
Antwerpen, 2022

University of Antwerp - imec
IDLab - Department of Computer Science

Promotoren
Prof. dr. Chris Blondia
Prof. dr. Marc Moonen

Evaluation of a strict priority
scheduler, and cross-layer resource
allocation
Proefschrift voorgelegd tot het behalen van de graad van doctor in de wetenschappen aan de Univer-
siteit Antwerpen te verdedigen door

Jeremy Van den Eynde

Faculteit Wetenschappen

Evaluation of a strict priority
scheduler, and cross-layer resource

allocation

Proefschrift voorgelegd tot het behalen van de graad van
doctor in de wetenschappen

aan de Universiteit Antwerpen te verdedigen door

Jeremy Van den Eynde

Antwerpen, 2022

Promotoren
Prof. dr. Chris Blondia
Prof. dr. Marc Moonen

Jury

Voorzitter
Prof. dr. Benny Van Houdt, UAntwerpen, Belgium

Promotoren
Prof. dr. Chris Blondia, UAntwerpen, Belgium
Prof. dr. Marc Moonen, KULeuven, Belgium

Leden
Prof. dr. Steven Latré, UAntwerpen, Belgium
Prof. dr. Dieter Fiems, UGent, Belgium

Contact
Jeremy Van den Eynde
University of Antwerp - imec
IDLab - Department of Computer Science
Sint-Pietersvliet 7, 2020 Antwerpen, België
M: jeremy.vandeneynde@uantwerpen.be

© 2022 Jeremy Van den Eynde
Alle rechten voorbehouden.

i

Acknowledgements

Here, I would like to thank those who have helped and supported me directly
and indirectly in finishing the long endeavor that’s resulted in this thesis. The
list of people to thank is bound to be incomplete, as so many have guided me
during this process.

First and foremost, I am deeply grateful to my supervisor Prof. dr. Chris
Blondia who gave me the opportunity and the time to start and – more
importantly – finish my PhD, and has advised me in this journey. Whenever we
met, his insightful comments gave me new energy and ideas to continue. I would
also like to thank my external co-supervisor Prof. dr. Marc Moonen for the
collaboration, insights and interesting projects.

In addition to my supervisors, I would like to thank the honourable members of
the jury: Prof. dr. Benny Van Houdt, Prof. dr. Steven Latré and Prof. dr.
Dieter Fiems for taking the time to carefully read and discuss my thesis in order
to improve it.

Furthermore, I’m grateful for the guidance and support of dr. Kathleen Spaey
during my initial years. She and Prof. dr. Chris Blondia teamed up to introduce
me into the world of analysis of scheduling algorithms. I also want to thank dr.
Jeroen Verdyck for our collaboration and valuable feedback over the years.

A big thank you to Prof. dr. Jeroen Famaey for taking me into his team as one of
his own, even though I was the weird duckling, working on DSL projects while all
others were working on wireless and IoT networks and mmWave communications.

Life at university would have been dull without the company of the many
colleagues with whom I had interesting discussions and laughs during the
tea/coffee breaks, and card, kubb or ping pong games during our lunches. Thank
you Bart, Daniel, Johan, Nico, Niko, Serena, Jakob, Filip, and many others. I
also fondly look back to the bike rides home with Bart Sas!

Many people kept their curiosity about my research, despite my often abstract
and unclear answers, and helped me unload my mind in various ways. In
particular, I’d like to mention my brother and sister, Jixop, Moorkens, Wouter!,
Bobby, Frady, Sven, Julia, Esteban, and many others who provided me with the
often necessary distractions, whether it was climbing, music, movies, drinks,
games, travels or foods.

Finally, I would like to thank my parents for providing me with an always
welcoming, supportive and warm place.

ii

Abstract

The aim of this thesis is twofold: (I) the analysis of the end-to-end delay and
delay variation of a strict priority scheduler for a particular combination of traffic
inputs, and (II) cross-layer allocation of resources in shared systems.

In industries like railroad and power companies, old and proprietary computer
networks are being replaced with common and open standards. The critical
traffic that runs on these old networks has very strict quality of service (QoS)
requirements for critical traffic. These requirements should also be respected in
the upgraded networks, which now is also used for other traffic, such as
closed-circuit television (CCTV), voice over IP (VoIP) and information systems.

In part (I) of this thesis, we develop expressions for the end-to-end (E2E) delay
and delay variation distributions, for the different classes of aggregate traffic that
are served by a strict priority scheduler. This can help to dimension the network
and ensure the QoS is not violated.

We characterize the busy period, taking low priority traffic into account, of all
priorities in order to calculate the additional delay each traffic class encounters.
In particular, we characterize the busy period of any aggregate of constant
bit-rate (CBR) sources. We use those distributions to obtain the E2E delay
bound, taking the through-traffic and cross-traffic (CT) into account. Methods
used in literature are usually limited to two priority classes or do not account for
the through-traffic.

We evaluated our approach using simulation of a network, and found that our
expressions are able to upper bound the E2E delay and delay variation for all the
traffic priorities that we have considered here.

In part (II) we look at cross-layer resource allocation. The Open Systems
Interconnection (OSI) model is based on layers that provide an abstraction of a
certain networking function. These abstractions allow very limited interaction
between the layers, which results in missed opportunities to increase the
performance of the network. Cross-layer algorithms make use of information
contained in layers it can normally not access, in order to achieve a better
performance.

The research presented here applies a novel cross-layer scheduler, called the
minimal delay violation (MDV) scheduler, that can be used when the achievable
data rate of a user depends on the data rates the other users receive. The MDV
scheduler takes the state of the users into account, such as the delay and number
of dropped packets, to calculate a weight that expresses the rate requirements for
each user. First we consider a digital subscriber line (DSL) context, where
cross-talk between the copper cables of users reduces the maximum
simultaneously achievable data rates. The MDV scheduler is then applied to an
long-term evolution (LTE) and 5G (5G) setting.

iii

Through simulations, we show that the MDV scheduler outperforms other
schedulers from literature in a multitude of scenarios, with respect to the delay
and throughput. We additionally discuss some properties of the scheduler, such
as its stability. To constrain misbehaving flows, we design a throughput
constraining algorithm that can be applied to multiple cross-layers schedulers
from literature, with minimal changes.

We also implement one other cross-layer allocation algorithm that can be used
when service rates are assigned dynamically, but there is a delay between
requesting and receiving the data rate, such as for example in satellite
communication networks. Here we modify an admission control algorithm to
provide a prediction on a traffic aggregate. We evaluate the algorithm using
simulation for different traffic mixes, and protocols, and find that the offered
trade-off between efficiency and adherence to the QoS is reasonable, compared to
an ideal situation.

Nederlandse samenvatting

Deze thesis omvat twee delen: (I) de analyse van de E2E vertraging en variatie
van de vertraging van pakketten in een stricte prioriteitscheduler voor een
bepaalde combinatie van verkeer, en (II) de cross-layer allocatie in gedeelde
netwerken.

In industriën zoals de spoorwegen en het electriciteitsnet worden oude en
gepatenteerde computer netwerken vervangen door netwerken gebaseerd op open
standaarden. Het belangrijke verkeer dat over deze oude netwerken loopt heeft
hele strikte QoS vereisten. Deze vereisten moeten ook gerespecteerd worden in de
geüpgrade netwerken, die nu ook voor ander verkeer gebruikt kan worden, zoals
CCTV, VoIP en informatie systemen.

In deel (I) van deze thesis ontwikkelen we uitdrukkingen voor de
kansverdelingsfunctie van de E2E vertraging en variatie van de vertraging voor
de verschillende klasses van geaggregeerd verkeer dat door een strikte
prioriteitsscheduler wordt verwerkt. Dit kan helpen om het netwerk te
dimensioneren en er voor te zorgen dat de QoS gerespecteerd wordt.

We karakteriseren de busy period, de tijd dat bepaalde prioriteiten verstuurd
worden, van alle prioriteiten om zo de extra vertraging te berekenen dat elke
verkeersklasse ondervindt. Bij het berekenen van de busy period wordt steeds
ook het lage prioriteitsverkeer in rekening gebracht. Hier merken we op dat we de
busy period voor een aggregaat van verschillende CBR bronnen een nauwkeurige
verdelingsfunctie hebben bepaald. Deze verdelingsfuncties worden vervolgens
gebruikt om een grens op E2E vertraging en variatie van de vertraging te bepalen.
Belangrijk hierbij is op te merken dat zowel het tijdelijk verkeer als het verkeer
dat over verschillende nodes wordt verstuurd (het through-traffic), in rekening is
gebracht. De methodes die gebruikt worden in de literatuur zijn gewoonlijk

iv

beperkt tot twee verkeersklassen, of houden geen rekening met through-traffic.

We hebben onze uitdrukkingen geëvalueerd aan de hand van simulaties van een
netwerk. Daaruit bleek dat we voor alle verkeersklassen die we hier beschouwen,
een bovengrens op de E2E vertraging en variatie van de vertraging konden
bepalen.

In deel (II) kijken we naar de cross-layer toekenning van hulpbronnen. Het OSI
model is gebaseerd op lagen die een abstractie voorzien voor bepaalde netwerk
functionaliteit. Deze abstracties laten slechts een zeer beperkte wisselwerking toe
tussen de verschillende lagen, wat er voor zorgt dat er vele kansen tot
optimalisatie verloren gaan. Cross-layer algoritmes maken gebruik van de
informatie in de andere lagen die normaal niet beschikaar is, om zo tot een betere
prestatie te komen.

Het onderzoek dat we hier presenteren toont een nieuwe cross-layer scheduler,
genaamd de MDV scheduler, die kan gebruikt worden wanneer de data rate van
een gebruiker afhangt van hoeveel data rate andere gebruikers hebben gekregen.
De MDV scheduler neemt de staat van al de gebruikers in overweging, zoals de
vertraging en de hoeveelheid verloren pakketten, om een gewicht te berekenen
dat de data rate vereisten uitdrukt voor elke gebruiker. Eerst kijken we naar een
DSL context, waar cross-talk tussen de koperkabels van de gebruikers ervoor kan
zorgen dat niet alle gebruikers hun maximale data rate kunnen behalen. De
MDV scheduler is vervolgens ook nog toegepast op een LTE en 5G netwerk.

Met behulp van simulaties tonen we dat de MDV scheduler betere resultaten
voorlegt dan andere gelijkaardige schedulers in verschillende scenarios. We
hebben hier voornamelijk naar vertraging en throughput gekeken. Daarnaast
hebben we ook enkele eigenschappen van de scheduler besproken, zoals de
stabiliteit. Om te voorkomen dat applicaties zich misdragen, hebben we een
algoritme ontwikkeld dat de throughput van applicaties in een bepaalde range
brengt. Het algoritme is toepasbaar op verschillende cross-layer schedulers uit de
literatuur met minimale aanpassingen.

Verder hebben we ook een cross-layer algoritme geïmplementeerd dat kan
gebruikt worden wanneer de data rates dynamisch worden toegekend, maar er
een vertraging is tussen de aanvraag en het toekennen van de data rate, zoals
bijvoorbeeld kan optreden in satelliet communicatie netwerken. We gebruiken
een admissie controle algoritme en wijzigen dit, zodoende een voorspelling op een
verkeersaggregaat te krijgen. We evalueren dit algoritme met behulp van
simulaties voor verschillende combinaties van verkeer. Vergeleken met een
optimaal algoritme functioneert het algoritme redelijk, als we kijken naar de
trade-off tussen QoS en efficiëntie van het kanaal.

Contents

Table of Contents v

List of Figures xi

List of Tables xvii

Acronyms 1

Symbols 5

Publications 9

1 Introduction 11

1.1 Context . 11

1.2 Structure of this thesis and contributions 13

I Analysis of a strict priority scheduler 15

2 Introduction 17

2.1 Related work . 19

2.2 Scheduling . 22

2.3 Structure and contributions of this chapter 23

3 High priority CBR traffic 25

3.1 Introduction . 25

v

vi CONTENTS

3.2 Simulation setup . 27

3.3 Queue distribution . 28

3.4 Delay distribution . 31

3.5 instantaneous packet delay variation (IPDV) distribution 33

3.6 Busy period distribution . 34

3.7 Conclusion . 39

4 Medium priority VoIP traffic 41

4.1 Introduction . 41

4.2 Network calculus primer . 41

4.3 VoIP . 45

4.4 The server vacation . 49

4.5 Simulation setup . 50

4.6 Queue size distribution . 51

4.7 Delay distribution . 52

4.8 IPDV distribution . 54

4.9 Busy period (BP) distribution . 55

4.10 Conclusion . 57

5 Low priority Video traffic 59

5.1 Introduction . 59

5.2 The server vacation . 59

5.3 Simulation setup . 61

5.4 Queue size distribution . 61

5.5 Delay distribution . 62

5.6 IPDV distribution . 64

5.7 Conclusion . 65

CONTENTS vii

6 Evaluation 67

6.1 Multi-hop . 67

6.2 Setup . 72

6.3 Traffic . 73

6.4 Plot layout . 74

6.5 Scenario 1 . 76

6.6 Scenario 2 . 78

6.7 Scenario 3 . 80

6.8 Scenario 4 . 82

6.9 Scenario 5 . 84

6.10 Scenario 6 . 86

6.11 Scenario 7 . 88

6.12 Scenario 8 . 90

6.13 Scenario 9 . 92

6.14 Conclusion . 94

7 Conclusion 95

II Cross-layer resource allocation 97

8 Introduction 99

9 Cross-layer optimization in DSL networks 105

9.1 Introduction . 105

9.2 Related work . 110

9.3 System model . 112

9.4 The MDV scheduler . 114

9.5 Physical layer model . 126

9.6 Performance evaluation . 129

viii CONTENTS

9.7 Conclusion . 141

10 Cross-layer scheduling in LTE and 5G 143

10.1 Introduction . 143

10.2 Notation . 145

10.3 The minimal delay violation scheduler 146

10.4 Performance evaluation . 148

10.5 Conclusion . 153

11 Cross-layer resource allocation for satellite communication 159

11.1 Related work . 160

11.2 System model . 161

11.3 Algorithms . 162

11.4 Performance evaluation . 168

11.5 Conclusion . 179

12 Throughput Constraining in Cross-layer Schedulers 181

12.1 Introduction . 181

12.2 System model . 183

12.3 The Token Bucket Rate Modifier algorithm 183

12.4 Performance evaluation . 187

12.5 Related work . 194

12.6 Conclusion . 194

13 Conclusion 197

13.1 Future work . 198

A Constructing matrix H 201

B Calculating the vacation pmf 203

CONTENTS ix

C Proof of stability for constant A and B 205

D Proof of stability for time-dependent A and B 209

E DSL Oracle scheduler 211

References 215

x CONTENTS

List of Figures

2.1 A strict priority (SP) scheduler with three input queues 22

3.1 Events characterizing two CBR aggregates, and with T1 27

3.2 Scheduler setup for the simulations of this section 28

3.3 CBR queue distribution for two different CBR aggregates and var-
ious v ∈ {0, 5, 10} . 29

3.4 CBR queue distribution multiple aggregates and for various v ∈
{0, 5, 10} . 32

3.5 CBR delay distribution for various v ∈ {0, 5, 10} 33

3.6 CBR delay distribution for multiple aggregates and various v ∈
{0, 5, 10} . 33

3.7 CBR IPDV distribution for various v ∈ {0, 5, 10} 34

3.8 CBR IPDV distribution multiple aggregates and for various v ∈
{0, 5, 10} . 35

3.9 Events characterizing the busy period for two CBR aggregates, and
with T1 . 36

3.10 Busy period for two different scenarios with v ∈ {0, 5, 25} 39

3.11 Waiting time distribution for HP1 and LP traffic. A1 = (10, 80, 1),
A2 = (8, 120, 7), v ∈ {6, 12} . 40

4.1 The queuing model . 41

4.2 Arrival curve A(t) and departure D(t) curve for deterministic net-
work calculus (DNC) . 42

4.3 Bounds for DNC . 43

4.4 Some bounds for stochastic network calculus (SNC) 45

xi

xii LIST OF FIGURES

4.5 The state transitions for a two state on-off traffic model 46

4.6 A depiction of the token bucket algorithm 47

4.7 Matching the aggregate of M = 20 VoIP sources to a token bucket
(TB) process for a rate λtb = M · λ ·R 49

4.8 Scheduler setup for the simulations of this section 50

4.9 VoIP queue size distribution for R = 5 Mbps, M = 20 51

4.10 VoIP queue size distribution for R = 100 Mbps, M = 40 51

4.11 Traffic envelope vs. token bucket 52

4.12 VoIP delay distribution for R = 5 Mbps, M = 20 53

4.13 VoIP delay distribution for R = 100 Mbps, M = 40 53

4.14 A positive IPDV . 54

4.15 VoIP IPDV distribution for R = 5 Mbps, M = 20 55

4.16 VoIP IPDV distribution for R = 100 Mbps, M = 40 55

4.17 VoIP BP distribution for R = 5 Mbps, M = 20 56

4.18 VoIP BP distribution for R = 100 Mbps, M = 40 57

5.1 Traffic envelopes for the trace file for various violation probabilities 60

5.2 A datagram is fragmented into five packets, with a header and data 60

5.3 Scheduler setup for the simulations of this section 61

5.4 Video queue size distribution forR = 10 Mbps, HP: A = [(10, 137, 1), (10, 265, 2)] 62

5.5 Video queue size distribution forR = 100 Mbps, HP: A = [(20, 1370, 1), (20, 2653, 2)] 62

5.6 Video delay distribution forR = 10 Mbps, HP: A = [(10, 137, 1), (10, 265, 2)] 63

5.7 Video delay distribution forR = 100 Mbps, HP: A = [(20, 1370, 1), (20, 2653, 2)] 63

5.8 Video IPDV distribution forR = 10 Mbps, HP: A = [(10, 137, 1), (10, 265, 2)] 64

5.9 Video IPDV distribution forR = 100 Mbps, HP: A = [(20, 1370, 1), (20, 2653, 2)] 64

6.1 A simple network . 68

6.2 The HP packet is stuck behind LP1, until Node 3 69

LIST OF FIGURES xiii

6.3 A single node . 73

6.4 A sample plot of the E2E distribution 75

6.5 E2E results for scenario 1 . 77

6.6 E2E results for scenario 2 . 79

6.7 E2E results for scenario 3 . 81

6.8 E2E results for scenario 4 . 83

6.9 E2E results for scenario 5 . 85

6.10 E2E results for scenario 6 . 87

6.11 E2E results for scenario 7 . 89

6.12 E2E results for scenario 8 . 91

6.13 E2E results for scenario 9 . 93

8.1 The seven layers of the OSI model 100

9.1 Rate versus distance . 106

9.2 Trend of deployment volumes of DSL generations 107

9.3 DSL network architecture . 108

9.4 Example of crosstalk in a DSL system 109

9.5 A rate region for a two user system 109

9.6 The system model . 112

9.7 cstream(b) and cBE(b) . 118

9.8 Intra-user rate region for a user with three flows 119

9.9 R and Rα for a two users system (α ∈ {0, 0.5, 2}) 121

9.10 Multiplier for the streaming traffic class and bounds 122

9.11 Rate regions for the example of Section 9.4.6 125

9.12 Queue evolution of a min-delay (MD) scheduler with two rate points 126

9.13 Rate region of a 2-user G.Fast system. 127

9.14 Rate region for 3 groups with 2 users (in bit/second) 130

xiv LIST OF FIGURES

9.15 The packet loss ratio (PLR) and throughput for scenarios with one
flow per user (4GBB) . 134

9.16 The PLR and throughput for scenarios with one flow per user (5GBB)135

9.17 The PLR and throughput for regular scenarios (4GBB) 135

9.18 The PLR and throughput for regular scenarios for the earliest dead-
line first (EDF) scheduler (4GBB) 136

9.19 The PLR and throughput for regular scenarios (5GBB) 136

9.20 The PLR and throughput for regular scenarios for the EDF sched-
uler (5GBB) . 137

9.21 The PLR for regular scenarios using α = 2, i.e. MD-style schedulers
(4GBB and 5GBB) . 137

9.22 The PLR and average delay for high load scenarios (4GBB, α = 2) 138

9.23 The PLR and average delay for high load scenarios (5GBB, α = 2) 138

9.24 The PLR for the self-similar traffic scenarios (4GBB and 5GBB) . 139

9.25 The PLR for the self-similar traffic scenarios (4GBB and 5GBB,
α = 2) . 140

9.26 The PLR for multiplexing Starwars videos for the fourth generation
broadband access (4GBB) rate region using regular style and MD-
style scheduling . 140

9.27 The PLR for multiplexing Starwars videos for the 3 groups, 2 users
per group (3g2u) rate region using regular style and MD-style schedul-
ing . 141

10.1 The LTE topology for the simulations 149

10.2 Probability mass function (pmf) for PLR for LTE 120 km/h scenario152

10.3 Pmf for throughput for LTE 120 km/h scenario 152

10.4 Plots for the LTE 3 km/h scenarios 154

10.5 Plots for the LTE 120 km/h scenarios 155

10.6 Plots for the 5G 3 km/h scenarios 156

10.7 Plots for the 5G 120 km/h scenarios 157

11.1 Request - grant timeline . 161

LIST OF FIGURES xv

11.2 Overview of the original MBAC model 164

11.3 |K| vs delay error and processing time (DSL setting) 169

11.4 vs efficiency for varying ρ and ε . 173

11.5 Delay error vs efficiency for varying ρ and ε Poisson vs Mix for
T̂ = 0.1s . 173

11.6 T̂ /E[D], for µ′ = 0.5, λ = 0.4, c2a = c2s = 1.52, kτ = 10 175

11.7 Summary for UDP for the Sat scenario 176

11.8 Summary for UDP for the DSL scenario 176

11.9 Summary for TCP for the Sat scenario 178

11.10Summary for TCP for the DSL scenario 178

12.1 m1 for the regular scenarios . 190

12.2 m2 for the regular scenarios . 191

12.3 m3 for the regular scenarios . 192

12.4 m1 for the σ scenarios . 193

12.5 m1 for the τ scenarios (σ = 5τρ) 193

xvi LIST OF FIGURES

List of Tables

2.1 Internet Engineering Task Force (IETF) Request for Comments
(RFC) 4594 recommendations . 19

6.1 Permutations of all scenarios in a single node 71

6.2 Simulation parameters for scenario 1 76

6.3 Simulation parameters for scenario 2 78

6.4 Simulation parameters for scenario 3 80

6.5 Simulation parameters for scenario 4 82

6.6 Simulation parameters for scenario 5 84

6.7 Simulation parameters for scenario 6 86

6.8 Simulation parameters for scenario 7 88

6.9 Simulation parameters for scenario 8 90

6.10 Simulation parameters for scenario 9 92

9.1 DSL technologies . 107

9.2 G.Fast parameter settings for the 4GBB scenarios 128

9.3 Summary of G.fast parameter settings 130

9.4 Summary of the schedulers used in the simulations (in no particular
order) and their settings . 131

10.1 Symbols . 145

10.2 Simulation parameters . 149

10.3 Summary of the schedulers used in the simulation (in no particular
order) and their settings. Common symbols: R (averaged service
rate), α = −ln(ε)/T̂ . 150

xvii

xviii LIST OF TABLES

11.1 Symbols . 162

11.2 Simulation parameters . 169

11.3 Traffic sources . 170

12.1 Symbols . 183

12.2 Summary of the schedulers used in the simulation and their settings.
Common symbols: R (averaged service rate), λ (averaged arrival
rate), Γ is the average head-of-line (HOL) of all real-time flows, and
α = −ln(ε)/T̂ . 188

12.3 Summary of scenarios . 189

Acronyms

3g2u 3 groups, 2 users per group.
3GPP 3rd Generation Partnership Project.
4GBB fourth generation broadband access.
5G 5G.
5G NR 5G New Radio.
5GBB fifth generation broadband access.
AC admission control.
AC arrival curve.
ADSL asymmetric digital subscriber line.
AFDX avionics full duplex switched ethernet.
BE best-effort.
BP busy period.
CBR constant bit-rate.
ccdf complementary cumulative distribution function.
CCTV closed-circuit television.
cdf cumulative distribution function.
CO central office.
CQI channel quality indicator.
CT cross-traffic.
DBA dynamic bandwidth allocation.
DC departure curve.
DiffServ differentiated services.
DMT discrete multitone.
DMW delay-based max-weight.
DNC deterministic network calculus.
DoD Department of Defense.
DPU distribution point unit.
DS differentiated services.
DSCP differentiated services code point.
DSL digital subscriber line.
DSLAM Digital subscriber Line Access Multiplexer.
DSM dynamic spectrum management.
eNB eNodeB.
EPC evolved packet core.
E-UTRAN evolved UMTS terrestrial radio access network.
E2E end-to-end.
EBB exponentially bounded burstiness.
EDF earliest deadline first.

1

2 LIST OF TABLES

EMA exponentially moving average.
EXP/PF EXP/PF.
FIFO first in first out.
FLS FLS.
FR1 Frequency Range 1.
FR2 Frequency Range 2.
FTTF fiber to the frontage.
FTTH fiber to the home.
G.fast G series fast access to subscriber terminals.
GEO geosynchronous earth orbit.
gNB gNodeB.
GOOSE generic object oriented substation events.
GV grouped vectoring.
HOL head-of-line.
HP high priority.
i.i.d. independent and identically distributed.
IA inter-arrival.
IETF Internet Engineering Task Force.
IntServ integrated services.
IP Internet Protocol.
IPDV instantaneous packet delay variation.
IPv4 internet protocol version 4.
IPv6 internet protocol version 6.
ISDN Integrated Services Digital Network.
ISO International Organization for Standardization.
ISRR inter-site rapid response.
ITU International Telecommunication Union.
JFI Jain’s fairness index.
LLC logical link control.
LP low priority.
LTE long-term evolution.
MBAC measurement based admission control.
M-LWDF modified largest weighted delay first.
MAC media access control.
MD min-delay.
MDU maximal delay utility.
MDV minimal delay violation.
mgf moment-generating function.
MIMO multiple input/multiple output.
mmWave millimeter wave.
MP medium priority.
MSS maximum segment size.
MT max throughput.
MTU maximum transmission unit.
MW max-weight.
NC network calculus.
NLMS normalized least mean square.

LIST OF TABLES 3

NN neural network.
NRT non-real time.
NT network termination.
NUM network utility maximization.
OFDM orthogonal frequency-division multiplexing.
OFDMA orthogonal frequency-division multiple access.
ONT optical network terminal.
OSI Open Systems Interconnection.
PBOO pay bursts only once.
PDV packet delay variation.
PF proportionally fair.
pgf probability generating function.
PHB per-hop behaviour.
PLR packet loss ratio.
pmf probability mass function.
PPM packet prediction mechanism.
PPP point-to-point protocol.
PRB physical resource block.
QHMLWDF queue-HoL-M-LWDF.
QoE quality of experience.
QoS quality of service.
RAN radio access network.
RB resource block.
RFC Request for Comments.
RIPE NCC Réseaux IP Européens Network Coordination Centre.
RR round robin.
RSVP resource reservation protocol.
RT real time.
SC service curve.
SDH synchronous digital hierarchy.
SNA System Network Architecture.
SNC stochastic network calculus.
SNR signal-to-noise ratio.
SONET synchronous optical networking.
SP strict priority.
SSC stochastic service curve.
STE stochastic traffic envelope.
TB token bucket.
TBRM token bucket rate modifier.
TCP transmission control protocol.
TDM time-division multiplexing.
TE traffic envelope.
TT through-traffic.
TTI transmission time interval.
UDP user datagram protocol.
UE user equipment.
UMTS universal mobile telecommunications system.

4 LIST OF TABLES

VoIP voice over IP.

Symbols

Common symbols

X a bold-faced letter indicates a vector

X average over X

XT transpose of a vector or matrix X

bxc integer part of x

dxe smallest integer exceeding x

(x)+ max(0, x)

Bin(N,n, p)
(
N
n

)
(p)n (1− p)N−n

δx Kronecker delta is 1 if x = 0 and 0 otherwise

δs Dirac delta function: δs(s) =∞, 0 everywhere else, and
∫∞
−∞ δs(x)dx = 1

X̂ upper bound on a metric X

X̌ lower bound on a metric X

T̂ QoS packet delay upper bound

ε QoS packet delay violation upper bound

q[t] queue size (bits) at time t

Γ[t] HOL: waiting time of the packet at the front of the queue

A [s, t] arrivals (bits) during in the interval [s, t]

a [s, t] arrivals (packets) during in the interval [s, t]

E [s, t] departures (bit) during in the interval [s, t]

e [s, t] departures (packets) during in the interval [s, t]

TB(ρ, σ) a token bucket with rate ρ and burst size σ

5

6 LIST OF TABLES

Chapter 1

m number of CBR aggregate classes

Aj refers to the j-th CBR aggregate class (j ∈ [1,m]), specified as (Nj , Lj , Dj)

Nj number of active sources in aggregate Aj
Lj length of a packet in aggregate Aj
Dj period of a source from in aggregate Aj
lcm(x) the least common multiple of x

G lcm(D)

Ej number of packets a source from Aj can send in G slots

ρx,y load in an interval [x, y]

W waiting time distribution

M maximum amount of work that can arrive from all CBR sources in the first slot

Q queue distribution

Qv queue distribution given a vacation of length v

Z BP distribution

Zv BP given a vacation of length v

D delay distribution

Dv delay distribution given a vacation of length v

I IPDV distribution

Iv IPDV distribution given a vacation of length v

U maximum transmission unit (MTU): largest packet that can be transmitted

pON probability that a VoIP source is in the ON state

U[a,b] the uniform distribution over the interval [a, b]

L(X)
∑
x∈X P {X = x}U[0,x], where X is a distribution

ρHP,TT load of the through-traffic packets that are of equal or higher priority

ρHP,CT load of the cross-traffic packets that are of equal or higher priority

ρHP ρHP,CT + ρHP,TT

ρLP,TT load of the through-traffic packets that are of lower priority

ρLP,CT load of the cross-traffic packets that are of lower priority

ρLP ρLP,CT + ρLP,TT

V HP the vacation due to high priority (HP) traffic

LIST OF TABLES 7

V v,HP the vacation due to HP traffic, including the low priority (LP) vacation

V LP the vacation due to LP traffic

V LP,TT the vacation due to through-traffic (TT) LP traffic

Chapter 2

xn value for user n of a vector x

xni value for a flow i of user n of a matrix x

Ř guaranteed service rate

R̂ maximum possible service rate

τ slot size

x[t] value at time slot t

R rate region

C capacity region

X∗ optimal solution of X among all possible options

ζ small constant added to a rate to avoid division by zero

conv A convex hull of A

S [t] state of the system, including its history

D[t] packet delay distribution up to time t

u(·) utility function

N number of users

φn number of flows of user n

φ total number of flows in the network

R[t] service rate at time t

dp [s, t] dropped packets during in the interval [s, t]

p short-term PLR

ω weight

x̃[t+ 1] prediction of value x at time t+ 1

c(·) class-dependent function

Ω constant weight for the SAT flow

8 LIST OF TABLES

Publications

[1] Jeremy Van den Eynde and Chris Blondia. Cross-layer optimization with
real-time adaptive dynamic spectrum management for fourth generation
broadband access networks. In IFIP International Conference on
Autonomous Infrastructure, Management and Security, pages 184–188.
Springer, 2014.

[2] Jeremy Van den Eynde, Jeroen Verdyck, Marc Moonen, and Chris Blondia.
Delay performance enhancement for 4th generation dsl networks through
cross-layer optimization. In Proc. 6th joint WIC/IEEE SP Symposium on
Information Theory and Signal Processing in the Benelux, pages 2–9, 2016.

[3] Jeremy Van den Eynde, Jeroen Verdyck, Marc Moonen, and Chris Blondia.
A delay-based cross-layer scheduler for adaptive dsl. In Communications
(ICC), 2017 IEEE International Conference on, pages 1–6. IEEE, 2017.

[4] Jeremy Van den Eynde and Chris Blondia. Measurement-based dynamic
resource allocation on traffic aggregates. In 2019 IEEE International
Conference on Communication, Networks and Satellite (Comnetsat) (IEEE
COMNETSAT 2019), Makassar, Indonesia, July 2019.

[5] Jeremy Van den Eynde and Chris Blondia. Token bucket-based throughput
constraining in cross-layer schedulers. In David C. Wyld
Natarajan Meghanathan, editor, 6th International Conference on Computer
Science, Engineering and Information, volume 9, pages 209–219, November
23 24, 2019, Zurich, Switzerland, November 2019.

[6] Jeremy Van den Eynde and Chris Blondia. The busy period distribution of
the superposition of periodic arrivals with vacation time. In Proceedings of
the 13th EAI International Conference on Performance Evaluation
Methodologies and Tools, VALUETOOLS ’20, page 204–207, New York, NY,
USA, 2020. Association for Computing Machinery.

[7] Jeremy Van den Eynde, Jeroen Verdyck, Marc Moonen, and Chris Blondia.
Minimal delay violation-based cross-layer scheduler and resource allocation
for DSL networks. IEEE Access, 9:75905–75922, 2021.

[8] Jeremy Van den Eynde and Chris Blondia. A minimal delay violation
downlink LTE scheduler. In 2021 IEEE 46th Conference on Local Computer
Networks (LCN) (LCN 2021), Edmonton, Canada, October 2021.

9

10 PUBLICATIONS

[9] Jeremy Van den Eynde and Chris Blondia. Delay analysis of a multi-hop
strict priority scheduler. In 2022 20th Mediterranean Communication and
Computer Networking Conference (MedComNet), pages 94–102, Paphos,
Cyprus, 2022. IEEE.

[10] Jeremy Van den Eynde and Chris Blondia. Delay analysis of a multi-hop
strict priority scheduler. In 2022 20th Mediterranean Communication and
Computer Networking Conference (MedComNet), pages 94–102. IEEE, 2022.

Chapter 111
Introduction

1.1 Context

In industries like railroad and power companies, computer networks are an
integral part to the correct and safe functioning of the system. The network
traffic for these critical applications on these networks need to adhere to very
strict QoS requirements to ensure the safety of the system. The hardware and
software for these systems, however, are increasingly more expensive to maintain,
as the hardware is getting older, and the proprietary nature makes it difficult or
impossible to interconnect them with other networks and use the network for
additional purposes. As these systems are being upgraded to new hardware and
software that uses open standards, it is also used for additional, less-critical
tasks, such as monitoring (CCTV), VoIP, information systems, management etc.
However, the QoS requirements of the critical traffic must still be respected. In
part (I) of the thesis, we consider a SP scheduler, where the highest priorities are
represented by an aggregate of CBR sources. For the next priority we consider
an aggregate of on-off sources. The next priority comprises a video flow,
comprising very large datagrams which become fragmented once they enter the
network. The lowest priority is reserved for background traffic, whose sole
purpose, in this thesis, is to disturb the packets of the higher priorities.

We derive expressions for the single node queue size, delay and delay variation,
and BP distributions. In particular, we develop a closed-form expression for the
BP of an aggregate of CBR sources, where the period and/or packet size can be
different, and an optional vacation is taken into account. The BP distribution is
used to calculate the additional delay traffic from the lower priority can
encounter. We extend the single node delay and delay variation to an E2E delay
and delay variation distribution. Literature usually works with only two
priorities, or only considers the delay of one priority over the different nodes.
The expression we developed provides an upper bound on the delay distributions
for all the different priorities we considered here, and can be extended to include
more priorities. Our expressions provide good bounds on both the E2E delay and

11

12 CHAPTER 1. INTRODUCTION

delay variation when compared to the multiple scenarios we simulated in an
Internet Protocol (IP) network.

For part (II), we delve into the OSI model proposed by the International
Organization for Standardization (ISO). A long time ago, they redesigned
computer networks by composing black boxes, called layers. These layers are
building blocks that provide limited but specific functionality. Through
well-defined interfaces between these layers a network stack can be easily
constructed that can be tailored to specific contexts. To ensure that these layers
are interchangeable, layers have a limited interface, and layers can only
communicate through these interfaces with the layer above or below. However,
this limitation can lead to inefficiencies as some layers are missing important
information to guide functionality.

For example, the channel quality in LTE, and hence the data rate at which a
device can transmit, can change drastically from one moment to the next.
Therefore, a seemingly ideal solution would be to opportunistically give service
to the user that experiences the best channel quality. However, not all
applications are equal, and do not really need the highest service rate. For
example, a user that is fetching e-mails has very different data rate and delay
requirements than a user that is holding a video call. In this case, we might try
to give priority to the video call. For a two user system, the solution might seem
easy, however, as the number of users increases, also the complexity grows in
assigning data rates “optimally”.

Likewise, in recent DSL technologies a similar problem occurs. Due to
interference between different users’ copper cables, data rates negatively impact
other users’ data rates. There is a need to fairly distribute the available service
rate among the users. Currently, these service rates are precalculated, based on a
limited number of fixed scenarios. However, the behavior of the traffic and users
is dynamic, and performance of the network can be increased by taking this
varying behavior into account.

In part (II), we focus on the cross-layer aspect in some contexts. We first develop
a scheduler, called the MDV scheduler, that takes the user requirements into
account to steer the physical layer. The scheduler takes multiple QoS parameters
into account, such as the delay upper bound, the queue size, the HOL, arrival
rate and loss. These data come from the different layers, breaking the boundaries
between neighboring layers. We compare our algorithm using simulations in
several networking contexts to other schedulers from literature, where we can
observe that our scheduler outperforms those other schedulers in various
scenarios. We also discuss some properties of our scheduler.

Later, we implement another cross-layer algorithm that can be used for satellite
communications. Transmitting data over such a channel is expensive, hence to
reduce costs, traffic is aggregated and capacity is reserved for the aggregate on a
slot-by-slot basis using a request-grant mechanism. However, the large latency
makes a predictive cross-layer approach necessary. We evaluate some algorithms

1.2. STRUCTURE OF THIS THESIS AND CONTRIBUTIONS 13

against an ideal algorithm in a couple of different settings, and for different
traffic types, and for the user datagram protocol (UDP) and transmission control
protocol (TCP) protocols.

1.2 Structure of this thesis and contributions

Part I is devoted to calculating analytical single node upper bounds on the delay,
delay variation, the queue size and busy period distribution for traffic aggregates
in a strict priority scheduler. We start the chapter with an introduction in
Chapter 2 In Chapter 3 we derive closed-form expressions for the upper bound
on an aggregate of CBR flows, where the flows might encounter a server that is
busy serving a lower priority packet. A CBR source sends fixed size packets with
fixed inter-arrival times. The expressions can be applied to a mix of aggregates
with different packet sizes and inter-arrival times, allowing one to analyze
different priorities of CBR aggregates. In Chapter 4 we provide bounds on an
aggregate of on-off sources, an approximation to an aggregate of VoIP sources.
We look at the bound using network calculus (NC) and an approximation using a
Poisson model. Chapter 5 takes a look at fragmentation, and how it has an
impact on the delay of the reassembled packet, using a video traffic source as an
example. In Section 6.1 we look at the construction of the E2E delay when a flow
crosses multiple nodes. In each node, a packet can encounter additional delays
due to cross-traffic or traffic that is flowing in the same direction, and we must
take this into account. We look at a simple method, an approximation that is
valid in some scenarios, and a more computationally complex algorithm that can
handle more scenarios. In Chapter 6 we simulate an IP network, and compare
the E2E delay and E2E IPDV of the simulations with the calculated metrics. We
then end the chapter with conclusions in Chapter 7.

Part II concerns cross-layer algorithms. We first start with an introduction to
cross-layering in Chapter 8. In Chapter 9 we introduce the MDV scheduler, a
cross-layer scheduler that optimizes in function of system throughput and the
QoS requirements. This cross-layer scheduler is shown through simulations to
perform well in both the DSL (Chapter 9), and LTE and 5G (Chapter 10)
settings. In Chapter 11 we introduce a cross-layer resource allocation mechanism
for use in satellite communication networks. Chapter 12 closes the chapter with a
generic algorithm for cross-layer schedulers that limits misbehaving flows from
impacting well-behaving flows, which can be used to enforce traffic arrival
bounds, specified upon admission control.

We close this thesis in Chapter 13.

The contributions of this thesis are as follows:

• in Chapter 3 we give an accurate characterization of the BP of an
aggregate of CBR sources, taking an idle period of the scheduler into

14 CHAPTER 1. INTRODUCTION

account. This is then used to provide tight bounds on the delays and delay
variations of the traffic; This is used to characterize the delay of the
different priorities in the SP scheduler;

• in Section 6.1 we give an algorithm to calculate bounds on the E2E delay,
taking both the low priority and high priority through-traffic into account;

• in Part II we introduce novel cross-layer algorithms: in Chapter 8 and
Chapter 9 we discuss the MDV cross-layer scheduler for a DSL, LTE and
5G context, which outperforms cross-layer schedulers from literature;

• in Chapter 11 we introduce a cross-layer algorithm for use in satellite
context;

• in Chapter 12 we develop an algorithm that constrains assigned data rate
in a cross-layer scheduler.

Part I

Analysis of a strict priority
scheduler

15

Chapter 222
Introduction

Utility companies have traditionally used time-division multiplexing (TDM)
networks like synchronous digital hierarchy (SDH) and synchronous optical
networking (SONET). These networks provide the high reliability and strict QoS
requirements that are necessary to ensure that important messages arrive in a
timely and correct manner.

For example, in a railway environment it is crucial that the messages that control
the power distribution of the overhead lines (signaling) or the railroad switches
arrive within a very small delay of being issued. The TDM network can
guarantee the small delays. However, messaging, telephony, access control and
video surveillance are also increasingly used in networks. In the past years,
railway companies have moved from their decades old systems to IP backbones
for voice, video and data traffic [5], for CCTV [3], or for remote signaling, traffic
control and passenger information systems [1].

Likewise, in the electrical power industry there has been a transformation going
on towards an adaptive smart grid that allows system operators to closely
monitor, diagnose and mitigate issues. The backbones are often still based on
TDM networks. However, increasingly more applications use IP over Ethernet,
making the traffic more bursty. This makes the TDM network less cost-effective
as the network has to be provisioned for these bursts, and makes an IP over
Ethernet network attractive. For example, New Zealand installed switches to
support both TDM and IP networks [6], and Beijing Electric Power Corporation
increased its efficiency by installing Ethernet equipment [7].

Even though the underlying technology has changed, the arrival patterns of the
stringent traffic types have remained the same. In this section, we look at the
behavior of these important packets for a particular scheduler.

In IP networks there are two approaches to QoS. The first approach is integrated
services (IntServ) offering fine-grained QoS: each application specifies its
requirements using a resource reservation protocol (RSVP). A path is set up
along all the routers on the path from the source to the destination. If this setup
succeeds, then the application is guaranteed its resources. If the setup fails, there

17

18 CHAPTER 2. INTRODUCTION

are not enough resources along the path to fulfill the requirements, and the state
of the network remains the same. This has the advantage that it is easy to
calculate tight bounds on metrics such as end-to-end delay and buffer size
requirements. However, this requires IntServ support, not only from the routers
to set-up and maintain the state for each application that requested a specific
QoS, but also from each application that needs to provide the flow specifications.
Furthermore, for each application state must be stored in each router, making it
less scalable. Another disadvantage is that if the traffic does not stay within its
spec, delays and packets might be dropped, and if the specification is too loose,
applications might be disallowed that could have entered the IntServ network.

The second approach to QoS is differentiated services (DiffServ) and is much
more coarse-grained. In a DiffServ network applications are aggregated in traffic
classes at the edge of the DiffServ domain. Inside the DiffServ network traffic is
classified and serviced based on its class only, i.e. there is no notion of an
individual application, only packets belonging to a traffic class. Compared to
IntServ this reduces the complexity of the applications and routers inside the
DiffServ network as there is no set-up and reservation to perform along the
routes nor any state to maintain. The cost, however, is that analysis of
end-to-end delay of individual applications is impossible, and we have to resort to
the characteristics of the aggregate itself. For example, if there are 2 VoIP calls
belonging to the same traffic class going over a single DiffServ node it might be
that one VoIP call has a very high E2E as it has traversed a high number of links
already, while the other VoIP call has just entered the network. Ideally the first
call receives preferential treatment. However, as it belongs to the same traffic
class, it might be that the packet of the second call is transmitted first, for
example because it arrived earlier in the queue.

In this chapter we provide expressions for the single node queue size, delay, IPDV
and BP for particular inputs to a strict priority scheduler inside a DiffServ
network. Then we extend the delay and IPDV to the E2E delay and IPDV. So
we now take a closer look at a single node inside DiffServ network.

A packet that enters a DiffServ domain is subjected to a marker and conditioner.
The marker establishes the QoS a packet should get from the network, and
marked accordingly. This marker typically marks a packet based on the IP source
and destination address, and the source and destination port, but any of the
packet’s properties can be used. The marker is set in IP’s differentiated services
(DS) field, occupying the 6-bit differentiated services code point (DSCP). The
conditioner then can reduce the incoming traffic by applying policers or shapers,
according to some traffic profile. A traffic meter counts packets or bits over an
interval and determines whether a new packet exceeds the traffic profile. A
policer will typically drop an out-of-profile packet (deterministic or probabilistic),
or mark it out-of-profile. A policer can use multiple traffic meters to provide
actions (e.g. mark out-of-profile for small violations of the traffic profile, and
drop immediately for the severe violations). A shaper on the other hand will
delay out-of-profile packets and send them once the traffic profile allows it.

2.1. RELATED WORK 19

Table 2.1: IETF RFC 4594 recommendations

Service class DSCP Conditioning at DS edge PHB Queuing AQM

Network control CS6 (48) See section 3.1 RFC 2474 Rate Yes

Telephony EF (46) Police using sr+bs RFC 3246 Priority No

Signaling CS5 (40) Police using sr+bs RFC 2474 Rate No

Multimedia conferencing AF4x (3x) Marker (RFC 2698) RFC 2597 Rate Yes per DSCP

Real-time interactive CS4 (32) Police using sr+bs RFC 2474 Rate No

Multimedia streaming AF3x (2x) Marker (RFC 2698) RFC 2597 Rate Yes per DSCP

Broadcast video CS3 (24) Police using sr+bs RFC 2474 Rate No

Low-latency data AF2x (1x) Marker (RFC 2698) RFC 2597 Rate Yes per DSCP

OAM CS2 (16) Police using sr+bs RFC 2474 Rate Yes

High-throughput data AF1x (1x) Marker (RFC 2698) RFC 2597 Rate Yes per DSCP

Standard DF (0) Not applicable RFC 2474 Rate Yes

Low-priority data CS1 (8) Not applicable RFC 3662 Rate Yes

Once a packet is inside the DiffServ domain packets are not marked or policed
anymore. The service a packet receives depends only on the DSCP field and the
appropriate behavior for the traffic class in the static per-hop behaviour (PHB)
table. In Table 2.1 we can see an example of DSCP assignments to traffic classes,
and corresponding PHB table. This table is a recommendation from the IETF,
specified in RFC 4594. The first column is the traffic class. The second column
contains the DSCP name and associated value. In the third column we can see
the recommended action to take when a packet enters the DiffServ network. The
fourth column refers to the RFC that specifies the recommended behavior for the
DSCP class. The fifth column indicates the scheduler to use. A priority queue
schedules packets with higher priority first, while a rate queue will try to empty
the queue at a specified rate. The sixth and final column describes how queues
are managed when it reaches a certain threshold.

2.1 Related work

Priority scheduling remains one of the main scheduling types in networks when a
mix of delay-sensitive high priority and best-effort effort packets are to be
supported (see for example [44, 77, 31]).

In [176] the probability generating function (pgf) is derived for the waiting time
for an individual class in a geometric batch input queue, for a preemptive
scheduler.

The authors of [193] study a single node, non-preemptive priority scheduler for a
general number of priority classes. They assume a slotted system, and use a
traffic model that describes the number of arrivals in a slot using the pgf, and are
assumed to be independent and identically distributed (i.i.d.). A Markov Chain
is constructed to derive the number of packets in the system, which is then used
to obtain the pgf of the packet delays.

20 CHAPTER 2. INTRODUCTION

Lee [112] present an analytic method for the delay performance in a strict
priority scheduler with three traffic classes. They model each traffic class as a
non-preemptive M/G/1 queue, and obtain the average waiting time for the three
different traffic classes. In [168] they analyzed an M/M/1 priority queue with an
arbitrary number of customer classes, with preemption. In [98] the waiting times
of a non-preemptive M/M/c priority queue has been derived, when all the
different classes have the same mean service time. In [191] a priority queue is
analyzed for an arbitrary number of traffic classes. The packets are assumed to
arrive in trains, i.e. when a session is in the ON state, one packet arrives per slot,
back to back, after which the session ends, a new one to start later. The session
lengths follow a general distribution. Packet delays are derived for all traffic
classes, both the moments and the probability tails, by using pgfs.

There is a lot of literature studying two different users and a priority queue. For
example, the authors of [123] also investigate the non-preemptive priority queue.
They assume a discrete Geo/Geo/1 queue system, with two types of customers.
They build a discrete time Markov Chain, which includes the priorities, the
customers and other state, and use it to obtain the average queue length and
average waiting time of the two types of customers, and the average busy period
of the system. In [205] they analyzed the performance of an M/M/1 system and
obtained the average queue length and average busy period. Madan [124]
considers a non-preemptive queue in which a single server serves a high priority
M/G/1 queue and a low priority M/D/1 queue. The steady state is obtained for
the system queue size.

A two-class priority queue is studied in [59], where the queue is assumed to be
finite, and analyzes not only delays but also packet loss.

In [192] the busy period of the different classes of a priority queue is analyzed, for
the two-class discrete MGI/D/1 queue.

In [186] the authors give explicit expressions for the waiting times for two
preemptive priority queues for M/M/1 queues with different service rates.

In [66] an M/G/1 priority scheduler with preemption is analyzed, where the
system can be preempted at discrete interruption points. This can occur for
example when there is fragmentation of packets. Closed-form expressions are
given for the mean waiting time, mean service completion interval and mean
response time.

When considering the E2E delay, there are different options. In a Jackson
network [90], the joint state probability of a network of queues is expressed in a
product form, leading to concise notation and low-complexity solutions. Jackson
networks have been extended to include multiple classes of arrival flows, and
scheduling algorithms, while keeping the product-form notation [27, 99]. All this
simplicity, however, comes at the cost of requiring Poisson arrival and
independent service times.

In [52] an E2E analysis is performed on multiplexed exponentially bounded

2.1. RELATED WORK 21

burstiness (EBB) traffic. The departure of the through-traffic flow is
characterized, and fed into the next node. The resulting delays in each node can
then be summed to yield a probabilistic E2E delay bound. In the paper it is
shown that this leads to a delay bound that scales by O(H logH), compared to
adding per-node delay bounds which scaled by O(H3), where H is the number of
nodes in the network. This is the stochastic counterpart of pay bursts only once
(PBOO), where a burst in some types of networks contribute to the delay only in
the first node. The approach in the paper does not take priorities into account.

Another approach is to use the busy period bounds. The BP allows defining a
lower bound on the service, called the service curve, a flow might receive
[39, 116, 65]. This service curve can then be min-plus convoluted to obtain a
service curve formulation, with a bounding function.

In [50] the accuracy of stochastic network calculus bounds is compared to known
results from product-form networks. In case of a low load of cross-traffic and
independence of arrivals, the bounds for the low priority through-traffic are
reasonably accurate for a strict priority scheduler. When the load of cross-traffic
is high, the network calculus bounds degrade significantly. They improve results
and recover the results for the M/M/1 and M/D/1 queues, and improve general
bounds with increasing load.

In [74] an end-to-end bound is developed for a single through-traffic flow for a
general class of schedulers. The through-traffic, however, is assigned the lowest
priority. All higher priorities are cross-traffic.

In [141] they have two priorities, the first high priority arrival process is a discrete
time renewal process, while the low priority arrival process is a batch process.
Rather than performing convolution on the single-node results, they apply the
model recursively in order to obtain the E2E delay and the jitter distributions.

In [64] the authors make use of moment-generating functions (mgfs) to calculate
E2E delay bounds for two aggregates. The advantage of the mgf is that it
provides efficient multiplexing while maintaining convolutional formulas. The
disadvantage, however, is that statistical independence is required.

The system of [103] comprises two queues, a real-time and backlogged, best-effort
queue. The real-time traffic is assumed to be CBR traffic, which is approximated
by an M/D/1 queue. They apply the Laplace-Stieltjes Transform to obtain
bounds.

The papers referenced here (and others, like [51]) assume that the aggregate of
through-traffic flows occupies a single priority. Few attention is given to a strict
priority scheduler where all the priorities can carry through-traffic. In the
scenarios in this chapter, we take through-traffic of higher and lower priorities
into account, by considering the dependency that exist between the current node
and previous node, with respect to the through-traffic. The through-traffic can
introduce long delays if through-traffic packets from different priorities are
back-to-back, as we will see later on in the chapter. Furthermore, papers from

22 CHAPTER 2. INTRODUCTION

literature almost never discuss the variation in delay.

In [153] the authors do support multiple priorities in a strict priority scheduler
that is used in a avionics full duplex switched ethernet (AFDX) network. They,
however, do not take the through-traffic into account. Furthermore, in our work,
the first priorities are considered CBR traffic and modeled explicitly, while in the
paper they assume a general linearly bounded model. In [53], also in the context
of a AFDX network, delays for multiple priorities are determined by computing
the competing frames. The authors of [60] use network calculus to calculate
deterministic bounds of a strict priority scheduler for a AFDX network.

2.2 Scheduling

A scheduler determines the order in which packets are transmitted. These
packets are stored in queues (or come from other schedulers, in case of
hierarchical schedulers) that are connected to the scheduler.

We analyze in this chapter a strict priority scheduler, like the one shown in
Figure 2.1. The high priority traffic, requiring priority treatment, is connected to
the first input of the scheduler. In the figure, the input at the top is the high
priority traffic.

Figure 2.1: A SP scheduler with three input queues

In this chapter we consider a non-preemptive system. This means that a packet
that is in transmission can not be interrupted to transmit another packet. This
has implications for the strict priority scheduler: if the channel is busy, and a
high priority packet arrives, it has to wait until the channel is free before it can
start transmitting the high priority packet. This delay between the arrival of a
packet in an empty queue and the same packet being served, is called the
vacation.

2.3. STRUCTURE AND CONTRIBUTIONS OF THIS CHAPTER 23

We now describe in more detail the scheduler and refer to the corresponding
sections in the text that detail them. In this chapter, the first and second queues
to the strict priority scheduler are reserved for the high priority flows. These
flows are assumed to be CBR traffic, i.e. comprising an aggregate of flows that
periodically send packets of fixed size. The CBR traffic is typically used for
applications that are critical for security or require live updates, and comprise
regular probes that are forwarded. This class of traffic is treated in Chapter 3.
The next priority is used for VoIP traffic, and is described in Chapter 4. We
finally also briefly look at video traffic in Chapter 5, where we mainly focus on
the fragmentation of large datagrams.

We look at the distributions for the following four metrics:

• delay the time difference between entering a node and having its last bit
transmitted;

• IPDV the IPDV is the difference in delay of two successive packets;

• queue the number of packets present in the system

• busy period the consecutive time a queue is being served by the scheduler

2.3 Structure and contributions of this chapter

This chapter is structured as follows. We first analyze the behavior of the
different priorities of traffic for a single node, in Chapter 3 for an aggregate of
CBR sources, in Chapter 4 for an aggregate of VoIP sources and in Chapter 5 for
a single video source emitting large datagrams that require fragmenting. Then,
we revisit these results in Section 6.1, but applied to a series of nodes and in light
of additional cross-traffic in each node. In Chapter 6 we evaluate our analysis
using a simulation of an IP network for various scenarios, looking at the E2E and
the IPDV. We close this chapter in Chapter 7 with conclusions.

The contributions of this chapter are:

• we characterize the queue size, delay and busy period of an aggregate of
CBR sources using closed-form expressions. Each aggregate can comprise a
different period and packet length. An optional vacation can be taken into
account;

• we characterize the single node delay for multiple priorities of the strict
priority scheduler;

• we take fragmentation into account when calculating delays;

• we take both high priority and low priority through-traffic packets into
account when calculating the E2E delay and IPDV.

24 CHAPTER 2. INTRODUCTION

Chapter 333
High priority CBR traffic

3.1 Introduction

In this section we discuss some important distributions of the metrics relating
the high priority traffic flows of the system described above.

The aforementioned high priority smart grid applications can oftentimes be
modeled as CBR traffic, i.e. periodically sending constant sized packets. For
example synchrophasors measure currents and voltages at a very high frequency
[12, 95], and can be represented by a CBR traffic model [152]. It is of utmost
importance that these packets arrive quickly at their destination such that
catastrophic events can be avoided.

A single CBR source is often notated in Kendall’s notation as D/D/1. The first
D denotes constant time between arrivals in the queue, the second D indicates a
constant service time, and the 1 indicates there is one channel serving the queue.
In this work we employ aggregates of CBR sources, notated as Nj ∗Dj/Dj/1,
meaning we have several classes of CBR sources, each class having identical
parameters.

We introduce now the symbols that will be used throughout the text. The CBR
aggregate we consider consists of m different classes, each class of which can be
identified by Aj = (Nj , Lj , Dj), j ∈ [1,m]. We define N = [N1, . . . , Nm],
L = [L1, . . . , Lm] and D = [D1, . . . , Dm]. Here, Nj is the number of sources that
comprises aggregate j, Lj is the length of the frame and Dj is the period with
which a frame is transmitted. For convenience, the aggregates are sorted by L in
ascending order, i.e. such that L0 = min(L). Each source in an aggregate starts
transmitting uniformly and independently distributed in the continuous interval
[0, Dj [. Once a source has started, all future timestamps are fixed. We assume
here without loss of generality that the channel has a capacity of 1 packet/time
unit. A time unit is defined here as min(L)

R , where R is the rate of the outgoing
channel.

25

26 CHAPTER 3. HIGH PRIORITY CBR TRAFFIC

3.1.1 Preemption

The networks we consider in this chapter are non-preemptive. This means that
once the first bit of frame is put on a wire, the whole frame must be sent before
another frame can be transmitted. More urgent frames have to wait in the high
priority queue until the current frame has been transmitted completely.

Due to the presence of low priority traffic and the non-preemptive character of
the scheduler, a high priority packet might encounter a delay, called the vacation,
as it has to wait for the transmission of the low priority packet to finish. Thus,
from the point of view of the high priority traffic the scheduler is idling. This
vacation must be taken into account when calculating the high priority metrics.
We assume that the vacation, denoted by v, is not too large: M + v < min(D),
where M = NLT . This restriction avoids complications, by avoiding that a
packet will encounter its successor in the queue.

In practice this is not an unreasonable assumption as high priority traffic in
general has a relatively small load. Having a large high priority traffic load will
result in large delays, which is exactly what we are trying to avoid by using a
strict priority scheduler. Ethernet frames in general have an upper bound of
1 500 byte, but even jumbo frames, going up to 9 000 byte, usually don’t pose
that much of a problem over 1 Gbps links. For example, assume a vacation of
9 000 byte and 100 CBR flows each transmitting a 414 byte high priority packet
every 20 ms over 1 Gbps link. This is equivalent to a CBR aggregate
A = (100, 1, 1 Gbps

414 byte/fr · 0.05 ms) ≈ (100, 1, 15096) and v = 9 000 byte
414 byte ≈ 22. It is

clear that even in this case 100 · 1 + 22 < 15096.

There is an amendment [85] to the 802.1Q VLAN standard that defines a new
class of service for time-critical frames. However, as it is a recent standard, not all
network devices support this service class, and thus do not support preemption.

The schedulability of a static priority scheduler for period sources has also been
discussed in literature. Notably, in [118] the authors introduce the rate
monotonic priority assignment for a static, preemptive priority scheduler. They
show that if the priority is determined by the period Dj , with a smaller period
having a higher priority, that all packets can be scheduled if it holds that

U =
∑
i

Li
Di
≤ m · (2m − 1). (3.1)

When m goes to infinity, then U approaches ln 2 ≈ 0.693.

When non-preemption is taken into account, as is the case in this chapter, then
the authors of [145] show that rate monotonic priority assignment is optimal for
a static, non-preemptive priority scheduler when each packet’s relative deadline is
equal to its period.

3.2. SIMULATION SETUP 27

(A) QHP (t) = 0

(A) QHP (t) = 0

(E) vacation in [0, v]

(B) 1 arrival at t = ε

(B) 1 arrival at t = ε
(Tj) First packet is of aggregate Aj

v

v G

Figure 3.1: Events characterizing two CBR aggregates, and with T1

3.1.2 Events in the life of a CBR aggregate

In Figure 3.1 we show a typical scenario for a CBR aggregate with a vacation v.
There are m = 2 classes, with A1 = (3, D1, L1) and A2 = (4, D2, L2). The whole
figure covers 1 full period of size G. In the figure are some events indicated that
are of importance. They will be referenced throughout the text, hence we list
here the important ones.

(A) is the event that the HP queue is empty a time t = 0.

(B) indicates that there is an arrival from any of the HP sources at time ε.

(E) is the start of a vacation of size v. This can be either a LP frame that
starts at time t = 0, or a frame that is in transmission when (B) happens.

(Tj) finally is the event that the frame from (B) is from aggregate class Aj .

Working with different CBR aggregates allows us to model several high level
priorities. For example imagine a scenario with three different priority levels,
each of which comprises different CBR aggregates, each of which serviced by a
strict priority scheduler. Then the metrics calculated in the following sections,
namely queue size, delay and busy period, allow us to model each level accurately.

One last point to note is that these metrics relate to the aggregate over many
different sample paths. We can not say anything meaningful about a single flow
over a single run. For example in a one-class aggregate each individual flow will,
in the absence of vacation, always encounter the same delay due to
synchronization.

3.2 Simulation setup

The simulation setup is shown in Figure 3.2. There are two queues that go into a
strict priority scheduler that is served by a channel of capacity 1 packet per slot.

28 CHAPTER 3. HIGH PRIORITY CBR TRAFFIC

The slot size is the time required to send one packet with size L1. One queue is
for HP traffic, while the other one is for LP traffic. The latter queue transmits a
LP packet right before the busy period of the HP traffic starts. We ran 100 000
simulations, in which each CBR flow had a different offset.

Figure 3.2: Scheduler setup for the simulations of this section

In the plots below, the different curves indicate the maximum length of the
vacation, caused by the LP packet. The length of the LP packet is chosen
uniformly from N ∩ {0 . . . v}. The dashed curves come from the analytical
methods we provide, while the full curves are the results from the simulations.

3.3 Queue distribution

In this subsection we discuss the distribution of the queue size of the HP traffic.
The queue process Q(t) is the number of HP packets in the system at a time t.
This includes the packets waiting in the queue itself, but also the packet that is
in transmission. We use QN,D (when m = 1, i.e. only one CBR aggregate) and
QN,D,L (when m > 1) to indicate the queue process resulting from the
corresponding aggregates.

3.3.1 m = 1

For the queue size distributions of a one-class aggregate of identical CBR sources
a closed-form expression exists [84, 154]. As there is only one class, we set
N = N1, D = D1 and L = 1. The distribution of the queue size is given by

P {QN,D > q} =
N−q∑
s=1

(
1− N − (q + s)

D − s

)
· Bin(N, q + s,

s

D
), (3.2)

where Bin(N, k, p) =
(
N
k

)
(p)k (1− p)N−k. This however does not take the

vacation into account. We can approximate the queue size distribution with

3.3. QUEUE DISTRIBUTION 29

vacation as follows. Assume events (A), (B) and (E) as defined above in
Section 3.1.2, and also introduce (Jl) the event that there are l arrivals during
the interval [0, v]. Then we can condition (3.2) on (Jl):

P
{
QvN,D > q

}
≤ P

{
QvN,D > q|ABE

}
=
N−1∑
l=0

P {Jl|ABE}P
{
QvN,D > q|ABEJl

}
=
N−1∑
l=0

Bin(N − 1, l, v
D

) · P {QN−l,D > q − l} (3.3)

On the first line, the right-hand side provides an upper bound on the left-hand
side as we assume in the right-hand side that a packet arrives right after the
vacation of size v has started (conditions A, B and E). The left-hand side has
vacations of size v, but the arrival of a packet can occur at any time during that
vacation. During the vacation the queue can only grow or remain the same,
hence the earlier a packet arrives during a vacation, the larger the probability of
a bigger queue.

0 1 2 3 4 5 6
10−6

10−5

10−4

10−3

10−2

10−1

100

q (packets)

P
{Q

v
>

q}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(a) A = [(70, 1500, 1)]

0 2 4 6 8
10−5

10−4

10−3

10−2

10−1

100

q (packets)

P
{Q

v
>

q}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(b) A = [(15, 75, 1)]

Figure 3.3: CBR queue distribution for two different CBR aggregates and various
v ∈ {0, 5, 10}

Figure 3.3 shows the results for two different CBR aggregates. The x-axis shows
the queue size, while the y-axis shows the distribution P{QvN,D > q} on a
log-scale. The dashed curves come from (3.3), while the full curves are the results
from 100 000 simulations. The queue size is sampled regularly, and it is this
queue size distribution that is shown in the plots.

We can observe in Figure 3.3 that the queue size for v = 0 (i.e. the original
formula from [154]) is, as expected, very close to the simulation. For vacation

30 CHAPTER 3. HIGH PRIORITY CBR TRAFFIC

lengths v = 5 and v = 10, calculated according to (3.3), the results are also very
close to the simulation results.

3.3.2 m > 1

It is possible that a single priority serves different types of HP traffic, each type
being of a different CBR class. Therefore, we look here at the case when there
are multiple CBR traffic classes.

In contrast to N ∗D/D/1 queue only an upper bound is provided in [154] for the
Nj ∗Dj/D/1 queue. In [135] an exact distribution is given for the Nj ∗D/Dj/1
queue. We extend here the work of [154] to support different periods and a
vacation period, at the cost of looser bounds. We first derive results for the
upper bound to P{QN,D,L > q} for the Nj/Dj/Dj/1 queue, and then
incorporate the vacation, using the same approach as in Section 3.3.1.

First we define
αs,j = s

Dj
−
⌊
s

Dj

⌋
. (3.4)

This αs,j is the probability that one source from aggregate j has one extra
arrival, on top of the guaranteed

⌊
s
Dj

⌋
arrivals, in an interval of length s. Let

qs(l) be the probability of a workload l being generated over an interval s if a
flow can send at most 1 frame, and M = NLT the maximal possible consecutive
work. Then qs(l) can be written as

qs(l) =


∑

{n:nLT=l}

 m∏
j=1

Bin(Nj , nj , αs,j)
(

1− Lj · (Nj − nj)
Di · (1− αs,j)

) , 0 ≤ l ≤M

0, otherwise
(3.5)

Now we can express the distribution of the excess workload at the end of an
interval s in terms of qs(l):

ps(q) =
{
qs(q + s− LB), LB ≤ q + s ≤ UB
0, otherwise

(3.6)

Here, LB =
∑
j NjLj

⌊
s
Dj

⌋
and UB =

∑
j NjLj

(⌊
s
Dj

⌋
+ 1
)
. We finally can now

define the upper bound on the queue distribution (without vacation) as

P {QN,D,L > q} ≤
∞∑
s=1

ps(q). (3.7)

3.4. DELAY DISTRIBUTION 31

To also include the vacation into the queue size distribution, we have

P
{
QvN,D,L > q

}
≤ P

{
QvN,D,L > q|ABE

}
=

m∑
j=1

P {Tj}P
{
QvN,D,L > q|ABETj

}
=

m∑
j=1

Nj∑
N
P
{
QvN,D,L > q|ABETj

}
(3.8)

P{QvN,D,L > q|ABETj} is the distribution of the queue size, given that we have
a vacation of duration v which starts when the first packet of class j arrives in an
empty HP queue. From the point of view of the HP frame, any arrivals during
the vacation period [0, v] encounter a server on vacation. Therefore, we must
differentiate between packets arriving in the vacation and the servicing periods.
If we indicate the work arriving in the vacation period with l, then we can write
P{QvN,D,L > q|ABETj} in function of the regular queue size distribution as

P
{
QvN,D,L > q|ABETj

}
=
∑
l

P {Jl|ABETj}P
{
QvN,D,L > q|ABETjJl

}
=
M−Lj∑
l=0

 ∑
{k:kLT=l}

m∏
i=1

Bin(Ni − δj−i, ki,
v

Di
)P {QN−k,D,L > q − l}

 (3.9)

where Jl is the event of having a workload l arriving in the vacation period, and
δx is the Kronecker delta which is 1 if x = 0, and 0 otherwise. Note that this
reduces to (3.3) if we have only one class.

In Figure 3.4 we show the upper bound on the queue size distribution with and
without vacation for Nj/Dj/Dj/1. We can observe that we can still accurately
match the queue size distribution given by (3.3) with the simulation results.

3.4 Delay distribution

In this section we give an upper bound on P{Dv
N−k,D,L > d}, the delay

distribution of an aggregate of high priority CBR flows, given that we start with
a vacation v. We consider here the delay as the time between arrival in the
system and the packet being completely put on the wire.

We first look at the delay distribution without vacation. The delay for a packet
of size s that enters a queue of size q will have a delay of q + s. Thus, the delay
distribution can be obtained from the queue size distribution:

P{D > d} = P{Q > d− s}. (3.10)

32 CHAPTER 3. HIGH PRIORITY CBR TRAFFIC

0 2 4 6 8
10−5

10−4

10−3

10−2

10−1

100

q (packets)

P
{Q

v
>

q}
Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(a) A = [(15, 500, 1), (10, 400, 2)]

0 5 10 15 20 25
10−5

10−4

10−3

10−2

10−1

100

q (packets)

P
{Q

v
>

q}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(b) A = [(4, 150, 1), (10, 800, 7)]

Figure 3.4: CBR queue distribution multiple aggregates and for various v ∈
{0, 5, 10}

However, packets can have different lengths, and as we depend on the packet
length of the packet under consideration, we have to condition on the packet
length. We introduce therefore a new event (Fj), the event that a packet is of
class j.

The delay distribution without vacation can then be written as

P {DN,D,L > d} =
m∑
j=1

P {Fj}P {DN,D,L > d|Fj}

=
m∑
j=1

Nj/Dj∑m
i=1Ni/Di

P {QN,D,L > d− Lj} , (3.11)

where P{QN,D,L > d− Lj} can be obtained using (3.7).

Now we obtain the delay distribution with vacation. If a busy period starts with
a vacation v, then all the packets in the queue will encounter a delay of at most
v, in addition to the queuing delay, and we get for a fixed v

P
{
Dv

N,D,L > d
}
≤ P {DN,D,L > d− v} . (3.12)

If the vacation is a distribution, then the delay distribution with vacation can
also be written as the convolution of the delay distribution and the vacation:

P {DN,D,L = d− V } = DN,D,L ~ V. (3.13)

In Figures 3.5 and 3.6 we can see the delay distribution compared to simulations
of the same scenarios used in the queue section. We can observe that the
predicted delays closely follow the simulation results.

3.5. IPDV DISTRIBUTION 33

0 2 4 6 8 10 12 14
10−5

10−4

10−3

10−2

10−1

100

d (slots)

P
{D

v
>

d
}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(a) A = [(70, 1500, 1)]

0 2 4 6 8 10 12 14
10−5

10−4

10−3

10−2

10−1

100

d (slots)

P
{D

v
>

d
}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(b) A = [(15, 75, 1)]

Figure 3.5: CBR delay distribution for various v ∈ {0, 5, 10}

0 5 10 15
10−5

10−4

10−3

10−2

10−1

100

d (slots)

P
{D

v
>

d
}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(a) A = [(15, 500, 1), (10, 400, 2)]

0 5 10 15 20 25 30 35
10−5

10−4

10−3

10−2

10−1

100

d (slots)

P
{D

v
>

d
}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(b) A = [(4, 150, 1), (10, 800, 7)]

Figure 3.6: CBR delay distribution for multiple aggregates and various v ∈
{0, 5, 10}

3.5 IPDV distribution

The packet delay variation (PDV) is defined in [58] as di − dref , i.e. the
difference between a reference E2E delay dref and the E2E delay of the i-th
packet di over the same path. The IPDV [57] is the PDV delay between
successive packets, i.e. using di−1 as the reference E2E delay. It is often also
referred to as jitter, however, the term “jitter” is used in various disciplines with
slightly differing meaning, hence we will use IPDV. The IPDV is an important
metric for applications that depend on a steady and timely delivery of packets,
such as VoIP, multimedia applications etc. The effects of IPDV can be mitigated

34 CHAPTER 3. HIGH PRIORITY CBR TRAFFIC

by a suitably sized buffer at the receiver.

The IPDV distribution of the aggregate can be expressed as

P {Iv(k) = i} =
∑
d>0

P {Dv(k) = d− i ∧Dv(k − 1) = d} . (3.14)

Assuming stationarity and independence between successive arrivals, we can
write this as

P {Iv(k) = i} =
∑
d>0

P {Dv(k) = d− i} · P {Dv(k − 1) = d}

=
∑
d>0

P {Dv(k) = d− i} · P {Dv(k) = d} . (3.15)

Hence, we can readily use the delay distribution obtained in Section 3.4 to
calculate the IPDV. Figures 3.7 and 3.8 show the IPDV pmf for the same
one-node scenarios of the previous section. The predictions made using (3.15)
follow the simulation’s results, including the peaks. The different peaks occur
when we have an aggregate comprising multiple lengths, and are the result of the
interweaving of packets with different lengths (and hence different delays). For
example, in Figure 3.8b this is the most visible: the peaks occur at
−6 = L1 − L2 = 1− 7, and 6 = L2 − L1 = 7− 1. In Figure 3.8a we also have the
peaks, but they are adjacent to 0 (as we round the bin size of the pmf to 1 slot),
at −1 = L1 − L2 = 1− 2, and 1 = L2 − L1 = 2− 1.

−10 −5 0 5 10
10−5

10−4

10−3

10−2

10−1

100

i (slots)

P
{I

>
i}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(a) A = [(70, 1500, 1)]

−10 −5 0 5 10
10−5

10−4

10−3

10−2

10−1

100

i (slots)

P
{I

>
i}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(b) A = [(15, 75, 1)]

Figure 3.7: CBR IPDV distribution for various v ∈ {0, 5, 10}

3.6 Busy period distribution

We now discuss the busy period of the CBR aggregate in the presence of a
vacation. The busy period is the time during which a channel is busy. Knowing

3.6. BUSY PERIOD DISTRIBUTION 35

−10 −5 0 5 10
10−5

10−4

10−3

10−2

10−1

100

i (slots)

P
{I

>
i}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(a) A = [(15, 500, 1), (10, 400, 2)]

−20 −10 0 10 20
10−5

10−4

10−3

10−2

10−1

100

i (slots)

P
{I

>
i}

Theo. v = 0

Sim. v = 0

Theo. v = 5

Sim. v = 5

Theo. v = 10

Sim. v = 10

(b) A = [(4, 150, 1), (10, 800, 7)]

Figure 3.8: CBR IPDV distribution multiple aggregates and for various v ∈
{0, 5, 10}

the busy period distribution can useful in a couple of settings. For example, to
reduce complexity in algorithms, time scales up to the busy period are considered
(e.g. admission control [150] or network calculus [22]). In our scenario, it allows
giving an upper bound on the delay encountered by lower priority traffic, by
incorporating the busy period distribution into the waiting time, as we will
discuss in the next section.

The author of [189] analytically determines the probability of a busy period
having a length z. However, their formula only works for the N ∗D/D/1 queue,
and does not take the vacation into account. In this section we will derive a
closed formula that supports vacation and a Nj ∗Dj/Dj/1 queue.

We first introduce some new notation. The least common multiple of all periods
is denoted as G = lcm(D). This means that the superposition of all the flows
repeats every G slots. Furthermore, we define Ej = Gj/Dj , indicating how many
packets aggregate j sends in G slots. Finally, the load in the interval [x, y] is
written as ρ[x,y].

To calculate the busy period distribution, we introduce two new events, (C) and
(D). We show an updated diagram in Figure 3.9 and describe all events:

(A) the system is empty at t = −ε

(B) there is an arrival from a source at t = ε

(C) there are lj arrivals (uniformly distributed) from aggregate Aj in the
interval [0, z + v], such that l>N = z

(D) the system is or becomes empty at t = z + v

36 CHAPTER 3. HIGH PRIORITY CBR TRAFFIC

(A) QHP (t) = 0

(A) QHP (t) = 0

(E) vacation in [0, v]

(B) 1 arrival at t = ε

(B) 1 arrival at t = ε
(Tj) First packet is of aggregate Aj

v

(C) l1 − 1, l2 arrivals s.t. l1N1 + l2N2 = z

(D) ∅ at v + z

v z G− (v + z)

Figure 3.9: Events characterizing the busy period for two CBR aggregates, and
with T1

(E) a workload of v starts at t = 0

(Tj) the packet from event (B) is of aggregate Aj

The distribution of the busy period process for a CBR aggregate ZCBR(k) can
then be written as

P
{
ZCBR = z|starting with vacation v

}
= P {CD|ABE}

=
m∑
i=1

P {Tj}P {CD|ABETj}

=
m∑
i=1

P {Tj}
P {A|BETj}

P {C|BETj}P {AD|BECTj} .

Now we discuss each of these probabilities.

3.6.0.0.1 P {Tj} The probability of our first packet being of aggregate Aj ,
considering the starting times of flows are uniformly distributed, can be
expressed as

P {Tj} = Nj/Dj∑m
i=1Ni/Di

.

3.6.0.0.2 P {A|BETj} Next is the probability of the system being empty at
t = −ε, given a packet of aggregate Aj at t = +ε and the remainder of the LP
packet is of length v at t = 0.

Denote D̂ = max{D}, and Ê the E corresponding to D̂. As ρ[G−D̂,G] < 1, our

system must be empty somewhere in
[
G− D̂,G

]
and thus anything happening in

3.6. BUSY PERIOD DISTRIBUTION 37

[
0, G− D̂

]
will not contribute to event (A), reducing the probability to

P {A|BTj}.

In the interval
[
G− D̂,G

]
, an aggregate Aj will occupy NjLjEj

Ê
slots. Given

event (Tj) and ρ[G−D̂,G] < 1, we are sure that the initial LjEj
Ê

slots from event
(Tj) will not contribute to the load towards the end of the slot.

The probability of a system being empty at a point s in an interval [x, y] is equal
to 1− ρ[x,y], as noted in [154, 189], hence the probability is

P {A|BETj} = 1−
∑m
i=1NiLiEi − LjEj

G
.

3.6.0.0.3 P {C|BETj} Third, the probability that there are lj arrivals in
[0, v + z] such that the busy period equals z, given a vacation v and starting with
a packet from Aj , can be calculated by obtaining the probability that the
convolution of the aggregates’ binomial distributions equals z:

P {C|BETj} = P
{
F~
BP (j) = z

}
where

F~
BP (j) = ~mi=1FBP (i, j)

FBP (i, j) =

 x : (δi−j ..Nj)·Lj
y : Bin(Nj-δi−j , 0..Nj-δi−j , v+z

Dj
)

As the period starts with a packet from aggregate Aj due to our event (Tj), we
must compensate for having one active source less, which is taken into account
by the Kronecker delta δi−j .

3.6.0.0.4 P {AD|BECTj} The final probability that the system is empty at
both time t = v+z and t = −ε, given a vacation of v at t = 0, lj arrivals from
aggregate Aj in [0, v+z] and the first arrival at t = ε being of aggregate Aj can
be split into two parts:

• P {A|BECTj} the probability that the system is empty at time t = G−ε,
given an arrival of type Tj and a busy period of length z in the interval
[0, v+z] is 1−ρ[Dj−(v+z),Dj]. This load can be written as

ρ[0,v+z] =
m∑
j=1

Lj(Nj−lj)
Dj−(z+v) ,

38 CHAPTER 3. HIGH PRIORITY CBR TRAFFIC

for a specific configuration of arrivals. However, there are several
configurations of arrivals which need to be taken into account, each with
their own probability and hence weight. Say H is a matrix of m columns,
Hr is the r-th configuration and Hr,c is the number of arrivals in the r−th
configuration from aggregate Ac in the interval [0, v+z], such that HTL is
a vector with all values equal to z. An additional constraint on this matrix
is that Hr,i > 0, i.e. for event (Tj) there must always be at least one packet.
Then the probability for a certain configuration equals

pj,Hr =
m

Π
i=1

Bin(Ni−δj−i, Hr,i−δj−i,
z+v
Di

). (3.16)

Note that here also the first packet must be taken into account. This is
expressed by the Kronecker delta. We can now write the probability as

P {A|BECTj} =
∑
r

pj,Hr∑
s pj,Hs

·

(
1−

m∑
i=1

Li(Ni−Hr,i)
Di−(z+v)

)
. (3.17)

In Appendix A we list pseudocode to calculate H.

• P {D|BECTj} the empty probability at time t = z+v due to lj arrivals in
[0, z+v] is

P {D|BECTj} = 1−ρ[0,v+z] = 1− z−Lj
z+v

Combining all these different probabilities, we get

P
{
ZCBR = z|v

}
=

m∑
j=1

Nj/Dj∑m
i=1Ni/Di

· 1

1−
∑m

i=1
NiLiEi−LjEj

G

·

P
{
F~
BP (j) = z

}
·[∑

r

pj,Hr∑
s pj,Hs

·

(
1−

m∑
i=1

Li(Ni−Hr,i)
Di−(z+v)

)]
·(

1− z−Lj
z+v

)
.

(3.18)

In Figure 3.10 we show the cumulative distribution function (cdf) of the busy
period distribution calculated as in (3.18) (the dashed line) and the busy period
distribution obtained through running 106 simulations (the full line). Each curve
represents a vacation period v ∈ {0, 5, 25}. It is clearly visible that changing the
vacation length not only shifts, but also changes the distribution, as the load
increases and the different flows will interact with each other with higher
probability. The simulation results match the prediction very closely.

In Figure 3.11 we look briefly at the delay incurred due to HP traffic. This plot
shows the worst-case delay for 2nd priority and low priority traffic as it is
serviced in a strict priority scheduler. The highest priority HP0 is an aggregate

3.7. CONCLUSION 39

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

Z

P
{ Z

C
B
R
≤

Z
}

Theo v = 0

Sim. v = 0

Theo v = 5

Sim. v = 5

Theo v = 25

Sim. v = 25

(a) A = [(5, 100, 1), (5, 100, 10)]

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Z

P
{ Z

C
B
R
≤

Z
}

Theo v = 0

Sim. v = 0

Theo v = 5

Sim. v = 5

Theo v = 25

Sim. v = 25

(b) A = [(10, 150, 1), (10, 250, 6)]

Figure 3.10: Busy period for two different scenarios with v ∈ {0, 5, 25}

A1 = (10, 80, 1), while the second priority HP1 is an aggregate A2 = (8, 120, 7).
The lowest priority represents the vacation v ∈ {6, 12}, each being picked with
equal probability. The plot shows the upper bound on the waiting time
distribution for HP1 and LP, i.e. the time before a frame from that priority is
served. We condition on worst-case behavior, e.g. for HP1 we first start with a
LP packet followed by the busy period of HP0 traffic, only then serving HP1.
This is calculated using

P {D = d} =
∑
v+z=d

P {V = v}P
{
ZCBR = z|v

}
. (3.19)

The simulation curves in Figure 3.11 are the result of 106 simulations, and match
the theoretical curves exactly. This approach can be applied to any stack of
prioritized CBR traffic aggregates.

We note, though, that also here the restriction v+M < min(D) is important to
ensure independence between busy period distributions. Assume for example that
we have 2 CBR aggregates with A1 = (2, 1, 8) and A2 = (5, 3, 100), and that the
first packet is from aggregate A1. Then a busy period can be less than, or more
than 8 slots. It can not be exactly 8 slots, as at t = 8 a source from A1 will send
again, and extend the busy period with at least 1 slot. The distribution FBP (i, 1)
for z < 8 differs from FBP (i, 1) for z > 8, hence convolution can not be used.

3.7 Conclusion

In this section, we first gave an introduction the CBR traffic in Section 3.1,
which also touched upon the subject of a non-preemptive channel, and how it
impacts the strict priority scheduler. We first derived the queue size distribution,

40 CHAPTER 3. HIGH PRIORITY CBR TRAFFIC

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

d (Delay in slots)

P
{D

v
≤

d
}

Upper bound d for HP1

Sim. for HP1

Upper bound d for LP

Sim. for LP

Figure 3.11: Waiting time distribution for HP1 and LP traffic. A1 = (10, 80, 1),
A2 = (8, 120, 7), v ∈ {6, 12}

taking a vacation into account, in Section 3.3, for a CBR aggregate where all
flows have similar characteristics, and then expanded this to calculate an upper
bound on the queue size distribution (with vacation) when the CBR aggregate
comprises flows with different periods and/or packet lengths. In Section 3.4 we
then proceeded to calculate the delay distribution, given a vacation. In
Section 3.5 we approximated the IPDV distribution using the delay distribution
from the previous section. We then closed the section on the CBR traffic with
the development of an algorithm to calculate the busy period of a CBR aggregate
which starts with a vacation.

Through simulations, we have verified that the analytical results provide a good
upper bound on the results from the simulations.

Chapter 444
Medium priority VoIP traffic

4.1 Introduction

In the previous section, we looked at the behavior of the highest priority traffic in
a strict priority scheduler. In this section, we discuss the flows with lower priority
than the CBR flows, which we call here the medium priority (MP) flows. For our
purpose these flows comprise an aggregate of on-off flows.

We first give a small introduction to network calculus in Section 4.2, which we
will use further in this section. Then we discuss the characteristics of the MP
traffic in Section 4.3, and compare the bounds given by NC with the simulation
results for the queue size (Section 4.6), delay (Section 4.7), IPDV (Section 4.8)
and busy period (Section 4.9) distributions.

4.2 Network calculus primer

Deterministic network calculus [111] is a theoretical framework for analyzing
worst-case performance in computer networks. Upper bounds on certain
performance metrics, such as delay and queue size, can be obtained through the
use of functions that indicate constraints on traffic flows and the service offered.

Figure 4.1: The queuing model

41

42 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

In Figure 4.1 we show the model that is used: bits arrive in a buffer, that is
served by a work-conserving scheduler over a fixed capacity link with rate C bps.
The cumulative amount of arrivals over the interval [0, t] are denoted by the
arrival curve (AC) A(t), the number of bits in the queue at a time t is written as
q(t), while the cumulative number of bits that have left the queue is given by the
departure curve (DC) D(t). The functions A(t) and D(t) are non-decreasing, and
are assumed to be 0 for t ≤ 0.

Figure 4.2: Arrival curve A(t) and departure D(t) curve for DNC

In Figure 4.2 we can see an example of A(t) and D(t). Using these two functions
we can easily derive the backlog at a time t using q(t) = A(t)−D(t), i.e. the
vertical deviation, and the waiting time using w(t) = inf{y > 0|D(t+y) ≥ A(t)},
i.e. the horizontal deviation between the arrival and departure curves.

However, A(t) is not a useful traffic model. In general the function A(t) of a
traffic flow is not known and difficult to obtain. Additionally, it is a verbose
description and an explicit function of time. A more suitable and compact
representation is the traffic envelope (TE) function E(τ) [129]. Such a traffic
envelope describes the deterministic upper bound of a flow’s arrivals over any
interval τ . More formally, E(τ) is a traffic envelope for an arrival curve A(t) if

A(t+τ)−A(t) ≤ E(τ),∀τ ≥ 0,∀t ∈ R. (4.1)

The server counterpart of the traffic envelope is the service curve (SC) S(τ),
which provides a deterministic lower bound on the guaranteed service a server
can offer in an interval τ . A server offers a service curve S(τ) if for all departures
holds that

D(t+τ)−D(t) ≥ S(τ),∀τ ≥ 0,∀t ∈ R. (4.2)
Thus, a server might provide more service, but in the worst case it will give a
service of S(τ) in an interval τ .

We will now give a simple example of a traffic envelope and a service curve, and
the bounds that can be derived from it. A descriptor that is usually reasonably

4.2. NETWORK CALCULUS PRIMER 43

easy to obtain and is fairly intuitive, is the linear bounded process. It has the
form f(x) = ax+b where constants a and b are, respectively, a rate in bits per
second and a burstiness in bit, a measure for how much deviation from the rate a
is allowed.

In Figure 4.3 we show such a function for the traffic envelope and service curve.
The traffic envelope is given by ρaτ+ba, where ρa can be seen as the average
arrival rate and ba the burstiness, the maximal number of bits that can arrive at
one time. Note that this function E(τ) is not unique. For example, both E(τ)
and E2(τ) could be valid traffic envelopes that bound the arrivals of the traffic
flow. The traffic envelope E2(τ) has a lower average arrival rate ρa,2, but a
higher allowed burst size ba,2.

The service curve is given by S(τ) = (ρsτ−bs)+, and is also called a rate-latency
server. It offers a minimal service ρs with an upper bound on the latency, the
latest time after which a server starts serving a flow at the service rate ρs. It is of
course possible that the server already services a flow at an earlier time, possibly
at a lower rate, however, in the worst case, it will take bs/ρs seconds before it
starts serving at the rate ρs.

Figure 4.3: Bounds for DNC

Using this description we are able to obtain some important metrics, which we
can also visually inspect in Figure 4.3. The maximal vertical distance between
E(τ) and S(τ), indicated by the vertical arrow labeled q̂ in Figure 4.3, provides
an upper bound on the queue size. The maximal horizontal distance between the
arrival curve and the service curve, as indicated by the horizontal arrow, labeled
d̂, in the figure, can be interpreted as the upper bound on the waiting time. The

44 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

upper bound on the busy period can be seen as the moment when the service
curve becomes larger than the traffic envelope, i.e. the intersection of both
curves. The intersection of the service curve and the x-axis, finally, is the upper
bound on the server’s latency.

Formally, the upper bound on the queue, the waiting time, busy period and
latency are given respectively by

q̂ = ba+ρa
bs
ρs
, (4.3)

d̂ = bs+ba
ρs

, (4.4)

ẑ = bs+ba
ρs−ρa

, and (4.5)

l̂ = bs
ρs
. (4.6)

As the bounds provided by DNC assume the worst-case behavior, they are often
very pessimistic (but exact). The DNC can be extended to SNC, in which the
traffic envelope and/or service curve are stochastically bounded, often resulting
in drastically improved upper bounds, at the cost of exceeding these bounds with
a certain probability.

In the SNC the deterministic arrival and services curves are replaced with a
stochastic counterpart: the traffic envelope of (4.1) becomes the stochastic traffic
envelope (STE) G

P
{
A(t)−A(s) > G(t−s, εA)

}
≤ εA,∀s ≤ t, (4.7)

and the stochastic service curve (SSC) S given by

P
{
S(t)−S(s) < S(t−s, εS)

}
≤ εS ,∀s ≤ t, (4.8)

where εA and εS are the violation probabilities for the respective curves.

In Figure 4.4 we show three different G functions, where ρa is kept constant, but
for different burst sizes ba,1 ≤ ba,2 ≤ ba,3 and different violation probabilities
ε2 ≥ ε3. If we set εA = 0, then we obtain the bounds from DNC. We can see in
the figure that we now obtain stochastic bounds on the delay (the queue size also
has its stochastic counterpart, but is left out, in order to not clutter the image),
allowing us to construct a probability distribution of the metrics.

Thus, for a STE G(τ, εa) and SC S(τ), we can write

P

{
Q(t) > ba+ρa

bs
ρs

}
≤ εa, (4.9)

4.3. VOIP 45

Figure 4.4: Some bounds for SNC

P

{
D(k) > bs+ba

ρs

}
≤ εa, and (4.10)

P

{
Z(k) > bs+ba

ρs−ρa

}
≤ εa. (4.11)

4.3 VoIP

We now describe the traffic and the model that we use for the MP traffic. An
on-off source is a two-state Markovian chain, as depicted in Figure 4.5. Such a
source generates in the ON state traffic at a fixed rate λ = LV oIP

γ , with LV oIP
being the length of a packet, and γ the inter-arrival (IA) time between packets,
while in the OFF state the source remains silent. Every time a packet is sent, the
source will remain in the ON state with probability α, and switch with
probability 1−α. In the OFF state, every γ seconds the state switches to the ON
state with probability 1−β.

46 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

Figure 4.5: The state transitions for a two state on-off traffic model

Such an on-off model is often used to represent certain kinds of bursty traffic. A
typical application is a single VoIP flow that uses silence detection [56, 15]. An
aggregate of on-off sources can also be used to model a single video source
[75, 171].

Here, we use it to model VoIP traffic with silence detection. Common values for
the model are α = 0.0285 and β = 0.0154, i.e. on average we stay 1

α ≈ 35 slots in
the ON state, and 1

β = 65 slots in the OFF state. We notate the probability that
a single VoIP source is in the ON state by pON = α−1/(α−1+β−1) = 0.35. In the
ON state, a VoIP packet is generated every γ = 10 ms, hence, a packet burst is
on average 0.35s and is followed by 0.65s of silence. A VoIP packet’s length has a
payload length of around LV oIP = 38 byte which results in a total packet length
of 80 byte, due to Ethernet, IP and UDP headers. A single VoIP source thus
generates traffic at a peak rate of λ = 64 kbps and on average 22.4 kbps.

To accommodate a single on-off source, it must be serviced at a rate of at least λ.
Any less service rate, and packets will encounter a delay that is too large or get
dropped when the source is too long in the ON state. Thus, we must provision
for the worst case. When M > 1 and all the sources are in the ON state, then we
should reserve M ·λ to guarantee no loss and a low delay. But this wastes service
because only a fraction of the time all sources are sending at the same time.
Usually, only some sources will be in the ON state. If we accept a small
probability of having “too many” active sources, we can reduce the required
service rate significantly.

We can quantify how much we can reduce the service rate before the QoS
deteriorates significantly. For this we need to construct a traffic model, a general
description of the behavior. A model that is often used to describe traffic is the
token bucket model. Such a token bucket logically consists of a bucket that holds
a number of tokens k ∈ [0, b] (for example a number of bits). The bucket is filled
at a rate λtb, as long as the amount of tokens is less than b. Whenever a packet is
checked for conformance, the TB is inspected to see if it contains sufficient
tokens. If so, the packet length is removed from the tokens, and the packet is
conformant and can pass. If there are no sufficient tokens, no tokens are
removed, and the packet is marked non-conformant or dropped, in the case of

4.3. VOIP 47

traffic policing. This process is also shown in Figure 4.6.

Figure 4.6: A depiction of the token bucket algorithm

This algorithm allows traffic to arrive at a long-term average rate of λtb with
bursts up to b bits, which, conveniently, coincides with the linear bounded
process described in the previous section. Token buckets occur in many areas of
literature, such as regulating irregular traffic in packet switched networks
[182, 175], and providing tighter bounds in NC models [111] and communication
topologies with cyclic dependence [160].

We now proceed to define the token bucket parameters for an aggregate of on-off
sources. Assuming the on-off model described above with parameters α and β,
an algorithm to calculate the non-conforming probability εnc for an aggregate of
M on-off sources is given in [71]. In [38] the authors approximate the on-off
aggregate as a Poisson process. It becomes more accurate as more VoIP sources
are aggregated. Here, we will combine both approaches to get a more accurate
stochastic token bucket descriptor.

First, we discuss [71]. Let Mt ∈ [0,M] and kt ∈ [0, b] indicate respectively the
number of active sources and number of tokens in the TB at a time t, and let
πi(x) be the steady state probability of having i ∈ [0,M] active sources and
having x or less than x tokens available. Then the non-conforming probability
can be expressed as the probability that we have no tokens, while there are active
sources:

εnc = P {kt = 0|Mt ≥ 1} =
∑M

1=0 πi(0)
1−P {Mt = 0} (4.12)

The paper shows the algorithm to calculate the steady state πi(0), where πi(0)
depends on λtb and b (and the on-off model’s parameters), the token bucket

48 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

parameters, which is then used to give the function fεnc(λtb, b), which gives the
non-conforming probability of the on-off aggregate to a token bucket with
parameters λtb and b. The model is able to predict the non-conforming
probability within a factor of 10 when b is large. However, for small b it is less
accurate.

Therefore, we combine it with another model, that is more accurate for small
burst sizes or when the TB rate λtb is large and the burst sizes are small. In [38]
they discussed that an aggregate of a large number on-off sources can be modeled
using a Poisson model. In [131] they approximated the leaky bucket for Poisson
arrivals of fixed packet lengths, and concluded that it approaches the steady
state queue of the M/D/1 system, given by (4.13)-(4.15)

π0 = 1−λ (4.13)
π1 = (1−λ)(eλ−1) (4.14)

πn = (1−λ)
(
enλ+

n−1∑
k=1

ekλ(−1)n−k
[

(kλ)n−k

(n−k)! + (kλ)n−k−1

(n−k−1)!

])
(n ≥ 2). (4.15)

Hence, we can also model the aggregate for the flows in this section also by
Poisson traffic with fixed packet lengths. We set the Poisson parameter λ to
M
γ pON .

In Figure 4.7 we show the curves for both methods presented above, and combine
the two to get better TB parameters. The plots show on the x-axis the burst
size, and on the y-axis the non-conforming probability for 20 VoIP sources for a
TB rate λtb = M ·λ·R, where R differs for each plot. The full curve describes the
TB non-conforming probability of the simulations, calculated using [177]. The
dotted curves show the theoretical approximations. In the plot we refer to [71] as
M1, and the M/D/1 approximation of [131] as M2. We also added a curve
max(M1,M2) which takes the maximum violation probability of M1 and M2 for a
certain burst size. We can observe that both M1 and M2 are accurate for some
burst sizes. The larger R becomes, the better the Poisson approximation
becomes, however the tail is better described by M1. This method has some
inaccuracies due to the fact that the model itself assumes fluid arrivals, while the
simulations use discrete packets. Additionally, the M1 method is not always
computationally stable. For example, when using R = 0.6, the system can not be
solved, and we can not obtain the violation probability.

In the plots we can also clearly see the trade-off between a small λtb and b. As
λtb becomes smaller, the burstiness of the corresponding traffic model becomes
much larger.

Due to the presence of high priority traffic in the strict priority scheduler a VoIP
packet can only be serviced if the high priority queue is empty. Hence, the
vacation of the VoIP traffic is the busy period of the high priority traffic, as
calculated in Section 3.6. The delay distribution of the VoIP traffic can then be
convoluted with the busy period to obtain the encountered delay.

4.4. THE SERVER VACATION 49

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

Burst (packets)

ε n
c

M1

M2

max(M1, M2)

Sim.

(a) R = 0.41

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

Burst (packets)
ε n

c

M1

M2

max(M1, M2)

Sim.

(b) R = 0.51

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

Burst (packets)

ε n
c

M1

M2

max(M1, M2)

Sim.

(c) R = 0.61

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

Burst (packets)

ε n
c

M1

M2

max(M1, M2)

Sim.

(d) R = 0.71

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

Burst (packets)

ε n
c

M1

M2

max(M1, M2)

Sim.

(e) R = 0.81

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

Burst (packets)
ε n

c

M1

M2

max(M1, M2)

Sim.

(f) R = 0.91

Figure 4.7: Matching the aggregate of M = 20 VoIP sources to a TB process for
a rate λtb = M ·λ·R

4.4 The server vacation

The upper bound on the server’s vacation (or latency), with respect to the VoIP
flows, is written using the busy period of the high priority CBR aggregates, as
given by (3.18) on Page 38, and the length of the LP packets.

If we assume low priority packets have a fixed length of L slots, we can write

P
{
V V oIP (k) = v

}
≤ P

{
ZCBR(k) = v−L|L

}
. (4.16)

This gives an upper bound on the vacation, as a VoIP packet will not always
arrive at the same moment as the low priority packet starts its transmission. We
can improve (4.16) by assuming that the VoIP packet will arrive somewhere in
]0, L], uniformly distributed, and write:

P
{
V V oIP (k) = v

}
=

∑
l∈U[0,L]

P
{
ZCBR(k) = v−l|l

}
P {l} . (4.17)

where U[a,b] is the (discrete) uniform distribution over [a, b].

In more realistic scenarios, however, it is likely that low priority traffic comprises
packets of different lengths, given by the packet length distribution LLP . In this

50 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

Figure 4.8: Scheduler setup for the simulations of this section

case, we replace l ∈ U[0,L] in (4.17) with l ∈ L(LLP), where

L(X) =
∑
x∈X

P {X = x}U[0,x] (4.18)

gives a new distribution that takes the lengths into account. Thus, we calculate
the server vacation pmf as

P
{
V V oIP (k) = v

}
=

∑
l∈L(LLP)

P
{
ZCBR(k) = v−l|l

}
P {l} . (4.19)

4.5 Simulation setup

The simulation setup for the VoIP simulations of this section is shown in
Figure 4.8. There are three queues that go into a strict priority scheduler that is
served by a channel of capacity R bps. One queue is for high priority traffic (in
figure (a) of 4.9 and 4.10, however, there was no high priority traffic), one for
VoIP and one for low priority traffic. The low priority source generates packets of
fixed length at uniformly distributed intervals, such that the channel load is 50%.
The length of the low priority packet can vary in different simulations: we
simulated for sizes of 750 byte, 1 500 byte and jumbo frames of 8 000 byte.

In the plots below, the different curves indicate the length of the low priority
packet. On the x-axis we show the number of packets (for the queue) or the
number of slots (other plots), where a slot is the time required to send a single
VoIP packet. We ran simulations for four different scenarios, two for a channel
with capacity R = 5 Mbps and M = 20, and two for R = 100 Mbps and M = 40,
and with and without an aggregate of high priority CBR streams.

4.6. QUEUE SIZE DISTRIBUTION 51

4.6 Queue size distribution

In Figure 4.9 we show the queue size distribution for an aggregate of 20 VoIP
sources and a channel rate of 5 Mbps, while Figure 4.10 shows the queue size
distribution for 40 VoIP sources and a channel rate of 100 Mbps. The (a) figures
have no HP packets, while the (b) figures also have an aggregate of CBR sources,
indicated in the caption of the figure. The curves are calculated using the queue
size obtained in the network calculus primer.

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

q (packets)

P
{Q

v
(t
)
>

q}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(a) No HP traffic

0 5 10 15 20 25 30 35 40 45
10−6

10−5

10−4

10−3

10−2

10−1

100

q (packets)

P
{Q

v
(t
)
>

q}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(b) HP: A = [(10, 68, 1), (10, 182, 1)]

Figure 4.9: VoIP queue size distribution for R = 5 Mbps, M = 20

0 1 2 3 4 5 6 7 8 9
10−6

10−5

10−4

10−3

10−2

10−1

100

q (packets)

P
{Q

v
(t
)
>

q}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(a) No HP traffic

0 1 2 3 4 5 6 7 8 9
10−6

10−5

10−4

10−3

10−2

10−1

100

q (packets)

P
{Q

v
(t
)
>

q}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(b) HP: A = [(15, 1370, 1), (20, 3654, 1)]

Figure 4.10: VoIP queue size distribution for R = 100 Mbps, M = 40

We can observe that the upper bound is not always close to the simulation

52 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

results. This is due to the fact that the TB model can not exactly capture the
arrival dynamics. For example, the black curve in Figure 4.11 is an example
traffic envelope, while the purple curve is a possible token bucket descriptor for
the black curve. We can see that the burst parameter ba (i.e. the value of the
curve at τ = 0) must be large enough in order to be able to accommodate the
long-term average arrival rate ρa.

TB envelope

Real envelope

Figure 4.11: Traffic envelope vs. token bucket

Within each plot, we can see that the relative error decreases with increasing
vacation. In the network calculus primer, on Page 44, we defined the queue
upper bound as q̂ = ba+ρa bsρs . As the vacation bs increases, we can see that the
emphasis becomes on the long term average arrival rate ρa, which provides a
better approximation to the arrival envelope, resulting in a (relatively) more
accurate bound.

4.7 Delay distribution

In Figure 4.12 we show the delay distribution for the same scenarios as for the
queue size distribution. The curves are calculated using the delay bound
obtained in the network calculus primer.

4.7. DELAY DISTRIBUTION 53

0 20 40 60 80 100
10−6

10−5

10−4

10−3

10−2

10−1

100

d (packets)

P
{D

v
(k
)
>

d
}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(a) No HP traffic

0 20 40 60 80 100 120 140 160 180 200 220
10−6

10−5

10−4

10−3

10−2

10−1

100

d (packets)

P
{D

v
(k
)
>

d
}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(b) HP: A = [(10, 68, 1), (10, 182, 1)]

Figure 4.12: VoIP delay distribution for R = 5 Mbps, M = 20

0 20 40 60 80 100
10−6

10−5

10−4

10−3

10−2

10−1

100

d (packets)

P
{D

v
(k
)
>

d
}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(a) No HP traffic

0 20 40 60 80 100 120 140
10−6

10−5

10−4

10−3

10−2

10−1

100

d (packets)

P
{D

v
(k
)
>

d
}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(b) HP: A = [(15, 1370, 1), (20, 3654, 1)]

Figure 4.13: VoIP delay distribution for R = 100 Mbps, M = 40

Here, we can observe that the upper bound is tighter than the bound for the
queue size distribution. On Page 44, we also defined the delay upper bound as
d̂ = bs

ρs
+ ba
ρs
. Here we can see that for the delay, the dependency on the burst

parameter ba is much smaller than for the queue size, due to the factor 1
ρs
. As

VoIP traffic is bursty, the initial burst ba must then be large enough to
accommodate for the worst case. Compared to the typical ρs, however, ba is still
small, and hence has little effect on the delay.

54 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

4.8 IPDV distribution

The IPDV distribution, shown in Figures 4.15 and 4.16 is in general quite
accurate for all curves, except for the LP of 8 000 byte for R = 5 Mbps. At this
rate, a single LP packet takes 0.0128s, a very large delay, and is more than the
inter-arrival of the VoIP traffic. However, the bounds to the left and right seem
to be quite representative of the simulation’s IPDV.

A positive IPDV means that the delay of a packet was larger than previous
packet’s delay. In Figure 4.15a we see that the right bound for 8 000 byte sized
LP packets caps off at 100 slots, the size of 1 LP packet, expressed in VoIP sized
slots. This occurs when the LP starts transmission, and right afterwards a VoIP
packet arrives, having to wait for the full LP packet to finish. Assuming that the
previous delay was 0 slots, then the IPDV results in 100 slots.

Figure 4.14: A positive IPDV

Another thing to notice is that the probability of an IPDV in the range [1, 18[is
very small (in the simulations it did not occur). In Figure 4.14 we show in a bit
more detail how an IPDV of positive length i occurs. The rectangles with “V”
inside are VoIP packets. The left green packet is the time at which the reference
packet is sent, and has a delay dk−1, while the right VoIP packet has a delay
dk = i+dk−1. The interval between the arrival of the first VoIP packet and the
start of the LP packet is denoted A. In the figure we can see that for a small
IPDV i to occur, the interval over which no arrivals occur must be large. In the
paper [37], which we referenced to in Section 4.3 to obtain the stochastic TB
model, the transition matrix of the birth-and-death Markov Chain relating to the
number of active VoIP sources was given. We are now only interested in the
transition from 0 active sources to a positive number of active sources. This
process is given by the exponential distribution, with parameter Mβ (where M is
the number of VoIP sources, and β the OFF state probability). The
complementary cumulative distribution function (ccdf) is given by exp(−Mβx).
From this ccdf, we can see the probability decreases exponentially for longer
intervals x. In our simulations intervals smaller than 18 slots (i.e. no arrivals
from any VoIP source during more than 82 slots) were so unlikely that they did
not occur.

4.9. BP DISTRIBUTION 55

When the rate R is large, in Figure 4.16, the amount of VoIP packets generated
during the transmission of a LP packet is much smaller, and the IPDV behaves
much more as expected.

−100 −50 0 50 100
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slots)

P
{I

v
(k
)
=

i}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(a) No HP traffic

−200 −150 −100 −50 0 50 100 150 200
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slots)

P
{I

v
(k
)
=

i}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(b) HP: A = [(10, 68, 1), (10, 182, 1)]

Figure 4.15: VoIP IPDV distribution for R = 5 Mbps, M = 20

−100 −50 0 50 100
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slots)

P
{I

v
(k
)
=

i}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(a) No HP traffic

−150 −100 −50 0 50 100 150
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slots)

P
{I

v
(k
)
=

i}

Theo VoIP

Sim. VoIP

Theo VoIP + LP of 750 byte

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte

Sim. VoIP + LP of 8 000 byte

(b) HP: A = [(15, 1370, 1), (20, 3654, 1)]

Figure 4.16: VoIP IPDV distribution for R = 100 Mbps, M = 40

4.9 BP distribution

In this section we characterize the busy period distribution of the output of the
VoIP traffic flows.

As we saw before, we can also model the aggregate of VoIP flows as an M/D/1

56 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

queue. This model has been around for a long time, hence a lot of literature is
available that we can employ (see for example
[78, 125, 126, 102, 124, 126, 24, 36, 89]).

The busy period distribution with vacation for an M/D/1 queue is described by
the Borel-Tanner distribution [178]. Given two parameters, ρ and q, respectively
the Poisson parameter and the initial queue occupancy, the busy period
distribution is given by

P
{
ZV oIP (k) = z

}
= q

z

e−ρz(ρz)z−q

(z−q)! , z ≥ q. (4.20)

In Figure 4.17a we compare the busy period of the VoIP scheduler calculated
using Equation (4.20) and with the SNC method. We can see there that both the
M/D/1 and SNC models approximate the busy period distribution with vacation
quite well, except for the very large low priority background packets and a low
data rate. The M/D/1 model is often close to the simulation curve, but does not
provide an upper bound. The SNC method, on the other hand, is often a little
less close to the simulation curve, but provides an upper bound. For regular
scenarios, both can thus be used to calculate the vacation period for lower
priority traffic.

0 20 40 60 80 100 120 140
10−6

10−5

10−4

10−3

10−2

10−1

100

z (slots)

P
{Z

v
(k
)
≤

z
}

Theo VoIP (NC)

Theo VoIP (M/D/1)

Sim. VoIP

Theo VoIP + LP of 750 byte (NC)

Theo VoIP + LP of 750 byte (M/D/1)

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte (NC)

Theo VoIP + LP of 1 500 byte (M/D/1)

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte (NC)

Theo VoIP + LP of 8 000 byte (M/D/1)

Sim. VoIP + LP of 8 000 byte

(a) No HP traffic

0 50 100 150 200 250
10−6

10−5

10−4

10−3

10−2

10−1

100

z (slots)

P
{Z

v
(k
)
≤

z
}

Theo VoIP (NC)

Theo VoIP (M/D/1)

Sim. VoIP

Theo VoIP + LP of 750 byte (NC)

Theo VoIP + LP of 750 byte (M/D/1)

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte (NC)

Theo VoIP + LP of 1 500 byte (M/D/1)

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte (NC)

Theo VoIP + LP of 8 000 byte (M/D/1)

Sim. VoIP + LP of 8 000 byte

(b) HP: A = [(10, 68, 1), (10, 182, 1)]

Figure 4.17: VoIP BP distribution for R = 5 Mbps, M = 20

4.10. CONCLUSION 57

0 20 40 60 80 100
10−6

10−5

10−4

10−3

10−2

10−1

100

z (slots)

P
{Z

v
(k
)
≤

z
}

Theo VoIP (NC)

Theo VoIP (M/D/1)

Sim. VoIP

Theo VoIP + LP of 750 byte (NC)

Theo VoIP + LP of 750 byte (M/D/1)

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte (NC)

Theo VoIP + LP of 1 500 byte (M/D/1)

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte (NC)

Theo VoIP + LP of 8 000 byte (M/D/1)

Sim. VoIP + LP of 8 000 byte

(a) No HP traffic

0 20 40 60 80 100 120 140
10−6

10−5

10−4

10−3

10−2

10−1

100

z (slots)

P
{Z

v
(k
)
≤

z
}

Theo VoIP (NC)

Theo VoIP (M/D/1)

Sim. VoIP

Theo VoIP + LP of 750 byte (NC)

Theo VoIP + LP of 750 byte (M/D/1)

Sim. VoIP + LP of 750 byte

Theo VoIP + LP of 1 500 byte (NC)

Theo VoIP + LP of 1 500 byte (M/D/1)

Sim. VoIP + LP of 1 500 byte

Theo VoIP + LP of 8 000 byte (NC)

Theo VoIP + LP of 8 000 byte (M/D/1)

Sim. VoIP + LP of 8 000 byte

(b) HP: A = [(15, 1370, 1), (20, 3654, 1)]

Figure 4.18: VoIP BP distribution for R = 100 Mbps, M = 40

4.10 Conclusion

In this section, we looked at an aggregate of VoIP traffic, coming in priority, after
an aggregate of CBR sources. We first gave a brief introduction to network
calculus in Section 4.2. Then we discussed the characteristics of a single VoIP
flow in Section 4.3, and introduced a traffic model for an aggregate of VoIP flows.
The model makes use of a token bucket, which gives a linear upper bound on the
amount of arrivals over a certain interval. We also briefly compare the aggregate
to a Poisson traffic model with fixed size packets. This model is convenient to use
in the NC. In Section 4.4 we discussed the vacation that a VoIP packet can
encounter. Then the subsequent sections discussed, as before, the queue size,
delay, IPDV and busy period distributions.

Through simulations, we have found that the analytical results provide in general
a good bound. For the queue size distribution, the bound is not so tight, due to
the token bucket model that is used. The delay distribution is quite accurate,
while the IPDV distribution does not follow the peaks for the extreme case of
jumbo frame sized low priority packets. The domain of the IPDV distributions,
however, match closely. The busy period, finally, can be approximated quite well,
if the service rate is large enough or the size of the packets is not jumbo-sized.

58 CHAPTER 4. MEDIUM PRIORITY VOIP TRAFFIC

Chapter 555
Low priority Video traffic

5.1 Introduction

In this section, we look at low priority traffic. The focus of this section is
fragmentation. Hence, for this purpose, we use video traffic, which often
comprises large frames, which are then fragmented into multiple packets once
scheduled for transmission. We also use here the NC, discussed previously in
Section 4.2. In Section 5.2 we discuss the vacation caused by the fragmentation,
and then compare the results given by network calculus to the simulation results
for the queue size (Section 5.4), delay (Section 5.5) and IPDV (Section 5.6)
distributions.

For the NC we need a traffic arrival model. Here, to keep it simple, we extracted
the traffic envelope for various violation probabilities from a trace file. Each
traffic envelope was then converted to a linear bounded traffic envelope.
Figure 5.1 shows these traffic envelopes.

5.2 The server vacation

In Figure 5.2 we see an example of fragmentation. The datagram is too large for
the link, and hence must be fragmented into multiple packets, resulting in
additional delays. The first extra delay is due to an additional header for each of
the fragments. The data that is transmitted over the link is thus slightly more
than the datagram’s size. The second additional delay comes from the fact that
each packet can encounter a busy channel. The datagram’s first fragmented
packet can encounter a vacation due to both high priority and low priority
traffic. However, subsequent packets of the datagram can only have a vacation
due to high priority traffic, as the video queue will be backlogged until the
complete frame is sent.

59

60 CHAPTER 5. LOW PRIORITY VIDEO TRAFFIC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5

kb
it

τ (slots)

P=0.00001
P=0.00005
P=0.0001
P=0.0005
P=0.001
P=0.005
P=0.01
P=0.05
P=0.1
P=0.5
P=1.0

Figure 5.1: Traffic envelopes for the trace file for various violation probabilities

Figure 5.2: A datagram is fragmented into five packets, with a header and data

To calculate the vacation distribution a video frame encounters, we need to know
the distribution of frame lengths. Video traffic in the networks considered often
comprises CCTV traffic. As the imagery that is captured often has few changes
from frame to frame, its rate is relatively constant [9], and the packet length
distribution can be obtained in advance.

If we notate the frame length distribution by L and header size by H, then we
can write the vacation as

V video =
∑
i

P {L(k) ∈ [iU, (i+1)U [}·
(

(V HP+LP)~(V HP~i−1)~δi·H
)

where U is the MTU size, δx is the unit impulse (which shifts a distribution X by
x when convoluted), and X~n is the convolution power of X to the n-th. The
busy period due to high priority and low priority traffic is given by V HP+LP ,
while V HP is the busy period due to high priority traffic only.

This approach does not take arrivals into account, and will lead to an upper
bound as not every packet will encounter a vacation. Imagine, for example, that

5.3. SIMULATION SETUP 61

we have only five inter-site rapid response (ISRR) flows and one video flow
serviced by a high data rate line. If a video frame is fragmented in 10 packets,
then the ISRR busy period will be taken into account in each of those 10 packets,
however, there are at most 5 ISRR packets that could lead to a vacation.

5.3 Simulation setup

The simulation setup for the video simulations of this section is shown in
Figure 5.3. There are three queues that go into the SP scheduler, served by a
channel of capacity C = 10 Mbps (scenarios 1 and 2) or C = 100 Mbps (scenarios
3 and 4). The first queue is for high priority traffic comprising an ISRR
aggregate. The next queue is for the video flow, while the last queue is for low
priority traffic. The low priority traffic has a load of about 50%, and sends
packets of fixed size U = 1 500 byte, and was only used in scenarios 2 and 4.

Figure 5.3: Scheduler setup for the simulations of this section

5.4 Queue size distribution

In the plots of this section the curves labeled "Theo. 1" come from the NC for
the queue size distribution. The curves labeled "Theo. 2" are an optimization.
The formula from SNC does not take the load into account, and P {Qv(t) = 0} is
an overestimate. In the optimization, we fix P {Qv(t) = 0} = ρHP +ρvideo, and
normalize the distribution by scaling the other entries by 1−ρHP +ρvideo. For
VoIP traffic in the previous section, this was not possible as the vacation due to
LP traffic was relatively large. However, for video traffic, the vacation due to LP
traffic is limited, compared to the video frame sizes.

62 CHAPTER 5. LOW PRIORITY VIDEO TRAFFIC

0 0.5 1 1.5 2 2.5

·105
10−6

10−5

10−4

10−3

10−2

10−1

100

q (bit)

P
{q

n i
n i
v
(t
)
>

q}
Sim

Theo. 1

Theo. 2

(a) Only ISRR and video

0 0.5 1 1.5 2 2.5

·105
10−6

10−5

10−4

10−3

10−2

10−1

100

q (bit)

P
{q

n i
n i
v
(t
)
>

q}

Sim

Theo. 1

Theo. 2

(b) ISRR, video and LP

Figure 5.4: Video queue size distribution for R = 10 Mbps, HP: A =
[(10, 137, 1), (10, 265, 2)]

0 0.5 1 1.5 2 2.5

·105
10−6

10−5

10−4

10−3

10−2

10−1

100

q (bit)

P
{q

n i
n i
v
(t
)
>

q}

Sim

Theo. 1

Theo. 2

(a) Only ISRR and video

0 0.5 1 1.5 2 2.5

·105
10−6

10−5

10−4

10−3

10−2

10−1

100

q (bit)

P
{q

n i
n i
v
(t
)
>

q}

Sim

Theo. 1

Theo. 2

(b) ISRR, video and LP

Figure 5.5: Video queue size distribution for R = 100 Mbps, HP: A =
[(20, 1370, 1), (20, 2653, 2)]

5.5 Delay distribution

In the plots of this section the curves labeled "Theo. 2" show the result where
fragmentation is taken into account. The curves labeled "Theo. No fragm." are
calculated by using the vacation V = V HP+LP , i.e. ignoring fragmentation, and
are provided for comparison. The delays reported for the video are the delays of
the reassembled packets.

5.5. DELAY DISTRIBUTION 63

We can observe in the figures below that the fragmentation indeed is important
to take into account to ensure that the tail of the curve is represented correctly.
The impact of low priority traffic is negligible. Compared to the high priority
traffic and the back-to-back packets of a frame, a single LP packet is relatively
small, and hence will not increase the vacation too much.

0 1 2 3 4

·10−2

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 2

Theo. No fragm.

(a) Only ISRR and video

0 1 2 3 4

·10−2

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 2

Theo. No fragm.

(b) ISRR, video and LP

Figure 5.6: Video delay distribution for R = 10 Mbps, HP: A =
[(10, 137, 1), (10, 265, 2)]

0 1 2 3

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 2

Theo. No fragm.

(a) Only ISRR and video

0 1 2 3

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 2

Theo. No fragm.

(b) ISRR, video and LP

Figure 5.7: Video delay distribution for R = 100 Mbps, HP: A =
[(20, 1370, 1), (20, 2653, 2)]

64 CHAPTER 5. LOW PRIORITY VIDEO TRAFFIC

5.6 IPDV distribution

The naming of the curves is the same as for the delay distribution.

Also, here we can see that the distribution is followed closer for the "Theo. 2"
curve than for the curve that does not take the fragmentation into account.

−2 0 2

·108

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 2

Theo. No fragm.

(a) Only ISRR and video

−4 −2 0 2 4

·108

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 2

Theo. No fragm.

(b) ISRR, video and LP

Figure 5.8: Video IPDV distribution for R = 10 Mbps, HP: A =
[(10, 137, 1), (10, 265, 2)]

−2 0 2

·109

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 2

Theo. No fragm.

(a) Only ISRR and video

−2 0 2

·109

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 2

Theo. No fragm.

(b) ISRR, video and LP

Figure 5.9: Video IPDV distribution for R = 100 Mbps, HP: A =
[(20, 1370, 1), (20, 2653, 2)]

5.7. CONCLUSION 65

5.7 Conclusion

In this section we briefly discussed a single flow of video traffic. The main focus
was on the impact of the fragmentation of large datagrams on the delay and
IPDV, which usually occurs with traffic that sends large datagrams, such as
video streams. In Section 5.2 we discussed the vacation that a video frame might
encounter. Then the subsequent sections discussed the queue size, delay and
IPDV distributions. For a single node, we are able to provide a nice bound on
the delay and IPDV, given that we can obtain the distribution of video frame
lengths, necessary to calculate how much vacation each packet of a frame will
encounter.

66 CHAPTER 5. LOW PRIORITY VIDEO TRAFFIC

Chapter 666
Evaluation

In this section, we perform simulations in a simulated IP network over a number
of hops and with more realistic background traffic. First, in Section 6.1 we look
at how multiple hops impact the E2E delay, and look at two cases. In the first
case, where the load of the through-traffic is relatively low, compared to the
cross-traffic and the through-traffic comprises relatively small packets, we can
sum the delays in the individual nodes. The second case is more general, leading
to a more complex formulation. In Section 6.2 we discuss the setup of the
simulations. In Section 6.3 we give the practical details of all the traffic types we
consider in the simulations. Section 6.4 gives a quick overview of a typical plot.
Then, from Section 6.5 to Section 6.13 we describe and give the results for
different scenarios. We then close this section in Section 6.14.

6.1 Multi-hop

6.1.1 Introduction

In this section, we discuss the delay behavior when packets cross multiple links,
as is to be expected in a typical network. This section only discusses the model,
while in the next section we will then apply the models to a simulation of
subsequent nodes in an Ethernet network.

Figure 6.1 shows the sequence of nodes we consider. The traffic we are interested
in enters the network in Node 1 (marked with “new traffic”) and travels to Node
N+1, over N links, with link n ∈ [1, N] having a capacity Rn. We call this
traffic, going from Node 1 to Node N+1, also the through-traffic. At the same
time, there is also cross-traffic (indicated by the rectangles labeled “CT n”). The
cross-traffic from node CT n enters in Node n and has the destination of Node
n+1, and is discarded there. This introduces in each node a possible additional
delay to our packets.

67

68 CHAPTER 6. EVALUATION

Figure 6.1: A simple network

We look at the delays for two different cases: one where there is only CBR and
VoIP traffic going from the source to the destination (but with any type of
cross-traffic in any of the nodes), and one where we additionally also have large
low priority through-traffic packets, originating from video and data sources.
These large through-traffic packets can introduce a large, fixed delay to HP
traffic when traversing the links.

6.1.2 Without large through-traffic packets

In this simple case, a mix of CBR and VoIP flows go through a series of nodes,
from node 1 to node N+1. We assume the load and packet sizes of these sources
are small. As the aggregates move through the nodes with background traffic,
they will lose their characteristics. Assuming that cross-traffic has a higher load
than the through-traffic only travels over one hop (and thus in each hop there
will be new traffic), we can ignore the impact of the through-traffic as it will be
likely that a through-traffic packet will end up behind a cross-traffic packet, and
we can use the single node delay. Hence, we can approximately model the E2E
delay distribution DE2E as the sum of the distributions encountered in each
node, or more formally:

Dv
E2E =

N
~
i=1

Dv
i ,

where Dv
i is the delay encountered in node i, if it were to start in that node.

6.1.3 With large background through-traffic packets

6.1.3.1 Introduction

When we have background through-traffic, usually comprising large packets, we
can encounter a situation as shown in Figure 6.2. In this figure, we model time
on the horizontal axis, and on the vertical axis we show the packets present in a
node. Each node is separated by a dashed line. A gray packet indicates that the
packet has arrived but has to wait in the queue. It has an arrow to the moment
it is sent. A colored packet indicates its transmission.

In Node i we can observe that a large low priority packet, called LP1 and colored
orange, is being sent, right before the blue high priority packet arrives. As there

6.1. MULTI-HOP 69

Figure 6.2: The HP packet is stuck behind LP1, until Node 3

is no preemption, this high priority packet has to wait until LP1 has finished
transmission. When the high priority packet arrives in Node i+1, it again has to
wait for LP1 to finish its transmission, this time HP has to wait a fixed time of
the length of LP1−1 (assuming 1 HP packet takes 1 slot to send). This
continues, until either the packets reach their destination, or, as shown in Node
i+3, a cross-traffic packet, called CT LP2 here, is in transmission as LP1 arrives.
If this delays the transmission of the LP1 packet more than one slot, then the
high priority packet can jump in front of LP1. In subsequent nodes, the high
priority packet can again get stuck behind large through-traffic packet, repeating
the above process. Similarly, a low priority through-traffic packet can also
encounter a similar enduring delay due to the busy period of the high priority
traffic.

We can see that the delay of the packet depends on what happened in the
previous node. There is thus no independence, and we can not use a convolution
to obtain the E2E delay, like in Section 6.1.2 where the absence of large packets
limits the extra delay drastically.

6.1.3.2 Notation

We first define the symbols used. We denote the MTU as U . We assume the
MTU is the same for all links. Define L as the distribution of packet lengths,
expressed in slots. This might be further specialized using a superscript, e.g.
LLP,TTi indicates the distribution of packet lengths for (the aggregate of) low
priority through-traffic traffic, in node i. The notion of slots, low priority and
high priority of course depends on the traffic class under consideration.
Furthermore, the load of the i-th channel is indicated by ρi. Also here the load
might be further specialized through a superscript. E.g. ρHP,TTi is the load of
the through-traffic of a priority equal to or higher than the traffic class in
consideration, while ρLP,CT is the load of the cross-traffic of strictly lower

70 CHAPTER 6. EVALUATION

priority. We make again use of the distribution

L(X) =
∑
x∈X

P {X = x}U[0,x],

which was also defined previously in (4.18), on Page 50. It is used to e.g.
calculate the vacation for a packet due to low priority traffic:

V LP = L(LLP).

The vacation due to high priority traffic, denoted by V HP , is taken into account
by using the busy period of the high priority traffic. The symbol V v,HP is the
vacation due to high priority traffic, including the vacation due to low priority
traffic.

Finally, let V HP+LP denote the vacation if a packet Pk arrives during a packet
(and it didn’t encounter a through-traffic packet in the previous node). This can
be written as the weighted sum of the busy period distributions of the high
priority and low priority traffic.

P
{
V HP+LP (k) = x

}
= P

{
V v,HP (k) = x

}
· ρ
HP (1+ρLP)

ρ
+

P
{
V LP (k) = x

}
· ρ
LP ·((1−ρ)+ρLP)

ρ
.

These weights are explained as follows. The probability of a packet arriving
during a high priority busy period can be written as ρHP (1+ρLP): it is the
probability of arriving during either a high priority packet, or during a low
priority packet which is immediately followed by a high priority packet.
Similarly, the probability of a packet arriving during a low priority packet that
does not start a high priority busy period is given by ρLP ·((1−ρ)+ρLP). Both
factors are divided by ρ as we condition on the fact that there is a packet in
transmission when Pk arrives.

6.1.3.3 Probabilities and vacations

In this section, we derive the vacation. If we observe a single packet Pk in a
node, it can encounter following important scenarios. The packet Pk can arrive
in node i

0i in an idle channel, and can be transmitted immediately;
Ai during the transmission of a cross-traffic packet;
Bi during a LP through-traffic packet, where the LP through-traffic packet is

the same as in node i−1;
Ci during a LP through-traffic packet, where the LP through-traffic packet is

not the same as in node i−1;

6.1. MULTI-HOP 71

Di during a HP busy period, where the HP busy period is the same as in node
i−1;

Ei during a HP busy period, where the HP busy period is not the same as in
node i−1.

As mentioned before, there is a dependence on the previous node (present in
scenarios B-E), and thus we must consider two nodes at once, i.e. for a packet Pk
in node i, we look at all possible permutations that can occur over the tuple
(node i−1, node i).

Table 6.1: Permutations of all scenarios in a single node

Nodes P V Comments

{00,A0} (1−ρ) 0
{0A,AA} ρCT V HP+LP

{0B,AB} 0 - No through-traffic (TT) packet in previous node
{0C,AC} ρLP,TT L(LLP,TT)
{0D,AD} 0 - No TT packet in previous node
{0E,AE} ρHP,TT V HP

{B0,C0} 0 - A TT packet can not disappear
{BA,CA} ρCT V HP+LP

{BB,CB} (1−ρ) LLP,TT~δ−1 Negative values should be removed from V

{BC,CC} ρLP,TT L(LLP,TT)
{BD,CD} 0 - A TT LP packet can not overtake a TT HP packet
{BE,CE} ρHP,TT V HP

{D0,E0} 0 - A TT HP can not disappear
{DA,EA} ρCT V HP

{DB,EB} 0 - No HP TT BP in previous node
{DC,EC} ρLP,TT V HP

{DD,ED} (1−ρ) L(V HP)~δ−1 Negative values should be removed from V

{DE,EE} ρHP,TT V HP

In Table 6.1 we list all these permutations. The first column of the table lists the
scenarios for the row. E.g. a scenario “AC” means that in the node i−1 the
packet Pk arrived during the transmission of a cross-traffic packet (A), and in the
current node Pk arrives during a low priority through-traffic packet (C). The
second column lists the probability of this scenario occurring. The sum of the
probabilities of each block of 6 rows must sum to 1. The third column of the
table gives (an upper bound on) the distribution of the vacation the packet Pk
will encounter. A vacation 0 indicates no vacation, while the vacation will be “-”
if the corresponding probability is 0.

We can now generate for N links all possible permutations. For each permutation
j, we then can calculate a list psj of N probabilities, and a list vsj of N vacation

72 CHAPTER 6. EVALUATION

distributions. The probability that permutation j is taken is then simply

pj = Πp∈psj (p),

with associated vacation distribution

vj = ~
v∈vsj

v.

The vacation is then the weighted sum of the distributions:

V =
∑
j

pjvj .

In Appendix B this algorithm is implemented in pseudocode.

In Table 6.1 we can also see that if the cross-traffic load is high, we are more
likely to always encounter scenario A. In this case, indeed, a packet is less likely
to be stuck behind a low priority through-traffic packet, and we can reduce it to
the simpler case from Section 6.1.2.

If the load ρLP,TT is low, then scenarios B and C are unlikely to occur.
Nonetheless, if the load ρ is also low, then the impact of scenario BB or CB
(where packet Pk remains behind the same low priority through-traffic packet) is
relatively high. The only solution to reduce the impact is to make the maximal
length of LLP,TT small, such that LLP,TT~δ−1, and the additional delay,
becomes smaller.

6.2 Setup

To assess the results from previous sections, we have run multiple simulations.
The simulation is written in C++ using the OMNeT++ simulator [4] in
combination with the INET libraries [2]. Custom elements were written to
generate the traffic and provide additional metrics, such as the busy period and
the sampled queue size distribution. An IP network is simulated over which UDP
packets are sent. The simulations were run for a total of about 4 hour, by
repeating a 5-minute simulation 50 times.

We use the same network here as shown in Figure 6.1. In Figure 6.3 we show the
elements in a single node. A node k has 3 inputs. The first input is the aggregate
of all traffic that comes from the previous node. The traffic from this input is
checked for its destination: if it matches the current node, it is discarded and the
metrics are stored, if it is the traffic we are interested in. After the destination
check, it is fed into the classifier, which looks at the DSCP marker of the packet,
and sends it to the appropriate queue.

The second input is for new traffic that we are interested in. It is only used in
the first node. The third input is for cross-traffic. This type of traffic is not of

6.3. TRAFFIC 73

any interest to us, but is introduced to ensure that there will be additional
queuing in every node. Traffic from the second and third inputs are entering the
network, and thus must be marked with the appropriate DSCP marker. This
marking happens in our implementation based on the destination port, as each
traffic class has a fixed port range. Traffic that comes from the previous node is
already marked, and hence can go directly to the classifier.

The classifier redirects the packets to the correct queue. All queues are directed
into a strict priority scheduler, and then served by a channel to the next node.

Figure 6.3: A single node

6.3 Traffic

In this section we briefly discuss the traffic used in the simulations.

6.3.1 ISRR

The ISRR traffic is a CBR source that produces every 50 ms a packet of
414 byte, resulting in a data rate of approximately 66 kbps. An aggregate of
ISRR sources repeats itself after some time. As we are not interested in a single
configuration, and to avoid the overhead of starting a new simulation for every
different configuration, every 10 packets we introduce a waiting time that is
chosen uniformly from the interval [0 ms, 150 ms].

6.3.2 GOOSE

The generic object oriented substation events (GOOSE) traffic is a CBR source
that produces every 200 ms a packet of 900 byte, resulting in a data rate of
36 kbps per source. As with the ISRR, also here we introduce a random waiting
time every 10 packets.

74 CHAPTER 6. EVALUATION

6.3.3 VoIP

The VoIP sources used in these simulations are the same as described in
Chapter 4. A single VoIP source generates in the ON state fixed packets of
80 byte (including all headers) every 10 ms, and thus has a peak rate of
λ = 64 kbps, but generates on average 22.4 kbps.

6.3.4 Video

This data source is typically produced by something like a CCTV, however, here,
we reproduce a part from Starwars video, at a rate of 33 fps. The video has an
average arrival rate of 754 kbps and a peak arrival rate of 10 942 kbps. A video
frame can exceed the MTU, in which case it will be fragmented. The delays
reported for the video are the delay of the video frames (i.e. reassembled
packets).

6.3.5 Data

This data source represents random background traffic. Each packet has a length
that is uniformly distributed in the range [100 byte, U], where U is the MTU. For
scenarios 1 to 5 (i.e. Section 6.5 to Section 6.9), the inter-arrival time is chosen
uniformly from the range [10 ms, 50 ms] for U = 1 500 byte, and from the range
[53 ms, 266 ms] for U = 8 000 byte. This results in an average data rate of
approximately 400 kbps.

For the scenarios 6 to 9 (i.e. Section 6.10 to Section 6.13), which feature an
increased load, the inter-arrival time is chosen uniformly from the range
[1 ms, 10 ms] for U = 1 500 byte, and from the range [5.3 ms, 53 ms] for
U = 8 000 byte. This results in an average data rate of approximately 2.1 Mbps.

6.4 Plot layout

A typical plot for this section is shown in Figure 6.4.

6.4. PLOT LAYOUT 75

0 5 10 15 20
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

Figure 6.4: A sample plot of the E2E distribution

The E2E delay, queue and busy period plots are ccdf plots, while the E2E IPDV
plot is a pmf. Hence, the y-axis represents respectively P{X > x} or P{X = x}.
The y-axis follows a logarithmic scale. The value on the x-axis is shown in units
of packets for that traffic class (except for video, which uses SI units). I.e. for the
E2E delay and IPDV and busy period this is the time required to transmit one
packet of that type over a single link, and for the queue size distribution this is
the number of packets in the queue. The solid green curve is the result from the
simulation, while the dashed curves come from the theoretical results, described
in the previous sections. The curves labeled "Theo. 1" are the result of the
simple convolution where no background through-traffic is assumed (see
Section 6.1.2), while the curves labeled "Theo. 2" are calculated using the
approach of Section 6.1.3.

76 CHAPTER 6. EVALUATION

6.5 Scenario 1

The first scenario is quite simple, allowing for comparison with the results from
the previous sections in a more realistic setting. There are two nodes, with 1 link
of 10 Mbps, over which we run traffic. Table 6.2 lists the parameters. The n-th
number after the slash indicates the amount of cross-traffic sources in the n-th
node. In this case, there is only one node, hence we assume no cross-traffic.

Table 6.2: Simulation parameters for scenario 1

Parameter Value Parameter Value

N 1 ISRR 10 / 0 0 0 0 0

R [0.01] · Gbps GOOSE 10 / 0 0 0 0 0

MTU 1 500 byte VoIP 20 / 0 0 0 0 0

ρ [0.28] Video 1 / 0 0 0 0 0

Data 1 / 0 0 0 0 0

We can see that the delay and IPDV are quite well bounded by our algorithms.
The curves labeled "Theo. 2" are slightly more accurate, providing a better upper
bound. This is due to the fact that the combinations of an arrival during HP, LP
or LP+HP are explicitly taken into account.

6.5. SCENARIO 1 77

0 2 4 6
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−6 −4 −2 0 2 4
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 1 2 3 4 5
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−4 −2 0 2 4
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 20 40 60
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−50 0 50
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

0 1 2 3 4 5

·10−2

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(g) Video E2E

−4 −2 0 2 4

·10−2

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(h) Video E2E IPDV

Figure 6.5: E2E results for scenario 1

78 CHAPTER 6. EVALUATION

6.6 Scenario 2

In this scenario, there are 5 links of 1 Gbps. On each link there is cross-traffic of
all traffic types. There is no video or data through-traffic. Table 6.3 lists the
parameters.

Table 6.3: Simulation parameters for scenario 2

Parameter Value Parameter Value

N 5 ISRR 10 / 5 10 15 20 25

R [1,1,1,1,1] · Gbps GOOSE 15 / 25 20 15 10 5

MTU 1 500 byte VoIP 50 / 40 30 20 30 40

ρ [0.03, 0.04, 0.03, 0.04, 0.06] Video 0 / 20 30 20 40 50

Data 0 / 40 20 30 20 40

With no large background TT packets, the "Theo. 1" and "Theo. 2" curves are
performing quite similar. The IPDV curves for the "Theo. 1" curves have a bit
more spikes, due to the sudden jumps in the delays. They occasionally also fall
below the simulation curve. The curves calculated using Poisson slightly lower,
most of the time, but it is not sure if this is an upper bound.

6.6. SCENARIO 2 79

0 5 10 15
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−10 −5 0 5 10
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−5 0 5
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}
Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 20 40 60 80 100
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−100 −50 0 50 100
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

Figure 6.6: E2E results for scenario 2

80 CHAPTER 6. EVALUATION

6.7 Scenario 3

This scenario is the same as scenario 2 (Section 6.6), except now there is video
and data through-traffic. Thus, in this case the delay calculated as in
Section 6.1.3 should provide a better bound. Table 6.4 lists the parameters.

Table 6.4: Simulation parameters for scenario 3

Parameter Value Parameter Value

N 5 ISRR 10 / 5 10 15 20 25

R [1,1,1,1,1] · Gbps GOOSE 15 / 25 20 15 10 5

MTU 1 500 byte VoIP 50 / 40 30 20 30 40

ρ [0.04, 0.04, 0.03, 0.05, 0.06] Video 1 / 20 30 20 40 50

Data 2 / 40 20 30 20 40

In these scenarios, we can indeed clearly see the need to take the TT packets into
account. The large low priority video and data packets significantly increase the
delays for ISRR and VoIP. The "Theo. 2" curves follow the shape of the delays,
but we overestimate the probability a bit This also clearly impacts the IPDV,
where "Theo. 2" provides the better bound.

6.7. SCENARIO 3 81

0 5 10 15 20
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−10 0 10
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−5 0 5
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 20 40 60 80 100
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−100 −50 0 50 100
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

0 0.2 0.4 0.6 0.8 1

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(g) Video E2E

−1 −0.5 0 0.5 1

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(h) Video E2E IPDV

Figure 6.7: E2E results for scenario 3

82 CHAPTER 6. EVALUATION

6.8 Scenario 4

In this scenario, we use the same parameters as in scenario 2 (Section 6.6),
however, now the MTU is set to 8 000 byte. Thus, the video and data
cross-traffic can now put packets of up to 8 000 byte on the line. Table 6.5 lists
the parameters.

Table 6.5: Simulation parameters for scenario 4

Parameter Value Parameter Value

N 5 ISRR 10 / 5 10 15 20 25

R [1,1,1,1,1] · Gbps GOOSE 15 / 25 20 15 10 5

MTU 8 000 byte VoIP 50 / 40 30 20 30 40

ρ [0.03, 0.04, 0.03, 0.04, 0.06] Video 0 / 20 30 20 40 50

Data 0 / 40 20 30 20 40

For jumbo frames, the bounds are not as close as for a regular MTU size. The
"Theo. 1" method accurately represents the ISRR traffic class, however, the lower
priorities such as GOOSE and VoIP are not accurate. This is due to the fact that
the vacation for "Theo. 1" only comprises the HP traffic, with optional LP, while
a packet can also arrive during the arrival of a LP packet, not followed by a high
priority packet, which also increases a packet’s delay.

6.8. SCENARIO 4 83

0 20 40 60
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−60 −40 −20 0 20 40 60
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 10 20 30
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−20 0 20
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}
Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 100 200 300
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−200 0 200
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

Figure 6.8: E2E results for scenario 4

84 CHAPTER 6. EVALUATION

6.9 Scenario 5

In this scenario, we use the same parameters as in scenario 3 (Section 6.7), but,
like in the previous scenario, we increase the MTU to 8 000 byte. Now also the
through-traffic video and data traffic have much larger packets. Table 6.6 lists
the parameters.

Table 6.6: Simulation parameters for scenario 5

Parameter Value Parameter Value

N 5 ISRR 10 / 5 10 15 20 25

R [1,1,1,1,1] · Gbps GOOSE 15 / 25 20 15 10 5

MTU 8 000 byte VoIP 50 / 40 30 20 30 40

ρ [0.04, 0.04, 0.03, 0.05, 0.06] Video 1 / 20 30 20 40 50

Data 2 / 40 20 30 20 40

For jumbo frames, in combination with through-traffic video and data traffic, the
difference between the simple method becomes very clear for ISRR, GOOSE and
VoIP traffic aggregates. The "Theo. 1" method for the video traffic is much
closer to the delay distribution of the simulation, as the length of the LP data
packets is much smaller, compared to the video frame sizes.

6.9. SCENARIO 5 85

0 20 40 60 80
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−100 −50 0 50 100
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 10 20 30 40
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−40 −20 0 20 40
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 100 200 300 400 500
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−600−400−200 0 200 400 600
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

0 0.2 0.4 0.6 0.8 1

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(g) Video E2E

−1 −0.5 0 0.5 1

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(h) Video E2E IPDV

Figure 6.9: E2E results for scenario 5

86 CHAPTER 6. EVALUATION

6.10 Scenario 6

This scenario is similar to scenario 2 (Section 6.6), but now we have increased
the amount of data flows, increasing the load significantly. Table 6.7 lists the
parameters.

Table 6.7: Simulation parameters for scenario 6

Parameter Value Parameter Value

N 5 ISRR 10 / 5 10 15 20 25

R [1,1,1,1,1] · Gbps GOOSE 15 / 25 20 15 10 5

MTU 1 500 byte VoIP 50 / 40 30 20 30 40

ρ [0.45, 0.24, 0.34, 0.25, 0.47] Video 0 / 20 30 20 40 50

Data 0 / 200 100 150 100 200

The high load increases the predicted delays for the simple method "Theo. 1",
while the distribution for the "Theo. 2" method closely follows the distributions
for all traffic classes. As the high load is due to the cross-traffic (CT) traffic, this
reduces the impact of the TT traffic on the other priorities.

6.10. SCENARIO 6 87

0 5 10 15 20
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−10 0 10
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 5 10 15
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−10 −5 0 5 10
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}
Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 50 100 150
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−100 0 100
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

Figure 6.10: E2E results for scenario 6

88 CHAPTER 6. EVALUATION

6.11 Scenario 7

This scenario is the same as scenario 6 (Section 6.11), except now there is
background video and data through-traffic. Table 6.8 lists the parameters.

Table 6.8: Simulation parameters for scenario 7

Parameter Value Parameter Value

N 5 ISRR 10 / 5 10 15 20 25

R [1,1,1,1,1] · Gbps GOOSE 15 / 25 20 15 10 5

MTU 1 500 byte VoIP 50 / 40 30 20 30 40

ρ [0.45, 0.25, 0.34, 0.26, 0.48] Video 1 / 20 30 20 40 50

Data 2 / 200 100 150 100 200

Adding TT video and data traffic does not impact the distributions much. This
is because, as mentioned in the previous scenario, the high load of the CT causes
a larger independence over the nodes. The IPDV distributions also still concur
with the simulation results.

6.11. SCENARIO 7 89

0 5 10 15 20
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−10 0 10
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 5 10 15
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−10 −5 0 5 10
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 50 100 150
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−100 0 100
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

0 0.2 0.4 0.6 0.8 1 1.2

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(g) Video E2E

−1 −0.5 0 0.5 1

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(h) Video E2E IPDV

Figure 6.11: E2E results for scenario 7

90 CHAPTER 6. EVALUATION

6.12 Scenario 8

In this scenario, we use the same parameters as in scenario 6 (Section 6.10),
however, now the MTU is set to 8 000 byte. Thus, the Data traffic can now put
packets of up to 8 000 byte on the line. Table 6.9 lists the parameters.

Table 6.9: Simulation parameters for scenario 8

Parameter Value Parameter Value

N 5 ISRR 10 / 5 10 15 20 25

R [1,1,1,1,1] · Gbps GOOSE 15 / 25 20 15 10 5

MTU 8 000 byte VoIP 50 / 40 30 20 30 40

ρ [0.45, 0.24, 0.34, 0.25, 0.48] Video 0 / 20 30 20 40 50

Data 0 / 200 100 150 100 200

The "Theo. 2" distributions for this scenario provide a nice upper bound.
Whereas in the previous scenario (Section 6.11) the predicted delays for the
"Theo. 1" method was much larger, we have here that for the GOOSE and VoIP
traffic it fails to provide an upper bound.

6.12. SCENARIO 8 91

0 20 40 60 80
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−50 0 50
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 10 20 30 40 50
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−40 −20 0 20 40
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}
Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 100 200 300 400 500
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−400 −200 0 200 400
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

Figure 6.12: E2E results for scenario 8

92 CHAPTER 6. EVALUATION

6.13 Scenario 9

In this scenario, finally, we use the same parameters as in scenario 8
(Section 6.12), but we also send data and video through-traffic, which can have a
size of up to 8 000 byte. Table 6.10 lists the parameters.

Table 6.10: Simulation parameters for scenario 9

Parameter Value Parameter Value

N 5 ISRR 10 / 5 10 15 20 25

R [1,1,1,1,1] · Gbps GOOSE 15 / 25 20 15 10 5

MTU 8 000 byte VoIP 50 / 40 30 20 30 40

ρ [0.46, 0.25, 0.35, 0.26, 0.49] Video 1 / 20 30 20 40 50

Data 2 / 200 100 150 100 200

The "Theo. 2" provides an accurate bound, following the simulation curves
closely, for both E2E delay and E2E IPDV. The "Theo. 1" method is now neither
able to give good bounds on the curves. The large MTU and dependence of the
TT traffic cause inaccuracies.

6.13. SCENARIO 9 93

0 20 40 60 80
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(a) ISRR E2E

−100 −50 0 50 100
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(b) ISRR E2E IPDV

0 10 20 30 40 50
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(c) GOOSE E2E

−40 −20 0 20 40
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(d) GOOSE E2E IPDV

0 100 200 300 400 500
10−6

10−5

10−4

10−3

10−2

10−1

100

d (slot)

P
{D

(k
)
>

d
}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(e) VoIP E2E

−600 −400 −200 0 200 400 600
10−6

10−5

10−4

10−3

10−2

10−1

100

i (slot)

P
{I

v
(k
)
>

i}

Sim

Theo. 1 (NC)

Theo. 2 (NC)

Theo. 1 (Poisson)

Theo. 2 (Poisson)

(f) VoIP E2E IPDV

0 0.5 1

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

d (sec)

P
{D

(k
)
>

d
}

Sim

Theo. 1

Theo. 2

(g) Video E2E

−1 0 1

·10−3

10−6

10−5

10−4

10−3

10−2

10−1

100

i (sec)

P
{I

v
(k
)
>

i}

Sim

Theo. 1

Theo. 2

(h) Video E2E IPDV

Figure 6.13: E2E results for scenario 9

94 CHAPTER 6. EVALUATION

6.14 Conclusion

In this section, we brought all the previous sections together, by combining all
the different traffic types together in various scenarios. We first started discussion
of how to incorporate the E2E delay, by looking at the delay encountered in each
hop. For this we needed to take the through-traffic traffic into account, especially
if the packets are large. We then discussed the simulation setup, followed by a
revision of the traffic used in the simulation. We then proceeded to list plots the
E2E delay and IPDV of various scenarios, which show both the simulation results
and the predictions made by the analytical algorithms from previous sections.
The simulations feature a mix of all the traffic, in all the nodes We found that
the simple method from Section 6.1.2 is able to bound in some scenarios, whereas
the more complex method from Section 6.1.3 that takes the TT into account, is
able to bound the distribution in many more situations, when compared to the
simulations we have run. For VoIP traffic we looked at a network calculus
approach and one where we modeled the aggregate as an M/D/1 queue. Both
approaches resulted in very similar behavior, with the Poisson one giving slightly
tighter results, and thus both methods could be used to get a delay bound.

Chapter 777
Conclusion

In this chapter we analyzed the E2E delay and IPDV performance of different
priorities for particular traffic in strict priority scheduler for a DiffServ network.
The highest priorities of traffic were composed of aggregates of CBR traffic. The
next priority comprised an aggregate of VoIP traffic, while for the lower priority
we considered video. The lowest priority was not analyzed, but served as filler
traffic.

For the analysis we made heavy use of the busy period of an aggregate of traffic.
Paramount for this was the algorithm we developed to calculate this busy period
for any aggregate of CBR flows. We then applied this principle to the other
priorities, giving the delay, IPDV, queue size and busy period distributions for a
single node.

We then extended these results to a sequence of nodes, where in each node
additional cross-traffic was added. To calculate the E2E delay and IPDV, we
tried two approaches. The simple approach assumed no video nor data
through-traffic (but allows for video and/or data cross-traffic). In this case, we
just applied the convolution of the queuing delay and vacation encountered in
each node. The more complex approach could also deal with video and/or data
through-traffic, and takes events in the previous node into account.

To evaluate our algorithms, we performed simulations for a 5 link network for
different scenarios (with or without video/data through-traffic, a large MTU, a
large system load). The analytical E2E delay and IPDV provided in general a
nice bound to the simulation results, for all the different priorities.

95

96 CHAPTER 7. CONCLUSION

Part II

Cross-layer resource
allocation

97

Chapter 888
Introduction

In the late seventies and early eighties a surge of telecommunication occurred, as
computers became valuable tools to increase corporate efficacy, and the
advantage of having instantaneous access to data became apparent. This lead to
a multitude of networks that were developed and sold by manufacturers as
complete and integrated solutions. This provided the customers with network
technologies such as Token Ring, ATM and Ethernet. All these technologies were
developed independently of each other, with limited regard for cooperation
between different network technologies. As time passed, demand increased for
interoperability between all these different systems in order to reuse the available
infrastructure and reduce costs. Due to the lack of standardization, connecting
networks often proved difficult and sometimes even outright impossible.

The ISO recognized this problem early on, and researched existing architectures,
such as IBM’s System Network Architecture (SNA) and ARPANET of the
American Department of Defense (DoD), to solve this inter-connectivity
problem. The ISO proposed the OSI model, that consisted of a layered
abstraction of communication. In this model, each of the seven layers represent a
different class of problems that is solved.

Each layer builds on the layer beneath it, through interfaces, while at the same
time providing an interface that implements the service to the layer directly
above it. Each layer in this model communicates only with its peer on the same
layer, and has only knowledge about the workings of its own layer. In Figure 8.1
we can see the different layers of this model. We will briefly discuss the first four
lower layers.

At the lowest level, we can find the physical layer. It determines the
transformation from bits to a signal and vice versa, such that the receiver can
reconstruct the original signal. Common physical layer technologies are Ethernet,
IEEE 802.11, Bluetooth, and more related to this chapter, DSL.

The second layer, the data link layer, deals with node-to-node communication on
a network segment. It consists of two sublayers: the logical link control (LLC)
and media access control (MAC). The LLC is responsible for frame

99

100 CHAPTER 8. INTRODUCTION

Application layer

Presentation layer

Session layer

Data link layer
MAC and LLC

Network layer
End-to-end connection

Transport layer
End-to-end transport

Physical layer
Signal and binary transmission

Application layer

Presentation layer

Session layer

Data link layer
MAC and LLC

Network layer
End-to-end connection

Transport layer
End-to-end transport

Physical layer
Signal and binary transmission

Bit

Segment / datagram

Packet

Frame

Figure 8.1: The seven layers of the OSI model

synchronization, error detection and handling network layer protocols. The MAC
sublayer determines the device that is allowed to access the shared medium, but
can also provide an addressing function (e.g. the MAC address). Common data
layer protocol are (also) Ethernet and the point-to-point protocol (PPP).

The third layer, called the network layer, provides functionality for
communication of packets between two nodes that can be separated by multiple
devices. As such, it provides a mechanism to address individual nodes in a
network, but also determines how to route packets from the source to the
destination through intermediate nodes. The most common network layer
protocol is internet protocol version 4 (IPv4). It is in use since the early 80s.
However, not too long after its introduction, it was clear that IP addresses of 32
bit, resulting in an address space of about 4.3 billion IP addresses, would have to
be used conservatively, lest there would be no free IP addresses. To deal with
this problem of address exhaustion, the IETF finished in 1998 the development of
its successor IPv6 which, among other things, introduced addresses of 128 bits.
In 2017 IPv6 got ratified as an Internet Standard. The adoption for IPv6 is,
however, going very slow (Réseaux IP Européens Network Coordination Centre
(RIPE NCC), which coordinates allocation of IP addresses for Europe and the
Middle-East, announced on 25th of November 2019 that it had run out of IPv4
addresses), and IPv4 and IPv6 are expected to be used alongside each other for
the foreseeable future.

101

The fourth layer, the transport layer, builds upon the network layer to provide
transport of data between two nodes. The difference with the third layer is that
this layer provides a stream of data, rather than a stream of packets and that it
is an E2E protocol. The two most used protocols are TCP and UDP, where the
former provides a connection-oriented, reliable, ordered and error-free delivery of
a stream, whereas the latter provides a much simpler connectionless stream of
data.

In the OSI model, each layer is a black box with a standardized interface,
guaranteeing high modularity leading to a simpler design of network protocols, as
reuse of functionality is encouraged through these layers.

This abstraction, however, comes at an opportunity cost. To keep the interfaces
as general as possible, only a minimal amount of information can be shared
through the interface, discarding information that can possibly be used to
increase performance. Cross-layering algorithms undo some of this information
loss by carefully selecting useful information from different layers, i.e. they
encourage transfer of information between layers that are not adjacent to each
other, in order to increase performance of a layer.

For example, in recent DSL technologies, the data rates at which users can
transmit are selected in advance from a fixed set of possible data rates that are
possible on the physical layer. The data rate is chosen in function of the
long-term usage. To ensure that all users get sufficient service, the configuration
must provision for the usage for the duration of the connection. This implies that
the DSL configuration must be dimensioned close to the peak rate to ensure the
quality of experience (QoE) is optimal. This peak rate, however, might only
occur a very limited amount of time, but consumes, nonetheless, service rate as if
the user had been transmitting at peak rate. Thus, at short timescales, we
usually require considerably less service to satisfy the QoE. Therefore, the
physical layer can benefit from the information contained within the upper layers
to steer selecting the configuration towards a more optimal service rate, leading
to more efficient usage and better service for all users.

Another example where cross-layering is beneficial are wireless systems. When
transmitting a signal over the shared medium, signals might not always arrive
correctly at the receiver side, due to small-scale effects, such as multi-path
fading, and large-scale effects such as path loss and shadowing. Therefore, a
sender might try to estimate the current channel conditions, and based on that
information decide whether to use more power and transmit a packet, or hold of
transmission until the conditions are more favorable. This reduces power
consumption, increases the system throughput and leads to a more efficient use
of the shared medium, as different devices often encounter very different channel
characteristics.

A final example, among the many, where cross-layering is useful is satellite
communications. As bandwidth is expensive, it is in the interest of the user to
use as much as possible of the service rate that is offered. Like in the DSL

102 CHAPTER 8. INTRODUCTION

example, the traffic intensity changes over time, hence there is a need to
dynamically reserve bandwidth to reduce the costs. This reservation, however,
takes a lot of time due to the large distance the signal has to travel, requiring the
need for a predictive and adaptive approach, that takes the system and arrivals
into account and communicate those requirements to the physical layer.

However, cross-layering is also not without drawbacks. First, cross-layering
introduces complexity and can slow down innovation. For example, if a protocol
is developed or updated, the layers it interacts with might need additional
updates to ensure proper functioning.

Second, with the number of possible interactions between the different layers
increasing, grows also the number of possibilities in which the layers interact in
unintended ways. This might lead to performance problems, which is why we
introduced cross-layering in the first place! An example of such an unintended
consequence can be found in [97]. There, a rate-adaptive MAC protocol is
combined with minimum-hop routing. Minimum-hop routing will try to route
using the lowest number of hops, by routing to the hops the furthest away. A
device can order devices by distance by using the data rate as a surrogate: for a
regular MAC protocol, we can assume that a low data rate implies a low received
signal strength, hinting at a large distance. Combining this with a rate-adaptive
MAC protocol which sets the transmission data rate in function of the channel
quality, we can see that the data rate is not a good measure anymore for
distance, resulting in a worse performance.

A large body of literature exists on cross-layer optimization, see e.g.
[143, 117, 45, 127, 200, 68, 100] and references therein. Typically, the cross-layer
problem is formulated as an optimization problem of the form

maximize
∑
n

Un(xn).

In here, Un(·) is the utility of a device receiving a quantity xn (e.g. a data rate),
where the system itself is subject to constraints, such as power usage, routing
restrictions, rate restrictions, stability etc. The function Un(·) can be seen as the
interface between the different layers.

The first cross-layer scheduler was the max-weight (MW) scheduler, defined in
the seminal work [180], and is defined by Un(R) = qn[t]·R, where qn[t] is the
queue size of user n at time t, and R is the rate. Conceptually, the scheduler
looks at all tuples of rates that are possible in the system, and then selects the
tuple of rates for which the sum of the queue-rate product over the users is the
highest. For example, in a two user system with a rate region (i.e. all possible
rate tuples) {(3, 0), (2, 2), (0, 3)} and queue sizes q[t] = [1, 2] the MW scheduler
will select the rate tuple (2, 2), because 2·1+2·2 > 3·1+0·2 and
2·1+2·2 > 0·1+3·2. As the queue sizes are more or less equal, the scheduler
tries to maximize the system data rate. However, for queue sizes [1, 5] the
selected rate will be (0, 3) because 0·1+3·5 trumps all other possibilities. In this
case, the largest queue will receive the most data rate. Usually much more

103

efficient algorithms are available, depending on the shape of the collection of rate
tuples and technology, to determine the solution to the maximization problem.
Other schedulers have a different utility function, and focus on other properties
and metrics.

In this chapter we develop algorithms for cross-layer optimization for the three
different contexts of the examples given above. In Chapter 9 we develop a
resource allocation algorithm that combines the physical and data link layer to
improve the performance of DSL networks. In Chapter 10 we slightly modify the
algorithm developed in Chapter 9 and apply it to a LTE and 5G context. In
Chapter 11 we develop two new algorithms for use in a satellite context where
many users’ flows are aggregated to reduce costs and make more efficient use of
the bandwidth. The available service rate for this link is updated periodically
according to the requirements. However, due to the large latency these service
rates updates are applied with a delay, and hence a predictive approach is
required to achieve good performance. Finally, in Chapter 12 an algorithm is
developed to provide lower and upper bound data rate guarantees to cross-layer
schedulers from Chapters 9 and 10.

104 CHAPTER 8. INTRODUCTION

Chapter 999
Cross-layer optimization in DSL

networks

9.1 Introduction

9.1.1 DSL

In the 1990s, cable television and satellite industries had been offering data rates
of 10 Mbps and more. The telephone industry, however, was stuck at offering
56 kbps (or 144 kbps for Integrated Services Digital Network (ISDN)). As the
triple play combination of internet access, television en voice communication
became more important, the telephone companies realized they should offer a
more competitive product. As they already had the infrastructure going into
each house, i.e. twisted-copper pair cables, they started to develop new
technologies over the next decades that leveraged the available copper network,
to increase the data rates and provide a better service. Over the course of
decades, new generations of broadband emerged.

The second generation broadband introduced asymmetric digital subscriber line
(ADSL) for the consumer market, which offered a larger downstream (up to
24 Mbit) than upstream rate (at most 1 Mbit), hence the asymmetric in the
name. New equipment was needed at both sides of the network, the copper lines,
however, remained untouched. Unlike in the first generation, data signals
employed the unused frequencies of the spectrum above the voice signal, resulting
in a higher bandwidth and also allowed for simultaneous voice calls and browsing
the internet. However, the high frequencies attenuated strongly in the
twisted-pair cable, reducing the achievable data rate over longer distances, giving
users further away from the central office (CO) lower rates. For example, in
Figure 9.1 we plot in blue the curve for ADSL2+ of the maximum achievable
data rate in function of the distance. For small distances a user might attain
24 Mbps, however as the distance becomes larger it decreases quickly. Also
plotted are curves for third generation broadband technologies.

105

106 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

Figure 9.1: Rate versus distance

The third generation of broadband was able to increase the data rate by several
factors by bringing the loop closer to the house. Ideally the local loop is less than
1 km. Now crosstalk, interference between the copper wires of different users,
became the major contributor to performance degradation. The effects of
crosstalk were minimized using vectoring, a sort of noise-cancelling, but then for
electromagnetic signals.

The 4GBB is a hybrid fiber-DSL solution that brings the local loop even closer to
the end user, up to 20 m. Wireline techniques, such as multiple input/multiple
output (MIMO) signaling, discrete multitone (DMT) modulation and dynamic
spectrum management (DSM) are used to optimally exploit the frequency
dimensions. MIMO signaling exploits the fact that users are often provided two
copper pairs, instead of one. DMT modulation is a form of orthogonal
frequency-division multiplexing (OFDM) where transmission on each subcarrier
is adapted depending on the channel conditions. Finally, DSM tries to solve the
crosstalk problem, by allocating parts of the spectrum to users that have low
interference.

Currently, fifth generation broadband access (5GBB), also referred to as
XG.Fast, is part of active research. It will bridge the last gap between 4GBB and
fiber to the home (FTTH). It improves on 4GBB, which has been standardized
in G.fast [88, 87], by bringing the fiber closer to the end user and expanding the
used spectrum. In this scenario, this fiber to the frontage (FTTF) reduces the
copper wire length to less than 70 m, enabling data rates of up to 10 Gbps over
the twisted-copper pairs.

In Table 9.1 we show some technologies, the International Telecommunication
Union (ITU) recommendation, when it was ratified and the speed capabilities.
Figure 9.2 shows the historical (up to 2009) and expected trend of the number of
new installations and upgrades through time, for each DSL generation.

9.1. INTRODUCTION 107

Table 9.1: DSL technologies

Family ITU Name Ratified Maximum rate

ADSL G.992.1 G.dmt 1999 7 Mbps / 800 kbps

ADSL2 G.992.3 G.dmt.bis 2002 8 Mbps / 1 Mbps

ADSL2plus G.992.5 ADSL2plus 2003 24 Mbps / 1 Mbps

ADSL2-RE G.992.3 Reach Extended 2003 8 Mbps / 1 Mbps

SHDSL G.991.2 G.SHDSL 2003 5.6 Mbps

VDSL G.993.1 Very-high-data-rate DSL 2004 55 Mbps / 15 Mbps

VDSL2 G.993.2 Very-high-data-rate DSL 2 2005 100 Mbps

G.fast G.9701 G.fast 2014 1 Gbps

XG.fast - XG.Fast - 10 Gbps

Figure 9.2: Trend of deployment volumes of DSL generations

Source: [140]

In Figure 9.3 we can see a general network architecture of DSL. At the left, we
have the customer premises where the service is consumed. The distribution
point unit (DPU) contains the Digital subscriber Line Access Multiplexer
(DSLAM), which aggregates the different users, and the optical network terminal
(ONT) which connects the DPU to the CO. The main CO typically aggregates
passive infrastructure of multiple COs. The core CO connects the aggregation
network to other networks, such as the Internet.

108 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

Customer
premises

In-house
section

Distribution
section

Building Distribution Point
Unit (DPU) Central Office (CO)

Trunk
section

Feeder
section

Main (CO)

Aggregation
section

Core (CO)

Aggregation network

Core
section

Access network

Figure 9.3: DSL network architecture

9.1.2 Cross-layer optimization

The work in this section applies to the connection between the customer premises
and the DPU.

Maintaining a low delay in a communication network is critical to a wide variety
of applications such as video conferencing, VoIP, gaming, and live-streaming. If
many delay violations occur, QoE suffers considerably for these applications, and
the allocated resources are wasted. The QoE is usually expressed through QoS
rules that quantify the desired metrics. Scheduling plays an important role in
provisioning QoS, as it chooses how to allocate resources to different applications.

The resources that are available depend on the underlying physical layer. As
mentioned in the DSL introduction, multiple twisted pair lines connect the DPU
to the customer premises equipment of the users. These lines are bundled inside
a cable binder, where the electromagnetic coupling between the different twisted
pair lines causes inter-user interference or crosstalk, which is then the major
source of competition for data rate among users. Figure 9.4 shows a setup in
which the signal from users 2 to N leaks into user 1’s signal.

This crosstalk gives rise to a convex rate region, the set of all rate vectors that
can be provided by the physical layer. Figure 9.5 shows an example rate region
R for two users. Due to crosstalk there is no allocation that maximizes the
service rate for both users at the same time: increasing the service rate ρ of one
user invariably reduces the service rate of the other user.

The dynamic nature of applications and the physical layer create a competition
for data rate. At the upper layer the requirements for the users fluctuate over
time, as the serviced applications and their demands change. At the physical

9.1. INTRODUCTION 109

hƐĞƌ 1

hƐĞƌ 2

hƐĞƌ N

�Wh

hƐĞƌ 1

hƐĞƌ 2

hƐĞƌ N

Ed

͘͘
͘

͘͘
͘

/^W �ŽƌĞ

Figure 9.4: Example of crosstalk in a DSL system

200 400 600

200

400

600

R

ρ2 (Mbps)

ρ
1
(M

b
p
s)

Figure 9.5: A rate region for a two user system

layer, meanwhile, there are multiple Pareto-optimal data rate points from which
to choose (see for example Figure 9.5). As is dictated by the OSI model the
upper and lower layers operate independently of each other. But this can lead to
inefficient network usage and degradation of the network performance. For
example, if one user is watching a live-stream, and another user is browsing the
web and downloading e-mails, then assigning both users a fixed service rate will
lead to inefficient usage of the available resources, especially since worst-case
behavior must be assumed, even though these peak arrivals might occur only in
e.g. 1% of the time. Additionally, if the live-streaming user experiences a
temporary peak in traffic arrivals, it is impossible to indicate to the physical
layer that it requires more service, resulting in a reduction of the user’s QoS and
the performance of the network.

Traditionally, DSL techniques configure the physical layer statically using profiles
which are not always the best choice for the current usage. Breaking here
through the strict layers of the OSI model can prove very beneficial. In the
example given above, the upper layers might instruct the physical layer to share
service based on the expected arrivals in the next second. The physical layer
then decides on how to allocate resources, based on the upper layer’s preference

110 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

information, the number of predicted arrivals, in this case.

Note that we here thus break through the abstraction of the physical layer, which
is just a service that transmit bits, and transform it into a service that transmits
bits, depending on information passed on from the upper layers, in this case for
example.

Dynamically adjusting the service rates offered to users can resolve these
problems. An approach to share this information between the physical and upper
layers is through a utility function. Such function quantifies for each user the
usefulness of receiving a certain service rate. Service rates are then set by solving
the corresponding network utility maximization (NUM) problem:

R∗ = arg max
R∈R

∑
n

un(Rn) (9.1)

where R = [R1, . . . , Rn]T . A cross-layer scheduler then translates the upper layer
preference information into utility functions un that express the usefulness to
user n of receiving a service rate Rn. There are many available cross-layer
schedulers that focus on wireless networks, and optimize in function of different
metrics such as delay [198] or power usage [197], or joint optimizing of several
metrics [195]. These schedulers assume that the solution to the (9.1) can be
calculated and applied immediately. However, in our DSL setting the solution
can take an order of magnitude more time to solve, introducing a delay between
obtaining the metrics and application of the new service rates. This can lead to a
degradation in performance.

Therefore, we develop a scheduler targeted towards DSL G.fast 4GBB and 5GBB
communication networks that aids in assigning resources. The minimal delay
violation scheduler aims to minimize the number of delay violations while also
offering a good throughput to best-effort flows. We show through simulations
that the MDV scheduler has excellent performance with respect to throughput,
delay violations and multiplexing capabilities, and offers significant
improvements with respect to a static allocation.

The remainder of this section is structured as follows. We discuss related work in
Section 9.2. In Section 9.3 we describe the system model. In Section 9.4 we
present a formal description of the MDV scheduler, and an analysis of the
scheduler together with a discussion of the stability. In Section 9.5 we briefly
discuss the physical layer. In Section 9.6 we evaluate the MDV scheduler and
compare the performance with other cross-layer schedulers using simulations.

9.2 Related work

Many of the schedulers listed here are used in wireless networks, but due to the
general nature of the NUM problem (9.1) which optimizes weights over a rate

9.2. RELATED WORK 111

region, it can also be applied to the DSL setting. There is a family of cross-layer
schedulers where the utility function is linear with Rn. Therefore, (9.1) is often
simplified to

R∗[t+1] = arg max
R∈R

∑
n

ωn[t]Rn (9.2)

where t is the time slot and ωn is called the weight of user n. The seminal work
of the MW scheduler [180] introduces one of the first opportunistic schedulers.
The MW scheduler has ωn[t] = qn[t], where qn[t] is the length of the queue at
time t. It performs very well with respect to throughput, but it lacks any notion
of QoS. Many subsequently proposed schedulers focus on optimizing a single QoS
metric. For example, the delay-based max-weight (DMW) scheduler of [16] has
ωn[t] = Γn[t], where Γn[t] is called the HOL, the waiting time of the packet at
the front of user n’s queue. Such an approach is less apt to deal with bursty
traffic, as batch arrivals will result in a low initial HOL but at the same time a
large queue, causing larger delays for subsequent packets. For the maximal delay
utility (MDU) scheduler [170], ωn[t] = |u′(wn)|

λ
n , where u is a traffic-class based

function, wn the average waiting time, and λn the average arrival rate. The
average waiting time is approximated using Little’s law. However, as the mean
delay is used applications sensitive to real-time requirements can suffer. The
EXP/PF [28] scheduler differentiates between real-time and best-effort
applications. The real-time application weights take the average HOL of all users
into account, while the best-effort applications receive only service when the
HOL of all real-time applications are below the delay threshold.

In [157] another approach is presented that uses utility functions, where
applications with the tightest deadlines receive higher priority. Their approach
does not exploit the multi-user diversity, and results in an increased number of
packets missing their deadlines. In [96] a joint power allocation and transmit
scheduling method is introduced for OFDM wireless networks with mixed
real-time and non-real time users. It aims to reduce the delay variance and tries
to satisfy the delay requirements of the real-time users, though at the expense of
throughput. In [164] a scheduler framework is introduced for real- and
non-real-time applications in orthogonal frequency-division multiple access
(OFDMA) wireless networks. Their framework can approximate other common
schedulers such as EDF and modified largest weighted delay first (M-LWDF).
Some approaches incorporate a neural network (NN). For example, in [161] the
“AdaptSch” framework is presented, built on two NN blocks, the first one of
which predicts network traffic, while the second block predicts the performance
for a set of predefined schedulers and chooses the best one. This can improve the
delay performance, but at the cost of overall throughput. In [20] another
allocation algorithm is presented, but the tuning parameters require a priori
knowledge of the applications, such as the required throughput. In [197] a
cross-layer algorithm is developed in the context of ultra reliable and low-latency
communications. It aims to minimize the number of packets that exceed the
delay bound for a given power constraint. Rather than the queue size, it bases its
decision on the delay of the individual packets.

112 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

In [198] a cross-layer scheduling algorithm is developed that minimizes the delay
in vehicular networks. It adds a parameter V that allows for a trade-off between
throughput and latency.

The authors of [195] introduce a probabilistic cross-layer scheduler. Each packet
is transmitted with a certain probability that is determined by the queue length.
They aim to minimize the average queuing delay under average power
constraints. The model only allows for sending at most one packet per slot. This
approach is not suitable for use in our DSL system as the slots are much larger
compared to the wireless channel setting in the paper.

Other cross-layer schedulers such as FLS [130] and Opt.-Fair [61] implement a
mechanism similar to SP in every time slot in order to achieve a low PLR and
high throughput. They first select and serve some of the real-time flows, and
left-over resource blocks (RBs) are then assigned to best-effort flows.

In [110] different scheduling strategies are discussed together with a survey of the
schedulers. A taxonomy of cross-layer schedulers can be found in [137].

Some of the schedulers listed above are also used in the simulations in Section 9.6
and are listed in Table 9.4 on Page 131 together with the expression used by each
scheduler to calculate the user weights ω in the weighted sum rate maximization
problem (9.1).

9.3 System model

In this section we give a high level overview of the system and describe the
common symbols used throughout this section.

ISP
core

Network layer

A i
n

(t)

Data link layer

Qi
n

(t)

DPU

Physical layer

NT

Network layer

Di
n

(t)

τ
t t+1 t+2

calc R(t+1)
as in (3)

R(t+1)

Rate region

Ri
n

(t)

Rn(t)

Figure 9.6: The system model

In Figure 9.6 we show an overview of the system model. The ISP core network is
connected to the DPU through an optical fiber cable. The DPU is connected to
N network terminations (NTs). In the DPU the different layers contribute here
to solving the NUM problem. The physical and data link layers at the NT are

9.3. SYSTEM MODEL 113

omitted.

Time is divided in slots of length τ = 50 ms. There are N users, where each user
n ∈ [1, N] has φn flows (or equivalently applications). Flows are indexed by
subscript i. The total number of flows in the system is φ =

∑N
n=1 φ

n.

In each slot an operating point for the physical layer has to be chosen. The
physical layer assigns to every user n a service rate Rn[t] ∈

[
0, R̂n

]
where R̂n is

the maximal service rate possible for user n. Furthermore, Rn ∈ R, where the
rate region R is the set of all Pareto-optimal rate vectors that the physical layer
can accommodate. The capacity region is defined as

C = conv
(
∪

r∈R

(
({r}−RN+)∩RN+

))
, (9.3)

where convA denotes the convex hull of the set A.

The upper layer determines at the start of slot t the system state S [t], which
can include historical data up to time t, such as arrival rates, or immediate data
such as queue lengths. Based on S [t] the scheduler then constructs the utility
functions uni (·) for each flow. These utility functions are then passed to the
processing unit of the physical layer, where NUM problem (9.1) is solved to
determine the optimal operating point. At the start of slot t+1, the reply of the
physical layer, i.e. service rates R[t+1], is applied. These service rates are in
effect in the interval [t+1, t+2[. There is thus a delay of one slot between the
request and application of service rates.

Each flow i ∈ [1, . . . , φn] of user n has its QoS defined by P{D[t] > T̂ni } ≤ εni ,
where D[t] are the delays of the flow’s packets up to slot t, T̂ni a delay upper
bound, and εni the allowed violation probability. Traffic arrives in a buffer large
enough to hold all packets. However, if a packet’s delay exceeds T̂ni , the packet is
useless to the flow, and will be dropped. If P{D[t] > T̂ni } > εni in a reasonable
interval, the QoE of the user will suffer.

The number of arrivals and departures in bits for flow i and user n during the
interval [t, t+1] are denoted by Ani [t] and Eni [t]. The number of arrivals and
departures in packets in an interval [s, t] are written as Ani,p(s, t) and Eni,p(s, t).
The short-term PLR at time t is notated as p[t] = dni,p(t−10,t)

An
i,p

(t−10,t) , where d
n
i,p(s, t) is

the number of dropped packets in the interval [s, t]. We track this only over the
last 10s, which corresponded to the average scene length in our video traces.

The queue size (in bits) at the start of slot t is denoted by qni [t]. The HOL is the
time spent in the system by the packet at the head of the queue, and is denoted
by Γni [t].

Every flow has a utility function uni (Rni ,S n
i [t]), which quantifies the usefulness

to the flow of receiving a service rate Rni , given state S n
i [t]∗. At the start of slot

∗We will usually omit S n
i [t]

114 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

t the cross-layer scheduler selects the rate assignment R[t+1] ∈ R that
maximizes the system’s performance, i.e.:

R[t+1] = arg max
R∈R

N∑
n=1

φn∑
i=1

uni (Rni ,S n
i [t]). (9.4)

A large family of scheduling algorithms is linear in R (e.g. [73, 132, 93, 170, 17]),
i.e.

u(R,S [t]) = R·ω(S [t]). (9.5)

For the MDV scheduler we present here, we have

u(R,S [t]) = −ω(S [t])
R+ζ (9.6)

where ζ is a small constant to avoid division by 0. We refer to (9.5) and (9.6) as
MW-style and MD-style schedulers respectively. The reason for using an
MD-style scheduler is explained in the introduction of the next section.

9.4 The MDV scheduler

In this section, we introduce the MDV scheduler and its equations, and discuss
some properties.

Schedulers from literature usually calculate ω based on immediate QoS-related
metrics like the queue state and the HOL delay (and possibly other metrics like
power). As the resources for these schedulers are typically assigned immediately
every 1 ms, metrics like the queue and HOL delay can provide accurate guidance
for the duration of the next 1 ms-sized slot. However, in our DSL system slot
sizes are an order of magnitude larger, and, together with the fact that resources
are only allocated one slot later, the queue and HOL might be out-of-date the
moment that the resources are assigned. For example, assume q[t] = [0, 10], and
at t+0.01 packets arrive for user 1, then if the weight depends on the queue (e.g.
un(ρ) = qnρn, or [198, 138]) or HOL (e.g. [199, 202]), then user 1 might get
assigned a zero service rate for the coming 50 ms slot (and thus have a delay
larger than 50 ms), while user 2 receives all data rate.

Furthermore, most cross-layer schedulers are developed in the context of wireless
networks, where the achievable data rate can change drastically over short time
spans. Hence, these use the utility function (9.5) which favors servicing users
experiencing a better signal-to-noise ratio (SNR), at the cost of data rate
fairness. In the DSL setting the rate region is static, hence opportunistic
scheduling is not as important.

Therefore, in the MDV scheduler we solve the first problem, the inherent delay of
one slot between calculating ω and application of the service rates, by making
use of the expected arrival rate and the number of recently dropped packets, in

9.4. THE MDV SCHEDULER 115

addition to the queue size and the HOL, to determine a flow’s weight. The
arrival rate and PLR are not as volatile and hence can steer the weights better
over multiple slots. This ensures that a flow will receive sufficient service rate,
even though it is not backlogged. The inclusion of the queue ensures that sudden
bursts of traffic will increase the service rate. The second issue, the opportunistic
character of cross-layer schedulers, is resolved by using a utility function of the
form (9.6), which is more suitable for fair sharing [133].

ωni (S n
i [t]) = λ̃ni [t+1]︸ ︷︷ ︸

(a)

· cni︸︷︷︸
(c)

 qni [t]
(Rni [t]+ζ)·T̂ni

+ln2

(
1+ pni [t]

εni

)
+ Γni [t]

T̂ni︸ ︷︷ ︸
(b)

 (9.7)

The weight for the MDV scheduler is shown in (9.7), and is composed of three
components. The factor λ̃ni [t+1] is an estimate of the number of bits that will
arrive in slot t+1. The function cni (·) is dependent on the traffic class (e.g.
streaming, or best-effort), and operates on its argument which acts as a measure
for how close a flow is to violating its QoS delay requirement.

In Section 9.4.1 we will first discuss the components that comprise the scheduler.
Then in Section 9.4.3 we highlight a difference with MW-style schedulers. In
Section 9.4.4 we discuss the stability of the MDV scheduler. In Section 9.4.6 we
add some important notes on the discretization of the rate region.

9.4.1 The components

In this subsection we will have a detailed look at the components that make up
the MDV scheduler, as described in (9.7).

9.4.1.1 Factor (a)

Factor (a), λ̃ni [t+1], constitutes an estimate of the required service rate to
support the flow in slot t+1, the slot that we are now finding the suitable
weights for. We calculate it as λ̃ni [t+1] = Ãni [t+1]

τ , where Ãni [t+1] is a prediction
of the number of bits that will arrive during slot t+1.† One approach to
obtaining Ãni [t+1] is to use for each flow a suitable traffic model, describing its
typical behavior (e.g. [37, 190, 80]). However, such an approach requires a model
with all its correct parameters to be available for all the flows present in the
network. Instead, we use an exponentially moving average (EMA) with weight
0.2, i.e. Ãni [t+1] = 0.8·Ãni [t]+0.2·Ani (t−1). One could also use more

†For stability reasons (see Section 9.4.4), we assume Ãni [t] > 0.

116 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

sophisticated prediction mechanisms, like the normalized least mean square
(NLMS) predictor [76]. The added complexity, however, does not result in a
significant improvement, so to keep complexity low, we use the EMA.

9.4.1.2 Argument (b)

The MDV scheduler aims to ensure that less than 100εni percent of the packets
experience a delay more than T̂ni . We use a metric bni here, given by

bni = qni [t]
(Rni [t]+ζ)·T̂ni︸ ︷︷ ︸

(b1)

+ ln2

(
1+ pni [t]

εni

)
︸ ︷︷ ︸

(b2)

+ Γni [t]
T̂ni︸ ︷︷ ︸
(b3)

(9.8)

It expresses the closeness of a flow to violating its QoS delay requirement
P{D[t] < T̂ni } ≤ εni , which is then used as the argument of cni in (9.7). The
closer bni is to 1, the more likely there are delay violations, and the more service
rate should be given to this flow in order to avoid or reduce the delay violations.

We estimate the bni metric based on the current queue size (b1), the past delay
violations (b2) and the HOL (b3), which approximate the predicted delay of the
most recently arrived packet, the delay percentile and delay of the current packet
respectively. We now look at (b1), (b2) and (b3) in more detail.

(b1): The factor qni [t]
Rn
i

[t]+ζ in (9.8) can be seen as an approximation of the delay
of the most recently arrived packet, if the service rate were to be kept at Rni [t].
Thus, (b1) = qni [t]

(Rn
i

[t]+ζ)T̂n
i

indicates the proximity of the delay of the queue’s last

packet to the delay upper bound T̂ni , given a constant service rate Rni [t]. A value
larger than 1 means that the packet will violate the QoS delay requirement.

In [139] the authors show that queue-independent schedulers incur a delay that
grows at least linearly with the number of flows. Hence, the queue should be
incorporated in order to achieve good performance.

(b2): The term (b2) represents an estimate of the number of delay violations so
far, relative to the QoS delay bound. To track p[t] = dni,p(t−10,t)

An
i,p

(t−10,t) , we store the
arrivals and drops in a circular buffer, each entry covering one second. It is also
possible, and less complex, to just track the number of drops and arrivals over
the lifetime of a flow. However, it might be beneficial for the performance to
forget about the drops that have occurred long ago.

(b3): The term (b3) represents an estimate of the proximity of the HOL to its
delay deadline. As the packets for a flow arrive in a first in first out (FIFO)

9.4. THE MDV SCHEDULER 117

queue, the HOL will be the oldest packet in the queue — if its delay is less than
T̂ni , then so are the other packets in the queue.

9.4.1.3 Function (c)

The traffic class-dependent function c(·) is applied to the argument (b) and
indicates the elasticity of the flow. Following two classes are defined:

• cstream(x) = β(x, 0.5, 1.0, 0.2, 10)

• cBE(x) = β(x, 0.7, 1.0, 0.7, 10)

with

β(x, µ, γ, σ, ρ) =
{
β2(x, µ, γ, σ) if x ≤ 1
β2(1, µ, γ, σ)+log(x−1+1/ρ

1/ρ) if x > 1
(9.9)

where β2 is the sigmoid function

β2(x, µ, γ, σ) = γ

1+exp(−(x−µ)/σ)

The functions cstream and cBE behave like a regular sigmoid when bni ≤ 1. When
bni > 1, however, cstream and cBE will switch to logarithmic mode, providing
fairness among flows of the same class. The initial slope and value are larger for
cstream(bni) than for cBE(bni). If the system is overloaded, bni quickly becomes
more than 1 for all flows as the queue sizes (and subsequently delays) will
increase. But as the streaming class’s weight increases faster, the streaming
traffic class flows will be prioritized over best-effort traffic flows.

The values for the cstream and cBE functions are chosen empirically through
simulations. It is clear that when a flow from the streaming traffic class is far
from violating its requirements, its weight is low, thus giving more weight to
other flows. Comparing the traffic class functions cstream and cBE in Figure 9.7,
we can see that for small bni the function cBE is relatively large. This results in
the best-effort traffic class receiving a larger share. However, as the system load
increases, and thus also bni increases, cstream will quickly receive a larger weight
and hence a larger service rate.

9.4.2 Saturating the channel

Some applications might try to send as much data as possible, by keeping the
queue always backlogged. We call them here the SAT applications, as they try to
saturate the channel. We can not use (9.7) as the queue is not a reliable metric
in this case. We assume that these packets have no QoS requirements.

118 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

0 0.5 1
0

0.5

1

1.5

b

f
n

(b
)

stream

best-effort

Figure 9.7: cstream(b) and cBE(b)

A possible weight for these applications is

ωni (S n
i [t]) = λQoS ·Ω·

ŘSAT[t]
R
n

i [t]
, (9.10)

where λQoS is the average arrival rate of all QoS flows, Ω = 0.2 a constant, Rni is
the EMA of the service rate and ŘSAT[t] = arg minj∈SAT{Rj [t]} is the minimum
service rate of all SAT flows. The factor 1/Rni [t] is often used in schedulers for
best-effort (BE) traffic, and provides fairness among the SAT applications. This
value is scaled by λQoS ·Ω·ŘSAT such that it has a weight that is in the same
order of magnitude as the QoS flow’s weights. The factor Ω· Ř

SAT

R
n

i [t] results in a
value]0,Ω] and can be seen as the fc(·) counterpart of the real time flows in
(9.7). By increasing Ω, we can trade PLR performance of QoS flows for an
increase in average throughput of the SAT traffic. The value Ω = 0.2 was chosen
using simulations, and had the least impact on the delay performance of the
non-saturating flows while also maximizing the system throughput.

9.4.3 Intra-User scheduling

In the previous subsection, we discussed the MDV scheduler and how it
calculates the weights ωni for the corresponding NUM problem. In this section,
we look at the scheduling of flows for a single user, contrasting the MW-style and
MD-style schedulers.

The channel of a single user can be fed with the output of a traditional regular
packet scheduler (e.g. [108, 10, 40]), operating on the aggregate of the user’s
flows. In some circumstances, however, it may be useful to consider each flow
being allocated a separate channel. Consider for example a best-effort flow.
Generally, it can deal with packet loss, and thus such a flow might request a
higher service rate at the cost of a higher bit-error rate. Likewise, VoIP calls
require reliable transfer, and as such can request for a low bit-error rate. The
work presented in [188] discusses the possibility of having each flow having
different properties in a DSL setting.

9.4. THE MDV SCHEDULER 119

In such case, it is interesting to use the scheduler to also allocate the resources
for the intra-user flows. Solving the NUM problem for all users can then
conceptually be split into two steps. First a service point R in the rate region is
picked. Then, for each user n the service rate Rn must be divided over user n’s
flows. This intra-user rate region can be considered a simplex rate region (see
Figure 9.8 for an example of a three flow 2-simplex). In such a scenario,
increasing one flow’s rate by δ will decrease the sum of the other flows’ rates by
exactly δ, i.e. any point on the simplex is Pareto optimal.

Flow 3

Flow 1

Flow 2

Figure 9.8: Intra-user rate region for a user with three flows

It is in this setting that our cross-layer scheduler excels. Consider a user n
receiving a rate Rn, to be distributed over φn flows. This rate region is the
φn−1-simplex. If we use an MW-style scheduler for intra-user rates
rn = [rn1 , . . . , rnφn] then the NUM problem can be written as

arg max
[rn1 ,...,rnφn]T<0

φn∑
i=1

ωni r
n
i , (9.11)

subject to
φn∑
i=1

rni ≤ Rn.

Here, (9.11) results in an assignment that gives only a non-zero rate to the flow
that has the largest weight ωni .

If we now consider an MD-style scheduler the corresponding NUM problem is
formulated as:

arg max
[rn1 ,...,rnφn]T<0

φn∑
i=1
−ω

n
i

rni
, (9.12)

subject to
φn∑
i=1

rni ≤ Rn.

120 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

For this problem the closed form solution is

rn =
(
φn∑
i=1

√
ωni

)−1

·


√
ωn1
...√
ωnφn

·Rn. (9.13)

Here the rate is distributed proportionally to all flows, rather than only to the
flow that has the largest weight. This allows the MDV scheduler to be readily
used for intra-user scheduling, whereas MW-style schedulers may require
additional intra-user scheduler mechanisms to take advantage of the different
flow properties.

9.4.4 Stability

In this subsection, we discuss the concepts of stability and throughput
optimality, and how these apply to the MDV scheduler.

We define a system with scheduling policy ψ to be (queue) stable if for an arrival
rate vector λ the expected lengths of all queues in the system remain bounded.
The stability region is the set of all arrival rate vectors λ for which a scheduling
policy ψ results in a stable system. Thus, an arrival rate vector outside the
stability region could lead to a system in which one or more queues are not
bounded, and grow to infinity.

Stability also leads to the concept of throughput optimality. Assume we have an
optimal scheduling policy ψ∗ whose stability region is maximal, i.e. queue stable
for the largest set of arrival rate vectors, then this policy ψ∗ is throughput
optimal. Schedulers such as MW [180] are proven to be throughput optimal in
some scenarios [158].

We show here that the MDV scheduler is throughput optimal for convex capacity
regions. For non-convex rate regions it is possible to find an arrival rate vector
such that for example the MW scheduler can stabilize the queues, while the
MDV scheduler cannot. In practice this only occurs for a limited set of arrival
rate vectors.

The proof we present here is based on the Lyapunov drift in a fluid system, and
is similar to the proof of (Ω, α)-fairness in the context of bandwidth sharing
[32, 133]. We first consider a general scheduler whose weights depend only on
some constants and the queue sizes. If for such a system the arrival rate vector
lies within the scheduler’s stability region, then we show that the sum of the
queue sizes will decrease, if we start from arbitrarily large queues. Next, we show
that this also is true when we allow the constants to change at slot boundaries.
Finally, we show that the MDV scheduler must be stable for arrival rate vectors
within the scheduler’s stability region, by constraining it between two other,
stable schedulers.

9.4. THE MDV SCHEDULER 121

For the proof we make use of a general scheduler of the form

R∗ = arg max
R∈Rα

∑
i

(AiQi[t]+Bi)β−1 (Ri+ζ)1−α

1−α (9.14)

with constants ζ > 0, Ai > 0, Bi ≥ 0, β > 1 and α ∈ R0
+\{1}. This scheduler

belongs to the family of α-fair utility maximization functions [133]. To avoid
division by zero when Ri = 0 and α > 1, we have introduced ζ, which should be
small compared to typical values of Ri.

In (9.14), Rα ⊆ R is the set of operating points the scheduler can select from a
rate region R (we use Cα for the corresponding capacity region). This set Rα
depends only on the parameter α. In [33] it is shown that α determines how
much the rate region R is convexified. As α grows, operating points that are
more interior to conv R are included in Rα, until Rα = R. In Figure 9.9 we
show an example rate region R and Rα for α ∈ {0, 0.5, 2}, where we can observe
more points being selected from R as α increases. Note in particular that
Figure 9.9a forms the convex hull of R.

When the rate region R is continuous, we can approximate the rate region with a
finite number of operating points [119]. In Section 9.4.6 we have some remarks
about this sampling process.

0 2 4 6 8
0

2

4

6

8

User 1

U
se
r
2

R
Rα(α = 0)

(a)

0 2 4 6 8
0

2

4

6

8

User 1

U
se
r
2

R
Rα(α = 0.5)

(b)

0 2 4 6 8
0

2

4

6

8

User 1

U
se
r
2

R
Rα(α = 2)

(c)

Figure 9.9: R and Rα for a two users system (α ∈ {0, 0.5, 2})

Theorem 1. The scheduler described by
R∗ = arg maxR∈Rα

∑
i (AiQi[t]+Bi)β−1 (Ri+ζ)1−α

1−α is stable if λ ∈ Cα.

The proof can be found in Appendix C. There we also show that the constants
Ai and Bi do not impact the stability region, but do reduce the rate at which the
queues decrease.

We use this result and show that the system is still stable when Ai[t] and Bi[t]
can change at the start of a slot, and remain constant for the duration of the slot.

122 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

Corollary 1.1. In a slotted system

R[t]∗ = arg max
R∈Rα

∑
i

(Ai[t]Qi[t]+Bi[t])β−1 (Ri+ζ)1−α

1−α

is stable for λ ∈ Cα for any function Ai[t] > 0, Bi[t] ≥ 0. During slot t Ai[t] and
Bi[t] are constant.

The proof is presented in Appendix D, and follows the same steps as the previous
proof. In the proof we make use of the fact that the weights remain constant,
except at slot times, at which the derivatives are undefined. However, at these
time instants the queues themselves do not change. This corollary then leads to
the stability of the MDV scheduler by bounding it between two schedulers with
variable Ai[t] and Bi[t].

Corollary 1.2. The MDV scheduler is stable if λ ∈ C2.

Proof. We can find constants gl, gu > 0, such that for any t we can upper and
lower bound the class-dependent multiplier c(·) in (9.7) (as depicted by the
dashed lines in Figure 9.10):

0 0.5 1
0

0.5

1

1.5

b

f
n

(b
)

streaming traffic

Figure 9.10: Multiplier for the streaming traffic class and bounds

glλ̃
n
i [t+1] qni [t]

(Rni [t]+ζ)·T̂ni

≤λ̃ni [t+1]cni

(
qni [t]

(Rni [t]+ζ)·T̂ni
+ln2

(
1+ pni [t]

εni

)
+ Γni [t]

T̂ni

)
(9.15)

≤guλ̃ni [t+1] qni [t]
(Rni [t]+ζ)·T̂ni

+gu ·λ̃ni [t+1]·
(

ln2

(
1+ 1

εni

)
+ Γni [t]

T̂ni

)
.

Equation (9.15) is the same as the weight ωni from the MDV scheduler, first
described in Equation (9.7). As mentioned in Section 9.4, we assume that
λ̃ni [t+1] > 0, thus our MDV scheduler function is bounded between functions of
the form AL[t]Q[t] and AU [t]Q[t]+BU [t] with A{L,U}[t] > 0 and BU [t] > 0.
Hence, using Corollary 1.1 we can conclude that the MDV scheduler also is
stable.

9.4. THE MDV SCHEDULER 123

It is clear from (9.8) that using only the number of delay violations will result in
an unstable MDV scheduler, as the delay violation component is bounded by
1/εni . In such a case it is not possible to find a lower bound with AL[t] > 0. This
shows that it is necessary to incorporate the queue-based metric, such as the
queue length or the HOL, to keep the scheduler stable.

Other schedulers (e.g. [164]) bound the utility of best-effort traffic, to ensure
that best-effort traffic will be low priority if the system load is high. In the MDV
scheduler this could be also accomplished by taking the limit of ρ→ 0 in (9.9).
However, in this case we encounter the same problem as for using only the delay
distribution, i.e. we cannot find a lower bound with AL[t] > 0, as now the traffic
class cBE is bounded. Hence, in such case, the stability region is reduced,
meaning that in some scenarios the best-effort queues can be unbounded, even if
the arrival rate vector is within the capacity region.

We have shown here that the scheduler is guaranteed to be stable when the
average arrival rate vector λ is within Cα. An arrival rate vector outside Cα does
not necessarily result in unstable queues, as this depends on the arrival patterns
of the users. It is usually very challenging to derive the exact stability region for
such cases [121].

The rate region for the 4GBB DSL setting (see Section 9.5.1) is convex, and thus
the MDV scheduler is throughput optimal. The rate region for 5GBB is also
convex. Vectoring in 5GBB can be applied across all users and cancels out all
crosstalk, and eliminates the need for a cross-layer scheduler. However, when
users from different DSLAMs are grouped together, full vectoring is not possible
and grouped vectoring must be applied (see Section 9.5.2). In this case,
cross-talk is still present, and the rate region is not convex, and there are thus
arrival patterns for which the MDV scheduler cannot keep the queues stable.

To test this we ran 10 000 simulations with the rate regions used in the
simulations. Each simulation had a random average arrival vector within R
(without considering R2). For CBR traffic we found that in about 2% of the
scenarios the MDV scheduler was not able to bound the queues whereas the MW
scheduler was. Changing the fixed packet lengths of the CBR traffic to
exponentially distributed lengths (but keeping the average arrival rate identical),
dropped this number to about 0.3%. Thus, in real-life scenarios the loss in
stability region is very small as the traffic is much more diverse.

9.4.5 Stability in wireless systems

We have just shown that the MDV scheduler operating is throughput optimal
when the arrival rate is within a fixed capacity region. In this section, we discuss
the stability region for wireless networks. In Chapter 10 we look at the
performance of the MDV scheduler in LTE and 5G.

A very important difference between a wireless system and the DSL setting is

124 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

that the channel state can change from slot to slot, and thus also the
instantaneous data rate available to the user. In contrast to the DSL setting and
like the other opportunistic schedulers from literature, we will use α = 0, i.e. a
MW style scheduler where we solve arg maxn

∑
ωnRn.

We abstract the instantaneous achievable channel rate at slot t into the channel
state process H[t], where H[t] is a vector with N elements, one for each user. A
slot is assumed to be small enough such that the channel state can be considered
constant for the duration of the slot. The set of achievable data rate vectors in a
state H is denoted C(H).

The convex hull of this rate region can be formed by time-averaging two or more
possible rate vectors:

conv C(H) = {φH(H)|∀φH},
where φH is a scheduling policy that depends only on the channel state H. If we
assume that the channel state process H[t] is ergodic, i.e. any of the states can
be visited from any of the states with non-zero probability within a finite period,
then we can define the ergodic capacity region as

C = {E[φH(H)]|∀φH}.

This ergodic capacity region is convex. This result holds only for the
channel-only policies φH . Lemma 3.1 of [169] states that for an ergodic channel
state process, any scheduling policy φ will produce an average service data rate
vector that lies in the ergodic capacity region C:

E[φ(H)] ∈ C,∀φ.

The time-dependent nature of the wireless network is not important for the
long-term rates: assume that R∗(H) is the solution for the channel
state-dependent optimization problem

R∗(H) = arg max
R∈C(H)

∑
n

φ(ωn, Rn),

with weights ω. Then lemma 3.3 in [169] states that

R̃∗ = E[R∗(H)] = arg max
R̃∈C

∑
n

φ(ωn, R̃n).

Thus, the optimal solution for weights ω in the ergodic capacity region is the
same as the expected value of the solution to the problem of the channel
state-dependent problem. Hence, the proof presented in Section 9.4.4 remains
valid for wireless systems, if we substitute the DSL’s rate region with the ergodic
capacity region.

9.4.6 Queue performance for a discrete rate region

In Section 9.4.4 we discretized a fluid rate region to discuss the stability region.
This section has a note on the behavior of MD-style schedulers when discretizing

9.4. THE MDV SCHEDULER 125

the rate region, as the sampling not only impacts Rα, but also the behavior for
service rates close to zero.

MD-style schedulers can exhibit large queues when the rate region is not
distributed well, as shown in the following example. Consider the utility function
uMD(ρ) = q/ρ in a system with a rate region R = {ρa, ρe} from Figure 9.11, i.e.
having just two operating points. As this rate region is convex, the scheduler
achieves the maximal stability region. Let user 1 and user 2 have an average
arrival rate such that λ = [0.1, 0.1] packets/time unit. It is clear that the arrival
rate vector is well within the capacity region C.

Figure 9.12 shows the queue evolution q[t+1] = max(0, q[t]−ρ[t])+A(t, t+1) for
the two users of this system. q1 remains very close to 0.1 = λ1 ·1, while q2
increases until it exceeds about 10 (or equivalently, when
q2
q1
>

(ρa1)−1−(ρe1)−1

(ρe2)−1−(ρa2)−1 ≈ 100), after which q2 remains hovering around 10. We
informally name the region in which the queues grow relatively large, despite low
arrival rate vectors, the pseudo-unstable region. We name the region in which
this does not occur the pseudo-stable region.

Increasing the number of operating points near the extremals reduces the arrival
rate vector region in which this behavior occurs. For example, extending the rate
region to R = {ρa, ρc, ρe} will reduce the aforementioned pseudo-unstable region
to average arrival rate vectors in the horizontally shaded areas, giving us a
pseudo-stable arrival rate region in the white square.

Intuitively, if λ2 > ρc2 = 0.5, then only choosing operating point ρa can reduce
user 2’s queue. However, ρa is only chosen when
q2
q1
> maxx∈c,e (ρa1)−1−(ρx1)−1

(ρx2)−1−(ρa2)−1 ≈ 9998, rendering it more difficult to chose ρa.
Extending the region again to R = {ρa, ρb, ρc, ρd, ρe} reduces the
pseudo-unstable to the square-shaded areas.

As can be induced, increasing the number of operating points near the service
rates close to zero reduces this pseudo-unstable region.

0 0.5 1 1.5
0

0.5

1 ρa(0.0001, 1)

ρb(0.3, 0.7)

ρc(0.5, 0.5)

ρd(0.8, 0.2)

ρe(1, 0.01)

λ(0.1, 0.1)

ρ1

ρ
2

R

Figure 9.11: Rate regions for the example of Section 9.4.6

126 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

0 100 200
0

5

10

Time (slot)

Q
u
eu
e
si
ze

Q1

Q2

Figure 9.12: Queue evolution of a MD scheduler with two rate points

9.5 Physical layer model

So far we have discussed the upper layers only. In this section, we will look at the
physical layer. The scheduler has been applied to 4GBB and its successor 5GBB,
both of which are discussed in this section.

9.5.1 4GBB

For the 4GBB simulations we consider an N user DSL system. DSL employs
discrete multitone (DMT) modulation in order to establish K orthogonal sub
channels or tones. As spectrum coordination is considered, each of these tones k
can be modeled as an interference channel.

yk = Hkxk+zk (9.16)

In (9.16), xk =
[
x1
k, . . . , x

N
k

]T is a vector containing the transmitted signal of all
N users on tone k. Also, let xn = [xn1 , . . . , xnK]T and let x =

[
x1T , . . . ,xN

T]T .
Similar vector notation will be used for other signals, as well as for variables
introduced later such as the bit loading, total power consumption, and data rate.
Furthermore, yk and zk contain the received signal and noise for all N users on
tone k. The average power of xnk is given as snk = ∆fE

{
|xnk |2

}
, with E{·} the

expected value operator and ∆f the tone spacing. Also, σnk = ∆fE
{
|znk |2

}
is the

average noise power received by user n on tone k. Finally, Hk is the N×N
channel matrix, where [Hk]n,m = hn,mk is the transfer function between the
transmitter of user m and the receiver of user n, evaluated on tone k.

The maximum achievable bit loading for user n on tone k, given transmit powers
sk, is calculated as

bnk (sk) = log2

(
1+ 1

Γ
|hn,nk |2snk∑

n 6=m |h
n,m
k |2smk +σnk

)
, (9.17)

9.5. PHYSICAL LAYER MODEL 127

0 50 100 150
0

50

100

R

r1 (Mbps)

r2
(M

b
p
s)

Figure 9.13: Rate region of a 2-user G.Fast system.

with Γ the SNR gap to capacity, which incorporates the gap between ideal
Gaussian signaling and the actual constellation in use. The SNR gap also
accounts for the coding gain and noise margin. The data rate of user n, and the
total transmit power consumption of user n, are given as

Rn(bn) = fs

K∑
k=1

bnk Pn(sn) =
K∑
k=1

snk , (9.18)

where fs is the symbol rate.

The total transmit power of each user is limited to P tot. The transmit spectrum
of each user additionally has to satisfy the spectral mask constraint sn ≤ smask.
A spectral mask limits per tone the power that can be used. The set of all
possible power loadings of user n can thus be described as

Sn =
{
sn ∈ RK+ | Pn(sn) ≤ P tot and sn ≤ smask} . (9.19)

The set of all possible power loadings of the whole multi-user system is
S = S1×. . .×SN . The resulting set of achievable bit loadings is

B = b(S) (9.20)

Finally, we define the rate region as

R =
{
r ∈ RN+ | ∃ r′ ∈ R(B) : r ≤ r′

}
. (9.21)

As an example, the rate region of a 2-user G.Fast system that employs spectrum
coordination is depicted in Figure 9.13. Generally, there is no power allocation
that simultaneously maximizes the data rate of all users.

Parameter settings for the DSL system used in the simulations are summarized
in Table 9.2. Spectral mask constraints were not included.

128 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

Table 9.2: G.Fast parameter settings for the 4GBB scenarios

Parameter Value

Pn,tot 4 dBm

K 2047

fs 48 kHz

∆f 51.75 kHz

Γ 12.6 dB

9.5.2 5GBB

In 5GBB crosstalk between users in the same group has been largely eliminated.
However, crosstalk between different groups still exists, and it is in this setting
that the MDV scheduler has been applied. In this section we discuss the
discretization of the rate region to avoid problems when comparing the
performance of the different schedulers.

In the 5GBB simulations of Section 9.6 we assume a downstream DSL G.fast
physical layer. Ideally, such a system applies precoding or vectoring across all
users in the network. All users may then be able to communicate free of
interference. In some cases however, full vectoring is not available [187, 165] and
one should resort to grouped vectoring (GV) instead. In a grouped vectoring
system, two or more vectoring groups exist. Vectoring is then possible among
users that are in the same group, but not among users that are in a different
group. As a result of the uncanceled interference, competition for bandwidth
among users between the vectoring groups is typically strong.

The G.fast implementation for this section uses zero-forcing grouped vectoring as
in [187]. In such a system vectoring matrices are fixed and different rate
trade-offs can be made by varying the transmit power allocation s. The power
allocation s that is to be employed in each time slot can be determined by
solving the following NUM problem:

max
s∈S

N∑
n=1

un(Rn(s)). (9.22)

In (9.22) we have the utility function un from (9.1). Rn(s) expresses the rate of
user n as a function of s, the transmit power allocation of all users, which is
chosen from the set of feasible power allocations S. The NUM problem in (9.22)
contains the spectrum coordination problem from [122] as a special case, and is
therefore NP-hard [122]. As such, the locally optimal solution to (9.22) can be
far away from the global optimum. Moreover, locally optimal power allocation
algorithms may yield different results when different utility functions are

9.6. PERFORMANCE EVALUATION 129

considered, even when the utility functions are chosen in such a way that one
would expect the same solution to be found. Using locally optimal solutions to
the NUM problem as in (9.22) is therefore not ideal when the objective is to
compare the performance of different schedulers, as one cannot exclude that the
observed differences in performance are to be attributed to the behavior of the
algorithm that is used to solve the non-convex NUM problem.

In order to obtain a reliable comparison of the different schedulers, we use a
discrete set of power allocation settings Ŝ ⊂ S from which the scheduler can
choose a single s ∈ Ŝ. The achievable set of rate vectors will be defined as

R̂ = {r ∈ RN+ |∃s ∈ Ŝ : r = [R1(s), . . . , Rn(s)]T }.

Each time-slot, the scheduler then chooses a power allocation s ∈ Ŝ by evaluating
the objective function of (9.22) for each r ∈ R̂ and selecting the rate vector that
achieves the highest value. The considered set of power allocation settings Ŝ will
still be obtained by solving a set of NUM problems as in (9.22). However, the
question of whether or not these power allocations correspond to global
optimums of the NUM problem from which they are obtained is now irrelevant
with respect to the scheduler’s performance.

In Section V of [184] we describe an algorithm that selects a representative set of
DSL resource allocations.

Three G.fast networks are considered for the simulations of Section 9.6: one with
two vectoring groups each containing two users (2g2u), a network with two
vectoring groups each containing three users (2g3u), and finally a network with
three vectoring groups each containing two users (3g2u, see Figure 9.14 for this
rate region, where for each group all user rates are summed to reduce
dimensionality). The channel matrices are based on lab measurements of a 104m
long cable [181]. The considered cable type is representative for access cables that
are widely used by KPN in the Netherlands. The employed G.fast parameter
settings are summarized in Table 9.3 (we refer to [187] for further details).

9.6 Performance evaluation

In this section, we evaluate the MDV scheduler using simulations and by
comparing it to other schedulers from literature, as well as to an ideal scheduler,
which has access to future arrivals and uses this information to reduce the
amount of delay violations, while optimizing the throughput. In Section 9.6.1 we
describe the setup, including the runtime settings, the metrics investigated and
the plot layout. Then we look at the simulation results themselves in
Section 9.6.2.

130 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

Parameter Value

Ptot 4 dBm

σk,i,n −140 dBm

fs 48 kHz

∆f 51.75 kHz

Γ 10 dB

smask n/a

K 2047

Table 9.3: Summary of G.fast parameter settings

0

0

0.5

0.5

1

1

1.5

10
9

1.5

10
9

3

2

2 2.5

2

10
9

2.5

1.52.5

1

0.5

3

3
0

Figure 9.14: Rate region for 3 groups with 2 users (in bit/second)

9.6.1 Simulation setup

In this section, we describe how the evaluation was performed. First we give an
overview of the settings and schedulers used. In Section 9.6.1.1 we briefly show
the intra-user scheduler settings used in the simulations. We continue with
enumerating the metrics that we have used in Section 9.6.1.2 and introducing the
plot layouts in Section 9.6.1.3.

The simulations were run in OMNeT++ using the INET framework. Each of the
N users has a number of flows that send traffic to a sink over a channel using a
fluid model. There is a warm-up time of 5s, during which no results are recorded.
Every τ = 50 ms the weights are computed by a scheduler. Prior to this
computation, packets whose HOL exceeds T̂ are removed from the queue.
Packets that are late and in transit will still be delivered, however.

9.6. PERFORMANCE EVALUATION 131

Scheduler Weight Notes

EXP-MLWDF [19] αi
ρi

exp
(

T̂i
T̂i−Γi

)
EXP/PF [151] exp

(
αiΓi−Γ
1+
√

Γ

)
1
ρi

Γ is the average HOL of all real-
time flows

Lei [113] ai exp(−ai·(Γi−T̂i))
(1+exp(ai·(Γi−T̂i)))

2 a = 1.5

JUPS [11] 1
ρi
·− log(εi)Γi

T̂i

MQS [30] exp(ai)
exp(ai)+exp(−ai) ai = Γi−T̂i

T̂i

MPT [199] Γi T̂i−Γi
exp(
√

1+T̂i−Γi)

QHMLWDF [138] αiΓiqi
ρi

Wu (2020) [198] qi Uses utility function ui(R) = qi ·
log(1+R)

eEXPRule [202] exp
(

5Γi
T̂i(1+

√
Γ)

)
Γ is the average HOL of all real-
time flows

Static Fixed allocation, set
by solving at the start
arg maxr∈R {maxt∈R{t|t·λ ≤ r}}

MDV −λ̃i ·ci
(

qi
(Ri+ζ)T̂i

+ Γi
T̂i

+ Reciprocal scheduler. λ̃ is a pre-
diction of future arrival.

ln2
(
1+ pi

εi

))
Oracle See text and Appendix E

Table 9.4: Summary of the schedulers used in the simulations (in no particular
order) and their settings

The schedulers that are used in the simulations are summarized in Table 9.4. We
have used some common notation for a flow i in that table: ρi is the averaged
service rate, T̂i the delay upper bound, εi the delay violation upper bound, Γi
the head-of-line, and αi = −ln(εi)/T̂i. The complexity of these schedulers from
literature are all comparable, and are negligible, compared to solving the NUM
problem.

We also include two special schedulers. The first scheduler, Static, is a “no
scheduling” scheduler. At the start of the simulation, the scheduler selects the
configuration

r∗ = arg max
r∈R

{
max
t∈R
{t|t·λ ≤ r}

}
, (9.23)

where λ is a flow’s average arrival rate. It is this configuration r∗ that is used for
the duration of the simulation. This allows us to compare static allocation, that
is used in current DSL installments, versus dynamic resource allocation, our

132 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

improvement.

The second scheduler is an approximation to an ideal scheduler, called the Oracle
scheduler, the pseudocode of which is given in Appendix E. This algorithm has
access to future arrivals and can select the optimal rate from the rate region in
order to minimize the number of delay violations, while at the same time
maximizing the system throughput. To reduce the simulation time of the Oracle
scheduler, some shortcuts were taken. The first shortcut is that the Oracle
scheduler only looks at the next M = 2 future slots. Increasing M would allow
for better handling of bursts and increased throughput. The second shortcut is
that we approximate the runtime delay distribution used by the scheduler,
resulting sometimes in a temporarily suboptimal rate selection. Even though
these simplifications result in a slightly suboptimal result, mainly when the load
is high, the results offer a valuable benchmark that can be used to compare the
other schedulers to.

The simulations cover the 4GBB and 5GBB settings for different scenarios. The
respective settings were described in the previous section. Each scenario is
repeated 20 times, with a random seed based on the repetition index. The traffic
generated is the same for all (scenario, repetition)-tuples, i.e. each scheduler will
receive the same traffic. The traffic can be categorized by traces (videos), regular
generated traffic such as traffic with packet arrivals according to a Poisson
process and exponentially distributed packet sizes (which we refer to as M/M/1),
VoIP, CBR, self-similar traffic and a traffic source called SAT that keeps the
output line saturated by keeping the queue always backlogged. These traffic
flows are considered to be of the streaming traffic class by default. In some
scenarios we set the traffic class of M/M/1 to best-effort.

Packets are dropped when their waiting time exceeds their delay deadline. We
also ran simulations where packets were never dropped. This showed an even
larger difference between the MDV and the other schedulers, especially in terms
of the delay. In some scenarios, delays of over 5s were encountered. We opted for
removal of packets that violate their deadline, as those packets are considered
useless to the receiver, squanders capacity and does not allow for fair
comparison. This mechanism, however, causes that the sole use the HOL might
get wrong information about the state of the flow. If for example all the packets
in a queue have just exceeded their deadline, and are removed, then to the
scheduler it might seem that the flow is perfectly fine.

9.6.1.1 Intra-user scheduling

We mainly consider the scenarios in which all flows have their own channel. For
some scenarios we also consider using a regular scheduler, as the one flow, one
channel regime is very disadvantageous to the linear schedulers. In such case,
each of the users’ flows are inputs to the scheduler, which is then directed to the
users’ only output channel. We employ the parameterless EDF scheduler [118],
which serves the flow whose HOL packet has the most stringent deadline. The

9.6. PERFORMANCE EVALUATION 133

NUM problem is then reduced to

arg max
R∈R

N∑
n=1

ωnRn (9.24)

with ωn =
∑φn

i=1 ω
n
i .

For the EDF scenarios, we have omitted the Oracle scheduler.

9.6.1.2 Metrics

We assess the schedulers’ performance using the following metrics:

• Packet loss ratio (Ap(0,Tsim)−Ep(0,Tsim)
Ap(0,Tsim) −ε)+: The number of packets

dropped due to their delay being too large, with Ap and Ep the number of
respectively arrivals and departures, and Tsim the length of the simulation.
We subtract ε to take the QoS into account. Lower is better.

• Average throughput E(0,Tsim)
Tsim

: The total number of bits that have been
sent successfully. This is influenced by both the packet loss ratio, and the
SAT traffic type, which keeps the queue backlogged. Higher is better.

• Average delay E[D]: The delay is calculated as the time difference
between creation and arrival of a packet. Delays can occasionally exceed T̂
if service is lowered while a packet is being transmitted. Lower is better.

9.6.1.3 Plot layout

We make use of two types of plots in the results section:

1. Violin plot: Violin plots consist of a rotated and mirrored histogram that
is smoothed using a kernel density estimator. The data that are used to
compose the histogram come from the results of all the scenarios. The
schedulers are arranged horizontally. The wider a violin plot is, the higher
its frequency at that point. Inside the shaded area, the quartiles are
displayed. For easier comparison, a line connects the mean values. We
present the data like this as it gives a good summary over the many data
points.

2. Line plot: Each individual line represents a different scheduler. The y-axis
is the average of all selected scenarios, while the x-axis is the independent
parameter, such as the number of multiplexed flows per user.

134 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

9.6.2 Results

In this section, we discuss the results of the simulations. First, in Section 9.6.2.1,
we consider scenarios in which each user has exactly one flow. Then we continue
with scenarios representing typical use cases in Section 9.6.2.2. In Section 9.6.2.3
we discuss the schedulers when the system load is close to 1. Scenarios that focus
on self-similar traffic are shown in Section 9.6.2.4, while statistical multiplexing is
discussed in Section 9.6.2.5.

As the schedulers’ performances are similar among the different rate regions, we
show the averaged results, unless otherwise noted.

9.6.2.1 Single flow scenarios

In this first section, we consider scenarios in which each user has exactly 1 flow.
The flows are a mix of different kinds of traffic. This set of scenarios highlights
that the excellent performance of the MDV scheduler does not solely depend on
its intra-user scheduler.

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for single flow (4GBB)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput for single flow (4GBB)

(b) throughput

Figure 9.15: The PLR and throughput for scenarios with one flow per user (4GBB)

In Figures 9.15a and 9.16a we can see the PLR distribution for the flows of the
scenarios for the two different DSL settings. There we can clearly see that the
MDV scheduler performs very close to the Oracle scheduler. All other schedulers
have outliers of at least 20%, while for the MDV scheduler the PLR for most
flows stays below 10%. The Static scheduler has a similar performance as the
other schedulers, and in Figure 9.16a even performs better than some of the
regular schedulers.

The throughput plot shown in Figure 9.16b shows that the MDV scheduler has
among the highest throughput performances. The Oracle scheduler’s throughput
is less as it trades service to achieve a lower PLR .

9.6. PERFORMANCE EVALUATION 135

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for single flow (5GBB)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput for single flow (5GBB)

(b) throughput

Figure 9.16: The PLR and throughput for scenarios with one flow per user (5GBB)

9.6.2.2 Regular scenarios

The regular scenarios comprise a mix of different sources where each user has
about 4 flows.

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for regular scenarios (4GBB)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput for regular scenarios (4GBB)

(b) throughput

Figure 9.17: The PLR and throughput for regular scenarios (4GBB)

In the scenarios for 4GBB DSL setting, we can see that we achieve a significantly
lower PLR than the other scheduler (Figure 9.17a), while also obtaining a higher
throughput (Figure 9.17a). The main culprits of the violations for the other
schedulers are the video flows.

In Figures 9.18a and 9.20a we show the same scenarios, but now we make use of
an EDF scheduler to multiplex all the applications of a user. Unsurprisingly, the
PLR decreases and the throughput increases, however, the MDV scheduler still
performs better than the other schedulers.

136 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for regular scenarios (4GBB, EDF)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV

SCHED

0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput for regular scenarios (4GBB, EDF)

(b) throughput

Figure 9.18: The PLR and throughput for regular scenarios for the EDF scheduler
(4GBB)

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for regular scenarios (5GBB)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

0

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput for regular scenarios (5GBB)

(b) throughput

Figure 9.19: The PLR and throughput for regular scenarios (5GBB)

Figure 9.19a shows the PLR distribution for the flows for the regular 4- and
6-user scenarios for the 5GBB setting. We can see that most schedulers cannot
cope well with the traffic offered. Within a scenario, usually some applications
have a low PLR, at the cost of other flows. These flows are mainly video flows
and high volumes of M/M/1 generated traffic.

For the MDV scheduler, however, the PLR remains very close to 0% for all
scenarios. Only VoIP sometimes suffers losses, occasionally up to 10%. This is
due to its low volume, but highly bursty nature. The low volume (compared to
e.g. video) makes it more difficult to assign a large enough weight, while the
burstiness, coupled with the delay of 1 slot until rates are in effect, cause a
relatively large PLR . Hence, for such flows it might be more effective to consider
them to be CBR streams and assign a fixed service rate in the physical layer.
The performance is very similar to that of the Oracle scheduler. Due to the low

9.6. PERFORMANCE EVALUATION 137

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for regular scenarios (5GBB, EDF)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV

SCHED

0

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput for regular scenarios (5GBB, EDF)

(b) throughput

Figure 9.20: The PLR and throughput for regular scenarios for the EDF scheduler
(5GBB)

PLR, we also have a higher throughput, as can be observed in Figure 9.19b.

Figure 9.20 shows the same scenarios, but now allocating resources per user, and
scheduling flows with the EDF scheduler, as described in Section 9.6.1.1. It
should, again, not surprise us that the PLR is lower for the linear schedulers as
flows for a single user are multiplexed. Notably, the Lei scheduler now has also a
PLR of 0%. This is also visible in the increased throughput.

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for regular scenarios (4GBB, =2)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for regular scenarios (5GBB, =2)

(b) PLR

Figure 9.21: The PLR for regular scenarios using α = 2, i.e. MD-style schedulers
(4GBB and 5GBB)

The schedulers from Table 9.4 all calculate a weight per flow that is used to solve
arg maxR

∑
ωR. This formulation is an instance of the family of α-fair schedulers

arg max
R

∑
ω
R1−α

1−α ,

138 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

with α = 0. For the MDV scheduler, we have α = 2. In Figure 9.21 we set α to 2
for all the schedulers. This allows for a better comparison of the accuracy of the
weight selection. We can see that the average PLR decreases. This is mainly true
for the video flows, that comprise the peaks of the histograms. The MDV
scheduler, however, still has a better weight selection, with a lower PLR.

9.6.2.3 High load

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for heavy load scenarios (4GBB, =2)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

A
ve

ra
ge

 d
el

ay
 (s

)

Delay for heavy load scenarios (4GBB, =2)

(b) average delay

Figure 9.22: The PLR and average delay for high load scenarios (4GBB, α = 2)

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for heavy load scenarios (5GBB, =2)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

A
ve

ra
ge

 d
el

ay
 (s

)

Delay for heavy load scenarios (5GBB, =2)

(b) average delay

Figure 9.23: The PLR and average delay for high load scenarios (5GBB, α = 2)

The scenarios from this subsection deal with traffic that is close to the rate
region boundary, resulting in a high system load. Each user sends either one flow
of type M/M/1 or CBR that averages to 0.99·R∗, where R∗ is the solution to
the NUM problem for weights 1. For each of the flows, we impose the same QoS
restriction P{D[t] > 100 ms} ≤ 0.01.

9.6. PERFORMANCE EVALUATION 139

In Figure 9.22a we can see that in the 4GBB scenarios the Static scenario
performs surprisingly well. This is because the traffic arrivals in an interval are
quite stable. However, we can see that most schedulers have difficulty coping
with the large amount of traffic.

In Figure 9.23a the situation is different. Most schedulers perform well, except
EXP-MLWDF, Lei and MPT. In the case of the first two schedulers this is
because all service goes to all users of one group, resulting in the two distinct
blobs in the delay and PLR plots. For the MPT scheduler all flows suffer many
packet losses.

In a high load scenario flows sometimes get a lot of service, but as the packet has
almost finished transmitting, other flows have considerably more weight. Due to
the used fluid model, this can result in some packets have large delays, as can be
observed for example for the EXP-MLWDF scheduler in the delay plot
Figure 9.23b. A couple of schedulers’ delay distributions are very close to to
100 ms, indicating that the delay fairness of the users is quite good: all users
experience similar delays.

9.6.2.4 Self-similar traffic

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for heavy tailed scenarios (4GBB)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for heavy tailed scenarios (5GBB)

(b) PLR

Figure 9.24: The PLR for the self-similar traffic scenarios (4GBB and 5GBB)

In the self-similar scenarios, half of the users are sending one flow with regular
M/M/1 traffic, while the other users have one flow that comprises a
superposition of Pareto-distributed traffic with ON- and OFF-periods, resulting
in self-similar traffic [179]. A self-similar process behaves the same when looking
at its properties over different time scales. For example Ethernet traffic shows
strong signs of self-similarity [115]. A challenge with self-similar processes is that
the burstiness it exhibits can occur on various time scales, making accurate
estimates on the average and variance very difficult.

The PLR in Figure 9.24 shows that, indeed, the Static allocation has difficulty

140 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for heavy tailed scenarios (4GBB, =2)

(a) PLR

EXP-M
LW

DF

EXP/P
F

MQS
JU

PS Le
i

QHMLW
DF

W
u

MPT

eE
XPRule

Stat
ic

MDV
Orac

le

SCHED

10
1

10
0

10
1

10
2

P
LR

 (%
)

PLR for heavy tailed scenarios (5GBB, =2)

(b) PLR

Figure 9.25: The PLR for the self-similar traffic scenarios (4GBB and 5GBB,
α = 2)

with the traffic, as its average arrival rate is usually inaccurate. However, even if
it would be accurate, then a lot of capacity would be wasted as the tail, the
probability of large values occurring, of a self-similar process can be quite large.
The MDV scheduler has an almost similar performance as the Oracle scheduler,
indicating that it can cope with the self-similar traffic, in both the 4GBB and
5GBB scenarios.

9.6.2.5 Statistical multiplexing

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
N

0

20

40

60

80

P
LR

 (%
)

PLR for multiplexed videos (4GBB)

EXP-MLWDF
EXP/PF
MQS

JUPS
Lei
QHMLWDF

Wu
MPT
eEXPRule

Static
MDV
Oracle

(a) PLR

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
N

0

20

40

60

80

P
LR

 (%
)

PLR for multiplexed videos (4GBB, =2)

EXP-MLWDF
EXP/PF
MQS

JUPS
Lei
QHMLWDF

Wu
MPT
eEXPRule

Static
MDV
Oracle

(b) PLR using α = 2

Figure 9.26: The PLR for multiplexing Starwars videos for the 4GBB rate region
using regular style and MD-style scheduling

The raison d’être of packet switched networks is multiplexing. It is well known
that the peak rate of an aggregate of bursty traffic is significantly lower than the

9.7. CONCLUSION 141

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
N

0

20

40

60

80

P
LR

 (%
)

PLR for multiplexed videos (5GBB,3g2u)

EXP-MLWDF
EXP/PF
MQS

JUPS
Lei
QHMLWDF

Wu
MPT
eEXPRule

Static
MDV
Oracle

(a) PLR

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
N

0

20

40

60

80

P
LR

 (%
)

PLR for multiplexed videos (5GBB,3g2u, =2)

EXP-MLWDF
EXP/PF
MQS

JUPS
Lei
QHMLWDF

Wu
MPT
eEXPRule

Static
MDV
Oracle

(b) PLR using α = 2

Figure 9.27: The PLR for multiplexing Starwars videos for the 3g2u rate region
using regular style and MD-style scheduling

sum of the peak rates. Hence, instead of reserving rates for the peak rate of
every flow, squandering service rate, flows can be multiplexed. This subsection
looks at the schedulers’ performances when each user sends a number of Starwars
videos [155]. The x-axis in the plots in Figure 9.26 represents the number of
videos each user is transmitting. Each video starts transmitting at a random
offset within the video. On the y-axis, we can see the average of the metric.

For α = 0 we can see in figures Figures 9.26a and 9.27a that the schedulers
immediately are performing badly, even for a low number of traffic sources. As
the number of sources increases further, the PLR decreases a little to rise again
later on. When using the MD-style schedulers in Figures 9.26b and 9.27b we can
observe the PLR decrease for most schedulers.

The static allocation performs well for a low number of video sources per user,
however, as of 12 sources the PLR increases quickly. The MDV scheduler
remains well below it, but for many sources its performance with respect to the
Oracle scheduler deteriorates. Compared to the other schedulers, the MDV
schedulers always performs better.

9.7 Conclusion

In this section, we have presented a new cross-layer scheduler for DSL networks.
The goal of this scheduler is to move from the static allocation that is currently
the practice in DSL networks, to a dynamic approach that assigns services rate
in function of the short- and long-term requirements. The scheduler combines the
arrival rates, current queue sizes and the past observed delays to generate a
weight that, in combination with a utility function of the form u(R,ω) = ω

R+ζ

142 CHAPTER 9. CROSS-LAYER OPTIMIZATION IN DSL NETWORKS

minimizes the number of delay violations. We have discussed the stability region
of the MDV scheduler, and showed that it is throughput optimal for convex rate
regions, and discussed some of its properties.

We have compared the PLR, throughput and delay performance to other
cross-layer schedulers from literature, together with an Oracle scheduler and
static allocation, and demonstrated that it performs at least as good, and usually
substantially better, than the other schedulers in the tested scenarios and can
improve significantly upon a static allocation. Other schedulers from literature,
often developed in the context of wireless networks, have a similar PLR
performance as the MDV scheduler in some scenarios. However, the MDV
scheduler consistently has low PLR and high throughput, that is often also very
close to an ideal scheduler. The simulations also highlight the importance of
using an MD-style scheduler for use in a DSL cross-layer setting, rather than the
opportunistic MW-style schedulers. But even when we apply the MD-style to the
schedulers from literature, the MDV scheduler still performs better. Our
scheduler works excellent in the case where each flow has its own “channel”, but
also performs equally or better than the other cross-layer schedulers when using
the EDF scheduler as the intra-user scheduler.

Chapter 10
Cross-layer scheduling in LTE

and 5G

10.1 Introduction

With the ubiquity of small and capable devices such as smartphones, LTE
networks are increasingly important for e.g. VoIP and video calls. LTE is the
evolution of universal mobile telecommunications system (UMTS), and improves
upon it in capacity, latency and speed. A standard LTE system consists of two
main parts: the evolved UMTS terrestrial radio access network (E-UTRAN) and
the evolved packet core (EPC). The EPC is the LTE core network and entails the
components that provide functionality such as mobility management, routing,
quality of service etc. The radio access network (RAN) part comprises two types
of nodes, eNodeBs (eNBs) and the user equipments (UEs). eNBs are spread over
the landscape, and are the gateway between the RAN and the core network, and
control radio related functionality, such as scheduling.

5G has been published by 3rd Generation Partnership Project (3GPP) in 2018,
with the 3GPP standard Release 15. 5G New Radio (5G NR) improves upon
LTE by increasing the data rates, decreasing the latency and reducing the bit
error rate. Two frequency ranges are used, the Frequency Range 1 (FR1) which
covers sub-6 GHz frequency bands, and the Frequency Range 2 (FR2) which
includes the frequency bands of the millimeter wave (mmWave) range (24
GHz-100 GHz). For FR1 the download speeds are on average a little higher than
for LTE, while for FR2 download speeds of up to 10 Gbps are possible. The
architecture is similar to LTE, but the eNB is replaced with the gNodeB (gNB).

At the physical layer resources are divided in the time domain in frames with a
size of 10 ms, each frame of which is then split in 10 subframes of 1 ms, called
the transmission time interval (TTI). Each subframe is finally again split in two
equal parts of 0.5 ms. In the frequency dimension, each subframe is split into
subchannels of 180 kHz, called the physical resource block (PRB). Each
subchannel is then split again in equal parts of 15 kHz. It is such a PRB that is

143

144 CHAPTER 10. CROSS-LAYER SCHEDULING IN LTE AND 5G

assigned to a single UE. In the downlink direction, any combination of PRBs can
be assigned to users. In the uplink direction, only consecutive RBs can be
assigned.

The allocation of these PRBs among the UEs is a task for the scheduler, which
typically uses QoS requirements, channel quality indicator (CQI) feedback and
past assigned bandwidths resources in order to select an allocation that is fair in
some sense. Scheduling in LTE has attracted much interest from researchers as
there are many metrics and scenarios that can be considered, and no
implementation of a scheduler has been prescribed by the 3GPP.

The motivation for a new scheduler usually revolves around finding a suitable
balance between optimally using the achievable data rates and fairness, i.e.
opportunistically scheduling users. On the one side, we have the max throughput
(MT) scheduler which allocates RBs to the users that experience the best
bit-rates, resulting in the maximal system throughput. This comes, however, at
the cost of unfairness among the users. On the other side, we can find the
channel-blind RR scheduler, which allocates resources sequentially to users. This
algorithm is fair, but ignores channel conditions possibly resulting in a low
system throughput. The proportionally fair (PF) scheduler [48] stands in the
middle between both algorithms, and tries to maintain fairness and an optimal
system throughput at the same time. In this algorithm flows that have received a
limited amount of service in the past will have a higher probability of receiving
more service, even if their channel quality is not as good. The schedulers just
presented are examples of channel-aware and QoS-unaware as they do not take
the traffic application’s requirements into account. Many other channel-aware
and QoS-unaware scheduling algorithms exist, see for example in the survey [110].
The focus of this section, however, is on QoS and channel-aware scheduling.

QoS aware strategies mainly focus on the real time (RT) service by considering
the delay (M-LWDF [17], EXP/PF [151], EXPRule [159], [19], [30]) or are a
hybrid of several stateful properties (FLS [148], queue-HoL-M-LWDF
(QHMLWDF) [138]). The authors of [109] propose the packet prediction
mechanism (PPM) scheduler which estimates the maximum delay of future
queued packets using a virtual queue. In three phases (frequency domain, time
domain and PPM) it schedules packets, resulting in an improved overall LTE
performance. It does not consider non-real time (NRT) traffic.

The resource allocation algorithm presented in [207] uses the large deviation
principle to estimate the buffer overflow probability. Using online measurement
the queues are prioritized such that buffer overflow is minimized and QoS is
statistically guaranteed.

The research of [8] introduces a LTE downlink scheduler based on queue
monitoring. User priorities are assigned to users based on the proximity of the
queue to a queue threshold limit. Then one of the three newly defined schedulers
is chosen, based on the available resources, resulting in reduced loss and increases
system throughput.

10.2. NOTATION 145

In [136] a taxonomy of scheduling algorithms is shown, and introduces a new
hybrid LTE scheduler. An overview of LTE schedulers that focuses on
content-aware scheduling for video streaming traffic is given in [137]. Another
survey can be found in [110] which groups schedulers in QoS-aware and
QoS-unaware. An overview that also includes energy aware schedulers is given in
[40]. The authors also compare some of the schedulers using simulations. Some
additional schedulers are listed in Section 9.2.

The remainder of this section is structured as follows. In Section 10.2 we look at
the notation used throughout this section. Then in Section 10.3 we present the
MDV scheduler, in which we look at the construction of the weights and briefly
discuss the complexity. In Section 10.4 we evaluate the scheduler through
simulations in an urban setting and compare its performance with other
schedulers from literature. We close this work on the MDV scheduler in LTE and
5G in Section 10.5.

10.2 Notation

In this section we describe the conventions and symbols in Table 10.1 (in
addition to those defined in the symbols table on Page 5) that will be used in the
remainder of this section. Time is slotted, indexed by variable t, and has a
duration of 1 TTI. There are N users connected to the eNB. Every user
u ∈ [1, N] has a number of active applications. The applications in the network
are indexed by i ∈ [1, φ], with their QoS defined by P{di(k) > T̂ i} ≤ εi, where di
is the application’s packet delay distribution, T̂ i the delay upper bound and εi
the allowed delay upper bound violation probability.

Table 10.1: Symbols

Symbol Meaning

B number of RBs

Ri,j [t] Achievable data rate in slot t for

application i’s RB j

λi[t] EMA of the arrival rate

pi[t] = di,p[t−1000,t]
ai[t−1000,t] windowed PLR

pLTi [t] = di,p[0,t]
ai[0,t] long-time PLR

fRT, fBE, fAll indices of the set of real time,

best-effort and all flows

(x)S = 1
|S|
(∑

i∈S xi
)

the average of all x in the set S

146 CHAPTER 10. CROSS-LAYER SCHEDULING IN LTE AND 5G

10.3 The minimal delay violation scheduler

In this section we introduce the MDV scheduler for LTE and 5G networks.

QoS-aware LTE schedulers generally assign resource blocks to the application
that would benefit most of receiving that resource block. A common way to
accomplish this is through a time-dependent utility function ui(t, R). This
function returns the value of an application receiving a certain service rate R.
Thus, resource block j is assigned to application i∗ where

i∗ = arg max
i∈[1,φ]∧qi[t]>0

{ui,j(t, Ri,j [t]))}. (10.1)

Most cross-layer schedulers are linear in R, and thus (10.1) is often simplified to
i∗ = arg max

i∈[1,φ]∧qi[t]>0
{wi[t]·Ri,j [t]} (10.2)

where wi[t] is the application’s weight for slot t, and independent of RB j. It is
often the calculation of this weight that comprises the cross-layer scheduler.

Here, we will reprise the MDV scheduler described in Section 9.4, and highlight
the small changes. In contrast with the DSL context, we here use a linear
scheduler. Such a scheduler favors the users who encounter the temporary best
instantaneous data rates, rather than fair share the available service. Second, it
is complex and inaccurate to characterize the ever-changing rate region over
longer periods of time, which is necessary to implement an MD-style scheduler.

10.3.1 Real-time flows

For convenience, we repeat Equation (9.7) from the previous section here. The
weight of application i is given by

wRT
i [t] = λ̃i[t+1]︸ ︷︷ ︸

(a)

· fc︸︷︷︸
(c)

 qi[t]
(ri[t]+ζ)T̂ i

+ln2

(
1+ pi[t]

εi

)
+ Γi[t]

T̂ i︸ ︷︷ ︸
(b)

 . (10.3)

There are two minor changes, compared to the DSL version. The first
modification is that we do not update λ̃i[t+1] every slot (i.e. every TTI=1 ms),
but only once every 50 ms (like in the DSL context). The resolution of 1 ms is
too small, as in many TTI there are no arrivals, resulting in a lot of noise and
inaccurate predictions.

The second change is that for the traffic class-dependent function fc(·) we have
used a different γV oIP for the VoIP flows. Now, we use γV oIP = 10 instead of 1.
Due to its low volume, we increase it to ensure it receives enough service. As the
arrival rate of VoIP is small, compared to video flows, this should not impact the
PLR of the other flows significantly.

10.3. THE minimal delay violation SCHEDULER 147

10.3.2 Best-effort flows

The weight for BE flows remains unchanged, and uses the same values as the
DSL version of the MDV scheduler, so we get

wBE
i [t] = (λ[t])fRT

·Ω· Ř

Ri[t]
. (10.4)

10.3.3 Pseudocode

In Algorithm 10.1 we show the code that assigns the RBs to the applications.
The code in Algorithm 10.2 is run every τ = 50 slots, and updates the average
arrival rate and prediction of the arrival rate.

Algorithm 1: Assign resource blocks
1 Ř := arg minj∈fBE

{Rj [t]}

2 Calcu la te (λ[t])fRT
3 for i in RT:
4 i f qi[t] > 0 and Ri[t] > 0 :
5 ri[t] := 0.8ri[t−1]+0.2Ri[t]
6 wi := (10.3)
7 for i in fBE :
8 wi := (10.4)
9

10 I n i t i a l i z e m to a vec tor with φ e n t r i e s
11 for j in [1, B] :
12 for i in [1, φ] :
13 i f qi[t] > 0 :
14 m[i] := wi
15 else :
16 m[i] := 0
17
18 a s s i gn RB j to app l i c a t i on arg maxi{Ri,j [t]·m[i]}

Algorithm 2: Update state
1 τ = 50
2 for i in [1, φ] :
3 λ̃i.addToCircularBuffer(A[t−τ, t])

10.3.4 Complexity

In this section we briefly discuss the space and runtime complexity of the MDV
scheduler.

148 CHAPTER 10. CROSS-LAYER SCHEDULING IN LTE AND 5G

10.3.4.1 Space complexity

For every RT flow we need to store W entries for the circular buffer that is used
to store the windowed average, and 10 entries for the circular buffers to store the
arrivals and packet drops in the past second. Hence, the spacetime complexity is
O(|fRT|·(W+2·10)) = O(|fRT|·W).

10.3.4.2 Run-time complexity

Each RT flow requires updating every τ slots the state λ̃i and its average. This
runs efficiently in O(|fRT|

τ). Best-effort flows require every slot the calculation of
Ř and (λ[t])fRT

. These run in O(|fBE|) and O(|fRT|) respectively. This results in
a run-time complexity of O(|fRT|

τ +|fBE|+|fRT|) = O(|fRT|
τ +φ). Compared to the

complexity of the algorithm to assign the RBs of O(B ·φ) this is thus negligible.

10.4 Performance evaluation

In this section we will evaluate the MDV scheduler through simulations. We also
compare the results to other schedulers from literature. We first discuss the
simulation setup, then list the metrics that we consider and we then close this
section with the actual results.

10.4.1 Simulation setup

The LTE simulations were run in LTE-Sim [147], while the 5G simulations were
performed in its successor 5G-air-simulator [130]. Both technologies were
simulated with the same settings. We used the same setup as in [167]. The
network topology comprises 19 cells, with each cell containing 1 eNB. The
subfrequencies have been distributed to cells as in Figure 10.1, to avoid
interference between neighboring cells. Each user has one video, one VoIP and
one BE application, and is moving randomly, possibly crossing cells with
handover. Every TTI packets that have been in the queue more than T̂ seconds
are dropped. The simulation parameters are listed in Table 10.2. The schedulers
we have used from literature are listed in table Table 10.3.

The simulations we performed included more schedulers, but some were omitted
as their performance was not as good and made the plots too unreadable. We
also simulated the 19 cell topology where each user has exactly 1 application
running. The performance was similar, and hence also not included here.

10.4. PERFORMANCE EVALUATION 149

Cell 15

Cell 13

Cell 16

Cell 17

Cell 4

Cell 1

Cell 7

Cell 19

Cell 14

Cell 5

Cell 6

Cell 18

Cell 12

Cell 3

Cell 2

Cell 8

Cell 11

Cell 10

Cell 9

Figure 10.1: The LTE topology for the simulations

Table 10.2: Simulation parameters

Parameter Values

Simulation length T=30s

Repetitions 10

Cell radius 0.5 km

Frame structure FDD

Bandwidth 10 MHz

User speed {3,30,120} km/h

Number of users 10 .. 100

QoS: T̂ 100 ms

QoS: ε 1%

10.4.1.1 Metrics

We assess the schedulers’ performance for the following metrics:

• SYSTHR 1
T (A [0, T])fAll the average service rate for all the flows. Higher

is better.

150 CHAPTER 10. CROSS-LAYER SCHEDULING IN LTE AND 5G

Table 10.3: Summary of the schedulers used in the simulation (in no particular
order) and their settings. Common symbols: R (averaged service rate), α =
−ln(ε)/T̂ .

Scheduler Real-time flow weight

EXP-MLWDF (2018) [19] α

R
exp

(
T̂

T̂−Γ

)
EF-EDDF (2020) [62] − log ε

T̂
· Γ
T̂−Γ ·

d[0,t]
(d[0,t])fRT

· 1
R

FLS (2011) [148] 1
R
, with flow selection every 10 TTI

EXPRule (2002) [163] exp

 6Γ/T̂

1+
√

(Γ)fRT

· 1
R

MQS (2015) [30] exp(a)
exp(a)+exp(−a)

QHMLWDF (2013) [138] αΓq
Ri

MPT (2018) [199] Γ· T̂−Γ
exp(
√

1+T̂−Γ)

MDV λ̃i[t+1]·fc
(

qi[t]
ri[t]T̂ i

+ Γi[t]
T̂ i

+ln2

(
1+ pi[t]

εi

))

• THR 1
T (A [0, T])fBE

the average service rate for the BE flows. Higher is
better.

• PLR (pLT[T])fRT
the percentage of packets that did not arrive at the

receiver. Lower is better.

• Delay (E[d])fRT
the average delay encountered for non-dropped packets.

• Fairness J (x) = (
∑

xi)2

n·
∑

x2
i

= 1
1+σ/µ , where σ and µ are respectively the

standard deviation and mean of x. We use Jain’s fairness index (JFI) [92]
to assess how fairly a certain metric is distributed among users. For a
metric x1, . . . , xφ J (x) gives a value in the range 1

φ (worst case) to 1 (best
case, when all users receive equal treatment).

10.4.1.2 Plot layout

On the x-axis we show the number of users that were simulated. Each scheduler
is shifted a little such that the data points of the different schedulers do not
obstruct each other. The most-right scheduler in a group is always the MDV
scheduler. The y-axis is the average of the metric over all users and repetitions of
the simulations.

10.4. PERFORMANCE EVALUATION 151

10.4.2 Results

We have run several scenarios, such as each user having exactly 1 or exactly
three applications and for 30 km/h. In general the results were very similar, so
we only show here the results for 3 km/h and 120 km/h.

10.4.2.1 LTE

The plots in this section concern the LTE simulations. In Figures 10.4 and 10.5
we show the different metrics for users moving at 3 km/h and 120 km/h
respectively.

The PLR for video and VoIP traffic are shown in respectively Figures 10.4a
and 10.4b. There we can observe that the average PLR for our scheduler is
consistently the lowest. For 100 users the difference between the MDV and the
FLS scheduler is 8 percentage point. At the same time, the PLR for VoIP is also
the lowest for our scheduler. The throughput for BE, shown in the log-plot
Figure 10.4c has the highest throughput for a small number of users. However, as
the number of users increases, the throughput becomes low, as the scheduler
favors a low PLR. Comparing with the FLS scheduler, the closest in terms of
PLR, the MDV scheduler achieves a performance of 4.15 kbps, while the FLS
scheduler gets 3.84 kbps. In terms of the system throughput, shown in the
log-plot Figure 10.4d, only the MQS and MPT schedulers perform better, at the
cost of very high PLR for both video and VoIP for those schedulers.

The JFI fairness index for the MDV scheduler for PLR and BE throughput
belongs to the lesser performing schedulers. For the PLR points for a small
number of users the JFI is arguably not the ideal metric for the MDV scheduler.
The JFI can be written as 1

1+σ/µ , where σ and µ are the standard deviation and
mean, respectively and σ/µ is also called the covariance. The covariance
increases quickly as µ gets closer to zero, hence, for means close to zero the JFI
becomes more easily disturbed.

If we look at the pmf of the PLR for 30 users in Figure 10.2a, we can see that the
mean for the MDV scheduler is indeed close to zero, and looks plausibly more
fair than EF-EDDF and EXPRule schedulers (see also Figure 10.5a for full PLR
plot). For 100 users in Figure 10.2b the fairness looks more reasonable, as the
mean is relatively larger. Similarly, for the throughput for 100 users, in
Figure 10.3, the JFI does not seem to represent the fairness fully.

The delay performance, finally, can be seen in Figures 10.4g and 10.4h for video
and VoIP respectively. We can see there that the delay for video is the lowest
(except for the MPT scheduler. However, its PLR is very high, hence the average
delay is dictated by only the few packets that do arrive). Additionally, the delay
of the FLS and MDV schedulers increase almost linearly over the whole range of
users, whereas other schedulers show a more sigmoidal delay function. The delay

152 CHAPTER 10. CROSS-LAYER SCHEDULING IN LTE AND 5G

0 0.1 0.2 0.3 0.4

0

5 · 10−2

0.1

0.15

0.2

x

P
{P

L
R

=
x
}

EF-EDDF

EXPRule

MDV

(a) Pmf for 30 users
0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

·10−2

x

P
{P

L
R

=
x
}

EF-EDDF

EXPRule

MDV

(b) Pmf for 100 users

Figure 10.2: Pmf for PLR for LTE 120 km/h scenario

100 200 300 400

0

2

4

6

8

·10−2

x

P
{P

L
R

=
x
}

EF-EDDF

EXPRule

MDV

(a) Pmf for 30 users
0 20 40 60 80 100 120

0

5 · 10−2

0.1

0.15

0.2

x

P
{P

L
R

=
x
}

EF-EDDF

EXPRule

MDV

(b) Pmf for 100 users

Figure 10.3: Pmf for throughput for LTE 120 km/h scenario

of VoIP also remains very constant, which is very beneficial for the QoE for VoIP
calls.

10.4.2.2 5G

The plots in this section concern the 5G simulations. In Figures 10.6 and 10.7 we
show the different metrics for users moving at 3 km/h and 120 km/h respectively.
As before the plots for 30 km/h were very similar and performing as expected,
and have been left out.

The plots differ for some metrics a little, however, the notes concerning the MDV
scheduler remain valid for the 5G simulations.

10.5. CONCLUSION 153

10.5 Conclusion

In this section we evaluated through simulations the MDV scheduler from
Chapter 9. The MDV scheduler has been slightly adjusted for use in LTE and
5G context. In the simulation results we can see that the excellent performance
of the MDV scheduler is not limited to the DSL context. Also in LTE and 5G we
achieve a lower PLR and comparable or higher throughput than other schedulers
from literature. The fairness of the MDV scheduler usually belongs to the
bottom, in some cases because its mean value is close to zero, which skews the
result.

154 CHAPTER 10. CROSS-LAYER SCHEDULING IN LTE AND 5G

25 50 75 100
Number of users

0

25

50

75

100

PL
R

(%
)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(a) Average PLR for Video

25 50 75 100
Number of users

0.01

1

100

PL
R

(%
)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(b) Average PLR for VoIP

25 50 75 100
Number of users

10

100

1000

Th
ro

ug
hp

ut
 (k

bp
s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(c) Average throughput for BE

25 50 75 100
Number of users

50

100

300

500

Th
ro

ug
hp

ut
 (k

bp
s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(d) Average system throughput

25 50 75 100
Number of users

0

0.25

0.50

0.75

1

Th
ro

ug
hp

ut
 F

ai
rn

es
s

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(e) JFI for throughput of BE

25 50 75 100
Number of users

0

0.25

0.50

0.75

1

PL
R

Fa
irn

es
s

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(f) JFI for PLR of Video

25 50 75 100
Number of users

0

20

40

60

80

De
la

y
(m

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(g) Average delay for video

25 50 75 100
Number of users

0

20

40

60

De
la

y
(m

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(h) Average delay for VoIP

Figure 10.4: Plots for the LTE 3 km/h scenarios

10.5. CONCLUSION 155

25 50 75 100
Number of users

0

25

50

75

100

PL
R

(%
)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(a) Average PLR for Video

25 50 75 100
Number of users

0.01

0.1

1

10

100

PL
R

(%
)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(b) Average PLR for VoIP

25 50 75 100
Number of users

10

100

1000

Th
ro

ug
hp

ut
 (k

bp
s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(c) Average throughput for BE

25 50 75 100
Number of users

30

100

300
Th

ro
ug

hp
ut

 (k
bp

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(d) Average system throughput

25 50 75 100
Number of users

0

0.25

0.50

0.75

1

Th
ro

ug
hp

ut
 F

ai
rn

es
s

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(e) JFI for throughput of BE

25 50 75 100
Number of users

0

0.25

0.50

0.75

1

PL
R

Fa
irn

es
s

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(f) JFI for PLR of Video

25 50 75 100
Number of users

0

25

50

75

De
la

y
(m

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(g) Average delay for video

25 50 75 100
Number of users

0

20

40

60

De
la

y
(m

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(h) Average delay for VoIP

Figure 10.5: Plots for the LTE 120 km/h scenarios

156 CHAPTER 10. CROSS-LAYER SCHEDULING IN LTE AND 5G

25 50 75 100
Number of users

0

25

50

75

100

PL
R

(%
)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(a) Average PLR for Video

25 50 75 100
Number of users

0.01

0.1

1

10

100

PL
R

(%
)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(b) Average PLR for VoIP

25 50 75 100
Number of users

10

100

1000

Th
ro

ug
hp

ut
 (k

bp
s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(c) Average throughput for BE

25 50 75 100
Number of users

100

300

1000

Th
ro

ug
hp

ut
 (k

bp
s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(d) Average system throughput

25 50 75 100
Number of users

0

0.25

0.50

0.75

1

Th
ro

ug
hp

ut
 F

ai
rn

es
s

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(e) JFI for throughput of BE

25 50 75 100
Number of users

0

0.25

0.50

0.75

1

PL
R

Fa
irn

es
s

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(f) JFI for PLR of Video

25 50 75 100
Number of users

0

20

40

60

80

De
la

y
(m

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(g) Average delay for video

25 50 75 100
Number of users

0

20

40

60

De
la

y
(m

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(h) Average delay for VoIP

Figure 10.6: Plots for the 5G 3 km/h scenarios

10.5. CONCLUSION 157

25 50 75 100
Number of users

0

25

50

75

100

PL
R

(%
)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(a) Average PLR for Video

25 50 75 100
Number of users

1

10

100

PL
R

(%
)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(b) Average PLR for VoIP

25 50 75 100
Number of users

10

100

1000

Th
ro

ug
hp

ut
 (k

bp
s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(c) Average throughput for BE

25 50 75 100
Number of users

100

300

1000

Th
ro

ug
hp

ut
 (k

bp
s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(d) Average system throughput

25 50 75 100
Number of users

0

0.25

0.50

0.75

1

Th
ro

ug
hp

ut
 F

ai
rn

es
s

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(e) JFI for throughput of BE

25 50 75 100
Number of users

0

0.25

0.50

0.75

1

PL
R

Fa
irn

es
s

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(f) JFI for PLR of Video

25 50 75 100
Number of users

0

20

40

60

80

De
la

y
(m

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(g) Average delay for video

25 50 75 100
Number of users

0

20

40

60

De
la

y
(m

s)

EXP-MLWDF EF-EDDF EXPRule FLS
MQS QHMLWDF MPT MDV

(h) Average delay for VoIP

Figure 10.7: Plots for the 5G 120 km/h scenarios

158 CHAPTER 10. CROSS-LAYER SCHEDULING IN LTE AND 5G

Chapter 11
Cross-layer resource allocation for

satellite communication

Geosynchronous earth orbit (GEO) satellite networks carry a high cost-per-bit,
and thus it is in the user’s interest to limit the reserved capacity. A provider
usually aggregates the traffic of different users to take advantage of statistical
multiplexing, leading to reduced costs. However, some types of traffic, such as
video and VoIP, remain bursty, even when aggregated [115]. In such case one has
to dimension for the peak usage to satisfy the QoS demands of the user,
squandering capacity. A solution is to periodically adapt the reserved capacity to
the actual required usage. In this case a station sends a capacity request to a
satellite hub, which replies with a grant, containing the allotted bandwidth. Due
to the large propagation delay (of up to 500 ms [83]), it takes some time before
the new capacity is in effect. Therefore, an estimate of the future necessary
service rate is required at the time of the request. It is paramount that this
service rate offered to its users is sufficient to satisfy the user’s QoS requirements,
and at the same time does not exceed the necessary rate, to save on bandwidth,
and thus costs.

Also wired networks can benefit from this approach. Some methods for G.fast
standards attempt to overcome crosstalk by selecting the optimal frequency and
power assignment over all users. The complexity of these calculations can result
in solutions that take in the order of seconds [183]. Due to this crosstalk, these
networks can be seen as a shared network, where bandwidth is traded between
users. This means that granting one user too much service, can have an impact
on other users’ service, diminishing its QoS and QoE. Thus, also here the
combination of sufficient rate and efficiency is important.

When reserving capacity, a trade-off must be made between delay and
throughput efficiency: a lower capacity will increase efficiency at the cost of
larger delays, and vice versa.

The contributions of this section are two new methods of dynamic bandwidth
allocation (DBA), called Simple and MBAC , and are described in Section 11.3.

159

160
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

The former is an ad hoc method, based on the arrival rate in past intervals, and
is of very low complexity. The second algorithm is based on an admission control
(AC) algorithm. We tuned it to work better on shorter intervals, and introduced
an addition to reduce the number of parameters that have to be set. We compare
these two methods with the ideal case, the Oracle algorithm described in
Section 11.4.2.1, and one other DBA algorithm from literature. The approach
presented here is not dependent on any technology, and can be used in cellular,
satellite and wired networks. The focus does not lie on accurate traffic
prediction, but rather on dimensioning the intensity of the aggregate, with the
goal of achieving a satisfying delay percentile of the aggregate, while keeping the
efficiency as high as possible.

In Section 11.1 we look at the related work. The model and notation used
throughout this paper are described in Section 11.2. The simulation settings are
shown in Section 11.4, while the results are discussed in Section 11.4.3, for both
UDP and TCP protocols. We close this section with a conclusion in Section 11.5.

11.1 Related work

Much of the DBA literature on satellite networks targets single flows of media
traffic, e.g. [79, 106, 107]. However, we discuss in this work an aggregate of many
flows, for which it is more difficult to construct a traffic model.

Likewise, [43] applies a traffic model to predict future arrivals. It is well known
that the accuracy of model-based approaches depends on the underlying source
models. These are often simplified, sometimes ignoring deeper patterns, such as
long-range dependency, and thus not applicable in a wide range of scenarios.

Some literature deals with the allocation of subchannels of a satellite system.
However, in the current work, we use an abstraction of the channel, and only
work with the rate. For example, [94] addresses allocation in satellite systems
while keeping the delay of real-time streams bounded. For each subchannel it
calculates the optimal power setting, modelling the channel. Also, [144] optimizes
the bandwidth allocation in function of the power. In [142] they also optimize
bandwidth allocation as a function of power, using particle swarm optimization.

The algorithm in [201] uses queue statistics and the arrivals in a simple
algorithm to predict the demand in the next slot. In [72] the authors propose a
predictive approach, using a normalized linear mean square predictor. Other
algorithms focus on improving the throughput or achieving a low delay bound,
but do not allow for a stochastic bound, making it more difficult to provide
different service levels. In [208] two algorithms are proposed, one focusing on
obtaining the maximum throughput while the other minimizes the
demand-supply variance. The algorithms in [63, 47] also provides a dynamic
bandwidth allocation methods. However, they assume that the time between
bandwidth requests is less than the round trip delay, whereas we assume

11.2. SYSTEM MODEL 161

bandwidth requests that occur less frequent.

In [206] an algorithm is proposed that solves a corresponding convex
optimization problem, resulting in a fair allocation for the different users. Also,
[174] tries to optimize the allocation in function of user fairness. However, for our
algorithm we have only one stream, which is the aggregate of multiple users.

A lot of work also has been done on traffic prediction e.g. [23, 86]. There are
various approaches, such as employing the frequency domain in [49], or through
neural networks and wavelet decomposition [26]. In general traffic prediction
requires upfront construction of models, or are of a great runtime complexity.
Additionally, these prediction models usually lack a confidence level, might be
difficult to apply to an aggregate of traffic and often do not take the queue size
into account.

11.2 System model

We consider a system where several flows are aggregated over a single channel,
from a client to a server. The server is responsible for granting bandwidth
requests to the client.

At time ri = U ·i, where U is the system slot size and i is the time slot, the client
sends a capacity request G′(ri) to the server. This request G′(ri) is based on the
system state up to that point. At time gi = ri+d, with 0 < d ≤ U being the
round trip time for a request-grant application, a grant G(ri) ∈

[
Ř, R̂

]
is

received, and the new service rate is applied, during the interval [ri+d, ri+d+U].
Figure 11.1 shows a summary of above description.

In some cases, geostationary satellites have a U = 1s and d = 250 ms, while for
some implementations of G.fast U = d can be in the order of 5s.

r0 r1 r2 r3g0 g1 g2 g3

G
′ (
r
1
) G

(
r
1
)

R̂ R0 R1 R2

d U

Figure 11.1: Request - grant timeline

We impose the QoS restriction P{D(k) > T̂} ≤ ε where D is the delay

162
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

distribution of the traffic aggregate, T̂ the upper bound on the delay and ε the
maximal percentage of packets that can have a delay larger than T̂ .

The number of bits in the queue and the HOL at time t are defined as q[t] and
Γ[t], respectively. The total number of arrivals and departures in an interval [s, t]
are denoted by A [s, t] and E [s, t]. To count packets instead of bits we notate
them as a [s, t] and e [s, t].

The symbols are summarized in Table 11.1 (and extend those defined in the
symbols table on Page 5).

Table 11.1: Symbols

Symbol Meaning

U system slot size

d round trip time for a request-grant application

τ slot size for the measurement based admission control (MBAC) algorithm

T number of slots in a measurement window

Cmk the peak aggregate rate in the m-th most recent measurement window

M number of measurement windows

ρk smoothing factor for the EMA

K the set of slots for which we track peak rates

dp propagation delay

11.3 Algorithms

11.3.1 The Simple algorithm

The pseudocode for the ad hoc Simple algorithm is shown in Algorithm 11.1. It
captures the arrivals on four timescales (function M on line 2), ranging from U to
U
20 , assuming that more recent arrivals have a larger impact on the arrivals in the
future slot. Additionally, in function Mq on line 3 the queue size is taken into
account to ensure that the current queue will be emptied within T̂ seconds. To
ensure that small outliers in the last window do not result in a low rate, we take
the maximum over the past three rates (line 9).

To account for variation in traffic over longer time scales, we also track the
prediction error in the Err object, which is an exponentially moving average. We
set the smoothing factor ρ = 1−10−ε/0.5, where ε/0.5 is the time constant,

11.3. ALGORITHMS 163

indicating after how many system slots 10% of the original signal remains. The
call to Err.collect will record a new value, as described by equations (11.10) and
(11.11) (line 6). We assume a normal distributed prediction error, and multiply
by the 1−ε quantile, if it is larger than 1 (line 7, 10).

Algorithm 1: The ad hoc Simple algorithm
1 Constant : U , T̂ , ε

2 func M(A , s) = maxi∈{1,5,10,20}{
A(s−U/i,s)

U/i
}

3 func Mq(A, q, s, α = 1) = max{ q[t]
T̂
,M(A, s)·α}

4
5 func Simple (A , q , V , Err) =
6 Err . c o l l e c t (M[t]

M[t−1]))
7 α := normalQuantile(Err.µ,Err.σ, 1−ε)
8 return max{
9 M(A, t−2U) , M(A, t−1U) , M(A, t) ,

10 Mq(A, q, t,max{1, α})
11 }

The complexity of this algorithm is very low. For storage we require N+M
numbers, where N = 4 is the number of intervals we track in the current slot,
and M = 3 the past assigned rates.

Calculating the rate requires taking the maximum of M+N values, resulting also
in a very low computational complexity.

11.3.2 The MBAC algorithm

The algorithm is based on an AC algorithm to update the channel capacity. As
an AC algorithm assesses if adding a new flow to a channel with capacity R will
not violate any requirements, it needs to have a prediction ability of the current
traffic aggregate.

Assume a function AC(R, η, f, T̂ , ε) that returns true if a capacity R and traffic
aggregate η can support a new flow f without violating the delay constraint
P{D > T̂} ≤ ε, and that returns false otherwise. Then, calling AC(R, η, f0, T̂ , ε),
where f0 is a flow with no traffic at all returns true if the current aggregate will
not violate the requirements for the current service rate. Obtaining the optimal
R∗[t+1] is then equal to solving

R∗[t+1] = arg min
r∈[Ř,R̂]

{AC(r, η, f0, T̂ , ε)}.

The MBAC algorithm described in [150] provides such a function AC. It
considers the average and variation of the peak rate of the traffic aggregate
envelopes over multiple interval lengths. This allows us to determine in what
interval a violation is most likely to occur, and dimension our system accordingly.
In this paper, we base our MBAC algorithm on this admission control algorithm,

164
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

but it should be noted that any MBAC algorithm can be used for this approach.
The authors of [35] mention that a large family of admission control algorithms,
to which [150] also belongs, have a similar performance. Hence, the same
approach can probably be applied to these algorithms, with some tweaks.

11.3.2.1 The original MBAC algorithm

The original algorithm is described here for reference. Time is divided into slots
of size τ . It should be noted that τ is not correlated with U , which we will refer
to as the system slot size to avoid confusion (though, as we will see later, ideally
U is an integer multiple of τ). Cmk is defined as the peak aggregate rate in an
interval of kτ in the m-th most recent measurement window of size T slots.

Thus,
C1
k = 1

kτ
· max
t−Tτ≤s≤t−kτ

A[s, s+kτ] (11.1)

is the peak aggregate rate of the kτ -sized window in the last T slots.

M measurement windows

C1
kC
1
kC2

kC3
k

. . .CM
k

T slots of size τ

kτ

peak rate C1
k

Figure 11.2: Overview of the original MBAC model

From these observations, we calculate the empirical mean and variance
respectively as

C̄k =
M∑
m=1

Cmk
M

(11.2)

σ2
k = 1

M−1

M∑
m=1

(Cmk −C̄k)2 (11.3)

11.3. ALGORITHMS 165

Assuming stationary arrivals, the aggregate flow satisfies

P

{
max
s

A[s, s+kτ]
kτ

≤ C̄k+ασk
}

= Φ(α) (11.4)

Thus the peak rate over an interval of k slots is less than C̄k+ασk with
probability Φ(α). Denoting the distribution of peak rates Ck by Fk(·), we can
approximate Fk(·) by the Gumbel distribution

P {Fk ≤ x} = exp
[
− exp

(
−x−µ

β

)]
. (11.5)

The Gumbel distribution is used in extreme value theory where it describes the
asymptotic distribution of the extremes of a series of random variables, and is
applicable to a large class of distributions, including Gaussian, Gamma,
exponential, log-normal and Gumbel distributions [41]. The distribution has two
parameters, the mean µ and the scale β.

The mean and variance of the Gumbel distribution are respectively µ+βγ and
π2β2/6 (where γ is the Euler-Mascheroni constant). As we have measured the
mean C̄k and variance σ2

k, we can infer the µ and β parameters for the Gumbel
distribution. Now, we can approximate

Φ(α) ≈ exp
[
− exp

(
− (C̄k+ασk)−µ

β

)]
. (11.6)

From this α = −
√

6
π (ln(− ln(ε))+γ) can be obtained, for the required confidence

level ε. The minimal R ∈
[
Ř, R̂

]
for which the conditions (11.7)-(11.8) hold, is

then a service rate satisfying our delay requirement, with confidence level Φ(α).

∀k : kτ(C̄k+ασk−R) ≤ R·T̂ (11.7)

C̄T +ασT ≤ R (11.8)

The first condition ensures that the peak rate in any kτ sized-interval will not
lead to delays larger than T̂ . The k for which this equation does not hold indicate
the dominant time scales under which delay bound violations are most likely to
occur. The stability condition (11.8) ensures that the mean rate over a window is
less than R, and the busy period is less than T , with confidence level Φ(α).

11.3.2.2 The new algorithm

The above algorithm is designed to accommodate new flows into a long-running
system, and guarantee long-term stability. As we have a dynamic system, we
modify the above algorithm in two places. First, we expand the conditions

166
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

(11.7)-(11.8) with condition (11.9), with which we include the queue size and
delay build-up into calculating the required service rate:

q[t]+(Γ[t]−d)·R[t]+R1
d/τ < R·T̂ (11.9)

It states that the estimated queue at time t+d must be serviced away in a timely
manner. In an admission control algorithm, it does not make sense to use the
queue, as it is a volatile metric. A moment after the admission has been
performed, the queue size might have changed dramatically. In our system,
updates are performed frequently, and as such the queue size provides important
information about QoS. The ideal R is now the minimal rate that satisfies
conditions (11.7)-(11.9).

The second modification covers the calculation of the average and variation of
the peak rates. The original AC takes the long-term average into account,
discarding timing information. As the timing of the occurrence of peak rates is
more important when the service rate changes more frequently, this is not an
ideal metric to use. Therefore, we use an exponentially moving empirical mean
and variance, rather than the moving empirical mean and variance of the peak
rates, in which we can choose the importance of older observations. Hence, for
each k ∈ K = {1, 2, . . . , T} we calculate the mean and variance as

C̄k = ρkC
1
k+(1−ρk)C̄k, (11.10)

and
σ2
k = ¯̄Ck−C̄2

k , (11.11)

where we use V ar(X) = E[X2]−E[X]2 to calculate the variance, and

¯̄Ck = ρk(C1
k)2+(1−ρk) ¯̄Ck. (11.12)

The simulations use a numerically stable version [67], because the version listed
here suffers from catastrophic cancellation. The parameter ρk ∈]0, 1[is the
smoothing factor of the EMA.

The parameters that are used in this new algorithm are listed here:

τ determines the minimal interval over which we calculate peak rates. A
smaller τ , captures the peak rates better. Ideally, this is set to the smallest
inter-arrival time that could occur. A smaller τ would not capture any
more information. However, making τ smaller, implies increasing T . As we
will see in Section 11.3.2.4, this will increase computational complexity.

T is the maximum number of consecutive τ -sized slots we track in calculating
peak rates. In the original MBAC algorithm this variable can be chosen
freely. In our algorithm it is more interesting to ensure that T = U/τ ,
meaning that the number of slots we track equals the length of the system
slot U .

11.3. ALGORITHMS 167

ρk is a relative of the original MBAC’s M parameter, the number of past peak
rates to track. This parameter determines the smoothing factor of the
EMA. A value close to 1 places more emphasis on recent values, i.e. it will
react faster to changes. A ρk close to 0 will emphasize older values. This
increases the variance, and results in a more conservative rate prediction.
Choosing the optimal ρk is impossible, as it depends on the traffic, the
delay upper bound T̂ , the interval T etc. Therefore, in the next section we
introduce an addition to the algorithm that dynamically updates ρk.

11.3.2.3 Dynamic ρk

The following addition dynamically adapts ρk using the delay performance. The
k for which the left side of (11.7) is the largest is the timescale on which delay
violations are most likely to occur. Denote the cumulative distribution function
of the delay distribution up until time t by FDt(x) = P{Dt ≤ x}. Then FDt(T̂) is
the QoS violation probability, which should be less than ε. If FDt(T̂) > ε and
increasing, then we assume ρk was not adequate and we decrease ρk, as
implemented in Algorithm 11.2 on lines 3-4. The closer we are to ρmin the slower
the decrease. We only update if FDt(T̂) is increasing with respect to the previous
system slot, to avoid that a single burst would cause ρk to continue decreasing.
Lines 5-6 describe the case where FDt(T̂) < 0.9ε. In this situation we consider
the algorithm being too conservative, and we increase ρk very slowly. Modifying
ρk is not retroactive, therefore the ρk parameter is updated slowly to avoid
overshooting its target.

Algorithm 2: Updating ρk
1 constant : U, T̂ , ρmin, ρmax
2 func SetRho (d , ρk) =
3 i f FDt (T̂) > ε and FDt (T̂) > FDt−1 (T̂) :
4 ρk := ρk+(ρmin−ρk)/10
5 e l i f FDt (T̂) < 0.9ε :
6 ρk := +(ρmax−ρk)/100

Rather than measuring the cumulative delay distribution FDt(T̂), we keep track
of the number of packets whose delay exceeds T̂ , notated with et(T̂). As such, we
can calculate FDt(T̂) = et(T̂)

a[0,t] .

11.3.2.4 Complexity

There are two complexities to consider here: the space complexity, and time
complexity when updating and searching for a suitable rate, which happens every
U seconds.

168
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

11.3.2.4.1 Space complexity We need to track |K| values of C̄k, ¯̄Ck and
ρk. Furthermore, we require the arrivals in the past T slots, resulting in a space
complexity of O(|K|+T). An additional advantage of using our new method is
that this comprises a big reduction in complexity, compared to the original
algorithm’s O(TM ln(T)) due to its need to track Rmk ,m ∈ [1,M].

11.3.2.4.2 Time complexity Every U seconds the parameters are updated,
and a suitable R is searched for. Setting a new ρk is a constant operation.
Updating the parameters C̄k and ¯̄Ck involves taking the maximum over the sum
of an interval of k slots, for every k ∈ K. This can be done in O(|K|T). Selecting
the optimal service rate, requires solving |K|+2 linear equations, giving a final
time complexity O(|K|(T+1)).

Thus, a suitable selection of K (or τ) can reduce time complexity, especially as T
grows: selecting half of the elements of K reduces computation by half. This
reduction, however, comes at the cost of a decrease in prediction accuracy and
thus an increase of the delay error.

Figure 11.3 shows the behavior of the delay error in the DSL setting
(Figure 11.3a) and the average time to calculate a suitable rate (Figure 11.3b), as
a function of |K|. In the results below, the different k ∈ K are evenly distributed
between [1, T]. For example, |K| = 3 means K = {1, T/2, T}

Increasing |K| thus expands the number of measurements, resulting in a better
delay error metric, as can be seen in Figure 11.3a. Very small values of |K|
perform badly, as the dominant time interval over which violations happen is not
captured correctly. It is not shown here, but making |K| larger decreases the
efficiency, but only very slightly: changing from |K| = 1 to |K| = 100 results in
2% less efficiency.

The trade-off involved with |K| is shown in Figure 11.3b: the processing time
grows linearly with |K|. For reference, we also displayed the average processing
time of the Simple algorithm as a horizontal line.

In the remainder of this section, we use |K| = 40, which is a nice trade-off
between delay error and processing time.

11.4 Performance evaluation

11.4.1 Simulation setup

The simulations were run using the INET and OMNeT++ frameworks. A client
continuously sends traffic to a server over an abstract, lossless channel with a
propagation delay of dp seconds. Every U seconds the client sends a request over
the channel, the reply of which arrives 2dp < d ≤ U seconds later, thus assuming

11.4. PERFORMANCE EVALUATION 169

20 40 60 80
−1

−0.5

0

0.5

1

|K|

D
el
a
y
er
ro
r
(〈
D

ε
〉/
T̂
−

1
)

MBAC

(a) |K| vs delay error

20 40 60 80
0

0.2

0.4

|K|

A
v
g
p
ro
c.

ti
m
e
(m

s) Simple

MBAC

(b) |K| vs processing time

Figure 11.3: |K| vs delay error and processing time (DSL setting)

a processing time of d−2dp at the server. A fluid system is simulated, implying
that any change in capacity is immediate. For example, a packet that is being
transmitted while the channel’s capacity is lowered, will have a longer
transmission delay.

The delay of a packet is measured as the difference in time between a packet
arriving at the client, and its last bit arriving at the server, minus the
propagation delay dp. During the warm-up period of 30s no delays were
recorded, and the service rate was kept constant to allow TCP streams to settle.

We ran the scenarios for the parameters listed in Table 11.2. The traffic sources
are described in Table 11.3. Each scenario was run for 10 minutes, and repeated
20 times, the average of which was used.

Table 11.2: Simulation parameters

Parameter Values

Protocol UDP, TCP

Traffic Poisson, Video, VoIP, Mix, Self-Similar, Sine

(U , d, dp) Sat (1s, 240 ms, 120 ms), DSL (5s, 5s, 0 ms)

T U/τ

T̂ 100 ms, 500 ms, 1s

ε 0.1%, 1%, 5%, 10%

τ 10 ms

170
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

Table 11.3: Traffic sources

Traffic Contents

Poisson Poisson traffic models (12)

video video traces, including Starwars [156] (12)

VoIP on-off model [37] (30)

Self-Similar superposition of Pareto [179] (12)

Mix A mix of all the above traffic sources (17)

Sine A mix of Self-Similar traffic and sources that

send oscillating traffic at various frequencies (9)

11.4.2 Comparison algorithms

To assess the performance of the algorithms described above, we introduce the
oracle bandwidth predictor, and a traffic prediction algorithm from the literature
designed for stochastic resource allocation.

11.4.2.1 Oracle

The major hurdle in adequate resource allocation is the fact that the arrivals in
the next window are not known. Prediction techniques try to alleviate this.
Failure to predict sudden peaks, however, usually result in an increased load and
subsequent increase of delays. The oracle algorithm we present here has access to
the traffic arriving in the future U+d seconds. This (simplified) algorithm is
displayed in Algorithm 11.3. It simulates the queue evolution (function starting
at line 23), which contains the timestamp and size of packets, and calculates the
corresponding delay distribution Dt+1. By performing a binary search-like
operation (lines 8-20), the smallest Rt+1 is found, for which the predicted delay
distribution does not violate the QoS requirements (line 13). If the delay is
violated using the maximal capacity R̂ (pirOK becomes false, line 5), then we try
to find the smallest capacity that does not increase the delay percentile (lines
15-17).

As the TCP protocol is quite complex, and more difficult to simulate, due to its
statefullness and mechanisms such as acknowledgments, window scaling etc., we
only use the Oracle algorithm for UDP.

11.4. PERFORMANCE EVALUATION 171

Algorithm 1: The Oracle algorithm
1 Constants : R̂ , Ř , d , T̂ , ε
2 func Oracle (Dt , Q, ρ) =
3 dPIR := s imulate (Dt , Q, ρ , t+d , R̂)
4 bestDelay := cdf (dPIR , ε)
5 pirOK := bestDelay ≤ T̂

6 l o := Ř ; h i := R̂ ; bestRate := R̂
7
8 for i in 1 . . 20 :
9 mid := (l o+hi)/2

10 dMid := s imulate (Dt , Q, ρ , t+d , mid)
11
12 i f pirOK :
13 OK := cdf (dMid , ε) ≤ T̂
14 else :
15 OK := (cdf (dMid , ε) ≤ bestDelay) and \newl ine
16 (maxdMID ≤ maxdPIR ∗1.01)
17 bestDelay := min (bestDelay , dMid)
18
19 i f OK: hi := mid ; bestRate := mid
20 else : l o := mid
21 return bestRate
22
23 func s imulate (Dt , Q, cur−ρ , tChange , new−ρ) =
24 s imulate packets from Q, updating Dt+1 .
25 At time tChange the s e r v i c e ra t e changes to new−ρ .
26 return Dt+1

11.4.2.2 SDB

In [70], the authors use a NLMS predictor on the traffic arrivals, and apply the
Chebyshev inequality to stochastically bound future arrivals. A NLMS of order p
is a linear predictor with weights h. In such a linear predictor, a prediction is
made by

x̃[(t+1)] =
p∑
i=0

x(t−i)·ht(i) (11.13)

The weights are updated according to

ht+1 = ht+µ
ε(t)xt
||xt||2

(11.14)

Here µ ∈]0, 2[is the rate of convergence, and ε(t) is the prediction error.

The Chebyshev inequality states that for a random variable X with mean µX
and variance σ2

Xholds that

P {|X−µX | ≥ kσX} ≤
1
k2 . (11.15)

Hence, by changing k we can choose the violation probability. The requested rate
is then calculated as

R =
x̃(t+1)+

√
1/(2ε)σ̂ε

T̂
, (11.16)

172
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

with

σ̂ε(t) =

√√√√ 1
N−1

N∑
i=1

ε2(t−i) (11.17)

the sample variance of the error.

11.4.3 Results

We begin this section by a short introduction to the plot layout, followed by a
comparison of the different algorithms for the UDP and TCP scenarios in
respectively Section 11.4.3.2 and Section 11.4.3.7.

The plots described in this section follow the same pattern: on the x-axis we
display the average over all selected simulation runs of 〈Dε〉/T̂−1, where 〈Dε〉 is
the average over all simulations of the ε percentile of the delay distribution. A
value in the range [−1, 0] means that ε percent of the packets have a delay less
than T̂ . A value larger than 0 indicates that too many packets (i.e. more than ε
percent) had the delay constraint T̂ violated. For example, a value 1 means that
ε percent of the packets have a delay that is more than 2T̂ . A dashed vertical
line is drawn at 0 to indicate this cut-off value.

On the y-axis we show the average efficiency, calculated as
100·E(0, Tsim)/

∑Tsim
t=0 R[t]). The closer the efficiency is to 100%, the better.

Each algorithm has four data points, one for each ε ∈ {0.1%, 1%, 5%, 10%}, sized
accordingly, and connected for easier recognition. Ideally, this curve should be
vertical, as then it means that we can maintain the same delay for various ε.

Simulation results have also been run for T̂ = 500 ms, but have been left out as
they were in general behaving as expected. Any different behavior is indicated in
the text.

11.4.3.1 Fixed ρk

In this subsection we discuss how the results change in function of a constant ρk.
The plot of Figure 11.4 shows the averages of the delay error versus the efficiency
over all simulation runs. Each trace represents a different ε, while the individual
data points are different ρ ∈ [0.1, 0.9], the largest ρ having the largest symbol, on
the right-hand side.

The trend is that ρ incurs a trade-off between the delay error and the efficiency:
decreasing ρ, i.e. favoring older arrivals, results in decreased delays, but at the
cost of efficiency. A small ρ removes much of the high frequency noise, which can
attribute to excessive delays. This behavior is visible in all different settings.

11.4. PERFORMANCE EVALUATION 173

−1 0 1 2

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

ε = 0.1

ε = 0.05

ε = 0.01

ε = 0.001

(a) T̂ = 0.1s

−1 0 1 2

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

ε = 0.1

ε = 0.05

ε = 0.01

ε = 0.001

(b) T̂ = 1s

Figure 11.4: vs efficiency for varying ρ and ε

Another thing to notice is that the difference with respect to the different ε for
efficiency and delay error is quite constant. This means that the measurement
based approach is able to take the required delay violation quite well into
account.

−1 0 1 2

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

ε = 0.1

ε = 0.05

ε = 0.01

ε = 0.001

(a) Poisson

−1 0 1 2

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

ε = 0.1

ε = 0.05

ε = 0.01

ε = 0.001

(b) Mix

Figure 11.5: Delay error vs efficiency for varying ρ and ε Poisson vs Mix for
T̂ = 0.1s

However, Figure 11.4a is slightly misleading because there are quite some
differences in the delay error metric between different traffic types. For example,
in Figure 11.5a and Figure 11.5b we can see the same plot, but now highlighting
the traffic types Poisson and Mix, respectively. There it clearly shows that for
predictably behaving traffic, such as Poisson, the choice of ρ is less critical, as the
domain is much smaller. The outlier in Figure 11.5a is for ρ = 0.9 and ε = 0.1
where the algorithm underestimated on various occasions the traffic intensity, as
the Gumbel distribution is not ideal for well-behaved traffic such as Poisson. The
bursty traffic of Figure 11.5b shows that a smaller ρ is necessary. The plots of
the metrics, however, behave very similar.

174
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

Returning to Figure 11.4, we can see that for a small T̂ (Figure 11.4a) there are
many delay violations, while for larger T̂ (Figure 11.4b) the opposite is true. The
reasoning behind this decrease is as follows: in [21] it is shown that for GI/G/1
queues P{D > T̂} ≤ ε can be approximated by P{D > T̂} ≈ exp{− T̂

E[D]}. Here,
we can see that if the nominator T̂ increases faster than the denominator E[D],
the delay violations will decrease. Using Kingman’s formula [101], we can
approximate

E[D] ≈ E[DM/M/1]· c
2
a+c2s

2

= 1
µ(µ/λ−1) ·

c2a+c2s
2

Here λ is the mean arrival rate, µ the mean service rate and ca and cs the
coefficients of variation for the arrival and service times respectively.

The average rate µ is dependent on Rk(T̂) = (C̄k+ασk) kτ
T̂+kτ , obtained after

rewriting (11.7). If we assume for a moment that we always pick the same k,
then µ is only influenced by T̂ , since in our simulations C̄k and σk are identical
for different parameters. Thus, we can write, with µ′ = E[C̄k[t])+ασk[t])]:

T̂

E[D] = T̂
1

µ(µ/λ−1) ·
c2
a+c2

s

2

= 2T̂ µ(µ/λ−1)
c2a+c2s

=
2T̂ µ′ kτ

T̂+kτ (µ′ kτ
T̂+kτ /λ−1)

c2a+c2s
(11.18)

To remove the dependence of cs on the actual rates, we can upper bound
cs ≤ L−U

2µ , where L = mins{R[s]} and U = maxs{R[s]}. This upper bound only
occurs in the extreme case where in one slot R reaches the maximum U , and in
all other slots R equals the minimal rate L. Over all the simulation runs we
found that cs is bounded above by 2.

We plotted Equation (11.18) for particular values in Figure 11.6. Here we can
observe that T̂ /E[D] keeps rising, until T̂ becomes T̂M = k(µ′−λ)

µ′+λ , after which the
ratio will go down and become 0 at T̂ = T̂0 = k(µ′/λ−1). Thus, increasing T̂ in
the range

[
0, T̂M

]
will result in a delay decrease. For T̂ > T̂M the delay will

increase. As T̂ exceeds T̂0 the delay increases exponentially because the average
service rate µ will become less than the average arrival rate λ, resulting in a load
greater than 1. Equation (11.8) prevents this from happening by putting a lower
bound on the service rate.

A large T̂ implies a larger efficiency: as mentioned before, Rk(·) ∼ kτ
T̂+kτ . We can

observe that Rk(T̂) decreases as T̂ increases due to the factor kτ
T̂+kτ . The final

11.4. PERFORMANCE EVALUATION 175

0 1 2 3 4
−0.1

−5 · 10−2

0

5 · 10−2

0.1

T̂

T̂
/
E
[D

]

T̂ /E[D]

Figure 11.6: T̂ /E[D], for µ′ = 0.5, λ = 0.4, c2a = c2s = 1.52, kτ = 10

R = arg maxk∈K Rk(T̂), thus also decreases. As the number of arrivals remain
the same for our scenarios, this means the efficiency goes up. In the simulations
this effect is very small though, being on average about 1% more efficient.

The remainder of the simulations use the dynamical ρk.

11.4.3.2 UDP comparison

In this section we compare the different algorithms for the UDP protocol in the
Figures 11.7 and 11.8.

11.4.3.3 Oracle

The Oracle algorithm (red circle) has a close to optimal behavior, as can be
observed in Figure 11.7 and Figure 11.8: the delay error is close to zero and the
efficiency near 100% for all ε. It is only for DSL and a small T̂ that the efficiency
is a bit lower. This is explained by the fact that the Oracle algorithm has a
look-ahead of only U+d seconds. If a lot of traffic arrives closely together in
time, then the service rate is adapted to accommodate for these peak arrivals as
it wants to maintain a good delay error at all times. If this peak is short-lived
and large compared to the rest of the slot, then a lot of capacity remains unused.
This is apparent for ε = 10−3: there some traffic types, such as Mix, have an
efficiency of only 70%.

11.4.3.4 SDB

The predictive approach of the SDB algorithm (blue diamond) is able to
maintain a very low delay error. For large ε the efficiency is on par with the

176
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

−1 0 1 2

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

Oracle Simple MBAC SDB

(a) T̂ = 0.1s

−1 −0.5 0 0.5 1

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

Oracle Simple MBAC SDB

(b) T̂ = 1s

Figure 11.7: Summary for UDP for the Sat scenario

0 2 4

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

Oracle Simple MBAC SDB

(a) T̂ = 0.1s

−1 −0.5 0 0.5 1

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

Oracle Simple MBAC SDB

(b) T̂ = 1s

Figure 11.8: Summary for UDP for the DSL scenario

other schedulers. However, when we require a low delay violation, the efficiency
plummets. This is mainly due to the prediction error, which raises the variance
quickly causing the algorithm to be too prudent.

11.4.3.5 Simple

The Simple scheduler (orange triangle) is in general able to satisfy the QoS
requirements. The efficiency is relatively good, but sometimes at the cost of
delays.

It is only for the most difficult scenario tested here, a large system window and
small allowed delay in Figure 11.8a, that the average delay error is quite large.
This seems sensible, as picking a wrong service rate will have a much larger
impact, since it cannot be changed for a longer time. The biggest contributor to
the large deviation is the Mix traffic type: none of the simulation runs have a
satisfying delay error.

11.4. PERFORMANCE EVALUATION 177

The average efficiency is about 80% for large ε to 70% for small ε, performing
about 20% to 30% worse than the Oracle. If one looks at the underlying data,
then one can see the average is a good estimator of the individual performance.

11.4.3.6 MBAC

The MBAC scheduler (green square) is able to remain below a zero delay error,
while the efficiency in general is similar or better than Simple for large ε, and
doing worse for small ε, except for T̂ = 1s in the Satellite scenarios, where it
performs much better.

Looking at the data, the average delay error is in general quite constant, with
outliers caused by video traffic, which is inherently difficult to predict. As the
interval between such scenes can be in the order of tens of seconds – enough to
have been forgotten by the average C̄k and variance σk – the MBAC algorithm
sometimes has troubles maintaining the delay error. This is apparent in
Figure 11.8a for a small ε.

The efficiency is good when the delay upper bound is large. For the Sat scenario,
the efficiency is close to optimal for large ε.

Looking at these plots, and underlying data, we can conclude that the MBAC
algorithm has an overall better performance than the two other methods. It can
deal quite well with larger system slot sizes, due to its better understanding of the
flow’s behavior on different time scales. Compared to the ideal Oracle algorithm,
we can see, however, that the MBAC ’s efficiency is not in the same range.

11.4.3.7 TCP comparison

In this section we run the simulations for TCP. TCP is, contrary to UDP, a
connection oriented protocol that provides reliable, ordered and error-checked
delivery of data. Additionally, it tries to determine an optimal service rate, such
that packet loss and congestion in the network are minimal. However, on links
with a large bandwidth-delay product, such as satellite links, these mechanisms
deteriorate the offered service (e.g. [166, 46]).

The main problem is that TCP was designed for wired networks, where the
service is reliable, constant and low-latency. This assumption causes problems in
satellite networks. For example, during the slow-start phase, large bursts of
packets are sent over the network. The ensuing round-trip time of packets is very
volatile, influencing the congestion control algorithm heavily.

For the simulations we used TCP Reno and tuned the TCP parameters for better
performance [104, 105]. Delayed ACKs, selective ACKs and window scaling were
enabled. For the Satellite scenario we also set the maximum segment size (MSS)
to 9180 bytes, and increased the advertised window size to 100 MSS. In the

178
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

simulations, each of the flows has its own TCP connection, rather than one TCP
connection for the aggregate.

0 5 10 15

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

Simple MBAC SDB

(a) T̂ = 0.1s

−1 −0.5 0 0.5 1

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

Simple MBAC SDB

(b) T̂ = 1s

Figure 11.9: Summary for TCP for the Sat scenario

0 2 4

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

Simple MBAC SDB

(a) T̂ = 0.1s

−1 −0.5 0 0.5 1

20

40

60

80

100

Delay error (〈Dε〉/T̂ − 1)

E
ffi

ci
en

cy
(%

)

Simple MBAC SDB

(b) T̂ = 1s

Figure 11.10: Summary for TCP for the DSL scenario

Looking at the TCP simulations, we can observe the average efficiency is similar
to the UDP simulations, while the delay error differs. The most notable
difference is the delay error in the Sat scenario for T̂ = 100 ms (Figure 11.10a): it
is quite large for all algorithms. One reason for this is that the on-off model used
to generate VoIP traffic, has an average OFF state of 640 ms, a relatively large
period, causing TCP to initiate slow start [91].

Another reason is the large propagation delay in satellite networks. For example,
the increased delay variances affect adversely the TCP timer mechanisms,
resulting in premature timeouts and incorrect window sizes [14]. Another source
of delay errors in this particular case can be attributed to TCP’s congestion
control. If we want to increase the service rate this is either due to our
prediction, or due to the queue growing larger. A growing queue indicates larger
delays, and a more volatile average round-trip (especially since we try to update
the service rate every second), which leads to TCP decreasing its congestion

11.5. CONCLUSION 179

window, thus reducing the service rate.

The DSL scenario in Figure 11.10 shows a similar performance to the UDP
counterpart, both delay error- and efficiency-wise. The Simple scheduler, on the
other hand, has problems allocating sufficient bandwidth when the delay upper
bound is small, and also behaves more unpredictable for a larger delay upper
bound.

11.5 Conclusion

In communication systems where traffic is variable, and unused capacity can
carry a large cost, such as in satellite networks, it is important to be efficient
with resources, while still adhering to QoS requirements. We presented in this
section two algorithms that dynamically allocate capacity for a traffic aggregate.
First, we discussed the system model in Section 11.2. The details of the ad hoc
Simple and MBAC algorithms were described in Section 11.3. The simulation
results were detailed in Section 11.4.3. There we compared our results to an ideal
Oracle algorithm and one from the literature in a satellite and DSL setting, for
both the UDP and TCP protocol and various QoS settings.

The Simple algorithm can be a bit unpredictable, and cannot deal with all QoS
situations appropriately. Nonetheless, its simplicity can make it suitable in
scenarios where a very low complexity is required. The MBAC scheduler is
well-suited for most tasks and traffic types, and performs in general similar to or
better than the two other algorithms. The efficiency depends heavily on the
required violation probability, and is in the simulations worst-case 40% less than
the ideal case.

180
CHAPTER 11. CROSS-LAYER RESOURCE ALLOCATION FOR

SATELLITE COMMUNICATION

Chapter 12
Throughput Constraining in

Cross-layer Schedulers

12.1 Introduction

In the previous sections, we discussed cross-layer schedulers for DSL, LTE and
5G. These schedulers try to fairly distribute service rates over the users in a
shared medium, by generating weights that are then used to solve the NUM
problem

R∗ = arg max
R∈R

N∑
n=1

un(Rn,S). (12.1)

In this system, a user n’s service rate depends on the weight in relation to all
other users. This implies that it is challenging to control a single user’s service
rate, since there is no correspondence between one user’s weight and its received
rate. Nonetheless, sometimes we want to be able to constrain the short-term
(and long-term) average rates, for example to ensure the QoS of the users. We
give more reasons for implementing rate constraints in Section 12.1.1.

Most cross-layer schedulers, such as the ones listed in Section 9.6.1,
Section 10.4.1 and Section 12.4.1 do not offer the option to confine the service
rate. Therefore, after reviewing the system model in Section 12.2 we describe our
contribution, the token bucket rate modifier (TBRM) algorithm, in Section 12.3.
It is a generic low-complexity algorithm that constrains the short- and long-term
average service rates of all users in a utility function-based cross-layer scheduler.

Each time slot t, the NUM problem is solved, but each user’s weight is replaced
by

θn exp(
kng
σng

+ knM
σnM

).

Two counters, kng and knM , track the deficiency and excess in service, respectively.
If a user n has received less service than ρng , the amount of tokens will

181

182
CHAPTER 12. THROUGHPUT CONSTRAINING IN CROSS-LAYER

SCHEDULERS

accumulate, and the user’s weight will increase, therefore raising the probability
of receiving more data rate. The parameters σng and σnM are a measure for the
slowness to react to deficiency and excess respectively. The variable θn accounts
for non-positive weights. The algorithm is very easy to incorporate into any
scheduler, as it does not require manipulating the original scheduler’s weight
function.

In Section 12.4 we evaluate our algorithm through multiple simulations. We
compare our results with the unbounded scenarios, and look at the influence of
the slot size τ and parameter σ. The metrics indicate that we can bound the
average service rate for all users within a limited amount of time. Schedulers
whose weight fluctuate heavily are more difficult to constrain.

We close this section with related works in Section 12.5 and a conclusion in
Section 12.6.

12.1.1 Motivation for service rate constraints

In a multi-user environment, it can be useful to ensure that average service rate
of a flow is upper and/or lower bounded. For example, a provider might offer
different QoS guarantees to different users, depending on the subscribed model.
This might include a guaranteed and/or maximal rate.

There are other reasons to ensure a minimal rate. For example applications like
audio and video need a minimal rate for a satisfying QoE. Additionally, the
authors of [42] observe that TCP-based applications can lead to large queues
when the throughput is too small. Finally, a guaranteed rate ensures that
misbehaving competing flows, cannot smother flows from receiving their fair
share.

Applying an upper bound on a user’s service rate is also useful. For example, to
accommodate a new flow into a network, admission control algorithms often
require an upper bound on the arrival rates [150]. If a flow disrespects this rate,
other applications in the network can suffer deteriorated QoS. By limiting the
maximal data rate, a misbehaving flow is isolated and cannot negatively impact
the other applications, but will only punish itself. In addition, it can also be
useful to provide different service levels to users, where an operator may choose
to cap the data rate for cheap data services, and remove this limit for the more
expensive premium services.

Although rate constraints can be implemented into the physical layer, it might
be interesting to handle it at higher layers. First, it reduces the degrees of
cross-layer freedom, and limits the communication necessary. Second, this allows
a more flexible approach, allowing for temporary violations. Finally, it might not
always be possible to introduce the rate constraints into the physical layer. For
example, the scheduler is implemented in hardware or closed-source and cannot
be modified, or the corresponding NUM problem’s complexity might increase too

12.2. SYSTEM MODEL 183

much due to the additional constraints.

Imposing upper bound constraints can be easily accomplished using a token
bucket counter on a user’s output stream. This is wasteful though: the token
bucket would be applied to the service rate, as reserved by the cross-layer
scheduler. Any excess service rate then remains unused by the user itself, but can
neither be used by any of the other users, as would be the case when modifying
the flows’ weights in the scheduler.

12.2 System model

In this section we describe the conventions and symbols in Table 12.1 (in
addition to those defined in the symbols table on Page 5) that will be used in the
remainder of this section. Time in our model is divided into slots of size τ
seconds. There are N users, indexed by n ∈ [1, N], each of which can send
τ ·Rn[t] bits during slot t ∈ N, where 0 ≤ Rn[t] ≤ R̂n is the service rate for user n.

The service rates R[t] ∈ R are determined by a scheduler, based on weights ω[t]:
at the start of slot t, a request is made to the scheduler, the reply of which is
applied at the start of slot t+1. There is thus a delay of τ seconds between a
request and application of the rates.

Table 12.1: Symbols

Symbol Meaning

θ weight modifier

xg value related to the guaranteed rate token bucket

xM value related to the maximum rate token bucket

k number of tokens

ρ rate of tokens

σ slowness parameter

12.3 The Token Bucket Rate Modifier algorithm

12.3.1 Token buckets

Token buckets are applied in various situations. For example in [177, 54, 111]
they are used to describe traffic flows (such as in Section 4.3 on Page 45, where

184
CHAPTER 12. THROUGHPUT CONSTRAINING IN CROSS-LAYER

SCHEDULERS

we used it to model an aggregate of VoIP flows), while in [173] the authors
employ token buckets to check conformance of incoming or outgoing traffic
(policing and shaping), traffic marking in DiffServ [82, 81]. In [204] token buckets
are used for rate estimation.

Conceptually, a token bucket TB(ρ, σ) consists of a bucket holding k tokens (e.g.
bits). Tokens are added at a constant rate ρ to the bucket, which is capped at σ
tokens. Whenever a packet of L bit passes and there are sufficient tokens, L
tokens are removed from the bucket and the packet continues its journey. If
k < L, the packet is considered non-conforming and an appropriate action is
taken, such as being color-marked non-conforming, queued (shaping) or dropped
(policing). Such a token bucket will limit the long-term average outgoing rate to
ρ. On a short-term scale, bursts of up to σ bits can be served.

12.3.2 Algorithm

In the following algorithm, this token bucket principle is used to lower and upper
bound the service rate in a cross-layer scheduler setting. But, in contrast to a
regular token bucket, we now do not cap the tokens to σ. Rather, they are used
to indicate the severity of the excess. In the algorithm, instead of solving

arg max
R∈R

∑
n

f(Rn)ωn (12.2)

where f(R) = R for the linear, and f(R) = R−1 for the reciprocal variant, the
NUM problem is modified to

arg max
R∈R

∑
n

f(Rn)θn exp(
kng
σng

+ knM
σnM

) (12.3)

Here, kng ∈ [0,∞[and knM ∈]-∞, 0] are the tokens for the guaranteed and
maximal token buckets, respectively. The guaranteed token bucket for a user n
handles the lower bound on the long-term average service a user receives, while
the maximal token bucket manages the upper bound on the user’s long-term
average service rate. Every slot, the tokens are updated according to the
following rules:

kng (t+1) = max{0, kng [t]+(ρng−Rn[t])τ} (12.4)

knM (t+1) = min{0, knM [t]+(ρnM−Rn[t])τ} (12.5)

When the received service rate for a user n in the past slots is less than the
guaranteed rate ρng , the virtual token counter kng will continue to increase as long
as there is a deficit in received service, and hence the weight will exponentially
increase. Likewise, if a user n has received more than ρnM service, the virtual

12.3. THE TOKEN BUCKET RATE MODIFIER ALGORITHM 185

token counter knM will have a negative drift, as long as more data rate is assigned
to the user. This will reduce the user’s weight exponentially. When the service
rate is less than ρnM , the token counter will return to 0.

We introduce

θn =
{
ω, if ωn ≤ ε and kng

σng
+ knM
σn
M
6= 0

ωn, else
(12.6)

to account for non-positive weights ωn. Here ω is the EMA of all the positive
weights, and ε a small number, which would result in a user receiving a rate close
to zero if the user’s weight would be less than ε (for the simulations we used
ε = maxn{ωn}·10−5). If ωn ∈]0, ε] it becomes difficult to increase the bandwidth
reliably, and in the case of ωn = 0, it is even impossible, since the weight will
remain zero.

For a negative weight, which can occur for example for best effort flows in the
EXP/PF scheduler, multiplying by θn would result in an even lower weight, and
would also inhibit us from receiving service. The variable ω is used to
approximate a valid weight that is reasonably stable. This weight is scheduler
and traffic dependent, and thus must be calculated at run time.

Note that if ρng = 0 or ρnM ≥ R̂n, then respectively the first and second exponent
will always be 1, and the respective bound is disabled.

It can be seen that if a flow stays within the bounds, then the tokens kng and knM
will remain zero, and θn = ωn, resulting in the unmodified weight. Only if some
rate guarantee will not be met, weights will be adapted.

12.3.3 Discussion

12.3.3.1 Parameters ρng and ρnM

The choice of ρg and ρM influences the speed at which the rate can adapt. For
example, if the guaranteed rate ρng = 0.75R̂n, then in each slot the tokens can
increase by at most 0.75R̂n, and the negative drift is at most 0.25R̂n. Thus, if
this flow has been receiving no service, then the tokens - and thus the weight too
- will increase quickly. If it is receiving service at a rate R̂n, then the tokens will
decrease more slowly. A small ρng thus also implies a small positive and large
negative drift. A similar reasoning can be applied to the maximal rate ρnM .

12.3.3.2 Parameters σng and σnM

In the traditional token bucket algorithms, σ is a measure for the burstiness of a
flow. For example, large values of σ mean that large bursts are allowed. In our
algorithm, the σ can be interpreted as a measure for slowness to react. A large

186
CHAPTER 12. THROUGHPUT CONSTRAINING IN CROSS-LAYER

SCHEDULERS

value of σnM means that longer periods of above-guaranteed service rates are
possible, because our weight will decrease more slowly. Small values of σnM will
react quicker and can lead to an overreaction. The two token buckets can also
influence each other: in case of an overreaction, the other token bucket will also
have a sudden excess, and in turn have a fiercer reaction. This can be observed
for small values of σ in the simulations of Section 12.4.2.2

12.3.3.3 Slot size

In our system, the slot size implies a delay between a request for and subsequent
assignment of the service rate. A larger slot size means that changes will be
slower, and that predicting future traffic becomes more important. This also
matters to the rate constraint algorithm, since the scheduler’s response to
weights becomes more unpredictable, hence modifying the weights. The
simulations of Section 12.4.2.3 briefly look at increasing slot sizes.

12.3.3.3.1 exp The function exp is chosen to modify the token fractions, but
any continuous, strictly increasing function α(·) for which holds that α(0) = 1,

lim
x→−∞

α(x) = 0 and lim
x→∞

α(x) =∞ will give rate guarantees, albeit with different
bounds. Tests with different functions resulted in more short-time erratic
behavior.

12.3.3.4 Additive form

Instead of using a product, it is also possible to use an additive form,

arg max
R∈R

∑
n

f(Rn)ωn+(α(
kng
σng

)+α(k
n
M

σnM
))β

Here α is a continuous, strictly increasing function with the properties α(0) = 0,
lim

x→−∞
α(x) = −∞ and lim

x→∞
α(x) =∞. An additional factor β must be

introduced to account for the fact that ωn is usually not unitless.

We ran some simulations for α(x) = x and α(x) = x3, and β = ω. The
simulations showed that this approach is also possible, and avoids the
non-positive weight problem which forced us to introduce the factor θn. However,
in the NUM problem, the relative weights are important, rather than the
absolute difference, which the additive form expresses. Even though on larger
timescales the additive form leads to nicely averaged data rates, on short
timescales the behavior is very extreme, where Rn[t] alternates between 0 and
rates close to R̂n in successive slots.

12.4. PERFORMANCE EVALUATION 187

12.3.3.5 Complexity

The space and time complexity of the TBRM algorithm is very low. Every slot
we update the N users’ token counters kng and knM (Equations (12.4) and (12.5)).
Additionally, we have to select a suitable θn for all n. The exponentially
weighted ω is a constant time operation O(1). The resulting time complexity is
thus O(3N+1) = O(N).
Likewise, the space requirements are equally low: we track the 2N counters, and
a single EMA ω. The space complexity is in this case O(2N+1) = O(N).

12.3.3.6 Other considerations

Applying rate guarantees transforms a work-conserving scheduler into a
non-work conserving scheduler. I.e. the scheduler might have service assigned,
even though there are no jobs available. For example, the MW scheduler is
served based on its queue size. The larger the queue-rate product, the higher its
service rate will be. It is clear that when the queue size is zero, without the
algorithm would not receive service, but with minimal rate guarantees will have a
weight larger than zero, and hence receive service.

Additionally, imposing throughput constraints reduces the stability region of a
scheduler. Enforcing a maximal data rate inside the stability region, clearly
decreases this region. However, supporting a minimal throughput constraint also
modifies the stability region: a minimal throughput constraint can be rewritten
as a (more complex) maximal throughput constraint on the other users.

12.4 Performance evaluation

12.4.1 Simulation setup

We evaluated the TBRM algorithm using simulations for the schedulers listed in
Table 12.2. We ran simulations in OMNeT++ using the INET framework. Every
τ = 50ms the original weights and weight modifiers were computed. The
resulting NUM problem was then solved with the help of the nlopt [172] library,
by first applying the local variant of the DIviding RECTangles algorithm [69],
followed by the COBYLA algorithm [149], to obtain the final rate, applying them
in the next slot.

12.4.1.1 Scenarios

The scenarios listed in Table 12.3 show the different types of traffic and the
applied constraints.

188
CHAPTER 12. THROUGHPUT CONSTRAINING IN CROSS-LAYER

SCHEDULERS

Table 12.2: Summary of the schedulers used in the simulation and their settings.
Common symbols: R (averaged service rate), λ (averaged arrival rate), Γ is the
average HOL of all real-time flows, and α = −ln(ε)/T̂ .

Scheduler Real-time flow weight Notes

MW [180] q[t]

M-LWDF [17] α

R
·Γ

EXP/PF [151] exp
(
αΓ−Γ
1+
√

Γ

)
1
ρ

MDU [170] w0.6+
{

0, if w ≤ T̂
w−T̂ , otherwise

w = q/λ

MD −q[t] reciprocal scheduler

MDV λ̃i[t+1]·fc
(

qn[t]
ri[t]T̂n

+ Γn[t]
T̂n

+ln2

(
1+ pi[t]

εn

))
Reciprocal scheduler

The traffic types behave differently on short and large timescales. The first type
of traffic consists of a sine-wave, superimposed with a faster oscillating sine-wave.
Some flows will oscillate slowly (Sine2VS) while others oscillate fast (Sine2F).
The second type of traffic is the heavy tail traffic, which is either a trace file of a
video file, such as Starwars, or a self-similar flow, generated by a superposition of
Pareto-distributed sources [25]. The last class of traffic, SAT, tries to send as
much traffic as possible, by ensuring the queue is always backlogged.

These scenarios are run for τ = 0.05s in Section 12.4.2.1 In Section 12.4.2.2 we
vary σ, and in Section 12.4.2.3 we vary τ .

12.4.1.2 Metrics

We examined three different metrics. The m2 and m3 metrics are defined on
windows of size G, which groups G consecutive slots.

m1 The percentage of slots that would be marked non-conforming by a token
bucket process TB(ρg, ρgτx) and TB(ρM , ρMτx) for respectively the
guaranteed and maximal rate. x ∈ R+ is a variable indicating the allowed
burstiness. Increasing x allows for more burstiness, and will result in a
smaller percentage of non-conforming slots.

m2 The average amount of excess bits per window G. If we define the amount
of bit reserved in the w-th window as RG(w) =

∑(w+1)G
t=wG R[t]τ , and W as

the total number of windows, then the m2 metric for respectively the
guaranteed and maximal rate can be formally described as
E[max{ρgGτ−RG(w), 0}|w = 0..W−1] and
E[max{RG(w)−ρMGτ, 0}|w = 0..W−1]. This is a representation of the

12.4. PERFORMANCE EVALUATION 189

Scenario User 1 User 2 User 3 User 4 User 5

1 SAT
[150,250]

SAT
[250,350]

SAT
[350,400]

SAT
[150,350]

SAT
[50,100]

2 Starwars
[50,150]

Alice
[250,350]

Self-Similar
[150,350]

SAT
[150,350]

Sine2VS
[50,120]

3 Starwars
[50,150]

Sine2F
[250,350]

Self-Similar
[150,350]

SAT
[150,350]

Sine2VS
[50,120]

4 Sine2VS
[150,250]

Sine2VS
[150,250]

Sine2VS
[250,300]

Sine2VS
[150,350]

Sine2VS
[50,400]

5 Sine2VS
[150,250]

Sine2VS
[150,250]

Sine2VS
[250,300]

Sine2VS
[150,350]

Self-Similar
[0,0]

Table 12.3: Summary of scenarios. Listed for each user are traffic type, and [ρg,
ρM] in Mbps.

severity of the average violation. A larger number indicates more severe
violations. The metric can be visualized by imagining the surface above or
below the required rate. Increasing G decreases the m2 metric as we
smooth out excess bits over a larger window.

m3 E[BG]: where BG is the set of consecutive violating G-sized windows. This
metric gives an idea of how grouped violations are. For example, if this
number is large, it means that a violation is resolved slowly.

12.4.2 Results

12.4.2.1 Regular scenarios

In the following plots, we averaged over all schedulers and scenarios, as showing
the individual schedulers would result in a cluttered plot. Important
discrepancies between schedulers will be discussed in the text. Each plot has two
curves, one of which displays the results for which no rate constraints were
applied, as a base case, and the other has our TBRM algorithm applied.

12.4.2.1.1 m1 The m1 metric is shown in Figure 12.1, which displays on the
x-axis the allowed burstiness, and on the y-axis the percentage of non-conforming
slots.

If we examine Figure 12.1a, which shows the m1 metric for the upper bound,
then we can see that for x = 1, the number of violations is close to the results of
the unconstrained simulations. When we increase x, the allowed burstiness,

190
CHAPTER 12. THROUGHPUT CONSTRAINING IN CROSS-LAYER

SCHEDULERS

Normal With TBRM

2 4 6 8 10
0

10

20

30

Allowed burstiness

%
n
on

-c
o
n
fo
rm

in
g
sl
o
ts

(a) m1: upper bound on rate

0 0.5 1
0

10

20

30

Allowed burstiness

(b) m1: lower bound on rate

Figure 12.1: m1 for the regular scenarios

however, we can observe that the violation probability quickly drops for our
TBRM algorithm, and becomes almost 0 when the allowed burst size is 5ρMτ .
This indicates that the violations occur irregularly spread. The unconstrained
results remain fixed around 6% for a long time.

The underlying data show that for the constrained scenarios all the schedulers
inhibit the same behavior: there is a steep decline in violations, going from x = 1
to x = 2, and then they gradually go to almost 0 for x = 5.

This behavior is the same for all schedulers over all traffic classes. However, the
initial violation probability for SAT class is slightly lower than the video,
self-similar and sine classes. The SAT traffic is easier to correct due to its queue
based nature.

In the m1 plot of the guaranteed rate in Figure 12.1b, our domain is limited to
]0, 1]: if x = 1, then it means that approximately in every slot we allow a deficit
of ρgτ bit, which is obviously the maximum deficit we can attain per slot. In the
plot, one can see that there is a much wider gap between the constrained and
unconstrained scenarios, confirming the efficacy of our algorithm.

The data show here that the majority of the violations come from the MW and
M-LWDF schedulers, and more specifically for the video streams. For example,
in the TBRM scenarios, for x = 0.1, both schedulers have a violation probability
of about 20%, while the other schedulers are closer to 6%.

This difference can be explained by the fact that in those linear schedulers the
queue length is used as a weight. This number is immediate, which causes a more
unpredictable weight (especially in combination with a linear scheduler), making
it more difficult to estimate a suitable weight modifier. Additionally, the weight
can become 0 very easily. This requires the use of the additional θn modifier.
Even though ω is smoother, the switch between ω and ωn can be disruptive.

12.4. PERFORMANCE EVALUATION 191

However, this extra factor is necessary, as simulations without this correction θn,
result in a much higher violation probability.

The curve looks quite linear. This can be explained by the fact that the
guaranteed rate violations are more evenly spread out.

12.4.2.1.2 m2 Ideally, we can limit the rate immediately. However, there is
an inherent delay of 1 slot, and an elasticity in the form of a burst factor.
Therefore, we study the rate, when we group G

τ slots into windows of size G.

The m2 metric in Figure 12.2, displays the average amount of violated bits per
window, for increasing window sizes G.

Normal With TBRM

0 0.5 1 1.5 2
0

10

20

30

Window length (s)A
v
g
ex
c.

b
it
s/
w
in

(M
b
p
/w

in
)

(a) m2: upper bound on rate

0 0.5 1 1.5 2
0

10

20

30

Window length (s)

(b) m2: lower bound on rate

Figure 12.2: m2 for the regular scenarios

It can be observed that for a window size of G = 0.05s, for the unconstrained
scenarios there is an average of 30 Mbit/window in excess of the target rate.
When we constrain it using our algorithm, this drops to about 10 Mbit/window.

Increasing the window size G, averages out bursts. Like the results for m1, there
is a steep decline until G = 0.25s, which coincides with 5 slots, after which the
bit violations remains stable in the upper bound case. Though less pronounced,
also here do the MW, M-LWDF and MD schedulers fare the worst for small
window sizes, mainly for the Self-Similar traffic.

The decline implies that bursts are usually short-lived: overflow and good
windows are usually close together, as they don’t violate the constraints when
merged. This is also confirmed in the m3 metric, below. The rate of decline is
similar for the scenarios with and without TBRM applied.

192
CHAPTER 12. THROUGHPUT CONSTRAINING IN CROSS-LAYER

SCHEDULERS

12.4.2.1.3 m3 The last metric discusses the average length of a violation
streak. Figure 12.3 shows the average number of successive windows that violate
their constraints in a log-plot. The m3 metric, like the m2 metric, initially
decreases quickly as the window size increases, and then slowly decreases. It can
be clearly seen that, regardless of the unconstrained behavior, the TBRM
algorithm limits the bursts to 5 windows, for G = τ , dropping to 2 windows for
G = 5τ . These short bursts confirm that the algorithm is able to fix excesses
within about 5 slots.

Normal With TBRM

0 0.5 1 1.5 2

100

101

102

Window length (s)

A
v
g
B
u
sy

P
er
io
d
(w

in
d
ow

)

(a) m3: upper bound on rate

0 0.5 1 1.5 2

100

101

102

Window length (s)

(b) m3: lower bound on rate

Figure 12.3: m3 for the regular scenarios

The main contributor to the average in this metric is the MDU scheduler. The
data show that this is because whereas other schedulers consist of many smaller
busy periods, the MDU scheduler has only one or two large busy periods,
increasing the average significantly.

Without the MDU data, the average for 5 windows is about 1, for the minimal
rate constraint, and 2 for the maximal rate constraint.

12.4.2.2 Study of parameter σ

In this section we look at the results for different values of the burst parameter σ.
We let σg = iτρg and σM = iτρM , for i ∈

[
10−2, 104], and look at the effect on

the m1 metric in Figure 12.4, which shows the results for the individual
schedulers.

The plot shows that for the upper bound constraints, the violation probability is
always very low (about 4% at most for i = 104). The lower bound, however,
starts around 50% violation probability, and suddenly drops to smaller
probabilities for i = 102.

12.4. PERFORMANCE EVALUATION 193

MW MLWDF EXPPF MDU MD MDV

10−2 101 104
0

2

4

σM multiplier

%
n
on

-c
o
n
fo
rm

in
g
sl
o
ts

(a) m1: upper bound on rate

10−2 101 104
0

20

40

60

σg multiplier

(b) m1: lower bound on rate

Figure 12.4: m1 for the σ scenarios

Indeed, a small σM will overflow quickly, which causes its weight to be reduced
swiftly, hence there will be fewer violations. As σM grows, the weight modifier
will decrease much more slowly, leaving more room for violations. For the
guaranteed rate, on the other hand, kg cannot build up a deficit as fast as kM , as
discussed before. It is only when the growths of the deficits are balanced that the
m1 metric can lower, which is around i = 102 and upwards.

The schedulers that perform the worst are, unsurprisingly, the MW and
M-LWDF schedulers.

MW MLWDF EXPPF MDU MD MDV

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

τ

%
n
o
n
-c
on

fo
rm

in
g
sl
ot
s

(a) m1: upper bound on rate

0 0.2 0.4 0.6 0.8 1
0

20

40

60

τ

(b) m1: lower bound on rate

Figure 12.5: m1 for the τ scenarios (σ = 5τρ)

194
CHAPTER 12. THROUGHPUT CONSTRAINING IN CROSS-LAYER

SCHEDULERS

12.4.2.3 Study of parameter τ

In the previous simulations, we assumed a slot length of τ = 0.05s. This study
observes how the TBRM algorithm changes in function of τ .

In Figure 12.5 the m1 metric for σ = 5τρ is plotted. It can be observed that
mainly the lower bound in Figure 12.5b is sensitive to an increasing slot length.
This might be because with an increasing τ also grows the probability of a larger
delay: if in a slot a low service rate was assigned erroneously, the delays or
queues will increase and additionally it takes longer to correct, causing larger
queues. Especially the EXP/PF (EXP/PF) scheduler suffers from this, as it is of
the form exp(Γ), where Γ is the head-of-line. As the non-linear MD and MDV
schedulers try to minimize the delay, they suffer less from an increase of slot size.

For the upper bound in Figure 12.5a only the MDU and EXP/PF schedulers
seem to suffer from the increased slot size. This is probably due to the fact that
it is easier to receive a service lower than ρM .

12.5 Related work

In [17, 162] the authors use virtual tokens as a measure for the average waiting
time, and incorporate it with the M-LWDF [17] and EXP/PF [28] scheduling
algorithm to warrant a minimal rate. It is, however, not transferable to other
schedulers. In other schedulers, the guaranteed rate constraint is built into the
scheduler itself [134, 196], but they are all scheduler-specific and don’t allow
enforcing a maximal data rate. The authors of [120] consider utility based
throughput allocation subject to certain properties, but is only valid for linear
utility functions. In [34] a related problem of maintaining an optimal service rate
is proposed. In [18], the authors consider a generic algorithm with minimum and
maximum rate constraints. It is, however, only applicable to schedulers that
operate in function of an average rate. As such, it excludes for example the MW
[180], MD and M-LWDF schedulers. Other schedulers, such as, MDU [169] and
MDV [185] have a more elaborate utility function and are more difficult to
characterize. The authors of [203] also employ a token system, but assume that
users lie about their demands to strategically maximize their utility. In [128]
constraints are applied to network slices of traffic aggregates in a 5G context,
using an additive approach.

12.6 Conclusion

In this section we looked at restricting the service rates given to users in a
cross-layer scheduler setting. This is useful in for example admission control or
providing different service levels to users.

12.6. CONCLUSION 195

We implemented this using a low-complexity algorithm that modifies the weights
in a network utility maximization problem, using the concept of token buckets.
We first discussed cross-layer scheduling, and the need to both upper and lower
limit data rates assigned to users. Then we proposed the TBRM algorithm, and
applied the algorithm to simulations. We ran these simulations for six different
schedulers, and multiple scenarios demonstrating that using our approach it is
possible to limit the service rate, within error, after about five slots for the
maximal and guaranteed service rate for most schedulers. Schedulers that
progress smoothly are easier to constrain than schedulers that can behave wildly,
such as EXP/PF for long slot times, MW or M-LWDF. These are more difficult
to restrain with respect to guaranteeing a lower bound on the service rate.

196
CHAPTER 12. THROUGHPUT CONSTRAINING IN CROSS-LAYER

SCHEDULERS

Chapter 13
Conclusion

In this thesis we looked at two different subjects. In Part I, we analyzed the
performance of a SP scheduler, which has a number of high priority CBR queues,
medium priority VoIP queues, low priority video queues and background traffic.
This particular kind of setup is important in industrial networks, in use by for
example railroad or power companies, who want to replace old, expensive in
maintenance, and dedicated hardware with modern IP networks. The
applications on these networks often have very stringent requirements, and the
analysis we performed helps in determining whether a network can support these
applications securely. Key in this analysis is the characterization of the busy
period of an aggregate of CBR sources. The HP queues can undergo a vacation
period, which influences the busy period and delay distributions. We then
extended the results from single hop to multi-hop, in particular for the E2E delay
and IPDV. We considered the case where the through-traffic has a low load,
leading to a simple solution. When the load of the through-traffic increases, a
more complex algorithm is necessary, as low priority and high priority
through-traffic can lead to extended delays. The analytical results were
compared to multiple different simulated scenarios, and were found to provide a
good bound in most cases, for all the traffic classes considered.

In the second part of this thesis, Part II, we developed algorithms for use in
cross-layer contexts. We developed resource allocation algorithms for two distinct
use cases. In the first use case we developed an algorithm that was designed for
the context of a shared medium, such as recent technologies of DSL, and LTE
and 5G settings. Using a well-defined interface between the physical and upper
layers, a new cross-layer scheduler, called the MDV scheduler, has been shown
through simulations to offer an excellent performance with respect to delay, delay
violations and throughput for various communication technologies. The scheduler
makes use of the different metrics (arrival rate, queue size, HOL, and the
short-term PLR) to obtain weights that reflect the current requirements of users’
applications. We have discussed some properties of the MDV scheduler in the
DSL context. For example, for convex rate regions the scheduler is throughput
optimal, i.e. the number of packets in the system can always be bounded,
whenever any other cross-layer scheduler can bound the number of packets. For

197

198 CHAPTER 13. CONCLUSION

non-convex rate regions, which occur for example in the 5GBB scenarios we
consider, the number of packets is not necessarily bounded. However, this rarely
occurs in practice.

The simulations for the DSL scenarios looked at the PLR, throughput and
average delay for a variety of scenarios and a number of schedulers from
literature. The MDV’s performance was often similar or significantly better than
those other schedulers, regardless of usage of an intra-user EDF scheduler or each
flow receiving its own “channel”.

The simulations for the LTE and 5G scenarios also show the excellent
performance of the MDV scheduler. The PLR and throughput are comparable or
better than other schedulers from literature. The fairness, however, is overall less
than the other schedulers. In some cases this is because the mean value is close
to zero, skewing the result.

The second use case deals with resource allocation for an aggregate of sources,
where there is a significant delay between requesting a service rate, and acquiring
this service rate. This can be of use in satellite communications, where many
users are grouped together, and resources are allocated for this group of users. A
simple ad hoc algorithm and a more complex algorithm based on an admission
control mechanism was developed. In the simulations we compare the algorithms
with an ideal one, which has access to future traffic arrivals, for the UDP and
TCP protocols. We look at the delay and the efficiency. The simple algorithm’s
performance is in some cases good, while in other cases it cannot allocate
resources as required. The more complex MBAC algorithm can handle most
traffic types reasonably well, and usually performing better than the other
algorithms. Compared to the ideal allocation, the efficiency is worst-case 40%
less.

We finally developed the TBRM algorithm for cross-layer schedulers, which
constrains the service rate between an upper- and a lower bound by
manipulating the weights of the flow’s. This is useful to e.g. limit ill-behaving
flows or enforce some types of service level agreements. The algorithm is based
on token buckets. In the simulations we applied the algorithm to six different
cross-layer schedulers. We found that service rates are usually restored within
their bounds after about five slots. Some schedulers are more difficult to
constrain due to their erratic weight changes.

13.1 Future work

For the cross-layering, it might be interesting to see how machine learning could
be incorporated [194] For example, at the DSL physical layer, deep learning has
shown to improve conventional methods of resource allocation, with respect to
computation of speed [29]. Likewise, deep learning has been successfully applied
to the cross-layer scheduling component in wireless networks. For example, in

13.1. FUTURE WORK 199

[146], the authors applied reinforcement learning techniques to the cross-layer UE
of an LTE network, and in [13], a deep reinforcement learning agent, called
LEASCH, has learned to schedule from scratch in 5G networks. Similar
techniques might be applied in the context of DSL networks to increase the
throughput and reduce the packet loss even more.

Obtaining bounds on the delay is quite difficult. Deriving bounds using
Lyapunov techniques result in delays that are very loose, and not usable in
practice. Implementing the system as a Markov chain, results in an explosion of
states, due to the stateful nature of the MDV scheduler. In [114] a method is
developed using Petri nets for stochastic wireless networks, that tries to reduce
the computational complexity. A similar approach might be applied to the MDV
scheduler. Approximations to these delay bounds could then be used to
implement an admission control algorithm.

200 CHAPTER 13. CONCLUSION

Appendix AAA
Constructing matrix H

This appendix shows an algorithm to compute the matrix H in equations (3.16)
and (3.17). Note that, in contrast to Section 3.6, we use zero-based numbering
for vectors to make it more suitable for implementation in a programming
language like python or c++.

Algorithm 1: Constructing the H matrix
1 func H(i : int , Q: int) : Matrix [int] =
2 l e t M = N. l en
3 var curRow = Vector [int] (M)
4
5 proc he lpe r (j : int) : Matrix [int] =
6 var r e s u l t : Matrix [int]
7 i f j ≥ M: return r e s u l t
8
9 for k in 0 . . N[j] :

10 curRow [j] = k
11 curRow [j+1 . . M−1] = 0
12

13 l e t l en = curRowT ∗L
14 i f l en > Q: break
15 e l i f l en = Q:
16 i f curRow [i] > 0 :
17 r e s u l t . addRow(curRow)
18 endif
19 break
20 endif
21
22 r e s u l t . extend (he lpe r (j +1))
23 return r e s u l t
24
25 return he lpe r (0 , r e s u l t)

201

202 APPENDIX A. CONSTRUCTING MATRIX H

Appendix BBB
Calculating the vacation pmf

Algorithm 1: Calculating the vacation pmf
1 var vacat ion :Pmf
2
3 for s c ena r i o in permutations ([' 0 ' , 'A' , 'B' , 'C' , 'D' , 'E '] , nLinks) :
4 var ps : seq [P]
5 var vs : seq [Pmf]
6
7 for i in 0 . . nLinks −1:
8 l e t V HP+LP

i
=merged ([

9 V HPi . sca ledP (ρHPi (1+ρLPi)/ρi) ,
10 V LPi . sca ledP (ρLPi ·((1−ρi)+ρLPi)/ρi)
11])
12
13 case (i f i >0: s c ena r i o [i −1] else : '0 ')+ s c ena r i o [i]
14 o f " 0 0 " , "A0 " : ps . add ((1−ρi)) ; vs . add (0)
15 o f "0A" , "AA" : ps . add (ρCTi) ; vs . add (V HP+LP

i
)

16 o f "0B" , "AB" : ps . add (0) ; vs . add (0)
17 o f "0C" , "AC" : ps . add (ρLP,TT

i
) ; vs . add (V LP,TT

i
)

18 o f "0D" , "AD" : ps . add (0) ; vs . add (0)
19 o f "0E" , "AE" : ps . add (ρHP,TT

i
) ; vs . add (V HPi)

20
21 o f "B0 " , "C0 " : ps . add (0) ; vs . add (0)
22 o f "BA" , "CA" : ps . add (ρCTi) ; vs . add (V HP+LP

i
)

23 o f "BB" , "CB" : ps . add ((1−ρi)) ; vs . add (L
′LP,TT)

24 o f "BC" , "CC" : ps . add (ρLP,TT
i

) ; vs . add (V LP,TT
i

)
25 o f "BD" , "CD" : ps . add (0) ; vs . add (0)
26 o f "BE" , "CE" : ps . add (ρHP,TT

i
) ; vs . add (V HPi)

27
28 o f "D0" , " E0 " : ps . add (0) ; vs . add (0)
29 o f "DA" , "EA" : ps . add (ρCTi) ; vs . add (V HPi)
30 o f "DB" , "EB" : ps . add (0) ; vs . add (0)
31 o f "DC" , "EC" : ps . add (ρLP,TT

i
) ; vs . add (V HPi)

32 o f "DD" , "ED" : ps . add ((1−ρi)) ; vs . add (L(()V HPi))
33 o f "DE" , "EE" : ps . add (ρHP,TT

i
) ; vs . add (V HPi)

34
35 i f Πp∈ps(p) == 0 : break
36
37 vacat ion . addWeighted (vs . convoluted () , Πp∈ps(p))
38

203

204 APPENDIX B. CALCULATING THE VACATION PMF

Appendix CCC
Proof of stability for constant A

and B

For the proof of Theorem 1 on page 121 we model the queue using a Markov
chain. We assume a flow i has packet arrivals according to a Poisson process with
parameter νi. The packet sizes are exponentially distributed with mean µ−1

i .
Define the average arrival rate vector λ = [λ1, . . . , λn] = [ν1

µ1
, . . . , νnµn]. By

including the residual inter-arrival and service times we can extend this result to
renewal arrival processes and generally distributed packet sizes [55], and obtain
results for general distributions.

The transition rates of the queues that describe the system are given by

Qi → Qi+1 at rate νi
Qi → Qi−1 at rate µiR∗i

where R∗i is given by Equation (9.14).

In the proof we look at the fluid system corresponding to the Markov process Qi.
In [55] it is shown that if a fluid limit model eventually reaches zero, regardless of
its initial configuration, and remains there, then the original queuing network is
positive Harris recurrent, and we consider the system stable. Positive Harris
recurrent means that in the Markov chain every state will be visited an
unbounded number of times, with probability 1.

Proof. We look at the fluid system, where the sum of the initial queues grow to
infinity:

Xi[t] = lim
ω→∞

Qi(ωt)
ω

,∀i, with
∑
i

Qi(0) = ω.

If this limit exists, we have that
∑
iXi(0) = 1. Define X[t] = [X1[t], . . . , Xn[t]].

Given an initial distribution of X(0), it follows from the strong law of large
numbers that the evolution of the fluid X[t] is defined by

d

dt
Xi = νi−µiRi[t]

205

206 APPENDIX C. PROOF OF STABILITY FOR CONSTANT A AND B

for all i, t such that Xi[t] > 0. R[t] is the solution to Equation (9.14). If the
traffic conditions

λ ∈ Cα (C.1)

are satisfied, then we show that there exists a constant T > 0, such that
X[t] = 0,∀t ≥ T , which, according to [55], implies stability.

For this, we define Lyapunov function F and scheduler G as

F (u) =
∑
i

(Aiui+Bi)β

µi(λi+ζ)αAiβ
,

G(u) =
∑
i

(AiXi+Bi)β−1 · (ui+ζ)1−α

1−α .

The Lyapunov function represents a scalar measure of the queue sizes in the
system and will be large if at least one of the queues is large. Differentiating
F (X) with respect to t we get the Lyapunov drift:

d

dt
F (X) =

∑
i

(AiXi+Bi)β−1

(λi+ζ)α
(λi−Ri), (C.2)

using the fact that λi = νi
µi
.

Let R = arg maxu∈RG(u) = arg maxu∈Rα G(u). Thus, R attains the maximum
over Rα, and we have that for any u the gradient of G satisfies

∇G(R)·(u−R) ≤ 0,

where · is the dot-product. By concavity of G, we obtain that

∇G(u)·(u−R) ≤ 0. (C.3)

Under the stability condition (C.1), we can find an ε > 0 such that
u = (1+ε)λ ∈ Cα. Applying u to (C.3) results in∑

i

(AiXi+Bi)β−1(λi(1+ε)+ζ)−α(λi(1+ε)−Ri) ≤ 0

which can be reduced to∑
i

(AiXi+Bi)β−1(λi+ζ)−α(λi(1+ε)−Ri) ≤ 0.

207

This can be rewritten using (C.2) to obtain

d

dt
F (X) ≤ −ε

∑
i

µ−1
i (λi+ζ)−α(AiXi+Bi)β−1

≤ −ε β
√

min
i

(µ−1
i (λi+ζ)−α)·

(∑
µ−1
i (λi+ζ)−α(AiXi+Bi)β

) β−1
β (C.4)

≤ −ε β
√

min
i

(µ−1
i (λi+ζ)−α)(βmin(A))

β−1
β ·

(∑ µ−1
i (λi+ζ)−α

βAi
(AiXi+Bi)β

) β−1
β

(C.5)

= −θF (X)
β−1
β

In step (C.4) we employed the well-known inequality
||a||q ≤ ||a||p ≤ n1/p−1/q||a||q, where ||a||p is the p-norm of a vector a, 0 < p < q,
and n the number of elements in the vector. Let in the following ai = p

√
wixi,

p = β−1, q = β and A = [A1, . . . , An] then

||a||β ≤ ||a||β−1

⇐⇒
(∑

w
β
β−1
i xβi

)1/β
≤
(∑

wix
β−1
i

)1/(β−1)

⇐⇒ min(w)
1
β

(∑
wix

β
i

) β−1
β ≤

∑
wix

β−1
i

⇐⇒ −
∑

wix
β−1
i ≤ −min(w)

1
β

(∑
wix

β
i

) β−1
β

Step (C.5) uses Abel’s inequality.

Now, if there exists T > 0 for which F (X(T)) = 0, then it is clear that F (X[t])
will always be able return to 0, ∀t ≥ T .

Furthermore,

d

dt
F (X) ≤ −θF (X)

β−1
β

⇐⇒ d

dt
ln(F (X))F (X)

1
β ≤ −θ.

208 APPENDIX C. PROOF OF STABILITY FOR CONSTANT A AND B

Integrating both sides results in∫ t

0

d

dt
ln(F (X(s)))F (X(s))

1
β ds ≤

∫ t

0
−θds

⇐⇒ βF (X(s))
1
β |t0 ≤ −θt

⇐⇒ F (X[t]) ≤
(
F (X(0))

1
β − θ

β
t

)β
.

This implies that F (X[t]) = 0, and thus also X[t] = 0 for all t ≥ T , with

T = 1
ε
β

√√√√∑
i

minj(µj(λj+ζ)α) (Ai+Bi)β
Ai

µi(λi+ζ)αmin(A)β−1 .

The inclusion of a constant Bi does not impact the stability region (but does
increase T). Also, multiplying A by a constant c will cancel out, and have no
effect on T . Modifying Ai does influence T , as then more service is allocated to
flow i, leaving less service for other flows. The smallest T is reached when all Ai
are equal. The ζ parameter adds a constant to the arrival rates λi. As a typical ζ
is small, its influence on T is limited.

We can obtain the MD scheduler for β = 2, α = 2, A = 1 and B = 0, resulting in

TMD = 1
ε

√√√√∑
i

minj(µj(λj+ζ)2)
µi(λi+ζ)2 .

For the MW scheduler (β = 2 and α = 0) we get

TMW = 1
ε

√
minj(µj)∑

i µi
.

Both schedulers are thus clearly stable when λ ∈ Cα as the upper bound exists.
Additionally, for the MW scheduler, we also have throughput optimality (i.e.
stability region is maximal) as R0 forms a convex hull of the rate region. In [33]
it is shown that there exists a γ > 0, such that the scheduler with α < γ also is
throughput optimal. This γ depends on the shape of the rate region. For a
convex rate region γ =∞, and thus all α-fair schedulers are throughput optimal.

Finally, we can also observe that limζ→∞ T = TMW , i.e. we can make any of the
schedulers approach the MW scheduler by increasing ζ (and thus making it
throughput optimal).

Appendix DDD
Proof of stability for

time-dependent A and B

We now show for Corollary 1.1 on page 121 that the fluid limit model
corresponding to the non-homogeneous Markov process, i.e. for time-dependent
A and B, also reaches zero, regardless of its initial configuration, and remains
there, with probability 1.

Proof. Analogous to the proof of Theorem 1, we define

F (u) =
∑
i

(Ai[t]ui+Bi[t])β

µi(λi+ζ)αAi[t]β
,

G(u) =
∑
i

(Ai[t]Xi+Bi[t])β−1 · (ui+ζ)1−α

1−α .

Differentiating F (X) with respect to t results in

d

dt
F (X) =

∑
i

(λi+ζ)−α(AiXi+Bi)β−1 ·(λi−Ri)+a+b

where

a =
∑
i

(λi+ζ)−αµ−1
i

d

dt
Ai ·(AiXi+Bi)β−1 ·

(
Xi

Ai
−AiXi+Bi

A2
iβ

)
and

b =
∑
i

(λi+ζ)−αµ−1
i

d

dt
Bi ·

(AiXi+Bi)β−1

Ai
.

Repeating the same inequality steps as in the previous proof, we arrive at

d

dt
F (X) ≤ −θF (X)

β−1
β +a+b.

209

210APPENDIX D. PROOF OF STABILITY FOR TIME-DEPENDENT A AND B

In the fluid system considered here, a and b depend on d
dtAi and

d
dtBi

respectively, which are both undefined for all t ∈ N (where they change value)
and 0 for all other t. Thus, we can reduce the system to one in which the weights
are constant for the duration of a slot. At the slot boundaries t ∈ N the function
F (X[t]) possibly makes a jump, due to the weights changing. However, this does
not impact the queue sizes themselves. We have thus that d

dtF (X) ≤ 0.

As before, we can rewrite the equation to obtain

F (X[t]) ≤
(
F (X(0))

1
β −η

t∑
s=0

min(A(s))
β−1
β

)β
(D.1)

where η = ε
β

√
mini(µ−1

i
(λi+ζ)−α)
β . This implies that the smaller min(A(s)) is with

respect to max(A(s)), the longer it can take to reduce all queues. If
min(A(s)) = max(A(s)),∀s, then the result is reduced to the previous theorem,
as A is scaling-independent.

From (D.1) we can again obtain T .

Appendix EEE
DSL Oracle scheduler

In this appendix, we describe the algorithm to determine the ideal rate for the
DSL simulations of Section 9.6. The algorithm runs in two steps. First, we
calculate for each flow the minimal required service rate for the next slot. This
first step does not depend on the rate region. Then, in the second step, we assign
the service rates. We first check if each flow can have its minimal required rate, if
this is possible, we maximize the system throughput. If some flows cannot have
their minimum required service rate, then service rates are assigned such that the
number of delay violations is minimized. We now describe these two steps in
more detail.

Step 1: calculate the minimal required rate We define ρ̌i,t+1 to be the
minimal required service rate in slot t+1 to satisfy flow i’s delay requirement. It
is based on the observed past delays, and the arrivals in the next M slots.
Assume function sim(ρt, ρt+1, qt, Dt, A[t,t+M [) simulates the queue evolution for
the arrivals in the next M slots given rates ρt and ρt+1 for respective slots, and
returns the resulting delay distribution and the maximal delay encountered
during [t, t+M]. Then we can find an approximation of the smallest service
ρ̌i,t+1 for which the ε-percentile of this distribution is less than T̂ , as described in
(Listing E.1).

Lines 1-3 define the constants for the algorithm. A flow will always receive a
minimal service rate Ř. The function starting at line 5 implements the search
procedure. This algorithm is based on a binary search. A distinction is made
between a flow that can satisfy its QoS or not. If R̂ cannot satisfy the QoS (i.e.
isP irOk=false), then the minimal service rate that does not worsen the metric is
used (see lines 21-23). If it is possible to satisfy the QoS (isP irOk=true) in the
next slot, then the minimal service rate that will satisfy the requirements is
selected (line 20). The lines 25-29 perform the binary search.

The function defined at line 33 returns true if the delay distribution is suitable
for the QoS requirements. To avoid excessive packet delays, the maximal delay is
bounded by M .

211

212 APPENDIX E. DSL ORACLE SCHEDULER

Algorithm 1: Finding ρ̌t+1

1 const T̂ , ε

2 const Ř := minimal s e r v i c e rate , R̂

3 const M := 2T̂
4
5 proc f ind_minimal_rate (ρt , Qt , Dt , A[t,t+M[) : Rate =
6 var lo := Ř , hi := R̂

7 i f #Qt = 0 : return Ř
8
9 var ρ̌t+1 : Rate

10 const Dpir , Dmax,pir := sim (ρt , R̂ , Dt , A[t,t+M[)
11 const isP irOk := delay_distr_is_ok (Dpir , Dmax,pir)
12 var Dbest := Dpir
13
14 for i in 1 . . 20 :
15 const mid := (l o+hi)/2
16 const D , Dmax := sim (ρt , mid , Dt , A[t,t+M[)
17
18 var isOk : bool
19 i f isP irOk :
20 isOk := delay_distr_is_ok (D, Dmax)
21 else :
22 isOk := (D ≤ Dbest)
23 Dbest := min(D,Dbest)
24
25 i f isOk :
26 hi := mid
27 ρ̌t+1 := mid
28 else :
29 lo := mid
30
31 return ρ̌t+1
32
33 proc delay_distr_is_ok (D, Dmax) : bool =
34 const p := p e r c e n t i l e (D , 1−ε)
35 return (p ≤ T̂) and (Dmax ≤M)

213

Step 2: distribute the service rates After having calculated ρ̌i,t+1 for all
flows in step 1, the operating point R that satisfies the users’ requirements best
is now selected and the service rates are distributed over the flows.

Denote the set of configurations that satisfy all ρ̌t+1 by Rok ⊂ R̂. Then there are
two cases to consider: |Rok| > 0, i.e. at least one configuration is suitable, or
|Rok| = 0 indicating that there is at least one flow that will not receive its
required minimal rate.

When |Rok| > 0, the optimal operating point is chosen as

R∗ = arg max
R∈Rok

N∑
n=1

R,

i.e. optimizing the system throughput. A flow then receives a rate relative to its
weight:

ρn = ρ̌i,t+1+(R∗n−
φ∑
j=1

ρ̌j,t+1)· ρ̌i,t+1∑φ
j=1 ρ̌j,t+1

. (E.1)

When |Rok| = 0, the aim will be to limit the delay violations. To accomplish
this, the optimal operating point

R∗ = arg min
R∈R̂

N∑
n=1

φ∑
i=1

(ρ̌i,t+1−
ρ̌i,t+1∑φ
j=1 ρ̌j,t+1

R)+,

is selected, i.e. we minimize the average service rate deficit. The rate assignment
of the flows is the same as for the first case, as described in Equation (E.1).

Calculating the ideal rate is computationally intensive, hence we use two
shortcuts. First, we only consider the arrivals in the next M = 2 slots. Increasing
M would allow for better handling of bursts and a more accurate calculation of
the required rate, but at the cost of increased time complexity. Second, we use
the minimal required service rate rather than the delay distribution to calculate
the required rate. This approximation may not always be valid. However,
evaluating the delay distribution for every rate tuple would increase the time
complexity considerably. Hence, this Oracle scheduler gives an approximation to
the ideal scheduler with respect to the delay violation metric. It fails mainly in
high load situations: in such cases often the minimal required service rate cannot
be satisfied, and the wrong flow is sacrificed to give up service rate. Without
evaluating the delay distribution, it is impossible to know the effects of this
sacrifice.

214 APPENDIX E. DSL ORACLE SCHEDULER

References

[1] Alcatel-Lucent to provide communications system to connect railway lines
in two Spanish cities. https://www.telecomlead.com/latest-news/alca
tel-lucent-to-provide-communications-system-to-connect-railway
-lines-in-two-spanish-cities-19601. Accessed: 2021-07-01. 17

[2] INET Framework. https://inet.omnetpp.org/. 72

[3] Next stop Berlin – IRJ’s full InnoTrans preview.
https://www.railjournal.com/news/next-stop-berlin/. Accessed:
2021-07-01. 17

[4] OMNeT++ Network Simulation Framework. http://www.omnetpp.org/.
72

[5] Sweden’s national rail administration Banverket relies on innovations from
Alcatel-Lucent to help ensure the safety and smooth operation of rail
traffic. https://www.webwire.com/ViewPressRel.asp?aId=94695.
Accessed: 2021-07-01. 17

[6] TRANSPOWER NEW ZEALAND Providing Modern Communications for
New Zeland’s National Electricity Grid. http://www.pexx.net/pdfs/case
studies/alcatel_lucent/mpr9500/CS_Transpower_6_010408.pdf.
Accessed: 2021-07-01. 17

[7] Using Moxa Ethernet Solutions to Create a Reliable Substation
Automation System. https://www.moxa.com.tw/applications/Substat
ion_Automation_System.htm. Accessed: 2021-07-01. 17

[8] N. Adesh and A. Renuka. Adaptive downlink packet scheduling in lte
networks based on queue monitoring. Wireless Networks, 25(6):3149–3166,
2019. 144

[9] M. Aguado, E. Jacob, J. Matias, C. Conde, and M. Berbineau. Deploying
cctv as an ethernet service over the wimax mobile network in the public
transport scenario. In 2009 IEEE International Conference on
Communications Workshops, pages 1–5. IEEE, 2009. 60

[10] A. Aguiar, A. Wolisz, and H. Lederer. Utility-based packet scheduler for
wireless communications. Proceedings. 2006 31st IEEE Conference on Local
Computer Networks, pages 863–870, 2006. 118

215

https://www.telecomlead.com/latest-news/alcatel-lucent-to-provide-communications-system-to-connect-railway-lines-in-two-spanish-cities-19601
https://www.telecomlead.com/latest-news/alcatel-lucent-to-provide-communications-system-to-connect-railway-lines-in-two-spanish-cities-19601
https://www.telecomlead.com/latest-news/alcatel-lucent-to-provide-communications-system-to-connect-railway-lines-in-two-spanish-cities-19601
https://inet.omnetpp.org/
https://www.railjournal.com/news/next-stop-berlin/
http://www.omnetpp.org/
https://www.webwire.com/ViewPressRel.asp?aId=94695
http://www.pexx.net/pdfs/casestudies/alcatel_lucent/mpr9500/CS_Transpower_6_010408.pdf
http://www.pexx.net/pdfs/casestudies/alcatel_lucent/mpr9500/CS_Transpower_6_010408.pdf
https://www.moxa.com.tw/applications/Substation_Automation_System.htm
https://www.moxa.com.tw/applications/Substation_Automation_System.htm

216 REFERENCES

[11] G. Aiyetoro and F. Takawira. Joint user scheduling and prb mapping
scheme in satellite lte networks. In 2018 14th International Wireless
Communications & Mobile Computing Conference (IWCMC), pages 24–29.
IEEE, 2018. 131

[12] M. Akerele, I. Al-Anbagi, and M. Erol-Kantarci. A fiber-wireless sensor
networks qos mechanism for smart grid applications. IEEE Access,
7:37601–37610, 2019. 25

[13] F. Al-Tam, N. Correia, and J. Rodriguez. Learn to schedule (leasch): A
deep reinforcement learning approach for radio resource scheduling in the
5g mac layer. IEEE Access, 8:108088–108101, 2020. 199

[14] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson,
J. Heidemann, J. Touch, H. Kruse, S. Ostermann, et al. Ongoing tcp
research related to satellites. Technical report, IETF, 2000. 178

[15] S. Andreev, A. Anisimov, Y. Koucheryavy, and A. Turlikov. Practical
traffic generation model for wireless networks. In Fourth ERCIM Workshop
on Emobility, page 61. Citeseer, 2010. 46

[16] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and
P. Whiting. Scheduling in a queuing system with asynchronously varying
service rates. Probability in the Engineering and Informational Sciences,
18(02):191—217, 2004. 111

[17] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and
R. Vijayakumar. Providing quality of service over a shared wireless link.
IEEE Communications magazine, 39(2):150–154, 2001. 114, 144, 188, 194

[18] M. Andrews, L. Qian, and A. Stolyar. Optimal utility based multi-user
throughput allocation subject to throughput constraints. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, volume 4, page 2415—2424.
IEEE, 2005. 194

[19] I. Angri, M. Mahfoudi, A. Najid, and M. El Bekkali. Exponential mlwdf
(exp-mlwdf) downlink scheduling algorithm evaluated in lte for high
mobility and dense area scenario. International Journal of Electrical and
Computer Engineering, 8(3):1618, 2018. 131, 144, 150

[20] R. P. Antonioli, E. B. Rodrigues, T. F. Maciel, D. A. Sousa, and F. R.
Cavalcanti. Adaptive resource allocation framework for user satisfaction
maximization in multi-service wireless networks. Telecommunication
Systems, 68(2):259–275, 2018. 111

[21] S. Asmussen. Applied probability and queues, volume 51. Springer Science
& Business Media, 2008. 174

[22] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and
D. Simeonidou. An analytical model for software defined networking: A

REFERENCES 217

network calculus-based approach. In 2013 IEEE Global Communications
Conference (GLOBECOM), pages 1397–1402. IEEE, IEEE, 2013. 35

[23] A. Azzouni and G. Pujolle. A long short-term memory recurrent neural
network framework for network traffic matrix prediction. arXiv preprint
arXiv:1705.05690, 2017. 161

[24] J. W. Baek, H. W. Lee, S. Ahn, and Y. H. Bae. Exact time-dependent
solutions for the m/d/1 queue. Operations Research Letters, 44(5):692–695,
2016. 56

[25] X. Bai and A. Shami. Modeling self-similar traffic for network simulation.
arXiv preprint arXiv:1308.3842, 2013. 188

[26] M. Barabas, G. Boanea, A. B. Rus, V. Dobrota, and J. Domingo-Pascual.
Evaluation of network traffic prediction based on neural networks with
multi-task learning and multiresolution decomposition. In Intelligent
Computer Communication and Processing (ICCP), 2011 IEEE
International Conference on, pages 95–102. IEEE, 2011. 161

[27] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed,
and mixed networks of queues with different classes of customers. Journal
of the ACM (JACM), 22(2):248–260, 1975. 20

[28] R. Basukala, H. M. Ramli, and K. Sandrasegaran. Performance analysis of
exp/pf and m-lwdf in downlink 3gpp lte system. In 2009 First Asian
Himalayas International Conference on Internet, pages 1–5. IEEE, 2009.
111, 194

[29] P. Behmandpoor, J. Verdyck, and M. Moonen. Deep learning-based
cross-layer resource allocation for wired communication systems. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4120–4124. IEEE, 2021. 198

[30] O. Bello, H. Zen, A.-K. Othman, and K. A. Hamid. Efficient and
low-complexity scheduling algorithm in a multi-user heterogeneous traffic
scenario. In 2015 IEEE 12th Malaysia International Conference on
Communications (MICC), pages 201–206. IEEE, 2015. 131, 144, 150

[31] N. Benammar, F. Ridouard, H. Bauer, and P. Richard. Forward end-to-end
delay analysis extension for fp/fifo policy in afdx networks. In 2017 22nd
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8. IEEE, 2017. 19

[32] T. Bonald and L. Massoulié. Impact of fairness on internet performance. In
ACM SIGMETRICS Performance Evaluation Review, volume 29, pages
82–91. ACM, 2001. 120

[33] T. Bonald and A. Proutière. Flow-level stability of utility-based allocations
for non-convex rate regions. In 2006 40th Annual Conference on
Information Sciences and Systems, pages 327–332. IEEE, 2006. 121, 208

218 REFERENCES

[34] S. Borst and P. Whiting. Dynamic channel-sensitive scheduling algorithms
for wireless data throughput optimization. IEEE Transactions on
Vehicular Technology, 52(3):569–586, 2003. 194

[35] L. Breslau, S. Jamin, and S. Shenker. Comments on the performance of
measurement-based admission control algorithms. In INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1233–1242.
IEEE, 2000. 164

[36] O. Brun and J.-M. Garcia. Analytical solution of finite capacity m/d/1
queues. Journal of Applied Probability, pages 1092–1098, 2000. 56

[37] R. Bruno, R. Garroppo, and S. Giordano. Token bucket dimensioning for
aggregate voip sources. In Proceedings of IEEE ATM Workshop 2000, 2000.
54, 115, 170

[38] M. Buchli, D. De Vleeschauwer, J. Janssen, and G. H. Petit. Policing
aggregates of voice traffic with the token bucket algorithm. In 2002 IEEE
International Conference on Communications. Conference Proceedings.
ICC 2002 (Cat. No. 02CH37333), volume 4, pages 2547–2551. IEEE, 2002.
47, 48

[39] A. Burchard, J. Liebeherr, and S. D. Patek. A min-plus calculus for
end-to-end statistical service guarantees. IEEE Transactions on
Information Theory, 52(9):4105–4114, 2006. 21

[40] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. Downlink
packet scheduling in lte cellular networks: Key design issues and a survey.
IEEE Communications Surveys & Tutorials, 15:678–700, 2013. 118, 145

[41] E. Castillo. Extreme value theory in engineering. Elsevier, 2012. 165

[42] R. Chakravorty, S. Katti, J. Crowcroft, and I. Pratt. Flow aggregation for
enhanced tcp over wide-area wireless. In INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications.
IEEE Societies, volume 3, pages 1754–1764. IEEE, 2003. 182

[43] Y. H. Chan, T. Randhawa, and S. Hardy. Traffic prediction based access
control using different video traffic models in 3g cdma high speed data
networks. In Proceedings of the 2006 international conference on Wireless
communications and mobile computing, pages 227–232. ACM, 2006. 160

[44] Z. Chen, N. Pappas, M. Kountouris, and V. Angelakis. Throughput with
delay constraints in a shared access network with priorities. IEEE
Transactions on Wireless Communications, 17(9):5885–5899, 2018. 19

[45] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as
optimization decomposition: A mathematical theory of network
architectures. Proceedings of the IEEE, 95(1):255–312, 2007. 102

REFERENCES 219

[46] P. Chini, G. Giambene, D. Bartolini, M. Luglio, and C. Roseti. Dynamic
resource allocation based on a tcp-mac cross-layer approach for dvb-rcs
satellite networks. International Journal of Satellite Communications and
Networking, 24(5):367–385, 2006. 177

[47] L. Chisci, R. Fantacci, and T. Pecorella. Predictive bandwidth control for
geo satellite networks. In 2004 IEEE International Conference on
Communications (IEEE Cat. No. 04CH37577), volume 7, pages 3958–3962.
IEEE, 2004. 160

[48] J.-G. Choi and S. Bahk. Cell-throughput analysis of the proportional fair
scheduler in the single-cell environment. IEEE Transactions on Vehicular
Technology, 56(2):766–778, 2007. 144

[49] S. Chong, S.-q. Li, and J. Ghosh. Predictive dynamic bandwidth allocation
for efficient transport of real-time vbr video over atm. IEEE Journal on
Selected Areas in Communications, 13(1):12–23, 1995. 161

[50] F. Ciucu. Network calculus delay bounds in queueing networks with exact
solutions. In International Teletraffic Congress, pages 495–506. Springer,
2007. 21

[51] F. Ciucu. End-to-end delay analysis for networks with partial assumptions
of statistical independence. In Proceedings of the Fourth International
ICST Conference on Performance Evaluation Methodologies and Tools,
pages 1–11. Citeseer, 2009. 21

[52] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling properties of statistical
end-to-end bounds in the network calculus. IEEE Transactions on
Information Theory, 52(6):2300–2312, 2006. 20

[53] R. Coelho, G. Fohler, and J.-L. Scharbarg. Dimensioning buffers for afdx
networks with multiple priorities virtual links. In 2015 IEEE/AIAA 34th
Digital Avionics Systems Conference (DASC), pages 10A5–1. IEEE, 2015.
22

[54] R. L. Cruz. A calculus for network delay. i. network elements in isolation.
Information Theory, IEEE Transactions on, 37(1):114–131, 1991. 183

[55] J. G. Dai et al. On positive harris recurrence of multiclass queueing
networks: a unified approach via fluid limit models. The Annals of Applied
Probability, 5(1):49–77, 1995. 205, 206

[56] J. Daigle and J. Langford. Models for analysis of packet voice
communications systems. IEEE Journal on selected areas in
communications, 4(6):847–855, 1986. 46

[57] C. Demichelis and P. Chimento. IP Packet Delay Variation metric for IP
performance metrics (IPPM). Technical report, RFC 3393, November,
2002. 33

220 REFERENCES

[58] Demichelis, Carlo and Chimento, Philip. Ip packet delay variation metric
for ip performance metrics (ippm). 2002. 33

[59] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Performance
analysis of a priority queue: Expedited forwarding phb in diffserv.
AEU-International Journal of Electronics and Communications,
65(3):190–197, 2011. 20

[60] H. Dong, Y. Lin, Y. Zhang, Z. Zhou, and Z. Zhang. Using static priority
queueing to optimize the avionics full duplex switched ethernet. In 2013
Ninth International Conference on Natural Computation (ICNC), pages
1610–1616. IEEE, 2013. 22

[61] M. I. Elhadad, M. Abd-Elnaby, and E.-S. M. El-Rabaie. Optimized delay
threshold scheduler for multimedia traffic over lte downlink network.
Multimedia Tools and Applications, 78(11):15507–15525, 2019. 112

[62] M. I. Elhadad, W. El-Shafai, E.-S. M. El-Rabaie, M. Abd-Elnaby, and
F. E. Abd El-Samie. Enhanced fair earliest due date first scheduling
strategy for multimedia applications in lte downlink framework.
International Journal of Communication Systems, 33(6):e4190, 2020. 150

[63] A. Fiaschetti, A. Pietrabissa, and L. Pimpinella. A cross-layer approach to
dynamic bandwidth allocation in satellite networks. In International
Conference on Personal Satellite Services, pages 114–129. Springer, 2010.
160

[64] M. Fidler. An end-to-end probabilistic network calculus with moment
generating functions. In 200614th IEEE International Workshop on Quality
of Service, pages 261–270. IEEE, 2006. 21

[65] M. Fidler. Survey of deterministic and stochastic service curve models in
the network calculus. Communications Surveys & Tutorials, IEEE,
12(1):59–86, 2010. 21

[66] M. Fidler and R. Persaud. M| g| 1 priority scheduling with discrete
pre-emption points: on the impacts of fragmentation on ip qos. Computer
Communications, 27(12):1183–1196, 2004. 20

[67] T. Finch. Incremental calculation of weighted mean and variance.
University of Cambridge, 4(11-5):41–42, 2009. 166

[68] B. Fu, Y. Xiao, H. Deng, and H. Zeng. A survey of cross-layer designs in
wireless networks. IEEE Communications Surveys & Tutorials,
16(1):110–126, 2013. 102

[69] J. M. Gablonsky and C. T. Kelley. A locally-biased form of the direct
algorithm. Journal of Global Optimization, 21(1):27–37, 2001. 187

[70] R. G. Garroppo and C. Callegari. Prediction of mobile networks traffic:
enhancement of the nmls technique. In 2020 IEEE 25th International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), pages 1–6. IEEE, 2020. 171

REFERENCES 221

[71] R. G. Garroppo, S. Giordano, and M. Pagano. Estimation of token bucket
parameters for aggregated voip sources. International Journal of
Communication Systems, 15(10):851–866, 2002. 47, 48

[72] R. G. Garroppo, S. Giordano, M. Pagano, and G. Procissi. On traffic
prediction for resource allocation: A chebyshev bound based allocation
scheme. Computer Communications, 31(16):3741–3751, 2008. 160

[73] L. Georgiadis, M. J. Neely, L. Tassiulas, et al. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends® in
Networking, 1(1):1–144, 2006. 114

[74] Y. Ghiassi-Farrokhfal, J. Liebeherr, and A. Burchard. The impact of link
scheduling on long paths: Statistical analysis and optimal bounds. In 2011
Proceedings IEEE INFOCOM, pages 1242–1250. IEEE, 2011. 21

[75] M. Głabowski, S. Hanczewski, M. Stasiak, M. Weissenberg,
P. Zwierzykowski, and V. Bai. Traffic modeling in industrial ethernet
networks. International Journal of Electronics and Telecommunications,
2020. 46

[76] G. Goodwin and K. Sin. Adaptive filtering prediction and control. 1984.
Englewood Clifs: Prentice Ha lI, 1984. 116

[77] S. Guo, D. Wu, H. Zhang, and D. Yuan. Resource modeling and scheduling
for mobile edge computing: A service provider’s perspective. IEEE Access,
6:35611–35623, 2018. 19

[78] V. Gupta, T. N. Joshi, and S. Tiwari. M/d/1 multiple vacation queueing
systems with deterministic service time. IOSR Journal of Mathematics,
12:75–80, 2016. 56

[79] R. J. Haddad, M. P. McGarry, and P. Seeling. Video bandwidth forecasting.
Communications Surveys & Tutorials, IEEE, 15(4):1803–1818, 2013. 160

[80] H. Hassan, J.-M. Garcia, and O. Brun. Generic modeling of multimedia
traffic sources. In 3rd International Working Conference on Performance
Modelling and Evaluation of Heterogeneous Networks (HET-Nets’ 05),
Ilkley (Great-Britain), 2005. 115

[81] J. Heinanen and R. Guerin. Ietf rfc 2698.“. A Single Rate Three Colour
Marker, 1999. 184

[82] J. Heinanen and R. Guerin. Rfc 2697–a single rate three color marker.
IETF, September, 1999. 184

[83] T. R. Henderson and R. H. Katz. Transport protocols for
internet-compatible satellite networks. Selected Areas in Communications,
IEEE Journal on, 17(2):326–344, 1999. 159

[84] P. Humblet, A. Bhargava, and M. G. Hluchyj. Ballot theorems applied to
the transient analysis of nd/d/1 queues. IEEE/ACM Transactions on
Networking, 1:81–95, 1992. 28

222 REFERENCES

[85] IEEE. Ieee standard for local and metropolitan area networks – bridges
and bridged networks – amendment 26: Frame preemption. IEEE Std
802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014), pages 1–52, 2016.
26

[86] M. F. Iqbal, M. Zahid, D. Habib, and L. K. John. Efficient prediction of
network traffic for real-time applications. Journal of Computer Networks
and Communications, 2019, 2019. 161

[87] ITU-T. Fast access to subscriber terminals (g.fast) – power spectral density
specification, 2014. 106

[88] ITU-T. Recommendation itu-t g.9701 - fast access to subscriber terminals
(g.fast) - physical layer specification, 2014. 106

[89] V. B. Iversen and L. Staalhagen. Waiting time distribution in m/d/1
queueing systems. Electronics Letters, 35(25):2184–2185, 1999. 56

[90] J. R. Jackson. Jobshop-like queueing systems. Management science,
10(1):131–142, 1963. 20

[91] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM
computer communication review, volume 18, pages 314–329. ACM, 1988.
178

[92] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A quantitative measure of
fairness and discrimination. Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984. 150

[93] A. Jalali, R. Padovani, and R. Pankaj. Data throughput of cdma-hdr a
high efficiency-high data rate personal communication wireless system. In
Vehicular technology conference proceedings, 2000. VTC 2000-Spring
Tokyo. 2000 IEEE 51st, volume 3, pages 1854–1858. IEEE, 2000. 114

[94] Z. Ji, Y. Wang, W. Feng, and J. Lu. Delay-aware power and bandwidth
allocation for multiuser satellite downlinks. IEEE Communications Letters,
18(11):1951–1954, 2014. 160

[95] P. Kansal and A. Bose. Bandwidth and latency requirements for smart
transmission grid applications. IEEE Transactions on Smart Grid,
3(3):1344–1352, 2012. 25

[96] M. Katoozian, K. Navaie, and H. Yanikomeroglu. Utility-based adaptive
radio resource allocation in ofdm wireless networks with traffic
prioritization. IEEE Transactions on Wireless Communications,
8(1):66–71, 2009. 111

[97] V. Kawadia and P. Kumar. A cautionary perspective on cross-layer design.
Wireless Communications, IEEE, 12(1):3–11, 2005. 102

[98] O. Kella and U. Yechiali. Waiting times in the non-preemptive priority
m/m/c queue. Stochastic Models, 1(2):257–262, 1985. 20

REFERENCES 223

[99] F. P. Kelly. Networks of queues with customers of different types. Journal
of applied probability, 12(3):542–554, 1975. 20

[100] M. M. Khan. Cross-layer designs: a survey. International Journal of
Computer Applications, 53(8), 2012. 102

[101] J. Kingman. The single server queue in heavy traffic. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 57, pages
902–904. Cambridge University Press, 1961. 174

[102] M. G. Konovalov and R. V. Razumchik. Comparison of two active queue
management schemes through the m/d/1/n queue. Informatics and
Applications, 12(4):9–15, 2018. 56

[103] R. E. Kooij, O. Østerbø, and J. Van der Wal. Calculating end-to-end
queuing delay for real-time services on an ip network. In International
Workshop on Architectures for Quality of Service in the Internet, pages
115–126. Springer, 2003. 21

[104] S. Kota, M. Goyal, R. Goyal, and R. Jain. Broadband satellite network:
Tcp/ip performance analysis. In Broadband communications, pages
273–282. Springer, 2000. 177

[105] S. Kota, M. Goyal, R. Goyal, and R. Jain. Multimedia satellite networks
and tcp/ip traffic transport. arXiv preprint arXiv:1603.08020, 2016. 177

[106] P. Koutsakis. Using traffic prediction and estimation of provider revenue
for a joint geo satellite mac/cac scheme. Wireless Networks, 17(3):797–815,
2011. 160

[107] P. Koutsakis, D. Vasileiadou, and C. Stamos. Performance evaluation of
the fprra framework for geo satellites in the absence of accurate multimedia
traffic prediction. International Journal on Communications Antenna and
Propagation (I. Re. CAP), 1(1), 2011. 160

[108] A. Kumar, A. Abdelhadi, and T. C. Clancy. Delay-efficient multiclass
packet scheduler. In Design and Implementation of Practical Schedulers for
M2M Uplink Networks, pages 15–80. Springer, 2018. 118

[109] W. K. Lai and C.-L. Tang. Qos-aware downlink packet scheduling for lte
networks. Computer Networks, 57(7):1689–1698, 2013. 144

[110] M. A. Lawal, I. Saidu, A. Mohammed, and Y. A. Sade. Downlink
scheduling algorithms in lte networks: A survey. IOSR J Mob Comput
Appl, 4(3):1–12, 2017. 112, 144, 145

[111] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic
queuing systems for the internet, volume 2050. Springer Science & Business
Media, 2001. 41, 47, 183

[112] H. Lee. Anatomy of delay performance for the strict priority scheduling
scheme in multi-service internet. Computer Communications, 29(1):69–76,
2005. 20

224 REFERENCES

[113] H. Lei, L. Zhang, X. Zhang, and D. Yang. A packet scheduling algorithm
using utility function for mixed services in the downlink of ofdma systems.
In 2007 IEEE 66th Vehicular Technology Conference, pages 1664–1668.
IEEE, 2007. 131

[114] L. Lei, C. Lin, and Z. Zhong. Stochastic Petri nets for wireless networks.
Springer, 2019. 199

[115] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the
self-similar nature of ethernet traffic (extended version). IEEE/ACM
Transactions on Networking (ToN), 2(1):1–15, 1994. 139, 159

[116] C. Li, A. Burchard, and J. Liebeherr. A network calculus with effective
bandwidth. IEEE/ACM Transactions on Networking (TON),
15(6):1442–1453, 2007. 21

[117] X. Lin, N. B. Shroff, and R. Srikant. A tutorial on cross-layer optimization
in wireless networks. Selected Areas in Communications, IEEE Journal on,
24(8):1452–1463, 2006. 102

[118] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973. 26, 132

[119] J. Liu, A. Proutière, Y. Yi, M. Chiang, and H. V. Poor. Flow-level stability
of data networks with non-convex and time-varying rate regions. In
Proceedings of the 2007 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 239–250, 2007. 121

[120] X. Liu, E. K. Chong, and N. B. Shroff. A framework for opportunistic
scheduling in wireless networks. Computer networks, 41(4):451–474, 2003.
194

[121] W. Luo and A. Ephremides. Stability of n interacting queues in
random-access systems. IEEE Transactions on Information Theory,
45(5):1579–1587, 1999. 123

[122] Z.-Q. Luo and S. Zhang. Dynamic spectrum management: Complexity and
duality. IEEE journal of selected topics in signal processing, 2(1):57–73,
2008. 128

[123] Z. Ma, W. Wang, and L. Hu. Performance evaluation and analysis of a
discrete queue system with multiple working vacations and non-preemptive
priority. Journal of Industrial & Management Optimization, 16(3):1135,
2020. 20

[124] K. C. Madan et al. A non-preemptive priority queueing system with a
single server serving two queues m/g/1 and m/d/1 with optional server
vacations based on exhaustive service of the priority units. Applied
Mathematics, 2(06):791, 2011. 20, 56

REFERENCES 225

[125] K. C. Madan and M. F. Saleh. On m/d/1 queue with general server
vacations. International journal of information and management sciences,
12(2):25–38, 2001. 56

[126] K. C. Madan and M. F. Saleh. On single server vacation queues with
deterministic service or deterministic vacations. Calcutta Statistical
Association Bulletin, 51(3-4):225–242, 2001. 56

[127] S. Madhu, M. B. Raju, and P. C. Reddy. A survey of cross layer design in
wireless networks for joint optimization of multimedia transmission.
International Journal of Advanced Research in Computer Science, 8(3),
2017. 102

[128] S. Mandelli, M. Andrews, S. C. Borst, and S. Klein. Satisfying network
slicing constraints via 5g mac scheduling. IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pages 2332–2340, 2019. 194

[129] S. Mao and S. S. Panwar. A survey of envelope processes and their
applications in quality of service provisioning. IEEE Communications
Surveys and Tutorials, 8(1-4):2–20, 2006. 42

[130] S. Martiradonna, A. Grassi, G. Piro, and G. Boggia. 5g-air-simulator: An
open-source tool modeling the 5g air interface. Computer Networks,
173:107151, 2020. 112, 148

[131] R. McEliece, J. Murphy, M. Jennings, and Z. Yu. On simplified modelling
of the leaky bucket. In Proc. Of the IEE 13th UK IEE Teletraffic
Symposium, Strathclyde, UK, pages 18–20, 1996. 48

[132] A. Mekkittikul and N. McKeown. A starvation-free algorithm for achieving
100% throughput in an input-queued switch. In Proc. of the IEEE
International Conference on Communication Networks. Citeseer, 1996. 114

[133] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on networking, 8(5):556–567, 2000. 115, 120, 121

[134] M. Mohseni, R. Zhang, and J. M. Cioffi. Optimized transmission for fading
multiple-access and broadcast channels with multiple antennas. IEEE
Journal on Selected Areas in Communications, 24(8):1627–1639, 2006. 194

[135] S. Nananukul. Multiplexing of periodic arrival processes with different
packet sizes. IEEE Transactions on Communications, 50(7):1055–1057,
2002. 30

[136] M. M. Nasralla. A hybrid downlink scheduling approach for multi-traffic
classes in lte wireless systems. IEEE Access, 8:82173–82186, 2020. 145

[137] M. M. Nasralla, N. Khan, and M. G. Martini. Content-aware downlink
scheduling for lte wireless systems: A survey and performance comparison
of key approaches. Computer Communications, 130:78–100, 2018. 112, 145

226 REFERENCES

[138] M. M. Nasralla and M. G. Martini. A downlink scheduling approach for
balancing qos in lte wireless networks. In 2013 IEEE 24th Annual
International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pages 1571–1575. IEEE, 2013. 114, 131, 144,
150

[139] M. J. Neely. Order optimal delay for opportunistic scheduling in multi-user
wireless uplinks and downlinks. IEEE/ACM Transactions on Networking
(TON), 16(5):1188–1199, 2008. 116

[140] P. Odling, T. Magesacher, S. Host, P. O. Borjesson, M. Berg, and
E. Areizaga. The fourth generation broadband concept. Communications
Magazine, IEEE, 47(1):62–69, 2009. 107

[141] O. Osterbo. A discrete time queueing model for end-to-end delay and jitter
analysis. In 2009 21st International Teletraffic Congress, pages 1–8. IEEE,
2009. 21

[142] N. Pachler, J. J. G. Luis, M. Guerster, E. Crawley, and B. Cameron.
Allocating power and bandwidth in multibeam satellite systems using
particle swarm optimization. In 2020 IEEE Aerospace Conference, pages
1–11. IEEE, 2020. 160

[143] D. P. Palomar and M. Chiang. A tutorial on decomposition methods for
network utility maximization. IEEE Journal on Selected Areas in
Communications, 24(8):1439–1451, 2006. 102

[144] A. Paris, I. Del Portillo, B. Cameron, and E. Crawley. A genetic algorithm
for joint power and bandwidth allocation in multibeam satellite systems. In
2019 IEEE Aerospace Conference, pages 1–15. IEEE, 2019. 160

[145] M. Park. Non-preemptive fixed priority scheduling of hard real-time
periodic tasks. In International Conference on Computational Science,
pages 881–888. Springer, 2007. 26

[146] F. Pianese and P. J. Danielsen. Augmenting practical cross-layer mac
schedulers via offline reinforcement learning. In 2017 IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pages 1–6. IEEE, 2017. 199

[147] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda. Simulating
lte cellular systems: An open-source framework. IEEE transactions on
vehicular technology, 60(2):498–513, 2010. 148

[148] G. Piro, L. A. Grieco, G. Boggia, R. Fortuna, and P. Camarda. Two-level
downlink scheduling for real-time multimedia services in lte networks.
IEEE Transactions on Multimedia, 13(5):1052–1065, 2011. 144, 150

[149] M. J. Powell. A direct search optimization method that models the
objective and constraint functions by linear interpolation. In Advances in
optimization and numerical analysis, pages 51–67. Springer, 1994. 187

REFERENCES 227

[150] J. Qiu and E. W. Knightly. Measurement-based admission control with
aggregate traffic envelopes. IEEE/ACM Transactions on Networking
(TON), 9(2):199–210, 2001. 35, 163, 164, 182

[151] J.-H. Rhee, J. M. Holtzman, and D.-K. Kim. Scheduling of real/non-real
time services: adaptive exp/pf algorithm. In The 57th IEEE Semiannual
Vehicular Technology Conference, 2003. VTC 2003-Spring., volume 1,
pages 462–466. IEEE, 2003. 131, 144, 188

[152] V. J. Ribeiro, R. H. Riedi, M. S. Crouse, and R. G. Baraniuk. Simulation
of nongaussian long-range-dependent traffic using wavelets. ACM
SIGMETRICS Performance Evaluation Review, 27(1):1–12, 1999. 25

[153] F. Ridouard, J.-L. Scharbarg, and C. Fraboul. Probabilistic upper bounds
for heterogeneous flows using a static priority queueing on an afdx network.
In 2008 IEEE International Conference on Emerging Technologies and
Factory Automation, pages 1220–1227. IEEE, 2008. 22

[154] J. W. Roberts and J. T. Virtamo. The superposition of periodic cell arrival
streams in an atm multiplexer. Communications, IEEE Transactions on,
39(2):298–303, 1991. 28, 29, 30, 37

[155] O. Rose. Mpeg traces archive.
http://web.archive.org/web/20080916125231/http:
//www-info3.informatik.uni-wuerzburg.de/mpeg/traces/. Accessed:
2020-02-27. 141

[156] O. Rose. University of wuerzburg, index of mpeg traces.
ftp-info3.informatik.uni-wuerzburg.de/pub/MPEG/. Accessed
25-10-2016. 170

[157] S. Ryu, B. Ryu, H. Seo, and M. Shin. Urgency and efficiency based packet
scheduling algorithm for ofdma wireless system. In IEEE International
Conference on Communications, 2005. ICC 2005. 2005, volume 4, pages
2779–2785. IEEE, 2005. 111

[158] B. Sadiq and G. De Veciana. Throughput optimality of delay-driven
maxweight scheduler for a wireless system with flow dynamics. In 2009
47th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1097–1102. IEEE, 2009. 120

[159] B. Sadiq, R. Madan, and A. Sampath. Downlink scheduling for multiclass
traffic in lte. EURASIP Journal on Wireless Communications and
Networking, 2009:1–18, 2009. 144

[160] H. Schioeler, H.-P. Schwefel, and M. B. Hansen. Cync: a matlab/simulink
toolbox for network calculus. In ValueTools, page 60. Citeseer, 2007. 47

[161] P. Semov, P. Koleva, and V. Poulkov. Adaptive resource scheduling based
on neural network and mobile traffic prediction. In 2019 42nd International
Conference on Telecommunications and Signal Processing (TSP), pages
585–588. IEEE, 2019. 111

http://web.archive.org/web/20080916125231/http://www-info3.informatik.uni-wuerzburg.de/mpeg/traces/
http://web.archive.org/web/20080916125231/http://www-info3.informatik.uni-wuerzburg.de/mpeg/traces/
ftp-info3.informatik.uni-wuerzburg.de/pub/MPEG/

228 REFERENCES

[162] S. Shakkottai and A. L. Stolyar. Scheduling algorithms for a mixture of
real-time and non-real-time data in hdr. In Teletraffic Science and
Engineering, volume 4, pages 793–804. Elsevier, 2001. 194

[163] S. Shakkottai and A. L. Stolyar. Scheduling for multiple flows sharing a
time-varying channel: The exponential rule. Translations of the American
Mathematical Society-Series 2, 207:185–202, 2002. 150

[164] A. Sharifian. Utility-based Packet Scheduling and Resource Allocation
Algorithms with Heterogeneous Trac for Wireless OFDMA Networks. PhD
thesis, Carleton University Ottawa, 2014. 111, 123

[165] P. Silverman. Techniques to mitigate uncancelled crosstalk on vectored
vdsl2 lines. In Broadband Forum Technical Report: TR-320, 2014. 128

[166] J. Sing and B. Soh. Tcp new vegas: improving the performance of tcp
vegas over high latency links. In Network Computing and Applications,
Fourth IEEE International Symposium on, pages 73–82. IEEE, 2005. 177

[167] E. Skondras, A. Michalas, A. Sgora, and D. D. Vergados. A downlink
scheduler supporting real time services in lte cellular networks. In 2015 6th
International Conference on Information, Intelligence, Systems and
Applications (IISA), pages 1–6. IEEE, 2015. 148

[168] A. Sleptchenko, J. Selen, I. Adan, and G.-J. van Houtum. Joint queue
length distribution of multi-class, single-server queues with preemptive
priorities. Queueing Systems, 81(4):379–395, 2015. 20

[169] G. Song. Cross-layer resource allocation and scheduling in wireless
multicarrier networks. PhD thesis, Citeseer, 2005. 124, 194

[170] G. Song, Y. Li, and L. J. Cimini Jr. Joint channel-and queue-aware
scheduling for multiuser diversity in wireless ofdma networks.
Communications, IEEE Transactions on, 57(7):2109–2121, 2009. 111, 114,
188

[171] D. Staehle, K. Leibnitz, and P. Tran-Gia. Source traffic modeling of
wireless applications. Inst. für Informatik, 2000. 46

[172] Steven G. Johnson. The nlopt nonlinear-optimization package. 187

[173] D. Stiliadis and A. Varma. Latency-rate servers: a general model for
analysis of traffic scheduling algorithms. IEEE/ACM Transactions on
Networking (ToN), 6(5):611–624, 1998. 184

[174] X. Sun, Q. Zhang, X. Xin, and C. Yu. Cross-layer dynamic bandwidth
allocation based on fairness and system utility. In 2012 Second
International Conference on Instrumentation, Measurement, Computer,
Communication and Control, pages 1322–1325. IEEE, 2012. 161

[175] M. Swarna, S. Ravi, and M. Anand. Leaky bucket algorithm for congestion
control. International Journal of Applied Engineering Research,
11(5):3155–3159, 2016. 47

REFERENCES 229

[176] Y. Takahashi and O. Hashida. Delay analysis of discrete-time priority
queue with structured inputs. Queueing Systems, 8(1):149–163, 1991. 19

[177] P. P. Tang and T.-Y. Tai. Network traffic characterization using token
bucket model. In INFOCOM’99. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 1, pages 51–62. IEEE, 1999. 48, 183

[178] J. Tanner. A derivation of the borel distribution. Biometrika,
48(1/2):222–224, 1961. 56

[179] M. S. Taqqu, W. Willinger, and R. Sherman. Proof of a fundamental result
in self-similar traffic modeling. ACM SIGCOMM Computer
Communication Review, 27(2):5–23, 1997. 139, 170

[180] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE transactions on automatic control,
37(12):1936–1948, 1992. 102, 111, 120, 188, 194

[181] TNO. G.fast: Release of measured transfer characteristics of the 104m
KPN access cable. Technical report, ITU - Telecommunication
Standardization Sector, Mar. 2013. 129

[182] J. S. Turner. New directions in communications (or which way to the
information age?). IEEE Communications Magazine, 40(5):50–57, 2002. 47

[183] J. Van den Eynde and C. Blondia. Cross-layer optimization with real-time
adaptive dynamic spectrum management for fourth generation broadband
access networks. In IFIP International Conference on Autonomous
Infrastructure, Management and Security, pages 184–188. Springer, 2014.
159

[184] J. Van den Eynde, J. Verdyck, C. Blondia, and M. Moonen. Minimal delay
violation-based cross-layer scheduler and resource allocation for DSL
networks. IEEE Access, 9:75905–75922, 2021. 129

[185] J. Van den Eynde, J. Verdyck, M. Moonen, and C. Blondia. A delay-based
cross-layer scheduler for adaptive dsl. In Communications (ICC), 2017
IEEE International Conference on, pages 1–6. IEEE, 2017. 194

[186] L. A. van Vianen, A. F. Gabor, and J.-K. van Ommeren. Waiting times in
classical priority queues via elementary lattice path counting. Queueing
systems, 84(3):295–307, 2016. 20

[187] J. Verdyck, C. Blondia, and M. Moonen. Network utility maximization for
adaptive resource allocation in dsl systems. In 2018 26th European Signal
Processing Conference (EUSIPCO), pages 787–791. IEEE, 2018. 128, 129

[188] J. Verdyck and M. Moonen. Dynamic spectrum management in digital
subscriber line networks with unequal error protection requirements. IEEE
Access, 5:18107–18120, 2017. 118

230 REFERENCES

[189] J. T. Virtamo. Idle and busy period distributions of an infinite capacity n*
d/d/1 queue. In Teletraffic Science and Engineering, volume 1, pages
453–459. Elsevier, 1994. 35, 37

[190] K. V. Vishwanath and A. Vahdat. Realistic and responsive network traffic
generation. In Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 111–122, 2006. 115

[191] J. Walraevens, H. Bruneel, D. Fiems, and S. Wittevrongel. Delay analysis
of multiclass queues with correlated train arrivals and a hybrid priority/fifo
scheduling discipline. Applied Mathematical Modelling, 45:823–839, 2017.
20

[192] J. Walraevens, D. Fiems, S. Wittevrongel, and H. Bruneel. Calculation of
output characteristics of a priority queue through a busy period analysis.
European Journal of Operational Research, 198(3):891–898, 2009. 20

[193] J. Walraevens, B. Steyaert, M. Moeneclaey, and H. Bruneel. Delay analysis
of a hol priority queue. Telecommunication Systems, 30(1):81–98, 2005. 19

[194] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. Machine learning for
networking: Workflow, advances and opportunities. Ieee Network,
32(2):92–99, 2017. 198

[195] M. Wang, J. Liu, W. Chen, and A. Ephremides. Joint queue-aware and
channel-aware delay optimal scheduling of arbitrarily bursty traffic over
multi-state time-varying channels. IEEE Transactions on Communications,
67(1):503–517, 2018. 110, 112

[196] X. Wang and N. Gao. Stochastic resource allocation over fading multiple
access and broadcast channels. IEEE Transactions on Information Theory,
56(5):2382–2391, 2010. 194

[197] Y. Wang and W. Chen. Minimizing delay violation probability in urllc over
fading channels: A cross-layer approach. In GLOBECOM 2020-2020 IEEE
Global Communications Conference, pages 1–6. IEEE, 2020. 110, 111

[198] Q. Wu, X. Fan, W. Wei, and M. Wozniak. Dynamic scheduling algorithm
for delay-sensitive vehicular safety applications in cellular network.
Information Technology and Control, 49(1):161–178, 2020. 110, 112, 114,
131

[199] S. Xulu and G. Aiyetoro. Cross-layer design approach based packet
scheduling in next generation wireless networks. In 2018 14th International
Wireless Communications & Mobile Computing Conference (IWCMC),
pages 757–761. IEEE, 2018. 114, 131, 150

[200] S. L. Yadav and M. Phogat. A survey on cross layer design implementation
in wireless sensor networks. International Journal of Science, Engineering
and Computer Technology, 7(1):17–19, 2017. 102

REFERENCES 231

[201] H. Yao, J. McLamb, M. Mustafa, A. Narula-Tam, and N. Yazdani.
Dynamic resource allocation dama alternatives study for satellite
communications systems. In Military Communications Conference, 2009.
MILCOM 2009. IEEE, pages 1–7. IEEE, 2009. 160

[202] J. Yaqoob, W. L. Pang, S. K. Wong, and K. Y. Chan. Enhanced
exponential rule scheduling algorithm for real-time traffic in lte network.
International Journal of Electrical & Computer Engineering (2088-8708),
10(2), 2020. 114, 131

[203] S. M. Zahedi, S. Fan, and B. C. Lee. Managing heterogeneous datacenters
with tokens. ACM Transactions on Architecture and Code Optimization,
15(2):18, 2018. 194

[204] E. Zhang and L. Xu. Capacity and token rate estimation for networks with
token bucket shapers. Computer Networks, 88:1–11, 2015. 184

[205] G.-x. Zhao, Y. Chen, and X.-d. Xue. M/m/1 queue under nonpreemptive
priority. College Mathematics, 22(1):44–48, 2006. 20

[206] W. Zhou, Q. Zhang, Q. Tian, X. Xin, B. Liu, L. Zhang, F. Tian, Y. Tao,
Y. Shen, D. Chen, et al. Cross-layer dynamic bandwidth allocation
algorithm based on convex optimization theory in satellite communication
system. In 2017 16th International Conference on Optical Communications
and Networks (ICOCN), pages 1–3. IEEE, 2017. 161

[207] R. Zhu and J. Yang. Buffer-aware adaptive resource allocation scheme in
lte transmission systems. EURASIP Journal on Wireless Communications
and Networking, 2015(1):1–16, 2015. 144

[208] P. Zuo, T. Peng, W. Linghu, and W. Wang. Resource allocation for
cognitive satellite communications downlink. IEEE Access, 6:75192–75205,
2018. 160

232 REFERENCES

	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Symbols
	Publications
	Introduction
	Context
	Structure of this thesis and contributions

	I Analysis of a strict priority scheduler
	Introduction
	Related work
	Scheduling
	Structure and contributions of this chapter

	High priority CBR traffic
	Introduction
	Simulation setup
	Queue distribution
	Delay distribution
	<IPDV> distribution
	Busy period distribution
	Conclusion

	Medium priority VoIP traffic
	Introduction
	Network calculus primer
	VoIP
	The server vacation
	Simulation setup
	Queue size distribution
	Delay distribution
	<IPDV> distribution
	<BP> distribution
	Conclusion

	Low priority Video traffic
	Introduction
	The server vacation
	Simulation setup
	Queue size distribution
	Delay distribution
	<IPDV> distribution
	Conclusion

	Evaluation
	Multi-hop
	Setup
	Traffic
	Plot layout
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5
	Scenario 6
	Scenario 7
	Scenario 8
	Scenario 9
	Conclusion

	Conclusion

	II Cross-layer resource allocation
	Introduction
	Cross-layer optimization in DSL networks
	Introduction
	Related work
	System model
	The <MDV> scheduler
	Physical layer model
	Performance evaluation
	Conclusion

	Cross-layer scheduling in LTE and 5G
	Introduction
	Notation
	The <MDV> scheduler
	Performance evaluation
	Conclusion

	Cross-layer resource allocation for satellite communication
	Related work
	System model
	Algorithms
	Performance evaluation
	Conclusion

	Throughput Constraining in Cross-layer Schedulers
	Introduction
	System model
	The Token Bucket Rate Modifier algorithm
	Performance evaluation
	Related work
	Conclusion

	Conclusion
	Future work

	Constructing matrix H
	Calculating the vacation pmf
	Proof of stability for constant A and B
	Proof of stability for time-dependent A and B
	DSL Oracle scheduler
	References

