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An Energy-Aware Task Scheduler for Energy

Harvesting Battery-Less IoT Devices
Adnan Sabovic, Ashish Kumar Sultania, Carmen Delgado, Lander De Roeck

and Jeroen Famaey, Senior Member, IEEE

Abstract—Tiny battery-less Internet of Things (IoT) devices
that depend on the harvested energy from their environment pro-
vide a promising alternative for a sustainable IoT vision. These
devices use small capacitors as energy storage, which together
with the unpredictable and dynamic harvesting environment
results in intermittent on-off behavior of the device. The crucial
issue to effectively use battery-less IoT devices is to find a way of
enabling the successful execution of application tasks in face of
this intermittency. As the conventional computing models cannot
handle this behavior, in this paper we present an energy-aware
task scheduler for battery-less IoT devices based on dependencies
and priorities, which can intelligently schedule the application
tasks avoiding power failures and maintaining forward progress.
With the properly defined voltage thresholds for each application
task, using our energy-aware task scheduler a safer execution
can be ensured. We evaluate our approach based on emulated
and real experiments and validate it using two types of power
management units (Environment Emulator and Intelligent Power
Management Unit based on the AEM10941 chip). Our results
show that the energy-aware task scheduler is able to react and
adapt the execution to environmental changes, avoiding power
failures. Comparing to the state of the art scheduling approaches,
which are mostly not aware of the energy, we show that our
energy-aware task scheduler can keep the device on during
the full time of the experiment, executing more tasks when a
relatively small capacitor of 10mF or less is used at harvesting
currents as low as 40µA.

Index Terms—sustainable IoT, battery-less IoT, intermittent
computing, energy harvesting, BLE, energy-aware task scheduler.

I. INTRODUCTION

THE Internet of Things (IoT) is a concept used to con-

nect objects to the Internet, enabling billions of tiny

devices, from smart-enabled devices to sensors for climate and

agriculture monitoring, to cooperate and communicate with

each other while performing different application tasks such

as sensing (e.g., temperature and humidity), processing and

transmitting data [1]. Due to the low price and maintenance,

as well as easy usage, these devices are involved in a wide

range of IoT applications, such as wildlife tracking, healthcare

[2] [3], autonomous vehicles [4] or building monitoring [5]

[6]. Typically, most IoT devices consist of a microcontroller

(MCU), a radio chip (i.e., low power radio technologies),

sensors and actuators to interact with the environment, and

a battery that acts as a main power source [1] [7].

Adnan Sabovic, Ashish Kumar Sultania, Lander De Roeck and Jeroen
Famaey are with University of Antwerp and imec, Belgium (e-mail:
adnan.sabovic, ashishkumar.sultania, jeroen.famaey @uantwerpen.be, lan-
der.deroeck@student.uantwerpen.be)

Carmen Delgado is with AI-Driven Systems, i2CAT Foundation, Barcelona,
Spain email: (carmen.delgado@i2cat.net)

Stable power can be provided by batteries, but even when

rechargeable, they are short-lived, lasting at most a few years.

As the number of devices grows, the short lifetime of batteries

requires maintenance, disposing and replacing, which becomes

expensive and harmful to the environment. These batteries are

bulky, which is not suitable for smaller devices, temperature

sensitive and dangerous when not carefully protected, which

makes their maintenance even more difficult in hard-to-reach

areas. Even with some improvements, rechargeable batteries

in combination with energy harvesting mechanisms, can still

cause capacity degradation due to frequent charge-discharge

cycles, reducing their lifetime [1]. Considering all of these,

as well as their toxicity and chemically harmful composition

that is ecologically unacceptable, they are incompatible with

a sustainable IoT vision.

Improvements in processor architectures along with a re-

duction in energy consumption using low-power radio tech-

nologies enable a new type of devices that entirely depend on

harvested environmental energy and do not need batteries for

operating [8] [9]. These devices are powered by harvesting

available energy from different environmental and renewable

sources (e.g., solar, thermal or RF energy) which is stored

in small capacitors. These capacitors are cheap and more

resistant to capacity degradation, which prolongs their lifetime

to more than a decade. Battery-less devices are easy to recycle,

temperature insensitive and almost maintenance free, which

makes them more environmentally friendly and suitable for

operating in large-scale deployments.

Besides all advantages and improvements, there are still

gaps and challenges that these devices face. Harvestable power

sources are usually weak and unreliable with the amount of

generated energy depending on current environmental condi-

tions (e.g., solar energy is unavailable at night) [6]. During

the inactive period (i.e., sleep state) the device replenishes its

stored energy, which is scarce, especially when the capacitor is

small. When sufficient energy accumulates, and the operating

threshold is reached, the device starts executing tasks. A device

works undisturbedly as long as there is enough stored energy.

Once the energy is depleted and the device turns off, the

volatile state (e.g., stack memory and register contents) and

data are lost, and forward progress is interrupted. To ensure

forward progress, the program must save the volatile state

to non-volatile memory (e.g., FRAM or Flash) before the

energy runs out. In the end, all these things cause intermittent

execution, as shown in Figure 1, where the device turns on and

off frequently, as it depletes and replenishes the stored energy

in the capacitor. The charge and discharge cycle intervals
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Fig. 1: Battery-less intermittent on/off behavior

depend on the considered hardware, capacitor size, and energy

conditions [8].

The crucial issue to effectively use battery-less IoT devices

is to find a way of enabling the successful cycle of task

handling with their intermittency and reducing the possibility

of power failures. Conventional computing models and static

sequential applications cannot handle such behavior, as they

lose forward progress assuming a stable power supply during

execution [1]. This problem can be solved with task-based

models [10] [11], where each task performs some atomic

function, and its output is saved in non-volatile memory after

it successfully completes. However, almost none of them

consider the energy awareness. In this paper, we present an

energy-aware task scheduler for battery-less IoT devices that

can intelligently decide when to execute a specific task con-

sidering the harvested and available energy, energy consumed

by the task, as well as its priority. Before each execution,

the scheduler selects the task with the highest priority to be

executed. To preserve the forward progress, after the task

execution the output data, together with all dependent succeed-

ing tasks will be stored in non-volatile memory. Considering

the energy awareness, our approach can avoid power failures,

improving the overall performance of the scheduler.

The main contributions in this paper are: (i) the proposed

scheduling framework that is able to consider energy-related

information in decision making, including the mathematical

description of application tasks and the energy-aware task

scheduling algorithm, as well as its implementation; (ii) accu-

rate device profiling methodology of different application tasks

and device states, determining the impact of the scheduler on

current draw; (iii) realistic evaluation of our approach based

on a real implementation in a battery-less prototype device,

and validation using two types of power management units

(PMUs).

The remainder of this paper is structured as follows. Sec-

tion II reviews the state of the art on battery-less computing

and scheduling. In Section III, the energy-aware task scheduler

for battery-less IoT devices, along with the application imple-

mentation, metadata, and scheduling algorithm is described.

Section IV presents the accurate device profiling methodology

to determine the current consumption and execution time

of different application tasks and device states, as well as

the impact of implemented scheduler. Section V shows the

evaluation and validation results, together with discussion.

Finally, conclusions are provided in Section VII.

II. RELATED WORK

The main characteristic of battery-less IoT devices is their

intermittent on/off behavior, where they can lose power at any

point of time. As traditional computing models and approaches

cannot handle such behavior, new strategies that can enable

battery-less devices to operate under unstable power supply

are required. Different models and schedulers that can handle

battery-less intermittency have been proposed. They are mostly

based on two main strategies, checkpointing and task-based

models.

Checkpointing-based models capture a system state peri-

odically and after reboot continue with the execution starting

from the state captured by the checkpoint [12]. Mementos [13],

Clank [14] and Ratchet [15] have tried to preserve the forward

progress, but increasing the size of checkpoints and volatile

memory, the program’s time and energy overhead grows.

With this behavior the possibility of depleting the available

energy increases, which makes these approaches unsuitable

for battery-less devices. Even considering the dynamic check-

pointing approach [16], there is a possibility that the code

operates with inconsistent values, which makes the memory

consistency uncertain.

On the other side, task-based models split the program

into different atomic subtasks, saving the output data in non-

volatile memory after each execution. These models are more

suitable for battery-less devices showing better performance

in preserving forward progress. Alpaca [9] is a low-overhead

programming model for intermittent computing on battery-less

IoT devices, which decomposes the program into a sequence of

user-defined tasks preserving forward progress despite power

failures. Memory consistency is guaranteed through the pri-

vatization of shared data between connected tasks. Another

task-based scheduling approach, based on task granularity,

was presented by Colin et al. [12]. Similar to Alpaca, Chain

guarantees memory consistency, but with higher overhead due

to its channel-based memory model. The forward progress

is ensured as long as the energy demand never exceeds the

total energy storage capacity of the device. Hester et al.

[11] presented Mayfly, a language and runtime for timely

execution of sensing tasks on tiny, intermittently powered,

energy harvesting sensing devices. Their approach ensures the

forward progress and defines different types of constraints

which keep the data consistency, freshness and utility across

multiple power failures. All three mentioned approaches are

based on static task flows and if the task cannot be finished

due to lack of available energy, it will be executed again.

The main problem here is the risk of task starvation because

these schedulers do not advance any other task if the previous

one cannot be completed. Also, in the first two scheduling

approaches the selection of tasks based on their priorities has

not been included.

Yildirim et al. [10] proposed an event-driven approach

for battery-less IoT devices, introducing building blocks and

abstractions that can enable reacting to changes in available

energy keeping the sense of time and memory consistency.
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InK always tries to execute the event/task with the highest

priority, without considering energy availability, and if the

available energy depletes during the execution, the task fails.

Considering its dynamic strategy along with the predefined

task priorities, the issue of task starvation can be avoided.

However, none of aforementioned approaches take energy

awareness into account. Compared to them, our study allows

us to schedule tasks in an energy-aware fashion, taking into

account energy harvesting budget and current consumption of

the tasks, as well as their priorities. We consider and evaluate

the real measured energy cost of every specific state of the

device, including the impact of the scheduler. Based on current

consumption, execution time, harvesting rate, and capacitor

size, we can determine the required starting voltage for every

specific task avoiding power failures.

AsTAR [17] is an energy-aware task scheduler that rapidly

identifies optimum task scheduling rates and adapts quickly

to environmental changes ensuring extremely low performance

overhead in terms of memory, energy, and execution time. It is

fully autonomous and requires no pre-configuration, delivering

sustainable operation on heterogeneous platforms. In their

work, they considered larger super capacitors (between 1 and

5 Farad) and only single-task applications without priorities or

dependencies. Yang et al. [18] presented the updated version of

AsTAR, which supports multi-tasking and selects tasks based

on their priorities. However, they still focused on using only

larger super capacitors, which are not necessarily the most

optimal solution for battery-less IoT devices, as shown in

[19]. Large capacitors can reduce performance as they need

more time to charge, decreasing the total number of executed

application cycles. Instead, we focus on smaller capacitors and

consider different application tasks that are scheduled based

on their priorities but also interdependencies. Majid et al.

[8] presented an adaptive task scheduler that can adapt its

execution to the incoming energy conditions at runtime. It sup-

ports a variety of capacitors and ensures forward progress by

grouping tasks together when more energy is available. During

the program execution the task priorities are not defined. Two

scheduling algorithms for intermittent systems that schedule

computational and energy harvesting tasks have been proposed

by Islam et al. [7]. They define the equal priority for all

considered tasks assuming that computing and harvesting tasks

are separate and do not execute simultaneously. For validation,

only a 680mF super capacitor has been considered, and task

dependencies were not considered. In contrast, we allow the

harvester and the device to work simultaneously and define

different task priorities along with specific constraints enabling

power-hungry tasks to be executed for the specific use case.

Maeng et al. [20] presented an event-driven energy harvesting

system, named CatNap, which splits the program into time

critical code, for which energy must be reserved, and time

insensitive code. CatNap executes events atomically without

interruption by a recharge or a power failure. In their work,

they consider only the worst case while charging the capacitor,

and not for every event specifically, which can cause wasting

time on useless full capacitor charging periods. Delgado et

al. [1] presented a paper on such a theoretical analysis of

an energy-aware task scheduling algorithm that is able to

optimally schedule application tasks taking into account the

energy available in the capacitor and the expected energy to

be harvested, avoiding power failures and providing insights

on the optimal look-ahead time for energy prediction. They

provided theoretical insight into the performance of an energy-

aware task scheduling and compare their solution against InK

[10], an energy-unaware task scheduler, considering different

parameters such as a number of power failures and task

priority success rate. Their work is complementary to ours,

and provides the theoretical insights that are used in the design

of our practically feasible energy-aware scheduling solution.

In contrast, we focused on devising a scheduling framework

that enables the deployment of such energy-aware scheduling

algorithms on real IoT devices. Based on this theoretical

analysis, we developed a computationally feasible scheduling

strategy, as calculating the optimal solution is NP-hard and

thus infeasible to calculate on a real IoT device.

Finally, we have also presented an energy-aware task

scheduling approach on battery-less LoRaWAN devices with

energy harvesting [21], where we considered two different

strategies allowing the device to sleep and turn off between the

execution of application task cycles. We defined an optimiza-

tion problem that determines the optimal capacitor voltage at

which the device should start performing its tasks avoiding

the possibility of power failure. In this paper, we extend

the previous work in several ways. Our new energy-aware

task scheduler is more generic and can be used with dif-

ferent applications and technologies, considering the generic

dependencies among tasks. Also, after each task execution the

output data is saved in non-volatile memory, which was not

considered before. The model validation is performed based

on an implementation in a real battery-less prototype device.

III. ENERGY-AWARE BATTERY-LESS IOT DEVICES

In this section, the brief overview of the energy-aware

approach for battery-less IoT devices is provided. We start with

the description of our energy-aware task scheduler for these

devices, along with the application implementation, metadata,

and scheduling algorithm. In the end, we describe different

stages when power failures can occur, and how our energy-

aware task scheduler handles them.

A. Energy-aware task scheduling approach based on depen-

dencies and priorities

The main characteristic of battery-less IoT devices is their

unpredictable behavior due to the highly variable energy

supply. There are different proposed models and concepts

that tried to enable successful task execution on battery-less

devices, but only by considering the complete energy lifecycle

(i.e., harvesting current, stored energy, task and device energy

consumption), it is possible to avoid power failures. Because

of that, in this paper, we propose a new energy-aware task

scheduling concept that takes into account the harvesting

current, current consumption for every specific state of the

device, and is able to determine the minimum required voltage

threshold that the device needs to reach in order to perform

tasks successfully.
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Listing 1: Generic JSON representation of application tasks

{” Tasks ” : {

” func t ionName ” : task name ,
” c u r r e n t C o n s u m p t i o n ” : {

” v a l u e ” : measured va lue ,
” u n i t ” : u n i t v a l u e

} ,
” e x e c u t i o n T i m e ” : {

” v a l u e ” : measured va lue ,
” u n i t ” : u n i t v a l u e

} ,
” d e a d l i n e ” : {

” v a l u e ” : s e t v a l u e ,
” u n i t ” : u n i t v a l u e

} ,
” p r i o r i t y ” : s e t v a l u e ,
” i n i t ” : s e t v a l u e ,
” r e q u i r e d V o l t a g e ” : {

” v a l u e ” : measured va lue ,
” u n i t ” : u n i t v a l u e

} ,
” o u t p u t ” : {

” v a r i a b l e ” : o u t p u t v a r i a b l e ,
” t y p e ” : o u t p u t t y p e

}
}

}

1) Application implementation and metadata: Our energy-

aware task scheduling concept considers two main inputs:

i) The application implementation, which consists of a pre-

compiled binary that implements each task as a function,

as well as other functions relevant for the application,

such as configuring the network interface or low power

functionality. The considered application is divided into

connected tasks T = (t0, t1,...,tmax) that need to be

scheduled. Each task t ∈ T is characterized by its name

nt, execution time tet, average current consumption it,

deadline dt that guarantees the freshness and usability

of the data and tasks outputs, priority pt, and output ot.

Based on the task parameters, such as execution time tet
and current consumption it, as well as the harvesting rate

Ih and capacitor size C, the required voltage threshold

V
req
t for every specific task t ∈ T can be calculated and

used during the program execution as will be shown in

next sections. Each task t ∈ T has zero or one parent task

pt. Also, all tasks t ∈ T have a set of zero or more child

tasks Ct ⊂ T .

ii) The application metadata, which the user can define in

JSON format. These JSON files are parsed and compiled

by the scheduler when a new application is loaded into

the device. The metadata is provided in two main JSON

structured files, the first file to define task parameters

(Listing 1) and the second one to create a task flow

(Listing 2).

The metadata ensures that the energy-aware task sched-

uler is completely independent of the specific application

or application flow. It can be used with a wide range of

different applications and scenarios, defining different task

Listing 2: Generic JSON representation of task flow

{” TaskFlow ” : {

” p a r e n t T a s k ” : f t a s k s o u r c e ,
” c h i l d T a s k ” : f t a s k d e s t i n a t i o n ,
” c o n s t r a i n t ” : {

” v a r i a b l e ” : c o n s t r a i n t v a r i a b l e ,
” v a l u e ” : c o n s t r a i n t v a l u e ,
” t y p e ” : c o n s t r a i n t t y p e

}
}

}

TASK A

REPEAT EVERY

X SECONDS

TASK B

CONSTRAINT 

= TRUE

TASK C

START

YES

Fig. 2: Atomic task order considering constraints

parameters and flows for different cases. In this way, changing

the parameter values, order of tasks or even the complete

task flow becomes much faster and easier, saving time and

decreasing the burden for programmers.

The task flow description contains the task order and

constraints definitions. All tasks are characterized by an order,

which is implemented as a parent/child relationship, as illus-

trated in the example in Figure 2. Task A is the start task, and

has two child tasks, Task A and Task B. Due to its periodicity

that is defined as a constraint type, Task A can be considered

as a parent and child of itself. Task B has only one child task,

which is Task C. Task C cannot be executed if the constraint

is not satisfied.

Constraints can take several forms:

i) Repeat, which defines the periodicity of task execution.

Using this constraint, we can define how frequently

the specific task should be executed (e.g., execute the

temperature measurements every 1 second). Based on

this value, the task will always be rescheduled after a

predefined period. If the available energy is low, it may

not be executed, or execution may be delayed.

ii) Number of samples (Nsample), which defines the re-

quired number of output samples (Nreq) that the device

has to collect in order to execute the next task in the flow

(e.g., the required number of temperature samples is 3).

iii) Data availability (Davb), which checks if the needed

input (inputtn+1) for the succeeding task tn+1 in the

flow is available. In case that this constraint is satisfied
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the task will be scheduled, but not necessarily executed

first, depending on the scheduling algorithm.

iv) Mathematical comparison on an output (MATH)

(e.g., > , <, =), which checks the output (otn−1) of the

preceding task tn−1, and based on the obtained value the

energy-aware scheduler can decide on the next step. In

case that this constraint is satisfied (e.g., the temperature

value is lower than 25), the scheduler will schedule the

child task for execution. If the constraint is not satisfied,

the task will be skipped.

These constraints are presented in the application metadata

that creates a task flow (Listing 2). Each task constraint is

characterized by its variable, which is associated with the

output from the parent task (e.g., average temperature is the

output variable from the compute task), value, which defines

a specific requirement based on the constraint type (e.g., with

the availability constraint there is no need for a value, as

we always want to check if the data is available), and type,

which defines the constraint type (e.g., available refers to data

availability).

2) Energy-Aware Task Scheduling Algorithm: The main

goal of our energy-aware task scheduler is to maximize the

number of successful task executions based on their prede-

fined priorities, child-parent dependencies, and deadlines. The

energy-aware task scheduler works with two types of lists:

(i) the task list (T) that refers to the general concept, which

contains a description of all considered tasks and flows based

on the application metadata shown in Listing 1 and 2, and

(ii) the list of task instances (I) that refers to a specific task

execution, which includes all parameters from the task list with

an additional start time parameter.

The energy-aware task scheduler will start with the initial

setup by checking the memory status as shown in Algorithm 1

(Lines 1-6). In case there are already some tasks stored in the

memory, the scheduler will retrieve the list of task instances

from the memory and proceed with the next steps. This will

occur if a power failure occurs after the scheduler already

successfully finished the setup procedure before. Otherwise,

it will need to read and parse tasks and task flows from the

JSON metadata, and store them as structures in non-volatile

memory.

The next step is to check the initial parent tasks from the

task list (Line 8). The initial tasks are all tasks that have their

init parameter set to 1 in the JSON metadata (cf., Listing 1).

Once the initial task is selected, it will be associated with a

task instance created from that task (Line 9). The earliest start

time tesi of the selected task instance i is set based on the

current time tcur (Line 10), and as it presents the initial task,

the value is equal to 0. Therefore, the task instance deadline

di is equal to the associated task deadline dt defined in the

JSON metadata (Line 11). After this part is completed, task

instances of all initial tasks will be added to the task instance

list, and stored in non-volatile memory (Lines 12-15).

Our energy-aware task scheduler works based on task

priorities as presented in Algorithm 2. Each task instance is

characterized by its priority retrieved from the JSON metadata,

and the one with the highest priority from the task instance

list will be selected (Line 2). If its deadline cannot be satisfied

Algorithm 1: Task instance initialization

1 if task instances stored in memory then

2 I← retrieve task instances from memory;

3 else

4 T← parse tasks and task flows from JSON

metadata;

5 store T in non-volatile memory;

6 I← [ ];
7 forall t ∈ T do

8 if initt == 1 then

9 i← create task instance from t;

10 tesi ← tcur;

11 di ← tcur + dt;

12 I← I ∪ {i};
13 end

14 end

15 store I in non-volatile memory;

16 end

(taking into account also the time needed to charge the

capacitor to the task’s threshold voltage), the task instance will

be removed from the list, and the next task instance with the

highest priority will be selected. Otherwise, the device will

sleep until the earliest start time (Line 4). In case that two

task instances have the same priority, the one with the earliest

deadline will be selected first.

As we consider the energy awareness in our scheduling ap-

proach, the required voltage thresholds Vreq for each task must

be calculated, using the mathematical model and equations

presented in our previous work [21]. Based on the obtained

value, the scheduler is aware when the enough energy is

collected to execute the task. The device will measure the

capacitor voltage Vc at predefined intervals (i.e., every tv
seconds) to check if the required voltage threshold of the

selected task instance is reached. As long as the capacitor

voltage is lower than required value, the device will go into

sleep mode, and wait to repeat the measurement task again

(Lines 5-7). This will delay execution, increasing the actual

start time of the task instance based on the number of repeated

voltage measurement cycles. Once the capacitor voltage is

equal or higher than the required threshold, the task instance

can be executed, if it can still be completed within its deadline

(Lines 8-9).

In addition to task priorities, the energy-aware task sched-

uler also includes dependencies, which are implemented as

child tasks. The relationship between the parent and child

tasks are presented in the JSON metadata (cf. Listing 2) in

the form of an application task flow. Each task instance can

have one or more child tasks, which will be added to the list

of task instances, but only if their constraints are satisfied,

and subsequently, the highest priority task instance will be

executed. If the constraint is satisfied, the new task instance

will be created from the child task of the executed one. The

earliest start time of the instance ic of the child task c depends

on the type of the task constraint. In case it is a repeat

constraint, its earliest start time tesic will be based on the
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Algorithm 2: Priority-based energy-aware scheduling

algorithm

1 while I ̸= ∅ do

2 i← highest priority task instance from I;

3 if tesi +tei ≤ di then

4 sleep until tesi;

5 while Vc ≤ V reqi and tcur + tv +tei ≤ di do

6 sleep tv seconds;

7 end

8 if Vc ≥ V reqi and tcur +tei ≤ di then

9 execute i;

10 forall c ∈ ci do

11 if constraint of c is repeat then

12 ic ← create task instance from c;

13 tesic ← tcur + tdc;

14 dic ← tcur + dc;

15 I← I ∪ {ic};
16 end

17 else if constraint of c is Nsample and

Nsample ≥ Nreq then

18 ic ← create task instance from c;

19 tesic ← tcur;

20 dic ← tcur + dc;

21 I← I ∪ {ic};
22 end

23 else if constraint of c is Davb and

inputc == true then

24 ic ← create task instance from c;

25 tesic ← tcur;

26 dic ← tcur + dc;

27 I← I ∪ {ic}
28 end

29 else if constraint of c is MATH and oi
is satisfied then

30 ic ← create task instance from c;

31 tesic ← tcur;

32 dic ← tcur + dc;

33 I← I ∪ {ic};
34 end

35 end

36 end

37 end

38 I← I \ {i};
39 end

current time tcur and minimum required delay tdc between

task repetitions (Lines 11-16). Otherwise, the earliest start time

is equal to the current time. The deadline dic in which this task

instance must be executed is based on the current time tcur
and deadline specific to that task dc, which is defined in the

JSON metadata (cf. Listing 1). Once this part is finished, the

child task instances will be added to the list of task instances,

and stored in non-volatile memory (Lines 15, 21, 27 or 33,

depending on the selected task constraint).

3) Deadline based task selection: In the current energy-

aware task scheduler implementation, the rate-monotonic

scheduling (RMS) policy with the priority assigned algorithm

is considered. Each task is characterized with a predefined

priority and the one with the highest priority will always be se-

lected first. We consider hard task deadlines, to avoid wasting

energy on collecting, processing, or transmitting outdated data.

We thus assume that if the selected task misses its deadline,

it will affect the data freshness, and executing the task would

only waste energy as the data is no longer useful.

The proposed energy-aware task scheduling framework can

be adapted by integrating different task selection policies (i.e.,

by replacing Line 2 in Algorithm 2):

1) Changing the task priority - instead of removing the task

from the list if the deadline cannot be satisfied, its priority

can be adjusted and it can be executed with lower priority

based on the scheduling policy. In this case, the task will

be kept in the task queue and executed after the higher

priority task(s) of which the deadline has not expired. The

potential risk of this scheduling strategy is that the data

freshness can be affected, and the data will no longer be

relevant.

2) Earliest Deadline First (EDF) - the algorithm will assign

priorities to the task according to its deadline. The task

with the earliest deadline will be selected first as the

highest priority task. It must be noted that these priorities

can be adjusted and changed, which causes that any task

can be preempted by any other periodic task with an ear-

lier deadline. The potential issue of the EDF scheduling

algorithm is that if one task has missed the deadline, all

upcoming tasks will miss their deadline too [22].

3) Priority-based joint EDF-RMS - this scheduling algo-

rithm has been presented in [23] [22] as a hybrid of the

RMS and EDF algorithms that reduces the weakness of

both. Similar to EDF, the joint EDF-RMS is a dynamic

priority-based scheduling algorithm where priority can be

changed at run time, which results with less tasks that

will miss the deadline. Additionally, it is implemented

in a global scheduler that maintains all arrived tasks and

executes a task migration mechanism when tasks that are

not able to be executed on the source processor will be

migrated to another one. The main problem that can occur

using this scheduling strategy is that running tasks can be

preempted with higher priority new tasks, causing them

to miss the deadline [23].

4) Power failures and time-keeping: The important part of

our energy-aware task scheduler is that all the necessary data

is stored in flash, preventing their loss in case of a power

failure. There are different stages when a power failure can

occur. These are as mentioned below:

i) After the JSON files are read and parsed - after

reading and parsing JSON files, all the necessary data

related to the defined application tasks is stored in the

flash as an array of C structs. Then the scheduler selects

the initial tasks and saves them as task instances. In case

that a power failure occurs immediately after this part is

finished, the device needs to wait until it collects enough

energy to turn on again and check if there is any content

in the flash. The flash is not empty, and the scheduler is
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ready to continue with the next phase, without having to

reparse the JSON files.

ii) Before task execution - the next phase is to select the

highest priority task. When the scheduler selects the task,

it is ready to be executed. If a power failure happens just

before the execution, the relevant data is still safe in the

flash, because after each task execution, the task instances

must be updated with new values (dependent child tasks)

and stored. After reboot, the scheduler will again pick the

task, if its deadline has not passed, and continue with the

execution.

iii) During the task execution while some tasks are pend-

ing - In case that a power failure occurs during task

execution, after the reboot the device checks its flash and

repeats the task, if it can still be completed within the

deadline. In order to ensure task deadlines are met, it is

necessary to keep time across power failures.

Time-keeping is also important, to keep track of deadlines

accros power failures. There are different solutions for this

problem, such as (i) the approach based on a mathematical

model that represents the elapsed time estimated by measuring

how much voltage decayed across a small capacitor upon

reboot [24], and (ii) a more accurate multi-tier timekeeping

architecture based on a high-resolution remanence timekeeper,

capable of tracking time across power failures, featuring

an array of different RC circuits to be used for dynamic

timekeeping requirements [25].

Our energy-aware task scheduler tries to avoid power fail-

ures as much as possible. A power failure is expected to only

occur if the harvested energy is insufficient to keep the device

powered in its lowest power state (i.e., during sleep).

IV. DEVICE AND APPLICATION PROFILING

In this section, we describe the implemented IoT sensor

application, including all defined tasks and the order of their

execution. Two types of PMUs used for the validation of

our energy-aware task scheduler, along with different task

scheduling approaches used for comparison, are presented. A

brief overview of the used device and application profiling

methodology to get the current consumption and execution

time of the different states of the devices, as well as the actual

results, is provided. In the end, we explain how the harvesting

current can be estimated, taking into account different possible

cases.

A. IoT sensor application

For evaluation purposes, we implemented an IoT sensor

application composed of five main tasks: temperature measure-

ment, store the temperature values, calculate and transmit the

average temperature, and in the end confirm the transmission

by briefly turning on a LED.

Figure 3 shows the IoT application flowchart, which in-

cludes all defined tasks and their relation. The first task in the

flow is temperature measurement, which is a periodic task,

and can be repeated every X seconds. In our experiments,

the sensing task was executed every 1 second and its first

start time was considered to be 0 seconds. When the device

f_temp()

REPEAT EVERY 
X SECONDS 

temperature

f_store()

temperature_array[]

num_temp_values >= Y
f_compute()TRUE

f_transmit()

average
temperature

f_led()

Fig. 3: IoT application flowchart including the defined tasks

measures the temperature, the value is put in a temperature

array, with a predefined size Y, and stored. After the store

task is finished, the scheduler selects the compute task that is

able to calculate the average temperature based on input values

from its predecessor, but only if the constraint is satisfied. In

this case, as constraint, we assumed the required number of

sampled values to be 3. When the device collects 3 samples

and calculates the average value, it is ready to transmit the

data to the receiver node. After the successful transmission,

as a confirmation, the LED will turn on for 500 milliseconds.

B. Power Management Units

There are different types of Power Management Units

(PMUs) available in the market. These boards can have an

internal mechanism to control charging and power supply

periods, or some of them just act as a charger for the capacitor

and always supply power to the external device requiring an

external trigger to stop the supply. The proposed energy-aware

task scheduling approach was validated using two PMUs: (i)

Environment Emulator (EE) [26], and (ii) Intelligent-Power

Management Unit based on the AEM10941 chip [27] designed

by e-peas for solar and thermal harvesters.

1) Non-Intelligent PMU (Environment Emulator): The non-

intelligent PMUs present a power source where the control is

given to the external entity. As the device is normally powered

via USB or batteries, the EE was used to emulate the energy

harvesting environment and capacitor. The EE board was

developed by De Mil et al. [26]. It acts as a virtual capacitor,

and is able to emulate a wide range of energy harvesting

and energy storage configurations. The EE is connected to

the device under test (DUT) via expansion connectors. It

measures the current consumption of the DUT and, based

on a configured capacitor size and harvesting current, the EE

provides a variable voltage to the DUT in line with the voltage

that would be provided by a real capacitor.

2) Intelligent PMU based on the AEM10941 chip: The

power management is performed using a single inductor

boost/buck regulator. The boost regulator harvests energy from

the solar panel to charge the on-board storage using maximum

power point tracking. This system uses an RG trigger circuit
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TABLE I: Current consumption and time values of nRF52840 DK board used with the EE

Current Consumption Execution Time

State APP

EAS

-

FLASH

EAS

+

FLASH

InK

-

FLASH

InK

+

FLASH
APP

EAS

-

FLASH

EAS

+

FLASH

InK

-

FLASH

InK

+

FLASH

Temperature measurement 0.61 mA 0.66 mA 1.38 mA 0.64 mA 1.37 mA 1.15 ms 1.96 ms 12.31 ms 1.91 ms 11.76 ms

Store 1 1.31 mA 1.4 mA 1.4 mA 1.37 mA 1.37 mA 5.49 ms 7.39 ms 7.39 ms 6.81 ms 6.81 ms

Store 2 1.31 mA 1.4 mA 1.51 mA 1.37 mA 1.46 mA 5.49 ms 7.39 ms 11.98 ms 6.81 ms 11.61 ms

Compute 1.33 mA 1.41 mA 1.54 mA 1.37 mA 1.48 mA 6.31 ms 7.64 ms 12.1 ms 7.22 ms 11.81 ms

Transmit 0.31 mA 0.34 mA 0.57 mA 0.32 mA 0.55 mA 32.43 ms 33.81 ms 35.75 ms 32.74 ms 34.7 ms

Blinking LED 5.87 mA 5.97 mA 5.97 mA 5.95 mA 5.95 mA 502.6 ms 508 ms 508 ms 504.7 ms 504.7 ms

which makes the capacitor charge only when its voltage is

lower than a specific value. The battery-less IoT device is

turned on when the capacitor voltage reaches the turn-on

threshold (Vturnon) and it is turned off when its capacitor

voltage drops below the turn-off threshold (Vturnoff ).

The AEM10941 [28] is an integrated energy management

circuit designed by e-peas [27], for solar and thermal har-

vesters, which extracts DC power from up to 7-cell solar

panels to simultaneously store energy in a rechargeable el-

ement (e.g., capacitor). This solution can supply the system

with two independent regulated voltages, the low-voltage

output (LVOUT) and high-voltage output (HVOUT). LVOUT

generates 1.2V or 1.8V providing a maximum load current of

20mA whereas the HVOUT pin can generate from 1.8V to

4.1V providing a maximum current of 80mA. The evaluation

board works with an input voltage ranging from 50mV to 5V,

and starts harvesting energy at 380mV with an input power of

only 3µA.

The board can be logically divided into four different modes

depending on the capacitor voltage:

i) Voltage below Vturnoff (Discharged), where the PMU

only charges the capacitor without providing supply to

the DUT (LVOUT and HVOUT are deactivated).

ii) Voltage between Vturnoff and Vturnon, where there are

two possibilities. First, when the capacitor charges from

Vturnoff (Discharged), then the PMU only charges the

capacitor without providing supply, and the second one,

when the capacitor already reached Vturnon (Ready-

Charged), then the PMU provides the output voltage

supply and charges the capacitor.

iii) Voltage between Vturnon and the maximum allowed

(Vmax) (Charged), where in the availability of harvesting

current, the PMU charges the capacitor up to Vmax and

continues supplying the output voltage.

iv) Voltage above Vmax (Overcharged), where the capacitor

charging will be deactivated and the output voltage sup-

plying is continued.

C. Different task scheduling approaches

In our work, we have considered and compared four differ-

ent scheduling strategies:

i) Energy-aware task scheduling with flash storage

(EAS+FLASH) that writes everything to flash, which

is safer when the device fails, avoiding data loss and

ensuring forward progress.

ii) Energy-aware task scheduling without flash storage (EAS-

FLASH) that only stores everything in volatile memory,

which works better if the device does not fail (e.g., when

the amount of harvested energy is high enough). If the

device turns off, the application cycle needs to restart from

scratch.

iii) Energy-unaware task scheduling with flash storage that

includes the flash operations, but does not consider the

required voltage thresholds for every specific task. If a

power failure occurs, the device will try to re-execute the

same task again after the reboot, reading the application

state from the flash.

iv) Energy-unaware task scheduling without flash storage

that executes all tasks in a cycle without looking at the

energy available, based on the flowchart, and without

saving anything to the flash. If a power failure occurs,

the application cycle will reset after the reboot, as there

is nothing stored in the flash.

It must be noted that both considered energy-unaware

scheduling policies, follow the approach proposed by the InK

scheduler, an event-driven approach for battery-less IoT de-

vices that does not consider the energy availability, presented

by Yildrim et al. [10]. Based on that, in the rest of the paper the

InK notation will be used, InK+FLASH in the case when flash

storage is included, and InK-FLASH for the energy-unaware

task scheduling approach without flash storage.

D. Task current consumption and execution time for different

scheduling approaches

To perform accurate experiments, the current consumption

(Is) and execution time (ts) of the different states of the

device, such as sensing, flashing operations, or transmitting

data, are required. The real experiments, validation of our

energy-aware task scheduler, as well as a comparison between

different task scheduling approaches, were performed using

the nRF52840 DK board [29] on which a Bluetooth mesh

application was implemented. The current consumption (Is)

and execution time (ts) of the different states of the nRF52840

DK board were obtained with a Nordic Power Profiler Kit II

[30], a standalone unit that can measure the current level on all

Nordic DKs, in addition to external hardware. The nRF52840

DK board operates in nRF only mode, which tries to isolate

the chip on the board as much as possible, decreasing the total

current consumption and making the low-power application

more suitable for battery-less IoT devices.

Table I shows the current consumption and duration for

different states of the nRF52840 DK board, including all

considered scheduling approaches, as well as the scenario
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TABLE II: Current consumption and time values of nRF52840 DK board used with the Intelligent Power Management Unit

based on the AEM10941 chip

Current Consumption Execution Time

State APP

EAS

-

FLASH

EAS

+

FLASH

InK

-

FLASH

InK

+

FLASH
APP

EAS

-

FLASH

EAS

+

FLASH

InK

-

FLASH

InK

+

FLASH

Temperature measurement 1.12 mA 1.4 mA 2.1 mA 1.2 mA 1.61 mA 1.22 ms 1.73 ms 12.83 ms 1.45 ms 11.81 ms

Store 1 1.9 mA 2.16 mA 2.16 mA 1.97 mA 1.97 mA 5.84 ms 7.69 ms 7.69 ms 7.26 ms 7.26 ms

Store 2 1.9 mA 2.16 mA 2.43 mA 1.97 mA 2.24 mA 5.84 ms 7.69 ms 12.23 ms 7.26 ms 11.2 ms

Compute 1.94 mA 2.18 mA 2.58 mA 2.02 mA 2.3 mA 6.08 ms 7.75 ms 12.4 ms 7.33 ms 11.2 ms

Transmit 0.47 mA 0.61 mA 0.84 mA 0.51 mA 0.72 mA 28.41 ms 34.31 ms 36.5 ms 32.65 ms 34.38 ms

Blinking LED 0.22 mA 0.48 mA 0.48 mA 0.29 mA 0.29 mA 502.6 ms 506.1 ms 506.1 ms 504.8 ms 504.8 ms

without scheduler, used with the EE. These values were

measured at 3.3V, using a TX power of 8dBm and considering

three parts, (i) the application part (APP) that only includes the

defined tasks, (ii) scheduler part without the additional flash

operations (EAS-FLASH and InK-FLASH) that includes the

defined tasks, but also shows the impact of the scheduler’s

overhead, and (iii) the scheduler part with the additional flash

operations (EAS+FLASH and InK+FLASH) that includes the

defined tasks and scheduler’s overhead, but also shows the

impact of the flash’s overhead. Compared to the application

part, the measured current consumption and execution time

are higher when the scheduler and flash features are also

included. The scheduler adds some extra operations, such as

(i) selects the task with the highest priority, (ii) removes it

from the task list when it is finished, and (iii) occupies new

places in the list adding all dependent child tasks related to

the executed one. In case when the energy-aware scheduling

approaches (EAS+FLASH and EAS-FLASH) are used, before

every task execution, the device needs to measure the voltage

in order to check if the required voltage threshold is satisfied,

which also consumes some energy (around 110µA). Including

the additional flash functions before and after each task will

increase the current consumption, but also the availability of

data if a power failure occurs.

The lowest energy cost task is the temperature measure-

ment, but adding the scheduler features, the execution time

and current consumption will increase, especially when the

additional flash operations are added. There are two different

store states: (i) before the required number of temperature

samples is collected, the additional flash’s overhead is not

included in any scheduling approach as the store task in this

stage does not have any dependent child task(s) to be added,

and (ii) after the required number of temperature samples is

collected, the compute task will be added to a list and stored,

which requires additional flashing operations (EAS+FLASH

and InK+FLASH). The compute task calculates the average

temperature, which does not consume much energy, but it

also needs to store that value after the calculation. When this

task is finished, its child task(s) will be added and stored,

which again includes the additional flash part for the specific

scheduling implementations (EAS+FLASH and InK+FLASH).

Before the transmission, the scheduler (EAS+FLASH and

InK+FLASH) will again check the flash status, and select

the transmit task as the next one, which will add some

additional current consumption. The final task in the cycle

is the LED task, and as it does not have any dependent

task that must be stored in the flash or added to the list,

all scheduling approaches show almost the same results. In

this case, compared to the application part, the overhead can

only occur from the scheduler and voltage measurements,

depending on the implemented scheduling strategy.

Using the scheduling approaches with additional flash op-

erations (EAS+FLASH and InK+FLASH) ensures a safer

task execution, avoiding data loss and preserving forward

progress if the device fails, but also increases the current

consumption and execution time of tasks. This overhead can be

reduced by removing the extra flash operations, and based on

that we considered the additional version of each scheduling

approach (EAS-FLASH and InK-FLASH). The InK-FLASH

solution is the lowest energy cost compared to other considered

approaches, but also with the highest risk of power failures and

data loss to occur. On the other side, the energy awareness

aspect of the EAS-FLASH solution that allows it to avoid

power failures as much as possible, makes this approach a

good alternative to the EAS+FLASH in terms of the lower

current consumption.

The current consumption and execution time for different

states of the nRF52840 DK board used with the Intelligent

Power Management Unit based on the AEM10941 chip are

presented in Table II. These values were obtained at 1.8V,

based on the low-voltage output (Section IV-B2), using a

TX power of 8dBm and including all considered scheduling

approaches. In this case, the device is not able to directly

read the voltage from the power management unit, as is a

case when the EE is used. In order to enable our device to

read the voltage, an additional voltage divider with resistors

is added that increases the current consumption of this task

(around 1.5mA), which in the end has the impact on the total

current consumption of each task when the energy-aware task

schedulers are used (EAS+FLASH and EAS-FLASH). This

full setup will be described in more detail in Section V-B.

E. Harvesting current

In addition to the current consumption (Is) and execution

time (ts) of the different states of the device, we also need

to know the harvesting current (Ih). Using these values, the

required voltage threshold calculations can be performed accu-

rately, reducing the possibility of power failures. Considering

these parameters for every specific task, the energy-aware task

scheduler knows when to start with the execution.
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There are different ways how to calculate the required

voltage threshold Vreq based on Equation 1 presented in [21]

(V0 is replaced with Vreq):

Vreq =
Vmin − Ihρ(Is)(1− e

( −ts
ρ(Is)C

))

e
( −ts
ρ(Is)C

)
(1)

where Vt is replaced with Vmin, the minimum voltage

on which the task ends, and Ih is the estimated harvesting

current. Based on how Ih is estimated, we can obtain different

estimates for Vreq , referred to as V ′

req:

i) Worst case estimate (Ih = 0) -

V ′

req =
Vmin

e
( −ts
ρ(Is)C

)
, V ′

req > Vreq (2)

Huybrechts et al. [31] presented insights into the Worst-

Case Energy Consumption (WCEC) of each schedulable

task on the device. They have proposed a hybrid method-

ology that combines machine learning-based prediction

on small code sections with static analysis to combine

the predictions to a final upper bound estimation for

the WCEC. Their work relies on an automated test-

bench that measures and profiles the upper bound energy

consumption from annotated code blocks on the target

device. These measurements are then used to train WCEC

estimation models that need to predict these upper bounds.

As a baseline for comparison, the harvesting current can

simply be estimated as 0, resulting in the highest possible

voltage threshold, but the lowest chance of a power

failure occurring. However, this approach shows some

disadvantages, especially with higher harvesting currents

when the required amount of energy for task execution

can be collected much faster. In this case, the device will

waste time waiting to reach the worst-case threshold, even

if a lower value can ensure the successful task execution,

affecting the data freshness and missing deadlines.

ii) Perfect prediction (Ih = known) -

V ′

req = Vreq (3)

Considering the perfect prediction, the harvesting current

is constant and defined before the experiment starts, which

makes the calculation of required voltage thresholds much

easier. However, it is not realistic to assume the future

short-term harvesting current is known, as it fluctuates

rapidly over time.

iii) Predicted estimate (I ′h) - energy harvesting predictions

can help determine after how long the energy-aware

scheduler will have the required energy to execute a task.

However, there are still two possible scenarios: (i) if the

predicted harvesting current I ′h is higher than the real one,

the calculated voltage threshold V ′

req will be lower than

required, and a power failure will occur, and (ii) when

the predicted harvesting current I ′h is lower than a real

one, the calculated voltage threshold V ′

req will be higher

than required, which is not optimal.

In this work, we have performed experiments both consid-

ering a perfectly predicted Ih, and the worst-case estimate

approach. We did not consider a predictive approach, due

to the difficulty in accurately predicted harvested energy. We

consider this a separate topic, and subject of future work.

The electrical circuit model of a battery-less IoT device

using a current source energy harvester, which was presented

in our previous work [21], is a simplified model of the

EE, and with it we are able to get a match in terms of

the capacitor behavior. On the other side, there are some

differences between the Intelligent Power Management Unit

based on the AEM10941 chip and EE. When the Intelligent

Power Management unit based on the AEM10941 chip is

used, (i) the supply voltage to the DUT is constant, and

(ii) there is different charging/discharging behavior of the

capacitor depending on if the voltage is supplied or not, or

in which mode the board operates (Section IV-B2). Based on

that, we are not able to get a perfect match comparing with

our mathematical model, but we can still use it to determine

the approximate value that will be used as the required voltage

threshold.

V. RESULTS AND DISCUSSION

In this section, we present results and validation of our

energy-aware task scheduling approach described in Sec-

tion III based on real experiments and the task voltage thresh-

olds derived in Section IV. In our scenarios, we have consid-

ered two devices, a battery-less low-power node (nRF52840

DK) on which the application along with the energy-aware

task scheduler is implemented, and a constantly powered

server/receiver node (nRF52840 DK) to receive the sent aver-

age temperature values. In order to enable the communication,

both devices are equipped with a Bluetooth Low Energy (BLE)

radio supporting the Bluetooth mesh features.

Before they can participate in a Bluetooth mesh network,

both nodes must be provisioned. The provisioning process

is used for adding devices to the mesh network, and it is

performed by the provisioner, which can be the same board

as we mentioned above running the provisioning code, or

a smartphone on which the required nRF Mesh application

[32] is installed. In our case, the second option was used,

where devices have been provisioned before the program

started. During the provisioning task, loading and parsing of

the metadata (JSON files) can be done.

A. Non-Intelligent PMU (Environment Emulator)

1) Experimental setup: Based on the defined IoT sensor

application and manually set configuration of the environment

emulator, we defined and performed different experiments to

validate our energy-aware task scheduling approach. Table III

lists the general parameters used in our EE experiments. The

minimum operating voltage Vmin is equal to 2V, and the

maximum allowed voltage based on EE constraints is 3.5V.

The device collects a new temperature value every 1 second,

and after 3 measurements the next task can be executed.

Using the mathematical model described in our previous work

[21], the required voltage threshold for each defined task

can be calculated exactly considering the set capacitor size,

harvesting current, as well as measured current consumption

and execution time. The device needs to wait until the voltage
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TABLE III: Experimental setup with the EE

Parameter Symbol Value

Turn-off Voltage Vturnoff 1.8 V

Min Voltage Vmin 2 V

Max Voltage E 3.5 V

Capacitance C (4.7, 10, 20) mF

Harvesting Current Ih 17.09 - 85.47 µA

TX Power TP 8 dBm

Duration Texp 160 - 250 s

Sensing periodicity ttemp 1 s

Voltage check periodicity tvol 1 s

Required num. of temp. samples Nsample 3

TABLE IV: Application task priorities

Task Priority

Temperature measurement 3

Store 5

Compute 8

Transmit 10

Blinking LED 4

threshold is satisfied to avoid a power failure from occurring.

In case that the measured voltage is below the threshold, the

device sleeps for a predefined time, which is in our case set

to 1 second, and checks the voltage again. Our energy-aware

task scheduler was configured to stay above 2V, with a safety

margin, as the turn off voltage is equal to 1.8V. This can be

done by calculating the voltage threshold for each task with

Vmin set to 2V. As mentioned before, all tasks are selected

based on their priorities, which are summarized in Table IV.

The priority has been set based on the type of application

task; measuring the temperature is not as critical as computing

the average value when the required number of samples is

collected. After each sensing task, the temperature value must

be stored in the flash, which makes this task higher prioritized

than the periodic measurement. The transmit task is the task

with the highest priority and will be executed first whenever

an average temperature is available. In the end, the application

cycle is finished by blinking the LED.

For the EE experiments, we have considered two main

strategies: (i) the constant harvesting current during the full

time of the experiment, and (ii) we defined different harvesting

currents and switched between them every 35 seconds during

the experiment in order to see if our scheduler is able to

dynamically react to environmental changes. Also, it must be

noted that using the EE, experiments start at the maximum

allowed voltage with a fully charged capacitor, and the har-

vester starts to provide energy after 5 seconds, which can affect

the number of executed cycles at the start of the experiment

before the voltage drops to the steady state (around 2.05V) in

all considered cases.

2) Constant harvesting current: In this approach, the

known harvesting current for calculating the required voltage

thresholds of the tasks is considered, which means that the

perfect prediction case is used. This value is constant and

defined before the experiment starts. Figure 4 shows the

capacitor voltage changes when the device executes different

tasks described in Section IV, considering different capacitor

sizes and harvesting currents. The most power-hungry task is

the LED task, which consumes the highest amount of energy

and takes much more time to complete compared to other

tasks that we considered in this work. As the capacitor size

increases, lower harvesting currents can be used. It is expected

that using a smaller capacitor will lead to a reduction charging

time, resulting in more application cycles to be completed.

However, this is not the case, as can be clearly seen when

comparing Figure 4a and 4c or 4b and 4d. This is because

a smaller capacitor requires a much higher voltage threshold

which in turn results in longer charging times.

When using a smaller capacitor (cf. Figure 4a) with a lower

harvesting current, such as 17.09 µA, the device needs to

sleep for a long time in order to reach the required threshold

(above 2.9V) to perform the LED task, which is the highest

energy consumer. This task will deplete almost all the available

energy, and force our device to sleep again in order to reach the

threshold of the sensing task and start a new cycle. The impact

of this behavior can be seen in a total number of successful

cycles (7 cycles in 250 seconds) at the end of the experiment.

As the harvesting current increases (cf. Figure 4b), the

required thresholds are still high (all above 2.4V), but the

number of successful cycles increases (22 cycles in 250

seconds). In this case, the device needs less time to collect

enough energy for performing the LED task, and meet the

next task constraints after finishing it.

As the capacitor size increases (cf. Figure 4c, 4d), the

required voltage threshold for each task will decrease. It can

still be observed that the LED task consumes the most energy

compared to the other tasks, but now the threshold is much

lower (below 2.15V) and the device can reach it faster. Even

when the voltage drops below 2V, the capacitor charges fast,

and the device needs less time to reach the next threshold.

Increasing the capacitor size and harvesting current, the device

will show better performance, until it reaches the point when

there is enough energy to perform all tasks without voltage

variations.

Figure 4b, 4c, and 4d show some unexpected behavior

where huge voltage drops occurred. This can be explained

considering the added scheduler features which are mostly

related to the flash erase and write functions. In our case, the

device needs to execute the flash operations more frequently,

before and after each task execution in order to prevent data

loss, which can occasionally take more time than expected

preventing the chip from going to sleep mode and increasing

the total current consumption. This behavior causes delays

in flash operations and holds the device in the ON state

discharging the capacitor very fast. The voltage drop depends

on the provided harvesting current, capacitor size, and the

starting voltage at which this behaviour occurs affecting the

total number of executed application cycles. To ensure that the

device will not turn off when this behavior occurs, the higher

current consumption and execution time are considered for

calculating the required voltage threshold, taking into account

this worst case energy consumption which occurs sporadically.

The average time needed to complete a full application cycle

(cf. Figure 5), which starts with temperature measurements

and ends with the LED task if all constraints are satisfied,

as described in Section IV (cf. Figure 3), depends on the

capacitor size and harvesting current, as well as the calculated

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0 50 100 150 200 250

 Time (s) 

2

2.2

2.4

2.6

2.8

3

 C
a
p
a
c
it
o
r 

v
o
lt
a
g
e
 (

V
) 

(a) C = 4.7 mF, Ih = 17.09 µA

0 50 100 150 200 250

 Time (s) 

2

2.5

3

 C
a
p
a
c
it
o
r 

v
o
lt
a
g
e
 (

V
) 

(b) C = 4.7 mF, Ih = 85.47 µA

0 50 100 150 200 250

 Time (s) 

1.8

1.9

2

2.1

2.2

 C
a
p
a
c
it
o
r 

v
o
lt
a
g
e
 (

V
) 

(c) C = 20 mF, Ih = 17.09 µA

0 50 100 150 200 250

 Time (s) 

1.8

1.9

2

2.1

2.2

 C
a
p
a
c
it
o
r 

v
o
lt
a
g
e
 (

V
) 

(d) C = 20 mF, Ih = 85.47 µA

Fig. 4: Capacitor voltage behavior when executing different tasks considering different capacitor sizes and constant harvesting

currents

Fig. 5: Average time to complete a full application cycle

considering different capacitor sizes and harvesting currents

required voltage for every considered application task. We

considered different capacitor sizes, and tested their behavior

with different harvesting currents.

Considering smaller capacitors such as 4.7mF, the needed

average time to complete a full application cycle is longer

compared to the other two. The reason for that is because the

required voltage thresholds that the device needs to reach in

order to execute every task are higher, which takes more time

and affects the final number of performed cycles. The same

behavior as with the other two capacitor sizes is observed,

increasing the harvesting current the average needed time for

one cycle decreases and the device shows better performance.

3) Non-constant harvesting current: In the second ex-

periment, the harvesting current was varied throughout the

experiment. We switched the harvesting currents every 35

seconds, considering the values presented in Table III, to check

if our energy-aware task scheduler can react to environmental

changes. Figure 6 shows the capacitor voltage changes during

the task executions for different capacitor sizes and harvesting

currents, which were changed during the experimental time,

starting with the highest value of 85.47µA.

In both shown examples (cf. Figure 6a, 6b) it can be seen

that our scheduler is able to react to environmental changes,

and adapt the execution to the new situation. The capacitor

acts based on the provided harvesting current and set voltage

threshold, and as the harvesting current increases more cycles

will be executed. For the larger capacitor (cf. Figure 6b),

the device shows better performance executing more cycles,

which are presented as black dots on the graph, in almost

all cases except when the harvesting current is the lowest. In

this case, the device executed only one task cycle for both

capacitor sizes due to the higher required voltage threshold

which requires almost all available time to be reached. In

all other cases, the device with the larger capacitor performs

better and executes more application cycles, due to the lower

required threshold that can be reached faster compared to when
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(a) C = 4.7 mF (b) C = 20 mF

Fig. 6: Capacitor voltage behavior when executing different tasks considering different harvesting currents during the

experimental time
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Fig. 7: Number of executed application cycles for different

capacitor sizes considering variable harvesting current over

time

a smaller capacitor is used (cf. Figure 6a).

The final comparison between different capacitor sizes re-

lated to the total number of a full application cycles is shown

in Figure 7. Again, the larger capacitor of 20mF shows the

best performance allowing our device to execute the highest

number of application cycles due to the behavior and reasons

mentioned above. As the capacitor size decreases, the required

voltage threshold for each task will increase taking more time

to charge and allowing our device to execute the tasks less

frequently.

B. Intelligent PMU based on the AEM10941 chip

1) Experimental Setup: Based on the defined IoT sensor

application (cf. Figure 3) and manually set configuration of the

e-peas evaluation board, we performed different experiments

to validate our energy-aware task scheduler and compare it

with different scheduling approaches. Table V lists the general

parameters defined in our experimental setup with the e-peas

TABLE V: Experimental setup with the Intelligent PMU based

on the AEM10941 chip

Parameter Symbol Value

Turn-off Voltage Vturnoff 2.8 V

Turn-on Voltage Vturnon 3.67 V

Max Voltage Vmax 4.5 V

Capacitance C (4.7, 10) mF

Harvesting Current Ih (20, 40) µA

TX Power TP 8 dBm

Duration Texp 5400 s

Sensing periodicity ttemp 1 s

Voltage check periodicity tvol 1, 10 s

Required num. of temp. samples Nsample 3

board. The turn-off voltage, below which the device cannot

operate, is set to 2.8V, and the maximum allowed voltage,

Vmax, is equal to 4.5V. The battery-less IoT device will turn on

when the voltage threshold of 3.67V is reached. These voltage

thresholds can be set in different operating modes from a

range that covers most application requirements through three

configuration pins, without any dedicated component [28].

Compared to the approach where the environment emulator is

used, for these experiments we have considered the real energy

harvesting environment with solar panels. The Panasonic AM-

5608 [33] outdoor solar panel consisting of 6 amorphous

silicon solar cells was used. As the sunlight intensity is

unpredictable, and the harvesting current can change at any

moment, the controllable setup with artificial light which is

placed at some distance above the solar panel was designed,

in order to fairly compare different scheduling approaches. We

have used the Philips 5.5W White LED lamp (470lm) as a light

source. The experiments are performed in a completely dark

room where the light is only produced by the bulb. All tasks

are selected based on their priorities, which were summarized

in Table IV.

For the Intelligent PMU based on the AEM10941 chip

experiments, we have considered four different scheduling

strategies presented in Section IV-C. In both energy-unaware

scheduling approaches, the device tries to execute the next task

immediately after the previous one, which does not guarantee
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Fig. 8: Experimental setup using the e-peas evaluation board

that the task will be finished before a power failure occurs, as

the required voltage thresholds on which the task executions

should start are not taken into account. The hardware setup

for the energy-unaware scheduling approaches is shown in

Figure 8a. In contrast, using the energy-aware scheduling

approach, the battery-less IoT device needs to be able to obtain

the current voltage on the capacitor, in order to compare it to

the calculated voltage threshold of each task. In Figure 8b,

the energy-aware experimental setup with the e-peas board is

shown, where an additional voltage divider is added to enable

our device to read the voltage on the capacitor, and based on

the permitted range of Nordic GPIO act accordingly. As the

voltage measurement circuit contains additional resistors, the

current consumption will increase. To reduce this, MOSFETS

are used as a circuit switch. In this way, the harvested energy

can be used better by determining the usable energy capacity

stored in the capacitor, and the IoT application can be modified

to act in an energy-aware fashion.

In both cases, we have used three power pins on the e-peas

evaluation board:

i) BATT pin that is the connection to the energy storage

element, which is in our case the capacitor, and cannot

be left floating.

ii) SRC pin that is the connection to the harvested energy

source, which is in our case the solar panel.

iii) LVOUT pin that presents the output of the low voltage

LDO regulator. This pin is used as the connection to our

nRF52840 DK board.

2) Comparison between Approaches: We compare our

energy-aware task scheduling approach with the energy-

unaware scheduling strategies using the defined IoT appli-

cation, and the e-peas evaluation board setup that considers

the real energy harvesting environment. In our experiments,

we have followed the behavior of the device under different

implemented scheduling strategies (cf. Figure 9) in terms of

the time the device is turned on and the number of power

failures (cf. Figure 10), and the total number of full application

cycles (cf. Figure 11).

Considering the energy-aware task schedulers, with

(EAS+FLASH) and without additional flash operations (EAS-

FLASH), when a smaller capacitor such as 4.7mF (cf. Fig-

ure 9a and 9b) is used, power failures can be avoided com-

pletely. In both cases, defining the required voltage thresholds

for each application task, the device knows when the needed

amount of energy is stored and the task can be successfully

executed. If the required voltage is not reached, the device goes

in sleep mode, consuming a very low power (around 10µA),

and checks the voltage again after the predefined time tvol (1

and 10 seconds).

For a larger capacitor such as 10mF, considering our energy-

aware task scheduling approaches (cf. Figure 9c and 9d), we

have noticed the same behavior as in the case the capacitor

of 4.7mF is used. Using both of our energy-aware task sched-

ulers, the device stays on for the entire experiment duration

(cf. Figure 10a and Figure 10b), avoiding power failures in all

considered cases (cf. Figure 10c and Figure 10d). However,

this is possible only if we perfectly determine the value of

the harvesting current, which is the case in our controllable

setup. In reality if this knowledge is not perfect, power failures

could occur if the harvesting current (Ih) is overestimated

(Section IV-E).

In contrast, both energy-unaware approaches (InK+FLASH

and InK-FLASH) will try to execute tasks every time there is

energy available, without checking if that amount of energy

is enough for the successful execution. After some time, the

energy in the capacitor will drain and the device will turn

off. After a power failure occurs, the device needs to wait

until the turn-on voltage threshold is reached to repeat the

task execution or reset the full application cycle depending

on the selected energy-unaware approach. This can affect the

data freshness and cause missed deadlines, or even complete

data loss if the solution without flash is used. The total

number of power failures depends on the capacitor size and

harvesting current. As the capacitor grows smaller, it is able

to perform more charge/discharge cycles, especially when

the higher harvesting current is used (cf. Figure 9b), which

increases the number of power failures (cf. Figure 10d).

A larger capacitor such as 10mF will take longer to charge

and reach the turn-on voltage threshold, especially when the

lower harvesting current is considered (cf. Figure 9c). How-

ever, since both energy-unaware solutions do not worry about

the task energy cost, power failures are not avoided in this case

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185321

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on August 23,2022 at 10:29:35 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

0 500 1000 1500 2000 2500 3000

 Time (s) 

2.6

2.8

3

3.2

3.4

3.6

3.8

 C
a

p
a

c
it
o

r 
v
o

lt
a

g
e

 (
V

) 

Turn-off voltage

Turn-on voltage

EAS+FLASH

EAS-FLASH

InK+FLASH

InK-FLASH

(a) C = 4.7 mF, Ih = 20 µA

0 500 1000 1500 2000 2500 3000

 Time (s) 

2.6

2.8

3

3.2

3.4

3.6

3.8

 C
a

p
a

c
it
o

r 
v
o

lt
a

g
e

 (
V

) 

Turn-off voltage

Turn-on voltage

EAS+FLASH

EAS-FLASH

InK+FLASH

InK-FLASH

(b) C = 4.7 mF, Ih = 40 µA

0 500 1000 1500 2000 2500 3000

 Time (s) 

2.6

2.8

3

3.2

3.4

3.6

3.8

 C
a

p
a

c
it
o

r 
v
o

lt
a

g
e

 (
V

) 

Turn-off voltage

Turn-on voltage

EAS+FLASH

EAS-FLASH

InK+FLASH

InK-FLASH

(c) C = 10 mF, Ih = 20 µA

0 500 1000 1500 2000 2500 3000

 Time (s) 

2.6

2.8

3

3.2

3.4

3.6

3.8

 C
a

p
a

c
it
o

r 
v
o

lt
a

g
e

 (
V

) 
Turn-off voltage

Turn-on voltage

EAS+FLASH

EAS-FLASH

InK+FLASH

InK-FLASH

(d) C = 10 mF, Ih = 40 µA

Fig. 9: Capacitor voltage behavior when executing different tasks considering different capacitor sizes and harvesting currents
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Fig. 10: Total time the device is on and number of power failures for different task scheduling approaches considering different

capacitor sizes and harvesting currents
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Fig. 11: Number of executed application cycles considering different capacitor sizes, harvesting currents, and voltage check

periods

either. The energy-unaware solution where the additional flash

operations are added consumes energy very fast, due to the

flash’s overhead, causing the highest number of power failures

(cf. Figure 10c and 10d). Even if the energy-unaware solution

without the flash storing reduces this overhead and enables

the device to be awake for a longer period (cf. Figure 10a and

10b), it is still not enough to manage and avoid power failures.

Finally, Figure 11 shows the number of full application

cycles executed during the experiments, considering different

capacitor sizes, harvesting currents, and voltage check periods

(1 and 10 seconds), which are used in the energy-aware task

scheduling approaches. Based on the obtained results, we

have concluded that the capacitor size, harvesting current, as

well as a period between two voltage checks, will determine

the number of performed application cycles. If the period

between two voltage checks is too long, the device will reach

the required voltage threshold before the next measurement,

wasting the rest of the time in sleep mode. Otherwise, if this

period is too short, the device will check the voltage too often,

consuming extra power, which can cause the task execution

to be postponed. Therefore, we tested two different voltage

check periods. The device measures the voltage every 1 or 10

seconds to check if the required threshold is reached in case

that it does not have enough energy to perform the specific

task. Between these two checks the device goes in sleep mode

consuming around 10µA. This parameter is only relevant for

the energy-aware solutions, as they consider the energy aspect

when selecting and scheduling tasks, and different voltage

check periodicity will not affect the total time the device is on

or the number of power failures. Therefore, we do not show

results for different voltage check periods in Figure 10.

For a lower harvesting current such as 20µA (cf. Fig-

ure 11a), the energy-unaware approaches, especially the so-

lution without the additional flash operations, show the better

performance compared to the energy-aware approaches. Using

the InK-FLASH solution the device consumes the lowest

energy, as there are no flash operations, and voltage checking,

which enables faster task execution until the turn-off voltage

is reached and a power failure occurs. Since the implemented

application is not too power-hungry, starting at turn-on voltage,

which is in our case equals 3.67V, until it reaches the turn-

off voltage threshold the device can execute a high number

of cycles. This behavior leads the energy-unaware solutions

to show the better results with this configuration compared

to our energy-aware task schedulers. In contrast, considering

our energy-aware approaches, power failures can be avoided,

but the device operates around lower voltages (cf. Figure 9a,

9c). It needs to wait until the calculated voltage threshold is

reached for each task in the cycle, which reduces the frequency

of task execution, especially in case when lower harvesting

currents are considered. When more frequently voltage checks

are implemented (i.e., every 1 instead of 10 seconds), both

energy-aware approaches show better performance, especially

the EAS-FLASH solution where the additional flash operations

overhead is reduced.

As the harvesting current increases (cf. Figure 11b), our

energy-aware task schedulers start to show better performance

compared to the energy-unaware solutions. The needed time

for reaching the voltage thresholds decreases, which results

in more frequent task executions. In contrast, the number

of full application cycles using the energy-unaware solutions

also increases, but as they are not capable of avoiding power

failures, the device still needs to wait for charging periods.

The best results for both cases (4.7mF and 10mF) are shown

by the EAS-FLASH solution, in case when the voltage check

period is set to 1 second. As it reduces the flash’s overhead, the

current consumption is lowered, power failures are avoided,

and the device does not waste time in sleep mode if the

required threshold is already reached. When the voltage check

period is set to 10 seconds, the device sleeps more missing the

opportunity to execute tasks earlier, which results in a smaller

number of performed cycles. Similar behavior can be observed

with the EAS+FLASH approach, where the number of per-

formed cycles is reduced due to additional flash’s overhead.

With the voltage check period of 1 second, the EAS+FLASH

solution shows better performance compared to the similar

energy-unaware implementation (i.e., InK+FLASH).

VI. DISCUSSION AND FUTURE WORK

The main goal of this paper is to showcase the energy-

awareness aspect of our task scheduler for battery-less IoT de-

vices and advantages that come with it. The energy-awareness
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part of our work consists of two main aspects, the voltage

divider with resistors that enables our device to measure the

voltage, and the energy-aware task scheduling algorithm that

uses this value to calculate when to execute each application

task. It must be noted that both of these additional parts

are very portable and could relatively easily be integrated

into another scheduler implementation. The proposed energy-

aware task scheduler is a heuristic and evaluated based on

a real implementation in a battery-less prototype device. In

[1], the authors showed that the considered energy-aware task

scheduling problem is NP-hard. In that work, they formulated

a Mixed Integer Linear Programming (MILP) model, to op-

timally solve the problem. This optimal solution considered

all possible scheduling orders of known future tasks. They

also studied shorter look-ahead horizons, only considering

a few future tasks with the highest priority and/or nearest

deadline, which showed that even a very small look-ahead

can provide a near-optimal results. As our aim in this paper is

to provide insights into practical energy-aware task scheduling

on actual IoT devices, the computational overhead, and energy

consumption of the used scheduling algorithm are very im-

portant. As such, we implemented a computationally tractable

sub-optimal scheduling algorithm that selects the highest-

priority task among the available tasks. This choice is based

on the observations from [1], that such an approach achieves

near optimal results. Nevertheless, our proposed scheduling

framework is modular, and can easily accommodate different,

more elaborate, and more optimal scheduling algorithms and

logic.

There is potential improvement in the current implemen-

tation in terms of including energy predictions, where the

energy-aware task scheduler will be able to estimate after

how much time sufficient energy is available to execute the

next task. In this way, instead of checking the capacitor

voltage periodically as in the current implementation, the

device will wake up only when it expects the required voltage

threshold is reached, without wasting energy to check the

voltage periodically.

Finally, the current energy-aware task scheduling approach

can be replaced with a more intelligent solution in terms

of memory management decisions, where it will be able to

decide whether to use volatile or non-volatile memory based

on the current energy conditions. Taking this into account,

the additional flash operations can be reduces, which leads to

lower current consumption of the battery-less IoT device.

VII. CONCLUSION

In this article, we presented an energy-aware task sched-

uler for battery-less IoT devices based on dependencies and

priorities, which intelligently schedules the application tasks

avoiding power failures. All tasks are characterized by an

order, which is implemented as a parent/child relationship,

and the task with the highest priority will be executed first,

starting with the initial (parent) task. Each task can have

multiple dependent (child) tasks, which will be selected only if

their execution constraint is satisfied. As we considered energy

awareness, calculating the required voltage thresholds for

every specific application task will ensure safe task execution

without power failures.

First, using an environment emulator and a Nordic

nRF52840 board, we validated our scheduling approach, con-

sidering two main strategies. Our results showed that with

properly defined task voltage thresholds, power failures can

be avoided and more tasks can be successfully executed. Also,

we have shown that our energy-aware task scheduler is able

to react to changes in the harvested current.

Second, based on the defined IoT sensor application and

an e-peas power management board, we performed different

experiments considering a real energy harvesting environment

with solar panels. As the sunlight intensity is unpredictable,

and the harvesting current can change at any moment, a

controllable setup with artificial light was used. We validated

our energy-aware task scheduling approach against an energy-

unaware scheduling strategy in terms of the total number of

full application cycles, the time the device is awake, and

number of power failures. Using the energy-aware task sched-

uler, the device is awake for the entire experiment duration,

completely avoiding power failures. We have shown that with

the properly defined voltage check period, our energy-aware

scheduling approaches were able to execute more application

cycles compared to their energy-unaware counterparts, when a

relatively small capacitor of 10mF or less is used at harvesting

current of 40µA.
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