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ABSTRACT 20 

The number of open access databases containing experimental and predicted collision cross section 21 

(CCS) values is rising and leads to their increased use for compound identification. However, the 22 

reproducibility of reference values with different instrumental designs and the comparison between 23 

predicted and experimental CCS values is still under evaluation.  24 

This study compared experimental CCS values of 56 small molecules (Contaminants of Emerging 25 

Concern) acquired by both drift tube (DT) and travelling wave (TW) ion mobility mass spectrometry 26 

(IM-MS). The TWIM-MS included two instrumental designs (Synapt G2 and VION). The experimental 27 

TWCCSN2 values obtained by the TWIM-MS systems showed absolute percent errors (APEs) < 2% in 28 

comparison to experimental DTIMS data, indicating a good correlation between the datasets. 29 

Furthermore, TWCCSN2 values of [M-H]- ions presented the lowest APEs. An influence of the 30 

compound class on APEs was observed.  31 

The applicability of prediction models based on artificial neural networks (ANN) and multivariate 32 

adaptive regression splines (MARS), both built using TWIM-MS data, was investigated for the first 33 

time for the prediction of DTCCSN2 values. For [M+H]+ and [M-H]- ions, the 95th percentile confidence 34 

intervals of observed APEs were comparable to values reported for both models indicating a good 35 

applicability for DTIMS predictions.  36 

For the prediction of DTCCSN2 values of [M+Na]+ ions, the MARS based model provided the best 37 

results with 73.9% of the ions showing APEs below the threshold reported for [M+Na]+. Finally, 38 

recommendations for database transfer and applications of prediction models for future DTIMS 39 

studies are made.  40 

 41 
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Travelling wave ion mobility separation; drift tube ion mobility separation; compounds of emerging 43 
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1. INTRODUCTION 46 

Ion mobility spectrometry (IMS) has demonstrated to be a powerful additional technique for 47 

compound identification within target, suspect and non-target screening studies in various research 48 

fields [1-4]. IMS allows a conformational separation of ions based on their gaseous mobility through 49 

a drift gas (e.g., N2 or He) under the influence of an electric field. Hence, the hyphenation of IMS 50 

with gas or liquid chromatography (GC or LC) and high resolution mass spectrometry (HRMS) 51 

provides an additional separation dimension [5, 6]. Moreover, the measured drift times can be 52 

converted into collision cross section (CCS) values which describe the rotationally averaged surface 53 

of ions for which collision with the buffer gas occur [7].  54 

Drift tube IMS (DTIMS) and travelling wave IMS (TWIMS) are both designed as dispersive techniques, 55 

allowing all ions to pass through for subsequent analysis and are the most commonly applied designs 56 

[8]. DTIMS separates ions in a low uniform electric field (typically 5–100 V/cm). This permits a direct 57 

calculation of CCS values from the measured arrival times (tA; i.e., the time it takes the ion to travel 58 

from the entrance of the drift tube to the detector) without the use of external calibrants provided 59 

that various measurements are conducted applying different electric fields[9, 10]. This is commonly 60 

referred to as the stepped field calibration method. On the contrary, the single field calibration 61 

method allows the calculation of CCS values directly from the tA measured at a single electric field 62 

based on a set of calibrant compounds with previously known CCS values [11].  63 

TWIMS instruments operate applying both a radio frequency (RF) and a pulsed differential current 64 

(DC) voltage to the ion mobility cell. While the DC voltage ensures the axial movement of ions, the 65 

RF voltage allows radial ion confinement through periodically alternating between positive and 66 

negative polarities [12]. This creates an electric field in the form of a wave whose height and velocity 67 

influence the separation of ions [8]. For TWIMS measurements, a direct calculation of CCS values 68 

from the measured drift times is not possible since the applied electric field is not uniform. However, 69 

CCS values can be calculated based on a set of predefined calibrants whose reference DTIMS derived 70 

CCS values are available. This approach has been described in detail in previous studies [13, 14]. 71 

Additionally, it has been shown that a structural similarity between calibrants and analytes is 72 

essential to ensure reliable CCS calculations [15, 16]. 73 

Since IMS allows the separation of ions of interest from coeluting matrix components, CCS values are 74 

independent of potential matrix effects or the applied chromatographic conditions[9, 17]. Hence, 75 

they can serve as an additional identification parameter in feature annotation and compound 76 

identification leading to a reduction of false positive identifications [18, 19]. Furthermore, IMS has 77 

the potential to separate isomeric and isobaric compounds. As shown in previous studies, this is 78 

especially relevant if the isomeric compounds have similar retention times (RT) or fragmentation 79 
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patterns which do not allow their unequivocal identification [19-21]. Additionally, when 80 

implemented within data-independent acquisition (DIA) workflows, IMS facilitates the removal of 81 

spectral interferences as these show different drift times than the compound of interest and its 82 

corresponding fragments. This leads to cleaner mass spectra further improving compound 83 

annotation [19, 22]. 84 

The implementation of IMS in suspect and non-target screening studies on small molecules has been 85 

discussed in detail in previous studies [21, 23-25]. Thereby, CCS values of signals of interest are 86 

matched against CCS values of reference standards, scientific literature or open-source libraries [26-87 

28], including several online platforms which contain curated CCS datasets from various sources [29-88 

31]. Moreover, the inclusion of ion mobility data in widely adopted confidence levels for 89 

identification of small molecules in environmental studies, including a cut-off value of 2% for the 90 

deviation between experimental and reference CCS values, has been proposed recently [21].  91 

However, the high number of compounds monitored in suspect and non-target screening studies 92 

and the unavailability of reference standards lead to a lack of reference CCS values for many 93 

suspects, currently limiting the use of CCS for compound identification. This data gap can in theory 94 

be filled through the in-silico prediction of CCS values. Various prediction tools for different 95 

compound classes are available in the literature [31-36]. These tools are based on experimental CCS 96 

values and apply different predictions models including machine-learning algorithms [31], such as 97 

artificial neural networks (ANN) [36]. Prediction tools have demonstrated good prediction accuracies 98 

making them a valuable addition for suspect and non-target screening studies [37, 38].  99 

Despite the high efforts put into CCS database building and the development of prediction models, 100 

CCS values remain an estimated empirical value which is influenced by the instrumental design and 101 

the applied calibration approach. The uncertainty of IMS-MS measurements has been assessed in 102 

detail previously [10, 39]. Several studies have investigated the inter-laboratory and inter-103 

instrumental reproducibility of CCS measurements [10, 14, 40]. Stow et al. reported a relative 104 

standard deviation (RSD) of 0.29% for stepped-field measurements of DTCCSN2 values in three 105 

different laboratories of which all applied DTIMS [10]. Hinnenkamp et al. compared CCS values 106 

acquired using TWIMS and DTIMS instruments for a set of 124 compounds and reported absolute 107 

errors of < 1% for 66%; between 1-2% for 27% and >2% for 7% of the proton adducts of the 108 

investigated compounds [14].  109 

Based on a set of 56 contaminants of emerging concern (CECs) and their metabolites, the present 110 

study aimed to further investigate the reproducibility of CCS values acquired on DTIMS and two 111 

TWIMS instruments applying different calibration approaches and evaluating factors potentially 112 

causing deviations. This work also included the investigation of CCS values for deprotonated ion 113 
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which were not present in the above mentioned DTCCSN2 and TWCCSN2 comparison [14]. Furthermore, 114 

DTIMS derived CCS values were compared with predicted values employing two prediction models 115 

built with TWIMS derived data, namely an ANN based prediction tool and a Multiple Adaptive 116 

Regression Splines (MARS) prediction model previously developed by Bijlsma et al. [36] and by 117 

Celma et al. [41], respectively. Finally, we also aimed to estimate the cut-off values for database 118 

transfer from one instrumental design to another and the applicability of TWIMS-based prediction 119 

models for DTIMS measurements. This study adds to the detailed recommendations for the 120 

reporting of experimental IMS measurements published by Gabelica et al. [9] and it proposes the 121 

minimum and most relevant parameters to be reported for open-access databases of predicted CCS 122 

values. These recommendations will further contribute to a more uniform reporting of IMS data and 123 

will allow potential users to critically review and assess comparability with their own data. The 124 

presented results are expected to serve as a valuable additional guideline for the implementation of 125 

IMS in future studies on small molecule identifications.  126 

 127 

2. Materials and Methods 128 

2.1 Selection of standards 129 

A set of 56 compounds, including five compound classes: triazoles, organophosphate flame 130 

retardants (OPs), plasticizers and metabolites of the latter two, were selected for this comparison 131 

study. The selection of compounds was based on the following considerations: i) inclusion of various 132 

compound classes, incl. metabolites, ii) availability of ions in both ionization polarities, and iii) 133 

availability of reference standards, shared between laboratories. The selected compounds including 134 

their name, abbreviation, molecular formula, structure, SMILES, monoisotopic mass, InChi and 135 

InChiKey are summarized in Table S1. The sources from which the reference standards were 136 

acquired can be found in the study from Belova et al. [20]. 137 

 138 

2.2 IMS measurements 139 

2.2.1 DTIMS measurements 140 

The DTCCSN2 values of the compounds included in this study were previously reported[20] and are 141 

summarized in Table S1. In the corresponding publication, a detailed description of the method used 142 

for the acquisition of DTCCSN2 values can be found. In brief, all DTCCSN2 values were acquired on an 143 

Agilent 6560 DTIM-QTOF applying the single-field calibration method. For CCS calibration, the ESI 144 

low-concentration tune mix (Agilent Technologies, Santa Clara, USA) was used. The reference 145 

DTCCSN2 values of the tune mix ions were acquired by Stow et al. on a reference DTIMS system [10] 146 

and are summarized in Table S2 and Table S3. Each standard was introduced in the DTIMS-QTOF by 147 
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direct injection at 1 ng/µL. For each standard, five measurements were conducted. The average 148 

DTCCSN2 value and (relative) standard deviations are reported (Table S1).  149 

 150 

2.2.2 TWIMS measurements (VION) 151 

The first set of TWCCSN2 values was acquired on a VION IMS-QTOF mass spectrometer (Waters, 152 

Milford, MA, USA), equipped with an electrospray ionization (ESI) interface operating in positive and 153 

negative ionization modes. The ionization source was operated applying the following voltages: 154 

capillary voltage of 0.8 kV; cone voltage 40 V with desolvation temperature set to 550 °C, and the 155 

source temperature to 120 °C. Nitrogen (N2) was used as the drying gas and nebulizing gas. The cone 156 

gas flow was 250 L/h and desolvation gas flow of 1000 L/h. MS data were acquired in HDMSE mode, 157 

over the range m/z 50-1000, with N2 as the drift gas, an IMS wave velocity of 250 m s-1 and wave 158 

height ramp of 20-50 V. Leucine enkephalin (m/z 556.2766 and m/z 554.2620) was used for mass 159 

correction in positive and negative ionization modes, respectively. Two independent scans with 160 

different collision energies were acquired during the run: a collision energy of 6 eV for low energy 161 

(LE) and a ramp of 28-56 eV for high energy (HE). A scan time of 0.3 s was set in both LE and HE 162 

functions. Nitrogen (≥ 99.999%) was used as collision-induced dissociation (CID) gas. All data were 163 

examined using an in-house built accurate mass screening workflow within the UNIFI platform 164 

(version 1.9.4) from Waters Corporation. More details about the methodology followed can be 165 

found elsewhere [21]. 166 

 167 

2.2.3 TWIMS measurements (Synapt G2) 168 

The second set of TWIMS derived TWCCSN2 values was acquired on a Synapt G2 HD mass 169 

spectrometer (Waters, Milford, MA, USA) equipped with a nano-electrospray ionization source. The 170 

ionization source was operated applying the following voltages: capillary voltage 2.5 kV, extraction 171 

cone 5 V; sample cone 35 V; trap collision energy 4.0 V; transfer collision energy 4.0 V; trap DC bias 172 

35 V. The wave velocity was set to 1000 m/s at a constant wave height of 40 V. The gas pressures 173 

within the instrument were set as follows: desolvation gas flow 35 L/h (at a temperature of 150 ˚C); 174 

trap gas flow 0.4 mL/min; IMS gas flow 90 mL/min; helium cell gas flow 180 mL/min. For sample 175 

infusion, in-house pulled and gold-coated borosilicate capillaries were used.  176 

For the positive ionization mode, calibration compounds proposed by Campuzano et al. were used 177 

to calculate TWCCSN2 values[42]. For the negative ionization mode, poly-DL-alanine was chosen for 178 

CCS calibration based on the data published by Bush et al. [43]. The molecular formulae, SMILES, CAS 179 

numbers, sources of purchase of the reference standard and reference CCS values of the calibrants 180 

and QA compounds are summarized in Table S4. 181 
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Solutions of the calibration compounds were prepared in water/methanol (50/50; v/v) containing 182 

0.1% formic acid at concentrations between 0.12 ng/µL and 0.61 ng/µL (10-6 M). Solutions of 183 

analytes and quality assurance (QA) compounds were prepared at 1ng/µL in water/acetonitrile 184 

(50/50; v/v) containing 0.1% formic acid. To all infused solutions (both calibrants and analytes) 185 

leucine-enkephalin was spiked prior to infusion at a concentration of 5 ng/µL to be used as a lock-186 

mass for mass calibration within data analysis. For the measurement of TWCCSN2 values, all analytes 187 

were infused in triplicate. The instrument was operated using the MassLynx software (version 4.1 188 

SCN 781). After recalibration based on the added lock-mass of leucine-enkephalin, extracted ion 189 

mobilograms for each calibrant were obtained to allow establishing individual drift time values. The 190 

latter were then used to obtain the calibration curves for positive and negative ionization modes 191 

(Figure S1) that enable the calculation of TWCCSN2 values. The detailed workflow for TWCCSN2 192 

calculations has been described in detail in previous studies [13, 14].  193 

 194 

2.3 Quality assurance (QA) measures 195 

Within each instrumental design used in this study, QA measures were implemented. For DTIMS, the 196 

acquisition of DTCCSN2 values of nine QA compounds was conducted within each analytical batch. For 197 

these QA compounds reference DTCCSN2 values acquired on a reference DTIMS system were available  198 

[10]. The QA measures and results of the DTIMS measurements have been described in detail 199 

previously [20].  200 

For TWCCSN2 on the VION system, a set of nine QA compounds included in the System Suitability Test 201 

(SST) mix provided by the manufacturer was used to evaluate the accuracy and performance of the 202 

instrument as well as to ensure the reproducibility of the measurements. The molecular formulae, 203 

SMILES and reference CCS values of the Vion QA compounds are summarized in Table S5. 204 

Terfenadine, sulfaguanidine, sulfadimethoxine and caffeine were used as QA compounds for 205 

measurements on the Synapt G2 system in positive and sulfaguanidine and sulfadimethoxine in 206 

negative ionization mode, respectively. The selection of QA compounds was based on the 207 

compounds included in the SST mix used for the TWIMS measurements on the Waters VION 208 

instrument and aimed to serve as a QA measure for measurement reproducibility between the two 209 

TWIMS set-ups used in this study. Reference CCS values of the QA compounds were provided by the 210 

manufacturer (Table S4).  211 

 212 

2.4 CCS predictions 213 

2.4.1 Artificial Neural Network (ANN) based prediction model 214 
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ANN predictions of CCS values were made using Alyuda NeuroIntelligence 2.2 (Cupertino, CA) by 215 

applying a predictor previously developed and optimized [36]. Briefly, eight relevant molecular 216 

descriptors of the selected compounds were obtained from an Online Chemical Database 217 

(www.ochem.eu) [44]. The ANN predictor, trained by means of a database of empirical TWCCSN2 218 

values for 205 protonated small molecules, consisted of a neural network structured in three layers 219 

with 8-2-8-1 distribution. The relative error of CCS prediction was within 6% for the 95th percentile 220 

of all values for protonated ions and 8.7% for sodium adducts. Further details on the methodology 221 

can be found elsewhere [36].  222 

 223 

2.4.2 Multivariate Adaptive Regression Splines (MARS) based prediction model 224 

CCS predictions using Multivariate Adaptive Regression Splines were performed as follows: the 225 

statistical model was trained with empirical TWCCSN2 values of a total number of 470 protonated ions 226 

and a set of 7 molecular descriptors obtained from the Online Chemical Database (www.ochem.eu) 227 

[44]. The optimized model yielded an accuracy of 4.0% and 5.9% for the 95th percentile of predicted 228 

CCS values of protonated and deprotonated ions, respectively. Moreover, an additional and unique 229 

model was developed for predicting CCS values of sodium adducts obtaining an accuracy of 5.3% 230 

(95th percentile). More details of these prediction models can be found elsewhere [41]. 231 

 232 

3. RESULTS AND DISCUSSION 233 

3.1 Quality control and quality assurance results. 234 

Figure S2 summarizes the QA approaches implemented in the DTIMS and TWIMS measurements. 235 

This approach used within DTIMS measurements allowed the comparison with reference values 236 

obtained using the same instrumental design leading to low percent errors (PE) (all < 0.2%) [20]. This 237 

confirmed the reproducibility and accuracy of the DTIMS system used in this study.  238 

Within the acquisition of TWCCSN2 values on the TWIMS VION system, the analysis of an SST mixture 239 

containing nine compounds was included (Table S5). For these compounds, reference CCS values 240 

were provided by the manufacturer. As it is the case for other reference CCS values used for TWIMS 241 

measurements [42, 43], the provided CCS values were derived from DTIMS based measurements 242 

conducted on a modified Synapt G2 instrument. The VION instrument performance was satisfactory 243 

based on a 2% threshold for the deviation between expected and empirical CCS values.  244 

The selection of suitable QA compounds for TWCCSN2 measurements on the Synapt instrument aimed 245 

to show an overlap with the SST compounds used on the VION system to investigate the 246 

reproducibility between the two TWIMS set-ups. Nevertheless, the QA approaches of both TWIMS 247 

systems must be viewed critically as in both cases experimental TWCCSN2 values are compared with 248 

http://www.ochem.eu/
http://www.ochem.eu/
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DTIMS data. Thus, this approach represents rather a comparison of measurements between the 249 

different TWIMS set-ups than a fully independent QA approach.  250 

The results of the Synapt G2 QA measurements are summarized in Table S6. Average absolute 251 

percent errors (APEs) of 1.42% and 0.60% were observed for measurements in positive and negative 252 

ionization polarities, respectively. Both values fall within the 2% cut-off for the evaluation of SST 253 

measurements on the VION system and indicate a good reproducibility between the two TWIMS set-254 

ups. Nevertheless, two QA compounds (sulfaguanidine and caffeine) showed deviations slightly 255 

above 2% in positive mode. These deviations must be interpreted critically as they do not indicate a 256 

poor instrumental performance, but rather a deviation between experimental TWIMS derived CCS 257 

values and the DTIMS based reference values. This will further be investigated in this study. The 258 

observed APEs can also be caused by the low CCS values observed for these compounds (CCS < 259 

150 Å2) whereby even small deviations in measured tA lead to high percent errors. 260 

3.2 Selection of reference CCS values for further comparisons  261 

The comparison of experimental DTIMS and TWIMS derived CCS values was based on a set of 56 262 

standards including five compound classes: triazoles, organophosphate flame retardants (OPs), 263 

plasticizers and metabolites of the latter two. Data on proton and sodium adducts, as well as 264 

deprotonated ions were included. In general, the comparison between sets of CCS values is 265 

commonly conducted through reporting the observed (absolute) percent errors [14, 40, 45]. When 266 

applying this approach for the present study, the question about which set of CCS values to use as 267 

the reference set arose. Since none of the datasets was acquired with DTIMS stepped-field 268 

calibration, none of the datasets can be viewed as a calibrant-independent reference. To validate 269 

the two prediction models applied in this study, predicted CCS values have already been compared 270 

with the corresponding experimental TWIMS datasets [36]. Therefore, the use of the TWCCSN2 dataset 271 

as reference would reproduce this approach and exclude the available DTCCSN2 values from the 272 

comparison. Additionally, the choice of the reference dataset should allow the comparison of 273 

observed deviations between the different datasets. Therefore, DTCCSN2 values were used as 274 

reference for all calculations included in this study. Even though these values were acquired using 275 

the single-field calibration approach and thus required calibrants, the influence of the selected 276 

calibrants on the reproducibility of measurements was expected to be lower than for TWIMS 277 

calculations [10, 43]. Ultimately, the following equation was applied for the calculation of percent 278 

errors between DTIMS and TWIMS derived or predicted CCS values: 279 

 Error [%]= (CCSTWIMS/pred - CCSDTIMS

CCSDTIMS
)  ⋅ 100 (1) 

 280 
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3.3 Comparison of experimental 
TW

CCSN2 and 
DT

CCSN2 values 281 

For the 56 compounds, 108 DTCCSN2 values were included in the DTIMS reference database as several 282 

of the compounds were detected both as proton and sodium adducts and/or in both ionization 283 

polarities. A total of 29 [M+H]+ ions, 46 [M+Na]+ ions and 33 [M-H]- ions were observed (Table S1). 284 

The acquisition of TWCCSN2 values on the TWIMS VION instrument allowed the detection of a total of 285 

94 ions which corresponded to 50 compounds available for the comparison (Table S7). Thus, six 286 

compounds were not detectable on the TWIMS VION set-up which was assumed to be caused by 287 

differences in ionization source parameters and geometries leading to differences in ionization 288 

efficiencies. The 94 detected ions included 22 [M+H]+ ions and 40 [M+Na]+ ions, as well as 32 [M-H]- 289 

ions. Measurements on the Synapt G2 system yielded a total of 97 TWCCSN2 values which 290 

corresponded to 54 compounds detected (Table S7). Two compounds, tris(2-ethylhexyl)trimellitate 291 

and bisphenol A bis(diphenyl phosphate), were not detected on the Synapt G2 and VION 292 

instruments. Hence, for a total of 50 compounds, at least one CCS value was available from each of 293 

the instrumental set-ups. Within the 97 ions detected on the Synapt G2 system, 23 [M+H]+, 41 294 

[M+Na]+ and 33 [M-H]- ions were included.  295 

As displayed in Figure S3, 83% and 82% of all included ions showed APEss < 2% for the comparison of 296 

DTIMS data with the VION and Synapt systems, respectively. For protonated adducts, 64% (VION) 297 

and 57% (Synapt) of the observed ions had APEs < 2%. For the sodium adducts, the observed 298 

percentages of ions with APEs < 2% were 83% and 93% for the VION and Synapt systems, 299 

respectively. Deprotonated ions showed the lowest APEs within the comparison between TWIMS 300 

and DTIMS systems. For both VION and Synapt G2 systems, only one [M-H]- ion showed an APE > 2% 301 

resulting in 97% of [M-H]- ions with APEs < 2%.  302 

For a more detailed comparison, linear correlations between experimental DTIMS and TWIMS 303 

datasets were investigated. Figure S4 shows the correlations observed between DTCCSN2 and TWCCSN2 304 

values acquired on the VION (Figure S4A) and Synapt (Figure S4B) systems.  305 

For both TWIMS systems, high correlation coefficients (R2) were observed indicating a good linear 306 

correlation between DTCCSN2 and TWCCSN2 datasets. However, the R2 of 0.9889 observed for VION data 307 

was slightly lower than for Synapt data (R2
 = 0.9929). Based on a visual inspection of the linear plots, 308 

the higher correlation coefficient observed for Synapt data is assumed to be mainly caused by the 309 

lower deviations from the trendline observed for CCS values of plasticizer metabolites in comparison 310 

with VION derived data. Additionally, interpolated regression lines indicate that TWCCSN2 datasets can 311 

be correlated to DTCCSN2 datasets with a slope close to 1 (0.9999 for Vion and 1.0180 for Synapt). This 312 

indicates that deviations between DTCCSN2 and TWCCSN2 are negligible, and data can be well compared. 313 

In order to investigate CCS deviations more in detail and distinguish between ionization polarities 314 
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and ion species, combined violin and box plots of the observed percent errors were created for each 315 

dataset (Figure 1).  316 

 317 

 318 

Figure 1: Combined box and violin plots of the error distributions observed when comparing DTCCSN2 values with 319 
experimental TWCCSN2 values i.e., Synapt and Vion acquired in either positive or negative ionization mode. A distinction is 320 
made between proton and sodium adducts. The outliers observed for each dataset are numbered as follows: 1: BTR, 2: 5Cl-321 
BTR, 3: DIDP, 4: DINCH, 5: DIDP, 6: pOH-TPHP, 7: EHDPHP, 8: MiBP, 9: TDCIPP. The full names of the mentioned compounds 322 
can be found in Table S3. A deviation of +/- 2% is indicated with a red dashed line.  323 

Figure 1 shows the combined violin and boxplots of error distributions observed for experimental 324 

TWIMS data acquired in either negative or positive ionization mode. Additionally, bar charts in 325 

Figures S5 and S6 summarize the percent errors observed for each ion of each individual compound. 326 

A threshold of 2% for the use of reference CCS values for compound identification was proposed, 327 

within a recent study [21]. To evaluate the applicability of this threshold for databases acquired with 328 

different instrumental designs, all APEs observed in this study were compared to this cut-off value.  329 

For [M+H]+, both the Synapt G2 and VION systems show comparable error distributions with mean 330 

values of -1.9% and -1.4% and interquartile ranges (IQR) of 2.1% and 2.5%, respectively. The negative 331 

mean values indicate a clear off-set between DTIMS and TWIMS derived data as most TWCCSN2 values 332 

of proton adducts where lower than the corresponding DTCCSN2 values. Except for the VION derived 333 

TWCCSN2 value of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) with a deviation of -2.84%, all other 334 

deviating TWCCSN2 values of [M+H]+ ions belonged either to the group of triazoles or 335 

organophosphate flame retardants (and metabolites) carrying at least two phenyl moieties. Triazoles 336 



11 
 

represent the class with the lowest m/z values (m/z 118 – 154) investigated in the study. Low m/z 337 

values result in lower CCS values for which even small absolute deviations can lead to high 338 

percentual errors. As it was previously observed for diphenyl phthalate (DPP) [20], aromatic 339 

substitutes are assumed to lead to more compact ions resulting in lower DTCCSN2 values. The 340 

observed deviations of TWIMS data lead to the assumption that this effect has a higher influence 341 

within DTIMS measurements, indicating differing molecular conformations of the described 342 

compounds between TWIMS and DTIMS systems.  343 

Interestingly, the error distributions observed for [M+Na]+ show a smaller spread in comparison to 344 

the protonated ions. The deviations calculated for [M+Na]+ showed mean values of -0.7% and -1.0% 345 

and IQRs of 1.0% and 1.0% for the Synapt and VION systems, respectively. A study by Hinnenkamp et 346 

al. reported slightly higher percent errors for sodium adducts in comparison to protonated ions: 87% 347 

of the included [M+Na]+ ions showed APEs < 2% while this percentage was 93% for [M+H]+ [14]. This 348 

was assumed to be caused by the fact that sodium adducts were not included in the ions used as 349 

calibrants for TWIMS measurements. However, these observations were not reproduced in this 350 

study which might be caused by different compound classes or sample sizes included in the two 351 

studies. Again, a negative off-set between TWCCSN2 and DTCCSN2 values was observed, as most TWCCSN2 352 

values of [M+Na]+ ions were lower than the corresponding DTIMS values (Figures S4 and S5). From 353 

the VION derived TWCCSN2 values of [M+Na]+ ions, for seven values an APE > 2% was observed. Again, 354 

four of the seven values belonged to organophosphate flame retardants (OPs) and their metabolites 355 

carrying phenyl moieties. From the Synapt derived TWCCSN2 values of [M+Na]+ ions, three values 356 

showed a APE > 2%. All of these deviating values overlapped with the deviating VION derived values 357 

and included two OPs carrying phenyl moieties (triphenyl phosphate and diphenylcresyl phosphate). 358 

Except for mono-(3-carboxypropyl) phthalate (PE of -2.2%), all remaining deviating TWCCSN2 values of 359 

[M+Na]+ ions belong to the group of halogenated OPs and metabolites. Here, an influence of the 360 

applied calibrants is assumed. While the calibrants used for DTIMS measurements included several 361 

halogenated compounds (Tables S2 and S3), this was not the case for neither the Synapt nor the 362 

VION calibrations possibly leading to the observed high deviations for halogenated compounds. The 363 

latter was confirmed by the fact that the TWCCSN2 values of the [M+H]+ ion of 5-chlorobenzotriazole 364 

(5Cl-BTR) showed the highest deviation of all [M+H]+ ions for both the VION and Synapt systems 365 

(outlier nr. 2 in Figure 1). However, further investigations are needed to confirm these effects for 366 

larger sample sizes and wider m/z ranges.  367 

Within the Synapt dataset of [M+Na]+ ions, three outliers (nr. 3-5 in Figure 1) with higher TWCCSN2 368 

values in comparison to the corresponding DTCCSN2 values were identified. These values derived from 369 

diisodecyl phthalate (DIDP), diisononyl phthalate (DINP) and diisononyl cyclohexane 1,2-dicarboxylic 370 
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acid (DINCH). For two of these compounds (DIDP and DINCH), the DTCCSN2 values of sodium adducts 371 

were lower than the corresponding values of protonated adducts which was in contrast to the trend 372 

observed for most other compounds included in the DTCCSN2 database[20]. This observation was not 373 

reproduced for the Synapt derived TWCCSN2 values leading to the assumption of different ion 374 

conformations being observed between the TWIMS and DTIMS systems due to slight differences in 375 

ionization processes. Alternatively, the fact that the used DIDP and DINCH standards represented 376 

mixtures of isomers could also lead to the described observations.   377 

During the comparison of datasets acquired in positive ionization polarity, an unexpectedly high 378 

error (15.31%) was observed for the proton adduct of bis(1,3-dichloro-2-propyl) phosphate 379 

(BDCIPP). A close reinvestigation of the DTIMS raw data indicated that the high DTCCSN2 value was 380 

caused by an impurity of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in the BDCIPP standard from 381 

which latter was formed through post drift tube fragmentation. This led to a signal for BDCIPP which 382 

showed the same drift time as tris(1,3-dichloro-2-propyl) phosphate leading to the high CCS value. 383 

Within the plots of m/z versus CCS values which were created from the DTIMS dataset[20], the 384 

incorrectly assigned CCS values had not shown a clear deviation from the observed trendlines. Thus, 385 

the incorrect assignment could not be identified prior to the comparison conducted in this study. 386 

The BDCIPP standard was reanalyzed using the same workflow[20]. These measurements lead to a 387 

DTCCSN2 value 157.35 Å2 and a lower observed deviation (-1.5 %). This value was used for all 388 

comparisons described above and was added to the previously published DTIMS database to correct 389 

the incorrect assignment.   390 

For the dataset acquired in negative ionization polarity, the observed deviations show a lower 391 

spread compared to the positive ionization mode. This reflects in the low IQRs of 0.7% and 0.9% for 392 

Synapt and VION datasets, respectively. Within the Synapt G2 dataset, all APEs of negatively charged 393 

ions were < 2%, except for the outlier indicated in Figure 1 (outlier nr. 1, [M-H]- ion of benzotriazole).  394 

For the VION dataset, one out of 32 CCS values of [M-H]- ions showed an APE of > 2% ([M-H]- ion of 395 

2,4-di-(2-ethylhexyl) trimellitate). These observations indicate a high reproducibility of CCS values of 396 

[M-H]- ions between different instrumental set-ups. The observed high reproducibility might be due 397 

to the fact that OPs and their metabolites (for which high deviations were observed in positive 398 

ionization polarity) were not included, since these compounds were not detected in negative 399 

ionization polarity. Additionally, an opposite trend in comparison to data obtained in positive 400 

ionization polarity was observed: both datasets showed a positive median error indicating a positive 401 

off-set between TWIMS and DTIMS data. The included compound classes which differed between 402 

the datasets might have an influence on these effects.  403 
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Good correlations were observed between DTIMS and TWIMS derived CCS values. Nevertheless, a 404 

few compounds showed high deviations of up to -4.3% and -6.6%. Several potential factors which 405 

might cause the high deviations could be identified and must be considered when interpreting the 406 

quality and reliability of the presented dataset. Firstly, an influence of the compound class can be 407 

assumed as most of the highly deviating values derived from a particular class (OPs and their 408 

metabolites carrying at least two phenyl substituents). These effects might be traced back to 409 

differences in ion conformations between DTIMS and TWIMS systems for certain classes. Secondly, 410 

an effect of the applied calibration approach on CCS deviations is considered possible. Several 411 

previous studies have characterized the influence of the calibrants applied for TWIMS 412 

measurements and addressed the advantage of a match in compound class and charge state 413 

between calibrants and analytes. However, most of these studies focused on proteomic and 414 

lipidomic applications, which means that only a limited amount of studies including small molecules 415 

applications can be found [15, 16, 46]. Recently, a study assessed the influence of different 416 

calibration approaches on TWIMS measurements of steroids evaluating and comparing the observed 417 

bias. Additionally, a new set of reference DTIMS derived CCS values for TWIMS calibration was 418 

proposed whose implementation improved the reproducibility of CCS measurements on different 419 

instrumental set-ups [47]. These observations highlight the need of similar evaluations of different 420 

calibration approaches for the analysis of CECs and a potential implementation of the newly 421 

proposed sets of reference CCS values. A critical manual evaluation of the calibration approaches 422 

applied for the compilation of TWIMS derived databases thus remains crucial before database 423 

implementation for different instrumental designs and/or calibration approaches. Lastly, the 424 

described limitations confirm that CCS values represent empirical measurements which are 425 

influenced by several factors and do not allow the establishment of a “true CCS value”. It is 426 

recommended to assess potential deviations based on a subset of reference standards of the class of 427 

interest prior to applying a database acquired with a different instrumental design. Subsequently, 428 

the cut-off value of 2% which has been proposed previously[21] might need to be adjusted for 429 

databases deriving from different instrumental designs or different calibration approaches.  430 

3.4 Comparison of predicted CCS and experimental 
DT

CCSN2 values 431 

The experimental DTCCSN2 values were compared with predicted datasets which derived from two 432 

different prediction models, namely an ANN and a MARS based model [36, 41]. Both models were 433 

built using experimental TWIMS derived CCS values. To the best of our knowledge, this is the first 434 

study investigating the capabilities of these models in predicting CCS values for DTIMS 435 

measurements.  436 
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During the development of the ANN based prediction model, an APE < 6% was observed for 95% of 437 

the protonated ions when comparing predicted with experimental TWCCSN2 values. To be able to 438 

compare these observations, the same threshold (6%) was applied to access the deviations of ANN 439 

based predicted CCS values (further referred to as CCSANN) of [M+H]+ ions presented here. A 6% 440 

threshold was also used to access deviations of [M-H]- ions, even though it must be noted that the 441 

ANN based model was built using [M+H]+ data, but not evaluated for [M-H]- ions within its 442 

development. For [M+Na]+ ions, an APE of 8.7% was reported for the 95th percentile confidence 443 

interval [36]. This higher values is caused by the fact that the ANN based prediction model has been 444 

developed without the inclusion of [M+Na]+ ions in the training, validation and blind datasets [36]. 445 

On the contrary to the [M-H]- ions, [M+Na]+ data has been evaluated within its development. Hence, 446 

a threshold of 8.7% was applied for [M+Na]+ ions as higher APEs can be assumed for this ion species.  447 

Figure 2 shows the combined violin and boxplots of the error distributions observed for predicted 448 

CCS values differentiating between prediction models and ion species. For the linear correlation 449 

between DTCCSN2 and CCSANN values, a correlation coefficient of R2 = 0.9305 and a slope of 0.9753 450 

were observed (see Figure S7A). For [M+H]+ ions, the ANN based model showed a median APE of -451 

1.8% and an IQR of 1.6%. Due to the small IQR (in comparison to other ion species) which influences 452 

the upper and lower fence (defined as the Q3/Q1 +/- 1.5 x IQR), several outliers were observed (see 453 

Figure 2). Similar to the comparison of experimental DTCCSN2 and TWCCSN2
 values, all observed outliers 454 

belonged to either OPs (and metabolites) with at least two aromatic moieties or low-mass 455 

(halogenated) triazoles. Nevertheless, most of the observed outliers fall within the threshold of ± 6% 456 

resulting in 93.1% of the CCSANN values showing an APE < 6%. Comparable results were obtained for 457 

CCSANN values of [M-H]- ions of which 93.9% showed APEs < 6% with only two values exceeding this 458 

threshold (CCSANN of mono(2-ethylhexyl) terephthalate and mono(2-ethyl-5-hydroxyhexyl) 459 

terephthalate). Therefore, for [M-H]- and [M+H]+, it can be concluded that the ANN based prediction 460 

model can successfully be applied for DTIMS measurements of small molecules structurally similar to 461 

the compound classes investigated here. Again, the deviations observed for some classes point out 462 

the necessity of evaluating the applicability of the model based on a subset of reference standards.  463 

CCSANN values of [M+Na]+ ions show the highest APE with a median value of -3.7% and an IQR of 464 

6.8%. From the 46 [M+Na]+ ions included in the comparison, 80.4 % showed an APE below the 465 

applied threshold (< 8.7%).  Similar to the conclusions made within the development of the ANN 466 

based model, a higher cut-off value is recommended when applying the model for the prediction of 467 

[M+Na]+ ions within DTIMS measurements (see below).  468 
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 469 
Figure 2: Combined violin and boxplots of the error distributions observed when comparing DTCCSN2 values with predicted 470 
CCS values deriving from Artificial Neural Network (ANN) and Multivariate Adaptive Regression Splines (MARS) based 471 
models. For data in positive ionization polarity, a distinction between proton and sodium adducts is made. The outliers 472 
observed for each dataset are numbered as follows: 1: Fyroflex BDP, 2: 5OH-EHDPHP, 3: Fyroflex RDP, 4: TOTP, 5: 4OH-PhP, 473 
6: 5Cl-BTR, 7: 2,4-DEHTM, 8: MEHTP, 9: 5OH-MEHTP, 10: Fyroflex BDP, 11: TOTM. The full names of the mentioned 474 
compounds can be found in Table S3. The thresholds applied for the comparisons are indicated with dashed lines. These 475 
thresholds are based considering the 95th confidence interval of each model. For the ANN based model, thresholds of 6% 476 
([M+H]+ and [M-H]- ions; red dashed line) and 8.7% ([M+Na]+; orange dashed line) were applied. MARS based data was 477 
compared based on thresholds of 4.1% (red dashed line), 5.9% (orange dashed line) and 5.3% (brown dashed line) for 478 
[M+H]+, [M+Na]+ and [M-H]- ions, respectively.  479 

In contrast to the ANN based prediction model, the MARS based model was validated for all ion 480 

species included here (i.e., [M+H]+, [M+Na]+ and [M-H]- ions). This allowed the reporting of APEs 481 

observed for the 95th percentile of the datapoints for each ion species separately [41]. In detail, 482 

these APEs corresponded to 4.1%, 5.9% and 5.3% for [M+H]+, [M-H]- and [M+Na]+ ions, respectively 483 

[41], which will be used as thresholds to access the deviations presented in this study. 484 

From the CCS values predicted for [M+H]+ ions applying the MARS based model (further referred to 485 

as CCSMARS), 71.9% showed an APE < 4.0%. This corresponds to 9 out of 32 CCSMARS values for [M+H]+ 486 

ions showing an APE above the applied threshold. Two of these deviating CCSMARS values were also 487 

observed as deviating CCSANN values, namely BDP (CCSMARS with a deviation of 9.38%) and 5Cl-BTR 488 

(CCSMARS with a deviation of -6.52%). Additionally, the CCSMARS values of DIDP, DINP and DINCH 489 

showed APEs > 4.0%. The same assumptions as described about the causes of these deviations can 490 

be applied here.  491 
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For the [M+Na]+ ions, 73.9% of which showed an APE <5.3%, a median deviation of -2.3% and an IQR 492 

of 5.2% were observed. This indicates higher (i.e., closer to zero) median values and a smaller IQR 493 

than observed for CCSANN values of sodium adducts. Within the development of the MARS based 494 

model, a separate model was developed for the prediction of CCS values of [M+Na]+ ions. Thereby, 495 

experimental values of [M+Na]+ adducts were included in the training dataset to account for the 496 

higher volume and particularities derived from the allocation of the sodium ion within the molecular 497 

structure influencing the shape and size of ions [41]. The lower APEs observed for CCSMARS values of 498 

sodium adducts confirm the added value of the described approach indicating that the MARS based 499 

model is more suitable for a reliable prediction of CCS values for this ion species. Nevertheless, the 500 

APEs reported here still show higher deviations than observed for the comparison with experimental 501 

TWIMS based values [41] indicating that additional factors influence the accuracy of the prediction.  502 

For CCSMARS values of [M-H]- ions, a median deviation of 0.5% and an IQR of 3.0% were observed. 503 

90.0% of the CCSMARS values of [M-H]- ions showed an APE < 5.9%. This corresponds to 3 out of 30 504 

CCSMARS values with an APE >5.9% which are indicated as outliers in Figure 2. Two of the 505 

corresponding compounds (MEHTP and 5-HO-MEHTP) had also shown high deviations within their 506 

ANN based predicted values. Based on the low number of terephthalates and metabolites included 507 

in the dataset, it cannot be stated whether particular structural characteristics or other factors cause 508 

the observed high deviations. The same applies to the high deviation observed for the CCSMARS value 509 

of the [M-H]- ion of 2,4-DEHTM (-6.48%).  510 

 511 

Table 1: The 95th percentiles observed for the absolute percent errors (APEs) between experimental DTCCSN2 values and 512 
predicted CCS values. The latter were predicted applying Artificial Neural Network (ANN) and Multivariate Adaptive 513 
Regression Splines (MARS) based models. 514 

Ion species 
95

th
 percentile of observed APEs 

ANN MARS 

[M+H]+ 6.08% 6.38% 

[M+Na]+ 10.29% 11.13% 

[M-H]- 5.70% 6.66% 

 515 

The percentages of ions showing an APE below the applied thresholds are summarized in Table S9. 516 

Additionally, the 95th percentiles of the absolute percent errors observed for each ion species were 517 

calculated (Table 1). This aimed at estimating thresholds recommended for future applications of 518 

the ANN and MARS based models for DTIMS measurements. From the observed 95th percentiles the 519 

conclusion might be drawn that the ANN based model provides better results for DTIMS predictions, 520 

as all reported values are lower in comparison to the MARS based model.  However, in contrast to 521 

the 95th percentiles which were reported within the development of the prediction models[36, 41], 522 

the values reported in this study are based on a smaller sample size. Thus, after grouping the 523 
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observed APEs by size, the reported 95th percentile is strongly influenced by the data points 524 

determining the 95% cut-off. Due to the small percentage range and sample size investigated, even 525 

slight deviations of these values towards higher APEs can have strong effects on the calculated 526 

percentiles. Especially for [M+Na]+ ions, this approach does not reflect the added advantages of the 527 

MARS based model described above, thus not allowing the direct use of the 95th percentiles as 528 

proposed thresholds. Nevertheless, the 95th percentiles reported reflect deviations between 529 

experimental DTCCSN2 values and predicted data which are comparable to the observations reported 530 

within the development of the prediction models, thus indicating their applicability for DTIMS 531 

measurements. It is recommended to use the reported 95th percentiles in combination with an 532 

assessment of possible deviations for the compound class of interest to estimate applicable 533 

thresholds. The MARS based model is recommended for the prediction of [M+Na]+ ions[41].  534 

The described considerations indicate the necessity of a critical expert evaluation of the applicability 535 

of a prediction model prior to its implementation. The discussion presented here also points out that 536 

the various factors influencing both the experimental acquisition and prediction of CCS values do not 537 

allow, at this moment, an unsupervised implementation of prediction models and databases 538 

acquired on different instrumental set-ups.  539 

 540 

3.5 Recommendation of parameters to be reported for CCS prediction models 541 

The acquisition of CCS values represents a measurement of empirical values rather than an absolute 542 

and constant physical property. Therefore, a detailed reporting of experimental settings, as well as 543 

applied QA measures is crucial to estimate the influence of these parameters on IMS-MS 544 

measurements and their reproducibility using other instrumental designs. Parameters 545 

recommended to be reported for experimental CCS values have been discussed in detail by Gabelica 546 

et al. [9] and include mainly mobility device hardware parameters, used drift gas and calibrants or 547 

QC compounds. The observed deviations between DTCCSN2 and TWCCSN2
 values described for some of 548 

the compound classes investigated in the presented study confirm the necessity of a unified 549 

reporting of experimental parameters to trace back possible causes for such findings. Adding to 550 

these recommendations, this study proposes a set of parameters recommended to be reported for 551 

CCS prediction models in order to highlight their usefulness for other instrumental designs (Table 2).  552 

 553 

Table 2: Recommended parameters for the reporting of CCS prediction models. 554 

Parameter Recommended information to report 

General General aim of the development. For which compound classes is the 

model being developed? Which experimental datasets will be used for the 

development? 
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Prediction model Characteristics of applied prediction model; settings and descriptors used 

for training of the model 

Training set Detailed information on the identity of compounds used for training of 

the model; ion species included in the training set; detailed description of 

experimental parameters used for the acquisition of experimental CCS 

values used for training of the model 

Validation results Description of results obtained after validating the developed model; 

description of validation dataset and detailed reporting of results for each 

ion species. Which thresholds should be applied in future applications of 

the prediction model? 

Inter-lab validation Evaluation of prediction performance of the model for the particular 

instrument in use. Study of accuracy of prediction for a small set of 

molecules to support the decisions on suspect substances. 

 555 

4. CONCLUSIONS 556 

A dataset containing 106 DTIMS derived DTCCSN2 values including [M+H]+, [M+Na]+ and [M-H]- ions 557 

was compared with both experimental (TWIMS derived) TWCCSN2 values and predicted CCS values. 558 

TWCCSN2
 values were acquired on a VION and Synapt G2 system showing absolute errors < 2% for 559 

83% and 82% of the values, respectively, indicating a good reproducibility between different 560 

instrumental designs. Moreover, good linear correlations were observed for both systems resulting 561 

in correlation coefficients of R2 = 0.9889 (VION) and R2 = 0.9929 (Synapt). Nevertheless, deviations of 562 

up to -6.55% were observed for a few compounds belonging to particular chemical classes of 563 

compounds, Additionally, the applied calibration approaches could not be excluded as a potential 564 

cause for the observed deviations. These findings point out that potential biases of experimental 565 

databases built on data acquired by a different instrumental set-up, need to be evaluated prior to its 566 

implementation.  567 

With regards to CCS prediction models, the 95th percentiles of deviations reported for [M+H]+ and 568 

[M-H]- ions  between experimental DTCCSN2 values and predicted data were comparable to the values 569 

reported within the development of the ANN and MARS based models, indicating their applicability 570 

for DTIMS measurements. These percentiles can be used to establish thresholds to be applied in 571 

future DTIMS based studies.  However, different parameters such as the aim and compound class for 572 

which the model is developed should be considered prior to its applications. 573 

 574 
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