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Introduction

Simplicial sets are collections of simplices (vertices, edges, triangles, tetrahedra, ...) that

are glued together along common faces. They are foundational objects in algebraic

topology and higher category theory, appearing as combinatorial variants of topological

spaces and in many different models of (∞, 1)-categories like quasi-categories, Segal

categories and simplicial categories.

Formally, a simplicial set is a functor X : ∆op → Set where ∆ is known as the simplex

category. Explicitly, X is given by a certain commutative diagram of maps of sets

· · · X2 X1 X0 (1)

So in particular we are given maps d0, ..., dn : Xn → Xn−1 for all n ≥ 1. These are called

face maps. The elements of each set Xn should be interpreted as simplices of dimension

n, and the maps express how these simplices are connected. For instance, the face map

di : Xn → Xn−1 takes an n-simplex and sends it to its ith face, which is a simplex of one

dimension lower.

7−→
d0

A classical construction associates to every (small) category C a simplicial set N(C). This

is known as the nerve functor N : Cat → SSet. For every n ≥ 0, the n-simplices of N(C)
are given by sequences (f1, ..., fn) of composable morphisms in C. In other words,

N(C)n =
∐

A0,...,An∈Ob(C)

C(A0, A1)× ...× C(An−1, An)

Its face maps dj for 0 < j < n are defined by composing morphisms in the sequence:

(f1, ..., fj , fj+1, ..., fn) 7→ (f1, ..., fj+1 ◦ fj , ..., fn). The face maps d0 and dn on the other

hand are defined by projection, e.g. d0 uses the projection map

C(A0, A1)× C(A1, A2)× ...× C(An−1, An)→ C(A1, A2)× ...× C(An−1, An)

Now suppose we have a linear category C over a unital commutative ring k (that is,

each C(A,B) has a k-module structure and the composition is bilinear). What is the

appropriate definition of a nerve for C?

Analogous to the classical situation, we can try setting

Nk(C)n =
∐

A0,...,An∈Ob(C)

C(A0, A1)⊗ ...⊗ C(An−1, An)

vii



viii INTRODUCTION

Then the face maps dj for 0 < j < n can still be defined through composition, but the face

maps d0 and dn cannot be defined in the same way because we lack projection morphisms

C(A0, A1)⊗ C(A1, A2)⊗ ...⊗ C(An−1, An)→ C(A1, A2)⊗ ...⊗ C(An−1, An)

In other words, we do not obtain a simplicial k-module Nk(C). But what do we get?

To answer this question, this thesis aims to develop a generalization of simplicial sets

which may be interpreted as “simplicial objects in a monoidal category”, and study what

properties they possess. In particular, they allow to define a nerve for general enriched

categories (e.g. k-linear categories). We call them tensor-simplicial or templicial objects.

Below we go into a little more detail to outline the ideas appearing in the thesis. We will

formally define everything in the main text, but for now we just give a rough sketch of

the objects involved.

Simplicial objects in a monoidal category

Let us illustrate the main philosophy with a simple example. Consider a directed graph

G, that is, a collection of vertices and edges between them. Formally, G is given by a pair

of sets (G1, G0) where G0 contains the vertices and G1 the edges. Moreover, G comes

equipped with maps

G1 G0

s

t
(2)

which send every edge to its source and target vertex respectively. We may denote an

edge of G as e : a→ b to indicate that s(e) = a and t(e) = b. A (small) category can then

be equivalently described as a graphG = (G1, G0) along with mapsm : G1×G0
G1 → G1

and u : G0 → G1 specifying for each pair of edges f : a → b and g : b → c their

composition g ◦ f = m(f, g), and for each vertex a the identity ida = u(a) on a. Of course

m and u have to satisfy the appropriate associativity and unitality conditions, as well as

compatibility conditions with respect to s and t.

In their PhD thesis [Agu97], Aguiar defined graphs and categories internal to a monoidal

category (V,⊗, I) (e.g. V = Mod(k) is the category of modules over a unital commutative

ring k with ⊗ the tensor product). For instance, the former is a pair (G1, G0) with G0 a

comonoid in V and G1 a bicomodule over G0. That is, we have morphisms

µ0,0 : G0 → G0 ⊗G0, ϵ : G0 → I

µ0,1 : G1 → G0 ⊗G1 and µ1,0 : G1 → G1 ⊗G0

(3)

which satisfy some appropriate coherence diagrams. When V = Set with the cartesian

monoidal structure (i.e. ⊗ = × is the cartesian product), then graphs and categories

internal to V recover graphs and categories in the usual sense. For example, s : G1 → G0

can be recovered by composing µ0,1 with the projection G0 ×G1 → G0. The morphisms

µ0,1 and µ1,0 may thus be regarded as a replacement for the morphisms s and t when V
is a general (non-cartesian) monoidal category.

Moreover, under some hypotheses on V , V-enriched categories can be recovered from

categories internal to V as well. Indeed, let F : Set → V denote the left-adjoint of the
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forgetful functor U = V(I,−) : V → Set. Then a category (G1, G0) internal to V recovers

a V-enriched category with object set S if G0 ≃ F (S), such that the comultiplication

and counit of G0 are induced by the diagonal S → S × S and the terminal map S → 1
respectively.

Note how the diagram of a simplicial set (1) extends that of a directed graph (2). We can

do the same for graphs internal to V . Following an idea of Leinster in [Lei00], we can

define a “simplicial object internal to V” as a colax monoidal functorX : ∆op
f → V . Here,

∆f is the category of finite intervals, a subcategory of the usual simplex category ∆. The

colax structure provides morphisms in V

µk,l : Xk+l → Xk ⊗Xl for all k, l ≥ 0

extending the bicomodule structure (3). Leinster showed in particular that if V = Set,
then this indeed recovers simplicial sets. As for directed graphs, we can also restrict to

the case where X0 ≃ F (S) in the appropriate way. The latter is essentially the definition

of a templicial object, although we formalize them slightly differently, using V-enriched

quivers instead.

By aV-enriched quiver, we mean a pair (Q,S)withS a set andQ a collection (Q(a, b))a,b∈S
of objects Q(a, b) ∈ V . Quivers with a fixed set S can be organized into a monoidal

category (V QuivS ,⊗S , IS). A templicial object (Definition 2.1.9) of V is then defined as a

pair (X,S) with S a set and

X : ∆op
f → V QuivS

a strongly unital, colax monoidal functor. To emphasize the monoidal structure involved,

we will denote the category of templicial objects (with varying sets S) by

S⊗V

WhenV = Set, this again recovers the category SSet of simplicial sets (Proposition 2.1.15).

Let us unpack this definition a bit. The elements of S should be considered as vertices of

the templicial object (X,S). Then for every a, b ∈ S we have a diagram in V :

· · · X2(a, b) X1(a, b) X0(a, b)

Note that the outer face maps of (1) have disappeared. They have been replaced by the

colax monoidal structure, which provides morphisms in V :

(µk,l)a,b : Xk+l(a, b)→
∐
c∈S

Xk(a, c)⊗Xl(c, b) for all k, l ≥ 0

Even though they are not sets, we can intuitively think about the objects Xn(a, b) as

containing the “n-simplices with first vertex a and last vertex b”. The morphisms µk,l
may then be interpreted as “pulling apart” a (k + l)-simplex into a k-simplex and an

l-simplex which are joint at a vertex.

7−→
µ1,2
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Thus from a simplex of X , we can no longer access its outer faces directly. But we can

recover faces which are joint at a vertex. This naturally leads us to considering necklaces.

A necklace (Definition 2.2.3) is a simplicial set composed of a finite sequence of simplices

(called beads) that are glued along vertices (as opposed to higher dimensional faces).

They were introduced by Dugger and Spivak in [DS11b] to demystify the categorification

functor C : SSet→ Cat∆ relating simplicial sets to simplicial categories.

Given a simplicial set X and a necklace T with beads of dimensions n1, ..., nk, a map

T → X corresponds to an element of the set Xn1
×X0

...×X0
Xnk

. We can consider such

an element as being a necklace of shape T in X . If (X,S) is a templicial object in V , then

we can similarly consider the quiver XT = Xn1
⊗S ...⊗S Xnk

. This construction extends

to a coreflective embedding (−)nec : S⊗V ↪→ V CatNec which associates to X a certain

enriched category Xnec
which we call a necklace category (Definition 3.2.3). Many proofs

can be simplified by passing to necklace categories, for instance that S⊗V is complete

(Proposition 3.2.33) and locally presentable (Theorem 3.2.29) whenever V is.

Quasi-categories

Quasi-categories are one of the many models of (∞, 1)-categories. Their theory was

developed by Joyal [Joy02] and extensively expounded upon by Lurie [Lur09a]. Since

then they have been studied by many others.

Given n ≥ 0, we denote ∆n
for the simplicial set consisting of a single simplex in

dimension n and all its faces. For 0 ≤ j ≤ n, the jth horn Λnj is obtained from ∆n
by

removing the interior and the jth face. A quasi-category (or∞-category) is then defined as

a simplicial setX which satisfies the weak Kan condition. This means that for all 0 < j < n,

every map of simplicial sets Λnj → X can be extended to a map ∆n → X .

Λnj X

∆n

A quasi-category exhibits behaviour that resembles that of a category. For example,

consider the weak Kan condition where n = 2 and j = 1. This tells us that for any two

edges f : a→ b and g : b→ c, there exists a 2-simplex w ∈ X2 filling up the horn formed

by f and g:



xi

x

y

z

f g
=⇒

x

y

z
w

f g

h

We can then consider the edge h = d1(w) as a composition of f and g. Note thatw is only

assumed to exist however, not that it is unique. Indeed, usually w will not be uniquely

determined by f and g, but it will be unique up to a notion of homotopy that can be defined

inside of X . In other words, composition is no longer given by a map m : (f, g) 7→ g ◦ f ,

but is witnessed by a piece of data (in this case w) in a higher dimension. Similarly, the

identities and associativity for the composition are not given by equations but by higher

dimensional simplices witnessing them.

To any templicial object (X,S) in a monoidal category V , with a, b ∈ S, the assignment

T 7→ XT (a, b) ∈ V defines a functor X•(a, b) : N ecop → V where N ec denotes the

category of necklaces. We will call (X,S) a quasi-category in V (Definition 2.2.26) if for all

a, b ∈ S and 0 < j < n, we have the following lifting property:

F
(
(Λnj )•(0, n)

)
X•(a, b)

F (∆n
• (0, n))

in VNecop
. Similarly, for n = 2 and j = 1, this lifting property expresses that for any

element α ∈ U
(∐

c∈S X1(a, c)⊗X1(c, b)
)

we can find some w ∈ U(X2(a, b)) such that

µ1,1(w) = α. We can then consider d1(w) ∈ U(X1(a, b)) as a composition of α in X .

The better part of this thesis is devoted to constructing templicial analogues of classical

examples of quasi-categories:

• The classical nerve functorN : Cat→ SSet generalizes to the templicial nerve functor
NV : V Cat → S⊗V which associates to every small V-enriched category a quasi-

category in V (Construction 2.3.4).

• There is the homotopy coherent nerve functor Nhc : Cat∆ → SSet of Cordier

[Cor82], associating to every simplicial category C (that is, a category enriched in

simplicial sets), a simplicial set Nhc(C). Cordier and Porter showed in [CP86] that

Nhc(C) is a quasi-category when every hom-object C(A,B) is a Kan complex. We

generalize this to the templicial homotopy coherent nerve functorNhc
V : V Cat∆ → S⊗V

(Definition 4.1.13) where V Cat∆ denotes the category of small categories enriched

in simplicial objects SV . Further, Nhc
V (C) will be a quasi-category in V if every

hom-object C(A,B) ∈ SV has an underlying Kan complex.

• There is the differential graded (dg) nerveNdg : kCatdg → SSet [Lur16] associating

to every small dg-category C• over a ring k a quasi-category Ndg(C). We will lift

this to the linear dg-nerve Ndg
k : kCatdg → S⊗ Mod(k) (Definition 4.2.46) which

associates to every dg-category over k, a quasi-category in Mod(k).
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Frobenius structures

Further, we will introduce Frobenius structures (Defintion 2.2.34) on templicial objects

X . To motivate them, let us again consider an example. Consider a (small) simplicial

category C. Thus C has a set of objects Ob(C) and for every A,B ∈ Ob(C), we have a

simplicial set C(A,B). In Cordier’s homotopy coherent nerve Nhc(C), vertices are given

by Ob(C) and edges are given by the 0-simplices f ∈ C0(A,B). A 2-simplex in Nhc(C) is

given by a diagram

B

A C

f g

h

σ

with f ∈ C0(A,B), g ∈ C0(B,C), h ∈ C0(A,C) and σ ∈ C1(A,C) a 1-simplex from h to the

composition g ◦ f ∈ C0(A,C).

For general C, Nhc(C) is not a quasi-category. Nonetheless, some lifing properties are

still satisfied for Nhc(C). For example, a map Λ2
1 → Nhc(C) corresponds to a pair of

0-simplices f ∈ C0(A,B) and g ∈ C0(B,C) for some A,B,C ∈ Ob(C). Extending this

map to ∆2 → Nhc(C) is then equivalent to finding some h ∈ C0(A,C) and a 1-simplex

σ ∈ C1(A,C) from h to g ◦ f . But this is trivial. Just choose h = g ◦ f and let σ be the

degenerate 1-simplex on g ◦ f :

B

A C

f g

g◦f

=

The horn Λ2
1 is in particular also a necklace and this procedure generalizes to arbitrary

necklaces. In fact, we can define maps

Zk,l : Nhc(C)k ×Nhc(C)0 N
hc(C)l → Nhc(C)k+l

assigning to every necklace in Nhc(C) with two beads a simplex filling up the necklace.

Similarly, we will define a Frobenius structure on a templicial object (X,S) as a collection

of quiver morphisms

Zk,l : Xk ⊗S Xl → Xk+l for all k, l ≥ 0

satisfying associativity and certain compatibility conditions with the morphisms µk,l of

X . A templicial objectX with a Frobenius structure is in particular a Frobenius monoidal

functor in the sense of Day and Pastro [DP08]. We will see that the templicial nerve,

templicial homotopy coherent nerve and linear dg-nerve all naturally come equipped

with Frobenius structures. In fact, Ndg
k is defined through an equivalence of categories

kCatdg,≥0 ≃ SFrob⊗ Mod(k)

between non-negatively graded dg-categories over k and templicial k-modules with a

Frobenius structure (Corollary 4.2.45).
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More generally, we will consider non-associative Frobenius (naF) structures, for which the

associativity condition above is dropped. As (non-associative) Frobenius structures also

represent a filling condition, one might expect them to be related to quasi-categories in

V , and indeed they are. We will show:

• (Proposition 3.1.32) If X is a projective quasi-category in V , then X has a naF-

structure.

• (Theorem 4.2.62) If V = Mod(k), then every templicial k-module with a naF-

structure is a quasi-category in Mod(k).

Towards homotopy theory

At present, quasi-categories in V merely exist in analogy to classical quasi-categories and

a thorough study of their homotopical properties is still lacking.

In [Joy08], Joyal completely formalized the homotopy theory of quasi-categories by equip-

ping the category SSet of simplicial sets with a model structure. The fibrant objects are

precisely the quasi-categories and the cofibrations are the monomorphisms. So far we

have not been able to build a similar model structure for quasi-categories in V and we

leave this to future research. As a small step in that direction, we introduce projective
templicial morphisms (Definition 3.1.24) which are the left lifting class in a weak factoriza-

tion system on the category of templicial objects S⊗V (Theorem 3.1.28). If V = Set, they

recover the monomorphisms of simplicial sets. As such, the author believes projective

templicial morphisms to be the appropriate cofibrations in S⊗V . With fibrant objects

given by the quasi-categories in V , this would completely determine the model structure.

Quasi-categories (or (∞, 1)-categories in general) are often viewed as “categories weakly

enriched in spaces”. This idea was made formal by Gepner and Haugseng [GH15] who

defined categories weakly enriched in a general monoidal ∞-categoryM. It would be

a mistake to view quasi-categories in V as being “weakly enriched in V”. With V being

a plain monoidal category, there is no weak structure to exploit. Instead, it is probably

more accurate to view them as being weakly enriched in simplicial objects SV . Through

the templicial homotopy coherent nerve Nhc
V , the author believes a Quillen equivalence

between S⊗V and V Cat∆ should exist. Following [Hau15], this would relate templicial

objects with categories weakly enriched in the monoidal∞-category associated to SV .

Leinster’s idea of using colax monoidal functors instead of simplicial objects has also been

applied by Bacard in [Bac10] to define a notion of Segal categories enriched in a monoidal

model categoryM called SegalM-categories. IfM is the Quillen model category on SSet,
then this recovers classical Segal categories. As such, Segal M-categories can also be

considered as categories “weakly enriched inM”. This thesis represents the first steps

in applying the same philosophy to the theory of quasi-categories as opposed to Segal

categories. Though currently still conjectural, the author believes quasi-categories in V
to be related to Segal SV-categories in the same way that ordinary quasi-categories are

related to Segal categories. We also leave this to future research.
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Notations and assumptions

• Integers are always denoted by lowercase letters, usually i, j, k, l,m, n, ...

• Sets, posets and necklaces are denoted by capital letters S, T, U, ...

• Both simplicial sets and general templicial objects are also denoted by capital letters.

We’ll distinguish between them by choosing different letters. Usually, that isK,L, ...
for simplicial sets and X,Y, ... for templicial objects.

• Generic (enriched) categories are usually denoted by calligraphic letters C,D, ...,
while objects of a category are usually denoted by capital letters A,B,C, ... Given

objects A and B of an enriched category C, we denote its hom-object by C(A,B),
rather than HomC(A,B).

• In a given category, the initial and terminal objects (if they exist) are denoted by 0
and 1 respectively.

• The symbols π and ι usually refer to the canonical morphisms out of a limit and into

a colimit respectively. More precisely, if F : J → C is a functor such that its colimit

exists in C, then we’ll always denote the canonical morphism F (j) → colimF by

ιj for all j ∈ J . Similarly, if the limit of F exists in C, we’ll denote the canonical

morphism πj : limF → F (j) for all j ∈ J .

We assume the axiom of choice. Further, we work with three nested Grothendieck

universes (see [AGV71, Exposé I] for details). The sets in each of these universes are

called small, large and very large respectively. Without adjective, a set is assumed to be

small, and a large set is also called a class. A category is assumed to be large and locally

small unless stated otherwise. We’ll underline categories to indicate that they are very

large. For example, Cat denotes the large category of small categories while Cat is the

very large category of large categories.

Standing hypotheses: From Chapter 2 onwards, we let (V,⊗, I) be a fixed monoidal

category that is cocomplete and finitely complete such that the monoidal product −⊗−
preserves colimits in each variable. Further conditions on V may be imposed at the

beginning of some (sub)sections. Other monoidal categories which are introduced in the

text are not assumed to have these properties unless stated otherwise.

Overview of the thesis

About half of the thesis, spread out over the text, is based on the preprint [LM20] by

the author and their supervisor. It should be noted that some definitions, including that

of a quasi-category in V , have changed since then. The preprint is therefore somewhat

outdated, both in philosophy and terminology.

In Chapter 1 we present some well-known concepts for later reference. No new results

will appear in this chapter.
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We proceed in Chapter 2 by introducing the major players of this thesis, that is templicial

objects, necklaces, quasi-categories in V and (non-associative) Frobenius structures. Fur-

ther, we show some elementary results. Amongst other things, we show that the category

S⊗V of templicial objects is cocomplete and construct an adjunction F̃ : SSet ⇆ S⊗V : Ũ .

We show that templicial objects in V and quasi-categories in V recover simplicial sets

and ordinary quasi-categories when V = Set. Moreover, Ũ preserves quasi-categories.

Finally, we construct the templicial nerve NV and its left-adjoint hV : S⊗V → V Cat by

analogy with the classical situation.

Chapter 3 discusses some properties ofS⊗V as a category. In the first section we introduce

free and projective templicial morphisms. Projective templicial morphisms are precisely

retracts of free morphisms. They also form the left lifting class of a weak factorization

system on S⊗V which reduces to the weak factorization system on SSet of monomor-

phisms and trivial fibrations, if V = Set. Finally, we explain how free templicial objects

have a well-behaved notion of non-degenerate simplices, and we show an analogue of

the Eilenberg-Zilber lemma.

In the second section, we embed S⊗V into the larger category of necklace categories,

which allows us to prove some properties of S⊗V like local presentability and complete-

ness. Necklace categories will reappear as a useful tool in Chapter 4 as well.

In Chapter 4, we introduce two major sources of examples of quasi-categories in V : the

templicial homotopy coherent nerve of an SV-enriched category and the linear dg-nerve

of a dg-category. This is by far the longest and most technical chapter.

To construct the templicial homotopy coherent nerve functor Nhc
V and its left-adjoint

CV : S⊗V → V Cat∆, we adapt Dugger and Spivak’s [DS11b] description of the classical

categorification functor C. We make essential use of necklace categories as an intermedi-

ate step in this construction.

Next, we restrict to the case where V is the category Mod(k) of modules over a commu-

tative ring k, and construct the linear dg-nerve Ndg
k : kCatdg → S⊗ Mod(k). We show

that non-negatively graded dg-categories over k are equivalent to templicial k-modules

with a Frobenius structure via an augmented version of the Dold-Kan correspondence.

The fact thatNdg
k (C) is always a quasi-category in Mod(k) will then follow from the more

general result that every templicial k-module with a naF-structure is a quasi-category in

Mod(k). Finally, we will show that Ũ ◦Ndg
k coincides with the classical dg-nerve functor

and we will compare Ndg
k to the templicial homotopy coherent nerve functor Nhc

k .

Chapter 5 discusses some open questions and possible avenues for answering them, in

particular concerning the model structure alluded to above.

Finally, the appendix provides an alternative definition of templicial objects as colax

monoidal functors X : ∆op
f → V (instead of V QuivS). The discrete set of vertices is then

obtained by imposing that X0 is a free object of V in a compatible way. We will identify

some conditions on V for which both definitions coincide. None of the results in the

main chapters depend on the appendix.



Nederlandse samenvatting

Simpliciale verzamelingen zĳn fundamentele objecten in de algebraïsche topologie en ho-

motopietheorie. Ze verschĳnen als combinatorische varianten voor topologische ruimten

en worden gebruikt om de meeste modellen voor (∞, 1)-categorieën te definiëren, zoals

quasi-categorieën, Segal categorieën en simpliciale categorieën. Het doel van deze thesis

is het ontwikkelen en bestuderen van een veralgemening van simpliciale verzamelingen

die kunnen geïnterpreteerd worden als “simpliciale objecten in een monoïdale categorie”.

We noemen deze tensor-simpliciale of templiciale objecten.

In hun doctoraatsthesis [Agu97] introduceert Aguiar grafen en categorieën inwendig
tot een monoïdale categorie V . Simpliciale verzamelingen kunnen gezien worden als

grafen in hogere dimensies. Gebaseerd op een observatie van Leinster [Lei00] kunnen

we Aguiar’s aanpak uitbreiden om zo templiciale objecten te definiëren. Noteren we

∆f voor de categorie van eindige intervallen (dit is een deelcategorie van de simplex

categorie ∆), dan is een templiciaal object een koppel (X,S) met S een verzameling en

X : ∆op
f → V QuivS

een sterk unitale, colax monoïdale functor. Hier stelt V QuivS de categorie voor van

V-verrĳkte grafen met S als puntenverzameling. De elementen van S moeten we inter-

preteren als de punten van (X,S). Voor alle a, b ∈ S en n ≥ 0 hebben we een object

Xn(a, b) ∈ V dat we kunnen beschouwen als een abstractie van de verzameling van n-

simplexen met als eerste punt a en laatste punt b. De colaxstructuur van X bestaat dan

uit morfismen

(µk,l)a,b : Xk+l(a, b)→
∐
c∈S

Xk(a, c)⊗Xl(c, b) voor alle k, l ≥ 0

Deze morfismen vervangen de uiterste zĳvlakafbeeldingen van een simpliciale verzamel-

ing en we kunnen ze interpreteren als het “uiteen trekken” van een (k + l)-simplex tot

een k-simplex en een l-simplex die verbonden zĳn aan een punt. Gegeven een n-simplex

van X hebben we dus geen rechtstreekse toegang meer tot het 0de of nde zĳvlak. Maar

we kunnen wel zĳvlakken bereiken die verbonden zĳn aan een punt.

Dit leidt ons tot Dugger en Spivak’s [DS11b] kettingen. Een ketting is een simpliciale

verzameling bestaande uit een eindige keten van simplexen die met elkaar verbonden

zĳn aan een punt. Hierop gebaseerd introduceren we zekere verrĳkte categorieën die we

kettingcategorieën noemen. We kunnen de categorie S⊗V van templiciale objecten inbed-

den in de categorie V CatNec van kettingcategorieën. Dit maakt heel wat eigenschappen

van S⊗V makkelĳker te bewĳzen.

Zo bewĳzen we dat S⊗V cocompleet, compleet of lokaal presenteerbaar is van zodra V
dit is. Er bestaat een vergelĳkende adjunctie F̃ : SSet ⇆ S⊗V : Ũ die een equivalentie

xvi
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wordt als V = Set. Verder introduceren we vrĳe en projectieve templiciale morfismen.

Projectieve morfismen zĳn precies de retracties van vrĳe morfismen en ze vormen de

linker liftklasse in een zwak factorisatiesysteem op S⊗V . Als V = Set, vinden we het

klassieke zwakke factorisatiesysteem van monomorfismen en triviale fibraties op simpli-

ciale verzamelingen SSet terug.

Geïnspireerd door Day en Pastro’s [DP08] Frobenius-monoïdale functoren, voeren we

Frobeniusstructuren in, alsook een niet-associatieve variant genaamd naF-structuren. Een

naF-structuur op een templiciaal object (X,S) bestaat uit een collectie morfismen

Zk,la,b :
∐
c∈S

Xk(a, c)⊗Xl(c, b)→ Xk+l(a, b) voor alle k, l ≥ 0

die aan zekere compatibiliteitsvoorwaarden met de morfismen µk,l voldoen. Intuïtief

laten naF-structuren dus toe om “kettingen op te vullen tot een simplex”.

Joyal ontwikkelde in [Joy02] de theorie van quasi-categorieën als model voor (∞, 1)-
categorieën. Deze theorie werd sterk uitgebreid door Lurie [Lur09a] en ondertussen vele

anderen. Formeel is een quasi-categorie een simpliciale verzameling X die voldoet aan

zekere liftconditie, de zwakke Kan conditie genaamd.

We zĳn vooral geinteresseerd in de eigenschappen van templiciale objecten naar analogie

met quasi-categorieën. Daarom introduceren we quasi-categorieën in V als een templiciaal

object dat aan een analoge liftconditie voldoet. Als V = Set, dan vinden we klassieke

quasi-categorieën terug. Bovendien worden quasi-categorieën bewaard door Ũ . Quasi-

categorieën in V zĳn gerelateerd aan naF-structuren in de zin dat elke projectieve quasi-

categorie in V steeds een naF-structuur heeft.

Het grootste deel van deze thesis bespreekt hoe verschillende klassieke voorbeelden

van quasi-categorieën kunnen veralgemeend worden voor templiciale objecten. Al deze

voorbeelden kunnen worden uitgerust met natuurlĳke Frobeniusstructuren.

• De nerffunctor N : Cat → SSet, van categorieën naar simpliciale verzamelingen,

wordt veralgemeend tot de templiciale nerffunctorNV : V Cat→ S⊗V , vanV-verrĳkte

categorieën naar templiciale objecten. Bovendien tonen we dat NV(C) een quasi-

categorie in V is voor elke V-verrĳkte categorie C.

• Cordier’s [Cor82] homotopiecoherente nerffunctor Nhc : Cat∆ → SSet, van sim-

pliciale categorieën naar simpliciale verzamelingen, wordt veralgemeend tot de

templiciale homotopiecoherente nerffunctor Nhc
V : V Cat∆ → S⊗V , van categorieën ver-

rĳkt in simpliciale objecten SV naar templiciale objecten. Dit is gebaseerd op het

werk van Dugger en Spivak [DS11b] en maakt gebruik van kettingcategorieën.

Als C een SV-verrĳkte categorie is zodat elk hom-object C(A,B) een onderliggend

Kan-complex heeft, dan is Nhc
V (C) bovendien een quasi-categorie in V .

• De differentiaal gegradeerde (dg) nerffunctor Ndg : kCatdg → SSet [Lur16], van

dg-categorieën over een ring k naar simpliciale verzamelingen, wordt gelift tot

de lineaire dg-nerffunctor Ndg
k : kCatdg → S⊗ Mod(k), van dg-categorieën over k

naar templiciale k-modulen. We tonen dat elk templiciaal k-moduul met een naF-

structuur ook een quasi-categorie in Mod(k) is. Het volgt dan dat Ndg
k (C) een

quasi-categorie in Mod(k) is voor elke dg-categorie C•.
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Categorical preliminaries

“Wait, this next test does require some explanation. Let me give you the fast
version. [fast gibberish]. There. If you have any questions, just remember what I
said, in slow motion.”

— GLaDOS (Portal 2)

The first chapter is devoted to establishing some preliminaries that we will use in the rest

of the thesis. We assume that the reader is familiar with the basics of category theory. For

background on category theory we refer to the many books on the subject, for instance

[Mac71], [Bor94a], [Lei14], [Rie17].

Below are three sections, in each of which we outline some preparatory notions. The

reader familiar with any of these is free to skip the corresponding section. We’d like to

highlight Definition 1.1.20 and Remark 1.1.22 however, since we adopt a slightly different

definition of enriched categories than usual.

1.1 Monoidal and enriched categories

Recall that a monoidal category is a triple (V,⊗, I) with V a category, −⊗− : V ×V → V a

functor called the monoidal product and I ∈ V an object called the monoidal unit. Moreover,

it comes equipped with specified isomorphisms

λA : I ⊗A ∼−→ A and ρA : A⊗ I ∼−→ A

called the left and right unit isomorphisms, and

αA,B,C : (A⊗B)⊗ C ∼−→ A⊗ (B ⊗ C)

called the associator, such that λA, ρA and αA,B,C are natural in A,B,C ∈ V . These

have to satisfy the triangle and pentagon identities, which require that certain diagrams

involving λA, ρA and αA,B,C commute (see [Bor94b, §6.1] for details). We call the

monoidal category (V,⊗, I) strict if λA, ρA and αA,B,C are all identities.

1
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Further, (V,⊗, I) is called symmetric if it comes equipped with an isomorphism

σA,B : A⊗B ∼−→ B ⊗A

which is natural in A,B ∈ Ob(V) and fits into certain commutative diagrams (again, see

[Bor94b, §6.1]).

The monoidal category (V,⊗, I) is called closed if for all objectsA ∈ V , the functorsA⊗−
and−⊗A from V to itself have right-adjoints V(A,−)l and V(A,−)r respectively. Letting

A vary, we obtain functors V(−,−)l,V(−,−)r : Vop × V → V which we call the internal
hom-objects of V . If V is symmetric, then V(−,−)l and V(−,−)r are naturally isomorphic

and we denote both by V(−,−).

We call (V,⊗, I) a Bénabou cosmos if it is bicomplete and symmetric monoidal closed.

Consider the corepresentable functor V(I,−) : V → Set. For every object A ∈ V , we call

V(I, A) the underlying set of A.

Usually, we will denote the monoidal category (V,⊗, I) simply by V .

The main monoidal categories we will be interested in are the following:

• The category of sets Set with the monoidal product given by the cartesian product

− × − and the monoidal unit given by the singleton {∗}. This monoidal category

is symmetric and closed.

• More generally, if C is a category with finite products, then it carries a monoidal

structure (×, 1) where−×− is the cartesian product and 1 the terminal object. We

refer to this as the cartesian monoidal structure. This monoidal category is always

symmetric but not necessarily closed.

• The category of k-modules Mod(k) for a fixed unital commutative ring k. The

monoidal product is the tensor product−⊗k− over k and the monoidal unit is the

free k-module on one generator, k itself. This monoidal category is symmetric and

closed.

1.1.1 Monoidal functors and natural transformations

Details for this subsection can be found in [AM10, Chapter 3].

Definition 1.1.1. Let (V,⊗, I) and (W,⊠, J) be monoidal categories. A colax monoidal
functor V → W is a triple (F, µ, ϵ) where F : V → W is a functor between the underlying

categories, µ is a natural transformation between functors V × V → W :

µ : F (−⊗−)→ F (−)⊠ F (−)

called the comultiplication and ϵ is a morphism F (I) → J in W called the counit. This

data must moreover satisfy the following conditions:
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(a) (Coassociativity) For all A,B,C ∈ V , the following diagram commutes:

F ((A⊗B)⊗ C) F (A⊗B)⊠ F (C) (F (A)⊠ F (B))⊠ F (C)

F (A⊗ (B ⊗ C)) F (A)⊠ F (B ⊗ C) F (A)⊠ (F (B)⊠ F (C))

F (αA,B,C) ∼

µA,B⊗C

µA⊗B,C

idF (A) ⊠µB,C

µA,B⊠idF (C)

αF (A),F (B),F (C)∼

(b) (Counitality) For all A ∈ V , the following diagrams commute:

F (I ⊗A) F (I)⊠ F (A)

F (A) J ⊠ F (A)

µI,A

λF (A)

F (λA) ∼

∼

ϵ⊠idF (A)
and

F (A⊗ I) F (A)⊠ F (I)

F (A) F (A)⊠ J

µA,I

F (ρA) idF (A) ⊠ϵ∼

ρF (A)

∼

A lax monoidal functor V → W is defined as a colax monoidal functor Vop → Wop
.

More explicitly, it is a triple (F,m, u) with m : F (−) ⊠ F (−) → F (− ⊗ −) a natural

transformation between functors V × V → W called the multiplication and u : J → F (I)
a morphism inW called the unit, such that the duals of the above diagrams commute.

Usually, we will abuse notation and denote a lax or colax monoidal functor simply by its

underlying functor F .

Further, we call a colax monoidal functor (F, µ, ϵ) : V → W strongly unital if the counit

ϵ : F (I) → J is an isomorphism in W . We call (F, µ, ϵ) strong monoidal if it is strongly

unital and for all A,B ∈ V , the comultiplication

µA,B : F (A⊗B)
∼−→ F (A)⊠ F (B)

is an isomorphism inW . Note that a strong monoidal functor is also lax monoidal where

the multiplication and unit are given by the inverses of the comultiplication and counit.

Definition 1.1.2. Let (F, µF , ϵF ), (G,µG, ϵG) : (V,⊗, I) → (W,⊠, J) be colax monoidal

functors between monoidal categories. A natural transformation α : F → G is called

monoidal if the following diagrams commute for all A,B ∈ V :

F (A⊗B) G(A⊗B)

F (A)⊠ F (B) G(A)⊠G(B)

µF
A,B µG

A,B

αA⊗B

αA⊠αB

and

F (I) G(I)

J

αI

ϵF ϵG

Dually, a natural transformationα : F → G between lax monoidal functorsF,G : V → W
is called monoidal if it is a monoidal natural transformation between the corresponding

colax monoidal functors F,G : Vop →Wop
.

Notation 1.1.3. Let V andW be monoidal categories. Then the colax monoidal functors

V → W and monoidal natural transformations form a (non-locally small) category which

we denote by

Colax(V,W)
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Dually, we denote by

Lax(V,W)

the (non-locally small) category of all lax monoidal functors V → W and monoidal

natural transformations between them.

Lemma 1.1.4. Let (F, µ, ϵ) : (V,⊗, I) → (W,⊠, J) be a colax monoidal functor. Suppose the
underlying functor F : V → W has a right-adjoint G : W → V . Then G is lax monoidal with
multiplication G(A)⊗G(B)→ G(A⊠B) adjoint to

F (G(A)⊗G(B))
µF
G(A),G(B)−−−−−−−→ FG(A)⊠ FG(B)→ A⊠B

for all A,B ∈ V , and with unit I → G(J) adjoint to ϵ : F (I)→ J .

Definition 1.1.5. Let (V,⊗, I) and (W,⊠, J) be monoidal categories and F : V → W
a functor with a right-adjoint G : W → V . We call the adjunction F ⊣ G monoidal if

F comes equipped with a strong monoidal structure. Then by Lemma 1.1.4, G has an

induced lax monoidal structure.

Definition 1.1.6. A strong monoidal functor F : V → W between monoidal categories is

called a monoidal equivalence if there exists a strong monoidal functor G : W → V along

with monoidal natural isomorphisms

G ◦ F ≃ idV and F ◦G ≃ idV′

Theorem 1.1.7 ([Mac63]). For every monoidal categoryV , there exists a strict monoidal category
V ′ which is monoidally equivalent to V .

Remark 1.1.8. By Theorem 1.1.7, we may always replace a monoidal category by an

equivalent strict monoidal category. We will use this as justification to abuse notation

and treat the associator, and left and right unit isomorphisms as though they were

identities. Given an arbitrary monoidal category (V,⊗, I), and objectsA1, ..., An ∈ V , we

will therefore simply write

A1 ⊗ ...⊗An
for any possible bracketting of this expression. Similarly, we may sometimes identify the

expressions I ⊗A ans A⊗ I with simply the object A.

Proposition 1.1.9. Let (F, µF , ϵF ) : U → V and (G,µG, ϵG) : V → W be colax monoidal
functors. Then the composite G ◦ F : U → W has the structure of a colax monoidal functor with
comultiplication µGF (−),F (−) ◦G(µ

F
−,−) and counit ϵG ◦G(ϵF ).

Further, for any monoidal category V , the identity functor idV is strong monoidal.

Notation 1.1.10. We denote by

MonCat

the (very large) 2-category whose objects are all monoidal categories, whose morphisms

are the colax monoidal functors between them, and whose 2-morphisms are the monoidal

natural transformations between those. So for any two fixed monoidal categories V and

W , we have

MonCat(V,W) = Colax(V,W)
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1.1.2 Quivers and enriched categories

For more details about the basic concepts of enriched category theory, we refer to [Kel05].

For this subsection, we fix a monoidal category (V,⊗, I) with coproducts such that the

functor −⊗− preserves coproducts in each variable.

Definition 1.1.11. A V-enriched quiver or V-quiver is a pair (Q,S) with S a set whose

elements are called vertices, and Q = (Q(a, b))a,b∈S a collection of objects Q(a, b) ∈ V .

A quiver morphism (Q,S) → (P, T ) is a pair (f, f0) with f0 : S → T a map of sets and

f = (fa,b)a,b∈S a collection of morphisms fa,b : Q(a, b)→ P (f0(a), f0(b)) in V .

Given quiver morphisms (f, f0) : (Q,S) → (P, T ) and (g, g0) : (P, T ) → (R,U), the

composition (g, g0) ◦ (f, f0) is the quiver morphism (Q,S) → (R,U) given by the pair

(gf, g0f0) where gf = (gf0(a),f0(b) ◦ fa,b)a,b∈S . The identity on a V-quiver (Q,S) is the

quiver morphism (Q,S)→ (Q,S) given by the pair (idQ, idS) with idQ = (idQ(a,b))a,b∈S .

This data defines a category which we denote by

V Quiv

Notation 1.1.12. Given a set S, we denote by

V QuivS

the subcategory of V Quiv consisting of all V-quivers (Q,S) and all quiver morphisms

(f, idS). Note that V QuivS is canonically isomorphic to the category VS×S of functors

S × S → V where we consider the set S × S as a discrete category.

Notation 1.1.13. If V = Set is the cartesian monoidal category of sets, then we denote

V Quiv = Quiv and V QuivS = QuivS for any set S.

Construction 1.1.14. Let S be a set. For any two V-quiversQ and P , we define a V-quiver

Q⊗S P as follows. For all a, b ∈ S, set

(Q⊗S P )(a, b) =
∐
c∈S

Q(a, c)⊗ P (c, b)

Similarly, for quiver morphisms f : Q → Q′
and g : P → P ′

in V QuivS , we define

f ⊗S g : Q⊗S P → Q′ ⊗S P ′
as follows. For all a, b ∈ S:

(f ⊗S g)a,b =
∐
c∈S

fa,c ⊗ gc,b

This clearly defines a functor −⊗S − : V QuivS ×V QuivS → V QuivS .

Further, we define a V-quiver IS by setting for all a, b ∈ S:

IS(a, b) =

{
I if a = b

0 if a ̸= b

It easily follows from the hypotheses on V that ⊗S and IS define a monoidal category

(V QuivS ,⊗S , IS). We will sometimes drop the subscript S from ⊗S and IS when it is

clear from context.

Note that the monoidal category V QuivS is generally not symmetric.
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Example 1.1.15. Let S = {∗} be a singleton set. Then we have an isomorphism of

monoidal categories V QuivS ≃ V .

Construction 1.1.16. Let f : S → T be a map between sets. We define a functor

f∗ : V QuivT → V QuivS

as follows. For all V-quivers (Q,T ), and all a, b ∈ S, set:

f∗(Q)(a, b) = Q(f(a), f(b))

and for any morphism g : Q→ P in V QuivT , and all a, b ∈ S:

f∗(g)a,b = gf(a),f(b)

Note that by identifying V QuivS ≃ VS×S , f∗ is in fact the precomposition functor

− ◦ (f × f). Consequently, it has a left-adjoint given by the left Kan extension

f! = Lanf×f (−) : V QuivS → V QuivT

In this case, f! is easily seen to be given by,

f!(Q)(x, y) =
∐

a∈f−1(x)

b∈f−1(y)

Q(a, b)

for all Q ∈ V QuivS and x, y ∈ T .

Remark 1.1.17. It is easy to see that if V is complete or cocomplete, then so is V Quiv. For

a fixed set S, the limits and colimits of V QuivS ≃ VS×S are given pointwise. Then given

a diagram F : J → V Quiv : j 7→ (Qj , Sj), the limit (Q,S) of F is given by

S = lim
j∈J

Sj in Set and Q = lim
j∈J

π∗
j (Q

j) in V QuivS

where πj denotes the canonical map S → Sj for all j ∈ J . Similarly, the colimit (Q,S) of

F is given by

S = colim
j∈J

Sj in Set and Q = colim
j∈J

(ιj)!(Q
j) in V QuivS

where ιj denotes the canonical map Sj → S for all j ∈ J .

Lemma 1.1.18. For any function f : S → T , f∗ is a lax monoidal functor and f! is a colax
monoidal functor.

Proof. By the dual of Lemma 1.1.4, it suffices to show that f∗ is lax monoidal. Define the

unit u : IS → f∗(IT ) of f∗ by

ua,b =


I

id−→ I if a = b

0→ I if a ̸= b, f(a) = f(b)

0→ 0 if f(a) ̸= f(b)
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for all a, b ∈ S. Further, we have for any Q,P ∈ V QuivT that

f∗(Q⊗T P )(a, b) =
∐
x∈T

Q(f(a), x)⊗Q(x, f(b))

(f∗(Q)⊗S f∗(P ))(a, b) =
∐
c∈S

Q(f(a), f(c))⊗ P (f(c), f(b))

which gives a canonical morphism of quivers

mQ,P : f∗(Q)⊗S f∗(P )→ f∗(Q⊗T P )

It is readily verified that mQ,P is natural in Q and P , and that it is associative and unital

with respect to u.

In the next proposition, we consider Set as a 2-category with discrete hom-categories.

MonCat is the 2-category of monoidal categories from Notation 1.1.10.

Proposition 1.1.19. The assignments S 7→ V QuivS and f 7→ f! define a pseudofunctor

(−)! : Set→ MonCat

Proof. For any V-quiver Q with vertex set S, we obviously have that

(idS)!(Q)(x, y) =
∐

a∈id−1
S (x)

b∈id−1
S (y)

Q(a, b) ≃ Q(x, y)

for all x, y ∈ S and thus (idS)!(Q) ≃ Q. Further, given maps of sets f : R → S and

g : S → T , we have for all Q ∈ V QuivS and x, y ∈ T :

(g ◦ f)!(Q)(x, y) =
∐

r∈(g◦f)−1(x)

s∈(g◦f)−1(y)

Q(r, s)

g!(f!(Q))(x, y) =
∐

a∈g−1(x)

b∈g−1(y)

∐
r∈f−1(a)

s∈f−1(b)

Q(r, s)

So we have an isomorphism (g ◦ f)!(Q) ≃ g!(f!(Q)).

It follows from a direct verification that these isomorphisms make (−)! into a well-defined

pseudofunctor.

Definition 1.1.20. A V-enriched category or V-category C is a pair (C,Ob(C)) with Ob(C) a

class and C a monoid in (V QuivOb(C),⊗Ob(C), IOb(C)). We say (C,Ob(C)) is small if Ob(C)
is a set.

AV-enriched functor orV-functor (C,Ob(C))→ (D,Ob(D)) is a pair (F, f)with f : Ob(C)→
Ob(D) a map of sets and F : C → f∗(D) a morphism of monoids in V QuivOb(D) (where

we used the lax structure of f∗, see Lemma 1.1.18).

The composition and identities of V-functors are defined as in V Quiv. This data defines

a (large) category of (small) V-categories which we denote by

V Cat
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Examples 1.1.21. 1. For V = Set the cartesian monoidal category of sets, the category

Set-Cat is isomorphic to the category of small categories Cat.

2. For V = Mod(k) the monoidal category of modules over a fixed unital commutative

ring k, we refer to Mod(k)-categories as k-linear categories and we write kCat for

Mod(k)-Cat.

3. For V = Cat the cartesian category of small categories, the category Cat-Cat is

isomorphic to the category of small strict 2-categories 2-Cat.

The following remark is subtle but it bears mentioning.

Remark 1.1.22. The monoidal product ⊗S in V QuivS from Construction 1.1.14 is chosen

so that it is more convenient when defining templicial objects in Chapter 2. However,

this introduces a discrepancy between Definition 1.1.20 and how enriched categories are

usually defined.

Traditionally, the composition law of a V-category C is defined as a collection of mor-

phisms, for all A,B,C ∈ Ob(C):

mA,B,C : C(B,C)⊗ C(A,B)→ C(A,C) (1.1)

However, following Definition 1.1.20, a monoid C in (V QuivOb(C),⊗Ob(C), IOb(C)) comes

equipped with morphisms, for all A,B,C ∈ Ob(C):

m̃A,B,C : C(A,B)⊗ C(B,C)→ C(A,C) (1.2)

So this in fact a category enriched in the reverse monoidal category Vrev whose monoidal

product −⊗rev − is defined by A⊗rev B = B ⊗A.

If V is symmetric, then Vrev and V are monoidally equivalent via the symmetry σ of V .

So we can safely pass between the two composition laws (1.1) and (1.2):

m̃A,B,C : C(A,B)⊗ C(B,C)
σC(A,B),C(B,C)−−−−−−−−−→

∼
C(B,C)⊗ C(A,B)

mA,B,C−−−−−→ C(A,C)

In most cases, there is thus no risk of confusion. Beware however that when V is

the symmetric monoidal category of chain complexes for example, the symmetry σ
introduces a sign change. We will return to this point in Remark 4.2.42.

Nonetheless, even when V is not symmetric, we will still adopt the convention (1.2) as

dictated by Definition 1.1.20. To make the distinction with (1.1) absolutely clear, we will

always denote the composition in a V-category by m̃ instead of m and refer to it as its

reverse composition law.

Proposition 1.1.23. Let F : V → W be a lax monoidal functor between monoidal categories.
Then there is an induced functor

F : V Cat→W Cat

which is given as follows. For each V-category C, theW-category F(C) has the same set of objects
as C and for all A,B ∈ C, F(C)(A,B) = F (C(A,B)).

Moreover, if F has a lax monoidal right-adjoint G : W → V , then the induced functors form an
adjunction

F : V Cat ⇆W Cat : G
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1.2 Lifting properties

Fix a cocomplete category C for this section. We briefly discuss weak factorization systems

on C. Then we highlight the particular weak factorization system of projecive morphisms

and regular epimorphisms.

1.2.1 Weak factorization systems

Proofs for this subsection can be found in [Hov99] for example.

Definition 1.2.1. A morphism f : A → B is a retract of a morphism g : C → D if f is a

retract of g as objects in the category of morphisms Mor(C) = Fun([1], C). That is, there

exist morphisms a, b, c and d in C such that the following diagram commutes:

A C A

B D B

a c

b d

f g f

idA

idB

We call f a strong retract of g if A = C and there exists a commutative diagram as above

with a = c = idA.

Definition 1.2.2. Let λ > 0 be an ordinal. A λ-sequence is a colimit-preserving functor

X : λ→ C. The canonical morphism

ι0 : X(0)→ colim
α<λ

X(α)

is called the transfinite composition of X .

Let A be a class of morphisms in C. If for all ordinals β with β + 1 < λ we have that the

morphism ιβ,β+1 : X(β)→ X(β + 1) belongs to A, then we call X a λ-sequence in A.

Definition 1.2.3. Let A be a class of morphisms in C. We call A weakly saturated if

(a) A is closed under pushouts, that is, for all f ∈ A, the pushout of f along any

morphism in C belongs to A.

(b) A is closed under transfinite compositions, that is, for every ordinal λ and every

λ-sequence X : λ→ C in A, the transfinite composition ι0 : X(0)→ colimX belongs

to A.

(c) A is closed under retracts, that is, if f ∈ A and g is a retract of f in C, then g ∈ A.

It is clear that arbitrary intersections of weakly saturated classes are again weakly satu-

rated. If S is a class of morphisms in C, we write S for the smallest weakly saturated class

of morphisms in C that contains S. In other words,

S =
⋂
S⊆A

A weakly saturated

A
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We call S the weak saturated closure of S.

Definition 1.2.4. A lifting problem in C is any commutative square of solid arrows:

A C

B D

f

g

i p

A morphism h : B → C is called a lift or a solution of the lifting problem if hi = f and

ph = g.

Given morphisms i : A→ B and p : X → Y in C, we say that i has the left lifting property
with respect to p and that p has the right lifting property with respect to i if every lifting

problem as above has a solution. In this case, we write

i� p

Definition 1.2.5. IfA is a class of morphisms in C, then we define the left lifting class and

right lifting class of A respectively by

A� = {p ∈ Mor(C) | ∀i ∈ A : i� p} and
�A = {i ∈ Mor(C) | ∀p ∈ A : i� p}

Proposition 1.2.6. For every class of morphisms B in C, �B is weakly saturated.

Lemma 1.2.7 (Retract argument). Let i : X → A and p : A → Y be morphisms in C and set
f = pi, then

• If f has the left lifting property with respect to p, then f is a (strong) retract of i.

• If f has the right lifting property with respect to i, then f is a retract of p.

Definition 1.2.8. A pair (L,R) of classes of morphims of C is called a weak factorization
system on C if

(a) L� = R and L = �R, and

(b) every morphism f of C can be factored as f = pi with i ∈ L and p ∈ R.

Definition 1.2.9. Let κ be a regular cardinal. An ordinal λ is called κ-directed if for every

collection of ordinals (αi)i∈I with |I| < κ and αi < λ for all i ∈ I , there exists an ordinal

α < λ such that αi ≤ α for all i ∈ I .

An object A of C is called κ-small if the corepresentable functor C(A,−) : C → Set
preserves transfinite compositions of λ-sequences for all κ-directed ordinals λ > 0.

We say A is small if it is κ-small for some regular cardinal κ.

Example 1.2.10. Let J be a small category. Then every object in the functor category

SetJ is small.

Proposition 1.2.11 (Small object argument). Let S be a set of morphisms in C. Assume that
the domains of all morphisms in S are small. Then (S, S�) is a weak factorization system on C.
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1.2.2 Free and projective morphisms

Further assume that C has pullbacks.

Definition 1.2.12. A morphism g : X → Y in C is called a regular epimorphism if it is the

coequalizer of its kernel pair:

X ×Y X X Y
gπ1

π2

Remark 1.2.13. What we defined here as a regular epimorphism is usually called an

effective epimorphism, while a regular epimorphism is defined as a coequalizer of any pair

of morphisms. For categories with pullbacks, the two notions are equivalent so there is

no risk of confusion.

Definition 1.2.14. An object P of C is called projective if the initial morphism 0→ P has

the left lifting property with respect to all regular epimorphisms X ↠ Y :

X

P Y

We call a morphism f : A → B in C projective if it is projective as an object of the under

category CA/. Equivalently, f has the left lifting property with respect to all regular

epimorphisms X ↠ Y :

A X

B Y

f

Examples 1.2.15. Let us describe the projective morphisms in our main categories of

interest.

1. In the category of sets Set the projective morphisms are precisely the injective maps

of sets.

2. Fix a unital commutative ring k. In the category of k-modules Mod(k), a morphism

f : A→ B is projective if and only if there is a projective k-module P (in the usual

sense) and an isomorphismB ≃ A⊕P such that f corresponds to the coprojection

A→ A⊕ P .

In particular, if k is a field then every k-vectorspace is projective and every injective

k-linear map splits. It follows that the projective morphisms inMod(k) are precisely

the injective k-linear maps.

Notation 1.2.16. For any object P ∈ C, we denote FP for the functor

FP : Set→ C : S 7→
∐
a∈S

P

It is uniquely determined (up to natural isomorphism) by the conditions thatFP ({∗}) ≃ P
and FP preserves colimits. Then FP is left-adjoint to the corepresentable functor

UP = C(P,−) : C → Set
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Remark 1.2.17. Note thatP is a projective object of C if and only if the functorUP : C → Set
preserves regular epimorphisms.

Definition 1.2.18. Fix an object P ∈ C. An object A of C is called free if it is isomorphic to

FP (S) for some set S.

We call a morphism f : A→ B in C free if it is free as an object of the under category CA/
(with respect to the composite left-adjoint A ⨿ FP (−) : Set → CA/). Equivalently, there

exists a set S and an isomorphism B ≃ A ⨿ FP (S) in C such that f corresponds to the

coprojection A→ A⨿ FP (S).

Examples 1.2.19. Let us describe the free morphisms in our main categories of interest.

1. ChooseP = {∗} in the category of sets Set. Then the free morphisms in Set coincide

with the projective morphisms and thus with the injective maps of sets.

2. Fix a unital commutative ring k. Choose P = k in the category of k-modules

Mod(k). A morphism f : A → B is free in Mod(k) if and only if there is a free

k-module F (in the usual sense) and an isomorphism B ≃ A ⊕ F such that f
corresponds to the coprojection A→ A⊕ F .

In particular, if k is a field then every k-vectorspace is free and every injective k-

linear map splits. It follows that the free morphisms of Mod(k) coincide with the

projective morphisms and thus with the injective k-linear maps.

The following properties are easy to show.

Proposition 1.2.20. Let P be a projective object of C such that UP also reflects epimorphisms.
Then the following statements are true.

1. The functor FP : Set→ C sends monomorphisms to free morphisms.

2. A morphism in C is projective if and only if it is a (strong) retract of a free morphism.

3. Every morphism in C can be factored as a free morphism followed by a regular epimorphism.

4. The classes of projective morphisms and regular epimorphisms form a weak factorization
system on C.

Remark 1.2.21. Let S be a set. As CQuivS ≃ CS×S , we have for every object P ∈ C an

induced adjunction FP : QuivS ⇆ CQuivS : UP . Moreover, a quiver morphism f : Q1 →
Q2 is a regular epimorphism if and only if the morphism fa,b : Q1(a, b) → Q2(a, b) is a

regular epimorphism in V for all a, b ∈ S. Let us call f free (resp. projective) if fa,b is free

(resp. projective) in C for all a, b ∈ S. Then the properties of Proposition 1.2.20 hold for

CQuivS as well.
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1.3 Quasi-categories

Quasi-categories are one of the many models of (∞, 1)-categories. They were originally

considered by Boardman and Vogt under the name weak Kan complexes [BV73]. Later

Joyal introduced the term quasi-category and studied them extensively [Joy02]. Lurie

greatly expounded on their theory in [Lur09a]. Some modern resources include [Rez17]

and [Lur18]. Quasi-categories are often referred to as simply∞-categories. To make the

distinction with other models, we will adopt Joyal’s terminology.

In this section we give the very basic first definitions in the study of quasi-categories.

1.3.1 Simplicial sets and quasi-categories

A simplicial set can be interpreted geometrically as a collection of simplices of varying

dimensions, which are glued together along common faces. They are formalized combi-

natorially as presheaves on the simplex category ∆. For more details on simplicial sets,

see [May67] for example.

Definition 1.3.1. Let ∆ be the category of all posets [n] = {0, ..., n}with n ≥ 0 an integer

and order morphisms f : [n]→ [m] between them. We call ∆ the simplex category.

Definition 1.3.2. Let n > 0 be an integer and i ∈ [n]. We call the order morphism

δi : [n− 1]→ [n] : j 7→

{
j if j < i

j + 1 if j ≥ i

a coface map. Let n ≥ 0 be an integer and i ∈ [n]. We call the order morphism

σi : [n+ 1]→ [n] : j 7→

{
j if j ≤ i
j − 1 if j > i

a codegeneracy maps.

We call a coface map δi : [n− 1]→ [n] inner if 0 < i < n and outer if i = 0 or i = n.

Lemma 1.3.3 ([Mac71], VII.5). Every morphism f : [n]→ [m] of∆ has a unique representation

f = δi1 ...δisσj1 ...σjt

with 0 ≤ is < ... < i1 ≤ m, 0 ≤ j1 < ... < jt < n and s, t ≥ 0 such that n− t+ s = m.
Definition 1.3.4. Let C be a category. A simplicial object of C is a functor Y : ∆op → C. For

all n ≥ 0 we denote Yn = Y ([n]), Further, for all integers n > 0 and i ∈ [n] we denote

di = Y (δi) : Yn → Yn−1

and call these the face morphisms of Y . Similarly, for all integers n ≥ 0 and i ∈ [n], we

denote

si = Y (σi) : Yn → Yn+1

and call these the degeneracy morphisms of Y . We denote

SC = Fun(∆op, C)

for the category of simplicial objects and call its morphisms simplicial morphisms.
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Proposition 1.3.5. Let C be a category. A simplicial object Y of C is equivalent to a collection
(Yn)n≥0 of objects of C with morphisms di : Yn → Yn−1 for all integers n > 0 and i ∈ [n], and
si : Yn → Yn+1 for all integers n ≥ 0 and i ∈ [n], satisfying the following identities:

disj =


sj−1di if i < j

id if i = j or i = j + 1

sjdi−1 if i > j + 1

didj = dj−1di if i < j sisj = sjsi−1 if i > j

(1.3)

Definition 1.3.6. A simplicial set is a simplicial object of the category of sets Set. In this

case, we denote

SSet = S Set

We call the morphisms of SSet simplicial maps.

Given a simplicial set K and an integer n ≥ 0, we call the elements of the set Kn the

n-simplices of K. We shall also refer to 0-simplices as vertices, and to 1-simplices as edges.
We denote f : a→ b to indicate that f ∈ K1 with vertices d0(f) = b and d1(f) = a.

An n-simplex x ∈ Kn with n > 0 is called degenerate if there exists a y ∈ Kn−1 and

0 ≤ i ≤ n− 1 such that x = si(x), and non-degenerate otherwise.

The following result is known as the Eilenberg-Zilber lemma.

Lemma 1.3.7 ([EZ50], (8.3)). Let K be a simplicial set and n ≥ 0. For any n-simplex x of K,
there is a unique surjective morphism σ : [n] ↠ [k] in ∆ and a unique non-degenerate k-simplex
y of K such that x = K(σ)(y).

Definition 1.3.8. Let n ≥ 0 be an integer.

• The standard n-simplex ∆n
is the simplicial set

∆n = ∆(−, [n]) : ∆op → Set

• The nth boundary ∂∆n
is the simplicial subset of ∆n

defined by setting, for all

integers m ≥ 0:

(∂∆n)m = {f : [m]→ [n] | f([m]) ̸= [n]} ⊆ (∆n)m

• For 0 ≤ j ≤ n, the jth horn Λnj is the simplicial subset of ∆n
defined by setting, for

all integers m ≥ 0:

(Λnj )m = {f : [m]→ [n] | f([m]) ̸⊇ [n] \ {j}} ⊆ (∆n)m

We call Λnj an inner horn if 0 < j < n and an outer horn if j = 0 or j = n.

Remark 1.3.9. Let n ≥ 0 be an integer. The standard n-simplex may be visualized geo-

metrically by a simplex of dimension n.
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0

∆0

0 1

∆1 0

1

2

∆2

0

1

2

3

∆3

· · ·

The nth boundary is obtained from the standard n-simplex by removing the interior.

Alternatively, it can be described by the union of all of the faces of the standard n-simplex.
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0 1

∂∆1 0

1

2

∂∆2

0

1

2

3

∂∆3

· · ·

Given an integer 0 ≤ j ≤ n, the jth horn can be described as the union of all the faces of

the standard simplex, except the jth face.
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Λ2
0

0

1

2

Λ2
1

1

20

Λ2
2

0

1

2

3

Λ3
0

· · ·

The next result is an immediate consequence of the Yoneda lemma.

Proposition 1.3.10. Let K be a simplicial set. There is a bĳection

Kn ≃ SSet(∆n,K)

between the sets of n-simplices of K and of simplicial maps ∆n → K, which is natural in n ≥ 0.

Proposition 1.3.11. Let D be a cocomplete category and C : ∆→ D a functor. Then there is an
adjunction

SSet D
C

NC

⊣

where C is the left Kan extension of C along the Yoneda embedding Y : ∆ → SSet and NC is
defined by

NC(D)n = D(C([n]), D) (1.4)

for all D ∈ D and n ≥ 0.

Moreover, if L : SSet→ D is a functor preserving colimits, then L ≃ C where C = L ◦ Y .
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Definition 1.3.12. A simplicial setK is called a Kan complex if it satisfies the Kan condition,

that is for all 0 ≤ j ≤ n, every diagram in SSet

Λnj K

∆n

has a lift.

Definition 1.3.13. A simplicial set C is called a weak Kan complex or quasi-category if it

satisfies the weak Kan condition, that is for all 0 < j < n, every diagram in SSet

Λnj C

∆n

has a lift.

In this case we refer to the 0-simplices of K as the objects of K and to the 1-simplices of

K as the morphisms of K.

Proposition 1.3.14. A simplicial set C is a quasi-category if and only if for all 0 < j < n
and every collection of (n − 1)-simplices (x0, x1, ..., xj−1, xj+1, ..., xn) of C satisfying, for all
0 ≤ i < i′ ≤ n with i ̸= j ̸= i′:

di(xi′) = di′−1(xi)

there exists an n-simplex x of C such that di(x) = xi for all 0 ≤ i ≤ n with i ̸= j.

Proposition 1.3.15. The class of monomorphisms in SSet is equal to the weak saturated closure
of the set of boundary inclusions ∂∆n ↪→ ∆n for all n ≥ 0.

Definition 1.3.16. Let f : K → L be a simplicial map. We call f

• anodyne if f belongs to the weak saturated closure of the set of all horn inclusions

Λnj ↪→ ∆n
with 0 ≤ j ≤ n,

• inner anodyne if f belongs to the weak saturated closure of the set of all inner horn

inclusions Λnj ↪→ ∆n
with 0 < j < n,

• a Kan fibration if f has the right lifting property with respect to all horn inclusions,

• an inner fibration if f has the right lifting property with respect to all inner horn

inclusions,

• a trivial fibration if f has the right lifting property with respect to all boundary

inclusions.

Remark 1.3.17. Note that a simplicial set C is a quasi-category if and only if the terminal

map C → 1 is an inner fibration.

Remark 1.3.18. In view of Example 1.2.10, all simplicial sets are small in the sense of

Definition 1.2.9. Thus it follows from the Small object argument (Proposition 1.2.11) that

we have weak factorization systems on SSet given by (anodyne, Kan fibration), (inner

anodyne, inner fibration) and (monomorphism, trivial fibration).
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Definition 1.3.19. Let K be a simplicial set. We define the set π0(K) of connected compo-
nents of K as the colimit of K as a functor ∆op → Set. Equivalently, it is given by the

reflexive coequalizer

K1 K0 π0(K)
d0

d1

s0

In other words, π0(K) is the quotient set K0/ ∼ where the equivalence relation is gener-

ated by letting a ∼ b if there exists an edge f : a → b in K (for all a, b ∈ K0). We call K
connected if π0(K) is a singleton.

This construction clearly extends to a functor

π0 : SSet→ Set

Construction 1.3.20. Let Top denote the category of topological spaces. Given n ≥ 0,

consider the topological n-simplex |∆n| ∈ Top. This defines a functor |∆(−)| : ∆→ Top.

By Proposition 1.3.11, we obtain an adjunction

SSet Top
|−|

Sing

⊣

The left-adjoint | − | is called the geometric realization functor.

Given a simplicial set K, the set of path components of |K| is bĳective to π0(K).

Definition 1.3.21. A simplicial map f : K → L is called a weak homotopy equivalence if the

induced continuous map |f | : |K| → |L| is a weak homotopy equivalence of topological

spaces.

It is clear that a weak homotopy equivalence f : K → L of simplicial sets induces a

bĳection on the sets of connected components π0(f) : π0(K)
∼−→ π0(L).

1.3.2 The nerve and the homotopy category

Definition 1.3.22. Let C be a small category. The nerve of C is the simplicial set

N(C) = Cat(−, C) : ∆op → Set

where we consider ∆ as a full subcategory of Cat.

Explicitly, for all integers n ≥ 0, the set N(C)n consists of all sequences (f1, ..., fn) of

composable morphisms in C. That is, we have objects A0, ..., An ∈ Ob(C) such that

fi : Ai−1 → Ai for all i ∈ {1, ..., n}. In particular, we can identify N(C)0 with the set

Ob(C) and N(C)1 with the set Mor(C) of morphisms of C.

A0

A1

A2

A3

f1 f2

f3

f3f2

f3f2f1

f2f1
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For any integer n > 0 and i ∈ [n] the face map di : N(C)n → N(C)n−1 is given by

di(f1, ..., fn) =


(f2, ..., fn) if i = 0

(f1, ..., fi−1, fi+1 ◦ fi, fi+2, ..., fn) if 0 < i < n

(f1, ..., fn−1) if i = n

For any integer n ≥ 0 and i ∈ [n] the degeneracy map si : N(C)n → N(C)n+1 is given by

si(f1, ..., fn) = (f1, ..., fi, idAi
, fi+1, ..., fn)

Moreover, this defines a functor

N : Cat→ SSet

called the nerve functor.

Example 1.3.23. For all n ≥ 0, we have

N([n]) = Cat(−, [n]) ≃∆(−, [n]) = ∆n

Proposition 1.3.24. The nerve functor N : Cat → SSet is fully faithful and a simplicial set K
is isomorphic to the nerve of a category if and only if for all 0 < j < n, every diagram in SSet

Λnj K

∆n

has a unique lift. In particular every nerve of a small category is a quasi-category.

Construction 1.3.25. Let K be a simplicial set and let F(K) be the free category on the

graph whose vertices and edges are the 0-simplices and 1-simplices of K respectively.

Thus Ob(F(K)) = K0 and for all a, b ∈ K0 a morphism a → b in F(K) is given by a

sequence

(f1, ..., fn)

with n ≥ 0 and for all i ∈ {1, ..., n}, fi is an edge ai−1 → ai of K, for some vertices

a = a0, a1, ..., an−1, an = b of K. Composition is given by concatenation of sequences

and the identity is given by the empty sequence ().

Proposition 1.3.26. The nerve functor N : Cat → SSet has a left-adjoint h : SSet → Cat
which is given on objects as follows.

For any simplicial setK, hK is the quotient category F(K)/∼ where∼ is the equivalence relation
generated by

• (f, g) ∼ h for all 2-simplices w ∈ K2 with d0(w) = g, d1(w) = h, d2(w) = f ,

• () ∼ s0(a) for all a ∈ K0.
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Lemma 1.3.27. Let C be a quasi-category and f, g : a → b morphisms in C. The following
statements are equivalent.

(1) There exists a 2-simplex w ∈ C2 such that d0(w) = s0(b), d1(w) = g and d2(w) = f .

(2) There exists a 2-simplex w ∈ C2 such that d0(w) = f , d1(w) = g and d2(w) = s0(a).

a

b

b
w

f s0(b)

g
a

a

b
w

s0(a) f

g

In this case, we denote f ∼ g and say that f is homotopic to g. Moreover, ∼ defines an
equivalence relation on the set C1 of morphisms in C.

Proposition 1.3.28. Let C be a quasi-category. Then for all objects a and b of C, there is a bĳection

hC(a, b) ≃ {[f ] | f : a→ b in C}

where [f ] denotes the equivalence class of f under ∼. Under these bĳections, we have that

• the identity in hC on an object a ∈ C0 is given by [s0(a)], and

• for any two morphisms f : a → b and g : b → c in C, we have [g] ◦ [f ] = [d1(w)] for any
2-simplex w ∈ C2 with d0(w) = g and d2(w) = f .
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Templicial objects

“I don’t know where I am, but there is something beautiful about this place. I will
explore and see what I can discover.”

— @ v17.1.0054 (The Talos Principle)

In this first non-preparatory chapter we introduce our main objects of study, templicial
objects (Definition 2.1.9). These should be viewed as simplicial objects in a sense internal

to a suitable monoidal category V . As mentioned in the introduction, this philosophy

is based on the work of Aguiar [Agu97] and Leinster [Lei00]. We will always require

templicial objects to have a set of vertices. This will be achieved by means of V-enriched

quivers (see §1.1.2). Concretely, a templicial object is a pair (X,S) with S a set and

X : ∆op
f → V QuivS

a strongly unital, colax monoidal functor. We will see that these indeed recover ordinary

simplicial sets when V = Set. Moreover, we will establish some first easy properties of

templicial objects and introduce the tools that will turn up in the later chapters.

The chapter is divided into three sections as follows. Section 2.1 covers the very basics.

We define templicial objects and their categoryS⊗V , and show it is cocomplete (Corollary

2.1.23). It will follow that we have an adjunction F̃ : SSet ⇆ S⊗V : Ũ (Proposition 2.1.25).

We end the section by generalizing the classical simplicial skeleton construction to the

context of templicial objects in §2.1.5.

Next, we introduce our proposed analogue of quasi-categories in the templicial context,

the quasi-categories in a monoidal category V (Definition 2.2.26). Crucial for this, and for

the rest of the thesis, are necklaces. These were first introduced by Dugger and Spivak in

[DS11b]. We open Section 2.2 by introducing these necklaces and then defining quasi-

categories in V . Then we show that for any quasi-category X in V , the simplicial set

Ũ(X) is always an ordinary quasi-category and if V = Set the two notions coincide (see

Propositions 2.2.30 and 2.2.31). Finally, we introduce (non-associative) Frobenius structures,
which are based on Day and Pastro’s Frobenius monoidal functors [DP08]. These are

related to quasi-categories in V and will prove to be a useful tool when we consider

templicial k-modules (i.e. when V = Mod(k)) in Chapter 4.

In the final section of this chapter, Section 2.3, we generalize the classical nerve functor

N : Cat→ SSet and its left-adjoint, which takes the homotopy category of a simplicial set.

21
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These templicial versions will satisfy analogous properties to their classical counterparts.

For instance, the description of the homotopy category of a templicial object becomes

significantly easier if it is a quasi-category in V (Construction 2.3.19).

Recall the standing hypotheses. We fix a cocomplete and finitely complete monoidal

category (V,⊗, I) such that the monoidal product − ⊗ − preserves coproducts in each

variable.

2.1 Basic definitions

2.1.1 Simplicial objects and colax monoidal functors

An observation originally due to Leinster (see Proposition 2.1.6) states that simplicial

objects in a cartesian monoidal category can be equivalently described as certain colax

monoidal functors. We argue that these colax monoidal functors are a good replacement

for simplicial objects even when the monoidal category is not cartesian. As such, they

will be essential when we define templicial objects in the next subsection.

Let us start by introducing some variants of the simplex category ∆ (Definition 1.3.1).

Definition 2.1.1. We define the following simplex categories:

• ∆+ is the augmented simplex category. Its objects are the posets [n] = {0, ..., n} with

n ≥ −1 (where [−1] = ∅), and its morphisms are the order morphisms [m] → [n].
We denote the unique morphism [−1]→ [0] by δ0 and call it a coface map as well.

• ∆f is the category of finite intervals, which is the subcategory of ∆ consisting of

all morphisms f : [m] → [n] that preserve the endpoints, that is f(0) = 0 and

f(m) = n.

• ∆surj is the subcategory of ∆f consisting of all surjective morphisms f : [m] ↠ [n].

Note that we have inclusions of subcategories ∆surj ⊆∆f ⊆∆ ⊆∆+.

Remark 2.1.2. Note that ∆+ contains all coface and codegeneracy maps of ∆, as well as

the coface map δ0 : [−1] → [0]. On the other hand, ∆f only contains the inner coface

maps but still all codegeneracy maps. Finally, ∆surj only contains the codegeneracy

maps but no coface maps.

It follows from Lemma 1.3.3 that the categories ∆+, ∆f and ∆surj are also generated by

the coface and codegeneracy maps that they contain. So for example, every morphism

f : [m]→ [n] in ∆f has a unique representation

f = δj1 ...δjsσi1 ...σit

with 0 < js < ... < j1 < n, 0 ≤ i1 < ... < it < m and s, t ≥ 0 such that m− t+ s = n.

Remark 2.1.3. In contrast to the category ∆, both the categories ∆+ and ∆f are naturally

endowed with monoidal structures.
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The monoidal structure (⋆, [−1]) on ∆+ is given by juxtaposition of posets and mor-

phisms, as follows. For m,n ≥ −1:

[m] ⋆ [n] = [m+ n+ 1]

For morphisms f : [m]→ [m′] and g : [n]→ [n′] in ∆+:

(f ⋆ g)(i) =

{
f(i) if i ≤ m
m′ + 1 + g(i−m− 1) if i > m

Similarly, the monoidal structure (+, [0]) on ∆f is given by identifying respective top

and bottom endpoints, as follows. For all m,n ≥ 0:

[m] + [n] = [m+ n]

For morphisms f : [m]→ [m′] and [n]→ [n′] in ∆f :

(f + g)(i) =

{
f(i) if i ≤ m
m′ + g(i−m) if i ≥ m

Of course, (∆surj ,+, [0]) also becomes a monoidal category with the inherited monoidal

structure from ∆f .

There is a well-known monoidal equivalence ∆+ ≃ ∆op
f , the relevant functor in each

direction being obtained by considering posets of morphisms into [1] (see [Joy97]).

Remark 2.1.4. Let f : [m]→ [n] be a morphism in ∆f and let 0 ≤ k ≤ m. Then there exist

unique morphisms f1 : [k]→ [p] and f2 : [m− k]→ [n− p] in ∆f such that

f1 + f2 = f

They are defined by setting p = f(k), f1(i) = f(i) for all i ∈ [k] and f2(i) = f(i+ k)− p
for all i ∈ [n− k].
Remark 2.1.5. Let (W,⊗, I) be an arbitrary monoidal category. We will be particularly

interested in colax monoidal functors X : ∆op
f → W . Similarly to Proposition 1.3.5, it

follows from Remark 2.1.2 that X is equivalent to a collection (Xn)n≥0 of objects in W
endowed with the following data:

• morphisms dXj : Xn → Xn−1 for all 0 < j < nwhich we call the inner face morphisms,

• morphisms sXi : Xn → Xn+1 for all 0 ≤ i ≤ n which we call the degeneracy
morphisms,

• morphisms µXk,l : Xk+l → Xk ⊗Xl for all k, l ≥ 0 which we call the comultiplication
morphisms,

• a morphism ϵX : X0 → I which we call the counit morphism.

This data moreover has to satisfy the simplicial identities (1.3) as well as:
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• (Naturality of µX ) For all k, l ≥ 0 and 0 < j < k + l + 1, 0 ≤ i ≤ k + l − 1, we have

µXk,ld
X
j =

{
(dXj ⊗ idXl

)µXk+1,l if j ≤ k
(idXk

⊗dXj−k)µXk,l+1 if j > k

µXk,ls
X
i =

{
(sXi ⊗ idXl

)µXk−1,l if i < k

(idXk
⊗sXi−k)µXk,l−1 if i ≥ k

(2.1)

• (Coassociativity of µX ) For all r, s, t ≥ 0, we have

(idXr
⊗µXs,t)µXr,s+t = (µXr,s ⊗ idXt

)µXr+s,t (2.2)

• (Counitality of µX with ϵX ) For all n ≥ 0, we have

(idXn
⊗ϵX)µXn,0 = idXn

= (ϵX ⊗ idXn
)µX0,n (2.3)

Note that by the coassociativity, we have a well-defined morphism

µXk1,...,kn : Xk1+...+kn → Xk1 ⊗ ...⊗Xkn

for all n ≥ 2 and k1, ..., kn ≥ 0. Further, we will set µXk1,...,kn to be the identity on Xk1 if

n = 1, and to be the counit ϵX if n = 0.

Moreover, under these identifications a monoidal natural transformation α : X → Y
between colax monoidal functors X,Y : ∆op

f → W is equivalent to a collection of

morphisms (αn : Xn → Yn)n≥0 which satisfy:

• (Naturality of α) For all 0 < j < n and 0 ≤ i ≤ n, we have

αn−1d
X
j = dYj αn and αn+1s

X
i = sYi αn

• (Monoidality of α) For all k, l ≥ 0, we have

µYk,lαk+l = (αk ⊗ αl)µXk,l and ϵY α0 = ϵX

Finally, we will often drop the superscript X from the notation when it is clear from the

context which colax monoidal functor these morphisms belong to.

Recall that a monoidal categoryW is called cartesian if the monoidal product is given by

the categorical product (also see Section 1.1).

Proposition 2.1.6 ([Lei00], Proposition 3.1.7). LetW be a cartesian monoidal category. There
is an isomorphism of categories

Colax(∆op
f ,W) ≃ SW.

Proof. Let X : ∆op → W be a functor. We can equip the restriction X|∆op
f

with a colax

monoidal structure as follows. Define for all k, l ≥ 0:

µXk,l = (dk+1...dk+l, d0...d0︸ ︷︷ ︸
k times

) : Xk+l → Xk ×Xl
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Given morphisms f : [k]→ [k′] and g : [l]→ [l′] in ∆f , we have

(f + g)δk+l...δk+1 = δk′+l′ ...δk′+1f and (f + g) δ0...δ0︸ ︷︷ ︸
k times

= δ0...δ0︸ ︷︷ ︸
k′ times

g

which shows that µX is a natural in the sense of (2.1). Further, let ϵX : X0 → 1 be the

terminal morphism. Then µX and ϵX trivially satisfy counitality (2.3) and µX is also

coassociative (2.2) by the following observation:

ds+1...ds+t d0...d0︸ ︷︷ ︸
r times

= d0...d0︸ ︷︷ ︸
r times

dr+s+1...dr+s+t (∀r, s, t ≥ 0)

Take X,Y ∈ SW and let α : X|∆op
f
→ Y |∆op

f
be a natural transformation between their

restrictions ∆op
f → W . Then α extends to a morphism X → Y in SW if and only if α is

monoidal. Indeed, this follows from the observation that for all k, l ≥ 0:

(αk × αl)µXk,l = (αkdk+1...dk+l, αld0...d0), µYk,lαk+l = (dk+1...dk+lαk+l, d0...d0αk+l)

and ϵY α0 = ϵX always holds. We thus obtain a fully faithful functor

φ : SW → Colax(∆op
f ,W)

It remains to show that φ is also bĳective on objects.

Given a colax monoidal functor X : ∆op
f → W with comultiplication µ and counit ϵ, we

can extend X to a functor X : ∆op → W as follows. It suffices to define the outer face

morphisms of X . For n > 0, set

d0 : Xn
µ1,n−1−−−−→ X1 ×Xn−1

π2−→ Xn−1 and dn : Xn
µn−1,1−−−−→ Xn−1 ×X1

π1−→ Xn−1

Then the coassociativity and naturality of µ implies that for all n ≥ 2:

d0dn = π2µ1,n−2π1µn−1,1 = π2(µ1,n−2 × idX1
)µn−1,1 = π2(idX1

×µn−2,1)µ1,n−1

= π1µn−2,1π2µ1,n−1 = dn−1d0

d0d0 = π2µ1,n−2π2µ1,n−1 = π3(idX1
×µ1,n−2)µ1,n−1 = π3(µ1,1 × idXn−2

)µ2,n−2

= π2µ2,n−2 = π2(d1 × idXn−2
)µ2,n−2 = π2µ1,n−2d1 = d0d1

and similarly, dn−1dn = dn−1dn−1. The other simplicial identities involving the outer face

morphisms follow from the naturality of µ. Thus X is a well-defined simplicial object in

V . Now, it follows from the coassociativity of µ that for all k, l ≥ 0:

π1µk,l = (π1µk,1)(π1µk+1,1) · · · (π1µk+l−1,1) = dk+1...dk+l

and similarly π2µk,l = d0...d0. Hence, we find that φ(X) = (X|∆op
f
, µX , ϵX) = (X,µ, ϵ).

Finally, if Y is a simplicial object in V such that φ(Y ) = (X,µ, ϵ), then it follows that

Y |∆op
f

= X and d0 = π2µ1,n−1, dn = π1µn−1,1 and thus Y = X .

Example 2.1.7. IfW = Set, Proposition 2.1.6 supplies an isomorphism of categories:

Colax(∆op
f ,Set) ≃ SSet
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Remark 2.1.8. SupposeW is cartesian and let X : ∆op
f →W be a colax monoidal functor.

It follows from the proof of Proposition 2.1.6 that the outer face morphisms d0 and dn
are obtained as

d0 : Xn
µ1,n−1−−−−→ X1 ×Xn−1

π2−→ Xn−1

and

dn : Xn
µn−1,1−−−−→ Xn−1 ×X1

π1−→ Xn−1

where we have made use of the projections π1 and π2 from the product to its factors.

If W is not necessarily cartesian, these projections are not available in general and the

comultiplication µ of a colax monoidal functor can be considered as a replacement for

the outer face morphisms in the monoidal context.

2.1.2 Templicial objects

We are now ready to define our main object of study, the templicial objects in V . Fur-

ther, we give some examples and show that when V = Set they recover simplicial sets

(Proposition 2.1.15). Finally, we show how the category of templicial objects S⊗V can be

constructed by means of a Grothendieck construction.

Recall the monoidal category (V QuivS ,⊗S , IS) of Construction 1.1.14, and the base

change functors f! : V QuivS ⇆ V QuivT : f∗ for a given map of sets f : S → T
(Construction 1.1.16).

Definition 2.1.9. A tensor-simplicial or templicial object in V is a pair (X,S) with S a set

and

X : ∆op
f → V QuivS

a colax monoidal functor which is strongly unital, i.e. its counit ϵ : X0 → IS is an

isomorphism. We call the elements of S the vertices of X . For n > 0, an n-simplex of X is

an element of the underlying set of Xn(a, b) ∈ V for some a, b ∈ S.

Let (X,S) and (Y, T ) be templicial objects. A templicial morphism (X,S)→ (Y, T ) is a pair

(α, f) with f : S → T a map of sets and α : f!X → Y a monoidal natural transformation

between colax monoidal functors ∆op
f → V QuivT . Here, we used the colax monoidal

structure of f! (see Lemma 1.1.18).

Sometimes we will denote a templicial object (X,S) or a templicial morphism (α, f)
simply by X or α respectively.

Remark 2.1.10. An alternative way to realize a set of vertices S consists in turning the

monoidal category ∆f (which is a one object bicategory) into a bicategory with object

set S. This approach goes back to [Lur09a] and was used in [Sim12], [Bac10].

Before discussing the category of templicial objects, let us first give some examples in

the case where V = Mod(k) is the category of k-modules for some unital commutative

ring k. The monoidal product is the tensor product ⊗k over k and the monoidal unit is

k itself.



2.1. BASIC DEFINITIONS 27

Example 2.1.11. Let M be a k-module. Consider the Mod(k)-enriched quiver Q with

only two distinct vertices a and b, and

Q(a, b) =M, Q(b, a) = 0 and Q(a, a) = Q(b, b) = k

Then there exists a templicial object (X, {a, b}) such that the quiverX1 is equal toQ (also

see Example 2.1.38.2).

We consider the elements of M as edges a → b of Q. As M is an abelian group, we can

take the sum of two edges f, g : a→ b to get another edge f + g : a→ b. Note that this is

reflected in the comultiplication map µ1,0 : X1 → X1 ⊗S X0 of X . Indeed, for f, g ∈ M
we have the equations

µ1,0(f) = f ⊗ b and µ1,0(g) = g ⊗ b

which express that f and g are edges of X with common target b. Now because µ1,0 is

assumed to be a linear map, we have

µ1,0(f + g) = µ1,0(f) + µ1,0(g) = f ⊗ b+ g ⊗ b = (f + g)⊗ b

which expresses that f + g is also an edge of X with target b.

This may all seem a bit tautological, because it is. But notice that a simplicial k-module

cannot capture the same behavior. The analogue of the mapµ1,0 for a simplicial k-module

X would be the face map d0 : X1 → X0. Now for f, g ∈ X1, the linearity of d0 implies

that d0(f + g) = d0(f) + d0(g). So the targets of the edges in X1 are not invariant under

addition. In other words, the set {f ∈ X1 | d1(f) = a, d0(f) = b} is not a k-module in

any canonical way.

Example 2.1.12. Let A be a k-algebra. We can make A into a templicial k-module

resembling the bar construction. For all n ≥ 0, define

Nk(A)n = A⊗n ∈ Mod(k)

We define the inner face maps and degeneracy maps of Nk(A) as follows. For 0 < j < n,

0 ≤ i ≤ n and a1, ..., an ∈ A, set

dj(a1 ⊗ ...⊗ an) = a1 ⊗ ...⊗ aj−1 ⊗ aj+1aj ⊗ aj+2 ⊗ ...⊗ an
si(a1 ⊗ ...⊗ an) = a1 ⊗ ...⊗ ai ⊗ 1A ⊗ ai+1 ⊗ ...⊗ an

It follows from the associativity of the multiplication inA and the unit property of 1A that

the simplicial identities (1.3) are satisfied. Finally, the counit and comultiplication maps

of Nk(A) are given by the isomorphisms ϵ : A⊗0 ∼−→ k and µp,q : A⊗p+q ∼−→ A⊗p ⊗ A⊗q
.

We thus obtain a strong (and thus colax) monoidal functor

Nk(A) : ∆
op
f → Mod(k)

So by Example 1.1.15, we can view Nk(A) as a templicial object with one vertex. It was

noted by Maclane that this completely determines the algebra A up to isomorphism, as

far back as [Mac71, Proposition VII.5.1].

In §2.3.1, we will extend this construction to general V-enriched categories.
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Example 2.1.13. Templicial objects behave fundamentally differently to simplicial objects

when the enriching category V is not cartesian. We already illustrated this in Example

2.1.11. Let us give another example. Choose k = Z so that V = Ab is the category of

abelian groups. Let S = {∗} and define

Xn =

{
Z if n = 0

Q/Z if n > 0
∈ Ab

where s0 : X0 → X1 is the zero map and the other face and degeneracy maps are the

identity on Q/Z. As Q/Z ⊗ Q/Z ≃ 0, we can define µk,l : Xk+l → Xk ⊗Xl as the zero

map for all k, l > 0, and as the left or right unit isomorphism if l = 0 or k = 0. We thus

obtain a templicial abelian group (X,S).

On the other hand, if A is a simplicial abelian group, note that if any face map di : An →
An−1 is the zero map, then necessarily An−1 = 0.

Definition 2.1.14. Given templicial morphisms (α, f) : (X,S) → (Y, T ) and (β, g) :
(Y, T ) → (Z,U), the composition (β, g) ◦ (α, f) is defined to be the templicial morphism

(γ, g ◦ f) : (X,S)→ (Y, T ) with

γ : (gf)!X ≃ g!f!X
g!α−−→ g!Y

β−→ Z

where the isomorphism is given by Proposition 1.1.19.

Further, for any templicial object (X,S) we define the identity on (X,S) as the templicial

morphism (φ, idS) : (X,S) → (X,S) where φ : (idS)!X
∼−→ X is the isomorphism given

by Proposition 1.1.19.

It then follows that templicial objects and templicial morphisms define a category which

we denote by

S⊗V

Proposition 2.1.15. There is an equivalence of categories:

S× Set ≃ SSet

Proof. Let K be a simplicial set. By Proposition 2.1.6, we may consider K as a colax

monoidal functor ∆op
f → Set with comultiplication µ and counit ϵ. Then define for all

n ≥ 0 and a, b ∈ K0:

Kn(a, b) = {x ∈ Kn | µ0,n,0(x) = (a, x, b)}
= {x ∈ Kn | d1...dn(x) = a, d0...d0(x) = b}

Given f : [m]→ [n] in ∆f , it follows from the simplicial identities that K(f) : Kn → Km

restricts to a map K(f)a,b : Kn(a, b)→ Km(a, b). Moreover, it is clear that for all k, l ≥ 0
and a, b ∈ K0, µk,l restricts to

µk,l|Kk+l(a,b) : Kk+l(a, b)→
∐
c∈K0

Kk(a, c)×Kl(c, b)

and K0(a, a) = {a} if a = b, and K0(a, b) = ∅ if a ̸= b. Consequently, the functor

φ(K) : ∆op
f → QuivK0

: [n] 7→ (Kn(a, b))a,b∈K0
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is strongly unital and colax monoidal, whereby (φ(K),K0) is a templicial object.

Conversely, if (X,S) is a templicial object in Set, then we can define a simplicial set c(X)
by setting for all n ≥ 0:

c(X)n =
∐
a,b∈S

Xn(a, b)

It is readily verified that the assignments K 7→ φ(K) and X 7→ c(X) can be extended to

mutually inverse equivalences between SSet and S× Set.

Remark 2.1.16. More generally, we can use the same method as in the proof of Proposition

2.1.15 to “pull apart” the objects Xn ∈ V of a colax monoidal functor X : ∆op
f → V into

objects Xn(a, b) indexed over a set, as long as X0 is free in the appropriate sense. From

this we can obtain an alternative definition of templicial objects. In Appendix A, we will

present this comparison for suitable monoidal categories V .

Remark 2.1.17. Let (X,S) be a templicial object in V and consider a, b ∈ S. Then the

proof of Proposition 2.1.15 suggests that Xn(a, b) ∈ V should be interpreted as the object
of n-simplices of X with first vertex a and last vertex b.

Moreover, for all k, l ≥ 0 and a, b ∈ S, the comultiplication morphism

(µXk,l)a,b : Xk+l(a, b)→
∐
c∈S

Xk(a, c)⊗Xl(c, b)

should be interpreted as taking a (k+ l)-simplex from a to b and sending it to a k-simplex

from a to some c ∈ S, along with an l-simplex from c to b, which are outer faces of the

original (k + l)-simplex.

7−→
µ1,2

We can recover the category S⊗V as a subcategory of a Grothendieck construction. This

will be useful later. Let Cat denote the (very large) strict 2-category of (large) categories,

functors and natural transformations

Proposition 2.1.18. Consider the pseudofunctor

ΦV = Colax(∆op
f , (−)!) : Set→ Cat

where (−)! : Set → MonCat is the pseudofunctor of Proposition 1.1.19. Then there is fully
faithful functor

S⊗V ↪→
∫

ΦV

embedding the category of templicial objects into the Grothendieck construction of ΦV .

Proof. The pseudofunctor ΦV sends a set S to the category Colax(∆op
f ,V QuivS). A map

of sets f : S → T is sent to the post-composition functor f! ◦ −. Thus the Grothendieck

construction

∫
ΦV has as objects all pairs. (X,S) with S a set and X : ∆op

f → V QuivS a
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colax monoidal functor. A morphism from (X,S) to (Y, T ) is given by a pair (α, f) with

f : S → T a map of sets and α : f!X → Y a monoidal natural transformation in ΦV(T ).

It is thus clear that S⊗V may be identified with the full subcategory of

∫
ΦV spanned

by all pairs (X,S) for which the colax monoidal functor X : ∆op
f → V QuivS is strongly

unital.

Construction 2.1.19. Consider a monoidal category (W,⊗, I) with coproducts, such that

− ⊗ − preserves coproducts in each variable. Let H : W → V be a strongly unital colax

monoidal functor that preserves coproducts. Then for any set S, H induces a colax

monoidal functor

HS :W QuivS → V QuivS : Q 7→
(
H(Q(a, b))

)
a,b∈S

If f : S → T is a map of sets, then because H preserves coproducts, we have a monoidal

natural isomorphism

f! ◦HS ≃ HT ◦ f!
and one can check that the functors (HS)S form a pseudonatural transformation H∗.

Thus we have a pseudonatural transformation

Colax(∆op
f , H∗) : ΦU → ΦV

Then the Grothendieck construction supplies us with a functor

H̃ :

∫
ΦW →

∫
ΦV

Explicitely, a pair (X,S) in

∫
ΦW is sent to the pair (HS ◦X,S) in

∫
ΦV

Finally, asH is assumed to be strongly unital, eachHS is strongly unital as well and thus

H̃ restricts to a functor

H̃ : S⊗W → S⊗V

2.1.3 Colimits of templicial objects

In this subsection we show that the category S⊗V of templicial objects is cocomplete and

explicitly describe its colimits. We make use of the following result from the literature.

Proposition 2.1.20 ([Her93], Corollary 3.3.7). Let C be a category and Ψ : C → Cat a
pseudofunctor. Assume that

(a) C is cocomplete,

(b) for every object C of C, the category Ψ(C) is cocomplete,

(c) for every morphism f in C, the functor Ψ(f) preserves colimits.

Then the Grothendieck construction
∫
Ψ is cocomplete and a colimit of objects (Xi, Ci) with

Ci ∈ C and Xi ∈ Ψ(Ci) is obtained as

colim
i

(Xi, Ci) = (colim
i

Ψ(ιi)(Xi), colim
i

Ci)

for the canonical morphisms ιi : Ci → colimi Ci in C.
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Corollary 2.1.21. The category
∫
ΦV is cocomplete.

Proof. Recall the pseudofunctor ΦV : Set → Cat from Proposition 2.1.18. Since V is

cocomplete, so is V QuivS ≃ VS×S for every set S. It is not difficult to show that then also

ΦV(S) = Colax(∆op
f ,V QuivS) is cocomplete, with colimits given pointwise. Moreover,

if f is a map of sets, then f! is left adjoint to f∗ and thus preserves colimits. It follows

that ΦV(f) preserves colimits as well. Thus by Proposition 2.1.20, the category

∫
ΦV is

cocomplete.

Remark 2.1.22. Let us explicitly describe the colimits of

∫
ΦV . Consider a diagram

D : J →
∫

ΦV

with J a small category. Write D(j) = (Xj , Sj) for every j ∈ J and D(t) = (αt, f t) :
D(i)→ D(j) for every t : i→ j in J . Then the colimit of D is given by

(colim D̃, S)

where S = colimj∈J S
j

in Set with canonical maps ιj : S
j → S, and

D̃ : J → Colax(∆op
f ,V QuivS)

is defined by for all i, j ∈ J and t : i→ j in J :

D̃(j) = (ιj)!X
j

and D̃(t) : (ιi)!X
i ≃ (ιj)!f

t
!X

i (ιj)!α
t

−−−−→ (ιj)!X
j

where the isomorphism (ιi)!X
i ≃ (ιj)!f

t
!X

i
is given by the fact that ιjf

t = ιj .

Moreover, the colimit of D̃ is given pointwise. So for all n ≥ 0 we have(
colim D̃

)
n
≃ colim

j∈J
(ιj)!X

j
n

Proposition 2.1.23. The categoryS⊗V is cocomplete and the embeddingS⊗V ↪→
∫
ΦV preserves

colimits.

Proof. We check that the subcategory S⊗V is closed under colimits in

∫
ΦV . So let J be a

small category andD : J → S⊗V ⊆
∫
ΦV a diagram. With notations as in Remark 2.1.22,

the colimit of D in

∫
ΦV is the pair (colim D̃, S). For every j ∈ J , write ϵj and ξj for the

counits of Xj
and (ιj)! respectively.

Boiling down the definitions, we see that the counit (colim D̃)0 → IS of colim D̃ is the

composition

colim
j∈J

(ιj)!(X
j
0)

colimj∈J (ιj)!(ϵ
j)−−−−−−−−−−−→ colim

j∈J
(ιj)!(ISj )

colimj∈J ξj−−−−−−−→ colim
j∈J

IS
∇−→ IS

in V QuivS , where∇ is the codiagonal. Now the composite∇◦ colimj∈J ξ
j

is an isomor-

phism because for any x, y ∈ S, we have

(colim
j∈J

(ιj)!(ISj ))(x, y) ≃

{
colimj∈J

∐
a∈(ιj)−1(x) I ≃ I if x = y

0 if x ̸= y
≃ IS(x, y)
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Since each ϵj is assumed to be an isomorphism as well, we conclude that colim D̃ is

strongly counital and thus that colimD is a templicial object.

Proposition 2.1.24. Let (W,⊗, I) be a cocomplete monoidal category such that−⊗− preserves
colimits in each variable. Let H : W → V be a strongly unital colax monoidal functor. Assume
that H preserves colimits. Then the induced functor of Construction 2.1.19

H̃ : S⊗W → S⊗V

preserves colimits.

Proof. Let J be a small category and D : J → S⊗W a diagram. With notations as in

Remark 2.1.22, we have a monoidal natural isomorphism

HS ◦ colim D̃ = HS ◦ colim
j∈J

(ιj)!X
j ≃ colim

j∈J
(ιj)!HSjXj

because H preserves colimits and HT f! ≃ f!HS for every map of sets f : S → T . It

follows that H̃ preserves colimits.

2.1.4 Comparison with simplicial sets

Consider the colimit-preserving, strong monoidal functor

F : Set→ V : S 7→
∐
a∈S

I

(this is the functor FP of Notation 1.2.16 with P = I). Then its right-adjoint

U = V(I,−) : V → Set

is lax monoidal by Lemma 1.1.4. So F ⊣ U is a monoidal adjunction in the sense of

Definition 1.1.5.

Combining Construction 2.1.19 and Proposition 2.1.15, we obtain a functor

F̃ : SSet ≃ S× Set→ S⊗V

Proposition 2.1.25. The functor F̃ : SSet→ S⊗V has a right adjoint

Ũ : S⊗V → SSet

that is given by, for all templicial objects X and n ≥ 0,

Ũ(X)n = S⊗V(F̃ (∆n), X)

Proof. By Proposition 1.3.11, it suffices to note that F̃ preserves colimits, which follows

by Proposition 2.1.24.

Proposition 2.1.26. Let K be a simplicial set and (X,S) a templicial object in V . Then a
simplicial map K → Ũ(X) is equivalent to the following data:
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• a map of sets f : K0 → S,

• an element ασ ∈ U (Xn(f(a), f(b))) for all n > 0, a, b ∈ S and all non-degenerate
σ ∈ Kn(a, b),

which must satisfy:

dj(ασ) = αdj(σ) and µj,n−j(ασ) = αdj+1...dn(σ) ⊗ αd0...d0(σ)

for all 0 < j < n.

Proof. By adjunction, the map K → Ũ(X) corresponds to a templicial morphism (α, f) :

F̃ (K)→ X , where f : K0 → S is a map of sets and α : f!F̃ (K)→ X a monoidal natural

transformation. Now for all n ≥ 0 and a, b ∈ K0,

F̃ (K)n(a, b) = F (Kn(a, b)) ≃
∐

σ∈Kn(a,b)

I,

and thus α is determined by a collection of morphisms ασ : I → Xn(f(a), f(b)) for all

σ ∈ Kn(a, b). As α is natural with respect to the degeneracy maps in F̃ (K), it follows

that si(ασ) = αsi(σ) for all 0 ≤ i ≤ n. Thus we may restrict to non-degenerate simplices

σ ∈ Kn(a, b). The naturality of α with respect to the inner face maps in F̃ (K) and the

monoidality of α now translate to the conditions in the statement.

Corollary 2.1.27. Consider a templicial object (X,S) in V and n ≥ 0. An n-simplex of Ũ(X)
is equivalent to a choice of vertices a0, ..., an ∈ S along with a collection of elements(

αi,j ∈ U(Xj−i(ai, aj))
)
0≤i<j≤n (2.4)

such that for all 0 ≤ i < k < j ≤ n, we have

µk−i,j−k(αi,j) = αi,k ⊗ αk,j (2.5)

Proof. Apply Proposition 2.1.26 to the case K = ∆n
. The map f : [n] → S is equivalent

to a choice of vertices a0, ..., an ∈ S. Further, we can identify every non-degenerate

m-simplex of ∆n
by its sequence of vertices [i0, ..., im] with 0 ≤ i0 < ... < im ≤ n. Note

that each [i0, i1, ..., im] can be obtained from the simplex [i0, i0 + 1, ..., im] by iteratively

applying face maps in ∆n
. Thus the collection

(
α[i0,...,im]

)
0≤i0<...<im≤n is completely

determined by the elements αi,j = α[i,i+1,...,j] ∈ U(Xj−i(ai, aj)) with 0 ≤ i < j ≤ n.

Notation 2.1.28. Let (X,S) be a templicial object and α = (αi,j)0≤i<j≤n an n-simplex

of Ũ(X) with vertices a0, ..., an ∈ S. We will sometimes write α more compactly as

(αi,j)0≤i≤j≤n where αi,i = ai for all 0 ≤ i ≤ n.

Remark 2.1.29. Take a templicial object (X,S). Let us describe the face and degeneracy

maps of Ũ(X). Given an n-simplex α = (αi,j)0≤i≤j≤n of Ũ(X), we have

dk(α) = (βi,j)0≤i≤j≤n−1 with βij =


αi+1,j+1 if k ≤ i
dXk−i(αi,j+1) if i < k ≤ j
αi,j if j < k
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and

sk(α) = (βi,j)0≤i≤j≤n+1 with βij =


αi−1,j−1 if k < i

sXk−i(αi,j−1) if i ≤ k < j

αi,j if j ≤ k

for all 0 ≤ k ≤ n.

Example 2.1.30. Given a templicial object (X,S), let us discuss the n-simplices of Ũ(X)

in low dimensions. By Corollary 2.1.27 we have bĳections Ũ(X)0 ≃ S, and

Ũ(X)1 ≃
∐
a,b∈S

U(X1(a, b))

Further, a 2-simplex of Ũ(X) is a tuple (a, b, c, α0,1, α1,2, α0,2) with a, b, c ∈ S and α0,1 ∈
U(X1(a, b)), α1,2 ∈ U(X1(b, c)) and α0,2 ∈ U(X2(a, c)) such that µ1,1(α0,2) = α0,1 ⊗ α1,2.

The edges of this 2-simplex are given by α0,1, α1,2 and dX1 (α0,2). Visually, we might

represent this as

a

b

c

α0,2

α0,1 α1,2

dX1 (α0,2)

2.1.5 Skeleta

We now introduce the templicial analogue of the classical skeleton construction for

simplicial sets. This requires introducing a truncated version of templicial objects. Some

of the proofs are analogous to those in §2.1.2 and thus we will not always give them in

full detail.

Throughout this subsection, we fix a positive integer n ≥ 0.

Notation 2.1.31. We define ∆≤n
f as the full subcategory of ∆f spanned by the objects

[0], ..., [n].

Construction 2.1.32. Let S be a set. We define a category Φ≤n
V (S) whose objects are

functors

X : (∆≤n
f )op → V QuivS

with a morphism ϵ : X0 → IS and for all pairs k, l ≥ 0 with k+ l ≤ n, a quiver morphism

µk,l : Xk+l → Xk ⊗Xl

which satisfy the naturality, coassociativity and counitality conditions (2.1), (2.2) and

(2.3) whenever they are well-defined. A morphism X → Y in Φ≤n
V (S) is given by a

natural transformation α : X → Y such that for all k, l ≥ 0 with k + l ≤ n, we have

µYk,lαk+l = (αk ⊗ αl)µXk,l and ϵY α0 = ϵX
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Analogously to Proposition 2.1.18, we obtain a pseudofunctor

Φ≤n
V : Set→ Cat : S 7→ Φ≤n

V (S), f 7→ f! ◦ −

Then consider the Grothendieck construction

∫
Φ≤n

V of Φ≤n
V . Explicitly,

∫
Φ≤n

V is the

category whose objects are all pairs (X,S) with S a set and X : (∆≤n
f )op → V QuivS a

functor with the extra structure described above. A morphism from (X,S) to (Y, T ) is

given by a pair (α, f) with f : S → T a map of sets and α : f!X → Y a morphism in

Φ≤n
V (T ).

Definition 2.1.33. We define S≤n
⊗ V as the full subcategory of

∫
Φ≤n

V spanned by all

pairs (X,S) such that the counit ϵ : X0 → IS is an isomorphism. Its objects are called

n-truncated templicial objects.

There is an obvious restriction functor

τ≤n : S⊗V → S≤n
⊗ V : (X,S) 7→ (X|

(∆
≤n
f )op

, S)

which we call the nth truncation functor.

Proposition 2.1.34. The category S≤n
⊗ V is cocomplete and τ≤n : S⊗V → S≤n

⊗ V preserves
colimits.

Proof. Let J be a small category andD : J → S≤n
⊗ V : j 7→ (Xj , Sj) a diagram. It follows

completely analogously to the proof of Corollary 2.1.23 that the colimit of D is given by

the pair

(colim
j∈J

(ιj)!X
j , colim

j∈J
Sj)

where ιj : S
j → colimj∈J S

j
denotes the canonical map and the colimit colimj∈J (ιj)!X

j

is taken in Φ≤n
V (colimj∈J S

j). It is then clear that τ≤n preserves colimits.

Examples 2.1.35. Let us describe the category S≤n
⊗ V for low values of n.

1. If n = 0, then ∆≤0
f is the discrete category with one object and thus S≤0

⊗ V is

equivalent to the category Set of sets.

2. If n = 1, then ∆≤1
f consists of a single non-identity morphism [1] → [0]. It follows

that S≤1
⊗ V is equivalent to the category of unital V-enriched quivers V Quivu. Its

objects are triples (Q,S, u) with S a set, Q ∈ V QuivS a quiver and u : IS → Q a

quiver morphism. A morphism (Q,S, u)→ (P, T, v) is a pair (α, f) with f : S → T
a map of sets andα : f!(Q)→ P a quiver morphism such that the following diagram

commutes:

f!(IS) IT

f!(Q) P

vf!(u)

α

Example 2.1.36. Let ∆≤n
denote the full subcategory of ∆ spanned by the objects

[0], ..., [n]. Analogously to Proposition 2.1.15, we obtain an equivalence of categories:

S≤n
× Set ≃ Set(∆

≤n)op
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Clearly the truncation functor τ≤n : S× Set → S≤n
× Set then corresponds to the classical

truncation τ≤n : SSet→ Set(∆
≤n)op

under this equivalence.

Construction 2.1.37. Let ι≤n : ∆≤n
f → ∆f denote the inclusion functor and let S be a

set. Consider the restriction functor

− ◦ ι≤n : Fun(∆op
f ,V QuivS)→ Fun((∆≤n

f )op,V QuivS)

As V and thus V QuivS is cocomplete, − ◦ ι≤n has a left-adjoint given by the left Kan

extension along the inclusion ι≤n, which we denote by skn = Lanι≤n
. Explicitly, given a

functor X : (∆≤n
f )op → V QuivS and k ≥ 0, we have

skn(X)k = colim
[k]↠[p]
0≤p≤n

Xp

The colimit is taken over the opposite of the under category (∆≤n
surj)[k]/, where ∆≤n

surj

denotes the full subcategory of ∆surj spanned by the objects [0], ..., [n].

Further, for f : [m] → [k] in ∆f , the quiver morphism skn(X)(f) : skn(X)k → skn(X)m
is given as follows. Let σ : [k] ↠ [p] be a surjective morphism in ∆f . By Remark 2.1.2, we

can factor σf uniquely as a surjective morphism σ′ : [m] ↠ [q] followed by an injective

morphism f ′ : [q]→ [p] in ∆f . In particular, q ≤ p ≤ n and thus f ′ belongs to ∆≤n
f . Then

skn(X)(f)ισ = ισ′X(f ′)

Now suppose (X,S) is an n-truncated templicial object. We can equip skn(X) with a

strongly unital colax monoidal structure as follows. Note that skn(X)0 ≃ X0 ≃ IS . Take

k, l ≥ 0. For all surjective σ : [k + l] ↠ [p] with 0 ≤ p ≤ n, we can write σ = σ1 + σ2
for some unique σ1 : [k] ↠ [p1] and σ2 : [l] ↠ [p2] (Remark 2.1.4). Then consider the

morphism

(ισ1
⊗ ισ2

)µXp1,p2 : Xp → skn(X)k ⊗ skn(X)l

These morphisms form a cocone since for any other surjective morphism σ′ : [k+ l] ↠ [q]
with h : [q] ↠ [p] such that hσ′ = σ, we can also write σ′ = σ′

1 + σ′
2 and h = h1 + h2 so

that h1σ
′
1 = σ1 and h2σ

′
2 = σ2. Thus

(ισ1
⊗ ισ2

)µXp1,p2 = (ιh1σ′
1
⊗ ιh2σ′

2
)µXp1,p2

= (ισ′
1
⊗ ισ′

2
)(X(h1)⊗X(h2))µ

X
p1,p2 = (ισ′

1
⊗ ισ′

2
)µXq1,q2X(h)

We thus obtain a canonical morphism

µk,l : skn(X)k+l → skn(X)k ⊗ skn(X)l

such that µk,lισ = (ισ1 ⊗ ισ2)µ
X
p1,p2 for all surjective σ : [k + l] ↠ [p] with 0 ≤ p ≤ n.

It now follows easily from the definitions that µk,l is natural in [k], [l] ∈ ∆f and that

it is coassociative and counital with respect to skn(X)0 ≃ IS . Hence, (skn(X), S) is a

templicial object.

Examples 2.1.38. Let us consider the functor skn for low values of n.



2.1. BASIC DEFINITIONS 37

1. If n = 0, let S be a set. Then sk0(S) is the templicial object (IS , S) where IS is the

constant functor ∆op
f → V QuivS : [n] 7→ IS . Equivalently, as F̃ preserves colimits,

sk0(S) is isomorphic to the coproduct

∐
a∈S F̃ (∆

0) in S⊗V .

2. If n = 1, let Q ∈ V QuivS be a quiver with unit morphism u : IS → Q. Then sk1(Q)
is given as follows. For all n ≥ 0,

sk1(Q)n = Q⨿IS Q⨿IS ...⨿IS Q︸ ︷︷ ︸
n terms

∈ V QuivS

That is, we have one copy of Q for each morphism h : [n] → [1] in ∆f . Let ιh
denote the coprojection Q→ sk1(Q)n corresponding to h. Then for any morphism

f : [m]→ [n] in ∆f , sk1(Q)(f) : sk1(Q)n → sk1(Q)m is given by

sk1(Q)(f)ιh = ιhf for all h : [n]→ [1] in ∆f

Finally, for all k, l ≥ 0 the comultiplication morphism µk,l : Xk+l → Xk ⊗ Xl is

given as follows. For any h : [n]→ [1] in ∆f , we have h = h1 + h2 for some unique

h1 : [k]→ [h(k)] and h2 : [l]→ [1− h(k)]. Then

µk,lιh =

{
X(h1)⊗ ιh2 if h(k) = 0

ιh1 ⊗X(h2) if h(k) = 1

Proposition 2.1.39. The assignment X 7→ skn(X) of Construction 2.1.37 extends to a fully
faithful functor skn : S≤n

⊗ V → S⊗V which is left-adjoint to the nth truncation functor τ≤n :

S⊗V → S≤n
⊗ V .

Proof. Let (X,S) be an n-truncated templicial object. Consider the inclusion functor ι≤n :

∆≤n
f →∆f . The unit of the adjunctionLanι≤n

⊣ −◦ι≤n supplies a natural transformation

ηX : X → τ≤n(skn(X)). For all 0 ≤ k ≤ n, ηXk
is just the canonical morphism ισ :

Xk → colim[k]↠[p],0≤p≤nXp where σ = id[k]. Moreover, ηXk
is an isomorphism as id[k]

is the terminal object in the opposite category of (∆≤n
surj)[k]/. It follows easily from the

definitions that ηX is in fact an isomorphism in S≤n
⊗ V .

Now let (Y, T ) be a templicial morphism and f : S → T a map of sets. There is a bĳec-

tion between natural transformations α : f!X → Y |
(∆

≤n
f )op

and natural transformations

α′ : f!(Lanι≤n
(X)) ≃ Lanι≤n

(f!(X)) → Y where α′|
(∆

≤n
f )op

◦ f!(ηX) = α (f! preserves

colimits by Lemma 1.1.18). It easily follows from the definitions that α : f!X → τ≤n(Y )

is a morphism in Φ≤n
V (T ) if and only if α′ : f!(skn(X))→ Y is a monoidal natural trans-

formation. We conclude that ηX is the unit of an adjunction skn ⊣ τ≤n. Finally, as ηX is

an isomorphism, skn : S≤n
⊗ V → S⊗V is fully faithful.

Definition 2.1.40. Given an n-truncated templicial objectX , we call skn(X) the nth skele-
ton ofX . We call a templicial objectX n-skeletal or n-truncated if the counit skn(τ≤nX)→
X is an isomorphism.

Note that this terminology is compatible with Definition 2.1.33 since by Proposition

2.1.39, skn identifies S≤n
⊗ V with the full subcategory of S⊗V spanned by all n-truncated

templicial objects.
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From now on we will abuse notation and write the composite skn ◦τ≤n as just skn. So we

have an endofunctor skn : S⊗V → S⊗V whose essential image consists of the n-skeletal

templicial objects.

Remark 2.1.41. Let n ≥ m ≥ 0. It is clear from Construction 2.1.37 that we have canonical

natural isomorphisms of endofunctors on S⊗V :

skm skn ≃ skm ≃ skn skm

In particular, every m-truncated templicial object is also n-truncated.

Moreover, the canonical natural transformation skn → idS⊗V induces an infinite sequence

of natural transformations

sk0 → sk1 → · · · → skn → · · · → X

Proposition 2.1.42. The canonical templicial morphism

colim
n≥0

skn(X)→ X

is an isomorphism which is natural in all templicial objects X .

Proof. For any k ≥ 0, the induced quiver morphism

colim
n≥0

skn(X)k ≃ colim
[k]↠[p]
p≥0

Xp → Xk

is an isomorphism because id[k] : [k]→ [k] is the terminal object in the opposite category

of (∆surj)[k]/ with p ≥ 0.

Remark 2.1.43. Let K be a simplicial set and n > 0. There is a well-known result that the

canonical map skn−1(K)→ skn(K) fits in a pushout diagram∐
σ∈Kn

non deg.

∂∆n skn−1(K)

∐
σ∈Kn

non deg.

∆n skn(K)

Beware that this is no longer the case for templicial objects. The first obstacle is that there

doesn’t seem to be a good notion of non-degenerate simplices of a general templicial

object X . This can be resolved by restricting to what we call free templicial objects (see

§3.1.3). The most straightforward way to construct an analogous pushout in S⊗V would

be to apply F̃ to the simplicial sets ∂∆n
and ∆n

. But Example 2.1.44 shows that even

when X is free, this diagram need not exist.
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Example 2.1.44. Let V = Mod(Z) = Ab be the monoidal category of abelian groups with

the tensor product as monoidal product and Z as monoidal unit. We define a 2-truncated

templicial abelian group X as follows. Let S = {a, c1, c2, b} be a set with four elements

and consider for all x, y ∈ S the following free abelian groups:

X0(x, y) =

{
Zx if x = y

0 otherwise

, X1(x, y) =



Zfi if x = a, y = ci

Zgi if x = ci, y = b

Zh if x = a, y = b

Zs0(x) if x = y

0 otherwise

and X2(x, y) =



Zs0(fi)⊕ s1(fi) if x = a, y = ci

Zs0(gi)⊕ s1(gi) if x = ci, y = b

Zw ⊕ s0(h)⊕ s1(h) if x = a, y = b

Zs0s0(x) if x = y

0 otherwise

The degeneracy maps are defined on the generators as shown, while the face map d1 :
X2 → X1 and the comultiplication map µ1,1 : X2 → X1 ⊗X1 are uniquely determined

by the conditions

d1(w) = h and µ1,1(w) = f1 ⊗ g1 + f2 ⊗ g2

a

c1 c2

b

w

f1f2 g1 g2

h

The generator w of X2(a, b) not in the image of the joint degeneracy map (s0, s1) :
X1(a, b)⊕X1(a, b)→ X2(a, b). So we would expect to have a commutative square

F̃ (∂∆2) sk1(X)

F̃ (∆2) sk2(X)

such that the bottom map sends the unique non-degenerate 2-simplex of ∆2
to w.

However, such a map does not exist. Indeed, this would be equivalent to a 2-simplex

(αi,j)0≤i≤j≤2 of Ũ(X) with α0,2 = w. But µ1,1(w) is not a pure tensor while µ1,1(α0,2) =
α0,1 ⊗ α1,2.
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2.2 Quasi-categories and Frobenius structures

2.2.1 Necklaces

Necklaces were first introduced in [DS11b] by Dugger and Spivak. As necklaces will also

play a crucial role in this thesis, we will devote this subsection to recalling them. We also

give a combinatorial description of the category of necklaces (Proposition 2.2.5). Finally,

we introduce some new terminology like active and inert necklace maps (Definition

2.2.7), and the splitting of a necklace over another. These will pop up from time to time

throughout the thesis.

Definition 2.2.1. We denote by SSet∗,∗ = (∂∆1 ↓ SSet) the category of bipointed simplicial
sets. Its objects can be identified with tuples (K, a, b) where K is a simplicial set and

a, b ∈ K0 are called the distinguished points of K. We will also denote Ka,b = (K, a, b). A

morphism Ka,b → Lc,d in SSet∗,∗ is a simplicial map f : K → L such that f(a) = c and

f(b) = d.

Let Ka,b and Lc,d be bipointed simplicial sets. The wedge sum K ∨ L of K and L is

constructed by glueing K and L at the distinguished points b and c. More precisely,

K ∨ L is the coequalizer

∆0 K ⨿ L K ∨ L
b

c

We consider K ∨ L again as bipointed with distinguished points (a, d).

Remark 2.2.2. It is not difficult to verify that the wedge ∨ is a monoidal product on the

category of bipointed simplicial sets SSet∗,∗ whose unit is given by ∆0
.

Definition 2.2.3. For any n ≥ 0, we consider the standard simplex ∆n
as bipointed with

distinguished points 0 and n. A necklace T is an iterated wedge of standard simplices.

That is,

T = ∆n1 ∨ ... ∨∆nk ∈ SSet∗,∗

for some k ≥ 0 and n1, ..., nk > 0 (if k = 0, then T = ∆0
). We refer to the standard

simplices ∆n1 , ...,∆nk
as the beads of T . The number of beads k is called the length of T

and is denoted by ℓ(T ). The distinguished points in every bead are called the joints of T .

We letN ec denote the full subcategory of SSet∗,∗ spanned by all necklaces. By construc-

tion, (N ec,∨,∆0) is again a monoidal category.

∆3 ∨∆1 ∨∆2 ∨∆3

Remark 2.2.4. Note that for any two necklacesT andU , we have that ℓ(T∨U) = ℓ(T )+ℓ(U).

Proposition 2.2.5. The category of necklacesN ec is equivalent to the category defined as follows:

The objects are pairs (T, p) with p ≥ 0 and {0, p} ⊆ T ⊆ [p]. The morphisms (T, p) → (U, q)
are morphisms f : [p]→ [q] in ∆f such that U ⊆ f(T ), with compositions and identities defined
as in ∆f .
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Moreover, under this equivalence, the wedge ∨ corresponds to

(T, p) ∨ (U, q) = (T ∪ (p+ U), p+ q)

where p+ U = {p+ u | u ∈ U}. Further, ℓ(T ) = |T | − 1.

Proof. Clearly, a necklace T = ∆n1 ∨ ... ∨∆nk
is determined up to isomorphism by the

sequence (n1, ..., nk). Setting p = n1 + ... + nk, this sequence is in turn determined by

I = {0 < n1 < n1 + n2 < ... < p} as a subset of [p]. Note that under these identifications,

[p] and I correspond to the sets of vertices and joints of T respectively.

Further, let T → T ′
be a map of necklaces. As above, we may identify T and T ′

with pairs

(I, p) and (J, q) respectively. Note that the map T → T ′
is completely determined on

vertices and must preserve the order of these vertices. Hence, under these identifications,

this map corresponds to an order morphism [p]→ [q] which preserves the endpoints.

Suppose now that J ̸⊆ f(I). We can write I = {0 = i0 < i1 < ... < ik = p} and

J = {0 = j0 < j1 < ... < jl = q}. Then we can choose β ∈ {1, ..., l} and α ∈ {1, ..., k}
such that f(iα−1) = jβ−1 but f(iα) > jβ . Now the unique edge of T between the joints

iα−1 and iα must be sent to an edge of T ′
between the vertices jβ−1 and f(iα). But there

is no such edge. Hence, we must have J ⊆ f(I).

Conversely, consider a morphism f : (I, p) → (J, q). Let T and T ′
be the necklaces

corresponding to (I, p) and (J, q) respectively. With the same notations for I and J as

above, Remark 2.1.4 allows us to write

f = f1 + ...+ fk

with fi : [iα−iα−1]→ [f(iα)−f(iα−1)] in∆f for eachα ∈ {1, ..., k}. Since J ⊆ f(I), there

is an αβ ∈ {1, ..., k} such that jβ = f(iαβ
) for any β ∈ {1, ..., l}. Now there is a unique

β such that αβ−1 ≤ α − 1 < α ≤ αβ and thus we have jβ−1 ≤ f(iα−1) ≤ f(iα) ≤ jβ .

So we can extend fi to an order morphism [iα − iα−1] → [jβ − jβ−1], which induces

a simplicial map ∆iα−iα−1 → ∆jβ−jβ−1 → T ′
. These maps combine to give a map of

necklaces T → T ′
.

Clearly, this correspondence is functorial and preserves the wedge.

Notation 2.2.6. Henceforth, we will identify N ec with the category described in Propo-

sition 2.2.5. So we will also use the notation

T = {0 = t0 < t1 < t2 < ... < tk = p}

to refer to the necklace ∆t1 ∨∆t2−t1 ∨ ...∨∆p−tk−1
. We will often refer to a necklace (T, p)

just by its underlying set of joints T .

Definition 2.2.7. Let f : (T, p) → (U, q) be a map of necklaces. We say f is inert if p = q
and f = id[p]. We say f is active if f(T ) = U .

Remark 2.2.8. A simplex ∆n
, considered as a necklace with a single bead, is represented

in N ec by the pair ({0 < n}, n). On the other hand, the necklace ([n], n) represents the

spine of ∆n
, that is the union of the edges 0→ 1→ ...→ n in ∆n

.

More generally for any necklace (T, p) we can consider ([p], p), which is the spine passing

through all the vertices of T . Note that there is a unique inert map ([p], p)→ (T, p) which
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represents the inclusion of the spine into T . Further let k = ℓ(T ), then there is a unique

order isomorphism [k] ≃ T . Thus there is a unique active map ([k], k)→ (T, p), which is

the inclusion of the spine passing through all the joints of T .

Notation 2.2.9. Let (T, p) be a necklace. We denote the poset

PT = {U ⊆ [p] | T ⊆ U}

ordered by inclusion. Equivalently, it is the poset of inert necklace maps U ↪→ T .

If T = {0 < p} is a simplex, we also write PT = Pp.

Remark 2.2.10. It is easy to see that the assignment T 7→ PT extends to a strong monoidal

functor

P : N ec→ Cat

where for every necklace map f : T → U , P(f) sends V ∈ PT to f(V ) ∈ PU . For

necklaces T and U , the lax monoidal structure is given by

PT × PU → PT∨U : (V,W ) 7→ (V ∨W )

which is clearly an order isomorphism.

Definition 2.2.11. Let T,U ∈ Pp with p ≥ 0. Suppose U = {0 = u0 < ... < ul = p}. Then

there exist unique necklaces T1, ..., Tl such that

T ∪ U = T1 ∨ ... ∨ Tl

where for every i ∈ {1, ..., l}, we have Ti ∈ Pui−ui−1 . More precisely,

Ti = {0} ∪ {t− ui−1 | t ∈ T, ui−1 ≤ t ≤ ui} ∪ {ui − ui−1}

We call the sequence

(T1, ..., Tl)

the splitting of T over U .

Proposition 2.2.12. Let p ≥ 0 and T,U ∈ Pp. The following statements are true.

1. For any V ∈ Pp with T ∪ U = V ∪ U , the splitting of T over U is equal to the splitting of
V over U .

2. If T ⊆ U with (T1, ..., Tl) the splitting of T over U and (U1, ..., Uk) the splitting of U over
T , then ℓ(Ti) = 1 for all i ∈ {1, ..., p} and U = U1 ∨ ... ∨ Uk.

Proof. 1. This follows from the uniqueness of the expression T ∪ U = V ∪ U =
X1 ∨ ... ∨Xl with Xi ∈ Pui−ui−1

where U = {0 = u0 < ... < ul = p}.

2. As U = T ∪U , it is obvious that U = U1 ∨ ...∨Uk. Further, U = T ∪U = T1 ∨ ...∨Tl
and thus l = ℓ(T1) + ...+ ℓ(Tl). But the length of every Ti is at least 1, so we must

have ℓ(Ti) = 1 for all i ∈ {1, ..., l}.
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Notation 2.2.13. As in ∆, we distinguish some special maps in N ec.

• For any 0 < j < n, we write

δj : {0 < n− 1} → {0 < n}

for the active necklace map whose underlying morphism is the inner coface map

δj in ∆f of Definition 1.3.2.

• For any 0 ≤ i ≤ n, we write

σi : {0 < n+ 1} → {0 < n}

for the active necklace map whose underlying morphism is the codegeneracy map

σi in ∆f of Definition 1.3.2.

• For any k, l > 0, we write

νk,l : {0 < k < k + l} → {0 < k + l}

for the inert necklace map. More generally, for any necklace (T, p), we write

νT : T → {0 < p}

for the inert necklace map.

Remark 2.2.14. The necklace maps of Notation 2.2.13 generateN ec as a monoidal category

in the following sense. A necklace map f : (T, p)→ (U, q) can be uniquely factorized as

an active map followed by an inert map:

(T, p)
f ′

−→ (f(T ), q)
ι−→ (U, q)

Now suppose T = {0 = t0 < t1 < ... < tk−1 < tk = p} ⊆ [p]. By Remark 2.1.4, the

underlying morphism f : [p] → [q] in ∆f can be written as f = f1 + ... + fk for some

unique fi : [ti − ti−1]→ [f(ti)− f(ti−1)] with j ∈ {1, ..., k}. By Remark 2.1.2, each fi has

a unique representation

fi = δji1 ...δjiri
σli1 ...σlisi

It follows that

f ′ = f1 ∨ ... ∨ fk = (δj11 ...δj1r1
σl11 ...σl1s1

) ∨ ... ∨ (δjk1 ...δjkrk
σlk1 ...σlksk

)

Further, write U = {0 = u0 < u1 < ... < ul−1 < ul = q} ⊆ f(T ). Let (V1, ..., Vl) be the

splitting of f(T ) over U . It follows from Proposition 2.2.12 that

ι = νV1
∨ ... ∨ νVl

Note that each νVi
can be further written as a composition of wedges of some maps νr,s

with r, s > 0. But this decomposition will no longer be unique. For example, the unique

inert map νr,s,t : {0 < r < r + s < r + s+ t} → {0 < r + s+ t} has the representations

νr,s,t = νr,s+t(id{0<r} ∨νs,t) = νr+s,t(νr,s ∨ id{0<t})
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2.2.2 Quasi-categories in a monoidal category

We now describe a generalization of quasi-categories in the context of templicial objects,

which we call quasi-categories in V . They are similarly defined by means of a lifting

property along horn inclusions (Definition 2.2.26).

As a naive attempt, one might want to consider templicial objectsX with the right lifting

property with respect to all inner horn inclusions F̃ (Λnj )→ F̃ (∆n) in S⊗V . However, in

Example 2.1.44 we have seen that the templicial morphisms F̃ (∆n) → X are rather bad

behaved. More precisely, not every n-simplex x ∈ U(Xn(a, b)) is represented by such a

morphism F̃ (∆n) → X , unlike the classical situation of Proposition 1.3.10. To resolve

this issue, we can pass to the category VNecop
of functors N ecop → V . Let us start by

explaining how to obtain a functor X•(a, b) : N ecop → V from a given templicial object

X with vertices a and b.

Notation 2.2.15. Let (X,S) be a templicial object with comultiplication µ. For any

necklace T = {0 = t0 < t1 < ... < tk−1 < tk = p}, we write

XT = Xt1 ⊗S Xt2−t1 ⊗S ...⊗S Xp−tk−1
∈ V QuivS

and

µT = µt1,t2−t1,...,p−tk−1
: Xp → XT

Construction 2.2.16. Let (X,S) be a templicial object of V with vertices a, b ∈ S. We can

extend the assignment T 7→ XT to a strong monoidal functor

X• : N ecop → V QuivS

as follows. In view of Remark 2.2.14, it suffices to define X• on inert and active necklace

maps. Let f : (T, p)→ (U, q) be a map of necklaces.

• If f is inert, then p = q and U ⊆ T . Let (T1, ..., Tl) be the splitting of T over U so

that T = T1 ∨ ... ∨ Tl by Proposition 2.2.12. Then set

X(f) : XU

µT1
⊗...⊗µTl−−−−−−−−→ XT

• If f is active, write the necklace T as {0 = t0 < t1 < ... < tk = p}. Then there exist

unique fi : [ti − ti−1]→ [f(ti)− f(ti−1)] in ∆f such that f = f1 + ...+ fk. Now set

X(f) : XU ≃ Xf(t1) ⊗ ...⊗Xq−f(tk−1)
X(f1)⊗...⊗X(fk)−−−−−−−−−−−→ XT

where the isomorphism is induced by the strong unitality of X and the fact that

U = f(T ).

It follows from the coassociativity of µ that X• is functorial on inert morphisms, and

from the functoriality of X that X• is functorial on active morphisms. Then it follows

from the naturality of µ that X• is functorial on all morphisms.

If we fix vertices a, b ∈ S, then we obtain a functor

X•(a, b) : N ecop → V : T 7→ XT (a, b)
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Example 2.2.17. Assume V = Set. Let K be a simplicial set with vertices a and b and

T = {0 = t0 < t1 < ... < tk = p} a necklace. It follows from Proposition 1.3.10 that

KT (a, b) =
∐

a1,...,ak−1∈K0

Kt1(a, a1)× ...×Kp−tk−1
(ak−1, b)

is in bĳection with the set of maps T → Ka,b in SSet∗,∗. Clearly, this bĳection is natural

in T so that we have an isomorphism of functors N ecop → Set:

K•(a, b) ≃ SSet∗,∗(−,Ka,b)

Recall the inner horns and boundaries in SSet (Definition 1.3.8). Let us investigate how

they behave under the construction Ka,b 7→ K•(a, b). It turns out the resulting objects in

SetNecop
can be described very similarly.

Proposition 2.2.18. For any n > 0,

∂∆n
• (0, n) =

n−1⋃
i=1

δi(∆
n−1)•(0, n) ∪

n−1⋃
k=1

(∆k ∨∆n−k)•(0, n)

and for every 0 < j < n,

(Λnj )•(0, n) =

n−1⋃
i=1
i ̸=j

δi(∆
n−1)•(0, n) ∪

n−1⋃
k=1

(∆k ∨∆n−k)•(0, n)

as subfunctors of ∆n
• (0, n) in SetNecop .

Proof. We prove the statement forΛnj . The case for ∂∆n
is proven similarly. Let 0 < j < n.

For all 0 < k, i < n with i ̸= j, we have inclusions ∆k ∨∆n−k ⊆ Λnj and δi(∆
n−1) ⊆ ∂∆n

in SSet. It follows that

n−1⋃
i=1
i ̸=j

δi(∆
n−1)•(0, n) ∪

n−1⋃
k=1

(∆k ∨∆n−k)•(0, n) ⊆ (Λnj )•(0, n)

Conversely, let f : T → (Λnj )0,n be a map in SSet∗,∗ with (T, p) a necklace. Suppose first

that f is surjective on vertices. As the unique non-degenerate n-simplex of ∆n
is not

contained in Λnj , there must be some k ∈ T such that 0 < f(k) < n. Therefore, f factors

through ∆l ∨∆n−l
with l = f(k). Now suppose that f is not surjective on vertices. Then

f must factor through δi(∆
n−1) for some i ∈ [n] \ {j}. As a map in SSet∗,∗, f always

reaches the vertices 0 and n of ∆n
and thus 0 < i < n.

Example 2.2.19. The outer horns aren’t as well-behaved in SetNecop
as the inner horns.

For example, Λ2
0 is the pushout ∆1 ⨿{0} ∆

1
in SSet, but (Λ2

0)•(0, 2) is isomorphic to just

∆1
•(0, 1) as all maps T → (Λ2

0)0,2 in SSet∗,∗ must factor through the edge 0→ 2 of Λ2
0.

Corollary 2.2.20. Let (T, p) be a necklace. For all n > 0 we have a bĳection

∂∆n
T (0, n) ≃ {f : T → ∆n in N ec | f([p]) ̸= [n] or {0 < n} ⊊ f(T )}

and for all 0 < j < n we have a bĳection

(Λnj )T (0, n) ≃ {f : T → ∆n in N ec | f([p]) ̸⊇ [n] \ {j} or {0 < n} ⊊ f(T )}
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Proof. This follows from Proposition 2.2.18 by observing that a map f : T → ∆n
in N ec

factors through δi(∆
n−1) with 0 < i < n if and only if f([p]) ⊆ [n] \ {i} and f factors

through ∆k ∨∆n−k
with 0 < k < n if and only if k ∈ f(T ).

Proposition 2.2.21. Let K be a simplicial set with a, b ∈ K0. Then there is a canonical
isomorphism

F̃ (K)•(a, b) ≃ F (K•(a, b))

where F : SetNecop → VNecop is the functor given by post-composition with F : Set→ V .

Proof. This follows immediately from the definitions since F is strong monoidal and

preserves coproducts.

Corollary 2.2.22. Let (X,S) be a templicial object with a, b ∈ S.

1. Let T be a necklace. There is a bĳective correspondence between morphisms
F̃ (T )•(0, n)→ X•(a, b) in VNecop and elements σ ∈ U(XT (a, b)).

2. Let n > 0 be an integer. There is a bĳective correspondence between morphisms
F̃ (∂∆n)•(0, n)→ X•(a, b) in VNecop and elements

xk ∈ U((Xk ⊗S Xn−k)(a, b)) and yi ∈ U(Xn−1(a, b))

for all 0 < k, i < n, which satisfy:

• for all 0 < i < i′ < n,
di′−1(yi) = di(yi′),

• for all 0 < k < l < n,

(idXk
⊗µl−k,n−l)(xk) = (µk,l−k ⊗ idXn−l

)(xl)

• for all 0 < k < n− 1 and 0 < i < n,

µk,n−k−1(yi) =

{
(di ⊗ idXn−k−1

)(xk+1) if i ≤ k
(idXk

⊗di−k)(xk) if i > k

3. Let 0 < j < n be integers. There is a bĳective correspondence between morphisms
F̃ (Λnj )•(0, n)→ X•(a, b) in VNecop and elements

xk ∈ U((Xk ⊗S Xn−k)(a, b)) and yi ∈ U(Xn−1(a, b))

for all 0 < k, i < n with i ̸= j, which satisfy:

• for all 0 < i < i′ < n with i ̸= j ̸= i′,

di′−1(yi) = di(yi′),

• for all 0 < k < l < n,

(idXk
⊗µl−k,n−l)(xk) = (µk,l−k ⊗ idXn−l

)(xl)
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• for all 0 < k < n− 1 and 0 < i < n with i ̸= j,

µk,n−k−1(yi) =

{
(di ⊗ idXn−k−1

)(xk+1) if i ≤ k
(idXk

⊗di−k)(xk) if i > k

Proof. By Proposition 2.2.21, a morphism F̃ (T )•(0, n) → X•(a, b) corresponds to a

morphism T•(0, n) → U(X•(a, b)) in SetNecop
, which corresponds to an element σ ∈

U(XT (a, b)) by applying the Yoneda lemma to the necklace T . This shows 1. Statements

2 and 3 follow from Construction 2.2.16 and Proposition 2.2.18.

Notation 2.2.23. We denote

Horn =
{
F̃ (Λnj )•(0, n)→ F̃ (∆n)•(0, n) in VNecop

∣∣∣ 0 < j < n
}

Cell =
{
F̃ (∂∆n)•(0, n)→ F̃ (∆n)•(0, n) in VNecop

∣∣∣n > 0
}

where the morphisms are induced by the inclusionsΛnj ⊆ ∆n
and ∂∆n ⊆ ∆n

respectively.

Remark 2.2.24. Assume the monoidal unit I of V is small in the sense of Definition 1.2.9.

Then the forgetful functor U = V(I,−) : V → Set preserves λ-sequences with λ > 0 a

κ-directed ordinal for sufficiently large regular cardinals κ. Since every object of SetNecop

is small by Example 1.2.10, it follows from Proposition 2.2.21 and the adjunction F ⊣ U
that F̃ (K)•(a, b) is small in VNecop

for every simplicial set K with a, b ∈ K0.

Consequently, by the Small object argument (Proposition 1.2.11), we obtain weak factor-

ization systems (Horn,Horn�) and (Cell,Cell�) for VNecop
.

Lemma 2.2.25. We have an inclusion of weakly saturated classes in VNecop :

Horn ⊆ Cell

Proof. It suffices to show that the morphism F̃ (Λnj )•(0, n)→ F̃ (∆n)•(0, n) belongs to Cell
for all 0 < j < n. From Proposition 2.2.18 we have that

(∂∆n)•(0, n) = (Λnj )•(0, n) ∪ (δj(∆
n−1))•(0, n)

in SetNecop
. Further, we have that δj(∂∆

n−1)•(0, n) = (Λnj )•(0, n) ∩ (δj(∆
n−1))•(0, n).

Thus by Proposition 2.2.21 and the fact that F preserves colimits, we obtain a pushout in

Vnecop :

F̃ (∂∆n−1)•(0, n) F̃ (Λnj )•(0, n)

F̃ (∆n−1)•(0, n) F̃ (∂∆n)•(0, n)

F̃ (δj)

F̃ (δj)

It now suffices to note that the morphism F̃ (Λnj )•(0, n)→ F̃ (∆n)•(0, n) is the composition

of the right vertical morphism with F̃ (∂∆n)•(0, n)→ F̃ (∆n)•(0, n).
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Definition 2.2.26. Let Y : N ecop → V be a functor. We say Y lifts inner horns if it has the

right lifting property with respect to Horn in VNecop
. That is, for all 0 < j < n any lifting

problem

F̃ (Λnj )•(0, n) Y

F̃ (∆n)•(0, n)

has a solution in VNecop
. We say Y lifts inner horns uniquely if every such lifting problem

has a unique solution in Vnecop .

A templicial object (X,S) in V is called a quasi-category in V if the functor X•(a, b) lifts

inner horns for all a, b ∈ S. In this case, we will refer to the elements of S as the objects of

X and to elements of U(X1(a, b)) as the morphisms a→ b in X .

Remark 2.2.27. Let Y : N ecop → V be a functor. Note that by Proposition 2.2.21 and

the adjunction F ⊣ U , Y lifts inner horns in VNecop
if and only if the composite UY :

N ecop → Set lifts inner horns in SetNecop
.

As for ordinary quasi-categories, there is an elementwise characterization of quasi-

categories in V , although it is bit more cumbersome to describe.

Proposition 2.2.28. Let (X,S) be a templicial object. The following statements are equivalent.

(1) X is a quasi-category in V .

(2) Let a, b ∈ S and 0 < j < n. For all collections of elements (xk)n−1
k=1 , (yi)n−1

i=1,i̸=j satisfying
the conditions of Corollary 2.2.22.3, there exists an element z ∈ U(Xn(a, b)) such that

µk,n−k(z) = xk and di(z) = yi

for all 0 < k, i < n with i ̸= j.

Proof. This immediately follows from Corollary 2.2.22.

Remark 2.2.29. Note the similarities with the classical elementwise characterization (see

Proposition 1.3.14). The elements yi with 0 < i < n, i ̸= j represent all inner faces of

the horn Λnj . They still have to satisfy the same conditions as before. However, the two

outer faces of the horn are replaced by the elements xk with 0 < k < n. The two new

conditions of Corollary 2.2.22.3 merely express that these outer faces are glued to each

other and to the inner faces in the appropriate way.

Indeed, in case V = Set we recover the classical notion of a quasi-category.

Proposition 2.2.30. A simplicial set is a quasi-category if and only if it is a quasi-category in
Set (in the sense of Definition 2.2.26) .

Proof. Let X be a simplicial set, considered as a templicial set with X0 its set of vertices.

Then the assignment (xk)
n−1
k=1 7→ (x1n−1, x

2
1) defines a bĳection between the set of all

collections of elements (
xk = (x1k, x

2
k) ∈ Xk ×Xn−k

)n−1

k=1



2.2. QUASI-CATEGORIES AND FROBENIUS STRUCTURES 49

satisfying (x1k, µl−k,n−l(x
2
k)) = (µk,l−k(x

1
k), x

2
l ) for all 0 < k < l < n, and the set of all

pairs (yn, y0) ∈ Xn−1 ×Xn−1 satisfying dn−1(y0) = d0(yn). It follows that condition (2)
of Proposition 2.2.28 is equivalent to

(2′) Let 0 < j < n. Consider elements yi ∈ Xn−1 for all 0 ≤ i ≤ n with i ̸= j, which

satisfy for all 0 ≤ i < i′ ≤ n with i ̸= j ̸= i′:

di′−1(yi) = di(yi′)

Then there is an element z ∈ Xn such that di(z) = yi for all 0 ≤ i ≤ n with i ̸= j.

But this precisely expresses that X is a quasi-category by Proposition 1.3.14.

Proposition 2.2.31. Let X be a quasi-category in V . Then Ũ(X) is a quasi-category.

Proof. Suppose (X,S) is a quasi-category inV . Consider a simplicial mapα : Λnj → Ũ(X)
with 0 < j < n. It follows from Proposition 2.1.26 this is equivalent to a choice of vertices

a0, ..., an ∈ S along with elements

αk,l ∈ U(Xl−k(ak, al)) and βi ∈ U(Xn−1(a0, an))

for all 0 ≤ k < l ≤ n with (k, l) ̸= (0, n) and 0 < i < n with i ̸= j, which satisfy

• for all 0 < i < i′ < n with i ̸= j ̸= i′,

di′−1(βi) = di(βi′)

• for all 0 ≤ k < i < l ≤ n with (k, l) ̸= (0, n),

µi−k,l−i(αk,l) = αk,i ⊗ αi,l

• for all 0 < k < n− 1 and 0 < i < n with i ̸= j,

µk,n−k−1(βi) =

{
di(α0,k)⊗ αk+1,n if i ≤ k
α0,k ⊗ di−k(αk,n) if i > k

Now set xk = α0,k ⊗ αk,n and yi = βi for all 0 < k, i < n with i ̸= j. Then by Proposition

2.2.28, there exists an element α0,n ∈ U(Xn(a0, an)) such that µk,n−k(α0,n) = α0,k ⊗ αk,n
and di(α0,n) = βi. Now the vertices a0, ..., an and the collection (αk,l)0≤k<l≤n define a

map ∆n → Ũ(X) which extends α by Corollary 2.1.27.

The converse to Proposition 2.2.31 does not hold.

Example 2.2.32. Consider the over category V = Ab /Z of abelian groups A with a Z-

linear map p : A → Z. Then V is bicomplete and symmetric monoidal closed with

monoidal unit given by idZ : Z → Z. The forgetful functor U : V → Set associates to

every map p : A→ Z the set {a ∈ A | p(a) = 1}.

Now consider the simplicial set ∆2 ⨿{0,2} Λ
2
1:
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a

c1

c2

b

wf1

f2

g1

g2
h

Set X = F̃ (∆2 ⨿{0,2} Λ2
1) ∈ S⊗ Ab. We can promote X to a templicial object in V by

equipping it with Z-linear maps p : Xn(x, y)→ Z defined as follows:

p(f1) = p(f2) = p(g2) = p(h) = 1, p(g2) = 2 and p(w) = 1

Then for example U(X1(a, c2)) = {f2} but U(X1(c2, b)) = ∅. Consider Ũ : S⊗V → SSet
as induced by the forgetful functor U above (not by Ab → Set). Then it follows that

Ũ(X) ≃ ∆2 ⨿{0} ∆
1
, which is clearly a quasi-category.

However, X is not a quasi-category in V . To see this, consider the element

α = f2 ⊗ g2 − f1 ⊗ g1 ∈ U((X1 ⊗X1)(a, b))

(note that indeed, (p⊗ p)(α) = p(f2)p(g2)− p(f1)p(g1) = 1). But there exists no element

ξ ∈ U(X2(a, b)) such that µ1,1(ξ) = α.

2.2.3 Frobenius structures

We introduce Frobenius structures on a templicial object, which are based on the Frobenius

monoidal functors of Day and Pastro [DP08]. These will mostly come into play in Section

4.2 when we restrict to V = Mod(k) for some unital commutative ring k. But even

for general V , Frobenius structures turn up naturally. Many examples of templicial

objects that we will encounter, like the templicial variants of the nerve (§2.3.1), homotopy

coherent nerve (§4.1.2) and dg-nerve (§4.2.3) all carry canonical Frobenius structures.

First we introduce the more general notion of a non-associative Frobenius structure on an

arbitrary colax monoidal functor. Then we discuss how this applies to templicial objects,

and how a naF-structure interacts with the comultiplication morphisms using splittings

of necklaces (see Proposition 2.2.40).

Definition 2.2.33. Let H : U → V be a functor between monoidal categories with a colax

monoidal structure (µ, ϵ). A nonassociative Frobenius (naF) structure on H is a pair (Z, η)
with η : I → H(I) a morphism in V , called the unit, and

Z : H(−)⊗H(−)→ H(−⊗−)

a natural transformation, called the multiplication, such that the following diagrams

commute for all A,B,C ∈ U :

H(A⊗B)⊗H(C) H(A)⊗H(B)⊗H(C)

H(A⊗B ⊗ C) H(A)⊗H(B ⊗ C)µA,B⊗C

ZA⊗B,C

µA,B⊗id

id⊗ZB,C (2.6)
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H(A)⊗H(B ⊗ C) H(A)⊗H(B)⊗H(C)

H(A⊗B ⊗ C) H(A⊗B)⊗H(C)

ZA,B⊗C

µA⊗B,C

ZA,B⊗id

id⊗µB,C

(2.7)

and

H(A)⊗H(I) H(A⊗ I)

H(A)⊗ I H(A)

H(A)⊗η

ρH(A)

≀

ZA,I

H(ρA)

∼

H(I)⊗H(A) H(I ⊗A)

I ⊗H(A) H(A)

η⊗H(A)

λ(A)

≀

ZI,A

∼

H(λA)

where λ and ρ denote the left and right unit isomorphisms respectively.

For the purposes of this thesis, we will always assume that a naF-structure is strongly
unital. That is, ϵ is invertible and

η = ϵ−1

Then the naF-structure (Z, η) is completely determined by Z.

Definition 2.2.34. Let H : U → V be a colax monoidal functor with a naF-structure. In

the special case where the multiplication Z is associative, that is

ZA⊗B,C(ZA,B ⊗ idC) = ZA,B⊗C(idA⊗ZB,C) (2.8)

for allA,B,C ∈ U , we refer to the naF-structure (Z, η) as a Frobenius structure and we call

H a Frobenius monoidal functor. Note that in this case, H is both a lax and colax monoidal

functor.

Given Frobenius monoidal functors H,H ′ : U → V , we call a natural transformation

H → H ′ bimonoidal if it is monoidal with respect to both the lax and colax structures of

H and H ′
.

Remark 2.2.35. A Frobenius monoidal functor as defined above is precisely a Frobenius

monoidal functor of [DP08] for which the unit and counit are each others inverses.

Example 2.2.36. A strong monoidal functor is exactly a Frobenius monoidal functor

whose multiplication and comultiplication are each others inverses. In particular, the

Frobenius structure is uniquely determined.

Let (X,S) be a templicial object. Then in particular we have a colax monoidal functor

X : ∆op
f → V QuivS . So it makes sense to consider naF-structures on X . Suppose X

has a naF-structure whose multiplication we denote by Z. Then Z consists of quiver

morphisms

(Zp,q : Xp ⊗S Xq → Xp+q)p,q≥0

which are natural in p and q. The diagrams (2.6) and (2.7) then come down to

µk,lZ
p,q =

{
(Zp,k−p ⊗ idXl

)(idXp ⊗µk−p,l) if p ≤ k
(idXk

⊗Zp−k,q)(µk,p−k ⊗ idXq
) if p ≥ k

(2.9)

for all k, l, p, q ≥ 0 such that k + l = p+ q. Note that in particular µk,lZ
k,l = idXk⊗Xl

for

all k, l ≥ 0 by the strong unitality.
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In §2.1.2 we discussed how the comultiplication morphisms µk,l : Xk+l → Xk ⊗S Xl

should be interpreted as “pulling a (k + l)-simplex apart into outer faces”. Similarly, the

morphisms Zk,l : Xk ⊗S Xl → Xk+l should be interpreted as “filling up necklaces to an

entire simplex”. In that respect, a templicial object with a naF-structure is reminiscent of a

quasi-category inV . But there are two crucial differences. First, naF-structures only allow

to fill up necklaces and not inner horns. Second, Frobenius structures give a specified

choice of fillers while quasi-categories only requires that they exist. Nonetheless, both

are related. In Proposition 3.1.32 we’ll see that a quasi-category in V can be equipped

with a naF-structure if it satifies an additional projectivity hypothesis. Moreover, if we

restrict to V = Mod(k), then the converse holds as well (see Theorem 4.2.62).

7−→
Z1,2

Proposition 2.2.37. Let (W,⊗, I) be a monoidal category with coproducts such that − ⊗ −
preserves coproducts in each variable. Let H :W → V be a strong monoidal functor. Assume H
preserves coproducts. If (X,S) is a templicial object ofW with naF-structure Z, then the quiver
morphisms(

Zp,q
H̃(X)

: HS(Xp)⊗HS(Xq)
∼−→ HS(Xp ⊗Xq)

HS(Zp,q)−−−−−−→ HS(Xp+q)

)
p,q≥0

define a naF-structure on H̃(X) ∈ S⊗V , with H̃ as in Construction 2.1.19.

Proof. Write µ and ϵ for the comultiplication and counit ofX respectively. Given p, q ≥ 0,

denote by φp,q the isomorphism of k-quivers

HS(Xp ⊗Xq)
∼−→ HS(Xp)⊗HS(Xq)

Then by definition, we have for all p, q ≥ 0:

Zp,q
H̃(X)

= HS(Z
p,q) ◦ φ−1

p,q

while the comultiplication of H̃(X) is given by, for all k, l ≥ 0:

µ
H̃(X)
k,l = φk,l ◦HS(µk,l)

It easily follows that (Zp,q
H̃(X)

)p,q≥0 is a naF-structure on H̃(X).

Notation 2.2.38. Let (X,S) be a templicial object with naF-structure Z. Given a necklace

T = {0 = t0 < t1 < ... < tk = p}, recall the quiver morphism µT : Xp → XT of Notation

2.2.15. We’d like to similarly define a quiver morphism

ZT : XT → Xp

However, since Z is not assumed to be associative, this will depend on how we compose

the two-variable morphisms Zk,l. Nevertheless, making an arbitrary choice, we can

define

Zp1,...,pk = Zp1,p2+...+pk(idXp1
⊗Zp2,...,pk)
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inductively on k ≥ 2, for all p1, ..., pk ≥ 0, and subsequently set

ZT =


ϵ−1

if k = 0

idXp
if k = 1

Zt1,t2−t1,...,p−tk−1
if k ≥ 2

Remark 2.2.39. Let (X,S) be a templicial object with naF-structureZ. Consider a necklace

T = {0 = t0 < ... < tk = p}. It follows from the naturality of Z that for all i, j ∈ [p] \ T :

djZ
T = Zδ

−1
j (T )(id⊗...⊗ id⊗dj−im−1 ⊗ id⊗...⊗ id)

siZ
T = Zσ

−1
i (T )(id⊗...⊗ id⊗si−im−1

⊗ id⊗...⊗ id)

where m ∈ {1, ..., k} is minimal such that i < im or j < im respectively. On the other

hand, if i ∈ T , then

siZ
T = Zσ

−1
i (T )(id⊗...⊗ id⊗s0ϵ−1 ⊗ id⊗...⊗ id)

However, if 0 < j < n and j ∈ T the naturality of Z doesn’t supply us with a formula to

pass the face map dj through Z.

Proposition 2.2.40. Let (X,S) be a templicial object with naF-structure Z. Let p ≥ 0 and
T,U ∈ Pp. Then

µTZ
U = (ZU1 ⊗ ...⊗ ZUk)(µT1

⊗ ...⊗ µTl
) (2.10)

where (U1, ..., Uk) is the splitting of U over T and (T1, ..., Tl) is the splitting of T over U .

Proof. We use induction on k = ℓ(T ) and l = ℓ(U). If either k = 0 or l = 0, then both are

zero and (2.10) is trivially true. For k = 1, both sides of (2.10) reduce to ZU . Similarly, if

l = 1 both sides reduce to µT .

Assume further that k, l ≥ 2. Let t ∈ T and u ∈ U be minimal such that 0 < t and 0 < u.

We can write T = {0 < t} ∨ T ′
and U = {0 < u} ∨ U ′

for some unique T ′ ∈ Pp−t and

U ′ ∈ Pp−u. Then:

µTZ
U = (idXt

⊗µT ′)µt,p−tZ
u,p−u(idXu

⊗ZU
′
)

If t ≤ u, then µt,p−tZ
u,p−u = (idXt ⊗Zu−t,p−u)(µt,u−t⊗ idXp−u) by (2.9), and we can write

T1 = {0 < t} ∨ T ′
1 for some unique T ′

1 ∈ Pu−t. So, by the induction hypothesis, we have

µTZ
U = (idXt ⊗µT ′Zu−t,p−u)(µt,u−t ⊗ ZU

′
)

= (idXt
⊗µT ′Z{0<u−t}∨U ′

)(µt,u−t ⊗ idXU′ )

= (idXt ⊗ZU2 ⊗ ...⊗ ZUk)((idXt ⊗µT ′
1
)µt,u−t ⊗ µT2 ⊗ ...⊗ µTl

)

= (ZU1 ⊗ ZU2 ⊗ ...⊗ ZUk)(µT1 ⊗ µT2 ⊗ ...⊗ µTl
)

where we used that U1 = {0 < t} since t ≤ u. A similar argument shows the case for

t ≥ u.
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Corollary 2.2.41. Let p ≥ 0 and T,U ∈ Pp. The following statements are true.

1. If T ⊆ U , and (U1, ..., Uk) is the splitting of U over T , then

µTZ
U = ZU1 ⊗ ...⊗ ZUk

2. If U ⊆ T , and (T1, ..., Tl) is the splitting of T over U , then

µTZ
U = µT1 ⊗ ...⊗ µTl

3. We have µTZUµU = µTZ
T∪UµT∪U .

Proof. Statements 1 and 2 follow from Propositions 2.2.12.2 and 2.2.40.

To prove 3, consider the splittings (U1, ..., Uk) and (T1, ..., Tl) of U over T and T over U
respectively. By Proposition 2.2.12.1, (U1, ..., Uk) is also the splitting of T ∪ U over T .

Thus as T ⊆ T ∪ U , it follows from 1 that

µTZ
T∪UµT∪U = (ZU1 ⊗ ...⊗ ZUk)µT∪U = (ZU1 ⊗ ...⊗ ZUk)µT1∨...∨Tl

= (ZU1 ⊗ ...⊗ ZUk)(µT1 ⊗ ...⊗ µTl
)µU = µTZ

UµU

where we used the coassociativity of µ.
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2.3 Enriched categories as templicial objects

2.3.1 The templicial nerve

Recall the classical nerve functor N : Cat → SSet (Definition 1.3.22). Given a small

V-enriched category C, one might want to similarly define a simplicial objectN(C) ∈ SV .

By analogy with the classical case, we can set for n ≥ 0:

N(C)n =
∐

A0,...,An∈Ob(C)

C(A0, A1)⊗ ...⊗ C(An−1, An)

Then the degeneracy maps and inner face maps can be defined in completely the same

way by using the reverse composition law and the identities of C. However to define

the outer face map d0 (and similarly dn), we run into a problem because there exists no

projection morphism

C(A0, A1)⊗ C(A1, A2)⊗ ...⊗ C(An−1, An)→ C(A1, A2)⊗ ...⊗ C(An−1, An)

in general (non-cartesian) monoidal categories V .

This issue can be resolved by considering templicial objects instead. We will construct

a fully faithful functor NV : V Cat → S⊗V which recovers the classical nerve functor

when V = Set. Moreover, just like Proposition 1.3.24, the nerves of V-categories are

characterized by a unique horn lifting property (see Proposition 2.3.8).

Construction 2.3.1. Let C be a small V-enriched category. We denote its underlying

quiver in V QuivOb(C) by C as well. Let uC : IS → C denote the unit of C. Consider the

reverse composition law m̃C : C ⊗Ob(C) C → C of Remark 1.1.22:

(m̃C)A,C :
∐

B∈Ob(C)

C(A,B)⊗ C(B,C)→ C(A,C)

for all A,C ∈ Ob(C).

For all n ≥ 0, define the V-quiver

NV(C)n = C⊗n

and for all 0 ≤ i ≤ n and 0 < j < n, define

dj = id⊗j−1
C ⊗m̃C ⊗ id⊗n−j−1

C : C⊗n → C⊗n−1

si = id⊗iC ⊗uC ⊗ C
⊗n−i : C⊗n → C⊗n+1

By the associativity and unitality conditions on C, this defines a functor

NV(C) : ∆op
f → V QuivOb(C)

Further, for any k, l ≥ 0 we let

µk,l : C⊗k+l → C⊗k ⊗Ob(C) C⊗l and ϵ : C⊗0 → IOb(C)

be the canonical isomorphisms in V QuivOb(C). Thus this defines a strong monoidal

structure on NV(C). In particular, we obtain a templicial object

(NV(C),Ob(C))

which we call the templicial nerve of C.
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Recall the base change functors f! : V QuivS → V QuivT and its right-adjoint f∗ :
V QuivT → V QuivS for a given map of sets f : S → T (see Construction 1.1.16).

Lemma 2.3.2. Let (X,S) be a templicial object, C a smallV-enriched category and f : S → Ob(C)
a map of sets. Then we have a bĳection between monoidal natural transformations f!X → NV(C)
and quiver morphisms H : X1 → f∗(C) such that the diagrams

X⊗2
1 f∗(C)⊗2 f∗(C⊗2)

X2 X1 f∗(C)

H⊗2

µ1,1 f∗(m̃C)

Hd1

IS f∗(IOb(C))

X0 X1 f∗(C)

ϵ
∼ f∗(uC)

s0 H

(2.11)

commute.

Proof. For a monoidal natural transformation α : f!X → NV(C), define Hα : X1 → f∗(C)
to be the adjoint of α1 : f!(X1) → C. It follows from the monoidality of α that for all

n ≥ 0, αn is the composite

f!(Xn)
f!(µ1,...,1)−−−−−−→ f!(X

⊗n
1 )→ f!(X1)

⊗n α⊗n
1−−−→ C⊗n

where we used the colax monoidal structure of f! (see Lemma 1.1.18). So the assignment

α 7→ Hα is injective. Moreover, it then follows from the naturality of α that Hα satisfies

(2.11).

Conversely, if H : X1 → f∗(C) satisfies (2.11), then defining α1 as adjoint to H and αn as

above, it follows that α : f!X → NV(C) is a natural transformation. It is immediate that

α is also monoidal.

Remark 2.3.3. Let C and D be small V-enriched categories, f : Ob(C) → Ob(D) a map

of sets and H : C → f∗(D) a morphism in V QuivOb(C). Then the diagrams (2.11) with

X = NV(C) precisely express that (H, f) is a V-enriched functor C → D.

Construction 2.3.4. Let (H, f) : C → D be aV-enriched functor between smallV-enriched

categories. By Lemma 2.3.2, there exists a unique templicial morphism

NV(H) : NV(C)→ NV(D)

such that the quiver morphism NV(H)1 : f!(C) → D corresponds to H : C → f∗(D) by

adjunction. Explicitly,

NV(H)n : f!(C⊗n)→ f!(C)⊗n
NV(H)⊗n

1−−−−−−→ D⊗n

for all n ≥ 0. It follows that we obtain a functor

NV : V Cat→ S⊗V,

which we call the templicial nerve functor.

Remark 2.3.5. It is clear from the construction that in case V = Set, the templicial nerve

functor NV : V Cat→ S⊗V reduces to the classical nerve functor N : Cat→ SSet.

Proposition 2.3.6. The templicial nerve functor NV : V Cat→ S⊗V is fully faithful.
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Proof. This follows from Lemma 2.3.2 and Remark 2.3.3.

Lemma 2.3.7. Let (X,S) be a templicial object such that for all a, b ∈ S, X•(a, b) lifts inner
horns uniquely. Suppose U : V → Set is conservative. Then for any inert necklace map
(T, p)→ (T ′, p), the induced quiver morphism

X(f) : XT ′ → XT

is an isomorphism.

Proof. As T → T ′
is inert, we have that T ′ ⊆ T . Let (T1, ..., Tl) be the splitting of T over

T ′
. Then X(f) = µT1

⊗ ...⊗ µTl
. Thus we are reduced to showing that µT : Xp → XT is

an isomorphism for all necklaces T . Writing T = {0 = t1 < ... < tk = p}, we have

µT = (idXt1
⊗...⊗ idXtk−2−tk−3

⊗µtk−1−tk−2,p−tk−1
) · · · (idXt1

⊗µt2−t1,p−t2)µt1,p−t1

and thus it suffices to show that each comultiplication morphism µk,n−k with 0 < k < n
is an isomorphism. We proceed by induction on n.

If n = 1, there is nothing prove. So let n ≥ 2 and 0 < k < n. Take a, b ∈ S and

xk ∈ U((Xk ⊗Xn−k)(a, b)). For any 0 < l < n with l ̸= k, define

xl =

{
(idXl

⊗µ−1
k−l,n−k)(µl,k−l ⊗ idXn−k

)(xk) if l < k

(µ−1
k,l−k ⊗ idXn−l

)(idXk
⊗µl−k,n−l)(xk) if l > k

Further set, for all 0 < i < n with i ̸= k:

yi =

{
µ−1
k−1,n−k(di ⊗ idXn−k

)(xk) if i < k

µ−1
k,n−k−1(idXk

⊗di−k)(xk) if i > k

It follows that the elements (xl)
n−1
l=1 and (yi)

n−1
i=1,i̸=k satisfy the conditions of Corollary

2.2.22.3 and thus there is a unique element z ∈ U(Xn(a, b)) such that µl,n−l(z) = xl and

di(z) = xi for all 0 < l, i < n with i ̸= k. In particular µk,n−k(z) = xk. For any other

z′ ∈ U(Xn(a, b)) with µk,n−k(z
′) = xk, it follows from the definitions of the xl and yi that

also µl,n−l(z
′) = xl and di(z

′) = yi for all 0 < l, i < n with i ̸= k. Thus z′ = z and hence

the map

U(µk,n−k) : U(Xn(a, b))→ U((Xk ⊗Xn−k)(a, b))

is a bĳection. As U is conservative, µk,n−k : Xn → Xk ⊗ Xn−k is an isomorphism of

V-enriched quivers.

Proposition 2.3.8. Let (X,S) ∈ S⊗V . Consider the following statements.

(1) The functor X : ∆op
f → V QuivS is strong monoidal.

(2) (X,S) is isomorphic to the templicial nerve of a small V-category.

(3) For all a, b ∈ S, X•(a, b) lifts inner horns uniquely.

Then (1) and (2) are equivalent and they imply (3). Moreover, if the functor U : V → Set is
conservative, then (1), (2) and (3) are all equivalent.
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Proof. The implication (2)⇒ (1) is clear by definition of the templicial nerve. Conversely,

suppose X is strong monoidal, i.e. its comultiplication µ is an isomorphism. Then we

have isomorphisms for all n ≥ 0:

µ1,...,1 : Xn
∼−→ X1 ⊗S ...⊗S X1

in V QuivS . Through these isomorphisms, the face d1 : X2 → X1 and degeneracy

s0 : X0 → X1, give us quiver morphisms

m̃ : X1 ⊗S X1 → X1 and u : IS → X1

It follows by the simplicial identities and the naturality, coassociativity and counitality of

µ that these morphisms define the structure of a V-enriched category on X1 with set of

objects given by S. Again by the naturality of µ, the morphisms µ1,...,1 combine to give an

isomorphismX ≃ NV(X1) between functors ∆op
f → V QuivS . This natural isomorphism

is monoidal by the coassociativity of µ, showing that (X,S) is isomorphic to (NV(X1), S)
in S⊗V .

Assume that (1) holds and let 0 < j < n and a, b ∈ S. Take xk ∈ U((Xk⊗Xn−k)(a, b)) and

yi ∈ U(Xn−1(a, b)) for all 0 < k, i < nwith i ̸= j which satisfy the conditions of Corollary

2.2.22.3. We wish to show that there is a unique z ∈ Xn(a, b) such that µk,n−k(z) = xk
and di(x) = yi for all 0 < k, i < n with i ̸= j. As the µk,n−k are isomorphisms, we have

by the hypotheses on the xk that

µ−1
1,n−1(x1) = µ−1

2,n−2(x2) = ... = µ−1
n−1,1(xn−1)

Setting z to be equal to these elements, it follows from the hypotheses on the xk and yi
that for all 0 < i < n with i ̸= j, we have di(z) = yi. This shows (3).

Assume that (3) holds and that U is conservative. Then by Lemma 2.3.7, the comulti-

plication morphism µk,l is an isomorphism for all k, l > 0. As µn,0 and µ0,n are always

isomorphisms for n ≥ 0, this shows (1).

Corollary 2.3.9. For any small V-enriched category C, the nerveNV(C) is a quasi-category in V
with a unique Frobenius structure.

Proof. This immediately follows from Proposition 2.3.8 and Example 2.2.36.

We end this subsection with some compatibility results.

Notation 2.3.10. The adjunction F ⊣ U between Set and V also induces an adjunction

between small categories and small V-enriched categories by Proposition 1.1.23. We will

denote this adjunction by

Cat V Cat
F

U

⊣

Proposition 2.3.11. We have a natural isomorphism

NV ◦ F ≃ F̃ ◦N
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Proof. Let C be an ordinary small category. Consider its nerve N(C) as a templicial

set (Proposition 2.1.15). As F is strong monoidal and preserves colimits, we obtain a

canonical isomorphism

αn : F (C×n) ∼−→ F(C)⊗n

where C×n denotes the n-fold monoidal product of C as a quiver in QuivOb(C). It is easy

to see that these isomorphisms combine to give an isomorphism of templicial objects:

α : F̃ (N(C)) ∼−→ NV(F(C))

which is clearly natural in C.

Proposition 2.3.12. We have a natural isomorphism

Ũ ◦NV ≃ N ◦ U

Proof. Let C be a small V-category and n ≥ 0. Then we have the following isomorphisms,

natural in n and C:

Ũ(NV(C))n = S⊗V(F̃ (∆n), NV(C)) ≃ S⊗V(NV(F([n])), NV(C))
≃ V Cat(F([n]), C) ≃ Cat([n],U(C)) ≃ N(U(C))n

where we subsequently used the isomorphism ∆n ≃ N([n]), Proposition 2.3.11, Propo-

sition 2.3.6, and the adjunction F ⊣ U .

2.3.2 The homotopy category of a templicial object

Just like the classical nerve functor, the templicial nerve functor NV of Construction

2.3.4 has a left-adjoint hV : S⊗V → V Cat which associates to every templicial object its

homotopy category (Proposition 2.3.14). Moreover, in Proposition 2.3.25 we’ll show that

the homotopy category hVX is significantly easier to describe when the templicial object

X is a quasi-category in V . This generalizes the classical Proposition 1.3.28.

Construction 2.3.13. Let (X,S) be a templicial object and a, b ∈ S. We construct an object

hVX(a, b) ∈ V by the following coequalizer:

∐
T∈Nec
T ̸={0}

XT (a, b)
∐
p>0

X⊗p
1 (a, b) hVX(a, b)

β

α q
(2.12)

where α, β are defined as follows. For (T, p) ∈ N ec with p > 0, let k = ℓ(T ). Then set

αιT = ιpX(([p], p)
inert−−→ (T, p))

βιT = ιkX(([k], k)
active−−−→ (T, p))

where we used the unique inert and active maps of Remark 2.2.8. Note that this coequal-

izer is reflexive where the common section γ of α and β is given by γιp = ι([p],p).
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We construct a V-category hVX with object set S, whose hom-objects are given by

hVX(a, b) for all a, b ∈ S. Consider hVX as a quiver. Then define

u : IS
s0ϵ

−1

−−−−→ X1
ι1−→
∐
p>0

X⊗p
1

q
↠ hVX

Further, as the coequalizer (2.12) is reflexive, it is preserved by − ⊗ − in both variables

simultanously, so that we obtain a reflexive coequalizer of quivers

∐
T,U∈Nec
T,U ̸={0}

XT∨U
∐
r,s>0

X⊗r+s
1 hVX ⊗S hVX

β⊗β

α⊗α q⊗q

It follows that there is a unique quiver morphism

m̃ : hVX ⊗S hVX → hVX

such that m̃(qιr ⊗ qιs) = qιr+s for all r, s > 0. It easily follows that m̃ is associative.

Moreover, it is unital with respect to u. Indeed, for p > 0, set T = [p− 1]∨ {0 < 2}. Then

we have

m̃(idhVX ⊗u)qιp = m̃(q ⊗ q)(ιp ⊗ ι1s0ϵ−1) = qιp+1(id
⊗p
X1
⊗s0ϵ−1)

= qιp+1(id
⊗p−1
X1

⊗µ1,1s1) = qαιT (id
⊗p−1
X1

⊗s1)

= qβιT (id
⊗p−1⊗s1) = qιp(id

⊗p−1
X1

⊗d1s1) = qιp

and thus m̃(idhVX ⊗u) = idhVX . Similarly, m̃(u⊗ idhVX) = idhVX . Thus m̃ and u define

the structure of a V-category on the quiver hVX .

Proposition 2.3.14. The assignment X 7→ hVX of Construction 2.3.13 extends to a functor
hV : S⊗V → V Cat which is left adjoint to the templicial nerve functor NV : V Cat→ S⊗V .

Proof. We use the same notation as in Construction 2.3.13. Consider the composite quiver

morphism qι1 : X1 → hVX . Then the following diagrams commute

X2 X⊗2
1 hVX

⊗2
and IS

X1 hVX X1 hVXqι1

u
s0ϵ

−1m̃

(qι1)
⊗2µ1,1

d1

qι1

Indeed, the right hand diagram commutes by definition and the left hand diagram

commutes because

m̃(qι1 ⊗ qι1)µ1,1 = qι2µ1,1 = qαι{0<2} = qβι{0<2} = qι1d1

Thus by Lemma 2.3.2, there is a unique templicial morphism ηX : X → NV(hVX) such

that ηX1
: X1 → hVX is qι1. We claim that ηX is the unit of an adjunction hV ⊣ NV .

Now let C be an arbitrary small V-category and (ζ, f) : X → NV(C) a templicial mor-

phism. By Lemma 2.3.2, ζ corresponds to a quiver morphism H : X1 → f∗(C) such
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that the diagrams (2.11) commute. Then it follows from the associativity of m̃C , and the

coassociativity of the comultiplication µ that the diagram

XT X⊗p
1 f∗(C)⊗p f∗(C⊗p)

X⊗k
1 f∗(C)⊗k f∗(C⊗k) f∗(C)

X([p]→T )

X([k]→T )

H⊗k
f∗(m̃

(k)
C )

H⊗p

f∗(m̃
(p)
C )

commutes as well for all necklaces (T, p) with p > 0 and k = ℓ(T ). Thus by (2.12), we get

a unique quiver morphism H : hVX → f∗(C) such that Hq is the composite∐
p>0

X⊗p
1

∐
p>0H

⊗p

−−−−−−−→
∐
p>0

f∗(C)⊗
p

→
∐
p>0

f∗(C⊗p)
(f∗(m̃

(p)
C ))p>0−−−−−−−−−→ f∗(C)

It follows from the definition of the composition in hVX that H defines a V-functor

hVX → C and it is clearly unique such that NV(H) ◦ ηX = (ζ, f).

Remark 2.3.15. By comparing left-adjoints, Remark 2.3.5 shows that hV : S⊗V → V Cat
reduces to the classical homotopy functor SSet→ Cat when V = Set.

Corollary 2.3.16. We have a natural isomorphism

hV ◦ F̃ ≃ F ◦ h

Proof. This follows by comparing left-adjoints using Proposition 2.3.12.

We collect some of the previous results in the following theorem.

Theorem 2.3.17. There is a diagram of adjunctions

Cat V Cat

SSet S⊗V

N

F

NV

F̃

h hV
U

Ũ

⊣ ⊣

⊣
⊣

which commutes in the sense that we have natural isomorphisms:

NV ◦ F ≃ F̃ ◦N, Ũ ◦NV ≃ N ◦ U and F ◦ h ≃ hV ◦ F̃

Proof. Combine Propositions 2.3.11 and 2.3.12, and Corollary 2.3.16.

Consider the unit idS⊗V → NVhV of the adjunction hV ⊣ NV . Applying Ũ , Proposition

2.3.12 provides a natural transformation

Ũ → ŨNVhV ≃ NUhV

which by the adjunction h ⊣ N corresponds to a natural transformation

hŨ → UhV
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In general this will not be an isomorphism, as is shown in the following example. How-

ever, assuming some conditions on the forgetful functor U : V → Set, we do find an

isomorphism if we restrict to quasi-categories in V (see Corollary 2.3.26).

Example 2.3.18. Let V = Mod(k) with k an arbitrary unital commutative ring. In this

case we denote hk = hMod(k). Consider the templicial k-module X = F̃ (∂∆2). Then by

Corollary 2.3.16, the hom-object (hkX)(0, 2) is isomorphic to

F (h(∂∆2)(0, 2)) = F ({
0

1

2
, 0 2 }) ≃ k ⊕ k

On the other hand, the set hŨ(X)(0, 2) consists of equivalence classes of sequences of

edges (a1, ..., an) from 0 to 2 in Ũ(X). Note that each edge in Ũ(X) between two given

vertices is uniquely determined by an element ai ∈ k. One can check that there is a

bĳection

hŨF̃ (∂∆2)(0, 2)
∼−→ U(k)⨿U(0) U(k)

which sends a sequence (a1, ..., an) to its product an · · · a1 in k. The two terms U(k)
correspond to paths either passing through the vertex 1 or not. Now the induced map

hŨF̃ (∂∆2)(0, 2)→ U((hkX)(0, 2)) on hom-sets corresponds to the canonical map

U(k)⨿U(0) U(k)→ U(k ⊕ k)

which is certainly not a bĳection if k is not the zero ring. Hence, the canonical functor

hŨ(X)→ U(hkX)

is not an equivalence of categories.

We now turn our attention to the description of the homotopy category hVX when X is

a quasi-category in V .

Construction 2.3.19. Let (X,S) be a templicial object and a, b ∈ S. We define an object

HomL
X(a, b)1 ∈ V by the following pullback:

HomL
X(a, b)1 X2(a, b)

X1(a, b) (X1 ⊗S X1)(a, b)

π2

π1

−⊗sX0

µX
1,1

Further, we denote d1 = π1, d0 = dX1 π2 and we let s0 : X1(a, b) → HomL
X(a, b)1 be the

unique morphism such that π1s0 = idX1(a,b) and π2s0 = sX1 . We obtain a reflexive pair:

HomL
X(a, b)1 X1(a, b)

d0

d1

s0

Finally, we define an object h′VX(a, b) by the following coequalizer:

HomL
X(a, b)1 X1(a, b) h′VX(a, b)

d0

d1

q
(2.13)
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Remark 2.3.20. It is possible to extend Construction 2.3.19 to obtain a simplicial object

HomL
X(a, b) : ∆op → V which generalizes the left-pinched morphism space of a simplicial set

(as defined in [Lur18, Tag 01KX]). In particular, HomL
X(a, b)0 = X1(a, b). The morphisms

d0, d1 : HomL
X(a, b)1 ⇒ X1(a, b) and s0 : X1(a, b) → HomL

X(a, b)1 then constitute the

lowest dimensional face and degeneracy morphisms of HomL
X(a, b). We will not go into

them here however and leave their investigation to future research (also see Chapter 5).

Remark 2.3.21. Note that as U preserves pullbacks, we find that U(HomL
X(a, b)1) is the

set of all 2-simplices (α0,2, α0,1, α1,2) of Ũ(X) (see Corollary 2.1.27) with vertices a0 =
a, a1 = b, a2 = b and α1,2 = s0(b).

Assuming that Ũ(X) is a quasi-category and that U preserves reflexive coequalizers, it

follows from Lemma 1.3.27 and Proposition 1.3.28 that we have an isomorphism:

U(h′VX(a, b)) ≃ hŨ(X)(a, b)

and the canonical morphismX1(a, b) ↠ h′VX(a, b) precisely takes the homotopy class [f ]

in hŨ(X) of any f ∈ U(X1(a, b)).

Lemma 2.3.22. Assume that U : V → Set preserves reflexive coequalizers. Let X be a quasi-
category in V with objects a and b. For any w,w′ ∈ U(X2(a, b)) such that (q ⊗ q)µ1,1(w) =
(q ⊗ q)µ1,1(w

′), we have that q(dX1 (w)) = q(dX1 (w′)) in h′VX(a, b).

Proof. Let Q denote the quiver given by HomL
X(a, b)1 for all objects a and b of X . Let

σ ∈ U((Q ⊗ Q)(a, b)) and w,w′ ∈ U(X2(a, b)) be such that µ1,1(w) = (d0 ⊗ d0)(σ) and

µ1,1(w
′) = (d1 ⊗ d1)(σ). Then:

• The elements x1 = (d1 ⊗ sX0 d1)(σ) ∈ U((X1 ⊗ X2)(a, b)), x2 = (π2 ⊗ d1)(σ) ∈
U((X2⊗X1)(a, b)) and y2 = w ∈ U(X2(a, b)) define a horn F̃ (Λ3

1)•(0, 3)→ X•(a, b)
which extends to an element z ∈ U(X3(a, b)). Then set w′′ = dX1 (z) ∈ U(X2(a, b)).
Note that dX1 (w′′) = dX1 (w).

• Likewise, the elements x1 = (d0 ⊗ π2)(σ) ∈ U((X1 ⊗X2)(a, b)), x2 = w′′ ⊗ sX0 (b) ∈
U((X2⊗X1)(a, b)) and y2 = w′

define a horn F̃ (Λ3
1)•(0, 3)→ X•(a, b)which extends

to an element z ∈ U(X3(a, b)). Then set τ = dX1 (z) ∈ U(X2(a, b)).

It follows that µ1,1(τ) = dX1 (w)⊗ sX0 (b) and dX1 (τ) = dX1 (w′). Hence, qdX1 (w) = qdX1 (w′).

As the diagram (2.13) is a reflexive coequalizer, it is preserved by−⊗− in both variables

simultaneously so that we again have a reflexive coequalizer

(Q⊗Q)(a, b) (X1 ⊗X1)(a, b) (h′VX ⊗ h′VX)(a, b)
d0⊗d0

d1⊗d1

q⊗q

Now assume that (q⊗ q)µ1,1(w) = (q⊗ q)µ1,1(w
′). As U preserves reflexive coequalizers,

there exist α0, ..., αn ∈ U((X1 ⊗X1)(a, b)) such that µ1,1(w) = α0, αn = µ1,1(w) and for

all i ∈ {1, ..., n} there exists a σ ∈ U((Q⊗Q)(a, b)) such that

αi−1 = (d0 ⊗ d0)(σ) and (d1 ⊗ d1)(σ) = αi

or αi−1 = (d1 ⊗ d1)(σ) and (d0 ⊗ d0)(σ) = αi
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For every 0 < i < n, αi defines a horn F̃ (Λ2
1)•(0, 2) → X•(a, b) which we can extend to

an element wi ∈ U(X2(a, b)) so that µ1,1(wi) = αi. Thus it follows by the previous that

qd1(w) = qd1(w1) = ... = qd1(wn−1) = qd1(w
′)

Lemma 2.3.23. Assume that U : V → Set is faithful. Let g : X → Y and f : X → Z be
morphisms in V such that g is a regular epimorphism. Suppose that for all x, y ∈ U(X), we have

g(x) = g(y) ⇒ f(x) = f(y)

Then there exists a unique morphism h : Y → Z such that hg = f .

Proof. Denote the kernel pair X ×Y X ⇒ X of g by π1 and π2. In view of Definition

1.2.12, it suffices to show that fπ1 = fπ2. As U is faithful, this is equivant to showing

that for all (x, y) ∈ U(X)×U(Y ) U(X), we have f(x) = f(y). But this is equivalent to the

hypothesis on f and g.

Construction 2.3.24. Assume that U : V → Set is faithful and preserves and reflects

reflexive coequalizers. Let (X,S) be a quasi-category in V . We construct a V-enriched

category h′VX whose hom-objects are given by h′VX(a, b) of Construction 2.3.19. Let h′VX
denote the quiver given by h′VX(a, b) for all a, b ∈ S, and let q : X1 → h′VX denote the

canonical quiver morphism.

First define u : IS
s0−→ X1

q−→ h′VX . Note that U also reflects regular epimorphisms

(as they are the coequalizer of their kernel pair). Thus as X is a quasi-category in V ,

the comultiplication µ1,1 : X2 → X1 ⊗S X1 is a regular epimorphism. Further, q is

a regular epimorphism by definition (also see Remark 1.2.13). Now − ⊗ − preserves

reflexive coequalizers in each variable and thus also regular epimorphisms. It follows

that q⊗2◦µ1,1 is a regular epimorphism as well. Using Lemmas 2.3.22 and 2.3.23 , we have

a unique quiver morphism m̃ : h′VX ⊗S h′VX → h′VX such that the following diagram

commutes:

X2 X⊗2
1 (h′VX)⊗2

X1 h′VX

µ1,1 q⊗2

m̃
d1

q

Given a 2-simplex (α02, α01, α12) of Ũ(X) with vertices a, b and c, we have µ1,1(α02) =
α01 ⊗ α12 and thus m̃(q(α01)⊗ q(α02)) = q(d1(α02)). Therefore, the induced map

U(h′VX(a, b))× U(h′VX(b, c))→ U(h′VX(a, b)⊗ h′VX(b, c))
U(m̃a,b,c)−−−−−−→ U(h′VX(a, c))

coincides with the reverse composition law of hŨ(X) (see Remark 1.1.22) under the

isomorphisms supplied by Remark 2.3.21. The element ua = q(s0(a)) : I → h′VX(a, a)

is clearly the identity at a in hŨ(X). It then follows from the faithfulness of U that m̃ is

associative and unital with respect to u. So we obtain a V-category h′VX .

Note that by construction we have an isomorphism of categories

U(h′VX) ≃ hŨ(X)
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Proposition 2.3.25. Assume that U : V → Set is faithful and preserves and reflects reflexive
coequalizers. The assignment X 7→ h′VX of Construction 2.3.24 extends to a functor h′V from
the full subcategory of S⊗V spanned by all quasi-categories in V to V Cat, which is left-adjoint to
the templicial nerve functor NV .

In particular, there exists a canonical isomorphism of V-enriched categories:

hVX ≃ h′VX

for every quasi-category X in V .

Proof. We’ll show this similarly to the proof of Proposition 2.3.14, using Lemma 2.3.2.

By Construction 2.3.24, the appropriate diagrams commute so that we have a unique

templicial morphism ηX : X1 → NV(h
′
VX) such that ηX1

: X1 → h′VX is precisely q. We

claim that ηX is the unit of an adjunction h′V ⊣ NV .

Now let C be an arbitrary small V-category and (ζ, f) : X → NV(C) a templicial mor-

phism. By Lemma 2.3.2, ζ corresponds to a quiver morphism H : X1 → f∗(C) such that

the diagrams (2.11) commute. Letting Q denote the quiver given by HomL
X(a, b)1 for all

objects a and b of X , we have a commutative diagram

Q X2 X1 f∗(C)

X1 X⊗2
1 f∗(C)⊗2 f∗(C⊗2)

f∗(m̃C)

H

dX1
π2

d1=π1

−⊗sX0

µX
1,1

H⊗2

H⊗u

d0

It follows that Hd0 = Hd1 : Q→ f∗(C) and thus there exists a unique quiver morphism

H ′ : h′VX → f∗(C) such thatH ′q = H . By construction,H ′
defines a V-functor h′VX → C

which is clearly unique such that NV(H) ◦ ηX = (ζ, f).

Corollary 2.3.26. Assume that U : V → Set is faithful and preserves and reflects reflexive
coequalizers. Let X be a quasi-category in V . The canonical functor

hŨ(X)→ U(hVX)

is an isomorphism of categories.

Proof. This is now an immediate consequence of Proposition 2.3.25 and the fact that

U(h′VX) ≃ hŨ(X).
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Chapter 3333333333333333333333333333333333333333333333333333333333333333333333333
Categorical properties

of templicial objects

“What the hell is going on?! What do you know about these things?”

— Captain Robert Witterel (Return of the Obra Dinn)

Now that the basic definitions are covered, we are ready to discuss some properties of

S⊗V as a category. This chapter is divided into two main sections. In both sections, but

more prominently in the second, Dugger and Spivak’s necklaces (see §2.2.1) will play an

essential role.

In Section 3.1 we define and study free and projective templicial objects and morphisms

(Definitions 3.1.6 and 3.1.24). They are based on, and behave similarly to, the free and

projective morphisms discussed in §1.2.2. As such, the projective templicial morphisms

appear as the left lifting class in a weak factorization system on S⊗V (Theorem 3.1.28),

where we call the morphisms in the right lifting class contractible (Definition 3.1.18). In

case V = Set, then the classes of projective and free templicial morphisms both coincide

with the class of monomorphisms of simplicial sets, while the contractible templicial

morphisms coincide with the trivial fibrations. As such, every simplicial set is free

(Corollary 3.1.9). The concept of free templicial objects thus only becomes meaningful

for other choices of V . Classically, trivial fibrations are characterized as those simplicial

maps having the right lifting property with respect to all boundary inclusions. A similar

characterization can be shown for contractible templicial morphisms, but this requires

the use of necklaces. More precisely, a templicial morphism is contractible if and only

if the induced morphisms in VNecop
under Construction 2.2.16 have the right lifting

property with respect to all boundary inclusions (Proposition 3.1.19). Finally, we will

explain how free templicial objects allow for a notion of non-degenerate simplices, which

general templicial objects lack.

Next, Section 3.2 introduces necklace categories, which are categories enriched in the

category VNecop
, considered as a monoidal category with the Day convolution (Con-

struction 3.2.1). We then extend Construction 2.2.16 to a fully faithful left-adjoint

(−)nec : S⊗V ↪→ V CatNec (Construction 3.2.5), where V CatNec denotes the category

of small necklace categories. The rest of the section is devoted to showing how passing

to necklace categories can simplify proofs for templicial objects.

67
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3.1 Freeness and projectivity

This section is heavily inspired by the theory of Reedy categories. For more details on

this, we refer to the literature (e.g. [RV14] or [Hir03, Chapter 15]).

Recall that the simplex category ∆ is a Reedy category which allows to inductively build

up a simplicial set X through its skeleta skn(X). We adapted this approach to define

skeleta for templicial objects in §2.1.5. Further, one can use the Reedy structure to lift the

weak factorization system (injective, surjective) on Set to a weak factorization system on

SSet where the left lifting class consists of the monomorphisms and the right lifting class

consists of the trivial fibrations (Definition 1.3.16). We can adapt this approach as well,

starting from the weak factorization system (projective, regular epimorphic) on V (see

Proposition 1.2.20.4). This will result in a weak factorization system on S⊗V where the

templicial morphisms in the left lifting class will be called projective and those in the right

lifting class contractible. Beware that we are not constructing a Reedy model structure on

S⊗V . We are simply using Reedy techniques to lift a single weak factorization system

from V to S⊗V .

In [Bac12, Definition 6.1], Bacard introduced locally Reedy 2-categories, that is, a category

enriched in Reedy categories. Further, in [Bac13] they defined latching and matching

objects for colax functors R → M where R is a locally Reedy 2-category and M is a

2-category. The category of finite intervals ∆f is well known to be Reedy, but it is also a

monoidal Reedy category (i.e. a locally Reedy 2-category with one object). In Definitions

3.1.1 and 3.1.14 we define latching and matching objects for a given templicial object

(X,S). Although defined slightly differently, they ultimately coincide with those of

Bacard, applied to the colax monoidal functor X : ∆op
f → V QuivS . Constructing the

weak factorization system on S⊗V now follows completely analogously to the case for

classical Reedy categories. Because we still have to deal with the base change of the sets

S, and to make this section more self-contained, we’ll still provide all proofs in full. But it

is important to note that all Reedy-type proofs (that is Remark 3.1.21, Proposition 3.1.22

and Theorem 3.1.28) were essentially already shown in [Bac12] and [Bac13].

We also introduce free templicial morphisms which occupy a slightly smaller class than

the projective ones. In fact, every templicial morphism can be factored as βα where

β is contractible and α is free, not just projective (Proposition 3.1.22). Free templicial

objects also provide the right context to talk about non-degenerate simplices, which is

impossible for general templicial objects. We then also obtain an analogue of the classical

Eilenber-Zilber lemma (Lemma 3.1.39).

For this section we impose the additional standing hypotheses that the forgetful functor

U = V(I,−) : V → Set preserves and reflects regular epimorphisms. Note that then in

particular the monoidal unit I of V is a projective object in the sense of Definition 1.2.14.

Thus we may apply Proposition 1.2.20.

3.1.1 Free templicial morphisms

We will first focus on free and contractible templicial morphisms (see Definitions 3.1.6

and 3.1.18). For both, we give equivalent characterizations in Propositions 3.1.7 and
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3.1.19. Further, Proposition 3.1.22 shows that every templicial morphism may be factored

as a free templicial morphism followed by a contractible one. Free and contractible

morphisms do not form a weak factorization system onS⊗V however as the free templicial

morphisms are not closed under retracts. Taking their closure under retracts yields the

projective templicial morphisms, whose discussion we postpone to the next subsection.

Recall the category ∆surj ⊆ ∆f consisting of all surjective morphisms in ∆f (see Defi-

nition 2.1.1).

Definition 3.1.1. Let (X,S) be a templicial object. For every n > 0, we define the nth
latching object of X as the following colimit in V QuivS :

Xdeg
n = LnX = colim

σ:[n]↠[k]
0≤k<n

Xk

where the colimit is taken over the full subcategory of

(
(∆surj)[n]/

)op
spanned by all

morphisms σ : [n] ↠ [k] in ∆surj with 0 ≤ k < n. Note that we have a canonical quiver

morphism

Xdeg
n → Xn

For any a, b ∈ S, we may also refer to Xdeg
n (a, b) ∈ V as the object of degenerate n-simplices

of X with first vertex a and last vertex b.

Remark 3.1.2. Note that in view of Construction 2.1.37, we have

Xdeg
n ≃ skn−1(X)n

and thus the nth latching object of X only depends on the skeleton skn−1(X). In fact,

Xdeg
n only depends on the functor X|(∆<n

surj)
op : (∆<n

surj)
op → V QuivS where ∆<n

surj is the

full subcategory of ∆surj spanned by all the objects [k] with k < n.

The following is well-known.

Example 3.1.3. In case V = Set, let K be a simplicial set and n > 0. Take a, b ∈ K0 and

x ∈ Kk(a, b), y ∈ Kl(a, b) along with morphisms σ : [n] ↠ [k] and τ : [n] ↠ [l] in ∆surj

such that K(σ)(x) = K(τ)(y). By the Eilenberg-Zilber lemma (Lemma 1.3.7), there exist

morphisms σ′ : [k] ↠ [m] and τ ′ : [l] ↠ [m] in ∆surj and a non-degenerate m-simplex z
ofK such that x = K(σ′)(z), y = K(τ ′)(z) and σ′σ = τ ′τ . Therefore x and y represent the

same element in the colimit Kdeg
n (a, b) = colimσ:[n]↠[k],k<nKk(a, b). Hence, the quiver

map

Kdeg
n → Kn

is a monomorphism and thus projective in QuivS . In fact, the set

∐
a,b∈K0

Kdeg
n (a, b) can

be identified with the set of degenerate n-simplices of K.

An important distinction between simplicial sets and templicial objects is that the canon-

ical quiver morphism

Xdeg
n → Xn

need not be projective in general as Example 3.1.4 shows.

Intuitively, we might interpret the quiver Xdeg
n only as a prototype expressing how the

degenerate simplices of X “should” behave. For example:
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• If n = 1, then Xdeg
1 ≃ X0. Intuitively, this means that X should have a unique

degenerate 1-simplex for each 0-simplex.

• If n = 2, then Xdeg
2 is given by the cokernel pair X1 ⨿X0 X1 of s0 : X0 → X1.

Intuitively, this means that X should have two degenerate 2-simplices for each

1-simplex, which coincide precisely if the 1-simplex was already degenerate.

Example 3.1.4. Consider the ring Z/2Z as a one object Ab-enriched category and take its

templicial nerve X = NZ(Z/2Z) ∈ S⊗ Ab (Construction 2.3.1). Then the canonical map

Xdeg
1 ≃ X0 → X1 is given by the quotient map Z ↠ Z/2Z, which is clearly not projective.

We will isolate the templicial objects for which the degenerate simplices are well-behaved

as those for which the canonical quiver morphism Xdeg
n → Xn is free (Definition 3.1.6)

or more broadly, projective (Definition 3.1.24).

Definition 3.1.5. Let (α, f) : (X,S) → (Y, T ) be a templicial morphism. As f! is a left-

adjoint and thus preserves colimits (Construction 1.1.16), we have a canonical quiver

morphism for every n > 0:

f!(X
deg
n )→ Y degn

We define the nth relative latching morphism of (α, f) as the induced quiver morphism

Y degn ⨿f!(Xdeg
n ) f!(Xn)→ Yn

Definition 3.1.6. We call a templicial morphism (α, f) : (X,S)→ (Y, T ) free if

(a) the map f : S → T is injective, and

(b) the nth relative latching morphism Y degn ⨿f!(Xdeg
n ) f!(Xn)→ Yn is free in V QuivT (in

the sense of Remark 1.2.21) for all n > 0.

In particular, we call a templicial object free if the initial morphism 0→ X in S⊗V is free.

Equivalently, the quiver morphism Xdeg
n → Xn is free for all n > 0.

Proposition 3.1.7. Let (α, f) : (X,S) → (Y, T ) be a templicial morphism. Then (α, f) is free
if and only if

(a) the map f : S → T is injective, and

(b) there exists a functor Z : ∆op
surj → QuivT such that for all n > 0 and a, b ∈ T the

canonical map Zdegn (a, b) → Zn(a, b) is injective, along with an isomorphism Y |∆op
surj
≃

f!X|∆op
surj
⨿FZ inFun(∆op

surj ,V QuivT ) such that the natural transformationα : f!X → Y

corresponds to the coprojection f!X → f!X ⨿ FZ.

In particular, the induced morphism Xn(a, b) → Yn(f(a), f(b)) is free in V for any n > 0 and
a, b ∈ S.

Proof. Suppose (α, f) satisfies conditions (a) and (b). As f! and F preserve colimits, we

have for all n > 0 that

Y degn = colim
σ:[n]↠[k]
0≤k<n

Yk ≃ colim
σ:[n]↠[k]
0≤k<n

(f!Xk ⨿ F (Zk)) ≃ f!(Xdeg
n )⨿ F (Zdegn )
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and therefore

Y degn ⨿f!(Xdeg
n ) f!(Xn) ≃ f!(Xn)⨿ F (Zdegn )

Under these isomorphisms, the nth relative latching morphism of (α, f) becomes the

following quiver morphism induced by the monomorphism Zdegn → Zn:

f!(Xn)⨿ F (Zdegn )→ f!(Xn)⨿ F (Zn)

which is clearly free.

Conversely suppose that (α, f) is free. Then condition (a) holds by assumption. We

construct a functor Z : ∆op
surj → QuivT as in condition (b) by induction. First define

Z0(x, y) =

{
{∗} if x = y ∈ T \ f(S)
∅ otherwise

As f is injective, we have a bĳection of sets: T ≃ (T \ f(S)) ⨿ S. It follows that

α0 : f!X0 → Y0 is isomorphic to the coprojection f!(IS)→ f!(IS)⨿ F (Z0).

Now let n > 0 and let ∆<n
surj denote the full subcategory of ∆surj spanned by all objects

[k]with k < n. Assume we have already defined a functorZ<n : (∆<n
surj)

op → QuivT such

thatZdegm → Zm is a monomorphism for all 0 ≤ m < n, and an isomorphismY |(∆<n
surj)

op ≃
f!X|(∆<n

surj)
op⨿FZ<n inFun((∆<n

surj)
op,QuivT ) such that the natural transformationα<n :

f!X → Y corresponds to the coprojection f!X → f!X ⨿ FZ<n. As Y degn is depends only

on Y |(∆<n
surj)op

(Remark 3.1.2), we have by the same argument as above that

Y degn ⨿f!(Xdeg
n ) f!(Xn) ≃ f!(Xn)⨿ F (Zdegn )

Since the nth relative latching morphism of (α, f) is free, it is isomorphic to the copro-

jection f!(Xn) ⨿ F (Zdegn ) →
(
f!(Xn)⨿ F (Zdegn )

)
⨿ F (Z ′

n) for some Z ′
n ∈ QuivS . Thus

setting Zn = Zdegn ⨿ Z ′
n, we can extend Z<n to a functor

Z<n+1 : (∆<n+1
surj )op → QuivT

such that also Zdegn → Zn is a monomorphism and α<n is isomorphic to the coprojection

f!X → f!X⨿FZ<n+1 inFun((∆<n+1
surj )op,QuivT ). Finally, the functors (Z<n)n>0 combine

to define a functor Z : ∆op
surj → QuivT as in condition (b).

Finally, take n > 0 and a, b ∈ S. As f is injective, we have f!(Xn)(f(a), f(b)) ≃ Xn(a, b).
Thus the induced morphism Xn(a, b) → Yn(f(a), f(b)) is obtained by evaluating αn :
f!(Xn)→ f!(Xn)⨿ F (Zn) in the pair (f(a), f(b)) and is therefore free.

Corollary 3.1.8. A templicial object (X,S) is free if and only if there exists a functor Z :
∆op
surj → QuivS such that for all n > 0 and a, b ∈ S, the canonical map Zdegn (a, b)→ Zn(a, b)

is injective, along with an isomorphism X|∆op
surj
≃ FZ in Fun(∆op

surj ,V QuivS).

Proof. This is an immediate consequence of Proposition 3.1.7.

Corollary 3.1.9. If V = Set, then a simplicial map is free if and only if it is a monomorphism.
In particular, every simplicial set is free.
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Proof. Let A → B be a simplicial map. If it is either free or a monomorphism, then the

map f : A0 → B0 is injective. Recall by Example 1.2.19.1 that a morphism in Set is free if

and only if it is an injective map of sets.

So if A → B is free we have by Proposition 3.1.7 that for all n > 0 and a, b ∈ A0 that the

map An(a, b) → Bn(f(a), f(b)) is injective. Taking the coproduct over all a, b ∈ A0, we

see that An → Bn is an injective map as well.

Conversely, if A ⊆ B is a simplicial subset, we can define a functor

B \A : ∆op
surj → QuivB0

: [n] 7→ Bn \ f!An
Then B|∆op

surj
≃ f!A ⨿ (B \ A) in Fun(∆op

surj ,QuivB0
) and the natural transformation

f!A→ B corresponds to the coprojection f!A→ f!A⨿ (B \A). Finally, for all n > 0 and

a, b ∈ B0, the map (B\A)degn (a, b)→ (B\A)n(a, b) is a restriction ofBdegn (a, b)→ Bn(a, b)
and is therefore injective by Example 3.1.3.

Corollary 3.1.10. For any monomorphism A ↪→ B of simplicial sets, the induced templicial
morphism F̃ (A) → F̃ (B) is free. In particular, F̃ (K) is a free templicial object for every
simplicial set K.

Proof. This follows from Corollary 3.1.9 as F : Set → V preserves colimits and free

morphisms (see Proposition 1.2.20.1).

Example 3.1.11. Let X be the templicial abelian group of Example 2.1.44. Then X is free

but it is not isomorphic to F̃ (K) for any simplicial set K. Indeed, like any free templicial

object, the degeneracy maps ofX preserve the basis elements by Corollary 3.1.8. But the

inner face maps of X don’t.

We now turn our attention to contractible morphisms of templicial objects. Note that

while the latching objects are defined completely analogously as for classical Reedy

categories, the matching objects require passing to necklaces via Construction 2.2.16.

Notation 3.1.12. Let (T, n) be a necklace. We denote d(T ) for the maximal dimension of

all beads of T . More precisely, if we write T = {0 = t0 < t1 < ... < tk = p}, then

d(T ) = max{ti − ti−1 | 1 ≤ i ≤ k}

Notation 3.1.13. We denote

N ecinj
for the subcategory of N ec consisting of all necklace maps (T, p) → (U, q) for which the

underlying morphism [p] → [q] in ∆f is injective. Note that N ecinj contains both the

active injective maps as well as the inert maps.

Definition 3.1.14. Let (X,S) be a templicial object. For every n > 0, we define the nth
matching object of X as the following limit in V QuivS :

MnX = lim
T ↪→{0<n}
d(T )<n

XT

where the limit is taken over the full subcategory of ((N ecinj)/{0<n})op spanned by all

necklaces maps T ↪→ {0 < n} in N ecinj with d(T ) < n. Note that we have a canonical

quiver morphism

Xn →MnX
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Remark 3.1.15. Note that the nth matching object MnX only depends on the functors

X•|(Nec<n
inj)

op : (N ec<ninj)op → V QuivS (see Construction 2.2.16) whereN ec<ninj denotes the

full subcategory of N ecinj spanned by all necklaces T with d(T ) < n.

Example 3.1.16. Given a templicial object (X,S), let us analyze the matching objects

MnX for low values of n.

• If n = 1, then M1X is the terminal object of V QuivS .

• If n = 2, then M2X ≃ X1 × (X1 ⊗S X1).

• If n = 3, then M3X is the limit of the following diagram of quivers:

X1 ⊗S X2 X2 ⊗S X1 X2 X2

X1 ⊗S X1 ⊗S X1 X1 ⊗S X1 X1 ⊗S X1 X1

d1

d1

d1⊗idid⊗d1 µ1,1 µ1,1

id⊗µ1,1

µ1,1⊗id

Definition 3.1.17. Let (α, f) : (X,S) → (Y, T ) be a templicial morphism. As f∗ is a

right-adjoint and thus preserves limits (Construction 1.1.16), we have a canonical quiver

morphism for every n > 0:

MnX → f∗MnY

We define the nth relative matching morphism of (α, f) as the induced quiver morphism

Xn → f∗Yn ×f∗MnY MnX

Definition 3.1.18. We call a templicial morphism (α, f) : (X,S)→ (Y, T ) contractible if

(a) the map f : S → T is surjective, and

(b) the nth relative matching morphism Xn → f∗Yn ×f∗MnY MnX is a regular epimor-

phism in V QuivS for all n > 0.

Proposition 3.1.19. Let (α, f) : (X,S) → (Y, T ) be a templicial morphism. Then (α, f) is
contractible if and only if

(a) the map f : S → T is surjective, and

(b) for all a, b ∈ S, the induced morphism X•(a, b) → Y•(f(a), f(b)) has the right lifting
property with respect to Cell in VNecop .

Proof. Take a, b ∈ S and n > 0. As U : V → Set preserves limits, we see that an

element of U(MnX(a, b)) is equivalent to a choice of collections (xk)
n−1
k=1 and (yi)

n−1
i=1 with

xk ∈ U((Xk⊗SXn−k)(a, b)) and yi ∈ U(Xn−1(a, b)) satisfying the conditions of Corollary

2.2.22.2 which thus determine a morphism F̃ (∂∆n)•(0, n) → X•(a, b) in VNecop
. On the

other hand, an element of U(Xn(a, b)) is equivalent to a morphism F̃ (∆n)•(0, n) →
X•(a, b) by Corollary 2.2.22.1.



74 CHAPTER 3. CATEGORICAL PROPERTIES OF TEMPLICIAL OBJECTS

Since U preserves and reflects regular epimorphisms, we conclude that the nth rela-

tive latching morphism Xn(a, b) → Yn(f(a), f(b))×MnY (f(a),f(b)) MnX(a, b) is a regular

epimorphism in V if and only if every lifting problem

F̃ (∂∆n)•(0, n) X•(a, b)

F̃ (∆n)•(0, n) Y•(f(a), f(b))

in VNecop
has a solution.

Corollary 3.1.20. Let (α, f) : (X,S) → (Y, T ) be a contractible templicial morphism. Then
Ũ(α) : Ũ(X)→ Ũ(Y ) is a trivial fibration of simplicial sets.

Proof. By hypothesis, f = Ũ(α)0 : Ũ(X)0 → Ũ(Y )0 is surjective. So Ũ(α) has the right

lifting property with respect to the simplicial map ∅ = ∂∆0 → ∆0
.

Take n > 0 and consider a lifting problem in SSet:

∂∆n Ũ(X)

∆n Ũ(Y )

Ũ(α)

Then by Propostion 2.1.26, the top horizontal map is equivalent to a choice of vertices

a0, ..., an ∈ S along with elements

βk,l ∈ U(Xl−k(ak, al)) and γi ∈ U(Xn−1(a0, an))

for all 0 ≤ k < l ≤ n with (k, l) ̸= (0, n) and 0 < i < n, which satisfy

• for all 0 < i < i′ < n,

di(γi′) = di′−1(γi)

• for all 0 ≤ k < i < l ≤ n with (k, l) ̸= (0, n),

µk−i,l−k(βk,l) = βk,i ⊗ βi,l

• for all 0 < k < n− 1 and 0 < i < n,

µk,n−k−1(γi) =

{
di(β0,k)⊗ βk+1,n if i ≤ k
β0,k ⊗ di−k(βk,n) if i > k

Further, the bottom horizontal map making the diagram commute is equivalent to an

element β′
0,n ∈ U(Yn(f(a0), f(an))) such that µk,n−k(β

′
0,n) = αk(β0,k) ⊗ αn−k(βk,n) and

di(β
′
0,n) = αn−1(γi) for all 0 < k, i < n. Solving the lifting problem then comes down to

finding an element β0,n ∈ U(Xn(a0, an)) such that αn(β0,n) = β′
0,n and µk,n−k(β0,n) =

β0,k ⊗ βk,n, di(β0,n) = γi for all 0 < i < n.
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Now setting xk = β0,k ⊗ βk,n and yi = γi we obtain collections satisfying the conditions

Corollary 2.2.22.2, so that the collections (xk)
n−1
k=1 and (yi)

n−1
i=1 and the element β′

0,n define

a commutative diagram in VNecop
:

F̃ (∂∆n)•(0, n) X•(a, b)

F̃ (∆n)•(0, n) Y•(f(a), f(b))

which has a lift by Proposition 3.1.19. This lift provides the element β0,n as desired.

Remark 3.1.21. Let X be an (n − 1)-skeletal templicial object for some n > 0. Then we

have a canonical quiver morphism

Xdeg
n = skn−1(X)n ≃ Xn →MnX

It follows from the definitions of the latching and matching objects that there is a bĳective

correspondence between (isomorphism classes of) n-skeletal templicial objects X with

skn−1(X) ≃ X , and (isomorphism classes of) factorizations

Xdeg
n → Xn →MnX

of the canonical quiver morphism Xdeg
n →MnX .

Let (α, f) : (X,S) → (Y, T ) be a morphism between (n − 1)-skelatal templicial objects

and letX and Y be n-skeletal templicial objects such that skn−1(X) ≃ X and skn(Y ) ≃ Y .

Then there is a bĳective correspondence between templicial morphisms α : X → Y and

commutative diagrams in V QuivT :

f!X
deg
n f!Xn f!MnX

Y degn Y n+1 MnY

where the top and bottom horizontal rows are the factorizations corresponding toX and

Y , and the left and right vertical morphisms are induced by α.

Proposition 3.1.22. Every templicial morphism can be factored as a free templicial morphism
followed by a contractible templicial morphism.

Proof. Take a templicial morphism (α, f) : (X,S) → (Y, T ). We use induction on n ≥ 0
to construct factorizations

skn(α) : skn(X)
(β≤n,g)−−−−−→ Z≤n

(γ≤n,h)−−−−−→ skn(Y )

in S≤n
⊗ V such that g is injective, h is surjective and for all 0 < m ≤ n, the mth relative

latching morphism of β≤n is free and the mth relative matching morphism of γ≤n is a

regular epimorphism.

If n = 0, then S≤0
⊗ V ≃ Set and we can use Proposition 1.2.20.4 to factor f as an injective

map g : S ↪→ U followed by a surjective map h : U ↠ T . If n > 0, assume that we
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have already constructed a factorization of skn−1(α) as above. Consider the following

morphism in V QuivU :

ψ : Zdegn ⨿g!(Xdeg
n ) g!(Xn)→ h∗(Yn)×h∗(MnY ) MnZ

determined by the following quiver morphisms:

• Zdegn → h∗(Yn) is adjoint to the morphism h!(Z
deg
n ) → Y degn → Yn induced by

γ≤n−1.

• g!(Xn)→ h∗(Yn) is adjoint to the morphism h!g!(Xn) ≃ f!(Xn)
αn−−→ Yn.

• Zdegn →MnZ is the canonical morphism of Remark 3.1.21.

• g!(Xn) → MnZ is adjoint to the morphism Xn → MnX → g∗(MnZ) induced by

β≤n−1.

Then by Proposition 1.2.20.3 that we can factor ψ as

Zdegn ⨿g!(Xdeg
n ) g!(Xn)

ψ1−−→ Zn
ψ2−−→ h∗(Yn)×h∗(MnY ) MnZ

in V QuivU where ψ1 is free and ψ2 is a regular epimorphism. Consequently, by Remark

3.1.21 we have an object Z≤n ∈ S≤n
⊗ V and morphisms

(β≤n, g) : skn(X)→ Z≤n and (γ≤n, h) : Z≤n → skn(Y )

which factor skn(α) as above, such that skn−1(Z≤n) = Z≤n−1, skn−1(β≤n) = β≤n−1 and

skn−1(γ≤n) = γ≤n−1.

Finally, taking the colimit over n ≥ 0, we obtain a factorization of (α, f) by Proposition

2.1.42:

(α, f) : (X,S)
(β,g)−−−→ (Z,U)

(γ,h)−−−→ (Y, T )

where Z = colimn≥0 Z≤n. Moreover, by construction (β, g) is free and (γ, h) is con-

tractible.

3.1.2 Projective templicial morphisms

Despite Proposition 3.1.22, the classes of free and contractible templicial morphisms do

not form a weak factorization system on S⊗V . Indeed, as one might expect, Example

3.1.23 shows that the class of free templicial morphisms is not closed under retracts

and thus it cannot be a left lifting class. Taking the closure under retracts, we obtain

the projective templicial morphisms (Definition 3.1.24), and this class does yield a weak

factorization system with the contractible templicial morphisms (see Theorem 3.1.28).

Moreover, in Proposition 3.1.32 we show that a projective quasi-category in V can always

be equipped with a naF-structure.
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Example 3.1.23. The class of free templicial objects (and more generally morphisms) is

not closed under retracts. Indeed, consider a unital commutative ring k and any non-free

k-module P that is a retract of k in Mod(k) (e.g. k = Z/6Z and P = Z/2Z). Then we

have a map k ↠ P so that we can consider P as a unital Mod(k)-enriched quiver with

vertex set S = {∗} (see Example 2.1.35.2). Similarly, we can consider k as a unital quiver

with the identity on k as unit. Then P is also a retract of k in kQuivu ≃ S≤1
⊗ Mod(k).

Under the embedding S≤1
⊗ Mod(k) ↪→ S⊗ Mod(k), we can consider P and k as templicial

k-modules. It is now easy to see that k is free (in fact, it is isomorphic to F̃ (∆0)), but P is

not.

Definition 3.1.24. We call a templicial morphism (α, f) : (X,S)→ (Y, T ) projective if

(a) the map f : S → T is injective, and

(b) thenth relative latching morphismY degn ⨿f!(Xdeg
n )f!(Xn)→ Yn is projective inV QuivT

(in the sense of Remark 1.2.21) for all n > 0.

In particular, we call a templicial object X projective if the initial morphism 0 → X is

projective.

Example 3.1.25. If V = Set, it follows from Example 1.2.19.1 and Corollary 3.1.9 that a

simplicial map is projective if and only if it is free, if and only if it is a monomorphism.

Lemma 3.1.26. Every free templicial morphism is projective.

Proof. This is clear from the definitions and Proposition 1.2.20.2.

Lemma 3.1.27. The classes of projective and contractible templicial morphisms are closed under
retracts.

Proof. Let (α, f) be a projective templicial morphism and let (β, g) be a retract of (α, f).
Then in particular g is a retract of f in Set and is therefore again injective. Moreover, each

relative latching morphism of (β, g) is projective as it can be written as a retract of (a base

change of) a relative latching morphism of (α, f) (projective morphisms in V are closed

under retracts since they form a left lifting class by Proposition 1.2.20.4). Thus (β, g) is

also projective.

The proof for contractible templicial morphisms is similar.

Theorem 3.1.28. The classes of projective and contractible templicial morphisms form a weak
factorization system on S⊗V .

Proof. First note that by Propositions 3.1.22 and 3.1.26, every templicial morphism may

be factored as a projective morphism followed by a contractible one.



78 CHAPTER 3. CATEGORICAL PROPERTIES OF TEMPLICIAL OBJECTS

Let (α, f) : (A,S) → (B, T ) be projective and (β, g) : (X,U) → (Y, V ) contractible in

S⊗V . We wish to solve the following lifting problem in S⊗V :

(A,S) (X,U)

(B, T ) (Y, V )

(α,f)

(γ,h)

(β,g)

(γ,h)

(3.1)

We show by induction that each induced lifting problem in S≤n
⊗ V

skn(A) skn(X)

skn(B) skn(Y )

skn(α)

skn(γ)

skn(β)

skn(γ)

γ′
≤n

has a solution for all n ≥ 0. If n = 0, then S≤0
⊗ V ≃ Set and it follows from Proposition

1.2.20.4 that we have a map of sets h′ : T → U such that h′f = h and gh′ = h. If n > 0,

assume we have already defined a lift γ′≤n−1 : skn−1(B) → skn−1(X) as above. Then

consider the following lifting problem of quivers:

h′!(B
deg
n )⨿h!(A

deg
n ) h!(An) Xn

h′!(Bn) g∗(Yn)×g∗(MnY ) MnX

where the left vertical morphism is given by applying h′! to the nth relative latching mor-

phism of (α, f) and the right vertical morphism is the nth relative matching morphism

of (β, g). The top and bottom horizontal morphisms are induced by γ, γ and γ′≤n−1.

By hypothesis, the left vertical morphism is projective and the right vertical morphism

is a regular epimorphism, so that we have a lift γ′n : h′!Bn → Xn. Then it follows by

Remark 3.1.21 that we have a lift γ′≤n : skn(B)→ skn(X) of the diagram above such that

skn−1(γ
′
≤n) = γ′≤n−1. Finally, it follows by Proposition 2.1.42 that the original diagram

(3.1) has a lift.

Now take a templicial morphism α having the left lifting property with respect to all

contractible templicial morphisms. We can factor α = γβ with β projective and γ con-

tractible. By the Retract argument (Lemma 1.2.7), α is a retract of β and is therefore itself

projective by Lemma 3.1.27. A similar argument shows that every templicial morphism

having the right lifting property with respect to all projective templicial morphisms is

contractible.

Corollary 3.1.29. A templicial morphism is projective if and only if it is a (strong) retract of a
free templicial morphism.

Proof. Suppose α is a projective templicial morphism. By Proposition 3.1.22, we can

factor α = γβ in S⊗V with β free and γ contractible. As α has the left lifting property

with respect to γ by Theorem 3.1.28, it follows by the Retract argument (Lemma 1.2.7)

that α is a retract of β. Moreover, this retract may always be chosen to be strong.
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Conversely, it suffices to note that every free templicial morphism is projective by Propo-

sition 3.1.26 and so are their retracts by Lemma 3.1.27.

Corollary 3.1.30. If V = Set, then a simplicial map is contractible if and only if it is a trivial
fibration.

Proof. This follows from Remark 1.3.18, Example 3.1.25 and Theorem 3.1.28.

Lemma 3.1.31. Let f : A→ B and g : C → D be free (resp. projective) morphisms in V . Then
the canonical morphism

f ⊠ g : (A⊗D)⨿A⊗C (B ⊗ C)→ B ⊗D

is free (resp. projective).

Proof. Suppose first that f and g are free. So we have sets S and T such that f is the

coprojection A → A ⨿ F (S) and g is the coprojection C → C ⨿ F (T ). Then the domain

and codomain of f ⊠ g are respectively

(A⊗ (C ⨿ F (T )))⨿A⊗C ((A⨿ F (S))⊗ C) ≃ (A⊗ F (T ))⨿ (A⊗ C)⨿ (F (S)⊗ C)
(A⨿ F (S))⊗ (B ⨿ F (T )) ≃ (A⊗ F (T ))⨿ (A⊗ C)⨿ (F (S)⊗ C)⨿ F (S × T )

and f ⊠ g is given by the coprojection. Thus f ⊠ g is free.

Now suppose f and g are projective. Then by Proposition 1.2.20.2, f and g are strong

retracts of some free morphisms f ′ and g′ respectively. It follows that f ⊠ g is a retract of

f ′ ⊠ g′. So by the previous, f ⊠ g is projective.

Proposition 3.1.32. Let (X,S) be a projective templicial object. If X is a quasi-category in V ,
then X has a naF-structure.

Proof. Given 0 < j < n let us define

Mj,nX = lim
f :T ↪→{0<n}
d(T )<n
f ̸=δj

XT ∈ V QuivS

where the limit is taken over the full subcategory of

(
(N ecinj)/{0<n}

)op
spanned by

all necklace maps T ↪→ {0 < n} in N ecinj with d(T ) < n, except the necklace map

δj : {0 < n− 1} ↪→ {0 < n}. As U : V → Set preserves limits, we see that an element of

U(Mj,nX(a, b)) with a, b ∈ S may be identified with collections (xk)
n−1
k=1 and (yi)

n−1
l=1,i̸=j

satisfying the conditions of Corollary 2.2.22.3. Hence, an element of U(Mj,nX(a, b))

is equivelant to a morphism F̃ (Λnj )•(0, n) → X•(a, b) in VNecop
. Consequently, the

condition thatX is a quasi-category in V is equivalent to the condition that the canonical

quiver morphism Xn → Mj,nX is a regular epimorphism (as U preserves and reflects

regular epimorphisms).

We define quiver morphisms Zp,q : Xp ⊗ Xq → Xp+q by induction on n = p + q, for

all p, q ≥ 0. Define Zp,0 and Z0,q
to be the left and right unit isomorphisms. Now take



80 CHAPTER 3. CATEGORICAL PROPERTIES OF TEMPLICIAL OBJECTS

n > 0 and let p, q > 0 be such that p+ q = n. Then consider the following commutative

diagram:

(Xdeg
p ⊗Xq)⨿(Xdeg

p ⊗Xdeg
q ) (Xp ⊗Xdeg

q ) Xn

Xp ⊗Xq Mp,nX

As X is a projective templicial object, the left vertical morphism is projective by Lemma

3.1.31. The top horizontal morphism is induced by the already defined morphisms Zk,l

with k + l < n, which is well-defined by the fact that the Zk,l are natural with respect

to the degeneracy maps of X . The bottom horizontal morphism is determined by the

morphisms

Xp ⊗Xq
ξk−→ Xk ⊗Xn−k and Xp ⊗Xq

ζi−→ Xn−1

for all 0 < k, i < n with i ̸= p, where

ξk =

{
(Zp,k−p ⊗ idXl

)(idXp ⊗µk−p,l) if p ≤ k
(idXk

⊗Zp−k,q)(µk,p−k ⊗ idXq
) if p ≥ k

, ζi =

{
Zp−1,q(di ⊗ idXq ) if i < p

Zp,q−1(idXp
⊗di−p) if i > p

Hence, there exists a lift Zp,q : Xp ⊗ Xq → Xn which by construction is natural with

respect to the degeneracy and inner face morphisms of X , and satisfies the Frobenius

equations (2.9).

Example 3.1.33. Since every simplicial set is projective by Example 3.1.25, it follows from

Propositions 2.2.30 and 3.1.32 that every quasi-category has a naF-structure.

The converse to Proposition 3.1.32 is false in general, as Example 3.1.34 shows. However,

in Chapter 4 we will see that the converse does hold in case V = Mod(k) for a unital

commutative ring k (see Theorem 4.2.62).

Example 3.1.34. Let X be the simplicial set defined as the colimit of

∆3

Λ3
3

∆3

Λ3
0

∆3

It is the standard 3-simplex ∆3
, whose simplices we will represent by their vertices

[i0, ..., im], with two non-degenerate 3-simplices x and y glued on. We have

∀i ∈ {0, 1, 2} : di(x) = [0, ..., �i, ..., 3] but d3(x) ̸= [0, 1, 2]

∀j ∈ {1, 2, 3} : dj(y) = [0, ...,��j, ..., 3] but d0(y) ̸= [1, 2, 3]

In X , not all horns can be filled. Indeed, since

d0d3(x) = d2([1, 2, 3]) = [1, 2] = d0([0, 1, 2]) = d2d0(y),

d2d3(x) = [0, 1] = d2([0, 1, 3]) and d1d0(y) = [1, 3] = d0([0, 1, 3])
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the faces d3(x), d0(y) and [0, 1, 3] form a horn Λ3
1 in X . But there is no 3-simplex in X

with these faces.

However, X does have a naF-structure. It suffices to define Zp,q(a, b) on non-degenerate

simplices a and b. For those contained in ∆3
, define

Zp,q([i0, ..., ip], [ip, ..., ip+q]) = [i0, ..., ip+q]

note that this includes all edges of X . Further, set

Z2,1(d3(x), [2, 3]) = x, and Z1,2([0, 1], d0(y)) = y

It is easy to check that this satisfies the Frobenius equations (2.9).

Proposition 3.1.32 does not hold without assuming projectivity.

Example 3.1.35. Let V = Mod(Z) = Ab and consider the unital Ab-enriched quiver Q
with vertex set S = {a, b} and

Q(x, y) =


Z if x = a, y = b

Z/2Z if x = y

0 otherwise

The unit of Q is given by the quotient map q : Z ↠ Z/2Z. Consider Q as a templicial

abelian group X via the embedding S≤1
⊗ Ab ↪→ S⊗ Ab. Then X is easily seen to be a

quasi-category in Ab, but the canonical map Xdeg
1 (a, a) → X1(a, a) is given by q which

is not projective. Note that X does not have a naF-structure, because this would require

the existence of a map

Z1,1 : (X1 ⊗X1)(a, b) ≃ Z/2Z⊕ Z/2Z→ X2(a, b) ≃ Z⊕ Z

which is a section of µ1,1 = q ⊕ q : Z⊕ Z ↠ Z/2Z⊕ Z/2Z.

3.1.3 Non-degenerate simplices

Unlike the case for simplicial sets, a general templicial object does not have a well-defined

notion of non-degenerate simplices. Given a templicial object X and n ≥ 0, one might

expect to have a quiver N ∈ V QuivS such that the canonical morphism Xdeg
n → Xn is

isomorphic to the coprojection

Xdeg
n → Xdeg

n ⨿N

We might then considerN(a, b) as the “object of non-degenerate n-simplices ofX from a
to b” where a and b are vertices ofX . Such a quiverN need not exist however, as Example

3.1.36 shows. But if we restrict to free templicial objects, a choice for N can always be

made (Definition 3.1.38).

Example 3.1.36. Consider the monoidal category V = Mod(Z) = Ab of abelian groups.

Let S = {∗} be a singleton and define a functor X : ∆op
f → Ab by setting Xn = Z for all

n ≥ 0 with s0 : X0 = Z 2·−→ X1 = Z and all other face and degeneracy maps given by the
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identity on Z. Then X is a strongly unital, colax monoidal functor with comultiplication

map µk,l for k, l ≥ 0 given by

µk,l : Xk+l = Z→ Xk ⊗Xl ≃ Z : z 7→

{
2z if k, l > 0

z if k = 0 or l = 0

We thus find a templicial abelian group (X,S). Now note that the image of Xdeg
1 → X1

is given by the submodule 2Z ⊆ Z which doesn’t have a direct complement.

Remark 3.1.37. Note that actually we do not use the hypothesis thatU : V → Set preserves

or reflects regular epimorphisms to obtain the result of Propositoin 3.1.7. Thus the

following definition and lemma apply even without this assumption.

Definition 3.1.38. Let (X,S) be a free templicial object and let Z : ∆op
surj → QuivS be

a functor such that X|∆op
surj
≃ FZ in Fun(∆op

surj ,V QuivS) and Zdegn (a, b) → Zn(a, b) is

injective for all n > 0 and a, b ∈ S. Then in particular Xdeg
n ≃ F (Zdegn ) for all n > 0. We

define the object of non-degenerate n-simplices of X from a to b as

Xnd
n (a, b) = F (Zn(a, b) \ Zdegn (a, b)) ∈ V

This yields a quiver Xnd
n ∈ V QuivS along with an isomorphism

Xn ≃ Xdeg
n ⨿Xnd

n

which identifies the morphism Xdeg
n → Xn with the coprojection Xdeg

n → Xdeg
n ⨿Xnd

n .

Further, we set Xnd
0 = X0.

Whenever writing Xnd
n for a free templicial object X , we implicitly assume a functor

Z : ∆op
surj → QuivS as above has been chosen.

Recall the Eilenberg-Zilber lemma for simplicial sets (Lemma 1.3.7). Equivalently, this

lemma states that for every simplicial set K and n ≥ 0, there exists a bĳection

Kn ≃
∐

σ:[n]↠[k]
in ∆surj

Knd
k

where Knd
k ⊆ Kk denotes the subset of non-degenerate k-simplices of K. We can prove

the analogue for templicial objects if we assume that they are free.

Lemma 3.1.39. LetX be a free templicial object and n ≥ 0. We have an isomorphism of quivers:

Xn ≃
∐

σ:[n]↠[k]
in ∆surj

Xnd
k

Proof. By definition, X0 = Xnd
0 . Take n > 0, then it follows by induction that

Xn ≃ Xnd
n ⨿Xdeg

n = Xnd
n ⨿ colim

[n]↠[k]
0≤k<n

Xk ≃ Xnd
n ⨿ colim

[n]↠[k]
0≤k<n

∐
σ:[k]↠[l]

Xnd
l

≃ Xnd
n ⨿

∐
σ:[n]↠[l]
0≤l<n

colim
[n]↠

σ1
[k]↠

σ2
[l]

σ=σ2σ1

Xnd
l ≃ Xnd

n ⨿
∐

σ:[n]↠[l]
0≤l<n

Xnd
l

The last isomorphism is obtained by noting that the colimit on the left hand side is taken

over a category which has a terminal object given by the factorization [n]
=
↠ [n]

σ
↠ [l].
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3.2 Necklace categories

There is a classical adjunction C : SSet ⇆ Cat∆ : Nhc
between simplicial sets and sim-

plicial categories, originally constructed by Cordier and Porter [CP86]. The composition

in a quasi-category is only well-defined, associative and unital up to homotopy, while

the composition in a simplicial category is by definition associative and unital “on the

nose”. One can thus see the functor C as a “rigidification” of quasi-categories. We will

consider the adjunction C ⊣ Nhc
in more detail in Chapter 4 when we generalize it to

an adjunction CV ⊣ Nhc
V between templicial objects and categories enriched in simplicial

objects SV (see §4.1.2).

This section introduces a functor (−)nec : S⊗V ↪→ V CatNec from templicial objects (and

thus simplicial sets if V = Set) to a category of small enriched categories V CatNec which

we call necklace categories. Like C, the functor (−)nec can thus also be seen as a type of

rigidification. The functor C is not a full embedding but we will see that (−)nec is fully

faithful in Proposition 3.2.6. So we can interpret (−)nec as a rigidification which does not

lose any information. Moreover, the functor CV above will factor through (−)nec.

Passing to necklace categories makes a lot of facts about templicial objects easier to

prove. Many constructions, like the templicial nerveNV and the functor Ũ actually factor

through V CatNec (Propositions 3.2.11 and 3.2.14). Moreover, we will identify conditions

on a necklace category C so that its associated templicial object Ctemp is a quasi-category

in V or has a Frobenius structure (Proposition 3.2.20 and Corollary 3.2.22). Finally, we

use V CatNec to show that S⊗V is locally presentable (Theorem 3.2.29) and we briefly

discuss its limits.

3.2.1 Coreflective embedding

We open the section by equipping the functor category VNecop
with the (non-symmetric)

monoidal structure of the Day convolution (Construction 3.2.1). Necklace categories

are then defined as categories enriched in VNecop
. We continue by constructing the full

embedding (−)nec (Construction 3.2.5) and showing that it is coreflective in the sense that

it has a right-adjoint (−)temp : V CatNec → S⊗V . The functor (−)temp can be described

relatively explicitly by induction on the dimension (Construction 3.2.8).

Construction 3.2.1. Consider the category VNecop
of functors N ecop → V . As N ecop

and V are both monoidal categories, we can endow VNecop
with the monoidal structure

given by Day convolution (see [Day70]). We denote the resulting monoidal category by

(VNecop ,⊗Day, I).

Given two functors X,Y : N ecop → V , their Day convolution X ⊗Day Y is obtained by

the left Kan extension of the composite

N ecop ×N ecop X×Y−−−→ V × V −⊗−−−−→ V

along ∨ : N ecop ×N ecop → N ecop:

X ⊗Day Y = Lan∨(X(−)⊗ Y (−))
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Further, the monoidal unit ofVNecop
is given by the representable functor on the monoidal

unit {0} ofN ec. As {0} is also the terminal object ofN ec, we find thatF (N ec(−, {0})) ≃ I
is the constant functor on I , the monoidal unit of V .

Beware that the monoidal category (VNecop ,⊗Day, I) is not symmetric.

Proposition 3.2.2. Let X and Y be functors N ecop → V and T a necklace. Then there is a
reflexive coequalizer

∐
U,N,V ∈Nec
U∨N∨V=T

XU ⊗ YV
∐

U,V ∈Nec
U∨V=T

XU ⊗ YV (X ⊗Day Y )T
β

α

(3.2)

where α and β are given by, for all U,N, V ∈ N ec with U ∨N ∨ V = T :

αιU,N,V = ιU∨N,V (X(idU ∨σN )⊗ idYV
)

βιU,N,V = ιU,N∨V (idXU
⊗Y (σN ∨ idV ))

with σN : N → {0} the terminal necklace map.

Proof. By Construction 3.2.1, we have a (reflexive) coequalizer diagram:

∐
h:T→U∨V
f :U→U ′

g:V→V ′

XU ′ ⊗ YV ′
∐

T
h−→U∨V

in Nec

XU ⊗ YV (X ⊗Day Y )T
β′

α′
q′

where α′ιh,f,g = ιh(X(f) ⊗ Y (g)) and β′ιh,f,g = ι(f∨g)h for all h : T → U ∨ V and

f : U → U ′
, g : V → V ′

in N ec.

On the other hand, let q :
∐
U∨V=T XU ⊗ YV ↠ C denote the coequalizer of α and β in

(3.2). Consider the morphism φ :
∐
U∨V=T XU ⊗ YV →

∐
T→U∨V XU ⊗ YV defined by

sending a pair of necklaces (U, V ) with U ∨ V = T to the identity on T . Then it easy to

see that φ decends to a morphism

φ : C → (X ⊗Day Y )T

Conversely take necklaces (U, p), (V, q) and (T, n), and a necklace map h : T → U ∨ V .

Let k ∈ T be minimal such that h(k) = p. This minimum exists as U ∨ V ⊆ h(T ).
As a morphism in ∆f , h : [n] → [p + q] has a unique representation as h = hU + hV
with hU : [k] → [p] and hV : [n − k] → [q] in ∆f . Now set U ′ = {t | t ∈ T, t ≤ k}
and V ′ = {t − k | t ∈ T, k ≤ t}. Then (U ′, k) and (V ′, n − k) are necklaces such that

T = U ′ ∨ V ′
. Moreover, we have induced necklace maps hU : U ′ → U and hV : V ′ → V

such that h = hU ∨ hV . Define a morphism

ψ :
∐

T
h−→U∨V

in Nec

XU ⊗ YV →
∐

U,V ∈Nec
U∨V=T

XU ⊗ YV

by setting ψιh = ιU ′,V ′(X(hU )⊗ Y (hV )). It follows that ψ descends to a morphism

ψ : (X ⊗Day Y )T → C
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Indeed, take necklace maps h1 : T → U1 ∨ V1 and f : U1 → U2, g : V1 → V2, and set

h2 = (f ∨ g)h1. As above, we have (T, n) = (U ′
i , ki)∨ (V ′

i , n− ki) and hi = hUi ∨ hVi with

hUi
: U ′

i → Ui and hVi
: V ′

i → Vi, for i ∈ {1, 2}. Observe that

qψα′ιh1,f,g = qψιh1
(X(f)⊗ Y (g)) = qιU ′

1,V
′
1
(X(fhU1

)⊗ Y (ghV1
))

By the minimality of k2 ∈ T , it follows thatU ′
1 = U ′

2∨N , V ′
2 = N∨V ′

1 and fhU1 = hU2∨σN ,

hV2
= σN ∨ ghV1

for some necklace N and σN : N → {0}. Thus as qα = qβ, we have

qιU ′
1,V

′
1
(X(fhU1

)⊗ Y (ghV1
)) = qιU ′

2,V
′
2
(X(hU2

)⊗ Y (hV2
)) = qψβ′ιh1,f,g

Hence, qψα′ = qψβ′
and thus there exists a unique morphism ψ such that qψ = ψq′. It

easily follows that ψ is inverse to φ.

Finally, we can define a morphism γ :
∐
U∨V=T XU ⊗ YV →

∐
U∨N∨V=T XU ⊗ YV by

setting γιU,V = ιU,{0},V . Then clearly αγ = id = βγ so that the coequalizer (3.2) is

reflexive.

Definition 3.2.3. Consider the category

V CatNec = VNecop
-Cat

of small categories enriched in the monoidal category (VNecop ,⊗Day, I) of Construction

3.2.1. We call the objects ofV CatNec necklace categories and its morphisms necklace functors.

If V = Set, we simply write CatNec for SetCatNec.

Construction 3.2.4. Let (X,S) be a templicial object and consider the strong monoidal

functor of Construction 2.2.16:

X• : N ecop → QuivS(V)

We construct a necklace category Xnec
with object set S and hom-objects given by the

functors X•(a, b) : N ecop → V for all a, b ∈ S.

Take a, b, c ∈ S, then for any necklaces U and V , we have a canonical morphism

m̃U,V : XU (a, b)⊗XV (b, c)→ (XU ⊗S XV )(a, c) ≃ XU∨V (a, c)

By the coequalizer diagram (3.2), it follows that we have an induced morphism in Vnecop :

m̃a,b,c : X•(a, b)⊗Day X•(b, c)→ X•(a, c)

Further, note that X{0}(a, a) = X0(a, a) ≃ I for all a ∈ S and thus we have an induced

morphism

u : I → X•(a, a)

It is easy to check that m̃ is associative and unital with respect to u so that we obtain a

VNecop
-enriched category Xnec

.

Construction 3.2.5. Let (α, f) : (X,S) → (Y, T ) be a templicial morphism, we define

a necklace functor αnec : Xnec → Y nec as follows. On objects it is given by the map

f : S → T . Further, for any a, b ∈ S, we have a morphism in VNecop
:

αa,b : X•(a, b)→ Y•(f(a), f(b))
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which is given by, for all necklaces U = {0 = u0 < u1 < ... < uk = p}:

(αa,b)U : XU (a, b)
αu1

⊗...⊗αp−uk−1−−−−−−−−−−−−→ YU (f(a), f(b))

where we identified αn : f!Xn → Yn with its adjoint Xn → f∗Yn for all n ≥ 0 (see

Construction 1.1.16). The compatibility of αa,b with inert morphisms in N ec follows

from the monoidality of α and the compatibility with active morphisms follows from

the naturality of α. It is easy to verify that this defines a VNecop
-enriched functor αnec :

Xnec → Y nec.

Finally, we clearly obtain a functor

(−)nec : S⊗V → V CatNec

Proposition 3.2.6. The functor (−)nec : S⊗V → V CatNec is fully faithful.

Proof. Take templicial objects (X,S) and (Y, T ) and a necklace functorH : Xnec → Y nec.
Let f : S → T be the object map of the functor H . For n ≥ 0 we define

αn : f!(Xn) = f!(X{0<n})→ Y{0<n} = Yn

to be adjoint to the quiver morphismH{0<n} : X{0<n} → f∗(Y{0<n}). AsH is compatible

with active morphisms, αn is natural in n. Let U = {0 = u0 < u1 < ... < uk = p} be a

necklace. It follows from Construction 3.2.4 that the quiver morphism HU : XU → YU
is equal to H{0<u1} ⊗ ... ⊗H{0<p−uk−1} and thus α is monoidal and H = αnec. Clearly,

(α, f) is also unique with this property.

Remark 3.2.7. Let S be a set. As V QuivS is isomorphic to the category VS×S , we have a

canonical equivalence of categoriesVNecop QuivS ≃ V QuivNecop

S . EquippingV QuivNecop

S

with the Day convolution as well, this equivalence extends to an equivalence of monoidal

categories.

It is well known (see for example [MMSS01, Proposition 22.1]) that monoids in a category

of functors equipped with the Day convolution are equivalent to lax monoidal functors.

In our situation, this amounts to an equivalence of categories:

Mon(VNecop QuivS) ≃ Mon(V QuivNecop

S ) ≃ Lax(N ecop,V QuivS)

letting S ∈ Set vary and applying the Grothendieck construction on both sides, we obtain

an equivalence of categories

V CatNec ≃
∫
S∈Set

Lax(N ecop,V QuivS)

Thus we may identify necklace categories with lax monoidal functors N ecop → V QuivS
with S a set. Under this identification, the essential image of the functor (−)nec consists

of the strong monoidal functors N ecop → V QuivS with S a set.

We will now construct a right-adjoint to the inclusion (−)nec : S⊗V ↪→ V CatNec.
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Construction 3.2.8. Fix a necklace category C with set of objects S. For every neckace T ,

we have a V-enriched quiver CT = (CT (a, b))a,b∈S Then the composition and identities of

C induce quiver morphisms

m̃U,V : CU ⊗S CV → CU∨V and u : IS → C{0}

for all necklaces U and V . We construct a templicial object (Ctemp, S) as follows. Set

Ctemp0 = IS and p0 = u : Ctemp0 → C{0}. Now let n > 0. We inductively define an object

Ctempn ∈ V QuivS along with morphisms pn and µk,l as the limit of the following diagram

of solid arrows in V QuivS :

Ctempn

∏
k,l>0
k+l=n

Ctempk ⊗S Ctempl

∏
r,s,t>0
r+s+t=n

Ctempr ⊗S Ctemps ⊗S Ctempt

C{0<n}
∏
k,l>0
k+l=n

C{0<k} ⊗S C{0<l}

∏
k,l>0
k+l=n

C{0<k<k+l}

pn

(µk,l)k,l

∏
k,l pk⊗pl

∏
k,l m̃{0<k},{0<l}(C(νk,l))k,l

β

α

(3.3)

where α and β are defined by

πr,s,tα = (idr ⊗µs,t)πr,s+t and πr,s,tβ = (µr,s ⊗ idt)πr+s,t

For example, Ctemp1 = C{0,1} with p1 = idC{0,1} , and Ctemp2 is the pullback of m̃{0<1},{0<1}
and C(ν1,1). We further set µ0,n and µn,0 to be the left and right unit isomorphisms

respectively:

Ctempn
∼−→ Ctemp0 ⊗S Ctempn , Ctempn

∼−→ Ctempn ⊗S Ctemp0

Further, let f : [m]→ [n] be a morphism in ∆f . We define a quiver morphism Ctemp(f) :
Ctempn → Ctempm by induction on m. Set Ctemp(id[0]) to be the identity on IS . If m > 0, we

let Ctemp(f) be the unique morphism satisfying, for all k, l > 0 with k + l = m:

µk,lCtemp(f) = (Ctemp(f1)⊗S Ctemp(f2))µp,q

and

pmCtemp(f) = C(f)pn
where f1 : [k]→ [p] and f2 : [l]→ [q] are unique in ∆f such that f1 + f2 = f . (Note that

in case m = 1, the first condition is empty and Ctemp(f) is just C(f)pn.)

We have thus constructed a well-defined functor

Ctemp : ∆op
f → V QuivS

By construction, Ctemp is strongly unital and colax monoidal with comultiplication given

by the morphisms (µk,l)k,l≥0.
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Theorem 3.2.9. The assignment C 7→ Ctemp of Construction 3.2.8 extends to a functor

(−)temp : V CatNec → S⊗V

that is right adjoint to the functor (−)nec.

Proof. Take a necklace category C. For every necklace T = {0 = t0 < t1 < ... < tk = p},
consider the quiver morphism

εCT
: (Ctemp)T

pt1⊗...⊗pp−tk−1−−−−−−−−−−−→ C{0,t1} ⊗ ...⊗ C{0,p−tk−1}
m̃−→ CT

By Construction 3.2.8 this morphism is natural in T and it follows immediately that we

have a necklace functor

εC : (Ctemp)nec → C

For a necklace functor H : Xnec → C with (X,S) a templicial object, define α0 as the

canonical quiver morphism X0 ≃ IS → f∗(IOb(C)) = f∗(Ctemp0 ) where f : S → Ob(C)
is the object map of H . Then we define a morphism αn : Xn → f∗(Ctempn ) by induction

on n > 0. Let βn : f!(Xn) = f!(X{0,n}) → C{0,n} be the adjoint to H{0<n}. By the

construction of Ctemp, we have a unique morphism αn : f!(Xn)→ Ctempn such that

pnαn = βn

and for all k, l > 0 with k + l = n, µk,l ◦ αn is equal to the composite

f!(Xn)
f!(µ

X
k,l)−−−−−→ f!(Xk ⊗Xl)→ f!(Xk)⊗ f!(Xl)

αk⊗αl−−−−→ Ctempk ⊗ Ctempl

where we used to colax monoidal structure of f! (Lemma 1.1.18). Hence, we obtain a

templicial morphism (α, f) : (X,S)→ (Ctemp,Ob(C)). Moreover, by the compatibility of

H with the compositions of Xnec
and C, we have that

εC ◦ αnec = H

It is clear by construction thatα is the unique templicial morphism with this property.

3.2.2 Some past constructions revisited

We show that the functor Ũ : S⊗V → SSet (Proposition 2.1.25) and the templicial nerve

NV : V Cat→ S⊗V (Construction 2.3.4) factor through the category V CatNec of necklace

categories.

Notation 3.2.10. By post-composition, the adjunction F : Set ⇆ V : U induces an ad-

junction F : SetNecop ⇆ VNecop : U . Note that as F is strong monoidal and preserves

colimits, the induced functor F : SetNecop → VNecop
is strong monoidal as well. There-

fore, Proposition 1.1.23 provides an adjunction which we denote by

CatNec V CatNec

F

U

⊣
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Proposition 3.2.11. There is diagram of adjunctions

SSet S⊗V

CatNec V CatNec

F̃

(−)nec

F

(−)nec (−)temp

U

Ũ

(−)temp⊣⊣

⊣
⊣

which commutes in the sense that we have natural isomorphisms

(−)nec ◦ F̃ ≃ F ◦ (−)nec and Ũ ◦ (−)temp ≃ (−)temp ◦ U

In particular, we have a natural isomorphism

Ũ ≃ (−)temp ◦ U ◦ (−)nec

Proof. It suffices to show the commutativity of the left-adjoints. But this immediately

follows from the fact that F : Set → V is strong monoidal and preserves colimits. The

final isomorphism Ũ ≃ (−)temp ◦ U ◦ (−)nec follows from the fact that (−)nec is fully

faithful.

Lemma 3.2.12. Let C be a finitely complete category. Let f : A → B be a morphism in C and
n ≥ 2. Then A is the limit of the following diagram of solid arrows:

A
∏
k,l>0
k+l=n

A
∏

r,s,t>0
r+s+t=n

A

B
∏
k,l>0
k+l=n

B

α

β

∆

∏
k,l f

∆

f

where ∆ is the diagonal morphism and α and β are defined by

πr,s,t ◦ α = πr+s,t and πr,s,t ◦ β = πr,s+t

for all r, s, t > 0 with r + s+ t = n.

Proof. Suppose Z ∈ C with u : Z →
∏
k,lA and v : Z → B such that (

∏
k,l f)u = ∆v and

αu = βu. Then note that for all k, l, k′, l′ > 0 with k+ l = k′+ l′ = n, the projections πk,lu
and πk′,l′u coincide. Indeed, we may assume that k < k′ (i.e. l > l′) and thus

πk,lu = πk,l−l′,l′βu = πk,l−l′,l′αu = πk′,l′u

We set h : Z → A to be equal to these morphisms πk,lu (note that there exists at least one

such morphism since n ≥ 2). Then by construction, ∆h = u. Moreover,

fh = πk,l∆fh = πk,l

∏
k,l

f

∆h = πk,l

∏
k,l

f

u = πk,l∆v = v

It is clear that h is unique such that ∆h = u and fh = v.
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Construction 3.2.13. Let (−) : V → VNecop
denote the diagonal functor associating to

every object A ∈ V the constant functor on A.

It is easy to see that for allA,B ∈ V and T ∈ N ec, the following diagram is a coequalizer:

∐
U,N,V ∈Nec
U∨N∨V=T

A⊗B
∐

U,V ∈Nec
U∨V=T

A⊗B A⊗B
β

α ∇

where ∇ denotes the codiagonal and αιU,N,V = ιU∨N,V , βιU,N,V = ιU,N∨V for all

U,N, V ∈ N ec with U ∨ N ∨ V = T . It then follows from Proposition 3.2.2 that (−)
is strong monoidal and thus we have an induced functor

(−) : V Cat→ V CatNec

Proposition 3.2.14. There is a diagram of functors

V Cat S⊗V

V CatNec

NV

(−) (−)temp

which commutes in the sense that we have a natural isomorphism

NV ≃ (−)temp ◦ (−)

Proof. Given a small V-enriched category C, denote its underlying V-enriched quiver also

by C. By definition, Ctemp0 = IOb(C). We proceed by induction on n > 0 to show that

Ctempn ≃ C⊗n and pn : Ctempn → C is the reverse composition m̃(n) : C⊗n → C (see Remark

1.1.22). Indeed, by Construction 3.2.8, Ctempn is the limit of the following diagram of solid

arrows:

Ctempn

∏
k,l>0
k+l=n

C⊗k ⊗ C⊗l
∏

r,s,t>0
r+s+t=n

C⊗r ⊗ C⊗s ⊗ C⊗t

C
∏
k,l>0
k+l=n

C ⊗ C

∏
k,l>0
k+l=n

C

pn

∆

∏
k,l m̃

(k)⊗m̃(l)

∏
k,l m̃

∆

β

α

So as m̃(m̃(k) ⊗ m̃(l)) = m̃(k+l)
, it follows from Lemma 3.2.12 that we may identify Ctempn

with C⊗n and pn with m̃(n)
.

It quickly follows that this identification induces an isomorphism of templicial objects

Ctemp ≃ NV(C), which is clearly natural in C.
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3.2.3 Quasi-categories and Frobenius structures

In this subsection we identify sufficient conditions on a necklace category C such that

its associated templicial object Ctemp is a quasi-category in V (Corollary 3.2.22) or has a

Frobenius structure (Proposition 3.2.20). To achieve the latter, we embed the category

of necklaces N ec into a larger category N ec. This category also contains what we call

coinert maps which parametrize the multiplication morphisms of a Frobenius structure.

For example, there is a coinert map {0 < p+ q} → {0 < p < p+ q} in N ec which should

be interpreted as parametrizing the morphism

Zp,q : Xp ⊗S Xq → Xp+q

of a Frobenius structure Z on a templicial object (X,S). Therefore, if a necklace category

C can be extended to a VNec
op

-enriched category, then the associated templicial object

Ctemp has a Frobenius structure.

Definition 3.2.15. We define a monoidal category N ec as follows:

The objects of N ec are the same as those of N ec. Given two necklaces (T, p) and (U, q),
a morphism (T, p) → (U, q) in N ec is a pair (f, U ′) with f : [p] → [q] in ∆f and

f(T ) ∪ U ⊆ U ′ ⊆ [q].

The composition of two morphisms (f, U ′) : T → U and (g, V ′) : U → V is given by the

pair (gf, V ′ ∪ g(U ′)) and the identity on a necklace T is given by the pair (id[p], T ).

The category N ec has a monoidal structure given on morphisms by

(f, U ′) ∨ (g, V ′) = (f ∨ g, U ′ ∨ T ′)

with monoidal unit given by the necklace ({0}, 0).

Finally, note that we can identify N ec with the non-full monoidal subcategory of N ec
that consists of all morphisms (f, U ′) : T → U such that U ′ = f(T ).

Remark 3.2.16. LetN ecinert denote the subcategory ofN ec consisting of all inert necklace

maps. Note that we can also embed the opposite category (N ecinert)op into N ec by

sending an inert map f : (T, q) → (U, q) to the pair f co = (id[q], T ) : U → T (this is

well-defined as U ⊆ T ). Let us call such a morphism a coinert map. Then we can uniquely

decompose every morphism f : T → U in N ec as

T
f1−→ T1

fco
2−−→ T2

f3−→ U

where f1 is an active necklace map, f co2 is a coinert map and f3 is an inert necklace map.

It follows that N ec is characterized by the following universal property:

Let C be a category and F : N ec → C and G : (N ecinert)op → C functors such that for

every commutative diagram of necklace maps

T ′ T

U ′ U

g′

ff ′

g
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with g and g′ inert and f ′(T ′) = U ′ ∪ f(T ), we have that

G(g)F (f) = F (f ′)G(g′)

Then there is a unique functor

F : N ec→ C
such that F |Nec = F and F |(Necinert)op = G.

Remark 3.2.17. Consider the functor category VNec
op

. As for VNecop
, we can equip VNec

op

with the monoidal closed structure given by Day convolution (see [Day70]).

Proposition 3.2.18. The restriction functor VNec
op

→ VNecop is lax monoidal.

Proof. First note that {0} is still the terminal object of N ec and thus as in Construction

3.2.1, the monoidal unit of VNec
op

is given by the constant functor I . Thus the restriction

functor VNec
op

→ VNecop
is at least strongly unital.

Now take functors X,Y : N ecop → V and let X⊗DayY denote their monoidal product

in VNec
op

. Then the strong monoidal inclusion ι : N ec ↪→ N ec induces a canonical

morphism in VNecop

Xι⊗Day Y ι = Lan∨(Xι(−)⊗ Y ι(−))→ Lan∨(X(−)⊗ Y (−))ι = (X⊗DayY )ι

It is now easy to see that this morphism is natural in X and Y and that it equips the

forgetful functor VNec
op

→ VNecop
with a lax monoidal structure.

Notation 3.2.19. We denote

V CatNec = V
Nec

op

-Cat

Note that by Proposition 3.2.18 there is an induced forgetful functor

V CatNec → V CatNec

Proposition 3.2.20. Let C be a necklace category. Assume that there is an object C in V CatNec

that resticts to C when applying the functor V CatNec → V CatNec. Then Ctemp has a Frobenius
structure.

Proof. Denote the comultiplication of Ctemp by µ. We define a Frobenius structure(
Zk,l : Ctempk ⊗ Ctempl → Ctempk+l

)
k,l≥0

on Ctemp by induction on the pairs (k, l). If k = 0, we set Z0,l
to be the left unit

isomorphism Z0,l : IS ⊗ Ctempl
∼−→ Ctempl . Similarly, if l = 0, we set Zk,0 to be the right

unit isomorphism. This forces that condition (2.8) of Definition 2.2.34 holds.

Assume further that k, l > 0 and set n = k + l. For all p, q > 0 with p + q = n, define a

morphism ξp,q : Ctempk ⊗ Ctempl → Ctempp ⊗ Ctempq by

ξp,q =


(Zk,l−q ⊗ idCtemp

q
)(idCtemp

k
⊗µp−k,q) if k < p

idCtemp
k ⊗Ctemp

l
if k = p

(idCtemp
k
⊗Zk−p,l)(µp,q−l ⊗ idCtemp

l
) if k > p

(3.4)
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If k < p, we have a commutative diagram in N ec:

{0 < k < p < n} {0 < k < n}

{0 < p < n} {0 < n}

νco
k,n−k

id{0<k} ∨νp−k,q

νco
k,p−k∨id{0<q}

νp,q

Moreover, we have that

νk,p−k ◦ νcok,p−k = id{0,p}

It now follows from the construction ofCtemp (diagram (3.3)) and the induction hypothesis

that

C(νp,q)C(νcok,n−k)m̃{0<k},{0<l}(pk ⊗ pl)
= C(νcok,p−k ∨ id{0<q})C(id{0<k} ∨νp−k,n−p)m̃{0<k},{0<l}(pk ⊗ pl)
= C(νcok,p−k ∨ id{0<q})m̃{0<k},{0<p−k<l}(idC{0<k} ⊗C(νp−k,n−p))(pk ⊗ pl)
= C(νcok,p−k ∨ id{0<q})m̃{0<k},{0<p−k<l}(pk ⊗ m̃{0<p−k},{0<q}(pp−k ⊗ pq)µp−k,q)
= C(νcok,p−k ∨ id{0<q})m̃{0<k<p},{0<q}(m̃{0<k},{0<p−k}(pk ⊗ pp−k)µk,p−k ⊗ pq)ξp,q
= C(νcok,p−k ∨ id{0<q})m̃{0<k<p},{0<q}(C(νk,p−k)⊗ idC{0<q})(pp ⊗ pq)ξp,q
= C(νcok,p−k ∨ id{0<q})C(νk,p−k ∨ idC{0<q})m̃{0<p},{0<q}(pp ⊗ pq)ξp,q
= m̃{0<p},{0<q}(pp ⊗ pq)ξp,q

Similarly, C(νp,q)C(νcok,n−k)m̃{0<k},{0<l}(pk ⊗ pl) = m̃{0<p},{0<q}(pp ⊗ pq)ξp,q also holds

when k > p or k = p. Hence, by the construction of Ctempn as the limit (3.3), there is a

unique morphism

Zk,l : Ctempk ⊗ Ctempl → Ctempn

such that pnZ
k,l = C(νcok,n−k)m̃{0<k},{0<l}(pk⊗ pl) and µp,qZ

k,l = ξp,q for all p, q > 0 with

p+ q = n. In particular, the Frobenius condition (2.9) is satisfied.

A similar argument from induction shows that the morphisms Zk,l are natural in k, l ≥ 0
and satisfy associativity (2.8).

Let us now investigate when the templicial object Ctemp is a quasi-category in V .

Proposition 3.2.21. Let C be a necklace category with object set S. For any a, b ∈ S, the
canonical morphism εC : (Ctemp)•(a, b)→ C•(a, b) has the right lifting property with respect to
Cell in Vnecop .

Proof. Let a, b ∈ S and n > 0, and consider a commutative diagram

F̃ (∂∆n)•(0, n) Ctemp• (a, b)

F̃ (∆n)•(0, n) C•(a, b)

ϵ

in VNecop
. The top horizontal morphism corresponds to some collections of elements

(xk)
n−1
k=1 and (yi)

n−1
i=1 with xk ∈ U((Ctempk ⊗ Ctempn−k )(a, b)) and yi ∈ U(Ctempn−1 (a, b)), satis-

fying the conditions of Corollary 2.2.22.2. Moreover, the bottom horizontal morphism
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corresponds to an element z′ ∈ U(C{0<n}(a, b)) and the commutativity of the diagram

comes down to the condition that C(νk,n−k)(z′) = m̃{0<k},{0<n−k}(pk ⊗ pn−k)(xk) and

C(δi)(z′) = pn−1(yi) for all 0 < k, i < n.

Then by Construction 3.2.8, there exists a unique element z ∈ U(Ctempn (a, b)) such that

µk,n−k(z) = xk for all 0 < k < n, and pn(z) = z′. Moreover, we have that di(z) = yi for all

0 < i < n. Indeed, again by Construction 3.2.8, it suffices to note that for all 0 < k, i < n:

µk,n−1−k(di(z)) =

{
(di ⊗ idCtemp

n−k−1
)(µk+1,n−k(z)) if i ≤ k

(idCtemp
k
⊗di−k)(µk,n−k(z)) if i > k

= µk,n−1−k(yi)

pn−1(di(z)) = C(δi)pn(z) = C(δi)(z′) = pn−1(yi)

Hence, the element z determines a morphism F̃ (∆n)•(0, n) → Ctemp• (a, b) which is a lift

of the above diagram.

Corollary 3.2.22. Let C be a necklace category with object set S. Suppose that for all a, b ∈ S,
C•(a, b) lifts inner horns in VNecop . Then (Ctemp, S) is a quasi-category in V .

Proof. Let a, b ∈ S. By Proposition 3.2.21 and Lemma 2.2.25, the canonical morphism

(Ctemp)•(a, b) → C•(a, b) has the right lifting property with respect to the inner horn

inclusion F̃ (Λnj )•(a, b) → F̃ (∆n)•(a, b) for all 0 < j < n. Thus as C•(a, b) lifts inner

horns, so does (Ctemp)•(a, b). Hence, (Ctemp, S) is a quasi-category in V .

3.2.4 Local presentability

Fix a regular cardinal λ. We show that for λ > ℵ0 the category S⊗V of templicial objects

is locally λ-presentable if V is. This will go via the embedding (−)nec : S⊗V ↪→ V CatNec

(see Theorem 3.2.29). For background on locally presentable categories, we refer to

[AR94]. Further, we will make use of the following results from the literature.

Proposition 3.2.23 ([KL01], Corollary 3.4). Let (W,⊗, I) be a cocomplete monoidal closed
category. Then the forgetful functor

W Cat→W Quiv

preserves filtered colimits.

Proposition 3.2.24 ([KL01], Proposition 4.4 and Theorem 4.5). Let (W,⊗, I) a monoidal
closed category such that W is locally λ-presentable. Then W Quiv and W Cat are locally
λ-presentable as well.

Theorem 3.2.25 ([Hen20], Theorem A.2). Assume that λ > ℵ0 and let C be a locally λ-
presentable category. Then for every comonad T on C which preserves λ-filtered colimits, the
category of coalgebras over T is locally λ-presentable as well.

Corollary 3.2.26. Assume thatV is locallyλ-presentable. Then the category of necklace categories
V CatNec is locally λ-presentable as well.
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Proof. By the standing hypotheses, the monoidal product −⊗− in V preserves colimits

in each variable. So as V is assumed to be locally presentable, each of the functors A⊗−
and − ⊗ A has a right-adjoint for all A ∈ V , and thus V is monoidal closed. Then by

[Day70], the monoidal category (VNecop ,⊗Day, I) is also closed. Moreover, as V is locally

λ-presentable, so is VNecop
(see for example [AR94, Corollary 1.54]). So it follows by

Proposition 3.2.24 that V CatNec is locally λ-presentable as well.

Recall the description of colimits in V Quiv given in Remark 1.1.17.

Lemma 3.2.27. LetD1, D2 : J → V Quiv be filtered diagrams which coincide after composition
with V Quiv → Set. Let Sj denote the set of objects of D1(j) and D2(j) for each j ∈ J and set
S = colimj∈J S

j . Then the canonical morphism in V Quiv:

colim
j∈J

(D1(j)⊗Sj D2(j))→
(
colim
j∈J

D1(j)

)
⊗S
(
colim
j∈J

D2(j)

)
is an isomorphism.

Proof. For each j ∈ J and every t : i → j in J , let ιj : S
j → S and ιt : S

i → Sj denote

the canonical maps. Take x, y ∈ S. Evaluating the above morphism in (x, y), we find the

following morphism in V :

colim
j∈J

∐
a,b,c∈Sj

ιj(a)=x
ιj(c)=y

(D1(j)(a, b)⊗D2(j)(b, c))
φ−→ colim

i,j∈J

∐
a,b∈Si,b′,c∈Sj

ιi(a)=x
ιj(c)=y

ιi(b)=ιj(b
′)

(D1(i)(a, b)⊗D2(j)(b
′, c))

Now define a morphism ψ from right to left as follows. Take i, j ∈ J and a, b ∈ Si,
b′, c ∈ Sj such that ιi(a) = x, ιj(c) = y and ιi(b) = ιj(b

′). As J is filtered, we can choose a

k ∈ J with morphisms s : i→ k and t : j → k such that ιs(b) = ιt(b
′). Then set a = ιs(a),

c = ιt(c) and b = ιs(b) = ιt(b
′) in Sk. Then consider the composite

D1(i)(a, b)⊗D2(j)(b
′, c)→ D1(k)(a, b)⊗D2(k)(b, c)→ colim

j∈J
(D1(j)⊗Sj D2(j)) (x, y)

ofD1(s)a,b⊗D2(t)b′,c with the canonical morphism. It is easy to see that these morphisms

define a morphism ψ which is inverse to φ.

Proposition 3.2.28. The functor (−)temp : V CatNec → S⊗V preserves filtered colimits.

Proof. Let D : J → V CatNec be a filtered diagram. Let C denote its colimit and set

S = Ob(C). Then S ≃ colimj Ob(D(j)). Let ιj denote the canonical map Ob(D(j)) → S
for all j ∈ J . Then we have for every T ∈ N ec that CT ≃ colimj D(j)T in V Quiv
by Proposition 3.2.23. We will show by induction on n ≥ 0 that the canonical quiver

morphism

colim
j∈J

D(j)tempn → Ctempn

is an isomorphism in V Quiv.
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For n = 0, this follows from the isomorphism S ≃ colimj Ob(D(j)). Assume futher that

n > 0. By Construction 3.2.8, Ctempn is the limit of the following diagram of solid arrows:

Ctempn

∏
k,l>0
k+l=n

Ctempk ⊗S Ctempl

∏
r,s,t>0
r+s+t=n

Ctempr ⊗S Ctemps ⊗S Ctempt

C{0<n}
∏
k,l>0
k+l=n

C{0<k} ⊗S C{0<l}

∏
k,l>0
k+l=n

C{0<k<k+l}

pn

(µk,l)k,l

∏
k,l pk⊗pl

∏
k,l m̃{0<k},{0<l}(C(νk,l))k,l

β

α

where m̃ is the reverse composition of C (see Remark 1.1.22). By the induction hypothesis,

Ctempk ≃ colimj D(j)tempk for all 0 ≤ k < n. By Proposition 3.2.24, finite limits commute

with filtered colimits inV Quiv (see for example [AR94], Proposition 1.59). Thus it follows

by Lemma 3.2.27 that also Ctempn ≃ colimj D(j)tempn .

Theorem 3.2.29. Assume that λ > ℵ0 and V is locally λ-presentable. Then the category of
templicial objects S⊗V is locally λ-presentable.

Proof. Consider the idempotent comonad T = (−)nec ◦ (−)temp on C. Then S⊗V is

equivalent to the category of coalgebras on T (see the dual of [Bor94b, Corollary 4.2.4] for

example). By Proposition 3.2.28, T preserves λ-filtered colimits. Thus the result follows

from Theorem 3.2.25 and Corollary 3.2.26.

Proposition 3.2.30. Let C and D be cocomplete monoidal categories categories and H : C → D
a lax monoidal functor which preserves λ-filtered colimits. Then the induced functor

H : C Cat→ DCat

preserves λ-filtered colimits as well.

Proof. We first show that the induced functor H : CQuiv → DQuiv preserves λ-filtered

colimits. LetD : J → CQuiv : j 7→ (Qj , Sj) be aλ-filtered diagram. SetS = colimj∈J S
j
.

Consider the canonical quiver morphism

φ : colim
j∈J

H(Qj)→ H
(
colim
j∈J

Qj
)

Then φ is given on vertices by the identity on S. Take x, y ∈ S, we wish to show that the

induced morphism

φx,y : colim
j∈J

∐
a,b∈Sj

ιj(a)=x
ιj(b)=y

H(Qj(a, b))→ H
(
colim
j∈J

∐
a,b∈Sj

ιj(a)=x
ιj(b)=y

Qj(a, b)
)

is an isomorphism in V . Define a category J x,y with objects all triples (j, a, b) with j ∈ J
and a, b ∈ Sj such that ιj(a) = x and ιj(b) = y. A morphism (i, a, b)→ (j, c, d) in J x,y is
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given by a morphism t : i→ j in J such thatD(t)(a) = c andD(t)(b) = d. Then it is easy

to see that J x,y is a λ-filtered category and φx,y is isomorphic to the canonical morphism

colim
(j,a,b)∈J x,y

H(Qj(a, b))→ H
(

colim
(j,a,b)∈J x,y

Qj(a, b)
)

Hence, φx,y is an isomorphism by the assumption that H preserves λ-filtered colimits.

Now consider the following commutative diagram of functors

C Cat DCat

CQuiv DQuiv

H

H

The vertical functors preserve filtered colimits by Proposition 3.2.23 and they are clearly

conservative. Thus it follows that the top horizontal functor also preserves λ-filtered

colimits.

Proposition 3.2.31. Assume that I is λ-presentable in V . Then the functor Ũ : S⊗V → SSet
preserves λ-filtered colimits.

Proof. In view of Propositions 3.2.11 and 3.2.28, it suffices to show that the forgetful

functor U : V CatNec → CatNec preserves λ-filtered colimits. As I is λ-presentable in

V , the forgetful functor U = V(I,−) : V → Set preserves λ-filtered colimits and thus so

does the induced functor VNecop → SetNecop
. The result now follows from Proposition

3.2.30.

Proposition 3.2.32. The templicial nerve NV : V Cat→ S⊗V preserves filtered colimits.

Proof. In view of Propositions 3.2.14 and 3.2.28, it suffices to show that the functor (−) :
V Cat→ V CatNec preserves filtered colimits. As the diagonal functor (−) : V → VNecop

preserves all colimits, this follows from Proposition: 3.2.30.

Under the conditions of Theorem 3.2.29, the category of templicial objects S⊗V is locally

presentable and thus complete. This can also be seen more directly using the embedding

(−)nec : S⊗V ↪→ V CatNec.

Proposition 3.2.33. Assume that V is complete. Then the category of templicial objects S⊗V is
complete.

Proof. AsV is complete, so isVNecop
and thus so isV CatNec. As a coreflective subcategory

of V CatNec, S⊗V is thus also complete and the limits are inherited from V CatNec by

applying (−)temp (by the dual of [Bor94a, Prop 3.5.4] for example).

We end this section by discussing the limits in S⊗V in a little more detail.
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Remark 3.2.34. Fix a small category J and a diagram J → S⊗V : j 7→ (Xj , Sj). Since

S⊗V is a coreflective subcategory of V CatNec, the limit of X can be calculated as

L = lim
j∈J

(Xj , Sj) =

(
lim
j∈J

(Xj , Sj)nec
)temp

∈ VNecop

As in any category of enriched categories, the limits in V CatNec are given pointwise.

Concretely, this means that the object set of limj∈J(X
j , Sj)nec is the limit S = limj∈V S

j

in Set, and for all T ∈ N ec we have(
lim
j∈V

(Xj , Sj)nec
)
T

≃ lim
j∈J

π∗
j (X

j
T ) ∈ V QuivS

where πj denotes the canonical map S → Sj for all j ∈ J .

Further, the composition law of limj∈J(X
j , Sj) is determined by the canonical quiver

morphisms

m̃T,U : lim
j∈J

π∗
j (X

j
T )⊗S lim

j∈J
π∗
j (X

j
U )→ lim

j∈J

(
π∗
j (X

j
T )⊗S π

∗
j (X

j
U )
)
→ lim

j∈J
π∗
j (X

j
T∨U )

where we used the lax structure of π∗
j (Lemma 1.1.18).

Hence, it follows from Construction 3.2.8 that L0 = IS , and for all n > 0, Ln is the limit

of the following diagram of solid arrows

Ln
∏
k,l>0
k+l=n

Lk ⊗S Ll
∏

r,s,t>0
r+s+t=n

Lr ⊗S Ls ⊗S Lt

limj∈J π
∗
jX

j
n

∏
k,l>0
k+l=n

limj∈J π
∗
jX

j
k ⊗S limj∈J π

∗
jX

j
l

∏
k,l>0
k+l=n

limj∈J π
∗
j (X

j
k ⊗Sj Xj

l )

pn

(µL
k,l)k,l

∏
k,l pk⊗pl

(limj π
∗
j (µ

j
k,l))k,l

β

α

in V QuivS .

So in low dimensions, we have for all a, b ∈ S:

L1(a, b) = lim
j∈J

Xj
1(πj(a), πj(b))

while L2(a, b) is given by the pullback:

L2(a, b)
(
limj∈J π

∗
jX

j
1 ⊗S limj∈J π

∗
jX

j
1

)
(a, b)

limj∈J X
j
2(πj(a), πj(b)) limj∈J

(
(Xj

1 ⊗Sj Xj
1)(πj(a), πj(b))

)
where the bottom horizontal morphism is induced by the comultiplications µj1,1 of each

templicial object Xj
.
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Example 3.2.35. Applying Remark 3.2.34 to the empty diagram J = ∅, we find that the

terminal object 1 of S⊗V is given as follows. Its set of vertices is a singleton {∗} and for

all n ≥ 0,

1n = 1⊗ ...⊗ 1︸ ︷︷ ︸
n times

where 1 represents the terminal object of V . Note that this is isomorphic to the templicial

nerve of the terminal object in V-Cat. This isn’t surprising as NV is a right-adjoint by

Proposition 2.3.14. Let us consider some special cases:

• In case V is (semi-)cartesian, the terminal object 1 of S⊗V reduces to the constant

functor on the terminal object 1 of V .

• In case V = Mod(k) with k a unital commutative ring, then 1n = 0 for all n > 0
and 10 = k. Note that this is not isomorphic to the initial object of S⊗ Mod(k) since

the latter has an empty vertex set. So unlike Mod(k), the category of templicial

k-modules does not have a zero object.
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Chapter 4444444444444444444444444444444444444444444444444444444444444444444444444
Examples of quasi-categories in a

monoidal category

“Kate Walker! I see you managed to produce two XZ2005_B models!”

- Oscar (Syberia)

There are a couple of classical constructions which provide examples of quasi-categories

as simplicial sets. In Chapter 1, we already discussed the nerve functor N : Cat → SSet
and its templicial analogue NV : V Cat→ S⊗V .

Another classical construction is the homotopy coherent nerve Nhc : Cat∆ → SSet from

simplicial categories (that is, categories enriched in simplicial sets) to simplicial sets.

It was introduced by Cordier in [Cor82]. Later, Cordier and Porter showed in [CP86,

Theorem 2.1] that the homotopy coherent nerve Nhc(C) of a simplicial category C is a

quasi-category if every hom-object C(A,B) is a Kan complex. They also constructed the

left-adjoint C : SSet → Cat∆ to Nhc
. This categorification functor was later described in a

very elegant way by Dugger and Spivak in [DS11b].

Fixing a unital commutative ring k, there is also the differential graded (dg) nerve Ndg :
kCatdg → SSet from differential graded categories over k to simplicial sets, see [Lur16].

Lurie showed that the dg-nerveNdg(C) of any dg-category C• is always a quasi-category.

The two sections of this chapter are devoted to constructing templicial analogues of

the homotopy coherent nerve and the dg-nerve respectively. For the former, the two

occurences of simplicial sets are generalized differently. The category SSet on its own is

replaced by S⊗V . But SSet as enriching category for Cat∆ is replaced by the category

SV of simplicial objects in V . This yields the category V Cat∆ of small SV-enriched

categories. Inspired by Dugger and Spivak’s description of the categorification functor

C, we then construct an adjunction CV : S⊗V ⇆ V Cat∆ : Nhc
V (§4.1.2) which recovers

the classical adjunction when V = Set. To do this, we’ll use the category V CatNec

of necklace categories (Definition 3.2.3) as an intermediate step. Moreover, if an SV-

enriched category C is locally Kan, then Nhc
V will be a quasi-category in V (Proposition

4.1.20).

The bulk of this chapter is contained in Section 4.2, where we lift the classical dg-nerveNdg

along Ũ to obtain the linear dg-nerve Ndg
k : kCatdg → S⊗ Mod(k). This goes in two major

101
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steps. The first equates dg-categories with categories enriched in augmented simplicial

modules S+ Mod(k), through an augmented version of the Dold-Kan correspondence

(Proposition 4.2.10). The second is an equivalence between these S+ Mod(k)-categories
and templicial k-modules equipped with a Frobenius structure (Theorem 4.2.17). More-

over, we will show that Ndg
k (C) is a quasi-category in Mod(k) for any dg-category C•

(Corollary 4.2.65). Finally, we’ll compare the linear dg-nerve to the other nerves defined

earlier.

4.1 Categories enriched in simplicial objects

In this section we generalize the adjunction between the categorification functor C :
SSet → Cat∆ and the homotopy coherent nerve Nhc : Cat∆ → SSet to the templicial

level, yielding an adjunction CV ⊣ Nhc
V which depends on V . One can quickly see that C

actually factors through the category CatNec of Definition 3.2.3. Moreover, the functor

CatNec → Cat∆ is determined on hom-objects by a functor n : SetNecop → SSet. It is now

straightforward to generalize n to a functor VNecop → SV (Construction 4.1.11), which in

turn induces a functorV CatNec → V Cat∆. Here,V Cat∆ denotes the category of all small

SV-enriched categories. Composing with the embedding (−)nec : S⊗V ↪→ V CatNec

then yields our templicial categorification CV : S⊗V → V Cat∆. Finally, the templicial

homotopy coherent nerve is obtained as the right-adjoint to CV .

We open this section by recalling the classical adjunction C ⊣ Nhc
. Then we generalize

it to CV ⊣ Nhc
V , using the approach outlined above. Following Dugger and Spivak’s

description of C, also CV [X] can be reformulated in a similar way, if we assume that the

templicial object X is free (Proposition 4.1.28). We conclude the section by comparing

the templicial homotopy coherent nerveNhc
V to the templicial nerveNV defined in §2.3.1

(Proposition 4.1.33).

For this section, we impose the additional standing hypotheses that (V,⊗, I) is complete

and symmetric monoidal closed. In other words, V is a Bénabou cosmos.

4.1.1 The classical homotopy coherent nerve

We recall the definitions of the categorification functor C : SSet → Cat∆ and its right-

adjoint, the homotopy coherent nerve Nhc : Cat∆ → SSet. This is taken from [Lur09a,

§1.1.5] and [DS11b].

Definition 4.1.1. Consider the category of simplicial sets SSet as a monoidal category

with the cartesian product: (SSet,×,∆0). A simplicial category is a category enriched in

SSet. A simplicial functor is a SSet-enriched functor between simplicial categories. We

denote

Cat∆

for the category of small simplicial categories and simplicial functors between them.
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Construction 4.1.2. Let n ≥ 0, we construct a simplicial category C[∆n] as follows. Its

objects are given by the set [n] and for all i, j ∈ [n], we set

C[∆n] =

{
N(Pj−i) if i ≤ j
∅ i > j

where Pj−i denotes the poset of Notation 2.2.9 and N : Cat → SSet the classical nerve

functor (Definition 1.3.22). Note that N(Pj−i) ≃ (∆1)×j−i−1
if i < j and N(Pj−i) ≃ ∆0

if i = j. Further, given i ≤ j ≤ k in [n], the reverse composition (see Remark 1.1.22)

m̃i,j,k : C[∆n](i, j)× C[∆n](j, k)→ C[∆n](i, k)

is given by applying N to the order morphism

Pj−i × Pk−j → Pk−i : (T,U) 7→ T ∨ U

of Remark 2.2.10. Finally, the identities are given by the unique vertex of C[∆n](i, i) ≃ ∆0

for all i ∈ [n].

Further, given f : [m] → [n] in ∆, we construct a simplicial functor C[∆m] → C[∆n] as

follows. On objects, it is given by the map f : [m] → [n] itself. For all i ≤ j in [m], f
induces a morphism in ∆f :

fi,j : [j − i]→ [f(j)− f(i)] : k 7→ f(k + i)− f(i)

Then the map

C[∆m](i, j)→ C[∆n](f(i), f(j))

is given by applying N to the order morphism of Remark 2.2.10 induced by fi,j :

P(fi,j) : Pj−i → Pf(j)−f(i) : T 7→ fi,j(T )

It is now easy to see that the above constructions define a functor

C[∆(−)] : ∆→ Cat∆

Definition 4.1.3. Consider the cosimplicial object C[∆(−)] of Construction 4.1.2. Then

Proposition 1.3.11 provides an adjunction

SSet Cat∆
C

Nhc

⊣

The left-adjoint C is called the categorification functor and is given by left Kan extension

of C[∆(−)] along the Yoneda embedding ∆ ↪→ SSet. The right-adjoint Nhc
is called the

homotopy coherent nerve functor. We have for all small simplicial categories C and n ≥ 0
that

Nhc(C)n ≃ Cat∆(C[∆
n], C)

Example 4.1.4. Given a small simplicial category C, let us describe its homotopy coherent

nerve in low dimensions.

• The vertices of Nhc(C) are given by the set of objects Ob(C).
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• The edges of Nhc(C) are given by the morphisms of C (that is vertices f ∈ C0(A,B)
for some A,B ∈ Ob(C)).

• A 2-simplex of Nhc(C) is given by a (not necessarily commutative) diagram of

morphisms in C:
C

A B

f g

h

σ

along with an edge σ of C(A,B) from h to the composition g ◦ f .

The first steps of Dugger and Spivak’s streamlining of the description of C are outlined

in the following two propositions. For now this will suffice. We will return to their

reduction in §4.1.3.

Proposition 4.1.5 ([DS11b], Proposition 3.7). There is an isomorphism of simplicial sets

C[T ](0, p) ≃ N(PT )

that is natural in all necklaces (T, p) ∈ N ec.

Proposition 4.1.6 ([DS11b], Proposition 4.3). For every simplicial set K with vertices a and
b, there is an isomorphism of simplicial sets

C[K](a, b) ≃ colim
T→Ka,b in SSet∗,∗

(T,p)∈Nec

C[T ](0, p)

We now introduce another way of describing the categorification, this time by means

of a weighted colimit. This will make it easier to generalize to the context of templicial

objects. For background on weighted (co)limits, we refer to the relevant literature (for

example, see [Rie14]). Recall by Proposition 2.1.15 that we may view a simplicial set

K as a templicial set and thus we can apply Construction 2.2.16 to obtain a functor

K•(a, b) : N ecop → Set : T 7→ KT (a, b) for any two vertices a and b of K.

Proposition 4.1.7. For any simplicial set K with vertices a and b, C[K](a, b) is isomorphic to
the weighted colimit in SSet:

colimK•(a,b)NP(−)

of NP(−) : N ec→ SSet with weight K•(a, b) : N ecop → Set.

Proof. From Propositions 4.1.5 and 4.1.6, it is clear that C[K](a, b) is isomorphic to the

following coequalizer in SSet:

∐
T→U→Ka,b

T,U∈Nec

N(PT )
∐

T→Ka,b

T∈Nec

N(PT ) C[K](a, b)
α

β

where α and β are given by respectively projecting onto T → Ka,b and applying NP(−)

to T → U for any T → U → Ka,b in SSet∗,∗.
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Now note that a morphism T → Ka,b in SSet∗,∗ with T a necklace, is equivalent to an

element of the set KT (a, b) (which we consider as a constant simplicial set). Hence, we

obtain a coequalizer diagram

∐
T→U
in Nec

KU (a, b)×N(PT )
∐

T∈Nec

KT (a, b)×N(PT ) C[K](a, b)
α

β

where α and β are given by respectively applying K•(a, b) and NP(−) to T → U in N ec.
But this coequalizer is precisely the weighted colimit described in the statement.

4.1.2 The templicial homotopy coherent nerve

We quickly recall the pointwise monoidal structure on the category of simplicial objects

in V , so that we can define categories enriched over SV .

Construction 4.1.8. It is easily seen that the monoidal structure onV induces a symmetric

monoidal structure on SV . Given simplicial objects X and Y , their monoidal product

X ⊗ Y is given by, for all n ≥ 0:

(X ⊗ Y )n = Xn ⊗ Yn

The monoidal unit in SV is then given by the constant functor on the monoidal unit I
of V , which is isomorphic to F∆0

. Note that in particular for V = Set, we recover the

cartesian product on simplicial sets (SSet,×,∆0).

Moreover, the category SV is enriched and tensored over V . Given two simplicial ob-

jects X and Y , we denote their hom-object by [X,Y ] ∈ V . It is the object of natural

tranformations from X to Y and can be realized as the following equalizer in V :

[X,Y ]
∏
n≥0

V(Xn, Yn)
∏

f :[m]→[n]
in ∆

V(Xn, Ym)
α

β

where V(−,−) denotes the internal hom of V , which exists by the standing hypotheses.

Further, α and β are given by respectively post-composing with Y (f) and pre-composing

with X(f) for a morphism f : [m]→ [n] in ∆.

The tensoring V ·X of an object V ∈ V with a simplicial object X is given simply by the

monoidal product V ⊗X where V is the constant simplicial object on V .

Definition 4.1.9. An SV-category is a category enriched in the symmetric monoidal cat-

egory (SV,⊗, F∆0) of Construction 4.1.8. An SV-functor is an SV-enriched functor. We

denote the category of small SV-categories and SV-functors by

V Cat∆ = SV Cat

Note that in particular if V = Set, we recover the category of small simplicial categories

Cat∆.

Notation 4.1.10. Consider the monoidal adjunction F : Set ⇆ V : U . It induces a

monoidal adjunction F : SSet ⇆ SV : U by post-composition. Hence, by Proposition
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1.1.23 we have an induced adjunction between simplicial categories and SV-categories

which we denote by

Cat∆ V Cat∆
F

U

⊣

We are now ready to construct the templicial analogue CV : S⊗V → V Cat∆ of the

categorification functorC. The templicial homotopy coherent nerveNhc
V : V Cat∆ → S⊗V

will then be defined as the right-adjoint to CV (see Definition 4.1.13). Note that by

Proposition 4.1.7 it is clear that C factors through the functor (−)nec : SSet → CatNec of

Construction 3.2.5. Therefore, in order to construct CV , we will first build an adjunction

between V CatNec and V Cat∆.

Construction 4.1.11. We construct an adjunction

VNecop SV
s

n

⊣

as follows. Given a functor X : N ecop → V , consider the weighted colimit in SV :

s(X) = colim
T∈Nec

XTFNPT

of the composite N ec
P(−)−−−→ Cat

N−→ SSet
F−→ SV with weight X . Explicitly, s(X) may be

realized as the following reflexive coequalizer in SV :

∐
f :T→U
in Nec

XU ⊗ FN(PT )
∐

T∈Nec

XT ⊗ FN(PT ) s(X)
β

γ
α

(4.1)

whereα and β are given by respectively applyingX andFNP(−) to a necklace morphism

f : T → U , and γ is given by selecting the identity idT for any necklace T .

As a weighted colimit, s(X) fits into a canonical bĳection of sets

SV(s(X), Y ) ≃ VNecop(X, [FNP(−), Y ])

which is natural in Y ∈ SV (see [Rie14, Definition 7.4.1] for example). Hence, the

assignment X 7→ s(X) extends to a functor s : VNecop → SV which is left-adjoint to the

functor

n : SV → VNecop : Y 7→ [FNP(−), Y ]

Proposition 4.1.12. The adjunction s ⊣ n of Construction 4.1.11 is monoidal in the sense of
Definition 1.1.5.

Proof. Consider the monoidal unit I of VNecop
, that is the constant functor on I . Let

∗ : N ecop → Set denote the constant functor on a singleton so that F (∗) ≃ I . Note

that P{0} contains a single element and thus NP{0} ≃ ∆0
. Then since F : SSet → SV

preserves colimits and {0} is the terminal object of N ec, we have

s(I) ≃ F
(
colim
T∈Nec

∗NPT
)
≃ F

(
colim
T∈Nec

NPT
)
≃ FNP{0} ≃ F∆0
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Now let X and Y be functors N ecop → V and consider their Day convolution X ⊗Day Y
(Construction 3.2.1). Note that by Remark 2.2.10, we have FNPU ⊗ FNPV ≃ FNPU∨V

for all necklaces U and V . We construct a commutative diagram in SV as follows:

∐
U→U ′

N→N ′

V→V ′

in Nec

(XU ′ ⊗ YV ′)⊗ FNPU∨N∨V
∐

U,N,V ∈Nec

(XU ⊗ YV )⊗ FNPU∨N∨V C

∐
U→U ′

V→V ′

in Nec

(XU ′ ⊗ YV ′)⊗ FNPU∨V
∐

U,V ∈Nec

(XU ⊗ YV )⊗ FNPU∨V s(X)⊗ s(Y )

∐
T→T ′

in Nec

(X ⊗Day Y )T ′ ⊗ FNPT
∐

T∈Nec

(X ⊗Day Y )T ⊗ FNPT s(X ⊗Day Y )

q

β′
α′

α

β

γ

The middle and bottom rows are reflexive coequalizers induced by (4.1). In the top row,

α is given by applying X and Y to the morphisms U → U ′
and V → V ′

, and β is given

by applying FNP(−) to the morphism U ∨ N ∨ V → U ′ ∨ N ′ ∨ V ′
. Also, γ selects the

identities idU , idN and idV for any U,N, V ∈ N ec. Then clearly αγ = id = βγ and we

define C as the coequalizer of α and β. The middle column is a reflexive coequalizer

provided by Proposition 3.2.2. The left hand column is also a reflexive coequalizer and

can be constructed similarly to the proof of Proposition 3.2.2. Consequently, we have an

induced reflexive coequalizer in the right hand column (apply the the dual of [Agu97,

Lemma 1.1.2] for example).

We claim that the epimorphism s(X)⊗s(Y ) ↠ s(X⊗Day Y ) is an isomorphism. For this,

it would suffice that the two morphisms C → s(X)⊗ s(Y ) coincide, which will follow if

we can show that qα′ = qβ′
. Take U,N, V ∈ N ec and set T = U ∨ N ∨ V . Denote by σ

the unique necklace map N → {0}. Then we have

qα′ιU,N,V = qιU∨N,V ((X(idU ∨σ)⊗ idYV
)⊗ idFNPT

= qιU,V (idXU⊗YV
⊗FNP(idU ∨σ ∨ idV ))

= qιU,N∨V ((idXU
⊗Y (σ ∨ idV ))⊗ idFNPT

= qβ′ιU,N,V

by virtue of the coequalizer in the middle row of the above diagram.

Finally, it is readily verified that the isomorphism s(X)⊗ s(Y ) ≃ s(X ⊗Day Y ) is natural

in X and Y , and defines a strong monoidal structure on the functor s.

Definition 4.1.13. By virtue of Propositions 4.1.12 and 1.1.23, the adjunction s ⊣ n be-

tween VNecop
and SV induces an adjunction

V CatNec V Cat∆
s

n

⊣

We call the composite

CV : S⊗V
(−)nec

−−−−→ V CatNec
s−→ V Cat∆
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the categorification functor. It is left-adjoint to the composite

Nhc
V : V Cat∆

n−→ V CatNec
(−)temp

−−−−−→ S⊗V

which we call the templicial homotopy coherent nerve.

Example 4.1.14. Suppose V = Set. Then the adjunction CV ⊣ Nhc
V reduces to the classical

adjunction C ⊣ Nhc
. Indeed, it suffices to note that CV reduces to C, which follows from

Proposition 4.1.7 and Construction 4.1.11.

Remark 4.1.15. Given a templicial object (X,S), let us make the structure of CV [X] as a

SV-enriched category a little more explicit.

The object set of CV [X] is just S. By Construction 4.1.11 we have a reflexive coequalizer

diagram for all a, b ∈ S:

∐
f :T→U
in Nec

XU (a, b)⊗ FN(PT )
∐

T∈Nec

XT (a, b)⊗ FN(PT ) CV [X](a, b)
β

γ
α

(4.2)

where α and β are given by respectively applying X•(a, b) and FNP(−) to a necklace

map f : T → U , and γ is given by selecting the identity idT for any necklace T .

Take a, b, c ∈ S. Then the reverse composition law

m̃a,b,c : CV [X](a, b)⊗ CV [X](b, c)→ CV [X](a, c)

of CV [X] is induced by the morphismsXT (a, b)⊗XU (b, c)→ XT∨U (a, c) and the isomor-

phisms PT × PU ≃ PT∨U (see Remark 2.2.10) which are natural in T,U ∈ N ec.

Take a ∈ S. Then the identity on a in CV [X] is given by

ua : F∆0 ≃ X0(a, a)⊗ FN(P0)→ CV [X](a, a)

where the isomorphism is induced by N(P{0}) ≃ ∆0
and X0(a, a) ≃ I .

Example 4.1.16. Let C be a small SV-category. We describe the templicial object Nhc
V (C)

in low dimenions. Note the analogy with Example 4.1.4.

• The vertex set of Nhc
V (C) is simply Ob(C).

• Further for any A,B ∈ Ob(C), it follows from N(P{0<1}) ≃ ∆0
that

Nhc
V (C)1(A,B) = n(C){0<1}(A,B) = [FN(P{0<1}), C(A,B)] ≃ C0(A,B)

• In dimension 2, it follows from N(P{0<2}) ≃ ∆1
and N(P{0<1<2}) ≃ ∆0

that

n(C){0<2}(A,B) = [FN(P{0<2}), C(A,B)] ≃ C1(A,B)

n(C){0<1<2}(A,B) = [FN(P{0<1<2}), C(A,B)] ≃ C0(A,B)

The morphism n(C){0<2}(A,B) → n(C){0<1<2}(A,B) is induced by inert necklace

map ν1,1 : {0 < 1 < 2} ↪→ {0 < 2} and thus corresponds to the face map
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d0 : C1(A,B)→ C0(A,B). It follows from (3.3) that we have a pullback diagram:

Nhc
V (C)2(A,B)

∐
C∈Ob(C)

C0(A,C)⊗ C0(C,B)

C1(A,B) C0(A,B)

m̃0,0

d0

So applying U , we see that the underlying set of the object Nhc
V (C)2(A,B) consists

of pairs (σ, α) with α ∈ U(
∐
C∈Ob(C) C0(A,C)⊗C0(C,B)) and σ an edge in C(A,B)

from h = d1(σ) to m̃(α).

Proposition 4.1.17. There are canonical natural isomorphisms

CV ◦ F̃ ≃ F ◦ C and Ũ ◦Nhc
V ≃ Nhc ◦ U

with F ⊣ U the adjunction from Notation 4.1.10.

Proof. As CV ⊣ Nhc
V , C ⊣ Nhc

, F̃ ⊣ Ũ and F ⊣ U , it suffices to only show the first natural

isomorphism. Since F : SSet→ SV preserves colimits and is strong monoidal, it is clear

that

colim
T∈Nec

FXTFNPT ≃ F
(
colim
T∈Nec

XTNPT
)

for any functor X : N ecop → Set. It follows that we have a natural isomorphism

F ◦ s ≃ s ◦ F of functors SetNecop → SV , and thus also F ◦ s ≃ s ◦ F of functors

CatNec → V Cat∆. Thus by Proposition 3.2.11 we have

F ◦ C ≃ F ◦ s ◦ (−)nec ≃ s ◦ F ◦ (−)nec ≃ s ◦ (−)nec ◦ F̃ ≃ CV ◦ F̃

Remark 4.1.18. The categorification functor CV does not commute with the forgetful

functors in the sense that U ◦ CV ≃ C ◦ Ũ . In fact, the canonical simplicial functor

C[Ũ(X)] → U(CV [X]) even fails to be a Dwyer-Kan equivalence in general. This is a

direct consequence of Example 2.3.18 and will be discussed further in Example 4.1.34.

Proposition 4.1.19. Let C be a small SV-category. Then the templicial object Nhc
V (C) has a

Frobenius structure.

Proof. Note that we can extend the strong monoidal functor P(−) : N ec → Cat to a

functor P(−) : N ec→ Cat by setting

P(f,U ′) : PT → PU : T ′ 7→ f(T ′) ∪ U ′

for every morphism (f, U ′) : T → U in N ec. Then the functor n : SV → VNecop
of

Construction 4.1.11 clearly factors as

SV n−→ VNec
op

→ VNecop

where n sends a simplicial object Y to the functor [FNP(−), Y ] : N ecop → V . It follows

that n : V Cat∆ → V CatNec factors through the forgetful functor V CatNec → V CatNec.

Thus the result follows from Proposition 3.2.20.
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Proposition 4.1.20. Let C be a small SV-category such that for all A,B ∈ Ob(C), the simplicial
set U(C(A,B)) is a Kan complex. Then the templicial object Nhc

V (C) is a quasi-category in V .

Proof. By Corollary 3.2.22, it suffices to check that for all A,B ∈ Ob(C), the functor

n(C(A,B))• = [FNP(−), C(A,B)] : N ecop → V

lifts inner horns in VNecop
. By the adjunction s ⊣ n, this is equivalent to showing that for

all 0 < j < n, every diagram of solid arrows

s
(
F̃ (Λnj )•(0, n)

)
C(A,B)

s
(
F̃ (∆n)•(0, n)

)
in SV has a lift given by the dotted arrow. Now by Proposition 4.1.17,

s
(
F̃ (Λnj )•(0, n)

)
= CV [F̃ (Λ

n
j )](0, n) ≃ F

(
C[Λnj ](0, n)

)
s
(
F̃ (∆n)•(0, n)

)
= CV [F̃ (∆

n)](0, n) ≃ F (C[∆n](0, n))

So by the adjunction F ⊣ U , the above lifting problem is further equivalent to

C[Λnj ](0, n) U(C(A,B))

C[∆n](0, n)

in SSet. Thus as U(C(A,B)) is a Kan complex, it suffices to prove that the left vertical

map is anodyne (Definition 1.3.16), which was done in [Lur09a, Proposition 1.1.5.10] and

is given in more detail in [Lur18, Tag 00LH] (beware that in the latter, the notation Path
is used instead of C).

4.1.3 Categorification in terms of flanked flags

In this subsection we continue adapting Dugger and Spivak’s simplification of C to the

templicial setting. Given a simplicial set K with vertices a and b, and a fixed n ≥ 0, they

describe the set of n-simplices of C[K](a, b) much more simply by means of so-called

flags of a necklace T and totally non-degenerate maps T → Ka,b. Let us first recall these

definitions.

Definition 4.1.21. Let (T, p) be a necklace and n ≥ 0. A flag of length n on T is defined

as an n-simplex of the nerve N(PT ). Explicitly, a flag of length n on T is a sequence of

inclusions

T⃗ = (T0 ⊆ ... ⊆ Tn)

such that T ⊆ T0 and Tn ⊆ [p]. We call a flag T⃗ on a necklace T flanked if T = T0 and

Tn = [p].
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Definition 4.1.22. LetK be a simplicial set with vertices a and b, and T = ∆n1 ∨ ...∨∆nk

a necklace. A map T → Ka,b in SSet∗,∗ is totally non-degenerate if for every i ∈ {1, ..., k},
the composite map in SSet

∆ni ↪→ T → Ka,b

represents a non-degenerate ni-simplex of K.

As an immediate consequence of Proposition 4.1.6 (see [DS11b, Corollary 4.4]), we see

that an n-simplex of C[K](a, b) consists of an equivalence class

[T, T → Ka,b, T⃗ ] (4.3)

of triples (T, T → Ka,b, T⃗ ) where

• T is a necklace,

• T → Ka,b is a map in SSet∗,∗ (equivalently, an element of KT (a, b)),

• T⃗ is a flag of length n on T .

The equivalence relation is generated by considering two triples (T, T → Ka,b, T⃗ ) and

(U,U → Ka,b, U⃗) to be equivalent if there exists a map of necklaces f : T → U making

the obvious diagram commute, such that f(Ti) = Ui for all 0 ≤ i ≤ n.

It is then shown in [DS11b, Lemma 4.5 and Corollary 4.8] that we can make the following

reductions:

1. In every equivalence class (4.3) there exists a triple (T, T → Ka,b, T⃗ ) such that T⃗
is flanked. Moreover, two such triples are equivalent if and only if they can be

connected by a zig-zag of morphisms of flagged necklaces in which every triple has

a flag that is flanked.

2. In every equivalence class (4.3) there exists a unique triple (T, T → Ka,b, T⃗ ) such

that T⃗ is flanked and T → Ka,b is totally non-degenerate. In other words, there is a

bĳection

C[K]n(a, b) ≃
∐

T∈Nec
T⃗ flag of length n

Knd
T (a, b)

whereKnd
T (a, b) ⊆ KT (a, b) is the subset of totally non-degenerate maps T → Ka,b.

Generalizing the first of the above reductions to templicial objects is fairly straightforward.

This is done in Proposition 4.1.25 and the proof is essentially that of [DS11b]. Because

the second reduction involves non-degenerate simplices, we will have to restrict to free

templicial objects (see §3.1.3). This is the content of Proposition 4.1.28.

Notation 4.1.23. We denote by

N ec�[n]
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the category of pairs (T, T⃗ ) where T is a necklace and T⃗ = (T0, ..., Tn) is a flag of length

n on T . A morphism (T, T⃗ ) → (U, U⃗) in N ec�[n] is a necklace map f : T → U such that

f(Ti) = Ui for all i ∈ [n]. Further, we let

N ec�f[n]

denote the full subcategory of N ec�[n] spanned by flagged necklaces whose flags are

flanked. Note that a morphism inN ec�f[n] is necessarily active and surjective on vertices.

Lemma 4.1.24. Let n ≥ 0. The subcategory ι : N ec�f[n] ↪→ N ec�[n] is coreflective. We call the
right adjoint to ι the flankification functor.

Proof. We construct the flankification functor γ : N ec�[n] → N ec�f[n]. For (T, p) ∈ N ec
and T⃗ a flag of length n on T , there is a unique isomorphism of posets Tn ≃ [k] where

k = ℓ(T ). For all i ∈ [n], write T ′
i for the image of Ti under this isomorphism so

that T ′
0 ⊆ ... ⊆ T ′

n = [k]. Further set T ′ = T ′
0 so that the flag T⃗ ′

is flanked on T ′
.

Then define γ(T, T⃗ ) = (T ′, T⃗ ′). We moreover obtain a morphism of flagged necklaces

ϵ : ιγ(T, T⃗ )→ (T, T⃗ ) with underlying morphism [k] ≃ Tn ↪→ [p] in ∆f .

Given (U, U⃗) ∈ N ec�f[n] with (U, q) a necklace, and a morphism f : ι(U, U⃗) → (T, T⃗ ) in

N ec�[n], we have in particular that Tn = f(Un) = f([q]). So the morphism f : [q]→ [p] in

∆f factors uniquely through [k] ↪→ [p] as g : [q] → [k]. Moreover, g defines a morphism

(U, U⃗)→ γ(T, T⃗ ).

We conclude that the functor ι : N ec�f[n]→ N ec�[n] has a right adjoint which is given on

objects by (T, T⃗ ) 7→ γ(T, T⃗ ).

Proposition 4.1.25. Let (X,S) be a templicial object and a, b ∈ S. Then for every n ≥ 0, we
have a canonical isomorphism

CV [X]n(a, b) ≃ colim
(T,T⃗ )∈Nec�f[n]

XT (a, b)

Proof. We can rewrite the coequalizer (4.2) in dimension n as

∐
f :T→U

T⃗ flag on T
of length n

XU (a, b)
∐

T∈Nec
T⃗ flag on T
of length n

XT (a, b) CV [X]n(a, b)
α

β

where α is given by X(f) and β is given by applying f to T⃗ , for a necklace morphism

f : T → U . We thus have a canonical isomorphism

CV [X]n(a, b) ≃ colim
(T,T⃗ )∈Nec�[n]

XT (a, b)

Now as the inclusion N ec�f[n] ↪→ N ec�[n] is a left adjoint by Lemma 4.1.24, the corre-

sponding functor between opposite categories is a right adjoint and thus a final functor.

Hence, the result follows.
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Remark 4.1.26. The simplicial structure of CV [X](a, b) = colimX•(a,b)NP(−) is given by

that of NPT , i.e. by deleting and copying terms in a flag, but the simplicial structure on

colim
(T,T⃗ )∈Nec�f

XT (a, b) is slightly more difficult. The degeneracy maps and inner face

maps are still given by respectively copying and deleting terms in the flags. The outer

face maps however are given by first deleting the term T0 or Tn from a flag (T0, ..., Tn)
and then applying the flankification functor.

Notation 4.1.27. Let (X,S) be a free templicial object and T a necklace which we write

as {0 = t0 < t1 < t2 < ... < tk = p}. Then we denote

Xnd
T = Xnd

t1 ⊗S X
nd
t2−t1 ⊗S ...⊗S X

nd
p−tk−1

∈ V QuivS

where Xnd
n denotes the quiver of non-degenerate simplices of Definition 3.1.38.

Proposition 4.1.28. Let (X,S) be a free templicial object. For all n ≥ 0 and a, b ∈ S, we have
an isomorphism in V :

CV [X]n(a, b) ≃
∐

(T,T⃗ )∈Nec�f[n]

Xnd
T (a, b)

Proof. By Proposition 4.1.25 and Lemma 3.1.39, we have an isomorphism

CV [X]n(a, b) ≃ colim
(T,T⃗ )∈Nec�f[n]

∐
fi:[ti−ti−1]↠[ni]

i∈{1,...,k}

(
Xnd
n1
⊗S ...⊗S Xnd

nk

)
(a, b)

where we’ve written T = {0 = t0 < t1 < ... < tk = p} for any (T, T⃗ ) ∈ N ec�f[n]. Now let

f : (T, p)→ (U, q) be an active necklace map such that its underlying morphism f : [p]→
[q] in ∆f is surjective. By Remark 2.1.4 we can uniquely decompose f = f1+ ...+fk with

fi : [ti − ti−1] ↠ [ni] in ∆surj for all i ∈ {1, ..., n}. Moreover, given a flag T⃗ of length n

on T , there is a unique flanked flag U⃗ = (U0, ..., Un) on U such that f : T → U lifts to a

morphism f : (T, T⃗ )→ (U, U⃗) in N ec�f[n] (simply set Ui = f(Ti)). It follows that

CV [X]n(a, b) ≃ colim
(T,T⃗ )∈Nec�f[n]

∐
(T,T⃗ )→(U,U⃗)

in Nec�f[n]

Xnd
U (a, b)

≃
∐

(U,U⃗)∈Nec�f[n]

colim
(T,T⃗ )→(U,U⃗)

in Nec�f[n]

Xnd
U (a, b) ≃

∐
(U,U⃗)∈Nec�f[n]

Xnd
U (a, b)

The last isomorphism is obtained by noting that the colimit on the left hand side is indexed

over the category

(
(N ec�f[n])/(U,U⃗)

)op
, which is connected, and the functor involved is

constant on Xnd
U (a, b).

4.1.4 Comparison with the templicial nerve

Analogous to the classical homotopy coherent nerve, we show that the templicial homo-

topy coherent nerve Nhc
V restricts to the templicial nerve NV (Construction 2.3.4) when

applied to ordinary V-enriched categories. This is the content of Proposition 4.1.33.
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Definition 4.1.29. Let Y be a simplicial object. The object of connected components of Y is

defined to be the colimit π0(Y ) ∈ V of Y as a functor ∆op → V . Equivalently, it is given

by the reflexive coequalizer:

Y1 Y0 π0(Y )
d0

d1

s0 (4.4)

The assignment Y 7→ π0(Y ) clearly extends to a functor

π0 : SV → V

Proposition 4.1.30. We have a canonical natural isomorphism

π0 ◦ F ≃ F ◦ π0

where π0 on the right hand side denotes the connected component functor of Definition 1.3.19.

Moreover, if U preserves reflexive coequalizers, then we also have

π0 ◦ U ≃ U ◦ π0

Proof. The first claim follows from the fact that F preserves colimits. The second claim

is trivial.

Proposition 4.1.31. The functor π0 : SV → V is strong monoidal and left adjoint to the constant
simplicial object functor:

(−) : V → SV

Proof. Consider the monoidal unit F (∆0), which is the constant functor on I ∈ V . Then

clearly, π0(F (∆
0)) ≃ I . Further, as the coequalizer (4.4) is reflexive, we have a canonical

isomorphism

π0(X ⊗ Y )
∼−→ π0(X)⊗ π0(Y )

which is natural in X,Y ∈ SV . It follows that these isomorphisms provide π0 with the

structure of a strong monoidal functor.

In general, the functor VJ → V taking the colimit of a diagram J → V is left adjoint to

the functor sending an object to the constant diagram J → V .

Remark 4.1.32. By Propositions 4.1.31 en 1.1.23, there is an induced adjunction

V Cat∆ V Cat
π0

(−)

⊣

which we will denote by the same symbols.

Recall the homotopy functor hV : S⊗V → V Cat of subsection §2.3.2.

Proposition 4.1.33. We have a canonical natural isomorphisms

Nhc
V ◦ (−) ≃ NV and π0 ◦ CV ≃ hV
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Proof. By comparing left-adjoints, we are reduced to showing the first isomorphism. By

definition, Nhc
V = (−)temp ◦ n, so by Proposition 3.2.14, it suffices to show that we have a

natural isomorphism

n ◦ (−) ≃ (−)

where (−) on the right hand side denotes the diagonal functor V → VNecop
. Take an

objectA ∈ V . Since the simplicial setN(PT ) is clearly only has one connected component,

it follows from Proposition 4.1.30 that

[FNPT , A] ≃ V(π0FNPT , A) ≃ V(F (π0NPT ), A) ≃ V(F ({∗}), A) ≃ A

for all necklaces T . It follows that n(A) is isomorphic to the constant functor on A, that

is A : N ecop → V . Clearly, this isomorphism is natural in A as desired.

Example 4.1.34. For a general templicial object X , consider the canonical map of simpli-

cial sets

Ũ(X)→ Ũ(Nhc
V CV [X])

By Proposition 4.1.17, Ũ(Nhc
V CV [X]) ≃ NhcU(CV [X]) and thus by the adjunctionC ⊣ Nhc

,

we have a canonical SSet-enriched functor

C[Ũ(X)]→ U(CV [X])

By construction, this functor is bĳective on objects, but it is not a Dwyer-Kan equivalence

in the sense of [Ber07], i.e. it does not induce weak homotopy equivalences (Definition

1.3.21) on hom-objects. More explicitly, given vertices a and b of X , the induced map of

simplicial sets

C[Ũ(X)](a, b)→ U (CV [X](a, b))

is not a weak homotopy equivalence in general. Indeed, this already fails on the level of

connected components. Consider the induced functor

π0C[Ũ(X)]→ π0UCV [X]

If V = Mod(k), then U preserves reflexive coequalizers and thus by Proposition 4.1.30

and Proposition 4.1.33, we would have an equivalence of categories

hŨ(X)→ U(hV(X))

which fails to be the case in general by Example 2.3.18.
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4.2 Differential graded categories

We fix a unital commutative ring k for the entirety of this section. Consider the monoidal

category Mod(k) with monoidal product given by the tensor product ⊗k over k and

with monoidal unit given by k. Note that (Mod(k),⊗k, k) satisfies all the hypotheses

imposed on V so far. That is, Mod(k) is a Bénabou cosmos and k is projective and finitely

presentable (and thus small in the sense of Definition 1.2.9). Moreover the forgetful

functor U : Mod(k) → Set is faithful and conservative and U preserves and reflects

reflexive coequalizers (thus also regular epimorphisms). We may sometimes simplify

notation by replacing Mod(k) by k in certain expressions. For example, we will write

kQuiv for Mod(k)Quiv and Nhc
k for Nhc

Mod(k).

The main goal of this section is to introduce and study a k-linear version of the differential

graded nerve Ndg : kCatdg → SSet, which we aptly call the linear dg-nerve Ndg
k . Note

that for a given dg-category C•, its dg-nerve Ndg(C) is just a simplicial set and thus loses

all reference to the ring k. Intuitively one might consider the linear dg-nerve Ndg
k (C) as

a way to retain the k-linear structure of C• while still resembling the original dg-nerve.

To construct the linear dg-nerve, we first show a two-step equivalence of categories

between small, non-negatively graded dg-categories over k and templicial k-modules

with a Frobenius structure:

kCatdg,≥0 ≃ kCat∆+
≃ SFrob⊗ Mod(k)

Here, the middle category has as objects all small categories enriched in augmented

simplicial k-modules S+ Mod(k) with the join operation. Each equivalence is dealt with

in its own subsection (see §4.2.1 and §4.2.2). The first of these is a consequence of a

monoidal equivalence on the level of hom-objects, which we call the augmented Dold-Kan
correspondence. The second is inspired by the tensor-algebra of a graded k-module, which

as it turns out can always be viewed as a Frobenius monoidal functor. Finally, the linear

dg-nerve is obtained by composing these equivalences with the obvious forgetful functor

SFrob⊗ Mod(k)→ S⊗ Mod(k) (Definition 4.2.46).

The remaining subsections are devoted to showing three important results concerning

Ndg
k . In §4.2.4, we show that we can recover the classical dg-nerve Ndg

from Ndg
k by

composing with the functor Ũ : S⊗ Mod(k)→ SSet of Proposition 2.1.25. Then in §4.2.3

we show that Ndg
k (C) is a quasi-category in Mod(k) for any dg-category C•, as is the

case for the classical situation. In fact, we’ll show that any templicial k-module with a

(non-associative) Frobenius structure is already a quasi-category in Mod(k). Finally, in

§4.2.5 we show that a classical map comparing the homotopy coherent and dg-nerves

can be lifted to a comparison map between the templicial homotopy coherent and linear

dg-nerves.

4.2.1 The augmented Dold-Kan correspondence

The classical Dold-Kan correspondence (which we will recall here shortly, see Proposition

4.2.4) provides an equivalence between the categories of simplicial k-modules SMod(k)
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and non-negatively graded chain complexesCh≥0(k) through the normalized chain func-

torN• : SMod(k)→ Ch≥0(k). Famously, it is not an equivalence of monoidal categories.

The normalized chain functor does carry both a lax and colax monoidal structure however

(usually called the Eilenberg-Zilber and Alexander-Whitney maps respectively, see [May67,

§29] for details). These promote the Dold-Kan equivalence to a weak Quillen monoidal

equivalence between monoidal model categories in the sense of [SS03].

Alternatively, we can cheat our way out of the non-monoidality of the equivalence

Ch≥0(k) ≃ SMod(k) by replacing SMod(k) with the category of augmented simpli-

cial k-modules S+ Mod(k). Then we still have an equivalence of categories Ch≥0(k) ≃
S+ Mod(k) (Proposition 4.2.10) which we call the augmented Dold-Kan correspondence.
Now, equipping S+ Mod(k) with the monoidal product of the join (Construction 4.2.12),

this equivalence does become monoidal “on the nose” (Theorem 4.2.14). It is important

to note that the join operation is very different from the usual monoidal product on

simplicial objects, which is pointwise (see Construction 4.1.8). It was chosen specifically

so that it would make the augmented Dold-Kan correspondence monoidal.

Definition 4.2.1. A chain complex C• over k is a diagram of k-modules

· · · C2 C1 C0 C−1 C−2 · · ·∂2 ∂1 ∂0 ∂−1 ∂−2∂3

such that for all n ∈ Z, we have ∂n−1 ◦ ∂n = 0. The maps ∂ = (∂n)n∈Z are called the

differential of C•. A chain map f : C• → D• between chain complexes is a collection of

k-linear maps (fn : Cn → Dn)n≥0 such that the following square commutes for all n ∈ Z:

Cn Cn−1

Dn Dn−1

∂n

fn−1fn

∂n−1

We denote the category of all chain complexes and chain maps by

Ch(k)

Note that Ch(k) is enriched over Mod(k) in an obvious way.

We call a chain complex C• non-negatively graded if Cn = 0 for all n < 0. We denote by

Ch≥0(k)

the subcategory of Ch(k) spanned by all non-negatively graded chain complexes.

For more details on chain complexes, we refer to the literature (see [Wei94] for example).

Construction 4.2.2. LetA be a simplicial k-module. We construct a chain complexN•(A)
as follows. For all n ≥ 0, define

Nn(A) =
An∑n−1

i=0 si(An−1)

It follows from the simplicial identities (1.3) that the ith face map di : An → An−1 induces

a map di : Nn(A)→ Nn−1(A). Then for all n ≥ 1, set

∂n =

n∑
i=0

(−1)idi : Nn(A)→ Nn−1(A)
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Again by the simplicial identities it follows that ∂ squares to zero.

Given a morphism f : A → B of simplicial k-modules, it follows from the naturality of

f , that fn : An → Bn induces a map Nn(f) = f : Nn(A) → Nn(B). This defines a chain

map

N•(f) : N•(A)→ N•(B)

We thus obtain a functor

N• : SMod(k)→ Ch≥0(k)

Given a simplicial setK, we will also writeN•(K; k) = N•(FK) with F : Set→ Mod(k) :
S 7→ ⊕a∈Sk the free module functor.

Definition 4.2.3. We call the functor N• : SMod(k) → Ch≥0(k) the normalized chain
functor.

Proposition 4.2.4 ([Dol58], [Kan58]). The normalized chain functor N• is an equivalence of
categories.

We will now discuss the analogue of the Dold-Kan correspondence for augmented sim-

plicial k-modules. Recall the augmented simplex category ∆+ from Definition 2.1.1.

Definition 4.2.5. We denote S+ Mod(k) = Fun(∆op
+ ,Mod(k)) for the category of aug-

mented simplicial (k-)modules, i.e. functors ∆op
+ → Mod(k), and augmented simplicial maps,

i.e. natural transformations, between them.

Notation 4.2.6. For any n ≥ −1, we denote

∆n = ∆+(−, [n]) : ∆op
+ → Set

Note that for n ≥ 0, the restriction of ∆n
to ∆op

is precisely the standard n-simplex in

SSet, and that ∆n
has a single (−1)-simplex.

Further, (∆−1)n = ∅ for all n ≥ 0 and (∆−1)−1 = {∗}.

Construction 4.2.7. Given an augmented simplicial k-module A, we construct a non-

negatively graded chain complex N+
• (A) as follows. For all n ≥ 0, set

N+
n (A) =

An−1∑n−2
i=0 si(An−2)

for all n ≥ 0. So in low degrees: N+
0 (A) = A−1, N+

1 (A) = A0 and N+
2 (A) = A1/s0(A0).

The differential is given by, for all n ≥ 0:

∂n+1 =

n∑
i=0

(−1)idi : N+
n+1(A)→ N+

n (A)

where di is induced by the ith face map di : An → An−1 of A. It follows from the

simplicial identities (1.3) that this differential is well-defined and squares to zero.

Given an augmented simplicial map f : A → B, set N+
n (f) = fn−1 to be the map

N+
n (A)→ N+

n (B) induced by fn−1 : An−1 → Bn−1. This defines a chain map

N+
• (f) : N+

• (A)→ N+
• (B)
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by the naturality of f . It is clear that we get a functor

N+
• : S+ Mod(k)→ Ch≥0(k)

Given an augmented simplicial set K, i.e. a functor K : ∆op
+ → Set, we will also write

N+
• (K; k) = N+

• (FX), analogously to the classical normalized chain complex.

Definition 4.2.8. We call the functor N+
• : S+ Mod(k) → Ch≥0(k) of Construction 4.2.7

the augmented normalized chain functor.
Remark 4.2.9. Pre-composition with the inclusion ∆ ↪→∆+ induces a functor

(−)≥0 : S+ Mod(k)→ SMod(k)

which forgets the module A−1 and the face map d0 : A0 → A−1 of a given augmented

simplicial module A.

Further, consider the following isomorphism of categories

s : Ch≥0(k)
∼−→ Ch>0(k)

with sCn = Cn−1 and ∂sC•
n = ∂C•

n−1 for all n > 0 and any non-negatively graded chain

complex C•.

Then we have an isomorphism of non-negatively graded chain complexes

N+
• (A) ≃

(
sN•(A≥0)

d0−→ A−1

)
which is natural in all augmented simplicial objects A.

Proposition 4.2.10. The augmented normalized chain functor N+ : S+ Mod(k)→ Ch(k) has
a right-adjoint Γ+ : Ch(k)→ S+ Mod(k) which is given by, for all chain complexes C•:

Γ+(C•) = Ch(k)
(
N+

• (∆(−); k), C•

)
: ∆op

+ → Mod(k)

Moreover, the restriction

S+ Mod(k) Ch≥0(k)

N+
•

Γ+

∼

is an adjoint equivalence of categories.

Proof. Because s, (−)≥0 and N all clearly preserve colimits, it follows from Remark 4.2.9

thatN+
preserves colimits as well. Thus the first statement follows from a general nerve

construction applied to the the functor N+
• (∆(−); k) : ∆+ → Ch(k).

It remains to show thatN+
• : S+ Mod(k)→ Ch≥0(k) is an equivalence, which will follow

from Proposition 4.2.4. Given augmented simplicial modules A and B, it follows from

Remark 4.2.9 that

Ch(k)(N+
• (A), N+

• (B))

≃ Ch(k)(N•(A≥0), N•(B≥0))×Mod(k)(A0,B−1) Mod(k)(A−1, B−1)

≃ SMod(k)(A≥0, B≥0)×Mod(k)(A0,B−1) Mod(k)(A−1, B−1)

≃ S+ Mod(k)(A,B)
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This proves that N+
• : S+ Mod(k) → Ch(k) is fully faithful. Further, let C• be a non-

negatively graded chain complex and let C>0 ∈ Ch>0(k) be obtained by forgetting C0

and ∂1 : C1 → C0. Then choose a simplicial module A so that N•(A) ≃ s−1C>0. Note

that A0 ≃ C1, so we can promote A to an augmented simplicial module A+
by setting

A−1 = C0 and d0 = ∂1 : A0 → A−1. It follows that N+
• (A) ≃ C•. Thus N+

• is essentially

surjective as well.

Remark 4.2.11. Let us make the functorΓ+
a little more explicit. LetC• be a chain complex.

For all n ≥ −1, the k-module Γ+(C•)n consists of all collections

(aI)I⊆[n] ∈
⊕
I⊆[n]

C|I|

that satisfy, for all I = {i1 < ... < im} ⊆ [n]:

∂(aI) =

m∑
j=1

(−1)j−1aI\{ij}

For h : [m]→ [n] in ∆+, the map

Γ+(C•)(h) : Γ
+(C•)n → Γ+(C•)m : (aI)I⊆[n] 7→ (bJ)J⊆[m]

is given by bJ = ah(J) if h|J is injective and bJ = 0 otherwise.

Finally, if f : C• → D• is a chain map, then

Γ+(f)n : Γ+(C•)n → Γ+(D•)n : (aI)I⊆[n] 7→ (f(aI))I⊆[n]

for all n ≥ −1.

Construction 4.2.12. As both Mod(k) and ∆+ are monoidal categories (see 2.1.3), we can

endow S+ Mod(k) with the monoidal structure given by Day convolution (see [Day70]).

This is also known as the join of augmented simplicial objects. We denote the resulting

monoidal closed category by (S+ Mod(k), ⋆, F (∆−1)).

Explicitely, the join of two augmented simplicial modules A and B is given by

(A ⋆ B)n =
⊕

k,l≥−1
k+l+1=n

Ak ⊗Bl

for all n ≥ −1. Given f : [m] → [n], and k, l ≥ −1 such that k + l + 1 = n, there exist

unique fk1 : [p] → [k] and fk2 : [q] → [l] with p + q + 1 = m and fk1 ⋆ f
k
2 = f . With these

notations, we have for all k, l ≥ −1 with k + l + 1 = n:

(A ⋆ B)(f) ◦ ιk,l = ιp,q ◦
(
A(fk1 )⊗B(fk2 )

)
The monoidal unit is given by F (∆−1). Thus F (∆−1)−1 = k and F (∆−1)n = 0 for all

n ≥ 0.
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Construction 4.2.13. Let us recall the usual symmetric monoidal closed structure (⊗, k[0])
on Ch(k). It is defined as follows.

Given two chain complexes C• and D•, their tensor product C• ⊗D• is given by

(C ⊗D)n =
⊕
p,q∈Z
p+q=n

Cp ⊗Dq

with differential ∂C⊗D
determined by

∂C⊗D
n (x⊗ y) = ∂p(x)⊗ y + (−1)px⊗ ∂q(y)

for all p, q ≥ 0 with n = p+ q and x ∈ Cp, y ∈ Dq .

The monoidal unit k[0] is the chain complex with

k[0]n =

{
k if n = 0

0 otherwise

The symmetry in Ch(k) is defined as follows. For chain complexes C• and D•, consider

the isomorphism

σC,D : C• ⊗D•
∼−→ D• ⊗ C•

determined by

(σC,D)n(x⊗ y) = (−1)p·qy ⊗ x

for all p, q ≥ 0 with n = p+ q and x ∈ Cp, y ∈ Dq .

Finally, the subcategory Ch≥0(k) inherits a symmetric monoidal structure from Ch(k).

Theorem 4.2.14. The adjunction N+
• : S+ Mod(k) ⇆ Ch(k) : Γ+ is monoidal.

Moreover, the restriction N+
• : S+ Mod(k) ⇆ Ch≥0(k) : Γ

+ is a monoidal equivalence.

Proof. For both statements it suffices to show that N+
• has the structure of a strong

monoidal functor. Let A and B be augmented simplicial modules. For all n > 0 and

i ∈ [n− 2], the degeneracy map si : (A ⋆ B)n−2 → (A ⋆ B)n−1 is given by

si|Ak⊗Bn−k−3
=

{
sAi ⊗ idBn−k−3

if i ≤ k
idAk

⊗sBi−k−1 if i > k

It follows that the submodule

∑n−2
i=0 si((A ⋆ B)n−2) of (A⊗B)n−1 is equal to

⊕
p,q≥0
p+q=n

(
p−2∑
i=0

(sAi ⊗ idBq−1
)(Ap−2 ⊗Bq−1) +

q−2∑
i=0

(idAp−1
⊗sBi )(Ap−1 ⊗Bq−2)

)

Consequently, we have an isomorphism

N+
n (A ⋆ B) ≃

⊕
p,q≥0
p+q=n

(N+
p (A)⊗N+

q (B)) = (N+(A)⊗N+(B))n
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Moreover this isomorphism is a chain map. This follows from the fact that for all n ≥ 0
and i ∈ [n], the face map di : (A ⋆ B)n → (A ⋆ B)n−1 is given by,

di|Ak⊗Bl
=

{
dAi ⊗ idBl

if i ≤ k
idAk

⊗dBi−k−1 if i > k

So, we get an isomorphism

µA,B : N+
• (A ⋆ B)

∼−→ N+
• (A)⊗N+

• (B)

It is a direct verification that this isomorphism is natural in A and B, and coassociative.

We clearly have an isomorphism ϵ : N+
• (∆−1; k)

∼−→ k[0] and it follows easily that µ is

counital with respect to ϵ.

4.2.2 Frobenius structures and S+Mod(k)-categories

This subsection is entirely devoted to showing that there is an equivalence of categories

between small categories enriched in augmented simplicial k-modules S+ Mod(k) and

templicial k-modules with a Frobenius structure (Theorem 4.2.17). We will achieve this

by very explicitly defining the functors in both directions, and showing they are inverse

to each other.

Definition 4.2.15. AnS+ Mod(k)-category is a category enriched in the monoidal category

(S+ Mod(k), ⋆, F (∆−1)) of Construction 4.2.12. An S+ Mod(k)-functor is an S+ Mod(k)-
enriched functor. We denote the category of small S+ Mod(k)-categories and S+ Mod(k)-
functors by

kCat∆+ = S+ Mod(k)-Cat

Definition 4.2.16. A Frobenius templicial (k-)module is a pair (X,Z)with (X,S) a templicial

k-module and Z a Frobenius structure on X : ∆op
f → kQuivS . Recall that then X is in

particular a lax monoidal functor.

Let (α, f) : (X,S)→ (Y, T ) be a templicial map and assume thatX and Y have Frobenius

structures ZX and ZY respectively. Then f∗ : kQuivT → kQuivS is lax monoidal by

Lemma 1.1.18. We call (α, f) a Frobenius templicial map if the induced natural transfor-

mation X → f∗Y is monoidal with respect to the lax structures on X and f∗Y . This is

equivalent to requiring the following diagram to commute for all k, l ≥ 0:

f!(Xk+l) Yk+l

f!(Xk ⊗S Xl) f!(Xk)⊗T f!(Xl) Yk ⊗T Yl

f!(Z
k,l
X )

αk⊗Tαl

αk+l

Zk,l
Y

(4.5)

We denote the category of Frobenius templicial objects and Frobenius templicial maps

between them by

SFrob⊗ Mod(k)

Note that there is an obvious forgetful functor SFrob⊗ Mod(k)→ S⊗ Mod(k).
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Theorem 4.2.17. There is an adjoint equivalence of categories

kCat∆+
SFrob⊗ Mod(k)

T

K

∼

Let us illucidate these functors a little bit before delving into the details. Consider a

Z-graded k-moduleM• that is concentrated in degree≥ 1 (soMn = 0 for all n ≤ 0). Then

consider its tensor algebra

TM• =
⊕
p≥0

M⊗p
•

Note that for all n ≥ 0, we have:

TMn ≃
⊕
p≥0

n1+...+np=n
ni>0

Mn1
⊗ ...⊗Mnp

≃
⊕
T∈Pn

MT

where MT = Mt1 ⊗ Mt2−t1 ⊗ ... ⊗ Mn−tp−1
if T = {0 < t1 < t2 < ... < tp−1 < n}.

Consider the monoid of natural numbers N (including 0). We can view N as a discrete

monoidal category. Then the non-negatively graded module TM• can be identified with

a functor

TM• : N→ Mod(k)

Moreover, this functor is Frobenius monoidal in the sense of Definition 2.2.34. The lax

structure is given by concatenating tensors as is usually done in the tensor algebra. The

colax structure is given by separating tensors.

This construction supplies a functor

T : gr≥1(Mod(k))→ Frob(N,Mod(k))

from the category of graded k-modules in degree ≥ 1 to the category of Frobenius

monoidal functors N → Mod(k). In fact, by analogous arguments as presented below,

one can show that this functor is an equivalence of categories. Its inverse is the functor

K : Frob(N,Mod(k))→ gr≥1 Mod(k)

which sends any Frobenius monoidal functor X : N → Mod(k) to the graded k-module

K(X)• given by

K(X)n =

n−1⋂
k=1

ker(µk,n−k)

for all n ≥ 1, where µk,n−k : Xn → Xk ⊗Xn−k denote the comultiplication maps of X .

The functors T andK in the equivalence of Theorem 4.2.17 are constructed in essentially

the same way as the functors T and K above. We can interpret this as an upgrade of the

above equivalence, obtained by equipping both sides with a certain simplicial structure

and allowing them to vary over different sets of objects.

For what follows, it will be convenient to extend the augmented simplex category ∆+ to

the equivalent category of finite linearly ordered sets.
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Notation 4.2.18. We denote by Lin the category of all finite linearly ordered sets and

order morphisms between them.

Construction 4.2.19. Given finite linearly ordered sets I and J , we denote by I ⊔ J the

disjoint union of I and J endowed with the partial order defined as follows. For all

i, j ∈ I ⊔ J ,

i ≤ j ⇔ (i ≤ j in I) or (i ≤ j in J) or (i ∈ I and j ∈ J)
Given morphisms f : I → I ′ and g : J → J ′

in Lin, we have the following induced

morphism in Lin:

f ⊔ g : I ⊔ J → I ′ ⊔ J ′ : i 7→

{
f(i) if i ∈ I
g(i) if i ∈ J

We thus have a functor − ⊔− : Lin×Lin→ Lin.

It is readily verified that this defines a monoidal structure on Lin with monoidal unit

given by the empty poset ∅.

If I1, I2 ⊆ J are subsets of a finite linearly ordered subset J , we’ll also write I1⊔ I2 for the

union I1 ∪ I2 to indicate that i < j for all i ∈ I1 and j ∈ I2. Note that up to isomorphism

this coincides with the above definition.

Remark 4.2.20. Note that for any finite linearly ordered set J = {j0 < ... < jk}, there is a

unique order isomorphism J ≃ [k] so that we have a canonical equivalence of monoidal

categories

(Lin,⊔, ∅) ≃ (∆+, ⋆, [−1])
By pre-composing with this equivalence, we can extend every augmented simplicial

object A ∈ S+ Mod(k) to a functor Linop → Mod(k). Concretely, we set

AJ = Ak

for all J ∈ Lin with k ≥ −1 as above. Given an order morphism f : I → J between finite

linearly ordered sets, consider the unique isomorphisms I ≃ [k] and J ≃ [l] for some

k, l ≥ −1 and let g : [k]→ [l] be the induced morphism of ∆+. Then we write

A(f) = A(g) : AI → AJ

Further, the join of two augmented simplicial objectsX and Y can be rewritten as follows.

Given a finite linearly ordered set J , we have

(A ⋆ B)J =
⊕

I1,I2⊆J
I1⊔I2=J

AI1 ⊗BI2

Given an order morphism between finite linearly ordered sets f : J → J ′
, we have for all

I1, I2 ⊆ J ′
with I1 ⊔ I2 = J that

(A ⋆ B)(f) ◦ ιI1,I2 = ιf−1(I1),f−1(I2) ◦
(
A(f |f−1(I1))⊗B(f |f−1(I2))

)
Notation 4.2.21. Let (T, p) be a necklace and write T = {0 = t0 < t1 < ... < tk = p}. For

all i ∈ {1, ..., k}, we denote

T ci = {ti−1 + 1, ti−1 + 2, ..., ti − 1}

considered as an object of Lin. Note that

T c1 ⊔ ... ⊔ T ck = [p] \ T
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From S+ Mod(k)-categories to Frobenius templicial modules

We start by constructing the functor T : kCat∆+ → SFrob⊗ Mod(k).

Remark 4.2.22. Let C ∈ kCat∆+
and set S = Ob(C). Its underlying S+ Mod(k)-enriched

quiver can be identified with a functor

C : ∆op
+ → kQuivS

which we can extend to Linop via the equivalence Lin ≃ ∆+ as in Remark 4.2.20. So

concretely, we have a quiver

CJ ∈ kQuivS

for every finite linearly ordered set J , and a quiver morphism

C(f) : CJ → CI

for every morphism f : I → J in Lin.

Further, the identities in C may be identified with a quiver morphism

u : kS → C∅ = C−1

where kS is the monoidal unit of kQuivS . The reverse composition law of C (see Remark

1.1.22) is determined by quiver morphisms

m̃I1,I2 : CI1 ⊗S CI2 → CJ

for all finite linearly ordered sets J with I1, I2 ⊆ J such that I1 ⊔ I2 = J .

Because of the associativity of the composition in C, we also have an induced quiver

morphism, for all p ≥ 2:

m̃I1,...,Ip : CI1 ⊗S ...⊗S CIp → CJ

for all finite linearly ordered sets J with I1, ..., Ip ⊆ J such that I1 ⊔ ... ⊔ Ip = J . Further,

we write m̃I1,...,Ip = u if p = 0 and m̃I1,...,Ip = idCI1
if p = 1.

Construction 4.2.23. Let C be a S+ Mod(k)-category with object set S = Ob(C).

• Given an n ≥ 0, consider the quiver

T (C)n =
⊕
T∈Pn

T (C)T

where, for every necklace T = {0 = t0 < t1 < ... < tk = n}:

T (C)T = CT c
1
⊗S CT c

2
⊗S ...⊗S CT c

k

= Ct1−2 ⊗S Ct2−t1−2 ⊗S ...⊗S Cp−tk−1−2 ∈ kQuivS

• Given a morphism f : [m]→ [n] in ∆f , we define a quiver morphism

T (C)(f) : T (C)n → T (C)m
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as follows. For T ∈ Pn, write U = f−1(T ) = {0 = u0 < u1 < ... < ul = m}. Then

for every j ∈ {0, ..., l}, f(uj) = tpj for some pj ∈ {0, ..., k}. Thus we can restrict f to

f |Uc
j
: U cj → T cpj−1+1 ⊔ ... ⊔ T cpj

in Lin for all j ∈ {1, ..., l}. Now define a quiver morphism T (C)U → T (C)T as

T (C)(f)T = C(f |Uc
1
)m̃T c

1 ,...,T
c
p1
⊗S ...⊗S C(f |Uc

l
)m̃T c

pl−1+1,...,T
c
k

Then T (C)(f) is defined by setting, for all T ∈ Pn

T (C)(f) ◦ ιT = ιf−1(T ) ◦ T (C)(f)T

Example 4.2.24. Let 0 < j < n and consider the coface map δj : [n− 1]→ [n] in ∆f . For

a necklace T = {0 = t0 < t1 < ... < tk = n}, we have

T (C)(δj)T =

{
idCt1−2 ⊗...⊗ dj−tp−1−1 ⊗ ...⊗ idCn−tk−1−2 if j ̸∈ T
idCt1−2

⊗...⊗ m̃j−tp−1−2,tp+1−j−2 ⊗ ...⊗ idCn−tk−1−2
if j ∈ T

where p ∈ {1, ..., k} is the unique integer such that tp−1 < j ≤ tp.

Similarly, consider the codegeneracy map σi : [n+ 1] → [n] in ∆f with 0 ≤ i ≤ n. For a

necklace T = {0 = t0 < t1 < ... < tk = n}, we have

T (C)(σi)T =

{
idCt1−2

⊗...⊗ si−tp−1−1 ⊗ ...⊗ idCn−ik−1−2
if i ̸∈ T

idCt1−2 ⊗...⊗ idCi−tp−1−2 ⊗u⊗ idCtp+1−i−2 ⊗...⊗ idCn−tk−1−2 if i ∈ T

where p ∈ {1, ..., k} is the unique integer such that tp−1 < i ≤ tp.

Proposition 4.2.25. Let C be a small S+ Mod(k)-category. Then the assignments n 7→ T (C)n
and f 7→ T (C)(f) of Construction 4.2.23 define a Frobenius monoidal functor

T (C) : ∆op
f → kQuivOb(C)

and thus (T (C),Ob(C)) is a Frobenius templicial k-module.

Proof. Set S = Ob(C). We first show that T (C) is a well-defined functor. Take morphisms

f : [m] → [n] and g : [n] → [p] in ∆f and T ∈ Pp. Setting U = g−1(T ) and V = f−1(U),
we must show that

T (C)(f)U ◦ T (C)T (g) = T (C)(gf)T
By the functoriality of the monoidal product−⊗S−, we may assume that ℓ(V ) = 1. Now

write U = {0 = u0 < u1 < ... < ul = n} and let k = ℓ(T ). It follows from the naturality

and the associativity of m̃ that

T (C)(f)U ◦ T (C)(g)T

= C(f |V c
1
)m̃Uc

1 ,...,U
c
l

(
C(g|Uc

1
)m̃T c

1 ,...,T
c
p1
⊗S ...⊗S C(g|Uc

l
)m̃T c

pl−1+1,...,T
c
k

)
= C((g|Uc

1
⊔ ... ⊔ g|Uc

l
)f |V c

1
)m̃T c

1 ,...,T
c
k

= C(gf |V c
1
)m̃T c

1 ,...,T
c
k
= T (C)(gf)T
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Further, for a necklace (T, n) with k = ℓ(T ) we have

T (C)(id[n])T = C(idT c
1
)m̃T c

1
⊗S ...⊗S C(idT c

k
)m̃T c

k
= idCTc

1
⊗S ...⊗S idCTc

k

Next we equip T (C) with colax and Frobenius structures. First note that by definition,

T (C)0 ≃ kS is the monoidal unit of kQuivS and T (C)T ⊗S T (C)U ≃ T (C)T∨U for all

necklaces T and U . Then take k, l ≥ 0. Every necklace T ∈ Pk+l containing k can be

uniquely split as T = T1 ∨ T2 with T1 ∈ Pk and T2 ∈ Pl so that we have the following

canonical projection and coprojection maps:

µk,l : T (C)k+l =
⊕

T∈Pk+l

T (C)T →
⊕

T∈Pk+l

k∈T

T (C)T ≃ T (C)k ⊗S T (C)l

Zk,l : T (C)k ⊗S T (C)l ≃
⊕

T∈Pk+l

k∈T

T (C)T →
⊕

T∈Pk+l

T (C)T = T (C)k+l

Now take f : [k] → [p] and g : [l] → [q] in ∆f , and T ∈ Pp, U ∈ Pq . Then we have

f−1(T ) ∨ g−1(U) = (f + g)−1(T ∨ U) and it follows from Construction 4.2.23 that

T (C)(f + g)T∨U = T (C)(f)T ⊗S T (C)(g)U

From this it is easy to see that µk,l and Zk,l are natural in k, l ≥ 0.

We complete the proof by showing that the maps µk,l and Zk,l satisfy the Frobenius

equation (2.9). Take k, l, p, q ≥ 0 such that k + l = p+ q and assume that k ≥ p. Then for

all T ∈ Pp+q with p ∈ T we have

(Zp,k−p ⊗S idT (C)l)(idT (C)p ⊗Sµk−p,l)ιT =

{
ιT if k ∈ T
0 if k ̸∈ T

= µk,lZ
p,qιT

A similar proof shows the case k ≤ p.

Construction 4.2.26. LetH : C → D be an S+ Mod(k)-functor between small S+ Mod(k)-
categories and let f : S → T denote its object map. For every n ≥ 0, we construct a

quiver map in kQuivT :

T (H)n : f!(T (C)n)→ T (D)n

For every finite linearly ordered set J , we have a quiver mapH : CJ → f∗(DJ) in kQuivS .

Denote its adjoint in kQuivT by

H ′
J : f!(CJ)→ DJ

Then define, for all necklaces (U, n) with k = ℓ(U):

T (H)U : f!(T (C)U )→ f!(CUc
1
)⊗T ...⊗T f!(CUc

k
)
H′

Uc
1
⊗T ...⊗TH

′
Uc
k−−−−−−−−−−−→ T (D)U

Finally, for n ≥ 0, set

T (H)n : f!(T (C)n) ≃
⊕
U∈Pn

f!(T (C)U )
⊕

U T (H)U−−−−−−−→
⊕
U∈Pn

T (D)U = T (D)n
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Lemma 4.2.27. LetH : C → D be anS+ Mod(k)-functor between smallS+ Mod(k)-categories.
Then the quiver maps (T (H)n)n≥0 of Construction 4.2.26 define a Frobenius templicial map
T (C)→ T (D) between Frobenius templicial k-modules.

Proof. We employ the same notations as in Construction 4.2.26. It follows from the

enriched functoriality of H that

• H ′
Jf!(C(h)) = D(h)H ′

I for all h : I → J in Lin, and

• for all I, J ∈ Lin, the following diagram commutes

f!(CI⊔J) DI⊔J

f!(CI ⊗S CJ) f!(CI)⊗T f!(CJ) DI ⊗T DJ

m̃C
I,J

H′
I⊔J

m̃D
I,J

H′
I⊗TH

′
J

From this it easily follows that the quiver maps (T (H)n)n≥0 define a natural transforma-

tion T (H) : f!T (C)→ T (D) between functors ∆op
f → kQuivT .

Further, it is clear that for all necklaces U and V , T (H)U∨V is equal to the composite

f!(T (C)U∨V )→ f!(T (C)U )⊗T f!(T (C)V )
T (H)U⊗T (H)V−−−−−−−−−−→ T (D)U ⊗T T (D)V ≃ T (D)U∨V

From this it is easy to see that the natural transformation T (H) is monoidal and satisfies

(4.5). Thus (T (H), f) : (T (C), S)→ (T (D), T ) a Frobenius templicial map.

Proposition 4.2.28. The assignments C 7→ (T (C),Ob(C)) of Proposition 4.2.25 and H 7→
T (H) of Lemma 4.2.27 define a functor

T : kCat∆+
→ SFrob⊗ Mod(k)

Proof. This is now immediate from the definitions.

From Frobenius templicial modules to S+ Mod(k)-categories

We will now construct the inverse K : SFrob⊗ Mod(k)→ kCat∆+
to T .

Lemma 4.2.29. Let (X,S) be a templicial k-module with comultiplication µ and m,n ≥ 1. Let
f : [m] → [n] be an order morphism such that f−1({0}) = {0} and f−1({n}) = m. Then the
quiver map X(f) : Xn → Xm restricts to

n−1⋂
k=1

ker(µk,n−k)→
m−1⋂
p=1

ker(µp,m−p)

Proof. Take a, b ∈ S and x ∈ Xn(a, b) such that µk,n−k(x) = 0 for all 0 < k < n. Then for

all 0 < p < m, there exist unique morphisms f1 : [p] → [k] and f2 : [m − p] → [n − k] in
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∆f such that f1 + f2 = f with k = f(p) (Remark 2.1.4). By the hypothesis on f , we have

that 0 < k < n as well. Now

µp,m−p(X(f)(x)) = (X(f1)⊗S X(f2))µk,n−k(x) = 0

and the result follows.

Construction 4.2.30. Let (X,S) be a templicial k-module with a Frobenius structure Z.

We construct an S+ Mod(k)-enriched quiver K(X) as follows.

Set Ob(K(X)) = S. Take n ≥ −1 and consider the subquiver

K(X)n =

n+1⋂
k=1

ker(µk,n+2−k) ⊆ Xn+2

So for example K(X)−1 = X1 and K(X)0 = ker(µ1,1). Given f : [m] → [n] in ∆+, the

morphism

[0] ⋆ f ⋆ [0] : [m+ 2]→ [n+ 2]

satisfies the hypothesis of Lemma 4.2.29 and thus induces a quiver map

K(X)(f) : K(X)n → K(X)m

It is clear that this defines a functor K(X) : ∆op
+ → kQuivS , or equivalently a quiver

K(X) ∈ S+ Mod(k)-QuivS

Lemma 4.2.31. Let f : [k]→ [p] and g : [l]→ [q] be morphisms in ∆+. Then

δp+2([0] ⋆ f ⋆ g ⋆ [0]) = ([0] ⋆ f ⋆ [0] + [0] ⋆ g ⋆ [0])δk+2

Proof. Clearly the morphisms on both sides of the equation preserve the endpoints.

Evaluating either side in 0 < i < k + l + 3, we obtain{
f(i− 1) + 1 if i ≤ k + 1

g(i− k − 2) + p+ 3 if i ≥ k + 2

Proposition 4.2.32. Let (X,S) be a templicial k-module with Frobenius structure Z. Then the
quiver maps(

m̃p,q = dp+2Z
p+2,q+2|K(X)p⊗SK(X)q : K(X)p ⊗S K(X)q → K(X)p+q+1

)
p,q≥−1

define a reverse composition law on the quiver K(X) of Construction 4.2.30 with identities
determined by the quiver map

u : kS ≃ X0
s0−→ X1 = K(X)−1

Consequently, K(X) has the structure of an S+ Mod(k)-category.
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Proof. Let p, q ≥ −1 and set n = p+ q + 3. consider the quiver map

dp+2Z
p+2,q+2 : Xp+2 ⊗S Xq+2 → Xp+q+3

For all 0 < k < n, we have

µk,n−kdp+2Z
p+2,q+2 =

{
(dp+2 ⊗S idXn−k

)µk+1,n−kZ
p+2,q+2

if p+ 2 ≤ k
(idXk

⊗Sdp+2−k)µk,n−k+1Z
p+2,q+2

if p+ 2 > k

=

{
(dp+2Z

p+2,k−p−1 ⊗S idXn−k
)(idXp+2 ⊗Sµk−p−1,n−k) if p+ 2 ≤ k

((idXk
⊗Sdp+2−kZ

p+2−k,q+2)(µk,p+2−k ⊗S idXq+2) if p+ 2 > k

which implies that dp+2Z
p+2,q+2

restricts to a quiver map

m̃p,q : K(X)p ⊗S K(X)q → K(X)p+q+1

Take morphisms f : [k]→ [p] and g : [l]→ [q] in ∆+. By Lemma 4.2.31, we have that

X([0] ⋆ f ⋆ g ⋆ [0])dp+2Z
p+2,q+2 = dk+2Z

k+2,l+2 (X([0] ⋆ f ⋆ [0])⊗S X([0] ⋆ g ⋆ [0]))

It follows that the quiver maps (m̃p,q)p,q≥−1 define a quiver map in S+ Mod(k)-QuivS :

m̃ : K(X) ⋆S K(X)→ K(X)

It remains to show that m̃ is associative and unital with respect to u. For this it suffices

to note that for all p, q, r ≥ −1:

dp+q+3Z
p+q+3,r+2(dp+2Z

p+2,q+2 ⊗S idXr+2)

= dp+q+3dp+2Z
p+q+4,r+2(Zp+2,q+2 ⊗S idXr+2

)

= dp+2dp+q+4Z
p+2,q+r+4(idXp+2

⊗SZq+2,r+2)

= dp+2Z
p+2,q+r+3(idXp+2 ⊗Sdq+2Z

q+2,r+2)

dp+2Z
p+2,1(idXp+2

⊗Su) = dp+2sp+2Z
p+2,0(idXp+2

⊗Sϵ−1) = idXp+2

d1Z
1,p+2(u⊗S idXp+2

) = d1s0Z
0,p+2(ϵ−1 ⊗S idXp+2

) = idXp+2

where ϵ : X0
∼−→ kS is the counit of X and kS is the monoidal unit of kQuivS .

Proposition 4.2.33. The assignment (X,Z) 7→ K(X) of Proposition 4.2.32 extends to a functor

K : SFrob⊗ Mod(k)→ kCat∆+

Proof. Take a Frobenius templicial map α : X → Y with vertex map f : S → T . Consider

the underlying natural transformation α : f!X → Y and its adjoint α′ : X → f∗Y (see

Construction 1.1.16). Then α′
clearly restricts to a natural transformation

K(α) : K(X)→ f∗K(Y )

between functors ∆op
+ → kQuivS , which can equivalently be considered as a morphism

in S+ Mod(k)-QuivS . It then follows from the compatibilty of α with the Frobenius

structures that K(α) is an S+ Mod(k)-functor.

It immediately follows from the definitions that this defines a functor

K : SFrob⊗ Mod(k)→ kCat∆+
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Proving the equivalence

We finish this subsection by showing that the functors T andK are each other’s inverses.

Construction 4.2.34. Let (X,S) be a templicial k-module with Frobenius structure Z.

Then from the inclusions (K(X)p ↪→ Xp+2)p≥−1, we obtain a quiver map

T K(X)T = K(X)t1−2 ⊗S ...⊗S K(X)n−tk−1−2 → Xt1 ⊗S ...⊗S Xn−tk−1
= XT

for any necklace T = {0 = t0 < t1 < ... < tk = n}. Thus for any n, we can consider the

quiver map

ϵXn : T K(X)n =
⊕
T∈Pn

T K(X)T →
⊕
T∈Pn

XT
(ZT )T−−−−→ Xn

Proposition 4.2.35. LetX be a Frobenius templicial k-module. The quiver morphisms (ϵXn
)n≥0

of Construction 4.2.34 define a Frobenius templicial map

ϵX : T K(X)→ X

which is natural in X .

Proof. Let T = {0 = t0 < t1 < t2 < ... < tk = n} be a necklace. Writing m̃ for the reverse

composition law of K(X) (see Proposition 4.2.32), note that

m̃T c
1 ,...,T

c
k
= X(δT )Z

T |T K(X)T : K(X)T c
1
⊗S ...⊗S K(X)T c

k
→ K(X)[n]\T

where we denoted δT = δtk−1
· · · δt2δt1 . Now take a morphism f : [m] → [n] in ∆f with

a necklace T ∈ Pn and set U = f−1(T ). Write U = {0 = u0 < u1 < ... < ul = m} and

let (T1, ..., Tl) be the splitting of T over f(U). Further, f = f1 + ... + fl for some unique

fi : [ui − ui−1] → [f(ui) − f(ui−1)] in ∆f . In fact, we have the following equality of

morphisms in ∆+:

fi = δTi
([0] ⋆ f |Uc

i
⋆ [0])

where we identified U ci with [ui − ui−1 − 2]. Hence, we find that

ZU |T K(X)U ◦ T K(X)(f)T

= ZU
(
K(X)(f |Uc

1
)X(δT1)Z

T1 ⊗S ...⊗S K(X)(f |Uc
l
)X(δTl

)ZTl
)
|T K(X)T

= ZU (X(f1)Z
T1 ⊗S ...⊗S X(fl)Z

Tl)|T K(X)T

= X(f)Zf(U)(ZT1 ⊗S ...⊗S ZTl)|T K(X)T = X(f) ◦ ZT |T K(X)T

where we used the associativity of Z in the last equality. We have thus shown that

ϵX : T K(X)→ X is a natural transformation between functors ∆op
f → kQuivS .

Next, it follows from Proposition 2.2.40 that for all necklaces (T, n) and 0 < k < n:

µk,n−kZ
T |T K(X)T =

{
ZT1 |T K(X)T1

⊗S ZT2 |T K(X)T2
if k ∈ T

0 if k ̸∈ T

where (T1, T2) is the splitting of T over {0 < k < n}. From this is it easy to see that

ϵX is respects the comultiplications of T K(X) and X as well. Then it is clear from the

definitions that ϵX is in fact a Frobenius templicial map.

Finally, the naturality of ϵX in X quickly follows from the definitions of T and K, and

the diagram (4.5).
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Lemma 4.2.36. Let X be a Frobenius templicial object and n ≥ 1. The inclusion of quivers
K(X)n−2 ↪→ Xn has a retraction

ξn =
∑
T∈Pn

(−1)ℓ(T )+1ZTµT

Proof. Take 0 < k < n, then by Corollary 2.2.41.3, we have

µk,n−k

( ∑
T∈Pn

(−1)ℓ(T )ZTµT

)
=
∑
U∈Pn

∑
T∈Pn

T∪{k}=U

(−1)ℓ(T )µk,n−kZ
UµU

=
∑
U∈Pn
k∈U

(
(−1)ℓ(U\{k}) + (−1)ℓ(U)

)
µk,n−kZ

UµU = 0

This shows that ξn : Xn → K(X)n−2 is well-defined.

Further note that for T ∈ Pn, we have µT |K(X)n−2
= 0 unless T = {0, n}, by definition of

K(X)n−2. It follows that ξ|K(X)n−2
= idK(X)n−2

as desired.

Lemma 4.2.37. Let n ≥ 0 and V ⊊ U necklaces in Pn. Then∑
T∈Pn
V⊆T⊆U

(−1)ℓ(T ) = 0

Proof. Choose k ∈ U \ V , then T 7→ T \ {k} defines a bĳection

{T ∈ Pn | V ⊆ T ⊆ U, k ∈ T}
∼−→ {T ∈ Pn | V ⊆ T ⊆ U, k ̸∈ T}

Moreover, if k ∈ T , then ℓ(T \ {k}) = ℓ(T )− 1. The result follows.

Proposition 4.2.38. The natural transformation of Proposition 4.2.35

ϵ : T ◦ K → idSFrob
⊗ Mod(k)

is an isomorphism.

Proof. Fix n ≥ 0. Given a necklace T = {0 = t0 < t1 < ... < tk = p}we set

ξT = ξt1 ⊗S ...⊗S ξn−tk−1
: XT → T K(X)T

where for each p ≥ 1, ξp denotes the retraction from Lemma 4.2.36. We claim that the

quiver morphism

(ξTµT )T : Xn →
⊕
T∈Pn

T K(X)T = T K(X)n

is inverse to ϵXn
.

It follows from Remark 2.2.4 and the coassociativity of µ that

ξTµT =
∑
U∈Pn
T⊆U

(−1)ℓ(U)+k(ZU1 ⊗S ...⊗S ZUk)µU : Xn → T K(X)T
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where (U1, ..., Uk) denotes the splitting of U over T . It follows from Lemma 4.2.37 (with

V = {0 < n}) and the associativity of Z that∑
T∈Pn

ZT |T K(X)T ξTµT =
∑
U∈Pn
T⊆U

(−1)ℓ(U)+ℓ(T )ZUµU

=
∑
U∈Pn

(−1)ℓ(U)

 ∑
T∈Pn
T⊆U

(−1)ℓ(T )

ZUµU = idXn

Hence, (ξTµT )T is a section of ϵXn
.

Conversely, take necklaces T,U ∈ Pn. Then by Proposition 2.2.40:

ξUµUZ
T |K(X)T = (ξu1

ZT1 ⊗S ...⊗S ξn−ul−1
ZTl)(µU1

⊗S ...⊗S µUk
)|T K(X)T

where U = {0 = u0 < u1 < ... < ul = n} and (T1, ..., Tl) and (U1, ..., Uk) are the splittings

of T over U and U over T respectively. Now since Z is associative, it follows completely

dually to the proof of Lemma 4.2.36 that for all j ∈ {1, ..., l},

ξuj−uj−1
ZTj = 0

whenever ℓ(Tj) > 1. Hence the right hand side of the above equation vanishes unless

the length of every Ui and Tj is 1. In the latter case, we have T = U and thus

ξUµUZ
T |T K(X)T = ξT |T K(X)T = idT K(X)T

Thus (ξTµT )T is also a post-inverse of ϵXn .

Construction 4.2.39. Let C be an S+ Mod(k)-category with object set S = Ob(C). Note

that for all n ≥ −1, we can consider the following coprojection in kQuivS :

Cn = C{0<n+2}c ↪→
⊕

T∈Pn+2

CT c
1
⊗S ...⊗S CT c

k
= T (C)n+2

It immediately follows from the definition of the comultiplication of T (C) that this quiver

map factors as

Cn
ηCn−−→ KT (C)n ↪→ T (C)n

where ηCn
is an isomorphism and the second quiver map is the canonical inclusion.

Proposition 4.2.40. Let C be a small S+ Mod(k)-category. Then the quiver morphisms
(ηCn)n≥−1 of Construction 4.2.39 define an isomorphism in kCat∆+ :

η : C → KT (C)

that is natural in C.

Proof. If f : [m]→ [n] is a morphism in∆+, then g = [0]⋆f ⋆ [0] : [m+2]→ [n+2] belongs

to ∆f and g−1({0 < n+2}) = {0 < m+2}. Thus T (C)(f){0<n+2} = C(f). It follows that

the quiver maps (ηCn
)n≥−1 define a map ηC : C → KT (C) in S+ Mod(k)-QuivS where

S = Ob(C).
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To show that ηC is also an S+ Mod(k)-functor, let m̃ denote the reverse composition law of

C. Also, let the quiver mapu : kS → C−1 represent the identities of Cwith kS the monoidal

unit of kQuivS . For p, q ≥ −1, consider the coface map δp+2 : [p + q + 3] → [p + q + 4].
Then it suffices to note that m̃p,q is precisely

T (C)(δp+2){0<p+2<p+q+4} : Cp ⊗S Cq → Cp+q+1

and that the degeneracy map s0 : T (C)0 → T (C)1 coincides with u.

Finally, the naturality of ηC follows immediately from the definitions.

Proof of Theorem 4.2.17. In view of Propositions 4.2.38 and 4.2.40, it remains to verify the

triangle identities for the unit η and the counit ϵ.

Let (X,Z) be a Frobenius templicial module. ThenK(ϵX)◦ηK(X) = idK(X)n follows from

the fact that for all n ≥ −1, Z{0<n+2}|K(X)n is the identity on K(X)n.

Let C be an S+ Mod(k)-category with object set S = Ob(C). Then to prove ϵT (C) ◦T (ηC) =
idT (C), it suffices to note that the composite

T (C)n =
⊕
T∈Pn

CT c
1
⊗S ...⊗S CT c

k
↪→

⊕
T∈Pn

T (C)t1 ⊗S ...⊗S T (C)n−tk−1

(ZT )T−−−−→ T (C)n

is the identity for all n ≥ 0, where Z is the Frobenius structure of T (C). The latter follows

quickly from the definition of Z.

4.2.3 The linear differential graded nerve

We are now ready to define the linear dg-nerve Ndg
k : kCatdg → S⊗ Mod(k). It is

constructed using the two equivalences from the previous subsections (Definition 4.2.46).

The remainder of this subsection is devoted to showing that the linear dg-nerve Ndg
k

lifts the classical dg-nerve Ndg
along Ũ : S⊗ Mod(k) → SSet (Corollary 4.2.54). We

will achieve this by proving the more general Proposition 4.2.53 which characterizes

templicial maps into the linear dg-nerve.

Definition 4.2.41. A differential graded category or dg-category over k is a category enriched

in the monoidal category (Ch(k),⊗, k[0]) of Construction 4.2.13. A dg-functor is a Ch(k)-
enriched functor. We denote the category of small dg-categories over k and dg-functors

between them by

kCatdg = Ch(k)-Cat

We call a dg-category C non-negatively graded if for all A,B ∈ Ob(C), the chain complex

C•(A,B) is non-negatively graded. We denote

kCatdg,≥0

for the full subcategory of kCatdg spanned by all non-negatively graded dg-categories.

Equivalently, we can define kCatdg,≥0 as the category Ch≥0(k)-Cat of small categories

enriched in (Ch≥0(k),⊗, k[0]).
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For more details on dg-categories, we refer to the literature. See [Kel06] and [Toë11] for

example.

Remark 4.2.42. Let C• be a dg-category. As noted in Remark 1.1.22, C• comes equipped

with a chain map

m̃ : C•(A,B)⊗ C•(B,C)→ C•(A,C)

for all A,B,C ∈ Ob(C), while the composition law of a dg-category is conventionally

given by chain maps

m : C•(B,C)⊗ C•(A,B)→ C•(A,C)

We can of course easily pass from one to the other by composing with the symmetry in

Ch(k): σ : C•(A,B)⊗ C•(B,C)
∼−→ C•(B,C)⊗ C•(A,B). But beware that this introduces

a sign; for all f ∈ Cp(A,B) and g ∈ Cq(B,C) we have

σ(f ⊗ g) = (−1)pqg ⊗ f

Further, we reserve the notation

g ◦ f = m(g ⊗ f)

for the conventional composition. Thus we have

m̃(f ⊗ g) = (−1)pqg ◦ f

The classical dg-nerve

Let us first recall the classical dg-nerve functor

Ndg : kCatdg → SSet

which implicitly goes back to Block and Smith [BS14], but was formally constructed and

named by Lurie [Lur16, Construction 1.3.1.6]. A few different versions of Ndg
exist in

the literature, with varying sign conventions. Most notably there is Faonte’s “small dg-

nerve” [Fao17, Definition 2.2.8] and a second version by Lurie [Lur18, Tag 00PL]. They

are however all isomorphic to each other. For our purposes, Faonte’s version is the most

convenient, which is why we will use it here. It is defined as follows.

Given a small dg-category C•, the differential graded (dg) nerve Ndg(C) is the simplicial set

where for every n ≥ 0, an n-simplex is a pair(
(Ai)

n
i=0, (fI)I⊆[n]

|I|≥2

)

where A0, ..., An ∈ Ob(C) and for each subset I = {i0 < ... < im} ⊆ [n] with m ≥ 1,

fI ∈ Cm−1(Ai0 , Aim) such that

∂(fI) =

m−1∑
j=1

(
(−1)j−1fI\{ij} + (−1)m(j−1)+1f{ij<...<im} ◦ f{i0<...<ij}

)
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or, when employing the reverse composition law of C• (see Remark 4.2.42):

∂(fI) =

m−1∑
j=1

(−1)j−1
(
fI\{ij} − m̃(f{i0<...<ij} ⊗ f{ij<...<im})

)
For any h : [m]→ [n] in ∆f , the map Ndg(C)n → Ndg(C)m is given by(

(Ai)
n
i=0, (fI)I⊆[n]

|I|≥2

)
7→

(
(Ah(i))

m
i=0, (h

∗fJ)J⊆[m]
|J|≥2

)

where

h∗fJ =


fh(J) if h is injective on J

idAi
if J = {j0 < j1}with h(j0) = i = h(j1)

0 otherwise

Example 4.2.43. Given a small dg-category C•, let us decribe the dg-nerve Ndg(C) in low

dimensions.

• The vertices of Ndg(C) are given by the object set Ob(C).

• The edges of Ndg(C) are given by the 0-cycles of the chain complex C•(A0, A1) for

some A0, A1 ∈ Ob(C), i.e. f01 ∈ C0(A0, A1) such that ∂(f) = 0.

• A 2-simplex of Ndg(C) is given by a (not necessarily commutative) diagram of

0-cycles:

A1

A0 A2

f01 f12

f02

f012

with f012 ∈ C1(A0, A2) such that ∂(f012) = f02 − f12 ◦ f01. So f012 is a homotopy in

C•(A0, A2) from f02 to f12 ◦ f01.

The linear dg-nerve

Proposition 4.2.44. The adjunction N+
• : S+ Mod(k) ⇆ Ch(k) : Γ+ of Proposition 4.2.10

induces an adjunction

kCat∆+ kCatdg

N+
•

Γ+

⊣

Moreover, the restriction

kCat∆+
kCatdg,≥0

N+
•

Γ+

∼

is an equivalence of categories.
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Proof. This immediately follows from Theorem 4.2.14.

Corollary 4.2.45. There is an equivalence of categories

SFrob⊗ Mod(k) ≃ kCatdg,≥0

Proof. Combine Proposition 4.2.44 and Theorem 4.2.17.

Definition 4.2.46. We define the (k-)linear differential graded (dg) nerve as the composite

Ndg
k : kCatdg

Γ+

−−→ kCat∆+

T−→ SFrob⊗ Mod(k)→ S⊗ Mod(k)

where Γ+
is the right-adjoint from Proposition 4.2.44, T is the equivalence from Propo-

sition 4.2.28 and the third arrow represents the forgetful functor.

Notation 4.2.47. Given n > 0, a subset I ⊆ {0 < n}c = {1, ..., n − 1} and k ∈ {1, ..., n −
1} \ I , we write

I<k = {i | i < k} and I>k = {i− k | i ∈ I, i > k}

and consider I<k and I>k as subsets of {0 < k}c = {1, ..., k − 1} and {0 < n − k}c =
{1, ..., n − k − 1} respectively. Note that I<k ⊔ I>k ≃ I as linearly ordered sets (see

Construction 4.2.19).

Remark 4.2.48. Given a small dg-category C•, let us make the templicial object Ndg
k (C) a

little more explicit. The vertex set of Ndg
• (C) is simply S = Ob(C).

Take n ≥ 0. From Construction 4.2.23 we have (also see Notation 4.2.21):

Ndg
k (C)n =

⊕
T∈Pn

T (Γ+(C))T =
⊕
T∈Pn

Γ+(C)T c
1
⊗S ...⊗S Γ+(C)T c

k
∈ kQuivS

For all A,B ∈ Ob(C), Γ+(C)T c
i
(A,B) = Γ+(C•(A,B))T c

i
is the k-module(aI)I ∈

⊕
I⊆T c

i

C|I|(A,B)

∣∣∣∣∣∣ ∂(aI) =
p∑
j=1

(−1)j−1aI\{ij}


where we’ve written I = {i1 < ... < ip} ⊆ T ci .

In view of Proposition 4.2.25, the counit of Ndg
k (C) is just the identity Ndg

k (C)0 = kS , the

monoidal unit of kQuivS . The comultiplication maps µp,q and Frobenius structure maps

Zp,q are defined by the canonical projections and coprojections respectively:

µp,q : N
dg
k (C)p+q =

⊕
T∈Pp+q

T (Γ+(C))T ↠
⊕

T∈Pp+q

p∈T

T (Γ+(C))T ≃ Ndg
k (C)p ⊗S Ndg

k (C)q

Zp,q : Ndg
k (C)p ⊗S Ndg

k (C)q ≃
⊕

T∈Pp+q

p∈T

T (Γ+(C))T ↪→
⊕

T∈Pp+q

T (Γ+(C))T = Ndg
k (C)p+q

Finally, the inner face maps and degeneracy maps of Ndg
k (C) are completely determined

by projection onto the component Γ+(C){0<p}c ofNdg
k (C)p corresponding to the necklace

T = {0 < p} ∈ Pp. More precisely:
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• For all 0 < j < n, the composite of dj : N
dg
k (C)n → Ndg

k (C)n−1 with the canonical

projection Ndg
k (C)n−1 ↠ Γ+(C){0<n−1}c is equal to the composite

Ndg
k (C)n ↠ Γ+(C){0<n}c ⊕ (Γ+(C){0<j}c ⊗S Γ+(C){j<n}c)

(d+j ,m
+)

−−−−−→ Γ+(C){0<n−1}c

If m̃ is the reverse composition law of C•, then d+j and m+
are defined by:

d+j
(
(aI)I⊆{0<n}c

)
= (aδj(J))J⊆{0<n−1}c

m+
(
((aI)I⊆{0<j}c ⊗ (bJ)J⊆{0<n−j}c

)
=
(
m̃(aδj(K)<j

⊗ bδj(K)>j
)
)
K⊆{0<n−1}c

where we used Notation 4.2.47.

• For all 0 ≤ i ≤ n, the composite of si : N
dg
k (C)n → Ndg

k (C)n+1 with the canonical

projection Ndg
k (C)n+1 ↠ Γ+(C){0<n+1}c is equal to
Ndg
k (C)n ↠ Γ+(C){0<n}c

s+i−−→ Γ+(C){0<n+1}c if 0 < i < n

Ndg
k (C)0 = IOb(C)

u−→ Z0(C) = Γ+(C)∅ if n = i = 0

0 otherwise

where u : kS → C0 represents the identities in C•, Z0 denotes the functor taking

0-cycles and

s+i
(
(aI)I⊆{0<n}c

)
= (bJ)J⊆{0<n+1}c

with bJ = aσi(J) if {i, i+ 1} ̸⊆ J and bJ = 0 if {i, i+ 1} ⊆ J .

Example 4.2.49. Given small a dg-category C•, let us describe the templicial objectNdg
k (C)

in low dimensions. Note the analogy with Example 4.2.43.

• The vertices of Ndg
k (C) are given by the object set Ob(C).

• Take objects A,B ∈ Ob(C). Then

Nhc
k (C)1(A,B) = Γ+(C•(A,B))−1 = Z0(C•(A,B))

is the submodule of C0(A,B) of 0-cycles.

• In two dimensions, we have

Ndg
k (C)2(A,B) = Γ+(C•(A,B))0 ⊕

⊕
C∈Ob(C)

Γ+(C•(A,C))−1 ⊗ Γ+(C•(C,B))−1

≃ C1(A,B)⊕
⊕

C∈Ob(C)

Z0(C•(A,C))⊗ Z0(C•(C,B))

The comultiplication map µ1,1 : Ndg
k (C)2 → Ndg

k (C)1 ⊗Ndg
k (C)1 is given by projec-

tion onto the second term in the expression above. On the other hand, the face map

d1 : Ndg
k (C)2 → Ndg

k (C)1 is defined as follows. Given a pair (h, α) with h ∈ C1(A,B)
and α a tensor belonging to the second term in the expression above, we have

d1(h, α) = ∂(h) + m̃(α)

where ∂ : C1(A,B)→ Z0(C•(A,B)) is the differential. Setting f = d1(h, α), we thus

find that h describes a homotopy in C•(A,B) between f and m̃(α).
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Templicial maps into the linear dg-nerve

The description of the simplices of the dg-nerve in Example 4.2.43 can be generalized to

the following remark from [Lur18].

Remark 4.2.50 ([Lur18], Tag 00PV). Let C• be a small dg-category over k and let K be a

simplicial set. A map of simplicial sets f : K → Ndg(C) is equivalent to the following

data:

• A map of sets f0 : S → Ob(C).

• For all a, b ∈ K0 and n > 0, a map

fn : Kn(a, b)→ U (Cn−1(f0(a), f0(b)))

Moreover, this data must satisfy the following conditions:

(a) For all a, b ∈ K0, 0 ≤ i ≤ n and σ ∈ Kn(a, b),

fn+1(s
K
i (σ)) =

{
idf(a) if n = 0, a = b

0 otherwise

(b) For all a, b ∈ K0, n > 0 and σ ∈ Kn(a, b),

∂(fn(σ)) =

n−1∑
j=1

(−1)j−1
(
fn−1(d

K
j (σ))− m̃(fj(d

K
j+1...d

K
n (σ))⊗ fn−j(dK0 ...dK0 (σ)))

)

We will now show the templicial analogue of Remark 4.2.50 (see Proposition 4.2.53). In

the following lemma we again make use of Notation 4.2.47.

Lemma 4.2.51. Let C• be a dg-category over k with object set S and denote its reverse com-
position law and identities by m̃ and u respectively. Let (X,S) be a templicial k-module with
comultiplication µ. Define

• the set S1 of all collections of morphisms in kQuivS :

(βn : Xn → Cn−1)n>0

• the set S2 of all collections of morphisms in kQuivS :(
αI : Xn → C|I|

)
I⊆{1,...,n−1},n>0

such that for all n > 0, I ⊆ {1, ..., n− 1} and j ∈ {1, ..., n− 1} \ I , we have:

αI = αδ−1
j (I)d

X
j − m̃(αI<j ⊗S αI>j )µ

X
j,n−j (4.6)

where δj is the coface map [n− 1]→ [n].
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Then the map
S2 → S1 : (αI)I⊆{1,...,n−1},n>0 7→ (α{1,...,n−1})n>0

is a bĳection.

Proof. It follows from equation (4.6) that a collection (αI)I in S2 is completely determined

by the morphisms α{1,...,n−1} for n > 0. Thus the above map is injective. We now show

the surjectivity.

Let (βn : Xn → Cn−1)n>0 be a collection of quiver morphisms. For every n > 0, set

α{1,...,n−1} = βn. Given I ⊊ {1, ..., n − 1}, choose some j ∈ {1, ..., n − 1} \ I and define

αI : Xn → Cℓ(I)−1 by equation (4.6), inductively on n. Note that this doesn’t depend on

the choice of j. Indeed, if j < k in {1, ..., n− 1} \ I , then we have by induction that:

αδ−1
j (I)d

X
j − m̃(αI<j ⊗S αI>j )µ

X
j,n−j

= αδ−1
k−1δ

−1
j (I)d

X
k−1d

X
j − m̃(αδ−1

j (I)<k−1
⊗S αδ−1

j (I)>k−1
)µXk−1,n−kd

X
j

− m̃
(
αI<j

⊗S (αδ−1
k−j(I>j)

dXk−j − m̃
(
α(I>j)<k−j

⊗S α(I>j)>k−j
)µXk−j,n−k

))
µXj,n−j

= α(δkδj)−1(I)d
X
j d

X
k − m̃(αδ−1

j (I<k)
⊗S αI>k

)µXk−1,n−kd
X
j

− m̃
(
αI<j ⊗S αδ−1

k−j(I>j)

)
µXj,n−j−1d

X
k + m̃(3)

(
αI<j ⊗S α(I<k)>j

⊗S αI>k

)
µXj,k−j,n−k

which is can be seen to equal αδ−1
k (I)d

X
k −m̃(αI<k

⊗S αI>k
)µXk,n−k by a similar calculation.

Hence, (αI)I belongs to the set S2.

Lemma 4.2.52. Let C• be a dg-category over k with object set S and denote its reverse com-
position law and identities by m̃ and u respectively. Let (X,S) be a templicial k-module with
comultiplication µ. Consider the bĳection S2

∼−→ S1 of Lemma 4.2.51. Then for all (αI)I ∈ S2
with (βn)n>0 = (α{1,...,n−1})n>0:

1. The following statements are equivalent:

(i) for all n > 0 and I = {i1 < ... < im} ⊆ {1, ..., n− 1},

∂αI =

m∑
j=1

(−1)j−1αI\{ij}

(ii) for all n > 0,

∂βn =

n−1∑
j=1

(−1)j−1
(
βn−1d

X
j − m̃(βj ⊗S βn−j)µXj,n−j

)
2. The following statements are equivalent:

(i) for all 0 ≤ i ≤ n and I ⊆ {1, ..., n},

αIs
X
i =


u if n = 0

ασi(I) if 0 < i < n, {i, i+ 1} ̸⊆ I
0 otherwise
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(ii) for all 0 ≤ i ≤ n,

βn+1s
X
i =

{
u if n = 0

0 if n > 0

Proof. Fix an element (αI)I of S2 and let (βn)n>0 = (α{1,...,n−1})n>0. Let us first prove

1. It is immediate from the definitions that (i) implies (ii). Conversely, assume that (ii)
holds. Let I = {i1 < ... < im} ⊆ {1, ..., n − 1} with n > 0. We show by induction on

n that ∂αI =
∑m
j=1(−1)j−1αI\{ij}. If I = {1, ..., n − 1}, this follows directly from (ii).

Note that this also covers the case n = 1. Otherwise, choose k ∈ {1, ..., n− 1} \ I and let

p = |I<k|. Then:

∂αI = ∂αδ−1
k (I)d

X
k − ∂m̃(αI<k

⊗S αI>k
)µXk,n−k

=

p∑
j=1

(−1)j−1αδ−1
k (I)\{ij}d

X
k +

m∑
j=p+1

(−1)j−1αδ−1
k (I)\{ij−1}d

X
k

− m̃(∂αI<k
⊗S αI>k

)µXk,n−k − (−1)pm̃(αI<k
⊗S ∂αI>k

)µXk,n−k

=

p∑
j=1

(−1)j−1
(
αδ−1

k (I\{ij})d
X
j − m̃(αI<k\{ij} ⊗S αI>k

)µXk,n−k

)
+

m∑
j=p+1

(−1)j−1
(
αδ−1

k (I\{ij})d
X
j − m̃(αI<k

⊗S αI>k\{ij−k})µ
X
k,n−k

)
=

m∑
j=1

(−1)j−1αI\{ij}

It remains to show 2. As before, (i) trivially implies (ii). Assume now that (ii) holds and

take 0 ≤ i ≤ n and I ⊆ {1, ..., n}. When I = {1, ..., n}, (i) follows directly from (ii). In

particular, this covers the case n = 0. Otherwise, choose j ∈ {1, ..., n}\ I . Without loss of

generality, we may assume that j ≤ i. We proceed by induction on n > 0 using equation

(4.6). Consider the following four cases:

• If j < i < n, then the statements {i, i+1} ⊆ I , {i−1, i} ⊆ δ−1
j (I) and {i, i+1} ⊆ I>j

are all equivalent and thus

αIs
X
i = αδ−1

j (I)s
X
i−1d

X
j − m̃(αI<j

⊗S αI>j
sXi−j)µ

X
j,n−j

=

{
ασi−1(δ

−1
j (I))d

X
j − m̃(αI<j

⊗S ασi−j(I>j))µ
X
j,n−j = ασi(I) if {i, i+ 1} ̸⊆ I

0 if {i, i+ 1} ⊆ I

• If j = i < n, then {i, i+ 1} ̸⊆ I and thus

αIs
X
i = αδ−1

i (I) − m̃(αI<i
⊗S αI>i

sX0 )µXi,n−i = αδ−1
i (I) = ασi(I)

• If j < i = n,

αIs
X
n = αδ−1

j (I)s
X
n−1d

X
j − m̃(αI<j

⊗S αI>j
sXn−j)µ

X
j,n−j = 0
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• If j = i = n,

αIs
X
n = αδ−1

n (I) − m̃(αI<n ⊗S α∅s
X
0 )µXn,0 = αδ−1

n (I) − αI<n = 0

Hence we have shown (i).

Proposition 4.2.53. Let C• be a small dg-category over k and (X,S) a templicial k-module. A
templicial map (α, f) : X → Ndg

k (C) is equivalent to the following data:

• A map of sets f : S → Ob(C).

• For all n > 0, a quiver map
βn : Xn → f∗Cn−1

satisfying the following properties:

(a) For all 0 ≤ i ≤ n,

βn+1s
X
i =

{
u if n = 0

0 if n > 0
(4.7)

where u denotes the identities of the dg-category f∗C•.

(b) For all n > 0,

∂βn =

n−1∑
j=1

(−1)j−1
(
βn−1d

X
j − m̃(βj ⊗S βn−j)µXj,n−j

)
(4.8)

where m̃ and ∂ are respectively the reverse composition law and the differential of the dg-
category f∗C• (induced by the lax structure of f∗, see Lemma 1.1.18).

Moreover, for all n > 0, βn is adjoint to the composite

f!Xn
αn−−→ Ndg

k (C)n → Γ+(C){0<n}c

π{0<n}c−−−−−→ Cn−1

Proof. Note that f∗C• is a dg-category with set of objects S, we may replace C• by f∗C•
and assume that f is the identity on S.

We can translate the data of a templicial map (α, idS) : X → Ndg
k (C) as follows. Let

(αn : Xn → Ndg
k (C)n)n>0 be a collection of morphisms in kQuivS . For any n > 0 and

I ⊆ {0 < n}c, consider the following composite:

αI : Xn
αn−−→ Ndg

k (C)n → Γ+(C){0<n}c
πI−→ C|I|

It follows from the templicial structure of the linear dg-nerve (Remark 4.2.48) that the

assignment (αn)n>0 7→ (αI)I⊆{0<n}c,n>0 induces a bĳection:{
(αn : Xn → Ndg

k (C)n)n>0

∣∣∣∣∀0 < j < n : µ
Ndg

k (C)
j,n−j αn = (αj ⊗S αn−j)µXj,n−j

}
≃(αI : Xn → C|I|) n>0

I⊆{0<n}c

∣∣∣∣∣∣∀n, ∀I : ∂αI =

m∑
j=1

(−1)j−1αI\{ij}
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where we have denoted I = {i1 < ... < im} ⊆ {1, ..., n− 1}.

Further, it follows that the morphisms (αn)n>0 are compatible with the degeneracy maps

if and only if for all 0 ≤ i ≤ n and I ⊆ {1, ..., n},

αIs
X
i =


u if n = 0

ασi(I) if 0 < i < n, {i, i+ 1} ̸⊆ I
0 otherwise

and (αn)n>0 are compatible with the face maps if and only if for all 0 < j < n and

I ⊆ {1, ..., n− 2}:

αId
X
j = αδj(I) + m̃(αδj(I)<j

⊗S αδj(I)>j−1
)µXj,n−j

Hence the result follows from Lemma 4.2.52.

Corollary 4.2.54. There is a natural isomorphism Ũ ◦Ndg
k ≃ Ndg .

Proof. Let C• be a small dg-category over k and n ≥ 0. By Proposition 4.2.53, a templicial

map F̃ (∆n) → Ndg
k (C) is equivalent to a map of sets f : [n] → Ob(C) with a collection

of quiver morphisms βm : F̃ (∆n)m → f∗Cm−1 for m > 0 satisfying properties (4.7) and

(4.8). The map f is equivalent to a choice of objects A0, ..., An ∈ Ob(C). Further, for

i, j ∈ [n] we have

F̃ (∆n)m(i, j) = F ({h ∈∆([m], [n]) | h(0) = i, h(m) = j})

and thus we may represent βm by a collection of elements βi0,...,im ∈ Cm−1(Ai0 , Aim) for

0 ≤ i0 ≤ ... ≤ im ≤ n. Then by property (4.7), βi,i = idi and βi0,...,im = 0 whenever

m ≥ 2 and ip = ip+1 for some p ∈ [m − 1]. Hence, βm is completely determined by the

elements β{i0<...<im} with i0 < ... < im. Moreover, property (4.8) translates to

∂(β{i0<...<im}) =

m−1∑
j=1

(−1)j−1
(
βI\{ij} − m̃(β{i0<...<ij} ⊗ β{ij<...<im})

)
Hence, the pair ((ai)i, (βI)I) is precisely an n-simplex ofNdg(C)n. We have thus obtained

a bĳection between Ũ(Ndg
k (C))n and Ndg(C)n.

It now follows easily from the definitions that this bĳection is natural in n and C•.

4.2.4 Quasi-categories and Frobenius structures

Our main result in this subsection is Corollary 4.2.65 which states that the linear dg-nerve

of any dg-category is a quasi-category in Mod(k). This will be a consequence of the more

general Theorem 4.2.62 that every templicial k-module with a naF-structure is already

a quasi-category in Mod(k). As a byproduct, we find that this applies to F̃ (C) for any

ordinary quasi-category C as well (Corollary 4.2.63).

We start by introducing the wings Wn
of a simplex ∆n

for n ≥ 2, which are defined as

the union of its two outer faces. Given a necklace (T, n) and 0 < j < n, the unique inert
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necklace map T ↪→ {0 < n} can thus be identified with a composite of inclusions of

bipointed simplicial sets:

T ⊆Wn ⊆ Λnj ⊆ ∆n

By design, a naF-structure on a templicial object X allows to fill up any necklace T in

X to a simplex via the morphism ZT : XT → Xn. For general monoidal categories V ,

this is all we can say. For V = Mod(k) however, we can use an alternating sum of the

maps ZT to show that also all wings Wn
in X can be filled to a simplex (see Proposition

4.2.59). Finally, from this also all inner horns in X can be filled by appropriately adding

and subtracting degenerate simplices (Proposition 4.2.60). This last argument employs

the same technique as the one used to show that every simplicial group is a Kan complex

(see for instance [Moo58]).

Definition 4.2.55. Let n ≥ 2. We write Wn
for the simplicial subset of ∆n

defined by

Wn([m]) = {f : [m]→ [n] | f(m) ≤ n− 1 or f(0) ≥ 1}

for all m ≥ 0. We call Wn
the wings of ∆n

. It consists of the 0th and nth face of ∆n
.

We say a functor Y• : N ecop → V lifts wings if for all n ≥ 2, any lifting problem in VNecop
:

F̃ (Wn)•(0, n) Y•

F̃ (∆n)•(0, n)

where the vertical morphism is induced by the inclusion Wn ⊆ ∆n
, has a solution.

Proposition 4.2.56. For all n ≥ 2, we have

Wn
• (0, n) =

n−1⋃
k=1

(∆k ∨∆n−k)•(0, n)

as a subfunctor of ∆n
• (0, n). In particular, we have for all necklaces (T, p):

Wn
T (0, n) = {f : T → ∆n in N ec | {0 < n} ⊊ f(T )}

Proof. This is shown similarly to Proposition 2.2.18 and Corollary 2.2.20.

Lemma 4.2.57. For all n ≥ 2, the inclusion Wn
• (0, n) ↪→ ∆n

• (0, n) belongs to Horn.

Proof. Given 0 < k < n, let us denote by Ank the simplicial subset of ∆n
given by the

union of the faces 0, ..., k − 1 and n. Then Ank contains all vertices of ∆n
and

(Ank )•(0, n) =Wn
• (0, n) ∪

k−1⋃
j=1

δj(∆
n−1)•(0, n)

by Proposition 4.2.56. We will show by double induction on n ≥ 2 and 0 < k < n that

the inclusion

(Ank )•(0, n) ↪→ ∆n
• (0, n) (4.9)
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belongs to Horn. The result then follows by choosing k = 1.

If k = n − 1, then (4.9) coincides with the horn inclusion (Λnn−1)•(0, n) ↪→ ∆n
• (0, n) by

Proposition 2.2.18. Note that this covers the entire case n = 2.

Assume further thatk < n−1 and let (T, p)be a necklace. Recall that for a maph : T → ∆n

in SSet∗,∗ and 0 < i < n, h factors through (∆i ∨∆n−i)•(0, n) if and only if i ∈ h(T ), and

h factors through δi(∆
n−1) if and only if h([p]) ⊆ [n]\{i}. Now take a map g : T → ∆n−1

in SSet∗,∗. It follows that δkg : T → ∆n
factors through (Ank )0,n ∩ δk(∆n−1)0,n if and only

if g factors through (An−1
k )0,n−1. Hence, we obtain a pushout diagram in SetNecop

:

(An−1
k )•(0, n− 1) (Ank )•(0, n)

∆n−1
• (0, n− 1) (Ank+1)•(0, n)

δk

δk

By the induction hypothesis, the left vertical map belongs to Horn and thus so is the right

vertical map. By the induction hypothesis, the inclusion (Ank+1)•(0, n) ↪→ ∆n
• (0, n) also

belongs to Horn. This completes the proof.

Proposition 4.2.58. Let (X,S) be a quasi-category in V . Then for every a, b ∈ S, the functor
X•(a, b) : N ecop → V lifts wings.

Proof. This is an immediate consequence of Lemma 4.2.57.

Proposition 4.2.59. Let (X,S) be a templicial k-module with a naF-structure. Then for every
a, b ∈ S, the functor X•(a, b) : N ecop → Mod(k) lifts wings.

Proof. Let Z denote the naF-structure of X . Take n ≥ 2 and a, b ∈ S. By Proposition

4.2.56, a morphism F̃ (Wn)•(0, n)→ X•(a, b) in Mod(k)Necop
corresponds to a collection

(xk)
n−1
k=1 of elements with xk ∈ U((Xk ⊗S Xn−k)(a, b)) for all 0 < k < n such that for all

0 < k < l < n we have

(idXk
⊗µl−k,n−l)(xk) = (µk,l−k ⊗ idXn−l

)(xl) (4.10)

To extend the above morphism to F̃ (∆n)•(0, n), we must find an element z ∈ Xn(a, b)
such that µk,n−k(z) = xk for all 0 < k < n.

Given T ∈ Pn with ℓ(T ) ≥ 2, we can choose k ∈ T \{0, n}. Consider the splitting (T1, T2)
of T over {0 < k < n}. Then set

xT = (µT1 ⊗ µT2)(xk) ∈ U(XT (a, b))

Note that by (4.10), this expression does not depend on the choice of k. Then it follows

by Proposition 2.2.40 and Corollary 2.2.41.1 that

µk,n−kZ
T (xT ) = (ZT1 ⊗ ZT2)(id⊗µT ′ ⊗ id)(xT )

= (ZT1 ⊗ ZT2)(xT∪{k}) = µk,n−kZ
T∪{k}(xT∪{k})
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where T ′
is some necklace with ℓ(T ′) = 2 and the second equality follows from (4.10).

Now consider

z =
∑
T∈Pn

ℓ(T )≥2

(−1)ℓ(T )ZT (xT )

Then we have for all 0 < k < n that µk,n−k(z) is equal to∑
T∈Pn

ℓ(T )≥2
k∈T

(−1)ℓ(T )µk,n−kZ
T (xT ) +

∑
T∈Pn

ℓ(T )≥2
k ̸∈T

(−1)ℓ(T )µk,n−kZ
T∪{k}(xT∪{k})

=
∑
T∈Pn

ℓ(T )≥2
k∈T

(−1)ℓ(T )µk,n−kZ
T (xT ) +

∑
U∈Pn

ℓ(U)≥3
k∈U

(−1)ℓ(U)−1µk,n−kZ
U (xU )

= µk,n−kZ
k,n−k(x{0<k<n}) = xk

Proposition 4.2.60. Let (X,S) be a templicial k-module. Then the following statements are
equivalent.

(1) X is a quasi-category in Mod(k).

(2) For all a, b ∈ S, the functor X•(a, b) : N ecop → Mod(k) lifts wings.

Proof. IfX is a quasi-category inMod(k), then (2)holds by Proposition 4.2.58. Conversely,

take 0 < j < n, a, b ∈ S and let (xk)
n−1
k=1 and (yi)

n−1
i=1,i̸=j be collections of elements

satisfying the conditions of Corollary 2.2.22.3. Consider the following condition on

elements z ∈ U(Xn(a, b)):

µk,l(z) = xk (for all 0 < k < n) (4.11)

Let us start by noting that if z ∈ Xn satisfies (4.11), then we have for all 0 < k < n that

µk,n−k(si(yi − di(z))) = 0 (for all 0 < i < j)

µk,n−k(si−1(yi − di(z))) = 0 (for all j < i < n)

Indeed, for the first equation, there are three cases:

µk,n−k(si(yi − di(z)))

=


(si ⊗ idXn−k

)(µk−1,n−k(yi)− (di ⊗ idXn−k
)(xk)) if i < k

(idXk
⊗s0)(µk,n−k−1(yk)− (dk ⊗ idXn−k−1

)(xk+1)) if i = k

(idXk
⊗si−k)(µk,n−k−1(yi)− (idXk

⊗di−k)(xk)) if i > k

= 0

The second equation follows similarly.

Now assuming (2), there exists an element z0 ∈ U(Xn(a, b)) satisfying condition (4.11).

Then define, inductively on l ∈ {1, ..., j − 1}:

zl = zl−1 + sl(yl − dl(zl−1)) ∈ U(Xn(a, b))
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By the previous remarks, each zl satisfies (4.11). We then prove by induction on l that for

all 0 < i ≤ l:
di(z

l) = yi

Indeed, for l = 0 this is trivial and if l > 0 we have:

di(z
l) =

{
yi − sl−1(di(yl)− dl−1(yi)) if i < l

dl(z
l−1) + yl − dl(zl−1) if i = l

= yi

Finally, set zn = zj−1
and define inductively on l ∈ {j + 1, ..., n− 1}:

zl = zl+1 + sl−1(yl − dl(zl+1))

Then again zl satisfies (4.11) for all j < l ≤ n. We prove by induction on l that for all

i ∈ {1, ..., j − 1} ∪ {l, ..., n− 1}:
di(z

l) = yi

Again this is trivial for l = n and if l < n we have

di(z
l) =


yi − sl−2(di(yl)− dl−1(yi)) if i < l − 1

dl(z
l+1) + yl − dl(zl+1) if i = l

yi − sl−1(di−1(yl)− dl(yi)) if i > l

= yi

Note that the case i = l − 1 does not occur. Following Proposition 2.2.28, it thus suffices

to set z = zj+1
.

The previous proposition does not hold for ordinary simplicial sets, as the following

example shows.

Example 4.2.61. Consider the simplicial set X = ∆3 ⨿∂∆2 ∆2
, gluing an extra 2nd face

to the standard 3-simplex. Formally, it is the pushout of the inclusion ∂∆2 ⊆ ∆2
along

the map ∂∆2 → ∆3
sending vertices 0 7→ 0, 1 7→ 1 and 2 7→ 3. Denote the simplices of

∆3
by ordered sequences [i0, ..., im] and denote the extra face by x ∈ X2. We then have

d0(x) = [1, 3], d1(x) = [0, 3] and d2(x) = [0, 1], but x ̸= [0, 1, 3].

ThenX is certainly not a quasi-category as there exists no 3-simplex zwithd0(z) = [1, 2, 3],
d2(z) = x and d3(z) = [0, 1, 2].

However, all wings inX can be filled. Indeed, a mapα :Wn → X is uniquely determined

by simplices y, z ∈ Xn−1 such that d0(y) = dn−1(z). If either y or z is degenerate, α
extends trivially to ∆n

. Assuming they are both non-degenerate, we have either n = 2
or n = 3. As W 2 = Λ2

1 and the quasi-category ∆3
contains all edges of X , the case n = 2

is covered. If n = 3, we must have y = [0, 1, 2] and z = [1, 2, 3], which can be filled by

[0, 1, 2, 3] itself.

Theorem 4.2.62. Let X be a templicial k-module with a naF-structure. Then X is a quasi-
category in Mod(k).

Proof. Combine Propositions 4.2.59 and 4.2.60.

Corollary 4.2.63. Let C be an ordinary quasi-category. Then F̃ (C) is a quasi-category inMod(k).
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Proof. This follows from Proposition 2.2.37, Example 3.1.33 and Theorem 4.2.62.

Corollary 4.2.64. Let C be a small S+ Mod(k)-category. Then the underlying templicial k-
module of T (C) is a quasi-category in Mod(k).

Proof. This immediately follows from Theorem 4.2.62.

Corollary 4.2.65. Let C• be a small dg-category over k. Then its linear dg-nerve Ndg
k (C) is a

quasi-category in Mod(k).

Proof. Apply Corollary 4.2.64 to the S+ Mod(k)-category Γ+(C•).

4.2.5 Comparison with other nerves

In this final subsection, we compare the linear dg-nerve Ndg
k to the two other nerves we

defined so far, namely the templicial nerve functorNk (Construction 2.3.4) and templicial

homotopy coherent nerve functor Nhc
k (Definition 4.1.13).

Notation 4.2.66. Any small k-linear category can be considered as a small dg-category

concentrated in degree 0. We denote this embedding by ι : kCat→ kCatdg . Conversely,

we can apply the 0th homology functor to all hom-complexes of a small dg-category to

get a functor H0 : kCatdg → kCat.

Proposition 4.2.67. We have natural isomorphisms

Ndg
k ◦ ι ≃ Nk and hk ◦Ndg

k ≃ H0

Proof. Let us denote the functor from left to right in the equivalence of Corollary 4.2.45 by

DG = N+
• K : SFrob⊗ Mod(k) → kCatdg,≥0. Clearly, ι factors through kCatdg,≥0 and the

templicial nerve functor Nk factors through SFrob⊗ Mod(k) by Corollary 2.3.9. Therefore,

it suffices to show that we have natural isomorphisms

ι ≃ DG ◦Nk and hk ≃ H0 ◦DG

Let C be a small k-linear category. Since the comultiplication maps ofNk(C) are invertible,

we have that the S+ Mod(k)-category K(Nk(C)) is concentrated in degree −1 and thus

DG•(Nk(C)) is concentrated in degree 0. It follows that DG ◦Nk is naturally isomorphic

to ι.

Let (X,S) be a Frobenius templicial k-module. Boiling down the definitions, we see

that the set of objects of DG•(X) is S as well and that for every a ∈ S, the degenerate

1-simplex s0(a) represents the identity in both hkX and H0(DG•(X)). Take a, b, c ∈ S.

Then the differential ∂ : DG1(X)(a, c)→ DG0(X)(a, c) is just the restriction d1|ker(µ1,1) :
ker(µ1,1)(a, c) → X1(a, c). Hence, for any three f ∈ X1(a, b), g ∈ X1(b, c) and h ∈
X1(a, c), the composition gf is homologous to h in DG•(X) if and only if there exists

a w ∈ ker(µ1,1)(x, z) such that d1(w) = h − gf . This is equivalent to the existence of a

templicial map α : F̃ (∆2)→ X with α0,1 = 0, α1,2 = s0(x) and α0,2 = h− gf (using the

notation of Corollary 2.1.27). In other words, [g] ◦ [f ] = [h] in hkX . Specializing to the



4.2. DIFFERENTIAL GRADED CATEGORIES 149

case f = s0(x), we find that [g] = [h] in H0(DG•(X)) if and only if [g] = [f ] in hkX . This

shows that [f ] 7→ [f ] defines an isomorphism of k-linear categories

hkX ≃ H0(DG•(X))

It follows easily that this isomorphism is natural in X .

Given a dg-category, there is a classical comparison map between its dg-nerve and the

homotopy coherent nerve of its associated simplicial category. We will lift this map to a

templicial analogue in Corollary 4.2.70. To achieve this, we’ll first prove a general lifting

result for Frobenius templicial k-modules (Proposition 4.2.69).

Lemma 4.2.68. Let (X,S) be a Frobenius templicial k-module and let ϵ : F̃ Ũ(X) → X be the
canonical templicial map. For all n ≥ 0 and a, b ∈ S, the induced k-linear map

ϵn : F (Ũ(X)n(a, b))→ Xn(a, b)

is surjective.

Proof. Fix some a, b ∈ S and n ≥ 0. As ϵ0 clearly is an isomorphism, we may assume

n > 0. Let us call an element x ∈ Xn(a, b) pure if there is an n-simplex α ∈ Ũ(X)n(a, b)
such that α0,n = x (using the notation of Corollary 2.1.27). We wish to show that the

k-module Xn(a, b) is generated by pure elements.

Denote the Frobenius structure of X by Z. We first make some observations:

1. If x ∈ Xn(a, b) satisfies µk,l(x) = 0 for all k, l > 0 with k + l = n, then x is pure.

Indeed, we can simply define α ∈ Ũ(X)n(a, b) as follows:

αi,j =

{
x if i = 0, j = n

0 otherwise

for all 0 ≤ i < j ≤ n.

2. Let T = {0 = t0 < t1 < ... < tp = n} be a necklace and at1 , ..., atp−1
∈ S, and set

a0 = a, an = b. If we have pure elementsxi ∈ Xti−ti−1
(ati−1

, ati) for all i ∈ {1, ..., p},
then

ZT (x1 ⊗ ...⊗ xp) ∈ Xn(a, b)

is pure as well.

Indeed, take an r ∈ {1, ..., p}. Then we can choose elements

atr−1+1, ..., atr−1 ∈ S and αi,j ∈ Xj−i(ai, aj) for all tr−1 ≤ i < j ≤ tr

such that αtr−1,tr = xr and µk−i,j−k(αi,j) = αi,k⊗αk,j for all i < k < j. Now given

any 0 ≤ i < j ≤ n, let r, s ∈ {1, ..., p} be such that tr−1 ≤ i < tr and ts−1 < j ≤ ts
and define

αi,j = ZT
′
(αi,tr ⊗ xr+1 ⊗ ...⊗ xs−1 ⊗ αts−1,j)

where (T1, T
′, T2) is the splitting of T over {0 < i < j < n}. Note that whenever

tr−1 ≤ i < j ≤ tr for some r ∈ {1, ..., p}, this definition coincides with the αi,j
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already defined. Further, when (i, j) = (0, n), we get α0,n = ZT (x1⊗ ...⊗xp). Now

take any i < k < j. Then by Proposition 2.2.40,

µk−i,j−k(αi,j) = αi,k ⊗ αk,j

showing that α = ((ai)
n
i=0, (αi,j)0≤i<j≤n) is an n-simplex of Ũ(X).

We proceed by induction on n > 0 to show that Xn(a, b) is generated by pure elements.

If n = 1, then every element of Xn(a, b) is pure. Now let n ≥ 2 and x ∈ Xn(a, b). Given a

necklace T = {0 = t0 < t1 < ... < tp = n}with p ≥ 2, we have

µT (x) =

N∑
i=1

xi1 ⊗ ...⊗ xip

for some N ∈ N, a = ai0, a
i
1, ..., a

i
p−1, a

i
p = b ∈ S and xij ∈ Xtj−tj−1

(aij−1, a
i
j). By the

induction hypothesis, we may assume that all xij are pure. Set

y =
∑
T∈Pn

ℓ(T )≥2

(−1)ℓ(T )+1ZTµT (x)

Then by observation 2, y is a linear combination of pure elements. By the same argument

as in the proof of Lemma 4.2.36, we find that

µk,l(x+ y) = µk,l

( ∑
T∈Pn

(−1)ℓ(T )+1ZTµT (x)

)
= 0

for all k, l > 0 with k + l = n. Hence, by observation 1, x + y is pure as well and thus

x = (x+ y)− y is a linear combination of pure elements.

Proposition 4.2.69. Let (X,S) be a Frobenius templicial k-module. Let C• be a small dg-category
over k. Suppose f : Ũ(X)→ Ndg(C) is a simplicial map that (as in Remark 4.2.50) corresponds
to a map f0 : S → Ob(C) along with the following composites for all a, b ∈ S and n > 0:

fn : Ũ(X)n(a, b)→ U(Xn(a, b))
U(βn)−−−−→ U (Cn−1(f0(a), f0(b)))

with (βn : Xn → f∗0 Cn−1)n>0 some collection of morphisms in kQuivS .

Then there is a unique templicial map (α, f0) : X → Ndg
k (C) such that f coincides with

Ũ(X)
Ũ(α)−−−→ Ũ(Ndg

k (C)) ≃ Ndg(C)

where the isomorphism is provided by Corollary 4.2.54.

Proof. In order to construct α, we want to show that the morphisms (βn)n>0 satisfy the

properties (4.7) and (4.8) of Proposition 4.2.53. Consider the counit ϵ : F̃ Ũ(X) → X of

the adjunction F̃ ⊣ Ũ . The hypothesis on f guarantees that for any n-simplex σ of Ũ(X),

considered as a simplex of F̃ Ũ(X), we have

U(βnϵn)(σ) = fn(σ)
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As ϵn is surjective (Lemma 4.2.68) andU is faithful, βn is uniquely determined by fn. Fur-

ther, to verify properties (4.7) and (4.8), it suffices to check that they hold after evaluating

in ϵn(σ) for arbitrary σ ∈ Ũ(X)n and n > 0. This now follows from Remark 4.2.50.

Moreover, it follows from Remark 4.2.50 and Corollary 4.2.54 that (α, f0) is the unique

templicial map such that Ũ(α) : Ũ(X)→ Ũ(Ndg
k (C)) ≃ Ndg(C) is precisely f .

The classical normalized chain functor N• : SMod(k) → Ch(k) has a colax monoidal

structure given by the Alexander-Whitney homomorphism (see [May67, §29] for exam-

ple). Thus the right-adjoint to N•:

Γ : Ch(k)→ SMod(k)

has an induced lax monoidal structure by Lemma 1.1.4. Given a small dg-category C•,

we can consequently apply Γ to the hom-complexes of C• to obtain an SMod(k)-category

C△ with the same objects as C•. In [Lur16, Proposition 1.3.1.17], Lurie shows that there is

an equivalence of quasi-categories (which was later shown to even be a trivial fibration

[Lur18, Tag 00SV]):

Z : Nhc(U(C△))→ Ndg(C)

which satisfies the following two properties:

• The map Z is given by the identity on vertices.

• For any A,B ∈ Ob(C), n > 0 and σ ∈ Nhc(U(C△))n(A,B), the (n − 1)-chain

Z(σ)I ∈ Cn−1(A,B) for I = [n] is given as follows.

The n-simplex σ can be identified with a simplicial functor C[∆n] → U(C△) (see

§4.1.2), which induces a simplicial map

f : □n−1 ≑ N(Pn) ≃ C[∆n](0, n)→ U(Γ(C•(A,B)))

As Γ is right-adjoint to the normalized chain complexN• : SMod(k)→ Ch(k), this

map determines a chain map

f ′ : N•(□
n−1; k)→ C•(A,B)

Then Z(σ)I is defined as the image under f ′ of the following (n− 1)-chain:

[□n−1] =
∑

τ∈Σn−1

sgn(τ)τ̂ ∈ Nn−1(□
n−1; k)

where sgn(τ) ∈ {−1, 1} denotes the sign of a permutation τ ∈ Σn−1 and

τ̂ = ({0, n} ⊆ {0, τ(1), n} ⊆ {0, τ(1), τ(2), n} ⊆ ... ⊆ {0, ..., n})

is a non-degenerate (n− 1)-simplex of □n−1 = N(Pn).

In fact, the map Z is unique with these two properties as is shown in [Lur18, Tag 00SN],

where [□n−1] is called the fundamental chain of □n−1
. For more details on the map Z,

see [Fao17] or [Lur18]. Note however that they use slightly different versions of the

homotopy coherent nerve.



152 CHAPTER 4. EXAMPLES OF QUASI-CATEGORIES IN A MONOIDAL CATEGORY

Corollary 4.2.70. Let C• be a small dg-category over k. Then there is a unique templicial map
Nhc
k (C△)→ Ndg

k (C) such that Z is equal to the composite

Nhc(U(C△)) ≃ ŨNhc
k (C△)→ ŨNdg

k (C) ≃ Ndg(C)

where the isomorphisms are provided by Proposition 4.1.17 and Corollary 4.2.54.

Proof. By Proposition 4.1.17, we have an isomorphism of simplicial sets Nhc(U(C△)) ≃
ŨNhc

k (C). It follows from the properties of Z that for allA,B ∈ Ob(C) and n > 0, we have

a commutative diagram:

ŨNhc
k (C△)n(A,B) Ndg(C)n(A,B)

U(Nhc
k (C△)n(A,B)) U(Cn−1(A,B))

U(βn)

Zn

where βn is the k-linear map given by the composite of

Nhc
k (C△)n(A,B)

pn−→ [FN(Pn),Γ(C•(A,B))] ≃ [N•(□
n−1; k), C•(A,B)]

with the evaluation map at [□n−1]:

ev[□n−1] : [N•(□
n−1; k), C•(A,B)]→ Cn−1(A,B)

Hence, the result follows from Propositions 4.1.19 and 4.2.69.
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Future research

“And so I close, realizing that perhaps the ending has not yet been written.”

— Atrus (Myst)

In this final chapter we pose some open questions and discuss possible avenues for

answering them.

Model structure

The most glaring open problem regarding templicial objects is the lack of any homotopy

theory. Specifically, it is desirable to have a model structure on the category S⊗V . For

details on model categories we refer to the relevant literature (see [Hov99] or [Hir03] for

example).

The Joyal model structure (originally constructed in [Joy08, Chapter 6], a modern account

is given in [Cis19, §3.3]) is the unique model structure on SSet whose cofibrations are the

monomorphisms and whose fibrant objects are the quasi-categories. Let us denote it by

SSetJ . By analogy, we can ask the following question:

Question 1. Given a suitable monoidal category V , does there exist a model structure on S⊗V
whose fibrant objects are the quasi-categories in V (Definition 2.2.26) and whose cofibrations are
the projective templicial morphisms (Definition 3.1.24)?

By a result of Joyal [Joy04, p. 50.10], this would fully determine the model category

structure. Of course the issue is showing existence.

One major source of difficulty is the fact that we do not have a set which generates the

class of projective templicial morphisms as a weakly saturated class. Unlike in SSet,
where the boundary inclusions ∂∆n ↪→ ∆n

for n ≥ 0 generate the monomorphisms, the

induced morphisms F̃ (∂∆n)→ F̃ (∆n) in S⊗V do not generate the projective templicial

morphisms. Thus we currently do not have access to recognition theorems for cofibrantly

generated model categories like [Bek00, Theorem 1.7] or [Hir03, Theorem 11.3.1].

153
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Let us first consider what doesn’t work. In [Qui67, II.3, II.4], Quillen constructed a

model structure on SSet with fibrant objects the Kan complexes, and showed that it

can be right transferred along the forgetful functor U : SV → SSet (for suitable V).

Similarly, one could hope to construct a model structure on S⊗V via right transfer along

Ũ : S⊗V → SSetJ . However, it is possible to adapt Example 2.3.18 to show that this

model structure does not exist.

An alternative approach is the following. In [Ber07], Bergner constructed a model struc-

ture on the category Cat∆ of simplicial categories. It was shown by Lurie in [Lur09a] that

the categorification functor C : SSet → Cat∆ is the left-adjoint in a Quillen equivalence

between the model categories Cat∆ and SSetJ . Moreover, C preserves and reflects weak

equivalences (see [DS11a, Proposition 8.1] for example). It is further not difficult to see

that C also preserves and reflects cofibrations. So in fact, the Joyal model structure SSetJ
is given via left transfer along C : SSet → Cat∆. From Quillen’s model category SV ,

several results [BM13][Sta14][Mur15] produce an induced model structure on V Cat∆,

generalizing the one of Bergner. So one could similarly try to equip S⊗V with a model

structure by left transfer along CV : S⊗V → V Cat∆ (Definition 4.1.13). Recall that S⊗V
is locally presentable if V is, by Theorem 3.2.29. So in this case, the results of [HKRS17]

would become available. At present it is still unclear whether such a model structure

exists, or whether it would have the same cofibrations and fibrant objects as posited in

Question 1.

A third, less straightforward approach is through the use of necklace categoriesV CatNec.

The author believes it should be possible to construct a model structure on VNecop
whose

cofibrations and trivial cofibrations are generated by Cell and Horn respectively (see

Notation 2.2.23 and Remark 2.2.24). In that case, a templicial object (X,S) would be a

quasi-category in V if and only if the X•(a, b) is fibrant in VNecop
for all a, b ∈ S. In any

case, a more thorough investigation of the category VNecop
is necessary.

Morphism spaces

Consider a simplicial set K with vertices a, b ∈ K0. In [Lur09a, §1.2.2], Lurie constructed

simplicial sets HomL
K(a, b), Homcyl

K (a, b) and HomR
K(a, b), called the left-pinched morphism

space, morphism space and right-pinched morphism space respectively. If K is a quasi-

category, then these are all homotopy equivalent Kan complexes. As noted by Dugger

and Spivak in [DS11a], these morphism spaces can be described by certain cosimplicial

objects C⋔ : ∆→ SSet∗,∗ where ⋔∈ {L, cyl, R}. Indeed:

Hom⋔
K(a, b) ≃ SSet∗,∗(C

(−)
⋔ ,Ka,b)

Moreover, they constructed a zig-zag of weak homotopy equivalences in SSet:

C[K](a, b)
∼←→ Hom⋔

K(a, b) (5.1)

assuming K is a quasi-category.

In fact, for every n ≥ 0, the simplicial set Cn⋔ has exactly two vertices 0 and 1. It is not

difficult to see that also

Hom⋔
K(a, b) ≃ SetNecop((C

(−)
⋔ )•(0, 1),K•(a, b))
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Given a templicial object (X,S) with a, b ∈ S, we can now define

Hom⋔
X(a, b) = [F̃ (C

(−)
⋔ )•(0, 1), X•(a, b)] ∈ SV

where [−,−] denotes the canonical enrichment of VNecop
over V . It follows quickly that

there is an isomorphism of simplicial sets

U(Hom⋔
X(a, b)) ≃ Hom⋔

Ũ(X)
(a, b) (5.2)

Thus ifX is a quasi-category inV , then Ũ(X) is a quasi-category by Proposition 2.2.31 and

thus HomL
X(a, b), Homcyl

X (a, b) and HomR
X(a, b) are weakly equivalent fibrant objects in

Quillen’s model structure on SV mentioned above. The following question now presents

itself.

Question 2. Given a quasi-category X in V with vertices a and b, does there exist a zig-zag of
weak equivalences in SV :

CV [X](a, b)
∼←→ Hom⋔

X(a, b)

which specializes to (5.1) when V = Set?

If this can be shown, then it would follow from (5.2) that the canonical map

C[Ũ(X)](a, b)→ U(CV [X](a, b))

is a weak homotopy equivalence for all quasi-categories X in V . We have already shown

that this holds on the level of connected components (Corollary 2.3.26), and that it fails

if X is not assumed to be a quasi-category in V (Example 4.1.34).

Comparisons with other models

For the following comparisons to make sense, let us assume that the model structure of

Question 1 exists.

Categories weakly enriched in simplicial objects

As mentioned above, the categorification functor C : SSetJ → Cat∆ is the left-adjoint in

a Quillen equivalence. The following question is a natural one.

Question 3. Is the adjunction CV : S⊗V ⇆ V Cat∆ : Nhc
V a Quillen equivalence?

In [GH15] Gepner and Haugseng developed a very extensive theory of ∞-categories

enriched in a monoidal ∞-category W which can be organized as the objects of an

∞-category CatW∞ . In the process, they formalized the idea of categories “weakly or

homotopy-coherently enriched inW”. For example, whenW is the monoidal∞-category

S of spaces, then CatS∞ recovers the ∞-category of ∞-categories Cat∞ introduced by

Lurie in [Lur09a]. Thus quasi-categories are categories weakly enriched in spaces. Given

a monoidal model category M with class of weak equivalences W , then there is an
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associated monoidal ∞-category M[W−1] and thus one can consider the ∞-category

CatM[W−1]
∞ . Haugseng then proved in [Hau15] that CatM[W−1]

∞ is equivalent to the ∞-

category associated to the model category MCat. Hence, if the answer to the above

question is affirmative, we may view quasi-categories in V as categories weakly enriched

in simplicial objects in V .

Let us specialize to the case V = Mod(k) for a moment. Assuming the question above

has a positive answer, we would thus have a Quillen equivalence S⊗ Mod(k) ⇆ kCat∆.

In [Tab05b][Tab10], Tabuada constructed a model structure on the category kCatdg of

small dg-categories over k, and showed that the induced model category kCatdg,≥0 is

Quillen equivalent to the model category kCat∆. Thus we would get a zig-zag of Quillen

equivalences between S⊗ Mod(k) and kCatdg as well. How does this zig-zag relate to

the linear dg-nerve Ndg
k : kCatdg,≥0 → S⊗ Mod(k) (Definition 4.2.46)? By analogy with

the classical situation, we arrive at the following question.

Question 4. Let C• be a dg-category. Is the templicial morphism Nhc
k (C∆) → Ndg

k (C) of
Corollary 4.2.70 contractible in S⊗ Mod(k)?

Segal enriched categories

Recall that a Segal precategory is a bisimplicial setX : ∆op → SSet such that the simplicial

set X0 is discrete. A Segal precategory X is called a Segal category if it satisfies the Segal
condition, that is the canonical map

Xn → X1 ×X0
...×X0

X1

is a weak homotopy equivalence of simplicial sets for all n ≥ 0.

Segal categories were originally introduced by Dwyer, Kan and Smith in [DKS89] (under

a different name). They were extensively studied by Hirschowitz and Simpson in [HS01]

who also put a model structure on the category of Segal precategoriesSePCwith as fibrant

objects the Reedy fibrant Segal categories. In [JT07], Joyal and Tierney constructed two

Quillen equivalences between SSetJ and SePC.

Later, Bacard defined Segal categories enriched in a non-cartesian monoidal model cat-

egoryM. These are many-object versions of the homotopy monoids appearing in [Lei00].

In fact, Leinster’s observation that we used to define templicial objects (Proposition 2.1.6)

originally appeared in this context as well. Following the same philosophy, Bacard

replaced the bisimplicial object X by a colax monoidal functor

X : PS →M

where S is a set and PS is a labelled version of ∆+ ≃ ∆op
f to allow for a discrete set

of vertices. Let us call such a functor X a SegalM-precategory. Then X is called a Segal
M-category if it satisfies the Segal condition which imposes that the comultiplication and

counit morphisms

Xk+l(a, b, c)→ Xk(a, b)⊗Xl(b, c) and X0(a)→ I (5.3)
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are weak equivalences inM for all a, b, c ∈ S and k, l ≥ 0. IfM = SSet, this recovers the

classical Segal categories. If the morphisms (5.3) are all isomorphisms, this recoversM-

enriched categories. In this sense, Segal enriched categories can also be seen as categories

“weakly enriched inM”.

In view of the discussion above on Gepner and Haugseng’s enriched∞-categories, the

author expects quasi-categories in V to relate to Segal SV-categories in the same way

that ordinary quasi-categories relate to ordinary Segal categories. At the time of writing,

the author is unaware of the existence of any model structure for SegalM-categories for

general (non-cartesian)M. But we can still ask the following.

Question 5. Can the Quillen equivalences of [JT07] be generalized to adjunctions between the
categories of templicial objects in V and Segal SV-precategories?

Enhancements of triangulated categories

Stable∞-categories were introduced by Lurie in [Lur09b] as quasi-categories C with a zero

object and a good notion of loop and suspension functors Ω,Σ : C → C. The homotopy

category hC of a stable ∞-category C always comes equipped with the structure of a

triangulated category in the sense of [Ver96]. As such, stable ∞-categories are often

called enhancements of triangulated categories.

A different enhancement of triangulated categories are pretriangulated dg-categories in

the sense of [BK90]. In [Coh16], Cohn showed that these two types of enhancements are

equivalent. More precisely, Tabuada [Tab05a] constructed a model structure on kCatdg
whose weak equivalences are given by the Morita equivalences and the fibrant objects are

in particular pretriangulated dg-categories. Cohn proved that the∞-category associated

to kCatdg is equivalent to the ∞-category of idempotent-complete k-linear stable ∞-

categories.

We have already related dg-categories over k with quasi-categories in Mod(k) via the

linear dg-nerve Ndg
k : kCatdg → S⊗ Mod(k). It would be interesting to see which quasi-

categoriesX inMod(k) correspond to pretriangulated dg-categories and what conditions

on X induce a stable∞-category Ũ(X).

Question 6. What is the relation between quasi-categories in Mod(k) and k-linear stable ∞-
categories or pretriangulated dg-categories over k? Moreover, what is the relation between the
linear dg-nerve Ndg

k and Cohn’s result [Coh16]?

Some smaller questions

General nerve constructions

Recall from Proposition 1.3.11 that any cosimplicial object C : ∆ → D in a cocomplete

category D gives rise to an adjunction C : SSet ⇆ D : NC
. Many examples of simplicial

sets, like the nerve of a category, the homotopy-coherent nerve of a simplicial category
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and the singular set of a topological space arise in this way. Even if D is not cocomplete,

the formula (1.4) still makes sense. Similarly, we can ask:

Question 7. What structure on a category D and what small amount of data in D determines
an adjunction S⊗V ⇆ D, or simply a functor D → S⊗V?

Monoidal closure

Because the category of simplicial sets is just a category of presheaves, it is cartesian

closed and its internal hom-objects are very easy to describe. Assume V is a Bénabou

cosmos as in Section 4.1. Given templicial objects (X,S) and (Y, T ), we can construct

their pointwise monoidal product (X,S)⊠ (Y, T ) as follows. It has vertex set S × T and

for all (a, b), (c, d) ∈ S × T and n ≥ 0, we set

(X ⊠ Y )n((a, b), (c, d)) = Xn(a, c)⊗ Yn(b, d)

It is relatively painless to see that this defines a monoidal structure (⊠, F̃ (∆0)) on S⊗V .

Moreover, it immediately follows that −⊠− preserves colimits in each variable.

Assuming V is locally presentable, then so is S⊗V by Theorem 3.2.29. Hence, S⊗V is

monoidal closed. Unfortunately, this does not give us an explicit description of the

internal hom-objects.

Question 8. Can the internal hom-objects of S⊗V be described more explicitly?

Linear A∞-nerve

In [Fao17], Faonte extended the dg-nerve Ndg
to an A∞-nerve NA∞ : kCatA∞ → SSet

from the category of small A∞-categories over k to simplicial sets. For background on

A∞-categories, we refer to the literature (see [Kel01] for example).

Question 9. Does the linear dg-nerve Ndg
k : kCatdg → S⊗ Mod(k) (see §4.2.3) extend to a

functor NA∞
k : kCatA∞ → S⊗ Mod(k) so that there is an isomorphism Ũ ◦NA∞

k ≃ NA∞?
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Alternative definition

of templicial objects

We discuss an alternative definition of templicial objects, which we’ll also call based colax
monoidal functors (Definition A.1.2). They are conceptually simpler than Definition 2.1.9

and don’t rely on quivers, but for our purposes they turned out to be less practical. As

in Chapter 2, we fix a monoidal category V which is bicomplete such that the monoidal

product−⊗− preserves colimits in each variable. We will identify some conditions on V
for which based colax monoidal functors coincide with templicial objects (see Definition

A.2.8 and Theorem A.2.10).

A.1 Based colax monoidal functors

Remark A.1.1. Let S be a set. Note that S has a unique comonoid structure in (Set,×, {∗})
with the diagonal ∆ : S → S × S as comultiplication and the terminal map t : S → {∗}
as counit. This extends to an equivalence of categories:

Set ≃ Comon(Set)

As the free functor F : Set → V : S 7→
∐
a∈S I is strong monoidal, we have an induced

functor

F : Set ≃ Comon(Set)→ Comon(V)

Definition A.1.2. Let (X,µ, ϵ) : ∆op
f → V be a colax monoidal functor. Then X0 has the

structure of a comonoid with comultiplication given by µ0,0 : X0 → X0 ⊗X0 and counit

given by ϵ : X0 → I . We call a set S a base ofX if it comes equipped with an isomorphism

of comonoids φ : X0
∼−→ F (S). We call the triple (X,S, φ) a based colax monoidal functor.

Consider the functor

(−)0 : Colax(∆op
f ,V)→ Comon(V) : (X,µ, ϵ) 7→ (X0, µ0,0, ϵ)

159
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We define the category Colaxb(∆
op
f ,V) by the 2-pullback

Colaxb(∆
op
f ,V) Colax(∆op

f ,V)

Set Comon(V)

(−)0

F

Note that its objects are precisely the based colax monoidal functors.

A morphism X → Y in Colaxb(∆
op
f ,V) with respective bases S and T is a monoidal

natural transformationα such that through the isomorphismsX0 ≃ F (S) andY0 ≃ F (T ),
α0 is induced by some map of sets f : S → T .

We now describe a comparison functor from templicial objects to based colax monoidal

functors. In the next subsection, we will give sufficient conditions on V for this functor

to be an equivalence.

Construction A.1.3. Consider the natural transformation t : idSet → ∗ given by the

terminal map tS : S → {∗} for every set S. This induces a pseudonatural transformation

ΦV t : ΦV → ΦV ◦ ∗

between pseudofunctors Set → Cat, where ΦV = Colax(∆op
f , (−)!) is as in Proposition

2.1.18. Through the Grothendieck construction, we obtain a functor

c :

∫
ΦV →

∫
ΦV ◦ ∗ ≃ Colax(∆op

f ,V)× Set

Explicitly, this functor sends a pair (X,S) with S a set and X : ∆op
f → V QuivS colax

monoidal to the pair (cX,S), where

cXn = (tS)!(Xn) =
∐
a,b∈S

Xn(a, b)

for all n ≥ 0. The comultiplication and counit are induced by those of X . Moreover, a

templicial morphism (α, f) : (X,S) → (Y, T ) is sent to the pair (cα, f), where for every

n ≥ 0,

cαn :
∐
a,b∈S

Xn(a, b)→
∐
x,y∈T

Yn(x, y)

factors through (αn)a,b : Xn(a, b)→ Yn(f(a), f(b)) for all a, b ∈ S.

Note that, up to equivalence, we may consider Colaxb(∆
op
f ,V) as a subcategory of

Colax(∆op
f ,V)× Set.

Proposition A.1.4. The functor c :
∫
ΦV → Colax(∆op

f ,V) × Set of Construction A.1.3
restricts to a functor

c : S⊗V → Colaxb(∆
op
f ,V)
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Proof. Note that for any set S, (tS)!(IS) ≃
∐
x∈S I = F (S). Take an object (X,S) of

∫
ΦV ,

then the counit ϵ : X0 → IS induces a morphism

φ(X,S) : cX0 = (tS)!(X0)→ F (S)

in V . It easily follows that φ(X,S) is a comonoid morphism which is natural in (X,S).
Moreover, if (X,S) is a templicial object, then ϵ and thus φ(X,S) is an isomorphism.

A.2 Decomposing monoidal categories

We now describe how to invert the comparison functor c : S⊗V → Colaxb(∆
op
f ,V). For

this we need to “pull apart” the objects Xn ∈ V of a based colax monoidal functor to

form a quiver. This goes as follows.

Construction A.2.1. Let X : ∆op
f → V be a based colax monoidal functor with comulti-

plication µ and base S. Via the isomorphism X0 ≃ F (S) ≃
∐
a∈S I , we have for every

n ≥ 0, a morphism

µ0,n,0 : Xn → X0 ⊗Xn ⊗X0 ≃
∐
a,b∈S

Xn

which assemble into a natural transformation µ0,−,0 : X →
∐
a,b∈S X .

Then define X(a, b) as the equalizer

X(a, b) X
∐

a,b∈S
X

µ0,−,0

ca,b

ea,b

in Fun(∆op
f ,V), where ca,b is the (a, b)th coprojection.

Lemma A.2.2. LetX be a based colax monoidal functor with comultiplication µ and base S. Let
∇ :

∐
a,b∈S X → X denote the codiagonal. Then ∐

a,b∈S

µ0,−,0

µ0,−,0 =

 ∐
a,b∈S

ca,b

µ0,−,0 and ∇µ0,−,0 = idX

Proof. Note that through the isomorphism X0 ≃
∐
a∈S I , the counit ϵ : X0 → I becomes

the codiagonal. Moreover, for all n ≥ 0, the morphisms idX0 ⊗µ0,n,0 ⊗ idX0 and µ0,0 ⊗
idXn ⊗µ0,0 become

∐
a,b µ0,n,0 and

∐
a,b ca,b respectively. Thus the result follows from

the coassociativity of µ and its counitality with ϵ.

The previous lemma leads us to define the following.

Definition A.2.3. Let C be a category with coproducts. Let S be a set and A ∈ C. We

denote ιj : A→
∐
j∈S A for the jth coprojection and∇ :

∐
i∈S A→ A for the codiagonal.

A morphism f : A→
∐
i∈S A is called decomposing if(∐
i∈S

f

)
f =

(∐
i∈S

ιi

)
f and ∇f = idA
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A decomposing equalizer is the equalizer of a decomposing morphism with a coprojection

ιj for some j ∈ S.

Examples A.2.4. 1. Any coprojection ιj : A→
∐
iA is itself decomposing.

2. By Lemma A.2.2, the natural transformation µ0,−,0 is a decomposing morphism in

Fun(∆op
f ,V) and the equalizer of Construction A.2.1 is a decomposing equalizer.

Remark A.2.5. Note that because of the condition ∇f = idA, a decomposing equalizer is

always coreflexive.

Lemma A.2.6. Let C be a category with coproducts and consider a decomposing morphism
f : A→

∐
i∈S A. Then

A
∐
i∈S

A
∐
i∈S

∐
j∈S

A

∐
i f∐
i ιi

f

is a split equalizer.

Proof. Let∇ :
∐
i

∐
j A→

∐
j A denote the codiagonal which collapses the outer coprod-

uct. Then it immediately follows that ∇
∐
i f = f∇ and ∇

∐
i ιi = id. By hypothesis, we

also have ∇f = idA.

Proposition A.2.7. Suppose that coproducts commute with decomposing equalizers in V . Let
X be a based colax monoidal functor with base S, comultiplication µ and counit ϵ. Then:

1. The canonical natural transformation

(ea,b)a,b :
∐
a,b∈S

X(a, b)→ X

is an isomorphism.

2. If coproducts are disjoint in V , then for all a, b ∈ S, the composition

X0(a, a)
ea,a−−→ X0

ϵ−→ I

is an isomorphism, and X0(a, b) ≃ 0 if a ̸= b.

3. If the monoidal product−⊗− of V preserves decomposing equalizers in each variable, then
for all k, l ≥ 0 and a, b ∈ S, the composite µk,lea,b factorizes uniquely as

Xk+l(a, b)
µa,b
k,l−−→

∐
c∈S

Xk(a, c)⊗Xl(c, b)
(ea,c⊗ec,b)c−−−−−−−−→ Xk ⊗Xl

Proof. 1. By Example A.2.4.2, µ0,−,0 is decomposing and thus

∐
a,b∈S X(a, b) is the

equalizer of

∐
a,b µ0,−,0 and

∐
a,b ca,b. Hence by Lemma A.2.6, it is isomorphic to

X . More precisely, for the isomorphism φ :
∐
a,bX(a, b)

∼−→ X we have

∐
a,b ea,b =

µ0,−,0φ and thus as ϵ coincides with the codiagonal ∇ :
∐
a I → I , we get φ =

(ea,b)a,b.
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2. As coproducts are disjoint we have an equalizer diagram

Ia,x,b I
∐

y,z∈S
I

ιx,x

ιa,b

f

where Ia,x,b = I if a = b = x and Ia,x,b = 0 otherwise. Taking the coproduct of this

diagram over all x ∈ S, we find an equalizer

Ia,b
∐
x∈S

I
∐

y,x,z∈S
I

∐
x ιx,x∐
x ιa,b

f

where Ia,b = I if a = b and Ia,b = 0 if a ̸= b. Now via the isomorphism X0 ≃
∐
x I ,

µ0,0,0 becomes

∐
x ιx,x and thus we have an isomorphism φ : X0(a, b) → Ia,b such

that ιa,bφ = ea,b. As ϵ coincides with the codiagonal ∇, we find that φ = ϵea,b.

3. Note that since decomposing equalizers are coreflexive, and they are preserved by

−⊗− in each variable, they are also preserved in both variables simultaneously. It

then follows from Example A.2.4.2 that the morphism∐
c∈S

Xk(a, c)⊗Xl(c, b)
∐

c ea,c⊗ec,b−−−−−−−−→
∐
c∈S

Xk ⊗Xl

is the equalizer of

∐
c µ0,k,0 ⊗ µ0,l,0 and

∐
c ca,c ⊗ cc,b. Using the isomorphism

X0 ≃
∐
c I , we see that this is equivalently the equalizer of µ0,k,0⊗ idX0

⊗µ0,l,0 and

ca,∗ ⊗ µ0,0,0 ⊗ c∗,b, where

ca,∗ : Xk ≃ I ⊗Xk

ιa⊗idXk−−−−−→
∐
a∈S

I ⊗Xk ≃ X0 ⊗Xk

and similarly for c∗,b.

Now note that for the morphisms ca,b : Xk+l → X0 ⊗ Xk+l ⊗ X0 and ea,b :
Xk+l(a, b)→ Xk+l, we have

(µ0,k,0 ⊗ idX0
⊗µ0,l,0)µk,0,lea,b = (idX0

⊗µk,0,0,0,l ⊗ idX0
)µ0,k+l,0ea,b

= (idX0
⊗µk,0,0,0,l ⊗ idX0

)ca,bea,b = (ca,∗ ⊗ µ0,0,0 ⊗ c∗,b)µk,0,lea,b

Thus there is a unique µa,bk,l : Xk+l(a, b) →
∐
c∈S Xk(a, c) ⊗ Xl(c, b) such that

(
∐
c ea,c ⊗ ec,b)µ

a,b
k,l = µk,0,lea,b. Composing this equality with the codiagonal∐

cXk ⊗Xl → Xk ⊗Xl, the result follows.

Definition A.2.8. We call V decomposing if it satisfies the hypotheses of Proposition A.2.7,

that is:

(a) coproducts commute with decomposing equalizers in V ,

(b) coproducts are disjoint in V ,

(c) the monoidal product−⊗− of V preserves decomposing equalizers in each variable.
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Construction A.2.9. Let V be decomposing. We construct a functor

d : Colaxb(∆
op
f ,V)→ S⊗V

Take a based colax monoidal functor X of V with base S, comultiplication µ and counit

ϵ. From Construction A.2.1, we have a collection of functors (X(a, b) : ∆op
f → V)a,b∈S ,

which we can regard as a functor

X̃ : ∆op
f → V QuivS

By Proposition A.2.7.2, we have a quiver isomorphism ϵ̃ : X̃0
∼−→ IS , and the morphisms

µa,bk,l of Proposition A.2.7.3 combine to give a quiver morphism

µ̃k,l : X̃k+l → X̃k ⊗S X̃l

It follows from the coassociativity and counitality of µ and ϵ that µ̃ and ϵ̃ define a strongly

unital, colax monoidal structure on X̃ and thus (X̃, S) is a templicial object in V .

Next, let X and Y be based colax monoidal functors of V with respective bases S and T .

Let α : X → Y be a morphism of based colax monoidal functors. As α is a monoidal

natural transformation, there exist unique morphisms αa,b : X(a, b) → Y (f(a), f(b))
such that ef(a),f(b)α

a,b = αea,b, for all a, b ∈ S. This defines a natural transformation

X̃ → f∗Ỹ . It further follows from the monoidality of α that the corresponding natural

transformation α̃ : f!X̃ → Ỹ is monoidal. Hence, (α̃, f) is a morphism of templicial

objects X̃ → Ỹ .

If further β : Y → Z is a morphism of based colax monoidal functors, then by uniqueness,

(β ◦ α)a,b = βf(a),f(b) ◦ αa,b for all a, b ∈ S. It follows that the assignments X 7→ (X̃, S)
and α 7→ (α̃, f) define a functor.

Theorem A.2.10. Suppose V is decomposing. Then we have an adjoint equivalence of categories

S⊗V Colaxb(∆
op
f ,V)

c

d

∼

Proof. The isomorphism of Proposition A.2.7.1 is monoidal by 2. and 3. of the same

Proposition. Moreover, it is directly seen to be natural in X . Thus c ◦ d ≃ id.

Let (X,S) be a templicial object of V . We have a functorX(a, b) : ∆op
f → V for every a, b ∈

S. As coproducts are disjoint in V , the equalizer of ιa,b, ιc,d : X(c, d) →
∐
x,y∈S X(c, d)

in Fun(∆op
f ,V) is X(a, b) if (c, d) = (a, b) and 0 otherwise. Because coproducts commute

with decomposing equalizers, we get an equalizer diagram

X(a, b)
∐

c,d∈S
X(c, d)

∐
c,d∈S

∐
x,y∈S

X(c, d)
ιa,b

∐
c,d ιc,d∐
c,d ιa,b

Now

∐
c,dX(c, d) is the functor underlying c(X,S) and the morphisms

∐
c,d ιc,d and∐

c,d ιa,b correspond to the induced morphisms µ0,−,0 and ca,b on c(X,S) respectively.

Consequently, we have an isomorphism between the underlying functors of (X,S) and
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dc(X,S). It follows from the definitions that this isomorphism is monoidal and that it is

natural in (X,S). Therefore d ◦ c ≃ id.

Finally, the triangle identities are easily verified.

We finish this section by giving some examples of monoidal categories that are decom-

posing, and thus for which Theorem A.2.10 is applicable.

Example A.2.11. In a cartesian category V , the product −×− commutes with all equal-

izers. So if we assume that coproducts are disjoint and commute with equalizers, then V
is decomposing.

This is the case for the categories Set of sets, Top of topological spaces, Cat of small

categories and Poset of posets for example.

Lemma A.2.12. Let C be a category enriched over abelian groups. Then any decomposing
equalizer in C is split.

Proof. Let f : A →
⊕

i∈S A be a decomposing morphism in C and fix j ∈ S. Consider

the equalizer e : E → A of f and ιj . Then for the jth projection p :
⊕

i∈S A→ A we have

pιj = idA and

fpf = p′

(⊕
i∈S

f

)
f = p′

(⊕
i∈S

ιi

)
f = ιjpf

where p′ :
⊕

i,k A →
⊕

k A is the projection onto the component i = j. So there exists

a unique s : A → E such that es = pf . Then, ese = pfe = pιje = e and thus se = idE
because e is a monomorphism.

Proposition A.2.13. If V is enriched over abelian groups, then V is decomposing.

Proof. By Lemma A.2.12, decomposing equalizers in V are split equalizers and are thus

preserved by all functors. In particular, both the coproduct functor VS → V and the

monoidal product − ⊗ − preserve decomposing equalizers. Further, in an Ab-enriched

category, coproducts are always disjoint.
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