + r
2)× r(nx +ny ).

Thus the linear system of (9.58) is highly over-determined. To solve this system the normal

equations can be solved using a direct method. To gain more insight into the solution

of the normal equations we will explicitly formulate the linear system for these equations.

Therefore, consider J(t)H and drop the time-dependent argument:

J(t)H = JH =

[
V T⊗ I I⊗U
I⊗UH −V ⊗ I

]
.

Then JHJ is given by

JHJ =

[
V TV ⊗ I+ I⊗UUH V T⊗U−V T⊗U
V ⊗UH−V ⊗UH I⊗UHU+V V T⊗ I

]
,

=

[
V TV ⊗ I+ I⊗UUH 0

0 I⊗UHU+V V T⊗ I

]
,

where the right hand side of the normal equations is given by

JH
[
vec

[
Ḣ
]

0

]
=

[(
V T⊗ I

)
vec

[
Ḣ
](

I⊗UH
)
vec

[
Ḣ
]]= [ vec[ḢV ]

vec
[
UHḢ

]] .
So, we find a decoupled linear system for U̇ and V̇ with r(nx +ny ) equations and unknowns:[

V TV ⊗ I+ I⊗UUH 0

0 I⊗UHU+V V T⊗ I

][
vec

[
U̇
]

vec
[
V̇ H
]]= [ vec[ḢV ]

vec
[
UHḢ

]] . (9.59)

Using this in a time stepping scheme leads to a new algorithm as summarized in Algorithm 13.
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Algorithm 13: Solving the normal equations for the KKT-conditions using the factor-

ization H(t) = U(t)V (t)H with an explicit time stepping scheme for 2D problems.

1 Given: a low-rank approximation to H(t0)≈ Y (t0) = U(t0)V (t0)H;
2 for t = t0, t0+∆t, t0+2∆t, , . . . ,T −∆t do
3 Solve (9.58), i.e. (9.59), for U̇ and V̇ ;

4 U(t+∆t) = U(t)+ U̇;

5 V (t+∆t) = V (t)+ V̇ ;

6 end

Hence the solution of optimization problem (9.55) can also be formulated as the solution

to a Sylvester equation. Starting again from the KKT-conditions as given in (9.57) and

pre-multiply the first equation with U(t) and post-multiply the second equation with V (t)

yields (where we again dropped the time-dependent argument)

UUH U̇−UV̇ HV = 0,

U̇ V HV +UV̇ HV = ḢV .

For readability we marked the unknown for the Sylvester equation in blue. Adding these two

equations gives

UUH U̇+ U̇ V HV = ḢV . (9.60)

Analogously, starting from the equations in (9.57) and post-multiplying the first equation

with V (t)H and pre-multiplying the second equation with U(t)H results in

UHU̇V H− V̇ H V V H = 0

UHU̇V H+UHU V̇ H = UHḢ.

Subtracting the first equation form the second equation we obtain

UHU V̇ H+ V̇ H V V H = UHḢ. (9.61)

Combining these new equations result in a new system of decoupled evolution equations for

U(t) and V (t):

UUH U̇+ U̇ V HV = ḢV ,

UHU V̇ H+ V̇ H V V H = UHḢ.
(9.62)

We remark that similar projections (if U and V have orthogonal columns) are also used

in Section 8.3.2 to directly determine the low-rank components for the solution of an 2D

Helmholtz equation.

Both equations in (9.62) are a Sylvester equation which has a general form AX+XB = C,

where X is the unknown solution of the equation. The matrices that appear near the time

derivatives U̇(t) and V̇ (t) should be interpreted as mass matrices, similar to finite element

theory.
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For the initial state at t0 it is known that U(t0)
HU(t0) = S(t0) and V (t0)

HV (t0) = S(t0).

So, this contains the singular values of the initial state. Because the singular values decay

the diagonal elements go to zero, hence these masses go to zero, which can lead to large

time derivatives.

Further, also the terms U(t)U(t)H and V (t)V (t)H appear in the Sylvester equations. These

matrices are not necessary diagonal. However, their eigenvalues are the eigenvalues of S(t)

or 0.

Lemma 8. The eigenvalues of U(t)U(t)H and V (t)V (t)H are the eigenvalues of S(t) or 0.

Proof. Indeed, let W be the eigenmatrix of UUH (where we dropped the time-dependent

argument). Then we have

UUHW =WΛΛΛ. (9.63)

If U is perpendicular to W then the eigenvalue is zero. If W is not perpendicular to U then

it should lie in the range of U. Hence, we can write W =W1+W2 where W1 = Uα and

W2 ⊥ U, where α is a coefficient matrix.

Thus, neglecting the perpendicular part, equation (9.63) reduces to

UUHUα= UαΛΛΛ.

If the columns of α are the eigenvectors of UHU then also the columns of Uα are the

eigenvectors of UUH with the eigenvalues ΛΛΛ.

The existence and uniqueness of the solution of a Sylvester equation given by

AX+XB = C, (9.64)

where matrices A,B and C have dimensions n×n,m×m and n×m respectively is known
in literature, and given by e.g. [13]:

Theorem 9 ([13, Theorem 8.2.1]). Let λ1,λ2, . . . ,λn be the eigenvalues of A, and µ1,µ2, . . . ,µm
be the eigenvalues of B. Then the Sylvester equation (9.64) has a unique solution X if and

only if λi +µj ̸= 0 for all i = 1,2, . . . ,n and i = 1,2, . . . ,m. In other words, the Sylvester
equation has a unique solution if and only if A and −B do not have a common eigenvalue.

Since A= UUH = S and B = V HV = S have the same eigenvalues there is no problem with

uniqueness. However, when both A and B have zero eigenvalues then there is a problem for

uniqueness.

9.4.2 Implicit evaluation of PDE constraint in optimization problem

In this section we revisit results from Section 9.4.1 and incorporate the use of an implicit

time integration method similar to Section 9.3.2. Maybe this could lead to stable evolution

equations for a low-rank factorizationH(t)=U(t)V (t)H, where the columns of U(t)∈Cnx×r
and V (t) ∈ Cny×r are orthogonal but not orthonormal.
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As an example we will use the θ-method for time integration, so

∆

 t+∆t∫
t

U(s)V (s)Hds

≈ ∆t∆[(1− θ)U(t)V (t)H+ θU(t+∆t)V (t+∆t)H] (9.65)

with θ ∈ [0,1]. Observe that the ∆-symbol is used in this expression for both ∆t as symbol
for a time step and in ∆[·] as symbol for the discretized differential operator.

Now we can again formulate an optimization problem to find increments U̇ and V̇ such that

U(t+∆t) = U(t)+ U̇ and V (t+∆t) = V (t)+ V̇ :

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t. H(t+∆t)−H(t) = ∆t∆[(1− θ)H(t)+ θH(t+∆t)] .

Using the factorization of H(t) =U(t)V (t)H, the definition for the increments and dropping

the time-dependent arguments for the factors (i.e. U = U(t) and V = V (t)) we derive the

following nonlinear optimization problem:

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t.
(
U+ U̇

)(
V + V̇

)H−UV H = ∆t∆
[
(1− θ)UV H+ θ

(
U+ U̇

)(
V + V̇

)H]
.

We remark that one can linearize the constraint and derive KKT-conditions or first derive

(non-linear) KKT-conditions and linearize these conditions afterwards. Here we start with

linearization of the constraint, which yields

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t. U̇V H+UV̇ H+���HHHU̇V̇ H = ∆t∆
[
UV H+ θU̇V H+ θUV̇ H+���XXXθU̇V̇ H

]
.

Finally, rearrange terms yields the following optimization problem for implicit evaluation of

the two-factor matrix factorization

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t. U̇V H+UV̇ H− θ∆t∆
[
U̇V H+UV̇ H

]
= ∆t∆

[
UV H

]
.

(9.66)

Example 9.4.1 (continuing example 9.3.1). For the Laplace operator of this example the

optimization problem (9.66) is given by

min
∥∥U̇∥∥

F
+
∥∥V̇ ∥∥

F

s.t. U̇V H+UV̇ H− θ∆t
(
Dxx U̇V

H+DxxUV̇
H+ U̇V HDT

yy +UV̇
HDT
yy

)
= ∆t

(
DxxUV

H+UV HDT
yy

)
.

Lemma 9. The KKT conditions of optimization problem (9.66) are given by

2U̇+λV − θ∆t∆[λ]V = 0

2V̇ +λHU− θ∆t∆[λ]HU = 0
U̇V H+UV̇ H− θ∆t∆

[
U̇V H+UV̇ H

]
= ∆t∆

[
UV H

]
,

(9.67)

where the differential operators in ∆[·] need to be symmetric.

Eliminating the Lagrange multiplier, the compact KKT-conditions are given by:

UHU̇− V̇ HV = 0

U̇V H+UV̇ H− θ∆t∆
[
U̇V H+UV̇ H

]
= ∆t∆

[
UV H

] (9.68)
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Proof. The application of the linear operator ∆[·] on a space-discretized function H(t) =
U(t)V (t)H can be generalized as a finite sum of s terms where H(t) is pre- and post-

multiplied by some operator matrices

∆
[
ŨṼ H

]
=∑
s

A(s)ŨṼ HB(s), (9.69)

where A(s) and B(s) are proxies for the symmetric differential operators; further Ũ and Ṽ H

are proxies for U, U̇,V or V̇ .

The Lagrangian function is given by

L(U̇, V̇ ) =
nx ,r

∑
i ,j=1

u̇2i j +
ny ,r

∑
i ,j=1

v̇2i j +
nx ,ny

∑
k,l

λkl


U̇V H+UV̇ H

− θ∆t∑
s

A(s)
(
U̇V H+UV̇ H

)
B(s)

−∆t∑
s

A(s)UV HB(s)


kl

.

Observe that the kl-th entry of the (generalized) term AŨṼ HB can be written as(
AŨṼ HB

)
kl
=
nx ,r,ny

∑
m,n,p

AkmũmnṽpnBpl . (9.70)

The partial derivatives of the Lagrangian w.r.t. U̇ are given by

∂L
∂u̇i j

= 2u̇i j +
nx

∑
k=1

ny

∑
l=1

nx

∑
m=1

r

∑
n=1

ny

∑
p=1

λkl

(
Ikm

∂u̇mn
∂u̇i j

vpnIpl − θ∆t∑
s

A(s)km
∂u̇mn
∂u̇i j

vpnB(s)pl

)

= 2u̇i j +
ny

∑
l=1

λi lvl j − θ∆t
nx

∑
k=1

ny

∑
l=1

ny

∑
p=1

λkl∑
s

A(s)ki vpjB
(s)
pl

∂L
∂U̇
= 2U̇+λV − θ∆t∑

s

A(s)
T
λB(s)

T
V .

Using that A(s) and B(s) are symmetric for all s this leads to the following representation of
the partial derivative for U:

∂L
∂U̇
= 2U̇+λV − θ∆t∆[λ]V . (9.71)

Further, the partial derivatives of the Lagrangian w.r.t. V̇ are given by

∂L
∂v̇i j
= 2v̇i j +

nx

∑
k=1

ny

∑
l=1

nx

∑
m=1

r

∑
n=1

ny

∑
p=1

λkl

(
Ikmumn

∂v̇pn
∂v̇i j
Ipl − θ∆t∑

s

A(s)kmumn
∂v̇pn
∂v̇i j
B(s)pl

)

= 2v̇i j +
nx

∑
k=1

λkiukj − θ∆t
nx

∑
k=1

ny

∑
l=1

nx

∑
m=1

λkl∑
s

A(s)kmumjB
(s)
i l

∂L
∂V̇
= 2V̇ +λHU− θ∆t∑

s

B(s)λHA(s)U.
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Algorithm 14: Solving the normal equations for the KKT-conditions using the factor-

ization H(t) = U(t)V (t)H with an implicit time stepping scheme for 2D problems.

1 Given: a low-rank approximation to H(t0)≈ Y (t0) = U(t0)V (t0)H;
2 for t = t0, t0+∆t, t0+2∆t, , . . . ,T −∆t do
3 Solve (9.74) for U̇ and V̇ ;

4 U(t+∆t) = U(t)+ U̇;

5 V (t+∆t) = V (t)+ V̇ ;

6 end

Using that A(s) and B(s) are symmetric for all s this leads to the following representation of
the partial derivative for V :

∂L
∂V̇
= 2V̇ +λHU− θ∆t∆[λ]HU. (9.72)

Indeed, setting the partial derivatives w.r.t. U̇ and V̇ to zero yields indeed the KKT condi-

tions as given in (9.67).

Again, the equation from U̇ can be pre-multiply with UH and the equation from V̇ can be

transposed and post-multiplied with V to obtain:

0 = 2UHU̇+UHλV − θ∆tUH∆[λ]V ,

0 = 2V̇ HV +UHλV − θ∆tUH∆[λ]V .

Thus, combining these equations leads to

UHU̇ = V̇ HV , (9.73)

which results in the conditions as given in (9.68).

To solve the KKT-conditions of (9.68) one can write a linear system and solve for U̇(t)

and V̇ (t). Indeed, the KKT conditions where the Lagrange multiplier is eliminated can be

written as:[
(I− θ∆tL)

(
V (t)⊗ I

)
(I− θ∆tL)(I⊗U(t))

I⊗U(t)H −V (t)T⊗ I

]
︸ ︷︷ ︸

J(t)

[
vec

[
U̇(t)

]
vec

[
V̇ (t)H

]]= [vec[Ḣ(t)]
0

]
(9.74)

where J(t) ∈ C(nxny+r2)×r(nx+ny ) is a tall matrix, I is the identity matrix and L is the
discretized linear differential operator on the full grid. Solving the normal equations using

a direct method in a time stepping scheme leads to a new algorithm as summarized in

Algorithm 14.

Indeed, this optimization problem and algorithm is a implicit time stepping generalization

of the problem and algorithm as discussed in Section 9.4.1. When we choose θ = 0 (and

thus use an explicit method for time integration) the KKT-conditions of (9.67) and (9.68)

reduce indeed to respectively (9.56) and (9.57).
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9.5 Alternating method to solve for factor matrices

Assume again a two-factor matrix factorization H(t) = U(t)V (t)H. Instead of solving one

large system of coupled equations to obtain an increment for both the factors U(t) and V (t)

we can also alternate between solving for U(t+∆t) and V (t+∆t), similar to the alternating

algorithms used to approximate the low-rank solution to the Helmholtz equation, see e.g.

Section 8.3.

Example 9.5.1 (continuing example 9.3.1). We consider again the semi-discretization of

the heat equation (9.42) with

Ḣ(t) = ∆[H(t)] :=DxxH(t)+H(t)D
T
yy

Given U(t),V (t) and the discretized differential operator ∆[·]. Using the θ-method for
implicit time integration leads to the following matrix equation for U(t+∆t) and V (t+∆t):

U(t+∆t)V (t+∆t)H− θ∆t
(
DxxU(t+∆t)V (t+∆t)

H+U(t+∆t)V (t+∆t)HDT
yy

)
=H(t)+(1− θ)∆t

(
DxxH(t)+H(t)D

T
yy

)
= F (t)

(9.75)

with θ ∈ [0, 1].

For all timesteps ti with i = 1,2, . . . ,N an alternating approach to solve for the factors

U(t+∆t) and V (t+∆t)H can be applied. So, in a certain timestep we start from (9.75)

with a guess V (t +∆t) ≈ V (t), multiply from the right with V and solve for U(t +∆t).
Thus, we obtain

U− θ∆t
(
DxxU+UV

HDT
yyV

)
= FV , (9.76)

where we used already the orthogonality of the columns of V , i.e. V HV = I ∈ Rr×r . Vec-
torizing this equation and rearranging terms yields[

(I⊗ I)− θ∆t (I⊗Dxx)− θ∆t
(
V TDyyV ⊗ I

)]
vec [U] = vec [FV ] . (9.77)

So, we obtain a linear system of nx × r equations for the same amount of unknowns.

In a similar way an update equation for V (t+∆t) is derived by pre-multiplying (9.75) with

UH, which leads to

V H− θ∆t
(
UHDxxUV

H+V HDT
yy

)
= UHF . (9.78)

Again, we used already the orthogonality of the columns of U, i.e. UHU = I ∈ Rr×r . Vec-
torizing this equation and rearranging terms yields an linear system of ny × r equations and
unknowns:[

(I⊗ I)− θ∆t
(
I⊗UHDxxU

)
− θ∆t (Dyy ⊗ I)

]
vec

[
V H
]
= vec

[
UHF

]
. (9.79)

Alternating between solving for U and V using (9.77) and (9.79) results in an algorithm

to approximate low-rank factors for a new time step. To maintain the orthogonality of the

columns of U and V additional QR-factorizations are included. So, we derived the time

integration algorithm as given in Algorithm 15. Remark that this algorithm is similar to

Algorithm 4 used to solve for the low-rank matrix decomposition of a solution to a 2D

Helmholtz problem.
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Algorithm 15: Alternating solve for the low-rank factorization H(t) = U(t)V (t)H with

an explicit (if θ = 0) or implicit (if θ ̸= 0) time stepping scheme for 2D problems.
1 Given: the low-rank factors of initial condition U(0) ∈ Cnx×r and V (0) ∈ Cny×r ;
2 for t = 0,∆t, 2∆t, . . . , T −∆t do
3 Pre-compute F = U(t)V (t)H+(1− θ)∆t∆

[
U(t)V (t)H

]
;

4 [V ,R] = qr [V (t)];

5 while not converged do

6 Solve (9.77) for U;

7 [U,R̃] = qr [U];

8 Solve (9.79) for V H;

9 [V ,R] = qr [V ];

10 end

11 U(t+∆t) = U;

12 V (t+∆t) = V R;

13 end

9.6 Numerical examples and discussion

In this section we present some small numerical examples and explore the possibilities of the

derived methods by applying them to the heat equation as a model problem. This will give

some basic insights in the different methods and leads to ideas which type of methods can

be useful for further analysis.

As a second numerical example we compare the two promising algorithms and apply them to a

Schrödinger model problem where we have a conservation property. A numerical comparison

shows good results of these algorithms for the low-rank approximations to the solution of

this time-dependent partial differential equation.

9.6.1 Comparison of all algorithms: diffusion model problem

Let us start with a short comparison of all the discussed algorithms in this chapter, i.e. the

explicit timestepping methods of Algorithm 10, 11, 12, 15 and also the implicit versions in

Algorithm 13, 14, 15. This numerical example is based on Example 9.3.1 where the heat

equation as model problem is considered.

Thus, we will numerically solve the partial differential equation

∂h

∂t
(x,y , t) = d11

∂2h(x,y , t)

∂x2
+2d12

∂2h(x,y , t)

∂x∂y
+d22

∂2h(x,y , t)

∂y2
, (9.80)

on a two-dimensional space domain (x,y) ∈Ω= (0, 1)2 and t ∈ (0, T ] with T = 0.01. For
simplicity we take diffusion constants d11 = d22 = 1 and d12 = 0.

The two dimensional domain Ω = (0, 1)2 is discretized with nx = ny = 75 uniform internal
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Figure 9.1: Plot of initial condition and solution for diffusion model problem as given in

(9.80).

meshpoints and a standard finite difference scheme is used to discretize the second deriva-

tives. Thus the numerical solution at time t can be represented by a matrix H(t) ∈Rnx×ny .

For the explicit versions of the algorithms (i.e. Algorithm 10, 11, 13 and 15) the classical

RK-4 time integration method (9.27) is used to approximate Ḣ(t). To obtain stability of this

method N = 225 timesteps are used for all algorithms to approximate the solution between

t = 0 and t = T = 0.01. For the implicit version of the algorithms (i.e. Algorithm 12, 14

and 15) the Crank-Nicolson time integration method (i.e. θ = 12) is used to approximate

Ḣ(t).

The applied initial condition for this PDE is of low-rank and given by

h(x,y , t = 0) =
12

∑
k=1

|sin(πx)sin(3πy)|k . (9.81)

A plot of this initial condition and the numerical solution at t = T = 0.01 is shown in Figure

9.1. Finally, homogeneous Dirichlet boundary conditions are applied on the boundary of

domain Ω.

We remark that, by construction, the initial condition as given in (9.81) is a linear combi-

nation of 12 rank-1 functions. Thus, in principle, the rank of this initial condition should be

at most 12. Recall that the solution H(t) for all t ≥ 0 has a certain numerical rank. The
rank of the approximations for all methods to this solution can be monitored at all time

frames ti , with i = 0,1, . . . ,N. To approximate the numerical rank the singular values of the

approximation on the full discretization grid are computed and the numerical rank is chosen

to be the number of singular values larger than a chosen tolerance tol= 10−12. Due to the
rapid decay of singular values in (9.81) for the initial condition the numerical rank is only

r = 10, as shown in Figure 9.2a by the reference solution.

In the first part of this experiment for all presented (low-rank) methods no actual constraints

on the rank are enforced, i.e. the maximal supported rank of the low-rank methods is chosen

equal to the number of meshpoints in the directions. This is an interesting case because the
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actual rank of the numerical solution is lower then the maximal supported rank in the low-rank

methods. So, if the method performs well it demonstrate some good properties regarding

over-estimation of the numerical rank of the solution. As shown in Figure 9.2a almost all

presented methods maintain a low-rank approximation over time t. It is observed that only

the rank for Algorithms 13 and 14 (i.e. the two-factor matrix factorization with explicit

and implicit time integration) increases starting from the first timestep. This may indicate

already some errors in these low-rank approximation methods. Indeed, if we consider the

error with respect to the reference solution we see again large errors for these two algorithms.

In Figures 9.2b and 9.2c the errors of the different algorithms with respect to the reference

solution are shown for respectively the RK-4-based and CN-based methods.

Apart from the fact that the two-factor factorization H(t) = Ũ(t)Ṽ (t)H as discussed in

Section 9.4, thus Algorithms 13 and 14, does not yield good low-rank approximations,

all other algorithms have errors almost equal to the underlying time integration method

applied on the full grid. So, all these algorithms show in this example robustness under

over-estimation of the numerical rank of the actual solution.

The low-rank approximation methods are developed to reduce the total number of unknowns.

Thus instead of a maximal supported rank equal to the number of unknowns per direction the

maximal attainable rank is now reduced. For this example pre-knowledge is used to choose

the maximal attainable rank equal to r = 10. Of course, in general the maximal attainable

rank of the solution over time is unknown and some knowledge or heuristics about the

solution to the problem need to be known or estimated. The numerical rank of the low-rank

solution over time is shown in Figure 9.3a.

Based on the numerical rank of the low-rank approximation it is already clear that Algo-

rithm 11, where the factorization H(t) = U(t)S(t)V (t)H with explicit time integration is

used, does not obtain any reasonable solution; at least for t ∈ (0, 0.4). All other methods
show at least stable results where a low-rank approximation to the solution is obtained.

The error for a low-rank approximation can be measured as the difference of the solution by

a low-rank method compared with the solution using the reference time integration method.

Thus the approximation of the low-rank methods with explicit time integration are compared

with the classical RK-4 time method and the implicit low-rank methods are compared with

the CN reference solution. If we consider the errors in the low-rank approximations as given

in Figures 9.3b and 9.3c for respectively the explicit and implicit time integration methods

we see indeed large errors for Algorithms 11 and 12. Again also the low-rank approximation

errors for Algorithms 13 and 14 are large.

The KSL-algorithm of Algorithm 10 show only a minor increase of error. This is probably due

to the under-estimation of the RK-4 solution on the full mesh at time t ∈ (0, 0.1). Also the
Alternating U/V algorithms of Algorithm 15 where an explicit RK-4 method or an implicit

CN-method are used show remarkably small errors for to this low-rank approximation. In

the Alternating U/V algorithms there is per timestep an inner iteration to solve for U and

V . For this inner loop two iterations per timestep are used.

The results of this numerical experiment to explore the low-rank performance of the pre-

sented algorithms are summarized in Table 9.1. In this experiment we found that good

low-rank approximations to solutions of time dependent diffusion PDEs can be obtained by
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Figure 9.2: Numerical rank (top) and error of ‘low-rank’ approximations to solution of

(9.80) for different explicit (bottom/left) and implicit (bottom/right) algorithms as dis-

cussed throughout this chapter. Maximal supported rank is set to the number of spatial

discretization points per direction.
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Figure 9.3: Numerical rank (top) and error of low-rank approximations to solution of

(9.80) for different explicit (bottom/left) and implicit (bottom/right) algorithms as dis-

cussed throughout this chapter. Maximal supported rank is set to r = 10.
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Algorithm Explicit/Implicit Max rank Low-rank

Alg. 10 (KSL) Explicit Yes Yes

Alg. 11 (H = USV H) Explicit Yes No

Alg. 13 (H = UV H) Explicit No No

Alg. 15 (Alternating U/V ) Explicit Yes Yes

Alg. 12 (H = USV H) Implicit Yes No

Alg. 14 (H = UV H) Implicit No No

Alg. 15 (Alternating U/V ) Implicit Yes Yes

Table 9.1: Summary of stability of the different algorithms for maximal supported rank and

low-rank approximations to solutions of the pure diffusion problem (9.80).

Algorithm 10 (i.e. the KSL-algorithm) or Algorithm 15. We remark that to our knowledge

Algorithm 10 can only be used with explicit time integration methods and Algorithm 15 has

support for explicit and implicit time integration methods.

9.6.2 Comparison of stable algorithms: Schrödinger model problem

Based on the results of Section 9.6.1, in this section we will do a further comparison of the

two promising algorithms for low-rank approximations (i.e. Algorithm 10 and 15). Therefore

we consider a second two-dimensional numerical model problem with a conservation property

(when the absorbing boundary conditions are neglected).

Let us consider a semi-discretized Schrödinger equation, as given by

dH(t)

dt
=−i

(
DxxH(t)+H(t)D

T
yy

)
, (9.82)

where i =
√
−1 and H(t) ∈ Cnx×ny is the (matrix)discretization of the solution h(x,y , t)

discretized on a two-dimensional mesh with uniform grid points x,y ∈ [−L, L] with L= 10.
Further the domain is extended with exteriour complex scaling to implement absorbing

boundary conditions [2, 76]. To implement the absorbing boundary conditions an artifi-

cial layer is added to the numerical domain that dampens outgoing waves. The outgoing

wave boundary conditions are then replaced with homogeneous Dirichlet boundary condi-

tions at the end of the artificial layer. This boundary do not require any knowledge about

the asymptotic behaviour, which may be very complicated in different applications.

In this numerical example we consider M = 200 discretization points per direction in the

interior of the domain. At the boundaries x ±L and y = ±L the domain is extended with
exterior complex scaling under an angle π6 where 33% additional discretization points are

added. Thus with 2×33% additional discretization points the total number of discretization
points per direction is given by nx = ny = 334.

In this numerical experiment we will consider the following rank-1 initial conditionH(0) = f (x,y)

on the discretized mesh:

f (x,y) = e−x
2−y2 . (9.83)
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Figure 9.4: Numerical rank (i.e. #singular values > tol = 10−12) of RK-4 (left) and CN
(right) solutions to PDE (9.82) with initial condition H(0) = f (x,y) (2D, M = 200). The

number of time steps is denoted by N.

For a stable explicit time integration method the number of timesteps is chosen as N =4000.

The numerical rank of the RK-4 and CN solution over time is shown in Figure 9.4. Indeed,

the rank of the numerical solution is low over time. The Crank-Nicolson method can also be

used with larger timesteps and then we see that the rank of the numerical solution (slightly)

increases. After a certain time the rank of the numerical solution decreases again.

Recall that Algorithm 10 reduces with a sufficiently large rank to the RK-4 time integration

method and the implicit alternating U/V method of Algorithm 15 reduces to the CN-method.

Therefore we measure the error due to the low-rank approximation of both methods in terms

of the difference with respect to the appropriate full-rank time integration method. These

differences over time are shown in Figures 9.5a and 9.5b. Clearly both methods can obtain

any desired accurate low-rank approximation to the solution starting from a rank-1 initial

condition.

As an alternative we consider also the same model problem, but now with an initial condition

given by

g(x,y) = e−x
2−y2−|x−y |4 . (9.84)

This initial condition represented on this mesh does not have a rank-1 expression. The first

singular values of this initial condition are given in Figure 9.6a. The numerical rank (with

tol= 10−8) of the RK-4 and CN solutions over time is shown in Figure 9.6b.

The errors in the low-rank approximations to the solutions for both Algorithm 10 and 15 are

shown in Figure 9.7. Again, the time-dependent solution can be approximated with these

low-rank time integration methods.

Per timestep the computations of Algorithm 15 are more expensive then the computations

for Algorithm 10. The cost of a timestep with the KSL-algorithm is mainly determined by

a constant number of (sparse)matrix-vector products, where the cost of a (sparse)matrix-
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Figure 9.5: Error of different low-rank approximations of Algorithm 10 (KSL, left) and

Algorithm 15 (Alternating U/V, right) w.r.t. the full-rank solution over time with initial

condition H(0) = f (x,y) where f is given in (9.83) (2D, M = 200, N = 4000).
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RK-4 and CN solution to PDE (9.82) with initial condition H(0) = g(x,y) where g is given

in (9.84) (2D, M = 200).
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Figure 9.7: Error of different low-rank approximations of Algorithm 10 (KSL, left) and

Algorithm 15 (Alternating U/V, right) w.r.t. the full-rank solution over time with initial

condition H(0) = g(x,y) where g is given in (9.84) (2D, M = 200, N = 4000).

vector scale O (r) with rank r . For an implicit timestep with Algorithm 15 a constant number
of linear systems has to be solved. Because the systems that has to solved are similar to

the systems in Chapter 8, the cost for a timestep with the Alternating U/V algorithm scale

O
(
r2
)
, where r is the rank.

We can exploit the potential larger timesteps for the Alternating U/V algorithm, but as we

have seen in Figures 9.4b and 9.6b the rank of the CN-solution increases when the number

of timesteps decreases. Moreover, in the examples considered here the stability condition

on the timestep using a RK-4 method is not strong enough to make the additional costs

for the Alternating U/V algorithm beneficial. For example, with initial condition g as given

in (9.84) we can reduce the number of timesteps for the CN-method to N = 500. The

error in the low-rank approximations over time is shown in Figure 9.8. Clearly the errors

in the low-rank approximations increases and low-rank approximations with larger maximal

attainable ranks r are needed to compensate for that.

9.7 Conclusion and outlook

In this chapter a short literature review about Lubich’s dynamical low-rank integrator and the

KSL-algorithm is given. We found a similar formulation of this algorithm as PDE constraint

optimization problem. For different problems the KKT-conditions are derived and algorithms

are formulated to solve for evolution equations of low-rank factor matrices where the product

of these factors should satisfy a partial differential equation.

Similar to the alternating approach as used in [80] to compute the low-rank factors of the

solution of Helmholtz equations also an Alternating U/V algorithm for time integration is

discussed.
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Figure 9.8: Error of different low-rank approximations of Algorithm 14 (Alternating U/V)

w.r.t. full-rank solution over time with initial condition H(0) = g(x,y) where g is given in

(9.84) (2D, M = 200, N = 500).

In a first numerical example with a pure diffusion model problem we have seen that both

explicit and implicit algorithms that use a three-factor or two-factor matrix factorization are

not stable when one coupled system for all factors has to be solved. The alternating or

projection based methods (i.e. Algorithm 10 and Algorithm 15) can be used to obtain a

time-dependent low-rank factorization of the solution to a partial differential equation.

The Alternating U/V algorithm can also be used together with implicit time integration. At

the moment this advantage of the Alternating U/V algorithm does not lead to an efficient

algorithm to solve low-rank problems like the Schrödinger model problem. Maybe in contrast

to the direct methods that are currently used a good iterative solver exists to efficiently solve

the linear systems that appear in the Alternating U/V algorithm. This could potentially

reduce the computational cost and make it comparable to the efficient KSL-algorithm.

Also extensions to higher-dimensional problems using, for example, Tucker tensors decompo-

sitions are possible, similar to the results for the Helmholtz problem [80]. For the Alternating

U/V algorithm this extensions is rather straightforward because that algorithm alternates

between solving for all factors separately. Also extensions for the KSL-algorithm in higher-

dimensions are already known in literature, such as [55, 64].
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10.1 Conclusions

In this thesis we studied and developed efficient numerical methods to approximate solutions

to high-dimensional PDEs. A standard discretization of partial differential equations gets

infeasable when the dimension of the problem becomes larger, eg. for dimensions d > 3.

We studied approaches to overcome this problem by approximating the differential operator

in Part I or to describe the solution explicitly using a low-rank factorization in Part II.

10.1.1 PCA-based approximation approach

The approximation of a differential operator using the principal component analysis (PCA)

based approximation approach, as originally presented by Reisinger & Wittum, fits nicely into

the Black–Scholes framework. Using the correlations of the underlying assets, the Black–

Scholes operator for a d-dimensional basket option can be transformed to a d-dimensional

pure diffusion problem. Then, the diffusion coefficients in each direction are equal to the

eigenvalues of the covariance matrix of the underlying assets. Because of the intrinsic

correlations of assets in a financial market, the first eigenvalue of this covariance matrix will

often be dominant. Using a first-order Taylor-expansion in the first eigenvalue, the PCA-

based approximation approach for the solution of the Black–Scholes equation is defined.

It can be seen as a one-dimensional principal component approximation with first-order

correction terms in all other directions. Thus instead of solving a d-dimensional PDE the

PCA-based approximation approach approximates the fair option value at a certain point by

a linear combination of solutions to 1 one-dimensional and (d −1) two-dimensional PDEs.

The PCA-based approximation approach is in Chapter 3 applied to approximate high-dimensional

Black–Scholes PDEs and valuate European-style basket options. We studied in detail the

error in the spatial and temporal discretization and observed a favourable, near second-

order convergence behaviour. In different numerical experiments we recovered the expected

second-order convergence of the total discretization error despite the non-smoothness of the

initial condition (which was remediated with cell averaging and backward Euler damping).
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In Chapter 4 we extended the PCA-based approximation approach to valuate also Bermudan-

style basket options. Therefore the temporal discretization was changed to implement the

optimal exercise condition at a finite number of possible exercise times. Numerical ex-

periments similar to what was done for European-style basket options show again nearly

second-order convergence of the total discretization error. Compared to the European-style

basket options some irregularities or oscillations are observed in the convergence behaviour

of the total discretization error. A further numerical study shows that the leading term

from the one-dimensional PDE behaves regular and that the correction terms can be both

positive and negative, which leads to the observed irregular behaviour. More research has

to be done to explain this irregular behaviour and to determine a suitable remedy for it.

To valuate American-style basket options, in Chapter 5 the PCA-based approximation ap-

proach was extended even further. The valuation of American-style baskets options requires

the solution of a partial differential complementarity problem (PDCP). The PCA-based

approximation approach is formulated in terms of solutions to one- and two-dimensional

PDCPs. Temporal discretization is done with the Ikonen–Toivanen (IT) splitting tech-

nique. Further in that chapter we compared the PCA-based approximation approach with

the comonotonic approach. The comonotonic approach was formulated for European- and

American-style basket options. The comonotonic approach defines an approximation to the

option value through a certain linear combination of an upper and lower bound for the option

value. These lower and upper bounds are solutions to one-dimensional PDEs or PDCPs.

The upper bound is rather crude. The lower bound is acquired upon replacing the volatility

by a specific other value, a value that is based on other theory about comonotonic upper

and lower bounds. We observed that these lower and upper bounds are exactly the solu-

tions of the PCA-based approximation approach where the covariance matrix is set to a

rank-1 matrix. Numerical experiments confirm also for American-style basket options nearly

second order convergence of the total discretization error. Also in case of American-style

basket options some irregularities in the convergence behaviour are observed, which may be

caused by the non-smoothness of the payoff function that affects the numerical solution in

all timesteps due to the optimal exercise condition.

Finally in Chapter 6 the Greeks Delta and Gamma are approximated using the PCA-based

approximation approach for European-, Bermudan- and American-style basket options. We

observed again second order convergence behaviour for the total discretization error but

some oscillations or irregular behaviour are clearly visible. We compared the approximations

for the Deltas with an estimation obtained using (Least Squares) Monte Carlo simulation,

as introduced in Chapter 2.

10.1.2 Direct approximation of low-rank factors of solutions

The observation that the solution of some differential equations is of low rank can be

exploited to efficiently approximate the low-rank factors of that solution.

In Chapter 8 we developed a alternating projection method for the Helmholtz problem that

reduces the computational cost of solving the original differential equation when the solution

is of low rank. Instead of solving on the full grid, an alternating projection method is used

to solve for all low-rank factor matrices separately.
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Thus without first solving a large linear system, each of the factors of the low-rank compo-

nents of a solution can be obtained. Further we linked the equations that has to be solved

to obtain the low-rank factor matrices with the equations arising in the coupled channel

technique. For this alternating projection method we observed that the errors and residuals

decay quickly in each iteration. Thus only a limited number of iterations for the alternating

projection algorithm are needed.

We considered atomic and molecular breakup reactions, such as multiple-ionization and

solved the Helmholz problem to numerically validate this low-rank approach. The cross

sections can accurately be computed with only a low-rank solution.

We presented the concept with a two-dimensional Helmholtz problem and extended it to

a three-dimensional problem where we solved for the factor matrices of a Tucker tensor

decomposition of the solution. Also numerical results for a three-dimensional problem are

shown. In theory, the generalization using a Tucker tensor decomposition for dimensions

d > 3 is straightforward. But for dimensions d > 3 it might be beneficial to change to another

tensor factorization, such as a Tensor Train decomposition. This is because the number of

unknowns in the Tucker tensor decomposition has still an exponential dependence on the

dimension of the problem. It is expected that a similar alternating projection method can

be applied to directly solve for the low-rank factors of tensors in the Tensor Train format.

In Chapter 9 we explored some possibilities for different implicit and explicit methods to

solve for the low-rank factors of solution to time-dependent partial differential equations.

The dynamical low-rank integrator by Lubich is a well-known method from literature. To our

knowledge it is only applicable with explicit time integration methods, which makes it less

attractive for stiff differential equations. We formulated that algorithm as an optimization

problem and derived alternative methods. Numerical experiments show that these alternative

methods are not stable.

The alternating projection method as discussed in Chapter 8 can be combined with both

implicit and explicit time integration methods. In principle, this yields an alternative to the

dynamical low-rank integrator. But the linear systems that has to be solved for the implicit

alternating projection method are too expensive to arrive at a computational cost that is

similar to the dynamical low-rank integrator, at least in the considered numerical example

with a model Schrödinger problem.

10.2 Outlook and further research

To conclude this chapter we give an outlook and some suggestions for further research.

The PCA-based approximation approach is extensively used throughout this thesis but a

rigorous analysis of the error in the PCA-based approximation with respect to the fair value

of the option is only known for European-style basket options in the literature. We expect

that these results can also be extended to Bermudan- and American-style basket options.

Further, we expect that the irregular convergence behaviour in the total discretization error

may be related to the (non-smooth) optimal exercise condition that is essential for the
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Bermudan- and American-style basket options. But a detailed analysis is still lacking.

For American-style basket options we compared the PCA-based approximation approach

with the comonotonic approach and saw that the approximations of both techniques lie

close to each other. But at this moment it is still open which (if any) of the two approaches

is to be preferred for the approximate valuation of American basket options. In particular,

whereas in our experiments the two approaches always define approximations that lie close

to each other, it is not clear at present which approach generally yields the smallest error

with respect to the exact option value.

Further, a more fundamental question concerns about wider applicability of the PCA-based

approximation approach. In the current formulation the PCA-based approximation approach

relies extensively on the correlations of the underlying assets in the Black–Scholes model.

It is not clear if, and how, this could be generalized to other models, for example with a

non-constant volatility as used in the Heston model.

We intended the alternating projection algorithm, from Chapter 8, for the low-rank fac-

tors of solutions as a method to solve high-dimensional problems. But approximating

high-dimensional data using the Tucker tensor decomposition weakens, but does not solve,

the curse of dimensionalty. The Tucker tensor decomposition represents the tensor with

O
(
rd +dnr

)
unknowns. So, using this decomposition the total number of unknowns is re-

duced, but it is still exponential in the dimension d . Maybe other orthogonality preserving

tensor decompositions, such as the Tensor Train decomposition, with a number of unknowns

that is only polynomial in d can resolve this problem and make the alternating projection

algorithm also applicable for higher dimensions.

In Chapter 8, a six-dimensional problem is solved by an expansion in spherical harmonics

(i.e. the eigenfunctions of part of the operator) that reduces the problem to a coupled two-

dimensional problem. We then wrote the two-dimensional components as low-rank matrices.

However, directly writing the six-dimensional problem as a low-rank tensor decomposition

and solving for these components, might be a more efficient method.

Further we explored different possibilities to solve time-dependent PDEs using a time inte-

gration version of the alternating projection method. This method can be combined with,

for example, the Crank–Nicolson scheme or θ-method for time integration. This advan-

tage of the alternating projection algorithm does not lead to an efficient algorithm to solve

low-rank problems like the Schrödinger model problem. Maybe, in contrast to the direct

methods that are currently used, a good iterative solver exists to efficiently solve the linear

systems that appear in the alternating projection algorithm. This could potentially reduce

the computational cost and make it comparable with the dynamical low-rank integrator. If

this could be resolved then also high-dimensional time-dependent PDEs could be solved with

these kind of methods.



Appendix AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Parameter sets for numerical

experiments with basket options

Set A is given by Reisinger & Wittum [71] and has d = 5, K = 1, T = 1, r = 0.05 and

ρ= (ρi j)
d
i,j=1 =


1.00 0.79 0.82 0.91 0.84

0.79 1.00 0.73 0.80 0.76

0.82 0.73 1.00 0.77 0.72

0.91 0.80 0.77 1.00 0.90

0.84 0.76 0.72 0.90 1.00

 ,
σ = (σi)

d
i=1 =

(
0.518 0.648 0.623 0.570 0.530

)
,

ω = (ωi)
d
i=1 =

(
0.381 0.065 0.057 0.270 0.227

)
.

The eigenvalues of the corresponding covariance matrix ΣΣΣ are shown in Figure A.1 and given

by

(λi)
d
i=1 =

(
1.4089 0.1124 0.1006 0.0388 0.0213

)
Hence, λ1 is clearly dominant.

Sets B and C are taken from Jain & Oosterlee [45] and have dimensions d = 10 and d = 15,

respectively. Here K = 40, T = 1, r = 0.06 and ρi j = 0.25, σi = 0.20 and ωi = 1/d whenever

1 ≤ i ̸= j ≤ d . Sets B and C have λ1 = 0.13 and λ1 = 0.18, respectively, and λ2 = . . . =
λd = 0.03. Thus λ1 is also dominant for these parameter sets.

Sets D, E, F have dimensions d = 5,10,15, respectively, where K = 100, T = 1, r = 0.04

and ρi j = exp(−µ|i− j |), σi =0.30 and ωi =1/d whenever 1≤ i , j ≤ d with µ=0.0413. The
pertinent correlation structure has been considered in for example Reisinger & Wissmann [68]

and leads to rapidly decreasing eigenvalues, as shown in Figure A.1. Sets D, E, F have in

particular

(λ1, λ2, λ3) =(0.4218, 0.0180, 0.0053),

(0.7897, 0.0647, 0.0187),

(1.1126, 0.1337, 0.0402),

respectively.

It can be shown that for all six Sets A–F the matrix of eigenvectors Q of ΣΣΣ satisfies As-

sumption 1.
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