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Warming does not delay the start of autumnal leaf coloration but slows its progress rate 1 

 2 

Running title: Leaf coloration onset insensitive to warming 3 

 4 

ABSTRACT 5 

Aim: Initiation of autumnal leaf senescence is critical for plant overwintering and ecosystem 6 

dynamics. Previous studies focused on the advanced stages of autumnal leaf senescence and 7 

reported that climatic warming delayed senescence, despite the fundamental differences among 8 

the stages of senescence. However, the timing of onset of leaf coloration (DLCO), the earliest visual 9 

sign of senescence, has been rarely studied. Here, we assessed the response of DLCO to 10 

temperature. 11 

Location: 30–75°N in the Northern Hemisphere. 12 

Time period: 2000–2018. 13 

Major taxa studied: Deciduous vegetation. 14 

Methods: We retrieved DLCO from high temporal-resolution satellite data, which was then 15 

validated by PhenoCam observations, and investigated the temporal changes in DLCO and the 16 

relationship between DLCO and temperature by using satellite and ground observations. 17 

Results: DLCO was not significantly (P > 0.05) delayed between 2000 and 2018 in 94% of the 18 

area. DLCO was positively (P < 0.05) correlated with pre-DLCO mean daily minimum temperature 19 

(Tmin) in only 9% of the area, whereas the end of leaf coloration (DLCE) was positively correlated 20 

with pre-DLCE mean Tmin over a larger area (34%). Further analyses showed that warming slowed 21 

the progress of leaf coloration. Interestingly, DLCO was less responsive to pre-DLCO mean Tmin in 22 

areas where daylength was longer across the Northern Hemisphere, particularly for woody 23 

vegetation.  24 

Main conclusions: The coloration progress rate is more sensitive than its start date to temperature, 25 

resulting in an extension of the duration of leaf senescence under warming. The dependence of 26 

DLCO response to temperature on daylength indicates stronger photoperiodic control on initiation 27 

of leaf senescence in areas with longer daylength (i.e., shorter nights), possibly because plants 28 

respond to the length of uninterrupted darkness rather than daylength. This study indicates that 29 
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the leaf coloration onset was not responsive to climate warming and provides observational 30 

evidence of photoperiod control of autumnal leaf senescence at biome and continental scales. 31 

 32 

Keywords: autumnal leaf senescence, global warming, leaf coloration onset, Northern 33 

Hemisphere, photoperiod 34 

 35 

1 | INTRODUCTION 36 

In contrast to the leaves of evergreen conifers, those of northern deciduous plants are not 37 

sufficiently tolerant of freezing to survive cold periods and, therefore, are shed before the onset 38 

of winter. This autumnal senescence process is controlled by changes in gene expression and 39 

metabolic adjustments that include the degradation of macromolecules (e.g., chlorophyll), a 40 

decrease in photosynthesis, and, importantly, the recycling and reallocation of nutrients (Gan & 41 

Amasino, 1997; Thomas & Stoddart, 1980). In parallel to leaf senescence, carbon sink activity 42 

ceases progressively, and plants switch to nutrient recovery and resorption processes (Estiarte & 43 

Peñuelas, 2015; Keskitalo, Bergquist, Gardeström, & Jansson, 2005). Without timely leaf 44 

senescence and abscission, early frost would reduce nutrient resorption, leading to a loss of leaf 45 

resources. Changes in the timing of key steps of leaf senescence extensively influence ecosystem 46 

structure and functions such as vegetation activity, trophic interaction, carbon and nutrient cycling, 47 

land-atmosphere moisture, and energy fluxes (Keenan et al., 2014; Morisette et al., 2009), which 48 

could further affect the climate system (Peñuelas, Rutishauser, & Filella, 2009; Richardson et al., 49 

2013).  50 

Senescence starts as a cryptic phenological process before any visible symptoms become 51 

apparent (Körner & Basler, 2010). The timing of the start of the leaf coloration following 52 

senescence varies, depending on the rate of the senescence process, which is related to 53 

environmental conditions (e.g., temperature) (Fracheboud et al., 2009). Hence, the process of 54 

autumnal leaf senescence has two phases (Fig. 1a): (1) a visually indistinguishable ontogenetic 55 

stage that precedes (2) a visible change in leaf color (Tang et al., 2016). The timings of the middle 56 

and end of leaf coloration are the focus of in situ phenological observations and have been the 57 

main concern of most autumnal phenological studies to date. 58 
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 59 

 60 

Fig. 1 Conceptual graphs illustrating (a) the developmental processes in pigments during leaf 61 

senescence that are related to photosynthetic capacity and leaf color; and (b) phenological changes 62 

retrieved from normalized difference vegetation index (NDVI) in the last few decades. In (a), 63 

DPDO and DLCO are the timings of the onsets of the decrease in maximum canopy photosynthetic 64 

capacity and leaf coloration in autumn, respectively; DLCE is the timing of the end of leaf 65 

coloration. In (b), the onset of green-up corresponds to a 20% increase in NDVI in spring, the 66 

peak of the season corresponds to the maximum NDVI, and DLCE corresponds to a 50% decrease 67 

in NDVI in autumn. DLCO was defined by two methods, corresponding to a 10% decrease in NDVI 68 

(orange point) and the inflection point at which NDVI begins to decline (red point), respectively 69 

(See materials and methods for details). The leftward and rightward arrows indicate advances of 70 

onset of green-up and peak of season and delay of DLCE, respectively, over the past few decades. 71 

The question mark indicates a research gap regarding temporal changes in DLCO and their drivers. 72 

 73 

Satellite and ground-based observations indicate that climate warming in the last several 74 

decades has substantially advanced the onset of spring green-up and the peak of the growing 75 

season, and it has slightly delayed the timing of the end of leaf coloration (DLCE, the time when 76 

the normalized difference vegetation index [NDVI] decreases by 50% of its annual amplitude in 77 

the second half of a year in satellite-based studies (Ganguly, Friedl, Tan, Zhang, & Verma, 2010; 78 

Lukasová, Bucha, Škvareninová, & Škvarenina, 2019; Melaas, Friedl, & Zhu, 2013; Nagai, 79 

Nasahara, Muraoka, Akiyama, & Tsuchida, 2010; White, Thornton, & Running, 1997; Yu, 80 

Luedeling, & Xu, 2010)) in the Northern Hemisphere (Fig. 1b) (Fu et al., 2019; Fu et al., 2015; 81 
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Gill et al., 2015; Jeganathan, Dash, & Atkinson, 2014; Menzel et al., 2020; Xu, Liu, Williams, 82 

Yin, & Wu, 2016). In addition to temperature, an increase in precipitation also delays DLCE in 83 

temperate dry grasslands in the northern middle latitudes (Liu et al., 2016). Besides these abiotic 84 

factors, temporal changes in DLCE are also associated with the onset of green-up in some temperate 85 

tree species (Keenan & Richardson, 2015) and in boreal ecosystems (Liu et al., 2016). In contrast 86 

to DLCE, the timing of onset of leaf coloration (DLCO; Fig. 1b) has been inadequately studied. In 87 

particular, it is not known whether DLCO is sensitive to climate and whether it has been responsive 88 

to recent climate change. DLCO is of key importance because it indicates when leaf senescence 89 

becomes detectable from NDVI and its progress accelerates (Fig. 1b). As shown by experiments 90 

on young trees, some temperate and boreal woody species use the shortening of the photoperiod 91 

as a signal for the onset of leaf senescence (Table S1), but many in situ and satellite observations 92 

indicate that increased temperature induces delays in the advanced stages of senescence such as 93 

DLCE (Delpierre et al., 2009; Estrella & Menzel, 2006; Ge, Wang, Rutishauser, & Dai, 2015; Gill 94 

et al., 2015; Jeong, Ho, Gim, & Brown, 2011; Liu et al., 2016). 95 

A dominant photoperiodic control of early senescence implies that DLCO should not be 96 

delayed, even if the temperature increases, because its timing is controlled only by daylength 97 

(Hypothesis 1). Moreover, because DLCE delays with warmer temperature, we may further 98 

hypothesize that earlier stages of leaf senescence are less sensitive to temperature than are more 99 

advanced stages and expect an extension of the period between DLCE and DLCO under warming. 100 

On the other hand, without photoperiodic control, shifts in DLCO are expected in the case of 101 

climatic warming (Hypothesis 2). Alternatively, if DLCO is influenced by both photoperiod and 102 

temperature, the relationships between DLCO and temperature should vary among different areas 103 

because the strength of the photoperiod signal varies (Hypothesis 3).  104 

To test these hypotheses, we first investigated the temporal changes in DLCO and the 105 

interannual relationships between DLCO and pre-DLCO Tmin (the mean of monthly average daily 106 

minimum temperature for an optimized period preceding DLCO) for northern vegetation (30°N–107 

75°N, cropland pixels excluded) during the period 2000–2018. We then examined whether the 108 

timings of earlier stages of leaf coloration are less responsive to temperature and show fewer 109 
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delays and assessed the impacts of temperature on the progress of leaf coloration. Since only a 110 

few in situ observational programs or networks have monitored DLCO, we determined DLCO from 111 

a 5-day composite time series of the NDVI derived from daily surface spectral reflectance 112 

(MOD09CMG) at a spatial resolution of 0.05°, provided by the spaceborne Moderate Resolution 113 

Imaging Spectroradiometer (MODIS) (Vermote, 2015). To complement the NDVI data, we also 114 

used 332 time series of DLCO observed by professional observers according to standard 115 

observation guidelines (China Meteorological Administration, 1993) in the field in China (Fig. 116 

S1a; Table S2) and the timing of onset of autumnal decline in maximum canopy photosynthetic 117 

capacity (DPDO) derived from eddy covariance CO2 flux observations (Gu et al., 2009; Shen, Tang, 118 

Desai, Gough, & Chen, 2014) at 36 sites from in the FLUXNET2015 dataset (Pastorello et al., 119 

2017) (Fig. S1b and Table S3). 120 

2 | MATERIALS AND METHODS 121 

2.1 | Estimating timings of stages of leaf coloration from satellite observations of NDVI 122 

time series 123 

2.1.1 | Dataset and preprocessing 124 

The NDVI is a proxy for vegetation greenness and has been widely used for phenological 125 

studies at large spatial scales (Buitenwerf, Rose, & Higgins, 2015; Gao et al., 2019; Keenan et al., 126 

2014; Myneni, Keeling, Tucker, Asrar, & Nemani, 1997; Wu et al., 2018). NDVI has also been 127 

proved capable of detecting the onset of leaf coloration (Mariën et al., 2019; Soudani, Delpierre, 128 

Berveiller, Hmimina, & Dufrêne, 2021; Soudani et al., 2012; Yang, Tang, & Mustard, 2014; Zhao, 129 

Donnelly, & Schwartz, 2020). Previous studies have usually used half-month/16-day composite 130 

NDVI time series to retrieve phenological metrics. However, because the duration of leaf 131 

coloration could be as short as 4 weeks in some areas (Ye & Zhang, 2021), NDVI time-series data 132 

with higher temporal resolution are required. We estimated phenological metrics (i.e., the timings 133 

of the onset and the advanced stages of leaf coloration and the onset of green-up) for 2000–2018 134 

from a 5-day composite NDVI time series produced from the MODIS reflectance product 135 

(MOD09CMG Collection 6, available at https://ladsweb.modaps.eosdis.nasa.gov, accessed on 29 136 

January 2019) (Vermote, 2015). MOD09CMG provides an estimate of daily surface spectral 137 

reflectance at a spatial resolution of 0.05°. The quality of the daily surface reflectance data from 138 

https://ladsweb.modaps.eosdis.nasa.gov/
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MOD09CMG is unsatisfactory owing to cloud and snow contamination (Vermote, 2015), so we 139 

used the 5-day maximum value composite approach (Zhang, 2015), combined with a Savitzky-140 

Golay filter (Cao et al., 2018), to produce a high-quality NDVI time series before determining 141 

DLCO. First, NDVI values that were lower than the uncontaminated winter (December–February) 142 

mean NDVI were replaced by the latter (Beck, Atzberger, Høgda, Johansen, & Skidmore, 2006; 143 

Zhang, Tarpley, & Sullivan, 2007). After that, cloud-contaminated and irregularly high and low 144 

NDVI values were identified and reconstructed by using a Savitzky-Golay filter (Cao et al., 2018). 145 

Details for preparing the high-quality NDVI time series are given in Section 1 of the 146 

Supplementary Methods. 147 

We focused on natural vegetation by excluding pixels dominated by cropland, artificial 148 

surfaces, permanent snow or ice, and water bodies on the basis of the MODIS land-cover map 149 

(MCD12C1 Version 6, https://ladsweb.modaps.eosdis.nasa.gov, accessed on 20 August 2018) 150 

(Friedl & Sulla-Menashe, 2015) for the middle year of the time series (2009). Some pixels were 151 

also excluded from analysis because of sparse vegetation coverage, weak seasonality, or NDVI 152 

peaking in October–April. We adopted three criteria for pixel inclusion: mean annual NDVI must 153 

be > 0.10 (Jeong et al., 2011), NDVI should peak between May and September in the multiyear 154 

mean NDVI time series (Shen et al., 2020), and mean NDVI for July and August must be >1.15 155 

times the mean NDVI for December and for January–February in every year (Shen, Zhang, et al., 156 

2014).  157 

2.1.2 | Estimating timings of leaf coloration 158 

Two methods can generally be used to estimate the parameters of vegetation phenology 159 

(Chen et al., 2016; Shang et al., 2017), including DLCO from annual NDVI profiles. One is based 160 

on thresholds (White et al., 1997), whereas the other is based on inflection points (Zhang et al., 161 

2003). We applied the threshold-based method by first using a generalized sigmoid function to fit 162 

the NDVI annual profile [Equation (7) in Klosterman et al. (2014)] and then determined DLCO as 163 

the first date when NDVI decreased by 10% of its annual amplitude in the descending period 164 

(Leblans et al., 2017; Richardson, Hufkens, Milliman, & Frolking, 2018). Though a smaller 165 

decrease in NDVI corresponds to an earlier stage of leaf coloration, consideration of it would 166 

https://ladsweb.modaps.eosdis.nasa.gov/
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introduce more uncertainty. We also determined DLCO by using the algorithm based on inflection 167 

point. In this method, DLCO was defined as the date when the rate of change of the curvature of a 168 

double logistic function (Beck et al., 2006; Elmore, Guinn, Minsley, & Richardson, 2012) fitted 169 

to the NDVI time series reached its first local minimum in the descending period (Zhang et al., 170 

2003). Theoretically, the DLCO defined by the inflection method is close to the date when NDVI 171 

drops by about 9% of its annual magnitude (Shang et al., 2017). 172 

The advanced stages of leaf coloration were determined as the dates when NDVI decreases 173 

by 20%, 30%, 40%, and 50% (corresponding to the timing of the end of leaf coloration, DLCE) of 174 

its annual amplitude, respectively. In addition, since in a few studies (Berman et al., 2020; Ren, 175 

Campbell, & Shao, 2017), the end of leaf coloration was defined as the dates when NDVI drops 176 

by 60% or 90% of its annual amplitude, we also included these definitions in analysis. We defined 177 

the timing of the onset of green-up as the date when NDVI increased by 20% (Yu et al., 2010).  178 

2.1.3 | Evaluation of satellite DLCO using PhenoCam 179 

It is unreasonable to validate the satellite-derived DLCO by comparing it with the DLCO of a 180 

few plant individuals from ground observation because of mismatch in spatial coverage, different 181 

definitions of phenological metrics, and the spatial heterogeneity in phenological phases among 182 

individuals for a pixel. Fortunately, pairs of field observations of NDVI and leaf coloration 183 

showed good consistency between the start of NDVI decrease and leaf coloration onset (Soudani 184 

et al., 2021; Soudani et al., 2012). Moreover, the comparison between start of autumn from 185 

satellite observed NDVI and field observations of leaf coloration onset for the entire area covered 186 

by the pixel also showed little difference between them (Zhao et al., 2020). Those studies suggest 187 

that NDVI is capable to detect the onset of leaf coloration if the observed leaves or individuals 188 

are identical between ground and satellite observations. However, there are very limited pairs of 189 

compatible observations of NDVI and leaf coloration that can be used for validation.  190 

Considering the high capability of PhenoCam in capturing the variations in leaf coloration 191 

onset at the landscape scale (Klosterman & Richardson, 2017; Klosterman et al., 2014; Nezval, 192 

Krejza, Světlík, Šigut, & Horáček, 2020; Wingate et al., 2015), we used the PhenoCam Dataset 193 

V2.0 (Richardson et al., 2018; Seyednasrollah, Young, et al., 2019; SeyednasrollahYoung, et al., 194 
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2019) to assess the relationships between satellite DLCO and the DLCO derived from time series of 195 

GCC (green chromatic coordinate) and VCI (vegetation contrast index) observed by PhenoCam. 196 

The GCC and VCI were determined from the digital numbers (DN) in red (R), green (G), and blue 197 

(B) channels. Specifically, GCC and VCI were calculated as DNG/(DNR+DNG+DNB) and 198 

DNG/(DNR+DNB), respectively. Details for the determinations of DLCO from time series of GCC 199 

and VCI are given in Section 2 of the Supplementary Methods. 200 

2.2 | DLCO from in situ phenological observations 201 

DLCO was extracted at the species level from datasets of in situ phenological observations 202 

in China provided by the Chinese Academy of Sciences (CAS). The CAS dataset uses the date of 203 

first leaf coloring as DLCO. For a given species at a given site, the date of first leaf coloring was 204 

identified as the day when the first batch (about 5%) of leaves on more than half of three to five 205 

marked individuals started to change color (China Meteorological Administration, 1993). The in 206 

situ phenological observations were performed visually according to standard observation 207 

guidelines (China Meteorological Administration, 1993) every other day by professional 208 

observers trained well by CAS. The CAS dataset is available from National Earth System Science 209 

Data Sharing Infrastructure, National Science and Technology Infrastructure of China 210 

(http://www.geodata.cn, accessed on 25 July 2018). 211 

2.3 | DPDO estimated from maximum canopy photosynthetic capacity 212 

The timing of the onset of the decrease in maximum canopy photosynthetic capacity in 213 

autumn (in day of year, DPDO) is defined as the date when the capacity decreases by 10% of its 214 

annual amplitude after the data have been fitted to a generalized sigmoid function [Equation (7) 215 

in Klosterman et al. (2014)]. The capacity was calculated from half-hourly or hourly gross primary 216 

productivity (GPP_NT_CUT_MEAN) based on eddy covariance measurements in the 217 

FLUXNET2015 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/, accessed on 10 218 

March 2018) (Pastorello et al., 2017). We followed the procedure of Shen, Tang, et al. (2014) to 219 

estimate daily canopy photosynthetic capacity, except that the parameters in the rectangular 220 

hyperbolic function were estimated by using half-hourly/hourly GPP and incident shortwave 221 

radiation calculated by using 15-day moving windows throughout a year. We used data from the 222 

http://www.geodata.cn/data/datadetails.html?dataguid=142203640390477&docId=1128
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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sites in non-Mediterranean (Köppen-Geiger climate classification) and non-cultivated 223 

(International Geosphere–Biosphere Programme classification) regions at middle and high 224 

northern latitudes (30°N–75°N). In a similar way to the pixel exclusion process that was applied 225 

to the satellite retrievals, we discarded sites where weak seasonality (i.e., the mean maximum 226 

canopy photosynthesis for June–August was <1.15 times that for December or for January and 227 

February) was detected in any year and sites where capacity did not peak in May–September.  228 

2.4 | Analyses 229 

2.4.1 | Temporal changes 230 

Temporal changes of DLCO over the study period were assessed using temporal trends in 231 

DLCO, which were quantified as the slopes of linear regressions between DLCO and year by using 232 

ordinary least squares regression (OLSR) and t-tests. To complement the temporal changes 233 

assessed by using OLSR, a non-parametric approach (the Theil-Sen estimator and Mann-Kendall 234 

test (Sen, 1968; Theil, 1992)) was also used to calculate the trends in DLCO. Temporal changes of 235 

timings of advanced stages of leaf coloration were assessed in the same way.  236 

The temporal trend was calculated for each time series for the ground-based observations 237 

and for each pixel for the satellite observations. We focused only on the temporal trends for the 238 

pixels and time series of in situ phenological observations with a multiyear mean of DLCO 239 

occurring after the summer solstice. Phenological records were not available for some of the years 240 

of the time series for calculating more trends, because the time series may have had missing values 241 

owing to a lack of observation. However, the time series used for the regressions contained at least 242 

10 years of observational records and at least one record for any 3 consecutive years. If two or 243 

more parts of the time series met these criteria, the most recent part was used.  244 

2.4.2 | Partial correlation between DLCO and temperature or precipitation 245 

Tmin has long been recognized as the indicator of the thermal condition that induces 246 

autumnal leaf coloration (Tang et al., 2016), and the length of period preceding DLCO in which 247 

Tmin has the largest influence on DLCO could vary among different locations because of differential 248 

vegetation characteristics and climate conditions (Gao et al., 2019; Jeong et al., 2011; Matsumoto, 249 

Ohta, Irasawa, & Nakamura, 2003; Wu et al., 2018). In addition, precipitation might also regulate 250 
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leaf coloration in dry climates (Liu et al., 2016). We thus first determined the length of this period 251 

preceding DLCO (referred as pre-DLCO period). Taking satellite-derived DLCO for example, we 252 

investigated the impacts of temperature on the DLCO by calculating the partial correlation 253 

coefficient (RTN) values between DLCO and the mean of monthly average daily minimum 254 

temperature (Tmin) for the pre-DLCO period, with concurrent total precipitation as the control 255 

variable for 2000–2018. The pre-DLCO period for Tmin (Fig. S2) was defined as the period 256 

preceding the multiyear mean DLCO for which Tmin had the strongest interannual partial correlation 257 

with DLCO, with concurrent total precipitation as a control variable (Jeong et al., 2011; Wu et al., 258 

2018). In detail, we first determined several candidate periods that ended at the multiyear mean 259 

DLCO, and had a length starting from 1 month, with a step of 1 month. For each of the candidate 260 

periods, we calculated the partial correlation coefficient between DLCO and mean Tmin in each of 261 

these periods, and then selected the candidate with the highest absolute value of correlation 262 

coefficient. If the multiyear mean DLCO was in the first half of a month, then the pre-DLCO period 263 

ended at the month preceding the multiyear mean DLCO. Otherwise, the pre-DLCO period ended at 264 

the month of the multiyear mean DLCO. The impacts of Tmin on the advanced stages of leaf 265 

coloration were investigated similarly. A few studies have suggested that the date of onset of 266 

green-up may affect leaf coloration through carry-over effects (Cong, Shen, & Piao, 2017; Fu et 267 

al., 2014; Keenan & Richardson, 2015; Liu et al., 2016), so we also considered the case in which 268 

the onset of green-up was included as an extra control variable in the partial correlation between 269 

DLCO and Tmin. The pre-DLCO period for precipitation and the impacts of precipitation on DLCO 270 

were assessed similarly. 271 

The data for Tmin and precipitation were extracted from the Climatic Research Unit (CRU) 272 

Time-Series (TS) 4.03 dataset (http://data.ceda.ac.uk, accessed on 11 June 2019), which provided 273 

monthly data at a spatial resolution of 0.5° × 0.5° until 2018. It should be noted that Tmin in the 274 

dataset is an approximation of the mean of daily minimum temperature for a calendar month, 275 

which is arithmetically calculated from gridded monthly mean temperature and the diurnal 276 

temperature range (Harris, Jones, Osborn, & Lister, 2014) and does not exactly reflect the 277 

interannual variations in the absolute minimum temperature (Körner & Hiltbrunner, 2018) 278 

experienced by plants before DLCO. The CRU data were resampled at 0.05° × 0.05° by replication 279 

http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.01/
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to match the DLCO data.  280 

Complementary to the pre-DLCO period in which Tmin had the strongest interannual partial 281 

correlation with DLCO, we also used fixed lengths (1 month and 15 days preceding multiyear mean 282 

DLCO, respectively) as the pre-DLCO periods. We calculated the partial correlation between DLCO 283 

and pre-DLCO Tmin with concurrent total precipitation as the control variable. Moreover, we 284 

investigated the partial correlation coefficient between DLCO and the lowest Tmin during the 15 285 

days before the multiyear mean DLCO, with the concurrent mean Tmin (mean of the remaining 14 286 

Tmin values after removal of the lowest Tmin during the period) and total precipitation as control 287 

variables. Note that when the pre-DLCO period was defined as the 15 days preceding DLCO and 288 

when we analyzed the relationship between the lowest Tmin and DLCO, daily Tmin and precipitation 289 

were extracted from CRU-NCEP dataset (Version 7.2, https://vesg.ipsl.upmc.fr, assessed on 10 290 

January 2019), which provides 6-hourly data at a spatial resolution of 0.5° × 0.5° through 2016 291 

(Viovy, 2018). The CRU-NCEP 7.2 is a combination of two datasets: the CRU TS3.2 0.5° × 0.5° 292 

monthly data covering the period 1901 to 2002 and the NCEP reanalysis 2.5° × 2.5° 6-hourly data 293 

covering the period 1948 to 2016. We determined daily Tmin as the minimum value of the four 6-294 

hourly minimum temperature values for each day. The CRU-NCEP data were resampled at 0.05° 295 

× 0.05° by replication to match the DLCO data.  296 

We also investigated the impact of Tmin and precipitation on DLCO from ground-based 297 

observations in China and on DPDO from eddy-covariance sites as complementary to satellite-298 

derived DLCO. Climatic data for in situ observations in China was extracted from the “Daily 299 

Surface Climate Variables of China” catalog (a dataset named 300 

SURF_CLI_CHN_MUL_DAY_V3.0), which includes daily climate data for 2474 sites in China 301 

from January 1951 to July 2014, provided by the Chinese Meteorological Administration. The 302 

distance between phenological and meteorological stations was less than 25 km. Climatic data for 303 

DPDO were calculated from the half-hourly temperature dataset provided by FLUXNET2015. 304 

2.4.3 | Relationships between the progress of leaf coloration and temperature 305 

The impacts of temperature on the progress of leaf coloration were assessed in four ways. 306 

(1) We calculated the partial correlation coefficient between each of the timings of different stages 307 
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in leaf coloration (determined as NDVI decreases by 20%, 30%, 40, 50%, 60%, and 90%) and 308 

preceding Tmin using the approach described in Section 2.4.2. We then compared the percentage 309 

of area corresponding to the partial correlation coefficient among the different timings. (2) 310 

Difference in temperature sensitivity between the DLCE and DLCO was used to assess the 311 

differential responses to Tmin between DLCE and DLCO. The temperature sensitivity of DLCO was 312 

defined as the coefficient for pre-DLCO Tmin in a linear regression in which DLCO was set as the 313 

dependent variable, and pre-DLCO Tmin and pre-DLCO total precipitation were independent variables. 314 

The temperature sensitivity of DLCE was calculated similarly. See 2.4.2 for the details of the 315 

determination of pre-DLCO (or pre-DLCE) Tmin and total precipitation. (3) Temperature sensitivity 316 

of the length of duration of leaf coloration was used to assess the impact of temperature on the 317 

length of duration of leaf coloration. The duration of leaf coloration was defined as the difference 318 

between DLCE and DLCO. Its temperature sensitivity was estimated as the coefficient for mean Tmin 319 

in the linear regression in which the length was set dependent variable and the mean Tmin and total 320 

precipitation in the period between DLCE and DLCO were independent variables. 4) Temperature 321 

sensitivity of the speed of leaf coloration was used to assess the impact of temperature on the 322 

speed of leaf coloration within a season. The speed of leaf coloration within a season was defined 323 

as the normalized decreasing speed of NDVI between DLCE and DLCO, calculated as –(NDVIDLCE 324 

– NDVIDLCO)/(DLCE –DLCO)/AMPNDVI, where AMPNDVI is the annual amplitude of NDVI for a 325 

given pixel and given year. Temperature sensitivity of the speed of leaf coloration was then 326 

calculated as the coefficient for mean Tmin when regressing the speed of leaf coloration against 327 

mean Tmin and total precipitation between DLCE and DLCO. Here, Tmin and precipitation were 328 

extracted from the CRU TS 4.03 monthly data. 329 

2.4.3 | Dependence of DLCO on daylength 330 

Previous experimental findings suggest the daylength as a signal for the start of autumn leaf 331 

senescence (Table S1), indicating a photoperiodic control on DLCO. However, it is difficult to 332 

assess the role of daylength by using interannual correlations between DLCO and daylength under 333 

natural conditions since the daylength on a given date does not vary among years. Alternatively, 334 

because control of photoperiod on autumn leaf phenology may vary with daylength across 335 

different regions (Howe, Hackett, Furnier, & Klevorn, 1995; Pau et al., 2011; Paus, Nilsen, & 336 

Junttila, 1986; Saikkonen et al., 2012), we examined the variabilities in the correlation between 337 
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DLCO and Tmin and in temporal changes in DLCO against the spatial gradient of daylength to explore 338 

the dependence of DLCO on daylength. Meanwhile, the spatial variations in the response of autumn 339 

leaf phenology to temperature might be associated with local background temperature conditions 340 

(Ford, Harrington, & Clair, 2017; Zohner, Benito, Svenning, & Renner, 2016). Hence, the spatial 341 

variations in background temperature should be minimized when assessing the dependence of 342 

DLCO on daylength. To do this, we first calculated the daylength for each pixel at the date of 343 

multiyear mean DLCO over the period 2000–2018 and the mean Tmin of the period before multiyear 344 

mean DLCO. The period before multiyear mean DLCO was the month preceding the multiyear mean 345 

DLCO if the multiyear mean DLCO was in the first half of a month; otherwise, the period was the 346 

month of the multiyear mean DLCO. After that, for each cell of 1.5-hour daylength and 4-°C mean 347 

Tmin in the space of the daylength and mean Tmin (see Fig. 5 for graphic illustration), we calculated 348 

the percentage of area with significant (P < 0.05, t-test) DLCO delays, the average of positive 349 

correlation, and the percentage of area with a positive correlation between DLCO and Tmin (or 350 

precipitation). In addition, there is more experimental evidence of photoperiodic control on the 351 

onset of leaf senescence for woody plants than for herbaceous plants (Table S1), indicating woody 352 

and herbaceous vegetation may respond to photoperiod differently. Therefore, the above 353 

exploration was also performed separately for woody and herbaceous vegetation, separately. Here, 354 

woody and herbaceous vegetation were merged from Classes 1–6 and Class 10, respectively, in 355 

the MODIS land-cover product (MCD12C1, Version 6) for 2009 (Friedl & Sulla-Menashe, 2015). 356 

2.4.4 | Possible effect of summer NDVI 357 

In some deciduous forests, NDVI may decline in early summer (i.e., late May–July) before 358 

leaf coloration, and this may potentially interfere with the determination of DLCO to some extent 359 

(Elmore et al., 2012) and its relationship with temperature. To address this, for the pixels classified 360 

as deciduous broadleaf forest in the MODIS land-cover product (Friedl & Sulla-Menashe, 2015), 361 

we redefined DLCO considering the possible effect of summer NDVI decline on DLCO and then re-362 

analyzed the trends in DLCO and the relationship between DLCO and temperature as described in 363 

Sections 2.4.1 and 2.4.2. For the sake of robustness, the possible effect of summer NDVI decline 364 

on DLCO was considered in three different ways: (1) We used a modified double logistic model 365 

that considers early summer NDVI decline (Elmore et al., 2012) to fit the NDVI time series instead 366 
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of the original double logistic function for the pixels classified as deciduous broadleaf forest. DLCO 367 

was then determined as the date when the rate of change of the curvature of a double logistic 368 

function fitted to the NDVI time series reached its first local minimum in the descending period; 369 

(2) DLCO was defined as the date when NDVI decreased by 10% of its annual amplitude from 1 370 

August. The maximum value used to determine the annual amplitude was the mean value of the 371 

upper quartile of the fitted NDVI values in August; and (3) DLCO was defined as the date when 372 

NDVI decreased by 10% of its annual amplitude from 16 August. The maximum value used to 373 

determine the annual amplitude was the mean value of the upper quartile of the fitted NDVI values 374 

in the second half of August.  375 

 376 

2.4.5 | Possible cold events before DLCO (or DPDO) 377 

A sudden drop of nighttime temperature to the freezing point can induce leaf coloration in 378 

a few days (Körner, 2007), and this may interfere with our partial correlation analysis between 379 

DLCO (or DPDO) and temperature. Hence, we re-examined the temporal changes in DLCO and the 380 

correlation between DLCO and temperature as described in Sections 2.4.1 and 2.4.2, after excluding 381 

possible cold events estimated using an empirical approach as follows (taking satellite-derived 382 

DLCO for example).  383 

First, we determined the Tmin threshold below which there could potentially be a cold event 384 

for each pixel. Since cold event that induces rapid leaf senescence should happen 1–5 days before 385 

DLCO, the lowest Tmin during the 6 to 35 days before DLCO for all years was set as the Tmin threshold. 386 

A temperature higher than such a threshold will not induce a cold event. For vegetation in middle 387 

and high latitudes, a temperature higher than freezing (0 ℃) does not cause frost damage (Körner, 388 

2021; Lenz, Hoch, Vitasse, & Körner, 2013; Sakai & Larcher, 1987; Taschler & Neuner, 2004). 389 

Therefore, if the lowest Tmin was higher than 0 °C, the Tmin threshold was set to 0 °C.  390 

Second, for a given pixel, a year was determined as a candidate cold event year if the lowest 391 

Tmin in the period 1 to 5 days before DLCO was lower than the above-mentioned Tmin threshold. 392 

Then, from the years in which there was no candidate cold event, we determined the latest DLCO 393 

that was not caused by a cold event for that pixel. 394 
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Finally, a DLCO was recognized as possibly caused by a cold event if it was in the candidate 395 

cold event years and meantime earlier than the latest DLCO that was not caused by a cold event. 396 

For a DLCO (referred to as D’LCO) from the candidate cold event years and later than the latest 397 

DLCO that was not caused by a cold event, it (D’LCO) would be recognized as a DLCO possibly 398 

caused by a cold event if one of the following two conditions is met: (1) the decreasing rate of 399 

Tmin in the period 1 to 5 days before D’LCO was faster than the maximum decreasing rate of Tmin 400 

among the years in which there was no candidate cold event; (2) the decrease (absolute value) in 401 

Tmin in the period 1 to 5 days before D’LCO was greater than the maximum decrease in Tmin among 402 

the years with no candidate cold event. Here, for a given year, the decreasing rate of Tmin in the 403 

period 1 to 5 days before DLCO (or D’LCO) was calculated as the minimum of the slopes of Tmin 404 

against calendar date. A slope of Tmin against calendar date was calculated as [Tmin(time2)– 405 

Tmin(time1)]/(time2– time1), where time2 = DLCO–1, DLCO–2, DLCO–3, DLCO–4, or DLCO–5 and 406 

time1 = DLCO–2, DLCO–3, DLCO–4, or DLCO–5, and time2 is later than time1. The decrease in Tmin 407 

in the period 1 to 5 days before DLCO (or D’LCO) for a given year is the maximum value of 408 

magnitudes of [Tmin(time2)– Tmin(time1)].  409 

This empirical approach may have overestimated the number of years with cold events 410 

before DLCO (hereafter, these identified events were referred as possible cold events), but our 411 

objective here is to exclude cold events as many as possible and then to examine if the main 412 

findings of our study were caused by cold events. In addition, under clear skies, the temperature 413 

of the canopy surface could be lower than the air temperature, so we also determined the possible 414 

cold events by using 2 °C as the Tmin threshold (Körner, 2021). 415 

Here, the daily Tmin used to determine possible cold events for satellite-derived DLCO was 416 

extracted from the CRU-NCEP 7.2 dataset. Daily Tmin for ground-based observations in China 417 

was derived from the nearest meteorological station (<25 km), provided by the Chinese 418 

Meteorological Administration. Daily Tmin for DPDO was calculated from the half-hourly 419 

temperature dataset provided by FLUXNET2015. 420 

3 | RESULTS 421 

3.1 | Comparison of satellite DLCO with PhenoCam DLCO  422 



16 

The satellite DLCO explained more than 80% of the variations in PhenoCam derived DLCO (N 423 

= 378 and 377 for GCC and VCI, respectively) (Fig. 2). The differences between the satellite DLCO 424 

and the PhenoCam DLCO are caused by the mismatch between the annual NDVI and GCC (or VCI) 425 

trajectories due to the difference in spatial coverage between the PhenoCam and satellite pixel in 426 

the cases of phenologically heterogeneous land surface (see Section 2 of the Supplementary 427 

Methods).  428 

 429 

Fig. 2 Comparison between satellite DLCO and PhenoCam DLCO. The PhenoCam DLCO was 430 

determined from GCC (a) and VCI (b), respectively. R: Pearson’s correlation coefficient; RMSE: 431 

root mean square error; AAD: average absolute difference; bias is defined as the difference 432 

between the mean of satellite DLCO and the mean of PhenoCam DLCO, and negative bias means 433 

the PhenoCam DLCO is earlier than satellite DLCO. 434 

 435 

3.2 | Proportion of possible cold events before DLCO (or DPDO) 436 

Possible cold events occurred before DLCO or DPDO in very small fractions of pixel-437 

years/site-years with phenological data (1.6%, 1.7%, and 0.6% for satellite DLCO, ground-based 438 

observations in China, and DPDO from eddy-covariance sites, respectively; Table 1). The 439 

proportion of years possibly affected by cold events was slightly higher when using the method 440 

based on a temperature threshold of 2 °C than that of 0 °C. 441 

 442 

Table 1. Proportions of years with possible cold events before DLCO (for satellite and in situ 443 

observations) and before DPDO (for FLUXNET2015).  444 

Metrics Satellite DLCO in situ DLCO FLUXNET2015 
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(2000–2016) China DPDO 

Proportion (%) of years with possible cold events (0 °C) 1.6 1.7 0.6 

Proportion (%) of years with possible cold events (2 °C) 2.1 3.5 1.0 

DLCO, timing of onset of leaf coloration in autumn; DPDO, timing of onset of the decrease in maximum canopy 445 

photosynthetic capacity in autumn. Possible cold events were determined mainly by using a threshold-based 446 

method with a daily minimum temperature of 0 °C or 2 °C (see Section 2.4.5 for identification of possible cold 447 

events). 448 

 449 

3.3 | Temporal trends in DLCO and the advanced stages of leaf coloration  450 

DLCO was not significantly delayed in 94% of the area during the study period, as assessed 451 

by OLSR. The few pixels with a significant delay trend (6%; P < 0.05, t-test) were scattered across 452 

the Northern Hemisphere (Fig. 3a). Excluding years with possible cold events before DLCO 453 

produced similar results (Fig. S3 and Table S4). The Theil-Sen estimator generated results 454 

supporting the lack of changes in DLCO (no significant delay in 96% of the area; P < 0.05, Mann-455 

Kendall test; Fig. S4a and Table S5). When we defined DLCO as the inflection point at which NDVI 456 

begins to decline, we obtained similar results (Fig. S4b and c). Considering early summer NDVI 457 

decline produced similar results (Figs. S5, S6, and S7). 458 

Complementary to satellite-derived DLCO, we also examined the temporal changes of DLCO 459 

by using ground-based leaf coloration data from China. DLCO was not significantly delayed for 460 

90% and 94% of the 332 time series as shown by OLSR (Fig. 3b) and the Theil-Sen method (Table 461 

S5), respectively. Similar results were produced when possible cold events were excluded (Table 462 

S4). 463 

The timings of earlier stages of leaf coloration exhibited delaying trends in fewer areas. The 464 

leaf coloration stages determined as the dates when NDVI decreases by 50% (i.e., DLCE), 40%, 465 

30%, 20%, and 10% (i.e., DLCO) were significantly (P < 0.05, t-test) delayed for 14%, 14%, 12%, 466 

9%, and 6% of the area, respectively (Fig. S8). 467 
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  468 

Fig. 3 Temporal trends in the timing of the onset of leaf coloration (DLCO), as retrieved from 469 

satellite and in situ observations. (a) Satellite-derived DLCO trends over 2000–2018. The bar chart 470 

in the bottom-left corner shows the percentage of area within each interval of the significant 471 

temporal trends and the percentage of area with nonsignificant trends, indicated by the color scale 472 

at the bottom. Positive and negative trend values refer to significantly delayed and advanced DLCO, 473 

respectively. DLCO corresponds to a 10% decrease in NDVI. (b) Ground-observed DLCO trends 474 

derived over 1971–1997 from in situ leaf coloration observations in China. Significant temporal 475 

trends were determined by using t-tests at P < 0.05 and ordinary least squares regression.  476 

 477 

3.4 | Correlation between DLCO and temperature or precipitation  478 
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DLCO was not consistently correlated with pre-DLCO Tmin, with only 9% of the area in 479 

scattered pixels showing a significant positive correlation and 5% showing a significant negative 480 

correlation (Fig. 4a). DLCO was positively correlated with pre-DLCO total precipitation in 13% of 481 

the area, mainly in the temperate grassland of Northern America and in the middle latitudes of 482 

Eurasia, sub-arctic grassland, and alpine steppe of the Tibetan Plateau (Fig. S9). Therefore, neither 483 

pre-DLCO Tmin nor precipitation was a useful predictor of DLCO in most areas. We obtained similar 484 

results when using the month preceding DLCO (Fig. S10) or 15 days preceding DLCO (Fig. S11) as 485 

the pre-DLCO period, with only 6% and 5%, respectively, of the area showing a significant positive 486 

correlation between DLCO and pre-DLCO Tmin. We also investigated the relationship between DLCO 487 

and the lowest daily minimum temperature during the 15 days before the multiyear mean DLCO 488 

and only 3% of the area showed a significant positive correlation (Fig. S12). Moreover, including 489 

the date of onset of green-up as an extra control variable in the partial correlation analyses did not 490 

affect the results (Fig. S13). The in situ phenological records in China indicated that ground-491 

observed DLCO was positively correlated with pre-DLCO Tmin for 13% of the time series and was 492 

not correlated with pre-DLCO Tmin for 82% of the time series (Table 2). Excluding DLCO possibly 493 

caused by cold events produced similar results (Fig. S14 and Table S6). Overall, these results 494 

suggest that an increase in pre-DLCO Tmin is not likely to delay DLCO in most areas in the middle 495 

and high northern latitudes.  496 

 497 
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 498 

Fig. 4 Impacts of temperature on the timing of different stages of leaf coloration and on the 499 

progress of leaf coloration over the period 2000–2018. (a) Spatial pattern of the partial correlation 500 
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coefficient (RTN) between the onset of leaf coloration (DLCO, 10% decrease in NDVI) and pre-501 

DLCO mean daily minimum temperature (Tmin). (b) Spatial pattern of RTN between timing of the 502 

end of leaf coloration (DLCE, 50% decrease in NDVI) and pre-DLCE Tmin. The bar charts in (a) and 503 

(b) show the percentage of area for each interval of the partial correlation coefficient (P < 0.05), 504 

with the coefficient indicated by the color scale on the right. Non-significant correlations (P > 505 

0.05) are in gray. (c) Percentage of area for which RTN between the timing of a given stage of leaf 506 

coloration and preceding Tmin is higher than a given threshold indicated by the horizontal axis. For 507 

example, RTN for the onset of leaf coloration is higher than 0.2 in about 40% of the area. (d) 508 

Difference in temperature sensitivity between DLCE and DLCO. Positive values indicate that DLCE 509 

is more sensitive to temperature than DLCO, whereas negative values indicate that DLCO is more 510 

sensitive to temperature than DLCE. (e) Temperature sensitivity of the length of duration of leaf 511 

coloration. Positive values indicate that warming extends the duration of leaf coloration, whereas 512 

negative values indicate that warming shortens the leaf coloration duration. (f) Temperature 513 

sensitivity of the speed of leaf coloration. Positive values indicate that warming increases the 514 

speed of leaf coloration, whereas negative values indicate that warming reduces the speed of leaf 515 

coloration. The bar charts in (d), (e), and (f) show the percentage of area for each interval of the 516 

temperature sensitivity indicated by the color scale on the right.  517 

 518 

Table 2. Percentage of correlations between DLCO or DPDO and each climate factor for each 519 

interval of the partial correlation coefficient.  520 

Metric 
Number of 

time series 

Climate  

factor 

Interval of the partial correlation coefficient (P < 0.05) 
P > 0.05 

[−1.0, −0.8) [−0.8, −0.6) [−0.6, 0) (0, 0.6] (0.6, 0.8] (0.8, 1.0] 

in situ DLCO  

China 
332 

Temperature 0 2 3 4 8 1 82 

Precipitation 0 3 3 4 5 0 85 

FLUXNET2015 

DPDO 
36 

Temperature 0 5 3 0 3 0 89 

Precipitation 0 6 0 8 3 5 78 

DLCO, timing of the onset of leaf coloration in autumn; DPDO, timing of the onset of the decrease in maximum canopy 521 

photosynthetic capacity in autumn. The data in the farthest right column indicate the percentages of area or time series 522 

with non-significant correlations. 523 

 524 
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3.5 | Impacts of temperature on the progress of leaf coloration 525 

We first examined whether the timings of earlier stages of leaf coloration are less closely 526 

related with temperature than later stages. The fact that the earlier stages of leaf coloration had 527 

fewer areas with a significantly delayed trend (Fig. S8) matches that the significantly positive 528 

correlations between the timings of earlier stages of leaf coloration and Tmin were observed in 529 

fewer areas (Fig. 4c). The timings of leaf coloration stage corresponding to NDVI decreases by 530 

40%, 30%, 20%, and 10% (i.e., DLCO) were significantly positively correlated with Tmin in 30%, 531 

25%, 17%, and 9% of the area (Figs. 4a and c, and S15). Particularly, DLCE was significantly 532 

positively correlated with pre-DLCE Tmin in 34% of the area (Fig. 4b), substantially more than that 533 

for the DLCO-Tmin correlations (9%, Fig. 4a). The proportion increased to 38% and 41% for the 534 

timings of leaf coloration stage corresponding to a 60% and 90% decrease in NDVI (Fig. S16). 535 

These above results show decreasing correlations with temperature of earlier stages of leaf 536 

senescence. To further verify this, we examined the correlation between DPDO, an indicator of leaf 537 

senescence earlier than DLCO, and pre-DPDO Tmin. DPDO and pre-DPDO Tmin were less positively 538 

correlated than were NDVI-derived DLCO and pre-DLCO Tmin at the same sites during the same 539 

periods (3% and 6% of the sites for DPDO and DLCO, respectively, Table S7). Among all the eddy-540 

covariance towers, DLCO was significantly positively correlated with pre-DLCO Tmin in 3% of the 541 

36 and was not correlated with pre-DPDO Tmin in 89% of the eddy-covariance records (Table 2). 542 

Moreover, excluding DPDO possibly caused by cold events produced similar results (Table S6). 543 

We then examined whether DLCO is less sensitive to temperature than DLCE. In most regions 544 

(66%) of the middle and high northern latitudes, the temperature sensitivity of DLCO was smaller 545 

than that of DLCE (Fig. 4d). The temperature sensitivity of DLCO was less than DLCE by at least 4 546 

d °C–1 in 39% of the study area, mainly in northern Europe, the eastern USA, eastern Canada, and 547 

western Russia. In 14% of the area, the temperature sensitivity of DLCO was more than 4 d °C–1 548 

greater than DLCE, mainly distributed in the Tibetan Plateau, western North America, area in 549 

Europe near 60°N, northern Kazakhstan, and between 45°N and 65°N in Russia.  550 

As can be expected from the smaller temperature sensitivity of DLCO relative to that of DLCE, 551 

warming could extend the duration of leaf coloration in 71% of the area (Fig. 4e). In 42% of the 552 



23 

area, the temperature sensitivity of the length of duration of leaf coloration was greater than 3 553 

d °C–1, mainly in Russia, eastern North America, and northern Europe. The area with a 554 

temperature sensitivity lower than–3 d °C–1 accounted for 11% of the study area, scattered in 555 

Tibetan Plateau, central USA, western North America, between 45°N and 60°N in Europe, 556 

northern Kazakhstan, and southeastern Russia. 557 

Moreover, warming could slow the progress of leaf coloration. In 69% of the area, the speed 558 

of leaf coloration could be reduced by higher temperature (Fig. 4f), particularly in the region north 559 

of 60°N. The temperature sensitivity of the speed of leaf coloration was lower than –1‰ d–1 °C–1
 560 

in 34% of the study area (negative values of temperature sensitivity indicate that warming reduces 561 

the speed of leaf coloration), mainly in eastern and northern Canada, northern Europe, and 562 

northern Russia. Only 13% of the area showed a highly increasing in the speed of leaf coloration 563 

under increasing temperature (> 1‰ d–1 °C–1), scattered in Mongolia, Tibetan Plateau, western 564 

Canada, central and western USA, and central and southeastern Russia. 565 

When considering early summer NDVI decline, we also found that more advanced stages 566 

of leaf coloration were more responsive to temperature (Figs. S17c, S18c, S17d and S18d), and 567 

warming could slow the coloration progress (Figs. S17f and S18f) and extend the duration of leaf 568 

coloration (Figs. S17e and S18e). 569 

 570 

3.6 | Dependence of DLCO on daylength 571 

We attempted to explore the dependence of DLCO on daylength, by examining the 572 

variabilities in the correlation between DLCO and Tmin and in temporal changes in DLCO against the 573 

spatial gradient of daylength. In the areas with longer daylengths at multiyear mean DLCO, there 574 

were proportionally fewer significant DLCO delays during 2000–2018 (Fig. 5a and Fig. S19a), and 575 

the positive relationship between DLCO and pre-DLCO Tmin was slightly weaker, as indicated by the 576 

smaller partial correlation coefficient between them (Fig. 5d). Such patterns were more prominent 577 

for woody vegetation than for herbaceous vegetation (Fig. 5b, c, e, and f; Fig. S19b and c). For 578 

vegetation with a daylength at DLCO of more than 13.5 h, DLCO was more positively correlated 579 
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with pre-DLCO Tmin in colder areas at a given daylength (Fig. 5d–f). The dependences of DLCO 580 

trends on daylength and of the correlation between DLCO and pre-DLCO Tmin on daylength were 581 

also found when years with possible cold events before DLCO were excluded (Fig. S20) and when 582 

we considered summer decline in NDVI (Figs. S21 and S22). The correlation between DLCO and 583 

pre-DLCO total precipitation was independent of daylength and was slightly stronger for the areas 584 

with a higher temperature before DLCO, mostly because of the stronger effect of precipitation in 585 

delaying DLCO in herbaceous vegetation (Figs. S9 and S23).  586 

 587 

 588 

Fig. 5 Dependence of temporal trends in the timing of the onset of leaf coloration (DLCO, 10% 589 

decrease in NDVI, a–c) and of the partial correlation coefficient (RTN, d–f) between DLCO and pre-590 

DLCO mean daily minimum temperature (Tmin) on daylength and temperature over the period 591 

2000–2018. (a) All vegetation. Color indicates the percentage of area with significant (P < 0.05) 592 

DLCO delays in each cell (i.e., a specific temperature × daylength combination), as indicated in the 593 
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scale at the bottom. The number in each cell indicates the ratio (unit: ‰) of the area in each cell 594 

to the total area with DLCO retrieval. The temporal trends and their significances were determined 595 

with ordinary least squares regression and t-tests. (b) and (c), The same as (a) but for woody and 596 

herbaceous vegetation, respectively. (d) All vegetation. Color indicates the average of the positive 597 

RTN, as indicated in the scale at the bottom. The number in each cell indicates the percentage of 598 

area with a positive correlation in each cell. (e) and (f), The same as (d) but for woody and 599 

herbaceous vegetation, respectively. Only cells where the ratio of the area of the cell to the total 600 

area is >1‰ are represented. 601 

4 | DISCUSSION 602 

In previous analyses of in situ and satellite observations (Garonna et al., 2014; Gill et al., 603 

2015; Liu et al., 2016), the advanced stage of autumnal leaf senescence, indicated by DLCE, was 604 

significantly delayed in a larger proportion of areas, or time series, than was DLCO in our study. In 605 

the current study, DLCE was also significantly delayed in more areas than DLCO (Fig. S8), probably 606 

because the timings of the earlier stages of leaf coloration determined from satellite data were less 607 

affected by Tmin than the later stages (Figs. 4a-c and S15). Evidence for photoperiodic control of 608 

the start of leaf senescence (Fracheboud et al., 2009; Keskitalo et al., 2005) suggests that the early 609 

phases of leaf senescence are insensitive to warming, in contrast to the later phases. Since the 610 

degradation of chlorophyll starts earlier than leaf coloration (Lim, Kim, & Nam, 2007; Tang et al., 611 

2016), the timing of autumnal phenological metrics that closely follow chlorophyll degradation 612 

before DLCO should be less delayed by temperature increase than DLCO if chlorophyll degradation 613 

is triggered by the photoperiod. In our analysis, we verified that DPDO was less positively 614 

correlated with temperature than DLCO (Table S7), probably because the start of autumnal 615 

chlorophyll degradation was controlled by photoperiod and was not delayed by higher temperature 616 

(Bauerle et al., 2012; Fracheboud et al., 2009; Keskitalo et al., 2005). 617 

Overall, our results suggest that temperature does not initiate senescence in autumn in most 618 

areas; rather, it influences the speed of coloration change after it starts (Fig. 4f) (Fracheboud et 619 

al., 2009). The lack of a positive correlation between DLCO (or DPDO) and pre-DLCO (or pre-DPDO) 620 

temperature suggests an overriding photoperiodic control that makes the timing of the onset of 621 
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leaf senescence stable. In the areas with longer daylengths (calculated for each pixel/location at 622 

multiyear mean DLCO over 2000–2018), there were proportionally fewer significant DLCO delays 623 

during 2000–2018 (Fig. 5a and Fig. S19a), and the positive relationship between DLCO and pre-624 

DLCO Tmin was slightly weaker, as indicated by the smaller partial correlation coefficient between 625 

them (Fig. 5d). Such dependences on daylength were more prominent for woody vegetation than 626 

for herbaceous vegetation (Fig. 5b, c, e, and f; Fig. S19b and c), in agreement with experimental 627 

findings suggesting that the initiation of leaf senescence in woody plants is likely controlled by 628 

photoperiod (Fracheboud et al., 2009; Keskitalo et al., 2005). These findings indicate stronger 629 

photoperiodic control in areas where daylength at DLCO is longer (i.e., shorter nights), possibly 630 

because plants respond to the length of uninterrupted darkness rather than daylength (Borthwick 631 

& Hendricks, 1960; Hamner, 1940; Howe et al., 1995; Paus et al., 1986). Interestingly, for 632 

vegetation with a daylength at DLCO of more than 13.5 h, DLCO was more positively correlated 633 

with pre-DLCO Tmin in colder areas (Fig. 5d–f), indicating a stronger effect of temperature in areas 634 

with harsh temperature conditions, consistent with experimental studies (Ford et al., 2017; Zohner 635 

et al., 2016). Therefore, although for these types of vegetation the correlation between DLCO and 636 

temperature is weak, probably because of stronger photoperiodic control, there is still a signal of 637 

temperature influence on DLCO, reflecting a stronger selection pressure in harsher temperature 638 

environments.  639 

Although observational evidence is limited, experimental results have been reported for the 640 

photoperiodic induction of leaf senescence in several, mostly woody, species (Table S1). However, 641 

in those manipulative experiments, daylength was altered by several hours (> 4 h, Table S1), 642 

which is more extreme than the natural conditions plants are likely to experience. Daylength 643 

depends only on the day of year and location. Because of the inter-annual limited variations in the 644 

timings of leaf coloration or senescence onset, the fluctuation in daylength under natural 645 

conditions is far less than that in manipulative experiments. Therefore, the role of photoperiod in 646 

leaf senescence identified under such experimental conditions does not necessarily apply to plants 647 

under natural conditions. The results in this study support experimental findings in wild plants at 648 

the biome and continental scales and show that photoperiod influences the onset of leaf coloration, 649 

which closely follows the initiation of leaf senescence.  650 
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Autumnal leaf senescence in preparation for overwintering is an evolutionary trade-off 651 

between the reallocation of leaf nutrients before leaf shed to reduce the risk of frost damage and 652 

the assimilation of carbon (Estiarte & Peñuelas, 2015). The response of leaf senescence to an 653 

increase in temperature in autumn influences this trade-off. The absence of delays over time in 654 

the onset of leaf coloration and in the onset of decrease in maximum canopy photosynthetic 655 

capacity in response to climate warming, as observed in our study, may limit the detrimental 656 

effects of frost in autumn (Liu et al., 2018) and may also pose limited impacts on the start of the 657 

remobilization and resorption of nutrients (Estiarte & Peñuelas, 2015). The slower progress rate 658 

of leaf senescence (Fig. 4f) and extended duration of leaf coloration (Fig. 4e) under warming may 659 

increase the efficiency of nitrogen resorption (Rennenberg, Wildhagen, & Ehlting, 2010) and 660 

increase the vegetation greenness in this period, which will modify on the surface energy balance 661 

through biophysical processes (Shen et al., 2015). The extended period of leaf coloration may also 662 

prolong the plant transpiration time and increase soil water consumption. The impact of autumn 663 

warming on net ecosystem productivity is dual, increasing both respiratory flux to the atmosphere 664 

(Piao et al., 2008) and forest gross primary photosynthesis (Keenan et al., 2014). The relatively 665 

static onset date of leaf coloration and its weak response to temperature would preclude the 666 

vegetation from fully using the potential increase in CO2 assimilation in early autumn induced by 667 

warming (Stinziano & Way, 2017). Combined with a delay in the end of the season and a 668 

respiration increase due to warming, this suggests that additional warming will probably not result 669 

in a continuous increase in autumn CO2 assimilation.  670 

  671 

In summary, satellite NDVI time series and ground-based phenological observations 672 

indicated no significant delay in the start of autumnal leaf coloration for most areas covered by 673 

natural vegetation over middle and high northern latitudes. Neither pre-DLCO temperature nor pre-674 

DLCO precipitation significantly affected the interannual variations of the start of leaf coloration 675 

in most areas, indicating that the start of leaf senescence is triggered by photoperiod. Interestingly, 676 

there was a weaker positive correlation between the start of autumnal leaf coloration and pre-DLCO 677 

Tmin for vegetation in regions with longer daylength, indicating strong photoperiodic control of 678 

the start of leaf senescence. For vegetation with a given daylength at DLCO longer than 13.5 h, the 679 
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positive correlation between DLCO and pre-DLCO Tmin was slightly stronger in colder areas, 680 

suggesting that there is strong selection pressure in harsher temperature environments on the 681 

timing of leaf coloration onset and that autumn warming could have a stronger delaying effect on 682 

leaf coloration onset in colder areas than in warmer areas. This study suggests that autumnal 683 

warming will not change the start date of leaf senescence, but it might slow the rate of senescence. 684 

A slower senescence speed possibly could extend the period of senescence and provide more time 685 

to reallocate nutrients and prepare for overwintering. Such changes could substantially affect 686 

carbon and nutrient cycles. Our study provides a foundation for understanding the complex 687 

relationships among nutrient cycling, vegetation growth, energy exchange, and climate change in 688 

autumn in temperate and boreal regions dominated by winter deciduous vegetation. 689 

 690 

Data Availability 691 

All data used for this study are publicly available online. The satellite reflectance products at 0.05-692 

degree resolution (MOD09CMG) used to estimate phenological metrics and the global land cover 693 

map (MCD12C1-2009) used to identify natural vegetation are freely available online at 694 

https://ladsweb.modaps.eosdis.nasa.gov. The PhenoCam data (PhenoCam Dataset V2.0) used to 695 

evaluate the satellite-derived phenological metrics are available at 696 

https://doi.org/10.3334/ORNLDAAC/1674, and the subsets of satellite reflectance products at 697 

500-meter resolution (MOD09A1) at PhenoCam sites are downloaded from 698 

https://modis.ornl.gov/globalsubset/. The climatic data of region are publicly available: CRU TS 699 

4.03 monthly climatic data are available via http://data.ceda.ac.uk and CRU-NCEP 7.2 6-hourly 700 

climatic data are available via https://vesg.ipsl.upmc.fr. In situ phenological observations in China 701 

are available from the National Earth System Science Data Sharing Infrastructure, National 702 

Science and Technology Infrastructure of China (http://www.geodata.cn). The climatic data of in 703 

situ observations in China are available from National Meteorological Information Center 704 

(http://data.tpdc.ac.cn). The site-based gross primary productivity products used to estimate 705 

phenological metrics and the corresponding half-hourly climatic data are extracted from the 706 

FLUXNET2015 Dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The source code 707 

of the Spatial-Temporal Savitzky-Golay filter is available at https://github.com/cao-708 
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sre/STSG_IDL_program. The codes for analyses are available from figshare 709 

(https://figshare.com/s/be760555bb74ef0e6bf2). 710 
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Figure S1. Locations of the sites of in situ observations used in this study. (a) phenological observation 17 

sites in China. (b) FLUXNET2015 flux tower sites. 18 
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 20 
Figure S2. Spatial pattern of the length of the pre-DLCO period for mean daily minimum temperature 21 

(Tmin). The bar chart shows the percentage of area for each interval of the length of the pre-DLCO period, 22 

with the length indicated by the color scale at the bottom. 23 
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 25 
Figure S3. Temporal trends in timing of the onset of leaf coloration (DLCO), retrieved from satellite 26 

images over the period 2000–2016 before (a) and after (b and c) the exclusion of years with possible 27 

cold events before DLCO. Cold events were determined mainly by using a threshold-based method with 28 

daily minimum temperatures of 0 °C (b) or 2 °C (c). The bar chart in each panel shows the percentage of 29 

area within each interval of the significant temporal trends and the percentage of area with 30 

nonsignificant trends, indicated by the color scale at the bottom. The percentage for each interval of the 31 

trend is provided in Table S4. DLCO corresponds to a 10% decrease in NDVI. Significant temporal trends 32 

were determined by using t-tests at P < 0.05 and ordinary least squares regression.  33 
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 35 
Figure S4. Temporal trends in timing of the onset of leaf coloration (DLCO), retrieved from satellite 36 

images over the period 2000–2018. The bar chart in each panel shows the percentage of area within each 37 

interval of the significant temporal trends and the percentage of area with nonsignificant trends, 38 

indicated by the color scale at the bottom. Positive and negative trend values refer to significantly 39 

delayed and advanced DLCO, respectively. DLCO in (a) corresponds to a 10% decrease in NDVI 40 

(Threshold). DLCO in (b) and (c) was determined as the date of inflection point when NDVI began to 41 

decline (RCC). In (a) and (c), significant temporal trends were determined by using Mann-Kendall tests 42 

at P < 0.05 and a Theil-Sen estimator; in (b), significant temporal trends were determined by using t-43 

tests at P < 0.05 and ordinary least squares regression (OLSR). 44 
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 46 
Figure S5. Temporal trends in the timing of onset of leaf coloration (DLCO), retrieved from satellite 47 

images for 2000–2018. The bar chart in each panel shows the percentage of area within each interval of 48 

the significant temporal trends and the percentage of area with nonsignificant trends, indicated by the 49 

color scale at the bottom. Positive and negative trend values refer to significantly delayed and advanced 50 

DLCO, respectively. For the pixels identified as deciduous broadleaved forests, DLCO was defined as the 51 

date when NDVI decreased by 10% of its annual amplitude from 1 August (see Section 2.4.4 for 52 

details). In (a), significant temporal trends were determined by using t-tests at P < 0.05 and ordinary 53 

least squares regression (OLSR). In (b), significant temporal trends were determined by using Mann-54 

Kendall tests at P < 0.05 and a Theil-Sen estimator.  55 

56 
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 57 
Figure S6. Temporal trends in the timing of onset of leaf coloration (DLCO), as retrieved from satellite 58 

images for the period 2000–2018. The bar chart in each panel shows the percentage of area within each 59 

interval of the significant temporal trends and the percentage of area with nonsignificant trends, 60 

indicated by the color scale at the bottom. Positive and negative trend values refer to significantly 61 

delayed and advanced DLCO, respectively. For the pixels identified as deciduous broadleaved forests, 62 

DLCO was defined as the date when NDVI decreased by 10% of its annual amplitude from 16 August 63 

(see section 2.4.4 for details). In (a), significant temporal trends were determined by using t-tests at P < 64 

0.05 and ordinary least squares regression (OLSR). In (b), significant temporal trends were determined 65 

by using Mann-Kendall tests at P < 0.05 and a Theil-Sen estimator.  66 
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 68 
Figure S7. Temporal trends in the timing of onset of leaf coloration (DLCO), as retrieved from satellite 69 

images for 2000–2018. The bar chart in each panel shows the percentage of area within each interval of 70 

the significant temporal trends and the percentage of area with nonsignificant trends, indicated by the 71 

color scale at the bottom. Positive and negative trend values refer to significantly delayed and advanced 72 

DLCO, respectively. DLCO was determined as the date of inflection point when NDVI began to drop. For 73 

the pixels identified as deciduous broadleaved forests, the fitting function was a modified double logistic 74 

function that considered summer NDVI green-down. In (a), significant temporal trends were determined 75 

by using t-tests at P < 0.05 and ordinary least squares regression (OLSR). In (b), significant temporal 76 

trends were determined by using Mann-Kendall tests at P < 0.05 and a Theil-Sen estimator.  77 
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 79 
Figure S8. Percentage of area with significant temporal trends in the timing of different stages of leaf 80 

coloration, as retrieved from satellite images. Significance levels of the temporal trends were determined 81 

by using t-tests for ordinary least squares regression over the period 2000–2018 at middle and high 82 

northern latitudes (30°N–75°N). The timings of the different stages of leaf coloration were defined as 83 

the dates when NDVI decreased by 10% (i.e., DLCO), 20%, 30%, 40%, or 50% (i.e., DLCE) of its annual 84 

amplitude in autumn. 85 
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 87 

 88 
Figure S9. Spatial pattern of the partial correlation coefficient between the timing of onset of leaf 89 

coloration (DLCO) and pre-DLCO total precipitation over the period 2000–2018. The bar chart in the 90 

bottom-left corner shows the percentage of area for each interval of the partial correlation coefficient, 91 

with the coefficient values indicated by the color scale at the bottom.  92 
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 94 
Figure S10. Spatial pattern of the partial correlation coefficient between the timing of onset of leaf 95 

coloration (DLCO) and pre-DLCO (1 month preceding the multiyear mean DLCO) mean daily minimum 96 

temperature over the period 2000–2018. The bar chart in each panel shows the percentage of area for 97 

each interval of the partial correlation coefficient, with the coefficient value indicated by the color scale 98 

at the bottom. Non-significant correlations (P > 0.05) are in gray. 99 
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 101 
Figure S11. Spatial pattern of the partial correlation coefficient between the timing of onset of leaf 102 

coloration (DLCO) and pre-DLCO (15 days preceding the multiyear mean DLCO) mean daily minimum 103 

temperature while controlling for the corresponding total precipitation over the period 2000–2016. The 104 

bar chart shows the percentage of area for each interval of partial correlation coefficient, with the 105 

coefficient value indicated by the color scale at the bottom. Non-significant correlations (P > 0.05) are in 106 

gray.  107 
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 109 
Figure S12. Spatial pattern of the partial correlation coefficient between the timing of the onset of leaf 110 

coloration (DLCO) and the lowest daily minimum temperature (Tmin) during the 15 days before the 111 

multiyear mean DLCO, with the concurrent mean Tmin and total precipitation as control variables over the 112 

period 2000–2016. The bar chart shows the percentage of area for each interval of the partial correlation 113 

coefficient (P < 0.05), with the coefficient indicated by the color scale at the bottom. Non-significant 114 

correlations (P > 0.05) are in gray.  115 
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 118 
Figure S13. Spatial pattern of the partial correlation coefficient between the timing of onset of leaf 119 

coloration (DLCO) and pre-DLCO climatic factors, with green-up onset date as an extra control variable 120 

over the period 2000–2018. a, Spatial pattern of the partial correlation coefficient (RTN) between DLCO 121 

and pre-DLCO mean daily minimum temperature (Tmin) while controlling for the corresponding total 122 

precipitation and green-up onset date. b, Spatial pattern of the partial correlation coefficient (RPRE) 123 

between DLCO and pre-DLCO total precipitation while controlling for the corresponding Tmin and green-up 124 

onset date. The bar chart in each panel shows the percentage of area for each interval of the partial 125 

correlation coefficient, with the coefficient value indicated by the color scale at the bottom. Non-126 

significant correlations (P > 0.05) are in gray.  127 
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 129 
Figure S14. Spatial pattern of the partial correlation coefficient between the timing of onset of leaf 130 

coloration (DLCO) and pre-DLCO climatic factors over the period 2000–2016 before and after the 131 

exclusion of years with possible cold events before DLCO. a–c, Spatial pattern of the partial correlation 132 

coefficient (RTN) between DLCO and pre-DLCO mean daily minimum temperature (Tmin) before (a) and 133 

after (b and c) the exclusion of years with possible cold events. d–f, The same as (a–c), but for the 134 

partial correlation between DLCO and pre-DLCO total precipitation (RPRE). The bar chart in each panel 135 

shows the percentage of area for each interval of the partial correlation coefficient, with the coefficient 136 

value indicated by the color scale at the bottom. Non-significant correlations (P > 0.05) are in gray, and 137 

the percentage for each interval is provided in Table S6. Possible cold events were determined mainly 138 

by using a threshold-based method with a daily minimum temperature of 0 °C (b and e) or 2 °C (c and f). 139 
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 141 

 142 
Figure S15. Spatial pattern of the partial correlation coefficient between the timing of different stages of 143 

leaf coloration and the mean daily minimum temperature for an optimized period preceding each stage 144 

for 2000–2018. The timings of different stages of leaf coloration are determined as the first dates when 145 

NDVI decreased by 20% (a), 30% (b), or 40% (c) of its annual amplitude in autumn. The bar chart in 146 

each panel shows the percentage of area for each interval of the partial correlation coefficient, with the 147 

coefficient value indicated by the color scale at the bottom. Non-significant correlations (P > 0.05) are in 148 

gray.  149 
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 151 
Figure S16. Spatial pattern of the partial correlation coefficient between the timing of the end of leaf 152 

coloration (DLCE) and pre-DLCE Tmin over the period 2000–2018. DLCE was determined as the date when 153 

NDVI drops by 60% (a) and 90% (b), respectively. The bar chart in the bottom-left corner shows the 154 

percentage of area for each interval of the partial correlation coefficient, with the coefficient values 155 

indicated by the color scale at the bottom. Non-significant correlations (P > 0.05) are in gray.  156 
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 159 
Figure S17. Impacts of temperature on the timing of different stages of leaf coloration and on the 160 

progress of leaf coloration over the period 2000–2018. (a) Spatial pattern of the partial correlation 161 

coefficient (RTN) between DLCO and pre-DLCO mean daily minimum temperature (Tmin). (b) Spatial 162 

pattern of RTN between timing of the end of leaf coloration (DLCE) and pre-DLCE Tmin. For pixels 163 
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identified as deciduous broadleaved forests, DLCO and DLCE were defined as the dates when NDVI 164 

decreased by 10% and 50%, respectively, of their annual amplitude from 1 August (see section 2.4.4 for 165 

details).The bar charts in (a) and (b) show the percentage of area for each interval of the partial 166 

correlation coefficient (P < 0.05), with the coefficient indicated by the color scale on the right. Non-167 

significant correlations (P > 0.05) are in gray. (c) Percentage of area for which RTN between the timing 168 

of a given stage of leaf coloration and preceding Tmin is higher than a given threshold indicated by the 169 

horizontal axis. For example, RTN for the onset of leaf coloration is higher than 0.2 in about 40% of the 170 

area. (d) Difference in temperature sensitivity between DLCE and DLCO. Positive values indicate that 171 

DLCE is more sensitive to temperature than DLCO, whereas negative values indicate that DLCO is more 172 

sensitive to temperature than DLCE. (e) Temperature sensitivity of the length of duration of leaf 173 

coloration. Positive values indicate that warming extends the duration of leaf coloration, whereas 174 

negative values indicate that warming shortens the leaf coloration duration. (f) Temperature sensitivity 175 

of the speed of leaf coloration. Positive values indicate that warming increases the speed of leaf 176 

coloration, whereas negative values indicate that warming reduces the speed of leaf coloration. The bar 177 

charts in (d), (e) and (f) show the percentage of area for each interval of the temperature sensitivity 178 

indicated by the color scale on the right.  179 
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 181 
Figure S18. Impacts of temperature on the timing of different stages of leaf coloration and on the 182 

progress of leaf coloration over the period 2000–2018. (a) Spatial pattern of the partial correlation 183 

coefficient (RTN) between DLCO and pre-DLCO mean daily minimum temperature (Tmin). (b) Spatial 184 

pattern of RTN between timing of the end of leaf coloration (DLCE) and pre-DLCE Tmin. For pixels 185 
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identified as deciduous broadleaved forests, DLCO and DLCE were defined as the dates when NDVI 186 

decreased by 10% and 50%, respectively, of their annual amplitude from 16 August (see section 2.4.4 187 

for details). The bar charts in (a) and (b) show the percentage of area for each interval of the partial 188 

correlation coefficient (P < 0.05), with the coefficient indicated by the color scale on the right. Non-189 

significant correlations (P > 0.05) are in gray. (c) Percentage of area for which RTN between the timing 190 

of a given stage of leaf coloration and preceding Tmin is higher than a given threshold indicated by the 191 

horizontal axis. For example, RTN for the onset of leaf coloration is higher than 0.2 in about 40% of the 192 

area. (d) Difference in temperature sensitivity between DLCE and DLCO. Positive values indicate that 193 

DLCE is more sensitive to temperature than DLCO, whereas negative values indicate that DLCO is more 194 

sensitive to temperature than DLCE. (e) Temperature sensitivity of the length of duration of leaf 195 

coloration. Positive values indicate that warming extends the duration of leaf coloration, whereas 196 

negative values indicate that warming shortens the leaf coloration duration. (f) Temperature sensitivity 197 

of the speed of leaf coloration. Positive values indicate that warming increases the speed of leaf 198 

coloration, whereas negative values indicate that warming reduces the speed of leaf coloration. The bar 199 

charts in (d), (e) and (f) show the percentage of area for each interval of the temperature sensitivity 200 

indicated by the color scale on the right.  201 
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 203 

 204 
Figure S19. Dependence of temporal trends in the timing of onset of leaf coloration (DLCO) on 205 

daylength and temperature at DLCO over the period 2000–2018 for all (a), woody (b), and herbaceous (c) 206 

vegetation. a, Color indicates the percentage of area with significant (P < 0.05) DLCO delays in each cell 207 

(i.e., a specific temperature × daylength combination), as indicated by the color scale at the bottom. The 208 

number in each cell indicates the ratio (unit: ‰) of the area in each cell to the total area with DLCO 209 

retrieval. Temporal trends and their significances were determined by using the Theil-Sen estimator and 210 

Mann-Kendall tests. b and c, The same as (a), but for woody and herbaceous vegetation, respectively. 211 

Only cells where the ratio of the area of the cell to the total area is >1‰ are represented. 212 
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 215 
Figure S20. Dependence of temporal trends in the timing of onset of leaf coloration (DLCO, a and d), of 216 

the partial correlation coefficient (RTN, b and e) between DLCO and pre-DLCO mean daily minimum 217 

temperature, and of the partial correlation coefficient (RPRE, c and f) between DLCO and pre-DLCO total 218 

precipitation on daylength and temperature at DLCO over the period 2000–2016 after the exclusion of 219 

years with possible cold events before DLCO. Possible cold events were determined mainly by using a 220 

threshold-based method with a daily minimum temperature of 0 °C (a–c) or 2 °C (d–f). a and d, Color 221 

indicates the percentage of area with significant (P < 0.05) DLCO delays in each cell (i.e., a specific 222 

temperature × daylength combination), as indicated by the color scale at the bottom. The number in each 223 

cell indicates the ratio (unit: ‰) of the area in each cell to the total area with DLCO retrieval. b and e, 224 

Color indicates the average of the positive RTN, as indicated by the color scale at the bottom. The 225 

number indicates the percentage of area with a positive correlation in each cell. c and f, The same as (b 226 

and e), but for the positive RPRE. Only cells where the ratio of the area of the cell to the total area is >1‰ 227 

are represented.  228 
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 229 
Figure S21. Dependence of temporal trends in the timing of onset of leaf coloration (DLCO, a–c) and of 230 

the partial correlation coefficient (RTN, d–f) between DLCO and pre-DLCO mean daily minimum 231 

temperature (Tmin) on daylength and temperature at DLCO over the period 2000–2018. a, Color indicates 232 

the percentage of area with significant (P < 0.05) DLCO delays in each cell (i.e., a specific temperature × 233 

daylength combination), as indicated by the color scale at the bottom. The number in each cell indicates 234 

the ratio (unit: ‰) of the area in each cell to the total area with DLCO retrieval. The temporal trends and 235 

their significances were determined by ordinary least squares regression and t-tests. b and c, The same as 236 

(a) but for woody and herbaceous vegetation, respectively. d, Color indicates the average of the positive 237 

RTN. The number indicates the percentage of area with a positive correlation in each cell, as indicated by 238 

the color scale at the bottom. e and f, The same as (d) but for woody and herbaceous vegetation, 239 

respectively. For the pixels identified as deciduous broadleaved forests, DLCO was defined as the date 240 

when NDVI decreased by 10% of its annual amplitude from 1 August (see Section 2.4.4 for details). 241 

Only cells where the ratio of the area of the cell to the total area is >1‰ are represented.  242 
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 243 
Figure S22. Dependence of temporal trends in the timing of onset of leaf coloration (DLCO, a–c) and of 244 

the partial correlation coefficient (RTN, d–f) between DLCO and pre-DLCO mean daily minimum 245 

temperature (Tmin) on daylength and temperature at DLCO over the period 2000–2018. a, Color indicates 246 

the percentage of area with significant (P < 0.05) DLCO delays in each cell (i.e., a specific temperature × 247 

daylength combination), as indicated by the color scale at the bottom. The number in each cell indicates 248 

the ratio (unit: ‰) of the area in each cell to the total area with DLCO retrieval. The temporal trends and 249 

their significances were determined by ordinary least squares regression and t-tests. b and c, The same as 250 

(a) but for woody and herbaceous vegetation, respectively. d, Color indicates the average of the positive 251 

RTN, as indicated by the color scale at the bottom. The number indicates the percentage of area with a 252 

positive correlation in each cell. e and f, The same as (d) but for woody and herbaceous vegetation, 253 

respectively. For the pixels identified as deciduous broadleaved forests, DLCO was defined as the date 254 

when NDVI decreased by 10% of its annual amplitude from 16 August (see Section 2.4.4 for details). 255 

Only cells where the ratio of the area of the cell to the total area is >1‰ are represented.  256 
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 257 
Figure S23. Dependence of the partial correlation coefficient (RPRE) between the timing of onset of leaf 258 

coloration (DLCO) and pre-DLCO total precipitation on daylength and temperature at DLCO over the period 259 

2000–2018 for all (a), woody (b), and herbaceous (c) vegetation. a, Color indicates the average of the 260 

positive RPRE, as indicated by the color scale at the bottom. The number indicates the percentage of area 261 

with a positive correlation in each cell (i.e., a specific temperature × daylength combination); b and c, 262 

The same as (a), but for woody and herbaceous vegetation, respectively. Only cells where the ratio of 263 

the area of the cell to the total area is >1‰ are represented. 264 

  265 
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Supplementary Tables 266 

 267 

Table S1. Experiments on photoperiodic control of plant growth. 268 

Species Life-form  Findings from experiments Experimental setting Reference 

Acer rubrum L. 
Deciduous 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours).  

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Acer saccharum 

Marsh. 

Deciduous 

tree 

Long photoperiod treatment (16 hours) resulted 

in delayed senescence and abscission for up to 

five months. 

Chamber cultivating 

+controlled photoperiod 

Olmsted 

(1951) 

Aesculus 

hippocastanum L. 

Deciduous 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Betula mandshurica 

[Regel] Nakai. 

Deciduous 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Betula pubescens 

Ehrh. 

Deciduous 

tree 

Elongation growth ceased after 7–8 days of 

short photoperiod treatment (12 hours). 

Chamber cultivating 

+controlled photoperiod 

Rinne, 

Saarelainen, 

and Junttila 

(1994) 

Catalpa 

bignonioides Walt. 

Deciduous 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Catalpa speciosa 

Warder 

Deciduous 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Cornus florida L. 
Deciduous 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Liquidambar 

styraciflua L. 

Deciduous 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Liquidambar 

styraciflua L. 

Deciduous 

tree 

The plant grew nearly all winter under a 16 

hours photoperiod. 

Chamber cultivating 

+controlled photoperiod 
Kramer (1936) 

Liriodendron 

tulipifera L. 

Deciduous 

tree 

Growth stopped after about ten days of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Liriodendron 

tulipifera L. 

Deciduous 

tree 

The plant grew all winter under a 16 hours 

photoperiod. 

Chamber cultivating 

+controlled photoperiod 
Kramer (1936) 

Paulownia 

tomentosa [Thunb.] 

Steud. 

Deciduous 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Populus trichocarpa 

Torr, & Gray 

Deciduous 

tree 

Plant set bud after 18 days of short photoperiod 

treatment (13 hours), which is regulated by 

phytochrome. 

Stem cutting + 

controlled photoperiod 

Howe, Gardner 

GHackett, and 

Furnier (1996) 
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Species Life-form  Findings from experiments Experimental setting Reference 

Populus tremula 
Deciduous 

tree 

Shortening photoperiod was the main trigger for 

the initiation of autumn senescence. 

Chamber cultivating 

+controlled photoperiod 

Fracheboud et 

al. (2009) 

Populus tremula 
Deciduous 

tree 

Photoperiod is the sole trigger for the onset of 

autumn senescence. 

Observation under 

natural conditions 

Keskitalo, 

Bergquist, 

Gardeström, 

and Jansson 

(2005) 

Populus tremula x 

tremuloides 

Deciduous 

tree 

When plants are shifted from long days (16 

hours) to short days (8 hours), they respond by 

growth cessation and bud set after 32 days. 

Chamber cultivating 

+controlled photoperiod 

Böhlenius et 

al. (2006) 

Ulmus americana L. 
Deciduous 

tree 

Growth stopped after about twenty weeks of 

short photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Picea abies (L.) 

Karst. 

Evergreen 

tree 

Growth cessation occurred within two weeks 

after exposure to short photoperiods (≤15 
hours).  

Chamber cultivating 

+controlled photoperiod 
Heide (1974) 

Picea glauca 

(Moench) Voss 

Evergreen 

tree 

Growth cessation occurred after five weeks of 

short photoperiod treatment (8 hours) under 

warm temperature conditions. 

Chamber cultivating 

+controlled photoperiod 

Hamilton et al. 

(2016) 

Pinus sylvestris L. 
Evergreen 

tree 

Northern populations grown under 50°N 

photoperiod (shorter) stopped growth earlier 

than that under 60°N photoperiod (longer).  

Chamber cultivating 

+controlled photoperiod 

Oleksyn, 

Tjoelker, and 

Reich (1992) 

Pinus sylvestris L. 
Evergreen 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Pinus taeda L. 
Evergreen 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Pinus taeda L. 
Evergreen 

tree 

The plant grew all winter with a 14.5 hours 

photoperiod. 

Chamber cultivating 

+controlled photoperiod 
Kramer (1936) 

Pinus virginiana 

Mill. 

Evergreen 

tree 

Growth stopped after about four weeks of short 

photoperiod treatment (8 hours). 

Chamber cultivating 

+controlled photoperiod 

Downs and 

Borthwick 

(1956) 

Salix pentandra L. 

Deciduous 

small tree or 

shrub 

Short photoperiod (≤ 22 hours for a northern 

ecotype and ≤ 15 hours for a southern ecotype) 
induced apical growth cessation.  

Chamber cultivating 

+controlled photoperiod 
Junttila (1980) 

Salix polaris L. 

Deciduous 

small tree or 

shrub 

Leaf abscission in the arctic ecotype was 

stimulated by short photoperiod when grown at 

15°C. 

Collected with roots + 

controlled photoperiod 

Paus, Nilsen, 

and Junttila 

(1986) 
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Species Life-form  Findings from experiments Experimental setting Reference 

Syringa vulgaris L. 

Deciduous 

small tree or 

shrub 

Photosynthetic efficiency has a more consistent 

relationship with photoperiod than with 

temperature. 

Observation under 

natural conditions 

Aikio, 

Taulavuori, 

Hurskainen, 

Taulavuori, 

and Tuomi 

(2019) 

Hibiscus rosa-

sinensis L. 

Evergreen 

small tree or 

shrub 

Leaves under long photoperiod treatment (16 

hours) spend ten more days to complete 

senescence than that under short photoperiod 

treatment (8 hours). 

Leaves cutting + 

controlled photoperiod 

Misra and 

Biswal (1973) 

Hibiscus syriacus L. 
Deciduous 

shrub 

Short photoperiod (8 hours) induced dormancy 

while long photoperiod (16 hours) delayed 

dormancy and resulted in considerable winter 

injury 

Chamber cultivating 

+controlled photoperiod 

Davidson 

(1957) 

Weigela florida A. 

DC. 

Deciduous 

shrub 

Short photoperiod (8 hours) induced dormancy 

while long photoperiod (16 hours) delayed 

dormancy and resulted in considerable winter 

injury. 

Chamber cultivating 

+controlled photoperiod 

Davidson 

(1957) 

Rhododendron 

catawbiense Michx. 

Evergreen 

shrub 

Short photoperiod (8 hours) induced dormancy 

while long photoperiod (16 hours) delayed 

dormancy and resulted in considerable winter 

injury. 

Chamber cultivating 

+controlled photoperiod 

Davidson 

(1957) 

Cucurbita pepo 

Linn. 
Herbaceous 

After three months of growth, much larger 

percentage of mesophyll cell death was detected 

in short photoperiod (9 hours) than that in long 

photoperiod (18 hours). 

Chamber cultivating 

+controlled photoperiod 

Wang, Hu, Li, 

Cui, and Zhu 

(2002) 

Sedum telephium L. 

subsp. maximum 

(L.) Krocker 

Herbaceous 

After eight weeks of growth, plants in long 

photoperiod (24 hours) elongated rapidly while 

those in short photoperiod (10 hours) became 

dormant. 

Chamber cultivating 

+controlled photoperiod 
Heide (2001) 

Vitis labruscana 

Bailey 
Herbaceous 

Cane elongation was less in response to short 

photoperiod treatments (12 or 13 hours), as 

compared to natural photoperiod (13.7 or 14.3 

hours). 

Stem cutting + 

controlled photoperiod 

Fennell and 

Hoover (1991) 

Vitis riparia Michx. Herbaceous 

Cane elongation was less in response to short 

photoperiod treatments (12 or 13 hours), as 

compared to natural photoperiod (13.7 or 14.3 

hours). 

Stem cutting + 

controlled photoperiod 

Fennell and 

Hoover (1991) 

 269 

270 
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Table S2. In situ observations in China used in this study. 271 

Site Name Latitude Longitude Species number Start year End year Year length 

Nunkiang 49 125 5 1975±0 1993±4 17±4 

Wudalianchi 48 126 11 1976±3 1995±3 18±3 

Kiamusze 47 130 6 1981±1 1996±0 16±1 

Minqin 38 103 29 1981±1 1996±1 12±1 

Hohhot 41 112 10 1981±2 1996±1 13±2 

Mutankiang 44 130 41 1980±2 1996±2 13±2 

Beijing 40 116 42 1972±1 1994±3 20±4 

Chengteh 41 118 5 1983±2 1996±0 12±1 

Qinhuangdao 39 119 15 1980±0 1993±0 13±1 

Gaizhou 40 122 12 1979±1 1996±0 17±1 

Yixian 39 115 17 1980±0 1993±0 12±1 

Liaocheng 36 115 5 1974±4 1993±2 15±3 

Tyan 36 117 5 1974±0 1986±0 11±0 

Sian 34 109 33 1977±3 1994±3 15±3 

Luoyang 35 113 27 1977±4 1996±1 18±4 

Yancheng 33 120 19 1981±4 1996±0 15±3 

Zhengjiang 32 119 15 1976±3 1993±2 17±3 

Hefei 32 117 19 1979±1 1995±1 17±2 

Wuhu 31 118 16 1982±1 1996±0 13±1 

The mean ± standard deviation of start year, end year and length of time series are provided for each site. 272 

  273 
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Table S3. FLUXNET2015 flux tower sites used in this study. 274 

Fluxnet 

ID 
Vegetation type Latitude Longitude Year range Reference 

BE-Bra Mixed Forests 51.31 4.52 
1999-2002, 

2004-2014 
Janssens (2016) 

BE-Vie Mixed Forests 50.31 6.00 1996-2014 
De Ligne, Manise, Heinesch, Aubinet, 

and Vincke (2016)  

CA-Gro Mixed Forests 48.22 −82.16 2003-2013 McCaughey (2016)  

CA-Man 
Evergreen Needleleaf 

Forest 
55.88 −98.48 

1994-2004, 

2006-2008 
Amiro (2016) 

CA-Oas Mixed Forests 53.63 −106.20 1996-2010 Black (2016a) 

CA-Obs 
Evergreen Needleleaf 

Forest 
53.99 −105.12 1999-2010 Black (2016b) 

CA-TP3 Mixed Forests 42.71 −80.35 2003-2014 Arain (2016a) 

CA-TP4 Mixed Forests 42.71 −80.36 2002-2014 Arain (2016b) 

CH-Dav 
Evergreen Needleleaf 

Forest 
46.82 9.86 1997-2014 Hörtnagl, Eugster, Merbold, et al. (2016)  

CH-Lae Mixed Forests 47.48 8.37 2004-2014 
Hörtnagl, Eugster, Buchmann, et al. 

(2016) 

CZ-BK1 
Evergreen Needleleaf 

Forest 
49.50 18.54 2004-2014 

Šigut, Havrankova, Jocher, Pavelka, and 

Janouš (2016) 

DE-Gri Mixed Forests 50.95 13.51 2004-2014 Bernhofer et al. (2016a)  

DE-Hai Mixed Forests 51.08 10.45 2000-2012 Knohl et al. (2016)  

DE-Tha 
Evergreen Needleleaf 

Forest 
50.96 13.57 1996-2014 Bernhofer et al. (2016b)  

DK-Sor 
Deciduous Broadleaf 

Forest 
55.49 11.64 1996-2014 Ibrom and Pilegaard (2016)  

DK-ZaH Open Shrublands 74.47 −20.55 
2000-2010, 

2012-2014 

Lund, Jackowicz-Korczynski, and 

Abermann (2016)  

FI-Hyy 
Evergreen Needleleaf 

Forest 
61.85 24.30 1996-2014 Mammarella et al. (2016)  

FI-Sod 
Evergreen Needleleaf 

Forest 
67.36 26.64 2001-2014 Aurela et al. (2016)  

FR-Fon 
Deciduous Broadleaf 

Forest 
48.48 2.78 2005-2014 Berveiller et al. (2016)  
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Fluxnet 

ID 
Vegetation type Latitude Longitude Year range Reference 

IT-Col 
Deciduous Broadleaf 

Forest 
41.85 13.59 

1997-2002, 

2004-2014 
Matteucci (2016) 

IT-Lav 
Evergreen Needleleaf 

Forest 
45.96 11.28 2003-2014 

Gianelle, Zampedri, Cavagna, and 

Sottocornola (2016) 

IT-MBo Grasslands 46.01 11.05 2003-2013 
Gianelle, Cavagna, Zampedri, and 

Marcolla (2016) 

IT-Ren 
Evergreen Needleleaf 

Forest 
46.59 11.43 

1999, 2002-

2003, 2005-

2013 

Minerbi and Montagnani (2016)  

NL-Loo 
Evergreen Needleleaf 

Forest 
52.17 5.74 1996-2014 Moors and Elbers (2016)  

RU-Cok Open Shrublands 70.83 147.49 2003-2013 Dolman et al. (2016)  

RU-Fyo Mixed Forests 56.46 32.92 1998-2014 
Varlagin, Kurbatova, and Vygodskaya 

(2016) 

US-GLE 
Evergreen Needleleaf 

Forest 
41.36 −106.24 2005-2014 Massman (2016) 

US-Ha1 Mixed Forests 42.54 −72.17 1992-2012 Munger (2016) 

US-MMS 
Deciduous Broadleaf 

Forest 
39.32 −86.41 1999-2014 Novick and Phillips (2016)  

US-Me2 
Evergreen Needleleaf 

Forest 
44.45 −121.56 2002-2014 Law (2016) 

US-NR1 
Evergreen Needleleaf 

Forest 
40.03 −105.55 1999-2014 Blanken (2016) 

US-Oho 
Deciduous Broadleaf 

Forest 
41.55 −83.84 2004-2013 Chen (2016) 

US-PFa Mixed Forests 45.95 −90.27 1996-2014 Desai (2016) 

US-SRM Open Shrublands 31.82 −110.87 2004-2014 Scott (2016a) 

US-UMB 
Deciduous Broadleaf 

Forest 
45.56 −84.71 2000-2014 Gough, Bohrer, and Curtis (2016)  

US-Wkg Grasslands 31.74 −109.94 2004-2014 Scott (2016b) 

  275 
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Table S4. Percentage of time series for each interval of the temporal trend in DLCO before and after the 276 

exclusion of years with cold events. 277 

Metrics Number of 
time-series 

Cold events 
Interval of significant temporal trend (d y−1) (P < 0.05) 

P > 0.05 
<−1 [−1, 0) (0, 1] >1 

Satellite DLCO 

(2000–2016) 
2.01×106 

Not excluded 2 2 2 4 90 

Excluded (0 °C) 2 2 2 4 90 

Excluded (2 °C) 2 2 2 54 90 

in situ DLCO  

China 
326 

Not excluded 12 4 4 6 74 

Excluded (0 °C) 12 4 5 6 73 

Excluded (2 °C) 12 3 5 7 73 

DLCO, timing of onset of leaf coloration in autumn. Temporal trends were determined by using the ordinary least squares 278 

regression between DLCO and the respective years, with t-tests. Only time series with at least 10 continuous years of data after 279 

exclusion of years with cold events were included. Cold events were determined mainly by using a threshold-based method 280 

with a daily minimum temperature of 0 °C or 2 °C. Data in the farthest right column indicate the percentage of area or time-281 

series with a non-significant trend. 282 

  283 
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Table S5. Percentage of time series for each interval of the temporal trend in DLCO. 284 

Metrics Number of  
time-series 

Interval of significant temporal trend (d y−1) (P < 0.05)  
P > 0.05  

<−1 [−1, 0) (0, 1] >1 

Satellite DLCO 

(2000–2018) 
2.07×106 1  2  1  3  93  

in situ DLCO China 332 8 2 3 3 84 

DLCO, timing of the onset of leaf coloration in autumn. Temporal trends were determined by using the Theil-Sen estimator 285 

between DLCO and the respective years, with Mann-Kendall tests. Data in the farthest right column indicate the percentage of 286 

area or time-series with a non-significant trend. 287 

  288 
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Table S6. Percentage of correlations between DLCO or DPDO and each climate factor for each interval of 289 

the partial correlation coefficient before and after the exclusion of years with cold events.  290 

Metrics Climatic 
Factor 

Cold Events 
Interval of the partial correlation coefficient (P < 0.05) 

P > 0.05 
[−1.0, −0.8) [−0.8, −0.6) [−0.6, 0) (0, 0.6] (0.6, 0.8] (0.8, 1.0] 

Satellite DLCO 

(2000–2016) 

Temperature 

Not excluded 0 2 4 5 3 0 86 

Excluded (0 °C) 0 2 4 5 3 0 86 

Excluded (2 °C) 0 2 4 5 3 0 86 

Precipitation 

Not excluded 0 2 3 7 5 0 83 

Excluded (0 °C) 0 2 3 7 5 0 83 

Excluded (2 °C) 0 2 3 7 5 0 83 

in situ DLCO 

China 

Temperature 

Not excluded 0 2 3 4 8 1 82 

Excluded (0 °C) 0 2 2 4 9 1 82 

Excluded (2 °C) 0 3 1 4 9 1 82 

Precipitation 

Not excluded 0 3 3 4 5 0 85 

Excluded (0 °C) 0 3 3 3 6 0 85 

Excluded (2 °C) 0 3 3 3 6 0 85 

FLUXNET2015 

DPDO 

Temperature 

Not excluded 0 5 3 0 3 0 89 

Excluded (0 °C) 0 5 3 0 0 0 92 

Excluded (2 °C) 0 5 3 0 0 0 92 

Precipitation 

Not excluded 0 6 0 8 3 5 78 

Excluded (0 °C) 0 6 0 8 3 5 78 

Excluded (2 °C) 0 6 0 8 3 5 78 

DPDO, timing of onset of decrease in maximum canopy photosynthetic capacity in autumn; DLCO, timing of onset of leaf 291 

coloration in autumn. Cold events were determined mainly by using a threshold-based method with a daily minimum 292 

temperature of 0 °C or 2 °C. Data in the farthest right column indicate the percentage of area or time-series with a non-293 

significant correlation. 294 
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Table S7. Percentage of correlations between DLCO or DPDO and each climate factor for each interval of 296 

the partial correlation coefficient. 297 

Climatic 
factor 

Metrics 
Interval of the partial correlation coefficient (P < 0.05) 

P > 0.05 
[−1.0, −0.8) [−0.8, −0.6) [−0.6, 0) (0, 0.6] (0.6, 0.8] (0.8, 1.0] 

Temperature 
FLUXNET2015 DPDO 0 7 0 0 3 0 90 

Satellite DLCO 0 4 3 3 3 0 87 

Precipitation 
FLUXNET2015 DPDO 0 7 0 0 3 7 83 

Satellite DLCO 0 0 0 0 7 0 93 

DPDO, timing of onset of decrease in maximum canopy photosynthetic capacity in autumn; DLCO, timing of onset of leaf 298 

coloration in autumn. The relationships between DLCO (or DPDO) and temperature were determined by using a partial 299 

correlation analysis between DLCO (or DPDO) and pre-DLCO (or pre-DPDO) mean daily minimum temperature, with concurrent 300 

total precipitation as the control variable. The relationships between DLCO (or DPDO) and pre-DLCO (or pre-DPDO) precipitation 301 

were determined similarly. Only sites with at least 10 continuous years of valid data for both DLCO and DPDO were included. 302 

Data in the farthest right column indicate the percentage of area or time-series with a non-significant correlation. To make the 303 

satellite DLCO and FLUXNET2015 DPDO more comparable, MOD09A1 with a spatial resolution of 500 m was used for 304 

extracting satellite DLCO. 305 

  306 
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Supplementary Methods 307 

1 Preparation of high quality 5-day NDVI time series 308 

The quality of the daily surface reflectance data from MOD09CMG was unsatisfactory owing to 309 

cloud contamination (Vermote, 2015), so we used the 5-day maximum value composite approach 310 

(Zhang, 2015), combined with a Savitzky-Golay filter (Cao et al., 2018), to produce a high-quality 311 

NDVI time series before determining DLCO. Details of the data preprocessing are given in the following 312 

text.  313 

1) Calculating daily NDVI. We calculated the daily NDVI time series with the quality flag from 314 

surface reflectance in the red and near-infrared bands as 𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷). The 315 

quality flags for daily NDVI were derived from the two quality bands (i.e., Internal CM and State QA) 316 

of the reflectance product MOD09CMG (Vermote, Roger, & Ray, 2015). We determined four types of 317 

conditions that corresponded to the assigned quality flags: 1) clear, 2) uncertain, 3) snowy, and 4) 318 

cloudy (with deteriorating data quality), according to Cao et al. (2018) These were subsequently used in 319 

the Savitzky-Golay filtering (Cao et al., 2018). To be precise, the quality flag was set to “cloudy” if the 320 

cloud state in either Internal CM or State QA was labeled as “yes” or “cloudy or mixed”; the quality flag 321 

was set to “snowy” if the snow/ice flag in State QA was labeled as “yes”; and the quality flag was set to 322 

“uncertain” if the cloud state in State QA was not set (assumed clear). All the other data flags were set to 323 

“clear” (see the index table below). In addition, considering that the NDVI value of a vegetation pixel 324 

ranged from −0.2 to 1.0, NDVI data outside this range were treated as gaps in the NDVI time series.  325 

Quality flag of  
daily NDVI 

MOD35 snow/ice flag in  
State QA 

Cloud state in  
State QA 

Cloud state in  
Internal CM 

clear no clear no 

uncertain no not set (assumed clear) no 

snowy yes 
clear or not set (assumed 

clear) 
no 

cloudy 
- cloudy or mixed - 

- - yes 

“No” and “yes” in the snow/ice flag indicate absence and presence of snow or ice, respectively; “no” and “yes” in the internal 326 
CM indicate absence and presence of cloud, respectively; “-” means no specific snow/ice or cloud state was required.  327 

2) Determining the background NDVI value for each pixel. The background value represents the 328 

annual minimum NDVI during winter (December–February), in which NDVI was expected to be stable 329 

for winter deciduous vegetation if there was no snow/ice or cloud contamination. The background NDVI 330 

value was calculated as the mean of high winter NDVI values, because snow/ice or cloud contamination 331 
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decreases NDVI owing to the uncertainties in the snow/ice and cloud flags (Beck, Atzberger, Høgda, 332 

Johansen, & Skidmore, 2006). To obtain high winter NDVI values for a given pixel, we first calculated 333 

a time series of winter NDVI higher than 0.10 (snow-contaminated NDVI is usually lower than 0.10). 334 

The high winter NDVI values were expected to be higher than the 50th percentile of this time series of 335 

winter NDVI and lower than the mean + 2SD of this time series of winter NDVI. In some cases, there 336 

would be no winter NDVI values higher than 0.10; for these cases the background NDVI value was set 337 

at 0.10.  338 

3) Compositing the 5-day NDVI time series from daily NDVI time series. The daily NDVI time-339 

series were aggregated to a 5-day composite as follows: if there were one or more NDVI values meeting 340 

the quality level (i.e., the quality flag is “clear” in step 1) within the 5-day period, the median value was 341 

used as the composite value to reduce noise, and the composite value was flagged as “clear”. If no 342 

acceptable NDVI data were found in the 5-day period, the maximum value was used as the composite 343 

value (see Figure SM1), and the composite value was flagged as the corresponding daily quality flag of 344 

the maximum value. 345 

 346 

Figure SM1. An example (31.325°N, 98.125°E) showing composite 5-day NDVI time series from 347 
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daily NDVI time series.  348 

4) Eliminating snow cover contamination in NDVI data. NDVI values in winter (December–349 

February) were all replaced by the background NDVI value, and their flag was set to “clear”, meaning 350 

that those NDVI values were not changed in the Savitzky-Golay filtering. In the other three seasons 351 

(March–November), the NDVI values lower than this background NDVI value were then substituted for 352 

the latter one (see Figure SM2) and their flag values were set to “cloudy”.  353 

 354 

Figure SM2. An example showing the elimination of snow cover contamination in NDVI data. 355 

 356 

5) Identifying irregularly high and low NDVI values. Disturbances in surface reflectance data, 357 

which are caused by cloud contamination, bidirectional effects, and data transmission errors, result in 358 

irregularly high and low NDVI values. Most of these irregular NDVI values could be marked by using 359 

the quality flag in step 1. However, because of the uncertainty of the quality flag, there was still a sharp 360 

increase or sudden large decrease of NDVI values flagged as “clear” in the 5-day NDVI profile from 361 

March to November. Because vegetation growth is a continuous process without large increases or 362 

decreases in greenness over a few days, NDVI values that showed sharp decreases or increases were 363 
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defined as irregularly low or high NDVI values, respectively, and they were identified by using the 364 

shape of the NDVI curve and an outlier detection method.  365 

The irregularly low NDVI values were identified by using the shape of the NDVI curve. 366 

Assuming that the 5-day NDVI increased or decreased gradually in a seasonal course, for any 5-day 367 

NDVI at time t, denoted as NDVI(t), an NDVI(t) was identified as an irregularly low value, if there 368 

existed two positive integers k and m satisfying 369 𝑁𝐷𝑉𝐼(𝑡) − 𝑁𝐷𝑉𝐼(𝑡 − 𝑘) ≤ −𝑘 × (0.15 × maxNDVI) 370 𝑁𝐷𝑉𝐼(𝑡) − 𝑁𝐷𝑉𝐼(𝑡 + 𝑚) ≤ −𝑚 × (0.15 × maxNDVI) 371 

where 1 ≤ k ≤ 6, 1 ≤ m ≤ 6, and maxNDVI was the 75th percentile of the time series of annual maximum 372 

NDVI from 2000 to 2018. In a few cases, there may have been two consecutive irregularly low values, 373 

which were identified as follows. Two consecutive NDVI values, NDVI(t) and NDVI(t +1), were 374 

identified as consecutive irregularly low values if they satisfied the following inequalities: 375 𝑁𝐷𝑉𝐼(𝑡) − 𝑁𝐷𝑉𝐼(𝑡 − 1) ≤ −1 × (0.15 × maxNDVI) 376 𝑁𝐷𝑉𝐼(𝑡 + 1) − 𝑁𝐷𝑉𝐼(𝑡 − 1) ≤ −0.9 × (0.15 × maxNDVI) 377 𝑁𝐷𝑉𝐼(𝑡 + 1) − 𝑁𝐷𝑉𝐼(𝑡 + 2) ≤ −2 × (0.15 × maxNDVI). 378 

The irregularly high NDVI values were identified by using the shape of the NDVI curve and an 379 

outlier detection method. The NDVI curve shape-based method included two procedures. Procedure 1 380 

was to detect non-consecutive irregularly high NDVI values. Assuming that the 5-day NDVI increased 381 

or decreased gradually in a seasonal course, an NDVI value at time t, NDVI(t), was identified as an 382 

irregularly high value if it satisfied  383 𝑁𝐷𝑉𝐼(𝑡)  ≥ 1.15 × max{𝑁𝐷𝑉𝐼(𝑡 − 6), 𝑁𝐷𝑉𝐼(𝑡 − 5), … , 𝑁𝐷𝑉𝐼(𝑘), … , 𝑁𝐷𝑉𝐼(𝑡 + 6)} 384 

where 𝑡 − 6 ≤ 𝑘 ≤ 𝑡 + 6 and 𝑘 ≠ 𝑡. 385 

In some cases, there could be two or more irregularly high NDVI values within 1 month around 386 

peak season that could not be detected by using the above algorithm. Such irregularly high NDVI values 387 

were identified in Procedure 2, which used the information of a non-consecutive irregularly high NDVI 388 

value identified in Procedure 1. We first constructed an array by selecting non-consecutive irregularly 389 

high NDVI values in Procedure 1, which were the annual maximum values (denoted as NDVIIHM). 390 

Then, the NDVI values were identified as irregularly high NDVI values if they were 15% higher than 391 
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the median value of the array of NDVIIHM. 392 

Because the NDVI values around the peak season were essential for retrieving DLCO, to be more 393 

robust, the irregularly high NDVI values were also identified by using Grubb’s test (Grubbs, 1950). We 394 

first composed an array by using the three highest NDVI values of each year. The outliers in this array 395 

were then detected by using Grubb’s test at a significance level of α = 0.05. Owing to inter-annual 396 

variations in the annual maximum greenness, the outliers detected by Grubb’s test may not necessarily 397 

have been the irregularly high NDVI values. Therefore, in a given year, only outliers that were 15% 398 

higher than the mean of the three highest non-outlier NDVI values for that year were identified as 399 

irregularly high NDVI values. Finally, all the irregularly high NDVI values identified above were used 400 

as irregularly high NDVI values.  401 

The figure SM3 gives examples of irregularly low and high NDVI values. 402 

 403 

Figure SM3. An example showing irregularly high and low NDVI values identified in the 5-day 404 

composited NDVI time series. 405 

 406 

6) Processing the NDVI values flagged as “cloudy”. Because clouds are overestimated by the 407 
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cloud flag (Wilson, Parmentier, & Jetz, 2014), there were a considerable number of high NDVI values 408 

during March–November that were flagged as “cloudy” but that appeared to be reasonable in the 409 

seasonal NDVI profile. We detected these NDVI values and promoted their flags to be “uncertain” 410 

(“uncertain” indicates a quality higher than “cloudy” but lower than “clear”, see Cao et al. (2018) for 411 

details). First, a pixel-year was excluded from our study if each of the NDVI values from May to 412 

September was either “cloudy” or “irregular”. Second, for NDVI values lower than 90% of their annual 413 

range plus the background NDVI value, the NDVI at time t, NDVI(t), was flagged as “uncertain” if it 414 

satisfied the following,  415 𝑁𝐷𝑉𝐼(𝑡) ≥  max{𝑁𝐷𝑉𝐼(𝑡 − 2), 𝑁𝐷𝑉𝐼(𝑡 − 1), 𝑁𝐷𝑉𝐼(𝑡), 𝑁𝐷𝑉𝐼(𝑡 + 1), 𝑁𝐷𝑉𝐼(𝑡 + 2)}, 416 

where NDVI(t) had been flagged as “cloudy”, and NDVI(t−2), NDVI(t−1), NDVI(t+1), and NDVI(t+2) 417 

had all been flagged as “cloudy” or “irregular”. 418 

Moreover, 419 𝑁𝐷𝑉𝐼(𝑡) ≥  0.85 × max{𝑁𝐷𝑉𝐼(𝑡 − 12), 𝑁𝐷𝑉𝐼(𝑡 − 11), … , 𝑁𝐷𝑉𝐼(𝑡 − 1)} 420 

for NDVI(t) in an ascending period (i.e., from early March to the time of annual maximum NDVI), and 421 𝑁𝐷𝑉𝐼(𝑡) ≥  0.85 × max{𝑁𝐷𝑉𝐼(𝑡 + 1), 𝑁𝐷𝑉𝐼(𝑡 + 2), … , 𝑁𝐷𝑉𝐼(𝑡 + 12)} 422 

for NDVI(t) in a descending period (i.e., from the time of annual maximum NDVI to late November). 423 

The figure SM4 gives an example of NDVI values that were promoted from “cloudy” to “uncertain”.  424 

 425 
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 426 

Figure SM4. An example showing NDVI values with flags promoted from “cloudy” to “uncertain”. 427 

 428 

7) Reconstructing 5-day continuous high-quality NDVI time series. Because clouds and poor 429 

atmospheric conditions contaminate NDVI values, we applied a Savitzky-Golay filter to reconstruct a 430 

high-quality NDVI time-series as described by Cao et al. (2018) and Shen et al. (2014). The source code 431 

of Spatial-Temporal Savitzky-Golay (STSG) is available at https://github.com/cao-432 

sre/STSG_IDL_program (assessed on 19 December 2018). Before we applied the filter, the “irregular” 433 

quality flags were merged to “cloudy”. In our study, we used the same parameter setting as Cao et al. 434 

(2018), except that the half width of the search window and the half width of the smoothing window 435 

were both set to 5. The figure SM5 gives an example of the filtering. 436 

https://github.com/cao-sre/STSG_IDL_program
https://github.com/cao-sre/STSG_IDL_program
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 437 

Figure SM5. An example showing the output of SG filtering. 438 

 439 

 440 
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2 Comparison between satellite DLCO and DLCO from PhenoCam dataset 442 

To better match the PhenoCam images, we used the satellite MOD09A1 dataset (collection 6) 443 

which has a spatial resolution of 500 m and temporal resolution of 8 days. The dataset was downloaded 444 

from https://modis.ornl.gov/globalsubset/ on March 10, 2021. The PhenoCam dataset V2.0 was 445 

downloaded from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1674 on August 29, 2020. From the 446 

high-frequency (typically, 30 minute) imagery collected over several years, the GCC (green chromatic 447 

coordinate) time series of a region-of-interest (ROI) that delineates an area of specific vegetation type 448 

was provided by the PhenoCam dataset. The VCI (vegetation contrast index) time series was calculated 449 

as the ratio of the green to the sum of the red and blue bands (Zhang et al., 2018). For the comparison 450 

between satellite DLCO and DLCO from the PhenoCam dataset, processing steps are as follows: 451 

Step 1, the sites for agricultural lands, urban areas, or heterogeneous landscape within the area of 452 

a 500 m × 500 m pixel were excluded by visually examining the images in Google Earth. Then, daily 453 

time series were created by calculating the 90th percentile of GCC or VCI for each day. After that, 5-day 454 

medium value filtering was used to smooth the short term fluctuations and noises. 455 

Step 2, a time series was excluded if there was no data in any consecutive 30 days from annual 456 

maximum and to the end of year. 457 

Step 3, the annual time series were fitted to a generalized sigmoid function (eq 7 in Klosterman et 458 

al (Klosterman et al., 2014)). 459 

Step 4, in many of the sites, there was considerable mismatch between the annual NDVI and GCC 460 

(or VCI) trajectories. To remove some of those mismatched annual trajectories, we excluded the site-461 

years for which the date of annual maximum NDVI differed by more than 30 days from that of GCC (or 462 

VCI) or the Pearson’s correlation coefficient between NDVI and GCC (or VCI) lower than 0.75. In this 463 

step, the date of annual maximum NDVI (or GCC, VCI) was determined using 25-day smoothed times 464 

series of the fitted curves to eliminate short time variations. The Pearson’s correlation coefficient was 465 

calculated between fitted daily NDVI and GCC (or VCI) for the period from the date of annual 466 

maximum greenness and the date when greenness dropped by 60%. The period for calculating 467 

correlation coefficient was determined using the earlier one of the dates of annual maximum NDVI and 468 

GCC (or VCI) and the later one of the dates when NDVI and GCC (or VCI) dropped by 60%. This 469 

criterion was not applied to deciduous broadleaf forest, because annual maximum of GCC or VCI 470 

usually occurred in late May or early June whereas annual maximum of NDVI was usually in late July 471 

or early August. After that, we excluded the annual NDVI time series for which the mean NDVI of the 472 

https://modis.ornl.gov/globalsubset/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1674
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31 days period with annual maximum NDVI in the 16th day was less than 1.15 times the mean NDVI of 473 

December. 474 

The satellite DLCO explained about 80% of the variations in PhenoCam derived DLCO (Fig. 2 in the 475 

main text), although the mismatch between the annual NDVI and GCC trajectories leads to large DLCO 476 

difference between NDVI and GCC (Figure SM6) or VCI (Figure SM7). 477 

 478 

 479 

Figure SM6. Examples that mismatch between the annual NDVI and GCC trajectories leads to large 480 

DLCO difference between NDVI and GCC. 481 

 482 

 483 

Figure SM7. Examples that mismatch between the annual NDVI and VCI trajectories leads to large 484 

DLCO difference between NDVI and VCI. 485 

 486 

  487 
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