
This item is the archived peer-reviewed author-version of:

Evaluating time-sensitive networking features on open testbeds

Reference:
Miranda Gilson, Municio Esteban, Haxhibeqiri Jetmir, Macedo Daniel F., Hoebeke Jeroen, Moerman Ingrid, Marquez-Barja Johann.- Evaluating time-sensitive

networking features on open testbeds

IEEE INFOCOM 2022 : IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 02-05 May, 2022, New York, USA - ISSN 2159-

4228 - IEEE, 2022, p. 1-2

Full text (Publisher's DOI): https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798368

To cite this reference: https://hdl.handle.net/10067/1901330151162165141

Institutional repository IRUA

Time-Sensitive Networking Experimentation on

Open Testbeds

Gilson Miranda Jr.∗†, Esteban Municio∗, Jetmir Haxhibeqiri‡,

Daniel F. Macedo†, Jeroen Hoebeke‡, Ingrid Moerman‡, Johann M. Marquez-Barja∗

∗IDLab - imec, University of Antwerp, Belgium
‡IDLab - imec, Ghent University, Belgium

†Universidade Federal de Minas Gerais - Computer Science Department, Brazil

{gilson.miranda,esteban.municio,johann.marquez-barja}@uantwerpen.be

{jetmir.haxhibeqiri,jeroen.hoebeke,ingrid.moerman}@ugent.be

damacedo@dcc.ufmg.br

Abstract—Time-Sensitive Networking (TSN) is vital to enable
time-critical deterministic communication, especially for applica-
tions with industrial-grade requirements. IEEE TSN standards
are key enablers to provide deterministic and reliable operation
of Ethernet networks. However, much of the research is still done
in simulated environments or using commercial TSN switches
lacking flexibility in terms of hardware and software support.
In this work, we evaluate two different Cloud testbeds for TSN
experimentation, analyzing their hardware features, the influence
of the testbed management infrastructure, and the data plane
performance. Furthermore, we present a prototype of a modular
Software-Defined Networking (SDN) controller that facilitates
the deployment of Linux-based TSN networks. We identify and
discuss the controller modules and evaluate its feasibility by using
it to deploy TSN networks on different testbeds. Finally, we
provide insights for researchers interested in experimenting with
TSN features on open Cloud testbeds and discuss the features
and limitations that we found during our experiments.

Index Terms—TSN, Experimentation, Network Programmabil-
ity, SDN

I. INTRODUCTION

In recent years, the IEEE Time-Sensitive Networking (TSN)

Task Group has been developing a set of standards to enable

reliable and deterministic communication on top of IEEE

802.1 networks [1], [2]. IEEE TSN development evolved

from the Audio-Video Bridging (AVB), widening the scope to

support the broad requirements of automotive and industrial

networks. These standards enable Ethernet-based networks

to support the coexistence of time-critical and best-effort

flows, providing isolation and preventing best-effort flows

from affecting the performance of the time-critical ones. This

way, an Ethernet-based TSN network can carry critical traffic,

e.g., from control applications in an Industry 4.0 context, while

also carrying best-effort traffic from administrative sectors of

the industry, reducing costs and deployment complexity [3].

To further evolve TSN standards and effectively implement

the proposals on real networks, it is crucial that researchers in

industry and academia have access to resources for develop-

ment and experimentation with TSN features. Although plenty

of research advances can be achieved through simulation [4],

[5], the implementation and validation using real hardware in

realistic conditions is paramount to validate simulation results

and push further the technology development.

Fortunately, testbed facilities support researchers by pro-

viding very flexible and reconfigurable environments. There

are currently several testbeds on different domains, such as

Cloud [6], Internet of Things [7], and Smart Highways [8].

These testbeds are excellent means to validate and reproduce

the performance of new technologies in realistic conditions.

However, for experiments encompassing TSN features, some

requirements in terms of hardware support by Network El-

ements (NEs) and testbed infrastructure are necessary. For

example, the network adapter must support hardware times-

tamping of packets for higher synchronization accuracy with

Precision Time Protocol (PTP). Another case is the Time-

Aware Scheduling (TAS), which requires network adapters

with multiple queues, as well as driver support.

In this paper, we evaluate two Cloud testbeds and their

suitability for TSN experimentation. We focus on a basic set

of features that offer support for time synchronization, traffic

scheduling, and traffic filtering. For resource management and

network configuration, we present and develop a prototype of

an Software Defined Networking (SDN) controller to perform

TSN Centralized Network Configuration (CNC). We identify,

describe, and implement the main modules that facilitate the

deployment and management of a TSN network. We deploy

TSN networks with similar topologies on different testbeds and

evaluate their performance in terms of time synchronization

accuracy and data plane performance. We also compare the

features supported by the testbed nodes and discuss their

advantages and limitations for TSN experimentation.

The paper is organized as follows: Section II gives a

brief overview of TSN standards. Section III describes the

architecture of our TSN controller. Section IV describes the

deployment of TSN networks on two different testbeds, de-

tailing the features and issues faced in each case. Section V

presents results achieved on each testbed. Section VI brings

the main takeaways and lessons learned during the execution

of this work, which can help other researchers conducting ex-

perimental TSN research using open testbeds. Finally, Section

VII concludes this work and presents future directions.

II. BACKGROUND

The TSN standards can be categorized into four main pillars

[9]: time synchronization; bounded low latency; reliability; and

resource management. Time synchronization is specified by

IEEE 802.1AS standard [10], and can be achieved through

PTP. TSN nodes usually perform actions based on strict

deadlines or time intervals, and PTP allows all nodes to have

a common sense of time. IEEE 802.1Qbv [11] and IEEE

802.1Qbu [12] are the main standards related to bounded low-

latency communication. The former leverages network syn-

chronization to coordinate scheduled communications using

TAS. The latter defines frame preemption, allowing frames of

lower priority flows to be interrupted during transmission in

favor of frames of higher priority flows.

For improving reliability the IEEE 802.1Qci standard [13]

provides enhancements for flow filtering and policing, allow-

ing traffic to be directed to specific queues on each bridge. This

enables precise coordination and isolation of traffic flows. The

IEEE 802.1CB [14] also improves reliability through frame

replication and elimination, i.e., using redundant transmission

of frames through separate paths between source and desti-

nation. Finally, for resource management, we highlight IEEE

802.1Qcc [15], which defines protocols for the configuration

of flow reservation and their requirements. Three configuration

models are defined on 802.1Qcc:

• Fully distributed: in this model the flow specifications

from the end stations are propagated to the NEs using a

distributed protocol. Bridges in the path between sender and

receiver are configured based only on their local knowledge.

• Centralized Network/Distributed User: this configuration

model has a CNC entity, with global knowledge of the

network topology and configuration of devices. Bridges on

the edges relay flow specifications/requirements received

from the end stations to the CNC.

• Fully centralized: this model includes a Centralized User

Configuration (CUC) entity, aimed at cases in which sig-

nificant configuration of the end stations is required. Flow

characteristics and requirements are specified through the

CUC directly to the CNC.

In this work, we will focus on the fully centralized model,

which gives us more control over all the NEs. Flow charac-

teristics and requirements are provided to the CNC through

a CUC API. Synchronization, schedules, and other configura-

tions are specified through the CUC API using auxiliary tools

and applied to NEs by the CNC. In the next section, we detail

the architecture of the CNC and the agent module.

III. CNC ARCHITECTURE FOR TSN

To set up and manage a TSN network, many software com-

ponents must be carefully configured and coordinated across

all NEs. Among them, we highlight the PTP synchronization

service, the scheduling configuration, and traffic filtering and

policing. However, other functionalities such as real-time data

plane and control plane monitoring are also useful. Therefore,

we designed a CNC architecture with a minimal set of modules

to assist the deployment of TSN networks on Linux-based

TSN Controller

Southbound Interface

REQ REP SUB

Z
M

Q

Internal Interface

Dashboard

DB

Control Loop

Scheduler

CUC API

(a)

Southbound Interface

REQ REP SUB

Z
M

Q

Telemetry Manager

Operating System

Resource
Monitor

PTP
Manager

Schedule
Manager

Monitoring signaling
Control signaling

(b)

TSNC TSNA

(c)

(1) Load cfg.

(2) Open socket

Scan resources (3)

Announce (4)

Apply cfg. and
start services (6)

(5) Announce reply

(7) Set new cfg.

Confirm new cfg. (8)

(10) Acknowledgment

Notify topology or
resource change (9)

Publish telemetry
data (11)

CNC

TSNA

Figure 1: CNC architecture and communications diagram

devices. Our architecture is composed of a central node assum-

ing the roles of CNC and CUC. We simplify the description

focusing on the CNC architecture and its counterpart, the TSN

Agent (TSNA), that runs in the NEs.

Figures 1a and 1b show the internal modules of the CNC,

and the TSNA, respectively. The main functions of the CNC

are carried out by the TSN Controller (TSNC). Figure 1c

shows the messages exchanged between the TSNC and TSNA

during operation. The TSNC is initialized loading a configu-

ration file with the basic network configuration (1), such as IP

addresses, initial schedules, PTP roles and interfaces. Each NE

is identified by an Unique Identifier (UID). The TSNC opens

a socket (2) and listens for incoming connections of TSNAs

started at the NEs. A TSNA initializes scanning the node

resources (3), e.g., interfaces, timestamping support, number

of queues, and sends an Announce message (4) to the TSNC

informing the node UID, node type (end-node or bridge), and

its resources. The TSNC replies to the announce (5) by sending

the node’s configuration specified in the local configuration

file, and the TSNA applies the received configuration to the

node and starts TSN services such as PTP (6). The TSNC

can send messages with new configurations to the TSNA (7),

which replies with a confirmation of whether the configuration

was applied or an error occurred (8). Similarly, the TSNA can

notify topology or resource changes (9), to which the TSNC

replies with an acknowledgment (10).

Communication between TSNC and TSNA occurs through

the Southbound Interface. For simplicity and faster deploy-

ment, we used ZeroMQ (ZMQ) sockets for communication,

with messages encoded in JavaScript Object Notation (JSON).

However, the ZMQ sockets can be replaced by NETCONF

implementations in future versions, following the current stan-

dardization trend for TSN configuration [15]. The Southbound

Interface contains three types of ZMQ sockets. A REQ socket

is opened for each TSNA that connects to the TSNC, and

allows the TSNC to make requests to the TSNA, for example,

to set a new configuration (messages (7) and (8) of Figure 1c).

A global REP socket is used to reply to requests coming from

TSNAs (messages (9) and (10)). Finally, a SUB socket works

as a subscriber for telemetry data (11). Telemetry data (e.g.,

synchronization offset) are transmitted using publish/subscribe

mode to the TSNC, and stored in the database.

The Southbound Interface of the TSNA has the counterparts

of the three sockets. A REQ socket is used to initiate transmis-

sions to the TSNC (messages (4) and (9) of Figure 1c). The

REP socket listens for transmissions coming from the TSNC

(message (7)), and the PUB socket for telemetry. We use

pub/sub to transmit information that is not crucial for network

operation, such as long-term monitoring of synchronization

offsets, while topology, link speeds, or address changes are

transmitted immediately using the REQ socket.

In the CNC we define the Control Loop module, coupled

with a Scheduler. The control loop verifies if the achieved

performance of the flows corresponds to the specifications

received from the CUC API. When a new flow is registered

through the CUC API, the control loop runs a scheduling

algorithm to support the new flow and applies the new network

configuration through the TSNC. The information for schedule

generation (e.g., network topology, link speeds) is obtained

through the TSNC’s Internal Interface. Schedules and filtering

rules are applied by the control loop on NEs via commands

to the Internal Interface of the TSNC.

We define a Dashboard module for network monitoring and

alarms. Telemetry data published by TSNAs are stored in the

database, and the Grafana1-based Dashboard module allows

the operator to configure screens for statistics visualization

and set up alarms to notify about network issues. For example,

an operator may set an alarm if PTP reports a synchronization

offset higher than a threshold, allowing troubleshooting actions

to be taken to avoid further issues.

For network operation, the CNC offers the CUC API as

a centralized management interface. NE configurations can be

set based on their UIDs. Flow characteristics and performance

requirements are also specified using this API, realizing the

fully centralized configuration model. Access permissions are

stored in the database and the CUC API enforces them when

a request is issued either to the control loop or directly to the

TSNC (via Internal Interface).

On the TSNA side, the Schedule Manager applies the

schedules received from the TSNC, and it also filters policies

to direct traffic to the correct queues. This is performed

using the Traffic Control (TC) tool for Linux, specifically the

tc-taprio2 module that implements the Time Aware Priority

1https://grafana.com/
2https://man7.org/linux/man-pages/man8/tc-taprio.8.html

Shaper (TAPRIO). The basic specification of a schedule con-

tains a Gate Control List (GCL), a base-time that indicates

when the schedule starts, and a set of schedule entries that

indicate which gates (or queues) will be active (or transmitting)

at a given moment of a cycle. The example below shows a

configuration with a base-time and three schedule entries. The

first entry allows traffic mapped to queue 1 to be transmitted in

the first 200µs of the cycle, the second entry gives 100µs for

traffic in queue 3, and the third entry gives 200µs for traffic

in queues 1 and 2 (gate mask 0x03).

base-time 1528743495910289987

sched-entry S 0x01 200000

sched-entry S 0x04 100000

sched-entry S 0x03 200002

The PTP Manager controls the synchronization service,

based on linuxptp3, according to the configuration parameters

received from the TSNC. A synchronization offset between

the NE and the PTP GrandMaster (GM) is reported by

linuxptp and collected by the PTP Manager. This information

is delivered to the Telemetry Manager, which may publish

to the TSNC if configured to do so. The Telemetry Manager

can be configured to publish aggregated statistics of this offset

(average over several minutes) or only when the offset is above

a threshold, to reduce monitoring traffic. Lastly, the Resource

Monitor constantly checks the state of interfaces, their speed,

and the status of linuxptp processes, immediately informing the

TSNC if any changes occur on these elements. The objective is

to quickly inform the TSNC about topology changes, or failure

of crucial processes, so recovery measures can be taken.

IV. DEPLOYMENT OF TSN NETWORKS

TSN networks require specialized hardware and software

support for some functionalities. For the scope of the experi-

ments in this paper, the main requirements are hardware-level

packet timestamping for PTP synchronization and multiple

transmission queues for TAPRIO. It is possible to configure

nodes without hardware timestamping, however, PTP syn-

chronization will use software timestamping, taking longer to

converge and usually presenting higher synchronization errors.

The multi-queue and timestamping support are required not

only in the hardware level but also in software.

We set up two distinct experiments on two testbeds: Virtual

Wall 2 [16], and CloudLab Utah [17]; using topologies as

similar as possible, in order to compare the characteristics

of both testbeds. We configured all nodes on both exper-

iments with Ubuntu 20.04.3 LTS, Linux kernel v5.4.0-91,

iproute2 v5.5.0, and linuxptp v3.1.1. On Virtual Wall we used

the pcgen03-5p nodes equipped with Intel(R) Xeon(R) CPU

E5645 with 24 threads and 24GB of RAM. On CloudLab

we used the d6515 nodes equipped with AMD EPYC 7452

CPU with 64 threads and 128GB of RAM. The nodes had

different configurations of network adapters, with CloudLab

nodes having three different models on each selected node.

3http://linuxptp.sourceforge.net/

Table I lists the network adapters on each testbed. The first

column shows interface names returned by the Operating

System (OS), the second column indicates the support for

hardware timestamping. The third and fourth columns show

the number of transmission (TX) and reception (RX) queues,

reported by the ethtool application. The fifth column shows

the maximum link speeds of each card, and the last column

shows the controller model.

Table I: Network adapters on testbed nodes selected

Interface HW TS TXQ RXQ Speed Controller

Virtual Wall

eth* yes 8 8 1Gb/s i82576

Cloudlab

ens1f*np* no1 74 74 25Gb/s BCM57414

eno* yes 4 4 1Gb/s BCM95720

ens3f* yes 1262 632 100Gb/s MT28800

1Limited support due to driver version.
2Queue numbers depend on the number of CPU logical cores.

All Virtual Wall nodes that we selected have two Intel

82576 network adapters, one with two ports and the other

with four ports. One port is allocated for testbed management

plane, leaving the other 5 available for connection between

nodes. The interfaces have hardware timestamp support, 8 TX

and RX queues, and 1Gbps line speed. The nodes selected

on CloudLab have three different adapters, each with two

ports. The interfaces listed as ens1f0np0 and ens1f1np1 use the

Broadcom BCM57414, which offer line speeds of 25Gbps, and

report 74 TX and RX queues. Although the network adapter

documentation indicates support for hardware timestamping

and IEEE 802.1AS synchronization, ethtool and linuxptp were

not able to identify such support, limiting the capabilities of

those interfaces for PTP synchronization. The other two inter-

faces, with naming pattern eno*, used Broadcom BCM95720

controllers. These interfaces had a maximum speed of 1Gbps,

and hardware timestamping support. The controller documen-

tation indicates support for 17 RX queues and 16 TX queues,

but from the OS, we were able to enable at most 4 RX and TX

queues. The last row of the table details the ens3f0 and ens3f1

interfaces, which use the Mellanox MT28800 controller. These

interfaces have speeds of 100Gbps, hardware timestamping

support, and a number of queues according to the number of

logical CPU cores. As we used nodes with 64 cores, the OS

reported 63 TX and 126 RX queues for those interfaces.

The topology used for the tests is shown in Figure 2. In

CloudLab, despite having 6 network ports (1 reserved for

testbed infrastructure), we were unable to create more than 3

links per node. Therefore, for the CloudLab setup we used a

virtual shared link to connect PC1, PC3, and SW1, and another

virtual shared link to connect PC2, PC4, and SW3. In those

cases, the link of a single port is split into more links to the

connected nodes. In Virtual Wall we were able to use all the

network ports of the nodes. Figure 2 also indicates the traffic

generated during the scheduling tests. We generate UDP traffic

with two test applications from PC1 to PC2 (UDP App 1 and

UDP App 1

UDP App 2

iperf

PC1

PC3

SW1 SW2 SW3

PC2

PC4

CNC

Figure 2: Topology used for the experiments

UDP App 2) and use iperf34 to generate TCP traffic from PC3

to PC4. In both experiments, we configured SW1 as PTP GM,

SW2 and SW3 as PTP Boundary Clock (BC), and the PCs as

PTP slaves. The CNC was deployed in a separate node, with

a logical control link to all other nodes.

V. EXPERIMENTAL RESULTS

We deployed the two experiments on Virtual Wall and

CloudLab testbeds, seeking to achieve topology and node con-

figurations as similar as possible. We evaluated the function-

alities of precise time synchronization and traffic scheduling

running similar tests in both experiments.

A. PTP Synchronization Accuracy

Our first analysis regards the PTP synchronization accuracy

over 30 minutes of execution. We disregard the first two

minutes after initializing PTP to allow all nodes to reach a

steady-state of synchronization. Table II shows the absolute

PTP synchronization offset (error) between each node and the

GM, in each testbed. For each case, we show the median offset,

the 90th, and 99.9th percentiles. We observed better synchro-

nization accuracy on CloudLab nodes, with median offset up

to 26 ns, while on Virtual Wall nodes the median offset was

up to 416 ns. The testbed infrastructure contains switches or

routing equipment to interconnect nodes. Such equipment may

introduce delays and jitter in the traffic between the nodes

of the experiment, affecting the PTP operation. Nevertheless,

both testbeds offer sub-microsecond synchronization accuracy

most of the time, allowing reliable experimentation with

schedules having slots in the range of tens of microseconds.

Table II: Absolute PTP synchronization offset (in ns)

Median 90th 99.9th Median 90th 99.9th

Node Virtual Wall CloudLab

SW2 218 572 1061 12 30 604

SW3 305 738 1535 16 39 935

PC1 192 478 1020 16 44 547

PC2 394 984 1795 26 68 1352

PC3 220 520 1069 12 30 562

PC4 416 998 5624 23 58 1398

B. Traffic Scheduling

The scheduling experiments demonstrate the use of multi-

queues and traffic policing to perform fine-grained control

over traffic behavior. We defined the three schedules shown

4https://iperf.fr/

in Figure 3 for these experiments. Each square represents a

slot of 250µs. The number in each square indicates the active

queue. We also defined slots with all queues inactive (crossed

squares), which can represent slots allocated to other traffic

classes. Best-effort traffic is directed to queue 0, including

communication between TSNC and TSNAs, and PTP packets.

Iperf traffic was allocated to queue 1, while UDP Application

1 was allocated to queue 2, and UDP Application 2 allocated

to queue 3. The schedules were applied through commands to

the CUC API on egress ports of nodes PC1, SW1, SW2, and

SW3, considering the direction of traffic shown in Figure 2.

Figure 4 shows the results obtained on Virtual Wall. The top

graph shows the 99th percentile of one-way delay of packets

from the UDP Apps. The UDP sender transmits a packet

every 1 ms. The bottom graph shows the TCP throughput

achieved with iperf3. Schedule 1 allocates one slot for each

flow, resulting in 5.75 ms delay for the UDP Apps and 5.5

MB/s throughput for iperf. Schedule 2 allocates another slot

for iperf, doubling the throughput to 11 MB/s. Schedule 3

replaces the slot from queue 1 with a slot for queue 2, giving

the additional slot to App 1. We can observe the simultaneous

change of behavior in both flows, reducing the delay of App

1 to 3.5 ms, and reducing iperf throughput to the initial 5.5

MB/s. Lastly, we apply Schedule 1 again and observe the same

behavior from the start of the experiment.

Schedule 1

Schedule 2

Schedule 3

1 2 30 0 0 0 0 0

1 2 30 0 0 0 0 01

1 2 30 0 0 0 0 02

Figure 3: Schedules used for traffic control experiments

3.5

4.0

4.5

5.0

5.5

O
n

e-
w

ay
d

el
ay

(m
s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

App 1

App 2

0 50 100 150 200

Execution time (s)

0.0

2.5

5.0

7.5

10.0

T
C

P
T

h
ro

u
g

h
p

u
t

(M
B

/
s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

iperf3

Figure 4: Scheduling on Virtual Wall testbed

Figure 5 shows the results of the same experiment on

CloudLab. Due to the higher speed of network adapters, we

observed a significantly higher throughput using iperf, starting

at around 80 MB/s and reaching up to 175 MB/s when

applying Schedule 2. We also see a slight decrease of one-way

delay of UDP Apps as the propagation of packets through the

links can occur much faster. Despite that, we observed a few

peaks of delay in this deployment. We suspected that these

peaks were caused by the shared link created by the testbed

to interconnect SW3, PC2, and PC4. The egress port of SW3

(on which we apply the schedules) is logically split into two

links to connect PC2 and PC4. After the packets egress from

SW3 port, packet queuing or aggregation policies are not under

our control, and the flows might be affected by the testbed

configuration. We performed an additional experiment where

flows do not converge to a common link. We used SW3 as

end node, taking the roles of PC2 and PC4 on receiving traffic

from PC1 and PC3. The result of this test is shown in Figure

6, in which we omit the iperf results due to space limitation.

We observed that the delay spikes did not occur and one-way

delay was more deterministic.

3

4

5

6

7

O
n

e-
w

ay
d

el
ay

(m
s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

App 1

App 2

0 50 100 150 200 250

Execution time (s)

75

100

125

150

175

T
C

P
T

h
ro

u
g

h
p

u
t

(M
B

/
s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

iperf3

Figure 5: Scheduling on CloudLab testbed

0 50 100 150 200 250

3.0

3.5

4.0

4.5

5.0

O
n

e-
w

ay
d

el
ay

(m
s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

App 1

App 2

Figure 6: Scheduling on CloudLab testbed ending on SW3

VI. MAIN TAKEAWAYS AND LESSONS LEARNED

Experimental research with TSN features requires special-

ized support in hardware and software. Fortunately, different

testbeds offer support for such research, allowing experimental

validation of theoretical works. We list below a few takeaways

and lessons learned during this work that may help other

researchers when setting up their experiments:

• Preliminary feature test: before setting up experiments

with several nodes, it is important to verify hardware and

software support for the desired features. As we observed,

it may occur that a feature is supported by hardware but

not fully supported in software. Based on preliminary

tests, the user can better plan the experiments or necessary

software upgrades before setting up larger deployments.

• Synchronization: the supporting infrastructure of the

testbeds may affect synchronization accuracy. During

initial tests in Virtual Wall, we configured the Controller

as PTP GM, and observed higher synchronization offset

on some nodes. Changing the GM to SW1 offered better

overall synchronization.

• Effect of shared logical links: testbeds allow creating

logical links that share a single port to overcome the

limitation of physical ports and offer more flexibility

on network topology. However, the user might have no

control over such links (e.g., over frame aggregation or

queuing policy). When running experiments with TSN

scheduled traffic, the use of such shared links might

influence the intended deterministic behavior of flows.

VII. CONCLUSION

TSN standards are enablers for achieving reliable, determin-

istic, and bounded low-latency communications over Ethernet.

In this paper, we demonstrate the use of Virtual Wall and

CloudLab tesbeds for TSN experimentation. We introduce an

architecture for a TSN controller composed of a CNC and

a TSN Agent that helps with the fast deployment of TSN

networks. We present a qualitative analysis of the features

in both testbeds for TSN experimentation, and also show

qualitative results of basic TSN features – synchronization

and traffic scheduling. We show how the TSN standards can

be used to perform precise control over traffic behavior, as

well as performance isolation between different flows. We

summarize the main takeaways and lessons learned during the

development of this work, in order to help other users, and

conclude that both testbeds offer a valuable set of features

and performance for TSN research.

ACKNOWLEDGMENT

This research was funded by the Flemish FWO SBO

#S003921N VERI-END.com (Verifiable and elastic end-to-

end communication infrastructures for private professional

environments) project, the Flemish Government under the

“Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaan-

deren” program, and from the FWO-Flanders (Grant agree-

ment No. G055619N). This research has also been supported

by the Horizon 2020 Fed4FIRE+ project (Grant Agreement

No. 723638).

REFERENCES

[1] J. L. Messenger, “Time-Sensitive Networking: An Introduction,” IEEE

Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, jun
2018. [Online]. Available: doi.org/10.1109/mcomstd.2018.1700047

[2] “Time-Sensitive Networking: A Technical Introduc-
tion,” Cisco Public White Paper, 2017. [Online].
Available: www.cisco.com/c/dam/en/us/solutions/collateral/industry-
solutions/white-paper-c11-738950.pdf

[3] N. Finn, “Introduction to Time-Sensitive Networking,” IEEE

Communications Standards Magazine, vol. 2, no. 2, pp. 22–28,
2018. [Online]. Available: doi.org/10.1109/MCOMSTD.2018.1700076

[4] A. C. T. d. Santos, B. Schneider, and V. Nigam, “TSNSCHED:
Automated Schedule Generation for Time Sensitive Networking,” in
2019 Formal Methods in Computer Aided Design (FMCAD), 2019, pp.
69–77. [Online]. Available: doi.org/10.23919/FMCAD.2019.8894249

[5] J. Falk, F. Durr, and K. Rothermel, “Exploring Practical Limitations
of Joint Routing and Scheduling for TSN with ILP,” in 2018 IEEE

24th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA). IEEE, aug 2018, pp. 136–146.
[Online]. Available: doi.org/10.1109/RTCSA.2018.00025

[6] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds,
the Chameleon cloud testbed, and Software Defined Networking
(SDN),” in International Conference on Cloud Computing Research

and Innovation (ICCCRI). IEEE, 2015. [Online]. Available:
doi.org/10.1109/ICCCRI.2015.10

[7] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele et al.,
“FIT IoT-LAB: A large scale open experimental IoT testbed,” in 2nd

World Forum on Internet of Things (WF-IoT). IEEE, 2015. [Online].
Available: doi.org/10.1109/WF-IoT.2015.7389098

[8] J. Marquez-Barja, B. Lannoo, D. Naudts, B. Braem, V. Maglogiannis,
C. Donato, S. Mercelis, R. Berkvens, P. Hellinckx et al.,
“Smart Highway: ITS-G5 and C2VX based testbed for
vehicular communications in real environments enhanced by
edge/cloud technologies,” in EuCNC, European Conference

on Networks and Communications, 2019. [Online]. Available:
biblio.ugent.be/publication/8642435/file/8656511

[9] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.
[Online]. Available: doi.org/10.1109/JPROC.2019.2905334

[10] “IEEE Standard for Local and Metropolitan Area Networks–Timing
and Synchronization for Time-Sensitive Applications,” IEEE Std

802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.
[Online]. Available: doi.org/10.1109/IEEESTD.2020.9121845

[11] “IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks - Amendment 25: Enhancements for
Scheduled Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE

Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std

802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–57,
2016. [Online]. Available: doi.org/10.1109/IEEESTD.2016.8613095

[12] “IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks – Amendment 26: Frame Preemption,” IEEE

Std 802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014), pp. 1–52,
2016. [Online]. Available: doi.org/10.1109/IEEESTD.2016.7553415

[13] “IEEE Standard for Local and metropolitan area networks–Bridges and
Bridged Networks–Amendment 28: Per-Stream Filtering and Policing,”
IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as

amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015,

IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE

Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), pp. 1–65, 2017.
[Online]. Available: doi.org/10.1109/IEEESTD.2017.8064221

[14] “IEEE Standard for Local and metropolitan area networks–
Frame Replication and Elimination for Reliability,” IEEE

Std 802.1CB-2017, pp. 1–102, 2017. [Online]. Available:
doi.org/10.1109/IEEESTD.2017.8091139

[15] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks – Amendment 31: Stream Reservation Protocol
(SRP) Enhancements and Performance Improvements,” IEEE Std

802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as amended

by IEEE Std 802.1Qcp-2018), pp. 1–208, 2018. [Online]. Available:
doi.org/10.1109/IEEESTD.2018.8514112

[16] “Virtual Wall: imec iLab.t documentation.” [Online]. Available:
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html

[17] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The Design and Operation of CloudLab,” in Proceedings of

the USENIX Annual Technical Conference (ATC), jul 2019, pp. 1–14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

