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Introduction

Simplicial sets are collections of simplices (vertices, edges, triangles, tetrahedra, ...) that
are glued together along common faces. They are foundational objects in algebraic
topology and higher category theory, appearing as combinatorial variants of topological
spaces and in many different models of (oo, 1)-categories like quasi-categories, Segal
categories and simplicial categories.

Formally, a simplicial set is a functor X : A°? — Set where A is known as the simplex
category. Explicitly, X is given by a certain commutative diagram of maps of sets

NN =X M

So in particular we are given maps dp, ..., d,, : X,, = X,,—1 for all n > 1. These are called
face maps. The elements of each set X,, should be interpreted as simplices of dimension
n, and the maps express how these simplices are connected. For instance, the face map
d; : X;, = X,,—1 takes an n-simplex and sends it to its ith face, which is a simplex of one
dimension lower.

A classical construction associates to every (small) category C a simplicial set N(C). This
is known as the nerve functor N : Cat — SSet. For every n > 0, the n-simplices of N(C)
are given by sequences (f1, ..., f) of composable morphisms in C. In other words,

N(C), = 11 C(Ag, A1) X ... X C(Ap_1, Ay)
Ag,...,An€0b(C)

Its face maps d; for 0 < j < n are defined by composing morphisms in the sequence:

(frs-r fis Fit1s oo f) = (f1s -, fix1 0 [y -ry fn). The face maps dy and d,, on the other
hand are defined by projection, e.g. dy uses the projection map

C(Ao,Al) X C(Al,Ag) X ... X C(An—lvAn) — C(Al,AQ) X ... X C(An—hAn)

Now suppose we have a linear category C over a unital commutative ring k (that is,
each C(A, B) has a k-module structure and the composition is bilinear). What is the
appropriate definition of a nerve for C?

Analogous to the classical situation, we can try setting

Ni(C)y = 11 C(Ag, A) ® ... ® C(Ap_1, Ay)

vii
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Then the face maps d; for 0 < j < n can still be defined through composition, but the face
maps dp and d,, cannot be defined in the same way because we lack projection morphisms

C(z407 Al) [ C(Al, Ag) R...&® C(An—la An) — C(Al, Ag) R...&Q C(An—la An)
In other words, we do not obtain a simplicial k-module Ny (C). But what do we get?

To answer this question, this thesis aims to develop a generalization of simplicial sets
which may be interpreted as “simplicial objects in a monoidal category”, and study what
properties they possess. In particular, they allow to define a nerve for general enriched
categories (e.g. k-linear categories). We call them tensor-simplicial or templicial objects.

Below we go into a little more detail to outline the ideas appearing in the thesis. We will
formally define everything in the main text, but for now we just give a rough sketch of
the objects involved.

Simplicial objects in a monoidal category

Let us illustrate the main philosophy with a simple example. Consider a directed graph
G, that is, a collection of vertices and edges between them. Formally, G is given by a pair
of sets (G1,Gy) where Gy contains the vertices and G; the edges. Moreover, G comes
equipped with maps

G1 ;:; G() (2)

which send every edge to its source and target vertex respectively. We may denote an
edge of G as e : a — b to indicate that s(e) = a and ¢(e) = b. A (small) category can then
be equivalently described as a graph G = (G1, Gy) along with maps m : G1 x¢, G1 — G1
and u : Gyp — G specifying for each pair of edges f : a — band g : b — ¢ their
composition go f = m(f, g), and for each vertex a the identity id, = u(a) on a. Of course
m and u have to satisfy the appropriate associativity and unitality conditions, as well as
compatibility conditions with respect to s and ¢.

In their PhD thesis [Agu97], Aguiar defined graphs and categories internal to a monoidal
category (V,®,1) (e.g. V = Mod(k) is the category of modules over a unital commutative
ring k with ® the tensor product). For instance, the former is a pair (G1, Gy) with Gy a
comonoid in V and G; a bicomodule over Gy. That is, we have morphisms

/.L()701G0—>G0®G0, €:Gog—1

3
u0’1:G1—>G0®G1 and u1’0:G1—>G1®G0 ®)

which satisfy some appropriate coherence diagrams. When V' = Set with the cartesian
monoidal structure (i.e. ® = X is the cartesian product), then graphs and categories
internal to V recover graphs and categories in the usual sense. For example, s : G1 — Gy
can be recovered by composing 11,1 with the projection Gy x G1 — Go. The morphisms
o1 and ji1 o may thus be regarded as a replacement for the morphisms s and ¢t when V
is a general (non-cartesian) monoidal category.

Moreover, under some hypotheses on V, V-enriched categories can be recovered from
categories internal to V as well. Indeed, let F' : Set — V denote the left-adjoint of the
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forgetful functor U = V(I, —) : V — Set. Then a category (G1, Go) internal to V recovers
a V-enriched category with object set S if Gy ~ F(S), such that the comultiplication
and counit of Gy are induced by the diagonal S — S x S and the terminal map § — 1
respectively.

Note how the diagram of a simplicial set (1) extends that of a directed graph (2). We can
do the same for graphs internal to V. Following an idea of Leinster in [Lei00], we can
define a “simplicial object internal to V" as a colax monoidal functor X : A% — V. Here,
A is the category of finite intervals, a subcategory of the usual simplex category A. The
colax structure provides morphisms in V

pig t X = Xp® X, forallk,l >0

extending the bicomodule structure (3). Leinster showed in particular that if V = Set,
then this indeed recovers simplicial sets. As for directed graphs, we can also restrict to
the case where X, >~ F(S) in the appropriate way. The latter is essentially the definition
of a templicial object, although we formalize them slightly differently, using V-enriched
quivers instead.

By a V-enriched quiver, we mean a pair (@, S) with S asetand @ a collection (Q(a, b)) o pes
of objects Q(a,b) € V. Quivers with a fixed set S can be organized into a monoidal
category (V Quivg, ®sg, Is). A templicial object (Definition 2.1.9) of V is then defined as a
pair (X, S) with S a set and

X : AY =V Quivg
a strongly unital, colax monoidal functor. To emphasize the monoidal structure involved,
we will denote the category of templicial objects (with varying sets S) by

SeV
When V = Set, this again recovers the category SSet of simplicial sets (Proposition 2.1.15).

Let us unpack this definition a bit. The elements of S should be considered as vertices of
the templicial object (X, S). Then for every a,b € S we have a diagram in V:

% Xo(a,b) &= Xi(a,b) +—— Xo(a,b)

Note that the outer face maps of (1) have disappeared. They have been replaced by the
colax monoidal structure, which provides morphisms in V:

(k1 )ab + X+i(a,b) — H Xi(a,c) ® Xi(c,b) forallk,l >0
ceS

Even though they are not sets, we can intuitively think about the objects X,,(a,b) as
containing the “n-simplices with first vertex a and last vertex ”. The morphisms py,;
may then be interpreted as “pulling apart” a (k + [)-simplex into a k-simplex and an
l-simplex which are joint at a vertex.

H1,2
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Thus from a simplex of X, we can no longer access its outer faces directly. But we can
recover faces which are joint at a vertex. This naturally leads us to considering necklaces.

A necklace (Definition 2.2.3) is a simplicial set composed of a finite sequence of simplices
(called beads) that are glued along vertices (as opposed to higher dimensional faces).
They were introduced by Dugger and Spivak in [DS11b] to demystify the categorification
functor € : SSet — Cata relating simplicial sets to simplicial categories.

Given a simplicial set X and a necklace 17" with beads of dimensions 71, ...,n;, a map
T — X corresponds to an element of the set X,,, xx, ... Xx, Xn,. We can consider such
an element as being a necklace of shape 7' in X. If (X, S) is a templicial object in V, then
we can similarly consider the quiver X1 = X,,, ®g ... ®s X, . This construction extends
to a coreflective embedding (—)"“ : SgV — V Catpr.. which associates to X a certain
enriched category X"*¢ which we call a necklace category (Definition 3.2.3). Many proofs
can be simplified by passing to necklace categories, for instance that Sg) is complete
(Proposition 3.2.33) and locally presentable (Theorem 3.2.29) whenever V is.

Quasi-categories

Quasi-categories are one of the many models of (oo, 1)-categories. Their theory was
developed by Joyal [Joy02] and extensively expounded upon by Lurie [Lur09a]. Since
then they have been studied by many others.

Given n > 0, we denote A" for the simplicial set consisting of a single simplex in
dimension n and all its faces. For 0 < j < n, the jth horn A? is obtained from A" by
removing the interior and the jth face. A quasi-category (or oo-category) is then defined as
a simplicial set X which satisfies the weak Kan condition. This means thatforall0 < j < n,
every map of simplicial sets A7 — X can be extended to a map A™ — X.

A?—>X
7

-
-
-,
-
-
-
-

An

A quasi-category exhibits behaviour that resembles that of a category. For example,
consider the weak Kan condition where n = 2 and j = 1. This tells us that for any two
edges f:a — band g : b — ¢, there exists a 2-simplex w € X5, filling up the horn formed
by f and g:



X1

Yy Yy
AR/
JCZ.IhZ

We can then consider the edge & = d; (w) as a composition of f and g. Note that w is only
assumed to exist however, not that it is unique. Indeed, usually w will not be uniquely
determined by f and g, but it will be unique up to a notion of homotopy that can be defined
inside of X. In other words, composition is no longer given by amap m : (f,g) — go f,
but is witnessed by a piece of data (in this case w) in a higher dimension. Similarly, the
identities and associativity for the composition are not given by equations but by higher
dimensional simplices witnessing them.

To any templicial object (X, .S) in a monoidal category V, with a,b € S, the assignment
T — Xr(a,b) € V defines a functor Xe(a,b) : Nec®? — V where Nec denotes the
category of necklaces. We will call (X, S) a quasi-category in V (Definition 2.2.26) if for all
a,b€ Sand 0 < j < n, we have the following lifting property:

F ((A})e(0,n)) 4:X.(a,b)

F(Ag(0,n))

in YVee”  Similarly, for n = 2 and j = 1, this lifting property expresses that for any
element oo € U ([],c5 X1(a,¢) ® X1(c, b)) we can find some w € U(X3(a,b)) such that
t1,1(w) = a. We can then consider d; (w) € U(X;(a,b)) as a composition of o in X.

The better part of this thesis is devoted to constructing templicial analogues of classical
examples of quasi-categories:

* The classical nerve functor N : Cat — SSet generalizes to the templicial nerve functor
Ny : VCat — SgV which associates to every small V-enriched category a quasi-
category in V (Construction 2.3.4).

e There is the homotopy coherent nerve functor N"¢ : Cata — SSet of Cordier
[Cor82], associating to every simplicial category C (that is, a category enriched in
simplicial sets), a simplicial set N*¢(C). Cordier and Porter showed in [CP86] that
Nhe(C) is a quasi-category when every hom-object C(4, B) is a Kan complex. We
generalize this to the templicial homotopy coherent nerve functor N3 : V Cata — SgV
(Definition 4.1.13) where V Cata denotes the category of small categories enriched
in simplicial objects SV. Further, N:°(C) will be a quasi-category in V if every
hom-object C(A, B) € SV has an underlying Kan complex.

* There is the differential graded (dg) nerve N% : k Catq, — SSet [Lurl6] associating
to every small dg-category C, over a ring k a quasi-category N%9(C). We will lift
this to the linear dg-nerve N,fg : kCatgy — Sg Mod(k) (Definition 4.2.46) which
associates to every dg-category over k, a quasi-category in Mod (k).



xii INTRODUCTION
Frobenius structures

Further, we will introduce Frobenius structures (Defintion 2.2.34) on templicial objects
X. To motivate them, let us again consider an example. Consider a (small) simplicial
category C. Thus C has a set of objects Ob(C) and for every A, B € Ob(C), we have a
simplicial set C(A, B). In Cordier’s homotopy coherent nerve N"¢(C), vertices are given
by Ob(C) and edges are given by the 0-simplices f € Co(4, B). A 2-simplex in N"¢(C) is

given by a diagram
B
2N
A——7F7——C

with f € Co(4, B), g € Co(B,C), h € Co(A,C)and o € C1(A4, C) a 1-simplex from h to the
composition g o f € Cy(A, C).

For general C, N"*(C) is not a quasi-category. Nonetheless, some lifing properties are
still satisfied for N¢(C). For example, a map A? — N"¢(C) corresponds to a pair of
O-simplices f € Cy(A, B) and g € Co(B,C) for some A, B,C € Ob(C). Extending this
map to A2 — N"¢(C) is then equivalent to finding some h € Cy(A,C) and a 1-simplex
o € C1(A,C) from h to g o f. But this is trivial. Just choose h = g o f and let o be the
degenerate 1-simplex on g o f:

B
N
ATWJC>C

The horn A? is in particular also a necklace and this procedure generalizes to arbitrary
necklaces. In fact, we can define maps

Zk’l : NhC(C)k- XN’“(C)O NhC(C)l — th(c)k+l
assigning to every necklace in N"*¢(C) with two beads a simplex filling up the necklace.

Similarly, we will define a Frobenius structure on a templicial object (X, S) as a collection
of quiver morphisms

78 X @9 X; — Xy forallk,l>0

satisfying associativity and certain compatibility conditions with the morphisms s, ; of
X. A templicial object X with a Frobenius structure is in particular a Frobenius monoidal
functor in the sense of Day and Pastro [DP08]. We will see that the templicial nerve,
templicial homotopy coherent nerve and linear dg-nerve all naturally come equipped

with Frobenius structures. In fact, IV, ,‘: ¥ is defined through an equivalence of categories
k Catag,>0 ~ S5 Mod (k)

between non-negatively graded dg-categories over k and templicial k-modules with a
Frobenius structure (Corollary 4.2.45).
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More generally, we will consider non-associative Frobenius (naF) structures, for which the
associativity condition above is dropped. As (non-associative) Frobenius structures also
represent a filling condition, one might expect them to be related to quasi-categories in
V, and indeed they are. We will show:

* (Proposition 3.1.32) If X is a projective quasi-category in V, then X has a naF-
structure.

® (Theorem 4.2.62) If V = Mod(k), then every templicial k-module with a naF-
structure is a quasi-category in Mod (k).

Towards homotopy theory

At present, quasi-categories in }V merely exist in analogy to classical quasi-categories and
a thorough study of their homotopical properties is still lacking.

In [Joy08], Joyal completely formalized the homotopy theory of quasi-categories by equip-
ping the category SSet of simplicial sets with a model structure. The fibrant objects are
precisely the quasi-categories and the cofibrations are the monomorphisms. So far we
have not been able to build a similar model structure for quasi-categories in V and we
leave this to future research. As a small step in that direction, we introduce projective
templicial morphisms (Definition 3.1.24) which are the left lifting class in a weak factoriza-
tion system on the category of templicial objects SgV (Theorem 3.1.28). If V = Set, they
recover the monomorphisms of simplicial sets. As such, the author believes projective
templicial morphisms to be the appropriate cofibrations in Sg). With fibrant objects
given by the quasi-categories in V), this would completely determine the model structure.

Quasi-categories (or (oo, 1)-categories in general) are often viewed as “categories weakly
enriched in spaces”. This idea was made formal by Gepner and Haugseng [GH15] who
defined categories weakly enriched in a general monoidal co-category M. It would be
a mistake to view quasi-categories in V as being “weakly enriched in V”. With V being
a plain monoidal category, there is no weak structure to exploit. Instead, it is probably
more accurate to view them as being weakly enriched in simplicial objects SV. Through
the templicial homotopy coherent nerve N}, the author believes a Quillen equivalence
between SgV and V Cata should exist. Following [Haul5], this would relate templicial
objects with categories weakly enriched in the monoidal co-category associated to SV.

Leinster’s idea of using colax monoidal functors instead of simplicial objects has also been
applied by Bacard in [Bac10] to define a notion of Segal categories enriched in a monoidal
model category M called Segal M-categories. If M is the Quillen model category on SSet,
then this recovers classical Segal categories. As such, Segal M-categories can also be
considered as categories “weakly enriched in M”. This thesis represents the first steps
in applying the same philosophy to the theory of quasi-categories as opposed to Segal
categories. Though currently still conjectural, the author believes quasi-categories in V
to be related to Segal SV-categories in the same way that ordinary quasi-categories are
related to Segal categories. We also leave this to future research.
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Notations and assumptions

¢ Integers are always denoted by lowercase letters, usually i, j, k,I,m, n, ...
* Sets, posets and necklaces are denoted by capital letters S, 7', U, ...

* Both simplicial sets and general templicial objects are also denoted by capital letters.
We'll distinguish between them by choosing different letters. Usually, thatis K, L, ...
for simplicial sets and X, Y, ... for templicial objects.

* Generic (enriched) categories are usually denoted by calligraphic letters C, D, ...,
while objects of a category are usually denoted by capital letters A, B, C, ... Given
objects A and B of an enriched category C, we denote its hom-object by C(A, B),
rather than Hom¢ (4, B).

¢ In a given category, the initial and terminal objects (if they exist) are denoted by 0
and 1 respectively.

¢ The symbols 7 and ¢ usually refer to the canonical morphisms out of a limit and into
a colimit respectively. More precisely, if /' : J — C is a functor such that its colimit
exists in C, then we’ll always denote the canonical morphism F'(j) — colim F' by
v; for all j € J. Similarly, if the limit of F" exists in C, we'll denote the canonical
morphism 7; : lim F' — F(j) forall j € J.

We assume the axiom of choice. Further, we work with three nested Grothendieck
universes (see [AGV71, Exposé I] for details). The sets in each of these universes are
called small, large and very large respectively. Without adjective, a set is assumed to be
small, and a large set is also called a class. A category is assumed to be large and locally
small unless stated otherwise. We’ll underline categories to indicate that they are very
large. For example, Cat denotes the large category of small categories while Cat is the
very large category of large categories.

Standing hypotheses: From Chapter 2 onwards, we let (V,®,I) be a fixed monoidal
category that is cocomplete and finitely complete such that the monoidal product — ® —
preserves colimits in each variable. Further conditions on V may be imposed at the
beginning of some (sub)sections. Other monoidal categories which are introduced in the
text are not assumed to have these properties unless stated otherwise.

Overview of the thesis

About half of the thesis, spread out over the text, is based on the preprint [LM20] by
the author and their supervisor. It should be noted that some definitions, including that
of a quasi-category in V, have changed since then. The preprint is therefore somewhat
outdated, both in philosophy and terminology.

In Chapter 1 we present some well-known concepts for later reference. No new results
will appear in this chapter.
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We proceed in Chapter 2 by introducing the major players of this thesis, that is templicial
objects, necklaces, quasi-categories in V and (non-associative) Frobenius structures. Fur-
ther, we show some elementary results. Amongst other things, we show that the category
SgV of templicial objects is cocomplete and construct an adjunction £ : SSet = SV : U.
We show that templicial objects in V and quasi-categories in V recover simplicial sets
and ordinary quasi-categories when V = Set. Moreover, U preserves quasi-categories.
Finally, we construct the templicial nerve Ny and its left-adjoint hy : SgV — V Cat by
analogy with the classical situation.

Chapter 3 discusses some properties of Sg ) as a category. In the first section we introduce
free and projective templicial morphisms. Projective templicial morphisms are precisely
retracts of free morphisms. They also form the left lifting class of a weak factorization
system on SgV which reduces to the weak factorization system on SSet of monomor-
phisms and trivial fibrations, if V = Set. Finally, we explain how free templicial objects
have a well-behaved notion of non-degenerate simplices, and we show an analogue of
the Eilenberg-Zilber lemma.

In the second section, we embed SgV into the larger category of necklace categories,
which allows us to prove some properties of SgV like local presentability and complete-
ness. Necklace categories will reappear as a useful tool in Chapter 4 as well.

In Chapter 4, we introduce two major sources of examples of quasi-categories in V: the
templicial homotopy coherent nerve of an SV-enriched category and the linear dg-nerve
of a dg-category. This is by far the longest and most technical chapter.

To construct the templicial homotopy coherent nerve functor NJ}¢ and its left-adjoint
¢y : SgV — V Cata, we adapt Dugger and Spivak’s [DS11b] description of the classical
categorification functor €. We make essential use of necklace categories as an intermedi-
ate step in this construction.

Next, we restrict to the case where V is the category Mod(k) of modules over a commu-
tative ring k, and construct the linear dg-nerve N : k Caty, — S Mod(k). We show
that non-negatively graded dg-categories over k are equivalent to templicial k-modules
with a Frobenius structure via an augmented version of the Dold-Kan correspondence.
The fact that N9 (C) is always a quasi-category in Mod (k) will then follow from the more
general result that every templicial k-module with a naF-structure is a quasi-category in
Mod (k). Finally, we will show that U o N ,‘f ¥ coincides with the classical dg-nerve functor
and we will compare N, gg to the templicial homotopy coherent nerve functor N}<.

Chapter 5 discusses some open questions and possible avenues for answering them, in
particular concerning the model structure alluded to above.

Finally, the appendix provides an alternative definition of templicial objects as colax
monoidal functors X : A;’cp — V (instead of V Quivg). The discrete set of vertices is then
obtained by imposing that X is a free object of V in a compatible way. We will identify
some conditions on V for which both definitions coincide. None of the results in the
main chapters depend on the appendix.



Nederlandse samenvatting

Simpliciale verzamelingen zijn fundamentele objecten in de algebraische topologie en ho-
motopietheorie. Ze verschijnen als combinatorische varianten voor topologische ruimten
en worden gebruikt om de meeste modellen voor (oo, 1)-categorieén te definiéren, zoals
quasi-categorieén, Segal categorieén en simpliciale categorieén. Het doel van deze thesis
is het ontwikkelen en bestuderen van een veralgemening van simpliciale verzamelingen
die kunnen geinterpreteerd worden als “simpliciale objecten in een monoidale categorie”.
We noemen deze fensor-simpliciale of templiciale objecten.

In hun doctoraatsthesis [Agu97] introduceert Aguiar grafen en categorieén inwendig
tot een monoidale categorie V. Simpliciale verzamelingen kunnen gezien worden als
grafen in hogere dimensies. Gebaseerd op een observatie van Leinster [Lei00] kunnen
we Aguiar’s aanpak uitbreiden om zo templiciale objecten te definiéren. Noteren we
Ay voor de categorie van eindige intervallen (dit is een deelcategorie van de simplex
categorie A), dan is een templiciaal object een koppel (X, .S) met S een verzameling en

X AP = VQuivg

een sterk unitale, colax monoidale functor. Hier stelt V Quivg de categorie voor van
V-verrijkte grafen met S als puntenverzameling. De elementen van S moeten we inter-
preteren als de punten van (X,.S). Voor alle a,b € S enn > 0 hebben we een object
X, (a,b) € V dat we kunnen beschouwen als een abstractie van de verzameling van n-
simplexen met als eerste punt a en laatste punt b. De colaxstructuur van X bestaat dan
uit morfismen

(tk0)ap : Xnar(a,b) = [ [ Xu(a,¢) @ Xi(e,b) vooralle k,1 >0
ceS

Deze morfismen vervangen de uiterste zijvlakafbeeldingen van een simpliciale verzamel-
ing en we kunnen ze interpreteren als het “uiteen trekken” van een (k + [)-simplex tot
een k-simplex en een [-simplex die verbonden zijn aan een punt. Gegeven een n-simplex
van X hebben we dus geen rechtstreekse toegang meer tot het Ode of nde zijvlak. Maar
we kunnen wel zijvlakken bereiken die verbonden zijn aan een punt.

Dit leidt ons tot Dugger en Spivak’s [DS11b] kettingen. Een ketting is een simpliciale
verzameling bestaande uit een eindige keten van simplexen die met elkaar verbonden
zijn aan een punt. Hierop gebaseerd introduceren we zekere verrijkte categorieén die we
kettingcategorieén noemen. We kunnen de categorie Sg ) van templiciale objecten inbed-
den in de categorie V Cat nre. van kettingcategorieén. Dit maakt heel wat eigenschappen
van Sg) makkelijker te bewijzen.

Zo bewijzen we dat SgV cocompleet, compleet of lokaal presenteerbaar is van zodra V
dit is. Er bestaat een vergelijkende adjunctie F' : SSet = SgV : U die een equivalentie

XVi
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wordt als V = Set. Verder introduceren we vrije en projectieve templiciale morfismen.
Projectieve morfismen zijn precies de retracties van vrije morfismen en ze vormen de
linker liftklasse in een zwak factorisatiesysteem op SgV. Als V = Set, vinden we het
klassieke zwakke factorisatiesysteem van monomorfismen en triviale fibraties op simpli-
ciale verzamelingen SSet terug.

Geinspireerd door Day en Pastro’s [DP08] Frobenius-monoidale functoren, voeren we
Frobeniusstructuren in, alsook een niet-associatieve variant genaamd naF-structuren. Een
naF-structuur op een templiciaal object (X, S) bestaat uit een collectie morfismen

Zy [ Xw(a,0) @ Xi(e,b) = Xiqa(a,b) vooralle k,1 >0
ceS

die aan zekere compatibiliteitsvoorwaarden met de morfismen py,; voldoen. Intuitief
laten naF-structuren dus toe om “kettingen op te vullen tot een simplex”.

Joyal ontwikkelde in [Joy02] de theorie van quasi-categorieén als model voor (oo, 1)-
categorieén. Deze theorie werd sterk uitgebreid door Lurie [Lur(09a] en ondertussen vele
anderen. Formeel is een quasi-categorie een simpliciale verzameling X die voldoet aan
zekere liftconditie, de zwakke Kan conditie genaamd.

We zijn vooral geinteresseerd in de eigenschappen van templiciale objecten naar analogie
met quasi-categorieén. Daarom introduceren we quasi-categorieén in V als een templiciaal
object dat aan een analoge liftconditie voldoet. Als V = Set, dan vinden we klassieke
quasi-categorieén terug. Bovendien worden quasi-categorieén bewaard door U. Quasi-
categorieén in V zijn gerelateerd aan naF-structuren in de zin dat elke projectieve quasi-
categorie in V steeds een naF-structuur heeft.

Het grootste deel van deze thesis bespreekt hoe verschillende klassieke voorbeelden
van quasi-categorieén kunnen veralgemeend worden voor templiciale objecten. Al deze
voorbeelden kunnen worden uitgerust met natuurlijke Frobeniusstructuren.

¢ De nerffunctor N : Cat — SSet, van categorieén naar simpliciale verzamelingen,
wordt veralgemeend tot de templiciale nerffunctor Ny, : V Cat — SgV, van V-verrijkte
categorieén naar templiciale objecten. Bovendien tonen we dat Ny,(C) een quasi-
categorie in V is voor elke V-verrijkte categorie C.

e Cordier’s [Cor82] homotopiecoherente nerffunctor N*¢ : Cata — SSet, van sim-
pliciale categorieén naar simpliciale verzamelingen, wordt veralgemeend tot de
templiciale homotopiecoherente nerffunctor N : V Cata — Sg)), van categorieén ver-
rijkt in simpliciale objecten SV naar templiciale objecten. Dit is gebaseerd op het
werk van Dugger en Spivak [DS11b] en maakt gebruik van kettingcategorieén.
Als C een SV-verrijkte categorie is zodat elk hom-object C(A, B) een onderliggend
Kan-complex heeft, dan is N:“(C) bovendien een quasi-categorie in V.

* De differentiaal gegradeerde (dg) nerffunctor N% : k Caty, — SSet [Lurl6], van
dg-categorieén over een ring k naar simpliciale verzamelingen, wordt gelift tot
de lineaire dg-nerffunctor N : k Catgy — Sg Mod(k), van dg-categorieén over k
naar templiciale k-modulen. We tonen dat elk templiciaal k-moduul met een naF-
structuur ook een quasi-categorie in Mod(k) is. Het volgt dan dat N{/(C) een
quasi-categorie in Mod(k) is voor elke dg-categorie C,.
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Chapter 1

Categorical preliminaries

“Wait, this next test does require some explanation. Let me give you the fast
version. [fast gibberish]. There. If you have any questions, just remember what I
said, in slow motion.”

— GLaDQOS (Portal 2)

The first chapter is devoted to establishing some preliminaries that we will use in the rest
of the thesis. We assume that the reader is familiar with the basics of category theory. For
background on category theory we refer to the many books on the subject, for instance
[Mac71], [Bor94a], [Leil4], [Riel7].

Below are three sections, in each of which we outline some preparatory notions. The
reader familiar with any of these is free to skip the corresponding section. We’d like to
highlight Definition 1.1.20 and Remark 1.1.22 however, since we adopt a slightly different
definition of enriched categories than usual.

1.1 Monoidal and enriched categories

Recall that a monoidal category is a triple (V, ®,I) with V a category, —@ —: VxV — Va
functor called the monoidal product and I € V an object called the monoidal unit. Moreover,
it comes equipped with specified isomorphisms

M:I®AS A and pa:ART A
called the left and right unit isomorphisms, and
aspc: (A®B)®C = A® (B O)

called the associator, such that A4, pa and aa p,c are natural in A, B,C € V. These
have to satisfy the triangle and pentagon identities, which require that certain diagrams
involving A4, pa and a4 p,c commute (see [Bor94b, §6.1] for details). We call the
monoidal category (V, ®, I) strict if A4, pa and a4 p ¢ are all identities.
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Further, (V, ®, I) is called symmetric if it comes equipped with an isomorphism
oap:A®B S5 B®A

which is natural in A, B € Ob(V) and fits into certain commutative diagrams (again, see
[Bor94b, §6.1]).

The monoidal category (V, ®, I) is called closed if for all objects A € V, the functors A ® —
and —® A from V to itself have right-adjoints V(A, —); and V(A, —), respectively. Letting
A vary, we obtain functors V(—, —);, V(—, —), : V°? x V — V which we call the infernal
hom-objects of V. If V is symmetric, then V(—, —); and V(—, —), are naturally isomorphic
and we denote both by V(—, —).

We call (V, ®, I) a Bénabou cosmos if it is bicomplete and symmetric monoidal closed.

Consider the corepresentable functor V(I, —) : V — Set. For every object A € V, we call
V(I, A) the underlying set of A.

Usually, we will denote the monoidal category (V, ®, I) simply by V.

The main monoidal categories we will be interested in are the following:

* The category of sets Set with the monoidal product given by the cartesian product
— x — and the monoidal unit given by the singleton {*}. This monoidal category
is symmetric and closed.

* More generally, if C is a category with finite products, then it carries a monoidal
structure (x, 1) where — x — is the cartesian product and 1 the terminal object. We
refer to this as the cartesian monoidal structure. This monoidal category is always
symmetric but not necessarily closed.

¢ The category of k-modules Mod(k) for a fixed unital commutative ring k. The
monoidal product is the tensor product — ®;, — over k and the monoidal unit is the
free k-module on one generator, k itself. This monoidal category is symmetric and
closed.

1.1.1 Monoidal functors and natural transformations

Details for this subsection can be found in [AM10, Chapter 3].

Definition 1.1.1. Let (V,®,I) and (W, X, J) be monoidal categories. A colax monoidal
functor V — Wis a triple (F, i1, €) where F' : V — W is a functor between the underlying
categories, 1 is a natural transformation between functors ¥V x V — W:

w:F(—®—-)—> F(-)XF(-)

called the comultiplication and € is a morphism F'(I) — J in W called the counit. This
data must moreover satisfy the following conditions:
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(a) (Coassociativity) For all A, B,C € V), the following diagram commutes:

F(A®B)®C) —— F(A® B)RF(C) —— (F(A)K F(B)) K F(C)

HA®B,C A,Bﬁidp(c)

F(aA,B,c)Jf ~ | XF(A),F(B),F(C)

F(A® (B®C)) o FIA)RF(B® Q) —— F(A)R(F(B)KF(C))

HA,BRC ra) Mus.c

(b) (Counitality) For all A € V, the following diagrams commute:

FI®A) 2% F(I)R F(A) FA®I) 225 FAYRF)
F(}\A)JN J{EﬁidF(A) and F(pA)JN J{ldF(A) Ke
F(A) = — JRF(4) F(A) - FA)RJ

A lax monoidal functor V — W is defined as a colax monoidal functor V°? — W<,
More explicitly, it is a triple (F,m,u) with m : F(—) K F(-) — F(— ® —) a natural
transformation between functors V x V — W called the multiplication and w : J — F(I)
a morphism in W called the unit, such that the duals of the above diagrams commute.

Usually, we will abuse notation and denote a lax or colax monoidal functor simply by its
underlying functor F'.

Further, we call a colax monoidal functor (F, u,€) : V — W strongly unital if the counit
€ : F(I) — J is an isomorphism in W. We call (F, p1, €) strong monoidal if it is strongly
unital and for all A, B € V, the comultiplication

pap: F(A® B) = F(A)R F(B)

is an isomorphism in WW. Note that a strong monoidal functor is also lax monoidal where
the multiplication and unit are given by the inverses of the comultiplication and counit.

Definition 1.1.2. Let (F,u", ), (G, u%,€%) : (V,®,I) — (W,K, J) be colax monoidal
functors between monoidal categories. A natural transformation « : F' — G is called
monoidal if the following diagrams commute for all A, B € V:

QA®B

F(A® B) G(A® B)

F(I) ——— G()
i [, and RJ P

F(A) R F(B) —z— G(A)RG(B)

Dually, a natural transformation « : F' — G between lax monoidal functors F, G : V — W
is called monoidal if it is a monoidal natural transformation between the corresponding
colax monoidal functors F, G : V°P — W°P,

Notation 1.1.3. Let V and W be monoidal categories. Then the colax monoidal functors
VY — W and monoidal natural transformations form a (non-locally small) category which

we denote by Colax( :
olax(V, W
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Dually, we denote by
Lax(V, W)

the (non-locally small) category of all lax monoidal functors ¥V — )/ and monoidal
natural transformations between them.

Lemma 1.1.4. Let (F,p,¢) : (V,®,1) = (W, X, J) be a colax monoidal functor. Suppose the
underlying functor F : V — W has a right-adjoint G : W — V. Then G is lax monoidal with
multiplication G(A) @ G(B) — G(A K B) adjoint to

F(G(A) ® G(B)) 2824, pG(A)RFG(B) — AR B
forall A, B € V, and with unit I — G(J) adjoint toe: F(I) — J.

Definition 1.1.5. Let (V,®,I) and (W, [, J) be monoidal categories and F : V — W
a functor with a right-adjoint G : W — V. We call the adjunction F' 4 G monoidal if
F' comes equipped with a strong monoidal structure. Then by Lemma 1.1.4, G has an
induced lax monoidal structure.

Definition 1.1.6. A strong monoidal functor F' : V — )V between monoidal categories is
called a monoidal equivalence if there exists a strong monoidal functor G : W — V along
with monoidal natural isomorphisms

GoF ~idy and F oG ~idy

Theorem 1.1.7 ([Mac63]). For every monoidal category V), there exists a strict monoidal category
V' which is monoidally equivalent to V.

Remark 1.1.8. By Theorem 1.1.7, we may always replace a monoidal category by an
equivalent strict monoidal category. We will use this as justification to abuse notation
and treat the associator, and left and right unit isomorphisms as though they were
identities. Given an arbitrary monoidal category (V, ®, I), and objects Ay, ..., A, € V, we
will therefore simply write

A ®..®A,

for any possible bracketting of this expression. Similarly, we may sometimes identify the
expressions I ® A ans A ® I with simply the object A.

Proposition 1.1.9. Let (F,u%,ef") - U — V and (G, u%,€%) : V — W be colax monoidal
functors. Then the composite G o F' : U — W has the structure of a colax monoidal functor with
comultiplication uG_y p_y o G(u¥ _) and counit €% o G(e").

Further, for any monoidal category V), the identity functor idy is strong monoidal.

Notation 1.1.10. We denote by
MonCat

the (very large) 2-category whose objects are all monoidal categories, whose morphisms
are the colax monoidal functors between them, and whose 2-morphisms are the monoidal
natural transformations between those. So for any two fixed monoidal categories V and
W, we have

MonCat(V, W) = Colax(V, W)
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1.1.2 Quivers and enriched categories

For more details about the basic concepts of enriched category theory, we refer to [Kel05].

For this subsection, we fix a monoidal category (V, ®, I) with coproducts such that the
functor — ® — preserves coproducts in each variable.

Definition 1.1.11. A V-enriched quiver or V-quiver is a pair (Q,S) with S a set whose
elements are called vertices, and @ = (Q(a,b))qpes a collection of objects Q(a,b) € V.
A quiver morphism (Q, S) — (P,T) is a pair (f, fo) with fo : S — T a map of sets and
[ = (fab)apes a collection of morphisms f, , : Q(a,b) — P(fo(a), fo(b)) in V.

Given quiver morphisms (f, fo) : (@,S) — (P,T) and (g,90) : (P,T) — (R,U), the
composition (g, go) o (f, fo) is the quiver morphism (@, S) — (R,U) given by the pair

(9f,90f0) where gf = (9f,(a),fo(b) © fab)apes- The identity on a V-quiver (Q, S) is the
quiver morphism (Q, S) — (Q, S) given by the pair (idg,ids) with idg = (idg(a,b))a,bes-
This data defines a category which we denote by

VY Quiv
Notation 1.1.12. Given a set S, we denote by
V Quivg

the subcategory of V Quiv consisting of all V-quivers (@, .S) and all quiver morphisms
(f,ids). Note that V Quivg is canonically isomorphic to the category V> of functors
S x § = V where we consider the set .S x S as a discrete category.

Notation 1.1.13. If V = Set is the cartesian monoidal category of sets, then we denote
YV Quiv = Quiv and V Quivg = Quivg for any set S.

Construction 1.1.14. Let S be a set. For any two V-quivers ) and P, we define a V-quiver
Q ®g P as follows. For all a,b € S, set

(Q @s P)(a,b) = [] Q(a,¢) @ P(e,b)
ceS
Similarly, for quiver morphisms f : @ — Q' and g : P — P’ in V Quivg, we define
f®sg:Q®s P — Q ®g P asfollows. Forall a,b € S:
(f Qs g)a,b = H fa,c X 9Ge,b
ceS

This clearly defines a functor — ® g — : V Quivg xV Quivg — V Quivg.
Further, we define a V-quiver Ig by setting for all a,b € S:

I ifa=10

Is(a,b) = {o ifa+b

It easily follows from the hypotheses on V that ®s and Is define a monoidal category
(V Quivg, ®g, Ig). We will sometimes drop the subscript S from ®g and Is when it is
clear from context.

Note that the monoidal category V Quivg is generally not symmetric.
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Example 1.1.15. Let S = {*} be a singleton set. Then we have an isomorphism of
monoidal categories V Quivg ~ V.

Construction 1.1.16. Let f : S — T be a map between sets. We define a functor
f* VY Quivy — VQuivg
as follows. For all V-quivers (Q,T), and all a,b € S, set:

f1(@Q)(a,b) = Q(f(a), £(b))

and for any morphism ¢ :  — P in V Quivy, and all a,b € S:

f(9ap = 9r@a). 1)

Note that by identifying V Quivg ~ V%5, f* is in fact the precomposition functor
— o (f x f). Consequently, it has a left-adjoint given by the left Kan extension

fi=Langy (=) : VQuivg — V Quivy
In this case, fi is easily seen to be given by,
M@y =[] @@
agf~!(x)
beft(y)
forall @ € VQuivgand z,y € T.

Remark 1.1.17. It is easy to see that if V is complete or cocomplete, then so is V Quiv. For
a fixed set S, the limits and colimits of V Quivg ~ V%5 are given pointwise. Then given
adiagram F : J — VQuiv : j — (@7, 87), the limit (Q, S) of F is given by

S = 7her% S7 in Set and Q= jllerg 7 (Q7) inV Quivg

where 7; denotes the canonical map S — S7 for all j € J. Similarly, the colimit (Q, S) of
F is given by

S cjoéléns in Set and @ cjoé%n(Lj)g(Q) in ¥V Quivg

where ¢; denotes the canonical map SJ — Sforallj € J.
Lemma 1.1.18. For any function f : S — T, f* is a lax monoidal functor and f, is a colax

monoidal functor.

Proof. By the dual of Lemma 1.1.4, it suffices to show that f* is lax monoidal. Define the
unit u : Is — f*(Ir) of f* by

T T ifa=b
Uy =301 ifa+#b,fla)=fb)
0—0 if f(a) # f(b)
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for all a,b € S. Further, we have for any @, P € V Quiv, that

1 (Q&r P)a,b) = [[ Q(f(a),z) ® Q. £(b))
zeT
(f*(@) ®s f*( =JJe P(f(c), f(b))
ceS

which gives a canonical morphism of quivers

mq.p: [H(Q)®s f(P) = f(Q&r P)

It is readily verified that mq p is natural in @) and P, and that it is associative and unital
with respect to . O

In the next proposition, we consider Set as a 2-category with discrete hom-categories.
MonCat is the 2-category of monoidal categories from Notation 1.1.10.

Proposition 1.1.19. The assignments S — V Quivg and f — fi define a pseudofunctor
(=) : Set — MonCat

Proof. For any V-quiver () with vertex set S, we obviously have that

()@ (@ y) = [ Qb)) ~Q(x,y)
aEid;l(w)
beidg ' (y)

for all z,y € S and thus (ids)(Q) ~ Q. Further, given maps of sets f : R — S and
g:S—T,wehaveforall Q € VQuivgand z,y € T:

(o NM@,y)=  JI Qs

re(gof) (x)
se(gof) M (y)

a(h@) @y = I I Qs
acg™Mz)ref 1 (a)
beg™ (y) s€f (D)

So we have an isomorphism (g o f)1(Q) ~ g:(f1(Q)).

It follows from a direct verification that these isomorphisms make (—); into a well-defined
pseudofunctor. O

Definition 1.1.20. A V-enriched category or V-category C is a pair (C, Ob(C)) with Ob(C) a
class and € a monoid in (V Quivgy,(c), ®ob(e)s Lob(c))- We say (C, Ob(C)) is small if Ob(C)
is a set.

A V-enriched functor or V-functor (C,Ob(C)) — (D, Ob(D))isapair (F, f) with f : Ob(C) —
Ob(D) a map of sets and F' : C — f*(D) a morphism of monoids in V Quivgy,p) (Where
we used the lax structure of f*, see Lemma 1.1.18).

The composition and identities of V-functors are defined as in V Quiv. This data defines
a (large) category of (small) V-categories which we denote by

V Cat
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Examples 1.1.21. 1. For V = Set the cartesian monoidal category of sets, the category
Set-Cat is isomorphic to the category of small categories Cat.

2. For V = Mod(k) the monoidal category of modules over a fixed unital commutative
ring k, we refer to Mod(k)-categories as k-linear categories and we write k Cat for
Mod(k)-Cat.

3. For V = Cat the cartesian category of small categories, the category Cat-Cat is
isomorphic to the category of small strict 2-categories 2-Cat.

The following remark is subtle but it bears mentioning.

Remark 1.1.22. The monoidal product ®g in V Quivg from Construction 1.1.14 is chosen
so that it is more convenient when defining templicial objects in Chapter 2. However,
this introduces a discrepancy between Definition 1.1.20 and how enriched categories are
usually defined.

Traditionally, the composition law of a V-category C is defined as a collection of mor-
phisms, for all A, B,C € Ob(C):

map.c:C(B,C)®C(A, B) = C(A,C) (1.1)

However, following Definition 1.1.20, a monoid C in (V Quivgy,c), ®ob(c)s Lob(c)) comes
equipped with morphisms, for all A, B,C € Ob(C):

ap.c:C(A B)®C(B,C) — C(A,C) (1.2)

So this in fact a category enriched in the reverse monoidal category V" whose monoidal
product — ®"*” —is defined by A @ B = B ® A.

If V is symmetric, then V¥ and V are monoidally equivalent via the symmetry o of V.
So we can safely pass between the two composition laws (1.1) and (1.2):

g C(A,B)®C(B,C) “X22D, (B, C) @ C(A, B) "% ¢(A,C)
In most cases, there is thus no risk of confusion. Beware however that when V is
the symmetric monoidal category of chain complexes for example, the symmetry o
introduces a sign change. We will return to this point in Remark 4.2.42.

Nonetheless, even when V is not symmetric, we will still adopt the convention (1.2) as
dictated by Definition 1.1.20. To make the distinction with (1.1) absolutely clear, we will
always denote the composition in a V-category by m instead of m and refer to it as its
reverse composition law.

Proposition 1.1.23. Let F' : V — W be a lax monoidal functor between monoidal categories.
Then there is an induced functor
F :VCat - WCat

which is given as follows. For each V-category C, the W-category F(C) has the same set of objects
as Cand forall A,B € C, F(C)(A, B) = F(C(A, B)).

Moreover, if F' has a lax monoidal right-adjoint G : W — V), then the induced functors form an
adjunction
F:VCat S WCat: G
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1.2 Lifting properties

Fix a cocomplete category C for this section. We briefly discuss weak factorization systems
on C. Then we highlight the particular weak factorization system of projecive morphisms
and regular epimorphisms.

1.2.1 Weak factorization systems

Proofs for this subsection can be found in [Hov99] for example.

Definition 1.2.1. A morphism f : A — B is a retract of a morphism g : C — D if fisa
retract of g as objects in the category of morphisms Mor(C) = Fun([1],C). That is, there
exist morphisms a, b, c and d in C such that the following diagram commutes:

ida

We call f a strong retract of g if A = C and there exists a commutative diagram as above
witha = ¢ =idy4.

Definition 1.2.2. Let A > 0 be an ordinal. A A-sequence is a colimit-preserving functor
X : A = C. The canonical morphism

to : X(0) — colim X ()

a<
is called the transfinite composition of X.
Let A be a class of morphisms in C. If for all ordinals 8 with 5 + 1 < A we have that the
morphism tg g4+1 : X(8) = X (8 + 1) belongs to A, then we call X a A-sequence in A.
Definition 1.2.3. Let A be a class of morphisms in C. We call A weakly saturated if

(a) A is closed under pushouts, that is, for all f € A, the pushout of f along any
morphism in C belongs to A.

(b) A is closed under transfinite compositions, that is, for every ordinal A and every
A-sequence X : A — C in A, the transfinite composition ¢ : X (0) — colim X belongs
to A.

(c) Ais closed under retracts, that is, if f € A4 and g is a retract of f in C, then g € A.

It is clear that arbitrary intersections of weakly saturated classes are again weakly satu-
rated. If S is a class of morphisms in C, we write S for the smallest weakly saturated class
of morphisms in C that contains S. In other words,

S= A
SCA
A weakly saturated
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We call S the weak saturated closure of S.

Definition 1.2.4. A [ifting problem in C is any commutative square of solid arrows:

b

QJ( . l\
N
T < Q

-

Sy

A morphism h : B — C'is called a lift or a solution of the lifting problem if hi = f and
ph=g.

Given morphismsi: A — Band p: X — Y in C, we say that i has the left lifting property
with respect to p and that p has the right lifting property with respect to i if every lifting
problem as above has a solution. In this case, we write

1Ap

Definition 1.2.5. If Ais a class of morphisms in C, then we define the left lifting class and
right lifting class of A respectively by

AP ={peMor(C)|Vie A:irmp} and “A={ieMor(C)|Vpe A:inp}

Proposition 1.2.6. For every class of morphisms BB in C, Y B is weakly saturated.
Lemma 1.2.7 (Retract argument). Let i : X — Aand p : A — Y be morphisms in C and set
f = pi, then

o If f has the left lifting property with respect to p, then f is a (strong) retract of i.

e If f has the right lifting property with respect to i, then f is a retract of p.
Definition 1.2.8. A pair (£, R) of classes of morphims of C is called a weak factorization
system on C if
(@) L2 =Rand L = YR, and
(b) every morphism f of C can be factored as f = pi withi € Land p € R.

Definition 1.2.9. Let « be a regular cardinal. An ordinal ) is called k-directed if for every
collection of ordinals («;);c; with |I| < kK and «; < A for all ¢ € I, there exists an ordinal
a < Asuch thato; < aforalli € I.

An object A of C is called k-small if the corepresentable functor C(A4,—) : C — Set
preserves transfinite compositions of A-sequences for all x-directed ordinals A > 0.

We say A is small if it is x-small for some regular cardinal «.

Example 1.2.10. Let J be a small category. Then every object in the functor category
Set is small.

Proposition 1.2.11 (Small object argument). Let S be a set of morphisms in C. Assume that
the domains of all morphisms in S are small. Then (S, S%) is a weak factorization system on C.
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1.2.2 Free and projective morphisms

Further assume that C has pullbacks.

Definition 1.2.12. A morphism g : X — Y in C is called a regular epimorphism if it is the
coequalizer of its kernel pair:

XxyX —2 X 25y
T2

Remark 1.2.13. What we defined here as a regular epimorphism is usually called an
effective epimorphism, while a regular epimorphism is defined as a coequalizer of any pair
of morphisms. For categories with pullbacks, the two notions are equivalent so there is
no risk of confusion.

Definition 1.2.14. An object P of C is called projective if the initial morphism 0 — P has
the left lifting property with respect to all regular epimorphisms X — Y

X

s
-
-
-
-
-

-

P——Y

We call a morphism f : A — B in C projective if it is projective as an object of the under
category C4,. Equivalently, f has the left lifting property with respect to all regular
epimorphisms X — Y

A—— X

/7[

B——Y

Examples 1.2.15. Let us describe the projective morphisms in our main categories of
interest.

1. In the category of sets Set the projective morphisms are precisely the injective maps
of sets.

2. Fix a unital commutative ring k. In the category of k-modules Mod(k), a morphism
f+ A — Bis projective if and only if there is a projective k-module P (in the usual
sense) and an isomorphism B ~ A ® P such that f corresponds to the coprojection
A—ADP.

In particular, if & is a field then every k-vectorspace is projective and every injective
k-linear map splits. It follows that the projective morphisms in Mod (k) are precisely
the injective k-linear maps.

Notation 1.2.16. For any object P € C, we denote Fp for the functor
Fp:Set»C: S [[ P
aceS

Itis uniquely determined (up to natural isomorphism) by the conditions that Fp({*}) ~ P
and F'p preserves colimits. Then Fp is left-adjoint to the corepresentable functor

Up =C(P,—): C — Set
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Remark 1.2.17. Note that P is a projective object of C if and only if the functor Up : C — Set
preserves regular epimorphisms.

Definition 1.2.18. Fix an object P € C. An object A of C is called free if it is isomorphic to
Fp(S) for some set S.

We call a morphism f : A — Bin C free if it is free as an object of the under category C,/,
(with respect to the composite left-adjoint A Il Fp(—) : Set — C4,). Equivalently, there
exists a set S and an isomorphism B ~ A Il Fp(S) in C such that f corresponds to the
coprojection A — AII Fip(S).

Examples 1.2.19. Let us describe the free morphisms in our main categories of interest.

1. Choose P = {«} in the category of sets Set. Then the free morphisms in Set coincide
with the projective morphisms and thus with the injective maps of sets.

2. Fix a unital commutative ring k. Choose P = k in the category of k-modules
Mod(k). A morphism f : A — B is free in Mod(k) if and only if there is a free
k-module F' (in the usual sense) and an isomorphism B ~ A & F' such that f
corresponds to the coprojection A — A @ F.

In particular, if £ is a field then every k-vectorspace is free and every injective k-
linear map splits. It follows that the free morphisms of Mod(k) coincide with the
projective morphisms and thus with the injective k-linear maps.

The following properties are easy to show.

Proposition 1.2.20. Let P be a projective object of C such that Up also reflects epimorphisms.
Then the following statements are true.

1. The functor Fp : Set — C sends monomorphisms to free morphisms.
2. A morphism in C is projective if and only if it is a (strong) retract of a free morphism.
3. Every morphism in C can be factored as a free morphism followed by a regular epimorphism.

4. The classes of projective morphisms and reqular epimorphisms form a weak factorization
system on C.

Remark 1.2.21. Let S be a set. As C Quivg ~ C°*¥, we have for every object P € C an
induced adjunction Fp : Quivg & C Quivg : Up. Moreover, a quiver morphism f : Q; —
Q2 is a regular epimorphism if and only if the morphism f, : Qi(a,b) = Q2(a,b) is a
regular epimorphism in V for all a,b € S. Let us call f free (resp. projective) if f, y is free
(resp. projective) in C for all a,b € S. Then the properties of Proposition 1.2.20 hold for
C Quivg as well.
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1.3 Quasi-categories

Quasi-categories are one of the many models of (oo, 1)-categories. They were originally
considered by Boardman and Vogt under the name weak Kan complexes [BV73]. Later
Joyal introduced the term quasi-category and studied them extensively [Joy02]. Lurie
greatly expounded on their theory in [Lur09a]. Some modern resources include [Rez17]
and [Lurl8]. Quasi-categories are often referred to as simply co-categories. To make the
distinction with other models, we will adopt Joyal’s terminology.

In this section we give the very basic first definitions in the study of quasi-categories.

1.3.1 Simplicial sets and quasi-categories

A simplicial set can be interpreted geometrically as a collection of simplices of varying
dimensions, which are glued together along common faces. They are formalized combi-
natorially as presheaves on the simplex category A. For more details on simplicial sets,
see [May67] for example.

Definition 1.3.1. Let A be the category of all posets [n] = {0, ..., n} with n > 0 an integer
and order morphisms f : [n] — [m] between them. We call A the simplex category.
Definition 1.3.2. Letn > 0 be an integer and ¢ € [n]. We call the order morphism

j ifj <

J+1 ifj>i

&z[n—lw[n}:w{

a coface map. Let n > 0 be an integer and i € [n]. We call the order morphism
i ifj<i

i . 1] — N d
oitlnt1] = nl:g {jl ifj>i

a codegeneracy maps.

We call a coface map 0, : [n — 1] — [n] inner if 0 < ¢ < n and outer if i = 0 or ¢ = n.
Lemma 1.3.3 ([Mac71], VIL5). Every morphism f : [n] — [m] of A has a unique representation
f=04..0;,0j..0;

with <i, < ...<i31 <m,0<j1 <..<js<nands,t >0suchthatn —t+s=m.

Definition 1.3.4. Let C be a category. A simplicial object of C is a functor Y : A°? — C. For
all n > 0 we denote Y,, = Y ([n]), Further, for all integers n > 0 and ¢ € [n] we denote

di =Y (0;): Y, = Y,

and call these the face morphisms of Y. Similarly, for all integers n > 0 and ¢ € [n], we
denote
S; = Y(O’l) : Yn — Yn+1

and call these the degeneracy morphisms of Y. We denote
SC = Fun(A°?,C)

for the category of simplicial objects and call its morphisms simplicial morphisms.
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Proposition 1.3.5. Let C be a category. A simplicial object Y of C is equivalent to a collection
(Yn)n>o0 of objects of C with morphisms d; : Y,, — Y, for all integers n > 0 and i € [n], and
s; 1 Yy, = Yo for all integers n > 0 and i € [n], satisfying the following identities:

sjd; ifi<y
dis; = <id ifi=jori=j+1
sjdi—1 ifi>j+1
did; =dj_1d; ifi < j 8i8; = 8;8i—1ifi > j

(1.3)

Definition 1.3.6. A simplicial set is a simplicial object of the category of sets Set. In this
case, we denote
SSet = S Set

We call the morphisms of SSet simplicial maps.

Given a simplicial set K and an integer n > 0, we call the elements of the set K, the
n-simplices of K. We shall also refer to 0-simplices as vertices, and to 1-simplices as edges.
We denote f : a — b to indicate that f € K; with vertices dy(f) = band d;(f) = a.

An n-simplex x € K, with n > 0 is called degenerate if there exists a y € K,_; and
0 <1i < n —1such that z = s;(z), and non-degenerate otherwise.

The following result is known as the Eilenberg-Zilber lemma.

Lemma 1.3.7 ([EZ50], (8.3)). Let K be a simplicial set and n > 0. For any n-simplex x of K,
there is a unique surjective morphism o : [n] — [k] in A and a unique non-degenerate k-simplex
y of K such that x = K (o)(y).

Definition 1.3.8. Letn > 0 be an integer.

* The standard n-simplex A" is the simplicial set

A" = A(—, [n]) : A% — Set

¢ The nth boundary OA™ is the simplicial subset of A" defined by setting, for all
integers m > 0:

(OA" ) = {f = [m] = [n] | f([m]) # [n]} € (A")m

* For 0 < j <n, the jth horn A} is the simplicial subset of A™ defined by setting, for
all integers m > 0:

(A)m ={f : Im] = [n] [ f([m]) 2 [n]\{i}} € (A")m
We call A} an inner horn if 0 < j < n and an outer horn if j = 0 or j = n.

Remark 1.3.9. Let n > 0 be an integer. The standard n-simplex may be visualized geo-
metrically by a simplex of dimension n.
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1 1
0 N &
A0 Al 0 2 0 2

A2 3

A3

The nth boundary is obtained from the standard n-simplex by removing the interior.
Alternatively, it can be described by the union of all of the faces of the standard n-simplex.

1 1
(o) Qe o1 A e
K Al 0 2 0 2
OA? 3

OA3

Given an integer 0 < j < n, the jth horn can be described as the union of all the faces of
the standard simplex, except the jth face.

1 1 ] 1

OLQ 0/\2 0A2 0@2
Aj A2 A2 3
AG

The next result is an immediate consequence of the Yoneda lemma.

Proposition 1.3.10. Let K be a simplicial set. There is a bijection
K, ~ SSet(A", K)
between the sets of n-simplices of K and of simplicial maps A™ — K, which is natural in n > 0.

Proposition 1.3.11. Let D be a cocomplete category and C : A — D a functor. Then there is an
adjunction

c
SSet 1 " D
%
NC
where C'is the left Kan extension of C along the Yoneda embedding ) : A — SSet and N is
defined by
N¢(D)n = D(C(n]), D) (14)

forall D € Dandn > 0.

Moreover, if L : SSet — D is a functor preserving colimits, then L ~ C where C = Lo ).
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Definition 1.3.12. A simplicial set K is called a Kan complex if it satisfies the Kan condition,
thatis for all 0 < j < n, every diagram in SSet

A" — K
J kd

An
has a lift.

Definition 1.3.13. A simplicial set C is called a weak Kan complex or quasi-category if it
satisfies the weak Kan condition, that is for all 0 < j < n, every diagram in SSet

AT ——C
A

.
-
-
-
-
-

ATL
has a lift.

In this case we refer to the 0-simplices of K as the objects of K and to the 1-simplices of
K as the morphisms of K.

Proposition 1.3.14. A simplicial set C is a quasi-category if and only if for all 0 < j < n
and every collection of (n — 1)-simplices (zo, x1,...,Zj—1,Tj41, ..., Tn) of C satisfying, for all
0<i<i <nuwithi#j+#1i"

di(zir) = di—1(;)

there exists an n-simplex x of C such that d;(x) = x; for all 0 < i < nwith i # j.

Proposition 1.3.15. The class of monomorphisms in SSet is equal to the weak saturated closure
of the set of boundary inclusions OA™ — A" for all n > 0.

Definition 1.3.16. Let f : K — L be a simplicial map. We call f

¢ anodyne if f belongs to the weak saturated closure of the set of all horn inclusions
A? — A" with 0 < j <n,

e inner anodyne if f belongs to the weak saturated closure of the set of all inner horn
inclusions A7 — A" with 0 < j <n,

* a Kan fibration if f has the right lifting property with respect to all horn inclusions,

* an inner fibration if f has the right lifting property with respect to all inner horn
inclusions,

e a trivial fibration if f has the right lifting property with respect to all boundary
inclusions.

Remark 1.3.17. Note that a simplicial set C is a quasi-category if and only if the terminal
map C — 1is an inner fibration.

Remark 1.3.18. In view of Example 1.2.10, all simplicial sets are small in the sense of
Definition 1.2.9. Thus it follows from the Small object argument (Proposition 1.2.11) that
we have weak factorization systems on SSet given by (anodyne, Kan fibration), (inner
anodyne, inner fibration) and (monomorphism, trivial fibration).
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Definition 1.3.19. Let K be a simplicial set. We define the set m(K) of connected compo-
nents of K as the colimit of K as a functor A°? — Set. Equivalently, it is given by the
reflexive coequalizer
do
—
K1 GZO* KO —> FQ(K)

In other words, 7 (K) is the quotient set K/ ~ where the equivalence relation is gener-
ated by letting a ~ b if there exists an edge f : a — bin K (for all a,b € Ky). We call K
connected if o (K) is a singleton.

This construction clearly extends to a functor
o+ SSet — Set

Construction 1.3.20. Let Top denote the category of topological spaces. Given n > 0,
consider the topological n-simplex |A"| € Top. This defines a functor |A(7)| : A — Top.
By Proposition 1.3.11, we obtain an adjunction

-
—
SSet 1 " Top
Sing

The left-adjoint | — | is called the geometric realization functor.

Given a simplicial set K, the set of path components of |K| is bijective to mo(K).

Definition 1.3.21. A simplicial map f : K — L is called a weak homotopy equivalence if the
induced continuous map |f| : | K| — |L| is a weak homotopy equivalence of topological
spaces.

It is clear that a weak homotopy equivalence f : K — L of simplicial sets induces a
bijection on the sets of connected components 7o (f) : mo(K) — mo(L).

1.3.2 The nerve and the homotopy category

Definition 1.3.22. Let C be a small category. The nerve of C is the simplicial set
N(C) = Cat(—,C) : AP — Set
where we consider A as a full subcategory of Cat.
Explicitly, for all integers n > 0, the set N(C),, consists of all sequences (f1,..., fn) of
composable morphisms in C. That is, we have objects Ay, ..., 4, € Ob(C) such that

fit Ain — A;jforalli € {1,...,n}. In particular, we can identify N(C), with the set
Ob(C) and N(C); with the set Mor(C) of morphisms of C.

Aq
f1 f2

A() A2

fafaf1 e f3
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For any integer n > 0 and ¢ € [n] the face map d; : N(C),, = N(C),—1 is given by

(f27-~-a.fn) le:O
di(fi, - Jn) = § (f1, s ficts fixr 0 i, figa, o fn) HfO0<i<n
(f17"'7fn71) ifi=n

For any integer n > 0 and i € [n] the degeneracy map s; : N(C),, = N(C),+1 is given by

Si(f17 7f’n) = (f17 "'7fi7idAivfi+1a vy fn)

Moreover, this defines a functor
N : Cat — SSet

called the nerve functor.

Example 1.3.23. For all n > 0, we have
N([n]) = Cat(=, [n]) = A(=, [n]) = A"

Proposition 1.3.24. The nerve functor N : Cat — SSet is fully faithful and a simplicial set K
is isomorphic to the nerve of a category if and only if for all 0 < j < n, every diagram in SSet

A} — K

P

ATL

has a unique lift. In particular every nerve of a small category is a quasi-category.

Construction 1.3.25. Let K be a simplicial set and let F(K) be the free category on the
graph whose vertices and edges are the 0-simplices and 1-simplices of K respectively.

Thus Ob(F(K)) = Ky and for all a,b € Ky a morphism a — b in F(K) is given by a
sequence

(fla 7fn)

with n > 0 and for all ¢ € {1,...,n}, f; is an edge a;—_1 — a; of K, for some vertices
a = ap,at,...,an—1, 6, = b of K. Composition is given by concatenation of sequences
and the identity is given by the empty sequence ().

Proposition 1.3.26. The nerve functor N : Cat — SSet has a left-adjoint h : SSet — Cat
which is given on objects as follows.

For any simplicial set K, hK is the quotient category F(K') /~ where ~ is the equivalence relation
generated by

* (f,g) ~ hforall 2-simplices w € K, with do(w) = g,d1(w) = h,dz(w) = f,

* () ~sola)forall a € K.
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Lemma 1.3.27. Let C be a quasi-category and f,g : a — b morphisms in C. The following
statements are equivalent.

(1) There exists a 2-simplex w € Co such that do(w) = so(b), d1(w) = g and da(w) = f.

(2) There exists a 2-simplex w € Cq such that do(w) = f, d1(w) = g and da(w) = so(a).

b a
A
a g b a g b

In this case, we denote f ~ g and say that f is homotopic to g. Moreover, ~ defines an
equivalence relation on the set Cy of morphisms in C.

Proposition 1.3.28. Let C be a quasi-category. Then for all objects a and b of C, there is a bijection
hC(a,b) ~{[f]| f:a—binC}

where [ f] denotes the equivalence class of f under ~. Under these bijections, we have that

e the identity in hC on an object a € Cy is given by [so(a)|, and

e for any two morphisms f : a — band g : b — cin C, we have [g] o [f] = [d1(w)] for any
2-simplex w € Cy with do(w) = g and da(w) = f.
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Chapter

Templicial objects

“I don’t know where I am, but there is something beautiful about this place. I will
explore and see what I can discover.”

— @ v17.1.0054 (The Talos Principle)

In this first non-preparatory chapter we introduce our main objects of study, templicial
objects (Definition 2.1.9). These should be viewed as simplicial objects in a sense internal
to a suitable monoidal category V. As mentioned in the introduction, this philosophy
is based on the work of Aguiar [Agu97] and Leinster [Lei00]. We will always require
templicial objects to have a set of vertices. This will be achieved by means of V-enriched
quivers (see §1.1.2). Concretely, a templicial object is a pair (X, S) with S a set and

X A% =V Quivg

a strongly unital, colax monoidal functor. We will see that these indeed recover ordinary
simplicial sets when V = Set. Moreover, we will establish some first easy properties of
templicial objects and introduce the tools that will turn up in the later chapters.

The chapter is divided into three sections as follows. Section 2.1 covers the very basics.
We define templicial objects and their category Sg V, and show it is cocomplete (Corollary
2.1.23). Tt will follow that we have an adjunction F : SSet = SgV : U (Proposition 2.1.25).
We end the section by generalizing the classical simplicial skeleton construction to the
context of templicial objects in §2.1.5.

Next, we introduce our proposed analogue of quasi-categories in the templicial context,
the quasi-categories in a monoidal category V (Definition 2.2.26). Crucial for this, and for
the rest of the thesis, are necklaces. These were first introduced by Dugger and Spivak in
[DS11b]. We open Section 2.2 by introducing these necklaces and then defining quasi-
categories in V. Then we show that for any quasi-category X in V, the simplicial set
U(X) is always an ordinary quasi-category and if V = Set the two notions coincide (see
Propositions 2.2.30 and 2.2.31). Finally, we introduce (non-associative) Frobenius structures,
which are based on Day and Pastro’s Frobenius monoidal functors [DP08]. These are
related to quasi-categories in V' and will prove to be a useful tool when we consider
templicial k-modules (i.e. when V = Mod(k)) in Chapter 4.

In the final section of this chapter, Section 2.3, we generalize the classical nerve functor
N : Cat — SSet and its left-adjoint, which takes the homotopy category of a simplicial set.

21
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These templicial versions will satisfy analogous properties to their classical counterparts.
For instance, the description of the homotopy category of a templicial object becomes
significantly easier if it is a quasi-category in V (Construction 2.3.19).

Recall the standing hypotheses. We fix a cocomplete and finitely complete monoidal
category (V,®, I) such that the monoidal product — ® — preserves coproducts in each
variable.

2.1 Basic definitions

2.1.1 Simplicial objects and colax monoidal functors

An observation originally due to Leinster (see Proposition 2.1.6) states that simplicial
objects in a cartesian monoidal category can be equivalently described as certain colax
monoidal functors. We argue that these colax monoidal functors are a good replacement
for simplicial objects even when the monoidal category is not cartesian. As such, they
will be essential when we define templicial objects in the next subsection.

Let us start by introducing some variants of the simplex category A (Definition 1.3.1).

Definition 2.1.1. We define the following simplex categories:

o A, is the augmented simplex category. Its objects are the posets [n] = {0,...,n} with
n > —1 (where [—1] = (}), and its morphisms are the order morphisms [m] — [n].
We denote the unique morphism [—1] — [0] by dy and call it a coface map as well.

* Ay is the category of finite intervals, which is the subcategory of A consisting of
all morphisms f : [m] — [n] that preserve the endpoints, that is f(0) = 0 and

F(m) =n.

* A, is the subcategory of A consisting of all surjective morphisms f : [m] — [n].

Note that we have inclusions of subcategories Ag,r; C Ay C A C Ay,

Remark 2.1.2. Note that A, contains all coface and codegeneracy maps of A, as well as
the coface map Jy : [~1] — [0]. On the other hand, Ay only contains the inner coface
maps but still all codegeneracy maps. Finally, A,,; only contains the codegeneracy
maps but no coface maps.

It follows from Lemma 1.3.3 that the categories A}, A; and A,,,; are also generated by
the coface and codegeneracy maps that they contain. So for example, every morphism
f :[m] = [n] in A has a unique representation

f = 6j1"'5j50.i1"'0-it

with0 < jy<...<j1<n,0<4 <..<i<mands,t >0suchthatm —t+s=n.

Remark 2.1.3. In contrast to the category A, both the categories A and A are naturally
endowed with monoidal structures.
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The monoidal structure (x,[—1]) on A is given by juxtaposition of posets and mor-
phisms, as follows. For m,n > —1:

) ] = [+ n+ 1
For morphisms f : [m] — [m/]and g : [n] — [n/] in A4:

f@) ifi<m
m+14+g(i—m—1) ifi>m

UWWZ{

Similarly, the monoidal structure (+,[0]) on A is given by identifying respective top
and bottom endpoints, as follows. For all m,n > 0:

[m] + [n] = [m +n]
For morphisms f : [m] — [m/] and [n] — [n/] in Ay:

. F (@) ifi <m
—|— =
(F+9)(0) {m’+g(i—m) ifi >m
Of course, (Agyrj, +, [0]) also becomes a monoidal category with the inherited monoidal
structure from Ay.

There is a well-known monoidal equivalence A ~ A%, the relevant functor in each
direction being obtained by considering posets of morphisms into [1] (see [Joy97]).

Remark 2.1.4. Let f : [m] — [n] be a morphism in Ay and let 0 < & < m. Then there exist
unique morphisms f; : [k] = [p] and f5 : [m — k] = [n — p] in A such that

h+f=f

They are defined by setting p = f(k), f1(¢) = f(3) foralli € [k] and fo(i) = f(i + k) — p
foralli € [n — k.

Remark 2.1.5. Let W, ®, I) be an arbitrary monoidal category. We will be particularly
interested in colax monoidal functors X : A% — W. Similarly to Proposition 1.3.5, it
follows from Remark 2.1.2 that X is equivalent to a collection (X,,),>¢ of objects in W
endowed with the following data:

e morphisms dj( : Xp — Xp,—1forall0 < j < nwhich we call the inner face morphisms,

X

%

¢ morphisms s
morphisms,

: X,y = Xp4q for all 0 < ¢ < n which we call the degeneracy

* morphisms ué{ 1 Xkt = X ® X for all k,1 > 0 which we call the comultiplication
morphisms,

e amorphism eX : X, — I which we call the counit morphism.

This data moreover has to satisfy the simplicial identities (1.3) as well as:



24 CHAPTER 2. TEMPLICIAL OBJECTS

. (Naturalityoqu)Forallk,l20and0<j<k+l+1,0§i§k+l—1,wehave

XX { dX @idx )iy, A5 <k
M@ =

(
(idx, ®d§£kz)ﬂi(,l+1 ifj>k
(
(

(2.1)
X X _ s @idx up_,, i<k
Ho 15 idx, @s ),y ifi>k
* (Coassociativity of u~) For all 7, s,t > 0, we have
(ier ®:u§ft)/’[’i,(s+t = (Nfs ® idXt):ui(-i-s,t (22)
* (Counitality of u* with ¢X) For all n > 0, we have
(idx, @) o =idx, = (¥ ®@idx, ) gn (2.3)

Note that by the coassociativity, we have a well-defined morphism
1 Xtk = Xpy ® o @ X,

for all n > 2 and kq, ..., k, > 0. Further, we will set ,ufl
n = 1, and to be the counit X if n = 0.

r, to be the identity on X, if

.....

Moreover, under these identifications a monoidal natural transformation oo : X — Y
between colax monoidal functors X,Y : A% — W is equivalent to a collection of
morphisms (o, : X;, = Y,),,~, which satisfy:

* (Naturality of o) Forall 0 < j < nand 0 <14 < n, we have

X Y X Y
an—1d; =dj ap and  an418; =8 an

* (Monoidality of «) For all £, > 0, we have

Y X Y X
POk = (ax @ ag)py, and € ag = ¢

Finally, we will often drop the superscript X from the notation when it is clear from the
context which colax monoidal functor these morphisms belong to.

Recall that a monoidal category W is called cartesian if the monoidal product is given by
the categorical product (also see Section 1.1).

Proposition 2.1.6 ([Lei00], Proposition 3.1.7). Let W be a cartesian monoidal category. There
is an isomorphism of categories

Colax(A}, W) ~ SW.
Proof. Let X : A°? — W be a functor. We can equip the restriction X| N with a colax
monoidal structure as follows. Define for all &,1 > 0:

X
=(d vl dg...dg) : X — X x X
Pieq = (dkg1-diyi, do-do) + Xy k !

k times
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Given morphisms f : [k] — [K'] and g : [[] = [I'] in Ay, we have

(f + g)5k+l-~-6k+1 = 6k’+l’--~6k/+1f and (f + g) dg---00 = 0g.--00 g

k times k’ times

which shows that pX is a natural in the sense of (2.1). Further, let ¢X : X; — 1 be the
terminal morphism. Then p* and € trivially satisfy counitality (2.3) and p* is also
coassociative (2.2) by the following observation:

dgs1odsyy dooody = douendy drs sty sie  (Vr, 5,6 >0
+1 +t 40 0 0 0 Cr+s+1 +s+t ( )

7 times 7 times

Take X, Y € SWand let o : X| PN Y| NG be a natural transformation between their

restrictions A%” — W. Then « extends to a morphism X — Y in SW if and only if o is
monoidal. Indeed, this follows from the observation that for all k,7 > 0:

(ag % al),uk)fl = (agdi+1.--dk+1, ardyp...do), uiﬁﬂku = (dg+1..-dg+10k+1, do-..doi11)
and €” ap = X always holds. We thus obtain a fully faithful functor
¢ : SW — Colax(A, W)
It remains to show that ¢ is also bijective on objects.

Given a colax monoidal functor X : A%” — W with comultiplication x and counit ¢, we
can extend X toa functor X : A% — W as follows. It suffices to define the outer face
morphisms of X. For n > 0, set

Hn—1,1

do: Xo 225 X0 x X1 225 X1 and  dy : X, Xpo1 X X1 5% X g

Then the coassociativity and naturality of i implies that for all n > 2:

dod,, = o1 n—2T1n—1,1 = 772(/11,71—2 X iXm),Un—l,l = 7T2(idX1 X/~Ln72,1),ull,n71
= T1n—-2,1T2H1 n—-1 = dp—1do
dodo = mapi1 n—2Tapi1 m—1 = m3(idx, Xp1 n—2)pb1,n—1 = m3(p1,1 X idx, _,)H2,n—2
= Tofian—2 = ma(di X idx, _,)Ho,n—2 = Topi1 n—2di = dod;
and similarly, d,,—1d,, = dr,—1d,—1. The other simplicial identities involving the outer face

morphisms follow from the naturality of . Thus X is a well-defined simplicial object in
V. Now, it follows from the coassociativity of x that for all k,! > 0:

T = (T poe ) (Mpprs1,1) - (Mipkri—1,1) = dit1---dii

and similarly mopuy; = do...dp. Hence, we find that ¢(X) = (Y|A;p,,uy, ey) = (X, u, €).
Finally, if Y is a simplicial object in V such that ¢(Y') = (X, u, ¢), then it follows that
Y|A<fm = X and do = ToM1,n—1, dn = T1Hn—-1,1 and thus Y = X. ]

Example 2.1.7. If WW = Set, Proposition 2.1.6 supplies an isomorphism of categories:

Colax(A%", Set) ~ SSet
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Remark 2.1.8. Suppose W is cartesian and let X : A;’cp — W be a colax monoidal functor.
It follows from the proof of Proposition 2.1.6 that the outer face morphisms dy and d,,
are obtained as

do : Xn % Xl X Xn—l 77—2) Xn—l

and
Hn—1,1 T
dn : Xn —_— Xn—l X X1 — Xn—l

where we have made use of the projections 7; and 7, from the product to its factors.

If W is not necessarily cartesian, these projections are not available in general and the
comultiplication p of a colax monoidal functor can be considered as a replacement for
the outer face morphisms in the monoidal context.

2.1.2 Templicial objects

We are now ready to define our main object of study, the templicial objects in V. Fur-
ther, we give some examples and show that when V = Set they recover simplicial sets
(Proposition 2.1.15). Finally, we show how the category of templicial objects Sg) can be
constructed by means of a Grothendieck construction.

Recall the monoidal category (V Quivg, ®g,Is) of Construction 1.1.14, and the base
change functors fi : VQuivg & VQuivy @ f* for a given map of sets f : § — T
(Construction 1.1.16).

Definition 2.1.9. A tensor-simplicial or templicial object in V is a pair (X, .S) with S a set
and

a colax monoidal functor which is strongly unital, i.e. its counit € : Xo — Ig is an
isomorphism. We call the elements of S the vertices of X. For n > 0, an n-simplex of X is
an element of the underlying set of X,,(a,b) € V for some a,b € S.

Let (X, S) and (Y, T') be templicial objects. A templicial morphism (X, S) — (Y, T) is a pair
(o, f) with f : S — T amap of sets and o : fiX — Y a monoidal natural transformation
between colax monoidal functors A%” — V Quivy. Here, we used the colax monoidal
structure of f, (see Lemma 1.1.18).

Sometimes we will denote a templicial object (X, S) or a templicial morphism («, f)
simply by X or « respectively.

Remark 2.1.10. An alternative way to realize a set of vertices S consists in turning the
monoidal category Ay (which is a one object bicategory) into a bicategory with object
set S. This approach goes back to [Lur09a] and was used in [Sim12], [Bac10].

Before discussing the category of templicial objects, let us first give some examples in
the case where V = Mod(k) is the category of k-modules for some unital commutative
ring k. The monoidal product is the tensor product ®;, over k and the monoidal unit is
k itself.
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Example 2.1.11. Let M be a k-module. Consider the Mod(k)-enriched quiver () with
only two distinct vertices a and b, and

Qa,b) =M, Q(b,a)=0 and Q(a,a)=Q(b,b) =k

Then there exists a templicial object (X, {a, b}) such that the quiver X; is equal to @Q (also
see Example 2.1.38.2).

We consider the elements of M as edges a — b of Q. As M is an abelian group, we can
take the sum of two edges f, g : @ — b to get another edge f + g : a — b. Note that this is
reflected in the comultiplication map p10 : X1 = X1 ®gs Xo of X. Indeed, for f,g € M
we have the equations

pro(f)=f®@b and pio(g) =g®b

which express that f and ¢ are edges of X with common target b. Now because p1 o is
assumed to be a linear map, we have

po(f +9) = molf) +molg) = f@b+geb=(f+9)®b
which expresses that f + g is also an edge of X with target b.

This may all seem a bit tautological, because it is. But notice that a simplicial k-module
cannot capture the same behavior. The analogue of the map p; o for a simplicial k-module
X would be the face map do : X1 — Xo. Now for f,g € X, the linearity of dy implies
that do(f + g) = do(f) + do(g). So the targets of the edges in X; are not invariant under
addition. In other words, the set {f € X1 | d1(f) = a,do(f) = b} is not a k-module in
any canonical way.

Example 2.1.12. Let A be a k-algebra. We can make A into a templicial k-module
resembling the bar construction. For all n > 0, define

N (A), = A®" € Mod(k)

We define the inner face maps and degeneracy maps of N (A) as follows. For 0 < j < n,
0<i<nanday,...,a, € A,set

dj(al ® ® an) = ai ® ® aj,1 ® aj+1aj ® aj+2 ® ® (07%%

$i(a1 ®..0ay) =01 ®...0a; Q14 Qai+1 Q... R ay,
It follows from the associativity of the multiplication in A and the unit property of 14 that
the simplicial identities (1.3) are satisfied. Finally, the counit and comultiplication maps

of N (A) are given by the isomorphisms € : A% = k and p,, , : ASPT9 =5 AP @ A9,
We thus obtain a strong (and thus colax) monoidal functor

Ni(A) : A% — Mod(k)

So by Example 1.1.15, we can view Nj(A) as a templicial object with one vertex. It was
noted by Maclane that this completely determines the algebra A up to isomorphism, as
far back as [Mac71, Proposition VIL5.1].

In §2.3.1, we will extend this construction to general V-enriched categories.
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Example 2.1.13. Templicial objects behave fundamentally differently to simplicial objects
when the enriching category V is not cartesian. We already illustrated this in Example
2.1.11. Let us give another example. Choose k = Z so that V = Ab is the category of
abelian groups. Let S = {} and define

X, = Z %fnzOeAb
Q/7 ifn>0

where sg : Xo — X is the zero map and the other face and degeneracy maps are the
identity on Q/Z. As Q/Z ® Q/Z ~ 0, we can define u; : Xi41 — Xi ® X; as the zero
map for all £, > 0, and as the left or right unit isomorphism if [ = 0 or k = 0. We thus
obtain a templicial abelian group (X, S).

On the other hand, if A is a simplicial abelian group, note that if any face map d; : 4,, —
Ay 1 is the zero map, then necessarily A4,_; = 0.

Definition 2.1.14. Given templicial morphisms (a, f) : (X,S) — (¥,T) and (8,9) :
(Y,T) — (Z,U), the composition (f3,g) o (o, f) is defined to be the templicial morphism
(v:90f): (X,8) = (¥, T) with

v (g X =~ ghX 2% gy L 7
where the isomorphism is given by Proposition 1.1.19.

Further, for any templicial object (X, .S) we define the identity on (X, S) as the templicial
morphism (¢,ids) : (X,S) = (X, S) where ¢ : (ids)1 X = X is the isomorphism given
by Proposition 1.1.19.

It then follows that templicial objects and templicial morphisms define a category which
we denote by
SeV

Proposition 2.1.15. There is an equivalence of categories:

Sy Set ~ SSet

Proof. Let K be a simplicial set. By Proposition 2.1.6, we may consider K as a colax
monoidal functor A?” — Set with comultiplication x and counit e. Then define for all
n>0anda,b € Ky:
K,(a,b) ={z € K, | po.no(z) = (a,z,b)}
={zx € K, |dy...dn(x) = a,dy...do(z) = b}
Given f : [m] — [n] in Ay, it follows from the simplicial identities that K (f) : K,, — K.,

restricts to a map K (f)qp : K, (a,b) = Kp,(a,b). Moreover, it is clear that for all £,/ > 0
and a,b € K, py, restricts to

,LLk,l|Kk+L(a,b) : Kk+l(a,b) — H Kk(a,c) X KI(C, b)
ceKy

and Ky(a,a) = {a} if a = b, and Ky(a,b) = 0 if a # b. Consequently, the functor

P(K) : A(}p = Quivy, @ [n] = (Kn(avb))a,bel(o
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is strongly unital and colax monoidal, whereby (¢ (K), Ky) is a templicial object.

Conversely, if (X, S) is a templicial object in Set, then we can define a simplicial set ¢(X)
by setting for all n > 0:

o(X)n = H Xn(a,b)

a,besS

It is readily verified that the assignments K +— ¢(K) and X — ¢(X) can be extended to
mutually inverse equivalences between SSet and Sy Set. O

Remark 2.1.16. More generally, we can use the same method as in the proof of Proposition
2.1.15 to “pull apart” the objects X, € V of a colax monoidal functor X : A" — V into
objects X, (a,b) indexed over a set, as long as Xj is free in the appropriate sense. From
this we can obtain an alternative definition of templicial objects. In Appendix A, we will
present this comparison for suitable monoidal categories V.

Remark 2.1.17. Let (X, S) be a templicial object in V and consider a,b € S. Then the
proof of Proposition 2.1.15 suggests that X,,(a, b) € V should be interpreted as the object
of n-simplices of X with first vertex a and last vertex b.

Moreover, for all k,1 > 0 and a,b € S, the comultiplication morphism

(Mé{l)a,b : Xgqi(a,b) — H Xi(a,c) ® Xi(c,b)
ceS

should be interpreted as taking a (k +[)-simplex from a to b and sending it to a k-simplex
from a to some ¢ € S, along with an [-simplex from c to b, which are outer faces of the
original (k + [)-simplex.

H1,2

We can recover the category SgV as a subcategory of a Grothendieck construction. This
will be useful later. Let Cat denote the (very large) strict 2-category of (large) categories,
functors and natural transformations

Proposition 2.1.18. Consider the pseudofunctor
Py, = Colax(A%’, (—)) : Set — Cat

where (=) : Set — MonCat is the pseudofunctor of Proposition 1.1.19. Then there is fully
faithful functor

S@V — / Py,
embedding the category of templicial objects into the Grothendieck construction of ®y.
Proof. The pseudofunctor ®y, sends a set S to the category Colax(A%”,V Quivg). A map

of sets f : S — T is sent to the post-composition functor f; o —. Thus the Grothendieck
construction [ @, has as objects all pairs. (X, S) with S asetand X : AP = VQuivga
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colax monoidal functor. A morphism from (X, S) to (Y, T) is given by a pair (¢, f) with
f:S— Tamapofsetsand o : fiX — Y a monoidal natural transformation in @ (7).

It is thus clear that Sg) may be identified with the full subcategory of [ @), spanned
by all pairs (X, S) for which the colax monoidal functor X : A%” — V Quivy is strongly
unital. O

Construction 2.1.19. Consider a monoidal category (W, ®, I) with coproducts, such that
— ® — preserves coproducts in each variable. Let  : W — V be a strongly unital colax
monoidal functor that preserves coproducts. Then for any set S, H induces a colax
monoidal functor

Hs : WQuivg =V Quivg : Q — (H(Q(%b)))mbES

If f: S — T is amap of sets, then because H preserves coproducts, we have a monoidal
natural isomorphism
JroHg ~Hro fi

and one can check that the functors (Hg)g form a pseudonatural transformation H.,.
Thus we have a pseudonatural transformation

COlaX(A;p, H*) Py — Dy,

Then the Grothendieck construction supplies us with a functor

.H : / (I>W — / (by
Explicitely, a pair (X, S) in [ ®yy is sent to the pair (Hg o X, S) in [ &y
Finally, as H is assumed to be strongly unital, each Hg is strongly unital as well and thus

H restricts to a functor _
H: S@W — S@V

2.1.3 Colimits of templicial objects

In this subsection we show that the category Sg )V of templicial objects is cocomplete and
explicitly describe its colimits. We make use of the following result from the literature.

Proposition 2.1.20 ([Her93], Corollary 3.3.7). Let C be a category and ¥ : C — Cat a
pseudofunctor. Assume that
(a) Cis cocomplete,
(b) for every object C of C, the category U(C') is cocomplete,
(c) for every morphism f in C, the functor W ( f) preserves colimits.
Then the Grothendieck construction [ W is cocomplete and a colimit of objects (X;,C;) with
C; € Cand X; € U(C;) is obtained as
colim(X;, C;) = (colim ¥(:")(X;), colim C;)

for the canonical morphisms ' : C; — colim; C; in C.
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Corollary 2.1.21. The category [ ®y is cocomplete.

Proof. Recall the pseudofunctor ®y : Set — Cat from Proposition 2.1.18. Since V is
cocomplete, so is V Quivg ~ V5> for every set S. It is not difficult to show that then also
Py (8) = Colax(A%’,V Quivg) is cocomplete, with colimits given pointwise. Moreover,
if f is a map of sets, then fi is left adjoint to f* and thus preserves colimits. It follows
that ®y,(f) preserves colimits as well. Thus by Proposition 2.1.20, the category [ ®y is
cocomplete. O

Remark 2.1.22. Let us explicitly describe the colimits of [ ®y,. Consider a diagram
D:J — / Py,

with J a small category. Write D(j) = (X7,57) for every j € J and D(t) = (of, f?) :
D(i) = D(j) forevery t : i — j in J. Then the colimit of D is given by

(colim D, S)
where S = colimje 7 S7 in Set with canonical maps ¢; : S — S, and
D:J — Colax(AY,V Quivg)
is defined by foralli,j € Jand t:i — jin J:

vihat

D(j) = () X7 and  D(t): (1) X ~ ()i X L0 (1), X

where the isomorphism (:;)1 X* ~ () ff X" is given by the fact that ¢; f* = ¢;.
Moreover, the colimit of D is given pointwise. So for all n > 0 we have

lim D) = colim(1;) X

(CO 11 n C;)E{,I]n(L])! n

Proposition 2.1.23. The category SgV is cocomplete and the embedding SgV — [ ®y, preserves
colimits.

Proof. We check that the subcategory SgV is closed under colimits in [ ®y. So let 7 be a
small category and D : J — SgV C [ @y a diagram. With notations as in Remark 2.1.22,
the colimit of D in [ ®y, is the pair (colim D, S). For every j € 7, write ¢/ and & for the
counits of X7 and (:;): respectively.

Boiling down the definitions, we see that the counit (colim D)y — Ig of colim D is the
composition

. i limj e 7 (¢;)1(€) . colim,je 7 &7 . v
colim (1), (X7) Z9e TNy cotim (u)1 (g5 ! colimlg — I
olim(s;) () olim(s;) (I olim I % I

in V Quivg, where V is the codiagonal. Now the composite V o colim ¢ 7 £/ is an isomor-
phism because for any z,y € S, we have

colim;e 7 Hae(”)*l(x) I~I ifz=y _

~ JIg(x,
0 ifx#y s(@9)

(colim(e;)i(Is)) (2, y) = {

J
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Since each ¢’ is assumed to be an isomorphism as well, we conclude that colim D is
strongly counital and thus that colim D is a templicial object. O

Proposition 2.1.24. Let (W, ®, I) be a cocomplete monoidal category such that — ® — preserves
colimits in each variable. Let H : W — V be a strongly unital colax monoidal functor. Assume
that H preserves colimits. Then the induced functor of Construction 2.1.19

H:SeW — SgV

preserves colimits.

Proof. Let J be a small category and D : J — SgWV a diagram. With notations as in
Remark 2.1.22, we have a monoidal natural isomorphism

HgocolimD = Hg o colim(z;)1 X7 ~ colim(¢; )1 Hg; X?

JjET JjeET

because H preserves colimits and Hr fi ~ fiHg for every map of sets f : S — T. It
follows that H preserves colimits. O

214 Comparison with simplicial sets

Consider the colimit-preserving, strong monoidal functor

F:Set—>V:Sb—>HI
a€S

(this is the functor Fp of Notation 1.2.16 with P = I). Then its right-adjoint
U=V({,-):V — Set

is lax monoidal by Lemma 1.1.4. So F' 4 U is a monoidal adjunction in the sense of
Definition 1.1.5.

Combining Construction 2.1.19 and Proposition 2.1.15, we obtain a functor
F :SSet ~ S, Set — SgV
Proposition 2.1.25. The functor F : SSet — SV has a right adjoint
U:SgV — SSet
that is given by, for all templicial objects X and n > 0,
U(X)n = SeV(F(A"), X)

Proof. By Proposition 1.3.11, it suffices to note that I preserves colimits, which follows
by Proposition 2.1.24. O

Proposition 2.1.26. Let K be a simplicial set and (X, S) a templicial object in V. Then a
simplicial map K — U (X)) is equivalent to the following data:
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® amap of sets f : Ko — S,

e an element o, € U (X, (f(a), f(b))) for all n > 0, a,b € S and all non-degenerate
o € Ky,(a,b),

which must satisfy:
dj(ag) = Qd; (o) and  prjn—j(ay) = Qd; oy ..dy (o) D Ady...dy (o)

forall 0 < j < n.

Proof. By adjunction, the map K — U(X) corresponds to a templicial morphism (a, f) :
F(K) — X, where f: Ky — Sisamap of sets and « : fiFF(K) — X a monoidal natural
transformation. Now for alln > 0 and a,b € K,

F(K)y(a,b) = F(Kn(a,0)~ ] I,
oceK,(a,b)

and thus « is determined by a collection of morphisms «, : I — X,,(f(a), f(b)) for all
o € Ky,(a,b). As « is natural with respect to the degeneracy maps in F(K), it follows
that s;(a,) = ag, () forall 0 < i < n. Thus we may restrict to non-degenerate simplices

o € K,(a,b). The naturality of o with respect to the inner face maps in F(K) and the
monoidality of o now translate to the conditions in the statement. O

Corollary 2.1.27. Consider a templicial object (X, S) in V and n > 0. An n-simplex of U(X)
is equivalent to a choice of vertices ay, ..., a, € S along with a collection of elements

(Oli’j S U(Xj,i((li, a]-)))OSKan (24:)
such that forall 0 < i < k < j < n, we have

fo—ij—k(Qij) = ik @ o (2.5)

Proof. Apply Proposition 2.1.26 to the case K = A™. The map f : [n] — S is equivalent
to a choice of vertices ag, ...,a, € S. Further, we can identify every non-degenerate
m-simplex of A” by its sequence of vertices [ig, ..., %] With 0 < iy < ... < 4, < n. Note
that each [ig, %1, ..., i) can be obtained from the simplex [ig, 9 + 1, ..., i) by iteratively
applying face maps in A”. Thus the collection (aj;, . ;. 0<ig<..<i, <n 15 completely
determined by the elements «; ; = a; i11,....; € U(X;—i(as, ajj) with0<i<j<n O

Notation 2.1.28. Let (X, S) be a templicial object and o = («a; ;)o<i<j<n an n-simplex
of U(X) with vertices ag, ...,a, € S. We will sometimes write o more compactly as
(ai,j)ogigjgn where Qg = Q4 forall 0 < ) <n.

Remark 2.1.29. Take a templicial object (X, .S). Let us describe the face and degeneracy

maps of U(X). Given an n-simplex o = (a; j)o<i<j<n of U(X), we have

Q41,541 if k S 1
di () = (6i,j)0§i§j§n_1 with 3;; = de_i(Oéi,jJrl) ifi<k<j
(o781 lf] <k
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and
Q1,51 ifk <1
si(a) = (ﬁi,j)ogigjgnﬂ with §;; = Skxfi(a’i»j—l) ifi<k<j
Q5 j lfj § k

forall0 < k <n.

Example 2.1.30. Given a templicial object (X, S), let us discuss the n-simplices of U (X)
in low dimensions. By Corollary 2.1.27 we have bijections U(X )¢ ~ S, and

UX)~ [] U(Xi(a,b))

a,besS

Further, a 2-simplex of U(X) is a tuple (a, b, ¢, 0,1, 01,2, p,2) With a,b,c € Sand ag 1 €
U(Xl (a, b)), ay2 € U(Xl(b, C)) and Qo2 € U(XQ(CL C)) such that Ml,l(ao’Q) = qp,1 ® a1 2.
The edges of this 2-simplex are given by ag 1, a1 and df (ap2). Visually, we might
represent this as

b

Qp,1 ﬁ Q12
a c

dif (a,2)

2.1.5 Skeleta

We now introduce the templicial analogue of the classical skeleton construction for
simplicial sets. This requires introducing a truncated version of templicial objects. Some
of the proofs are analogous to those in §2.1.2 and thus we will not always give them in
full detail.

Throughout this subsection, we fix a positive integer n > 0.

Notation 2.1.31. We define A?" as the full subcategory of A ¢ spanned by the objects
(0], ... [n].

Construction 2.1.32. Let S be a set. We define a category @3"(5) whose objects are
functors
X (A?")(’p — V Quivg

with a morphism € : Xy — Ig and for all pairs k,{ > 0 with £+ < n, a quiver morphism
P X = Xk @ Xy

which satisfy the naturality, coassociativity and counitality conditions (2.1), (2.2) and
<n

(2.3) whenever they are well-defined. A morphism X — Y in ®;"(S) is given by a
natural transformation o : X — Y such that for all k£, > 0 with k + | < n, we have

% X % X
MOkt = (o @ cq)pz;  and € apg =€
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Analogously to Proposition 2.1.18, we obtain a pseudofunctor
5" 1 Set — Cat : S+ ®5"(S), f > fio—

Then consider the Grothendieck construction [ ®5" of ®5". Explicitly, [ ®5" is the

category whose objects are all pairs (X, S) with S a set and X : (A?")(’p — VYV Quivg a
functor with the extra structure described above. A morphism from (X, S) to (Y,T) is
given by a pair (a, f) with f : S — T a map of sets and a : fi.X — Y a morphism in
5™(T).

Definition 2.1.33. We define Sg"V as the full subcategory of [ <I>§” spanned by all
pairs (X, S) such that the counit € : Xy — Ig is an isomorphism. Its objects are called
n-truncated templicial objects.

There is an obvious restriction functor
T<n : SeV = S5V (X, S) — (X (azmyor:S)

which we call the nth truncation functor.

Proposition 2.1.34. The category Sg"V is cocomplete and 1<, : SgV — Sg”V preserves
colimits.

Proof. Let 7 be a small category and D : 7 — S5V : j ~ (X7, 87) a diagram. It follows
completely analogously to the proof of Corollary 2.1.23 that the colimit of D is given by
the pair ‘ 4
1 . J 1 J
(CJQEII}II(LJ)!X ,cj()g}n S7)
where ¢; : $7 — colim;e 7 S7 denotes the canonical map and the colimit colim,e 7 (;)1 X7
is taken in <I>§" (colimje 7 S7). It is then clear that 7<,, preserves colimits. O

Examples 2.1.35. Let us describe the category Sg”v for low values of n.

1. If n = 0, then A?O is the discrete category with one object and thus SQ%OV is
equivalent to the category Set of sets.

2. If n = 1, then A?l consists of a single non-identity morphism [1] — [0]. It follows

that Sglv is equivalent to the category of unital V-enriched quivers V Quiv,,. Its
objects are triples (Q, S, u) with S a set, Q € VQuivg a quiver and v : Ig — Q a
quiver morphism. A morphism (Q, S,u) — (P,T,v) is a pair (o, f) with f : S = T
amap ofsetsand « : fi(Q) — P aquiver morphism such that the following diagram
commutes:

fills) — Ir

fr(w) J{“

Q) —— P

Example 2.1.36. Let A=" denote the full subcategory of A spanned by the objects
[0], ..., [n]. Analogously to Proposition 2.1.15, we obtain an equivalence of categories:

S=" Set ~ Set(A=")
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Clearly the truncation functor 7<,, : Sx Set — S =" Set, then corresponds to the classical

<n\oyp
truncation 7<,, : SSet — Set®~")”" under this equivalence.

Construction 2.1.37. Let 1<, : A?” — Ay denote the inclusion functor and let S be a
set. Consider the restriction functor

—Ol<p Fun(A?p, V Quivg) — Fun((A?")Op,VQuiVS)

As V and thus V Quivg is cocomplete, — o 1<, has a left-adjoint given by the left Kan
extension along the inclusion ¢<,, which we denote by sk, = Lan,_, . Explicitly, given a

functor X : (A?”)"p — YV Quivg and k > 0, we have

sk, (X)g = colim X,
(k] [p]
0<p<n

<n

The colimit is taken over the opposite of the under category (AZ" )k, where AZT.

denotes the full subcategory of A,,,; spanned by the objects [0], ..., [n].

Further, for f : [m] — [k] in A/, the quiver morphism sk, (X)(f) : sky(X)x — skn(X)m,
is given as follows. Let o : [k] — [p] be a surjective morphism in A . By Remark 2.1.2, we
can factor o f uniquely as a surjective morphism ¢’ : [m] — [¢] followed by an injective
morphism f’ : [¢] = [p]in Ay. In particular, ¢ < p < nand thus f’ belongs to A?”. Then

Skn(X)(f)Lo* = LU’X(fI)

Now suppose (X, S) is an n-truncated templicial object. We can equip sk, (X) with a
strongly unital colax monoidal structure as follows. Note that sk, (X)o >~ X ~ Is. Take
k,l > 0. For all surjective o : [k + 1] — [p] with 0 < p < n, we can write ¢ = 01 + 02
for some unique o7 : [k] — [p1] and o3 : [I] — [p2] (Remark 2.1.4). Then consider the
morphism
(to, ® ng)u;{lm 2 Xp = sk (X)) @ sk, (X)),

These morphisms form a cocone since for any other surjective morphism o’ : [k +1] — [¢]
with h : [¢] — [p] such that ho' = o, we can also write ¢’ = o} + 04 and h = hy + hs so
that hyo} = oy and heol, = 05. Thus

(tos @ Lo )bt o = (i @ thao i
= (to} @ tay)(X (h1) @ X (ho)) i, s = (b @ Loy )iy 4 X (R)
We thus obtain a canonical morphism
Pt t 8K (X)) g1 = skn (X)) @ sk (X)),
such that pg e = (16, ® Lg2)u§i p, for all surjective o : [k + ] — [p] with 0 <p < n.

It now follows easily from the definitions that yy; is natural in [k], [[] € A and that
it is coassociative and counital with respect to sk, (X)o ~ Is. Hence, (sk,(X),95) is a
templicial object.

Examples 2.1.38. Let us consider the functor sk,, for low values of n.
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1. If n = 0, let S be a set. Then sk¢(5) is the templicial object (Ig, S) where Ig is the
constant functor A% — V Quivg : [n] = Is. Fquivalently, as F preserves colimits,
sko(S) is isomorphic to the coproduct [, ¢ F(A?) in SgV.

2. Ifn=1,let Q € V Quivg be a quiver with unit morphism « : I¢ — Q. Then sk, (Q)
is given as follows. For alln > 0,

sk1(Q)n = QUr, QUp, ... I, @ € VQuivg

n terms

That is, we have one copy of @ for each morphism h : [n] — [1] in A;. Let ¢,
denote the coprojection @ — ski(Q), corresponding to i. Then for any morphism

fim] — [n]in Ay, sk (Q)(f) : ski(Q)n — ski(Q), is given by

Skl(Q)(f)Lh = Llhf forall h : [n] — [1} in Af

Finally, for all k,1 > 0 the comultiplication morphism py; : X1 — X ® X is
given as follows. For any % : [n] — [1] in Ay, we have h = h; + hs for some unique
hi:[k] = [h(k)] and hs : [I] = [1 — h(k)]. Then

X(h1)®tp, ifh(k)=0
L =
PRI = L @ X(he) i h(k) = 1

Proposition 2.1.39. The assignment X +— sk, (X) of Construction 2.1.37 extends to a fully
faithful functor sk, : Sg"V — SgV which is left-adjoint to the nth truncation functor <, :
SeV — SZ"V.

Proof. Let (X, S)be an n-truncated templicial object. Consider the inclusion functor ¢<, :
A%" — Ay. Theunitof theadjunction Lan,_, 4 —ou<,, supplies a natural transformation
Nx : X — T<n(sk,(X)). Forall 0 < k < n, nx, is just the canonical morphism ¢, :

Xy — colimy)_.[p),0<p<n Xp Where o = idj;. Moreover, 7x, is an isomorphism as id,
<n
surj

is the terminal object in the opposite category of (A_,..)x/- It follows easily from the

definitions that nx is in fact an isomorphism in Sgnv.

Now let (Y, T') be a templicial morphism and f : S — 7" a map of sets. There is a bijec-
tion between natural transformations « : fiX — Y\( AS™)op and natural transformations
¥
o : fi(Lan, (X)) ~ Lan,_ (fi(X)) — Y where O/l(Agn)Op o filnx) = a (fi preserves
= = ¥
colimits by Lemma 1.1.18). It easily follows from the definitions that « : fiX — 7<,(Y)
is a morphism in égn(T) if and only if o : fi(sk, (X)) — Y is a monoidal natural trans-
formation. We conclude that nx is the unit of an adjunction sk,, 1 7<,,. Finally, as nx is
an isomorphism, sk, : Sg"V — SV is fully faithful. O

Definition 2.1.40. Given an n-truncated templicial object X, we call sk, (X) the nth skele-
ton of X. We call a templicial object X n-skeletal or n-truncated if the counit sk, (7<, X ) —
X is an isomorphism.

Note that this terminology is compatible with Definition 2.1.33 since by Proposition
2.1.39, sk, identifies Sgnv with the full subcategory of SgV spanned by all n-truncated
templicial objects.
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From now on we will abuse notation and write the composite sk,, or<,, as just sk,,. So we
have an endofunctor sk,, : SgV — SgV whose essential image consists of the n-skeletal
templicial objects.

Remark 2.1.41. Letn > m > 0. Itis clear from Construction 2.1.37 that we have canonical
natural isomorphisms of endofunctors on Sg V:

sk, sk, ~ sk,, >~ sk, sk,
In particular, every m-truncated templicial object is also n-truncated.

Moreover, the canonical natural transformation sk,, — ids, 1 induces an infinite sequence
of natural transformations

skg > sky = - —=sk, == X
Proposition 2.1.42. The canonical templicial morphism

colimsk, (X) —» X
n>0
is an isomorphism which is natural in all templicial objects X.

Proof. For any k > 0, the induced quiver morphism

colim sk, (X)x >~ colim X, — X,
n=0 (k] [p]

p>0

is an isomorphism because idy) : [k] — [£] is the terminal object in the opposite category
of (Asurj)[k]/ with p > 0. O]

Remark 2.1.43. Let K be a simplicial set and n > 0. There is a well-known result that the
canonical map sk, (K) — sk, (K) fits in a pushout diagram

] 0A" —— sk,_(K)

ceK,
non deg. ‘

[T A" — sky(K)
ceKy,
non deg.

Beware that this is no longer the case for templicial objects. The first obstacle is that there
doesn’t seem to be a good notion of non-degenerate simplices of a general templicial
object X. This can be resolved by restricting to what we call free templicial objects (see
§3.1.3). The most straightforward way to construct an analogous pushout in Sg ) would
be to apply F to the simplicial sets JA”™ and A”. But Example 2.1.44 shows that even
when X is free, this diagram need not exist.
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Example 2.1.44. Let V = Mod(Z) = Ab be the monoidal category of abelian groups with
the tensor product as monoidal product and Z as monoidal unit. We define a 2-truncated
templicial abelian group X as follows. Let S = {a, c1, c2, b} be a set with four elements
and consider for all z,y € S the following free abelian groups:

Zf; ifr=ay=c¢

1 =
Xo(xay): v v y ) Xl(l’,y): Zh lf.I‘:Cl,y:b
0  otherwise Zsolx) ifz=y
0 =

0 otherwise
Zso(fi) © s1(fi) ifr=ay=c
Zso(9:) @ s1(9:) ifr=ci,y=">
and Xo(z,y) =< Zw ® so(h) ® s1(h) ifx=a,y=5b

Zspso(x) ifr=y

0 otherwise
The degeneracy maps are defined on the generators as shown, while the face map d; :
X2 — X; and the comultiplication map g1 : X2 — X; ® X are uniquely determined
by the conditions

di(w)=h and p1(w)=fi@ g + f2® g2

C1 C2

fi a 92
a b
h

The generator w of Xs(a,b) not in the image of the joint degeneracy map (sg,s1) :
Xi1(a,b) @ X1(a,b) = Xs(a,b). So we would expect to have a commutative square

F(OA?) —— sk (X)

! !

F(A?) —— sko(X)

such that the bottom map sends the unique non-degenerate 2-simplex of A? to w.
However, such a map does not exist. Indeed, this would be equivalent to a 2-simplex
(e j)o<i<j<2 of U(X) with o2 = w. But pq 1 (w) is not a pure tensor while 1 1 (v ,2) =
Qp,1 ® a1 2.
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2.2 Quasi-categories and Frobenius structures

2.2.1 Necklaces

Necklaces were first introduced in [DS11b] by Dugger and Spivak. As necklaces will also
play a crucial role in this thesis, we will devote this subsection to recalling them. We also
give a combinatorial description of the category of necklaces (Proposition 2.2.5). Finally,
we introduce some new terminology like active and inert necklace maps (Definition
2.2.7), and the splitting of a necklace over another. These will pop up from time to time
throughout the thesis.

Definition 2.2.1. We denote by SSet, . = (OA! | SSet) the category of bipointed simplicial
sets. Its objects can be identified with tuples (K, a,b) where K is a simplicial set and
a,b € Ky are called the distinguished points of K. We will also denote K, , = (K,a,b). A
morphism K, — L. 4 in SSet, . is a simplicial map f : K — L such that f(a) = c and

F(b) =d.

Let K, and L. 4 be bipointed simplicial sets. The wedge sum K V L of K and L is
constructed by glueing K and L at the distinguished points b and c¢. More precisely,
K V L is the coequalizer

b
A ——= KOL — KVL

We consider K V L again as bipointed with distinguished points (a, d).

Remark 2.2.2. 1t is not difficult to verify that the wedge V is a monoidal product on the
category of bipointed simplicial sets SSet. . whose unit is given by A°.

Definition 2.2.3. For any n > 0, we consider the standard simplex A™ as bipointed with
distinguished points 0 and n. A necklace T is an iterated wedge of standard simplices.
That is,

T=A"V..VA™ € SSet, .

for some k > 0 and n1,...,n, > 0 (if £ = 0, then T = AY). We refer to the standard
simplices A™, ..., A" as the beads of T. The number of beads k is called the length of T'
and is denoted by ¢(T"). The distinguished points in every bead are called the joints of T'.

We let NVec denote the full subcategory of SSet, . spanned by all necklaces. By construc-
tion, (Mec, v, A®) is again a monoidal category.

A3V ATV ATV AP
Remark2.2.4. Note that for any twonecklaces T'and U, we have that £(TVU) = ¢(T)+£4(U).
Proposition 2.2.5. The category of necklaces N ec is equivalent to the category defined as follows:

The objects are pairs (T,p) with p > 0 and {0,p} C T C [p]. The morphisms (T,p) — (U, q)
are morphisms f : [p| — [q] in Ay such that U C f(T'), with compositions and identities defined
as in Ay,
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Moreover, under this equivalence, the wedge \ corresponds to
(T,p) v (U, q) = (TU(p+U),p+4q)
wherep +U = {p+u | u € U}. Further, {(T) = |T| — 1.

Proof. Clearly, a necklace T' = A™ V ... V A" is determined up to isomorphism by the
sequence (nq,...,ny). Setting p = ny + ... + ny, this sequence is in turn determined by
I ={0<mn; <ng+ng <..<p}asasubsetof [p]. Note that under these identifications,
[p] and I correspond to the sets of vertices and joints of T respectively.

Further, let 7" — T" be a map of necklaces. As above, we may identify T"and 7" with pairs
(I,p) and (J,q) respectively. Note that the map 7" — T” is completely determined on
vertices and must preserve the order of these vertices. Hence, under these identifications,
this map corresponds to an order morphism [p] — [¢] which preserves the endpoints.

Suppose now that J Z f(I). We can write I = {0 = iy < i1 < ... < i, = p} and
J={0=jo <j1 <..<j =q} Then we can choose 8 € {1,...,i} and a € {1,...,k}
such that f(i,—1) = jg—1 but f(ia) > jz. Now the unique edge of T' between the joints
ia—1 and i, must be sent to an edge of T’ between the vertices jg_; and f(i,). But there
is no such edge. Hence, we must have J C f(I).

Conversely, consider a morphism f : (I,p) — (J,¢). Let T and T" be the necklaces
corresponding to (I, p) and (J, q) respectively. With the same notations for I and J as
above, Remark 2.1.4 allows us to write

f=f+.+fk

with f; : [ia —ta—1] = [f(ia)— f(ia=1)]iIn Afforeacha € {1,...,k}. Since J C f(I), there
isan ag € {1,...,k} such that jz = f(ia,) for any g € {1,...,1}. Now there is a unique
B such that ag_1 < a —1 < a < ag and thus we have jg_1 < f(ia—1) < f(ia) < Js.
So we can extend f; to an order morphism [i, — in—1] — [jg — js—1], which induces
a simplicial map Afe~fa-1 — AJs=is-1 — T’ These maps combine to give a map of
necklaces T' — T".

Clearly, this correspondence is functorial and preserves the wedge. O

Notation 2.2.6. Henceforth, we will identify Nec with the category described in Propo-
sition 2.2.5. So we will also use the notation

T={0=ty<t; <ty <..<typ=p}

to refer to the necklace At v Af2=t1 v v AP~t—1_ We will often refer to a necklace (7', p)
just by its underlying set of joints 7.

Definition 2.2.7. Let f : (T,p) — (U, ¢) be a map of necklaces. We say f is inertif p = ¢
and f = idp,. We say f is active if f(T') = U.

Remark 2.2.8. A simplex A", considered as a necklace with a single bead, is represented
in Nec by the pair ({0 < n},n). On the other hand, the necklace ([n], n) represents the
spine of A", that is the union of the edges 0 -+ 1 — ... = nin A™.

More generally for any necklace (T, p) we can consider ([p], p), which is the spine passing
through all the vertices of T'. Note that there is a unique inert map ([p], p) — (7, p) which
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represents the inclusion of the spine into T'. Further let k£ = ¢(T'), then there is a unique
order isomorphism [k] ~ T'. Thus there is a unique active map ([k], k) — (T, p), which is
the inclusion of the spine passing through all the joints of T'.

Notation 2.2.9. Let (T, p) be a necklace. We denote the poset
Pr={UC[p|TCU}

ordered by inclusion. Equivalently, it is the poset of inert necklace maps U — T.

If T'= {0 < p} is a simplex, we also write Pr = P,

Remark 2.2.10. Itis easy to see that the assignment 7" — Pr extends to a strong monoidal
functor
P : Nec — Cat

where for every necklace map f : T' — U, P(f) sends V € Pr to f(V) € Py. For
necklaces T' and U, the lax monoidal structure is given by

Pr x Py — Pryu : (V,W) — (V\/W)
which is clearly an order isomorphism.

Definition 2.2.11. Let T, U € P, with p > 0. Suppose U = {0 = ug < ... < u; = p}. Then
there exist unique necklaces 71, ..., T such that

TUU=T\V..VT,
where for every i € {1, ...,1}, we have T; € P,,_,,_,. More precisely,
,‘Ti = {O}U{tfu,;_l |t€T,UZ'_1 <t Sui}u{ui—ui_l}

We call the sequence
(Th, ... Th)

the splitting of T' over U.
Proposition 2.2.12. Let p > 0and T, U € Py,. The following statements are true.
1. Forany V. € P, with T UU =V UU, the splitting of T over U is equal to the splitting of
V over U.
2. If T C U with (Th, ..., T;) the splitting of T over U and (Un, ..., Uy,) the splitting of U over
T, then ((T;) = 1foralli e {1,....,p}and U = Uy V ... V U}.
Proof. 1. This follows from the uniqueness of the expression TUU = VUU =
X1 V..vX;withX; € Py, v, , whereU = {0 =y < ... <u; = p}.

2. AsU =TUU,itisobviousthatU = U, V...V Uy. Further, U =TUU =T, V...VT,
and thus [ = ¢(T4) + ... + £(1;). But the length of every T; is at least 1, so we must
have ¢(T;) = 1 foralli € {1, ...,1}.

O
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Notation 2.2.13. Asin A, we distinguish some special maps in Nec.

¢ Forany 0 < j < n, we write
d; :{0<n—-1} = {0 <n}

for the active necklace map whose underlying morphism is the inner coface map
d; in Ay of Definition 1.3.2.

¢ For any 0 < i < n, we write
o {0<n+1} = {0<n}

for the active necklace map whose underlying morphism is the codegeneracy map
0; in Ay of Definition 1.3.2.

e For any &, > 0, we write
v {0<k<k+1} ={0<k+1}
for the inert necklace map. More generally, for any necklace (7', p), we write
vr: T — {0 < p}
for the inert necklace map.

Remark 2.2.14. The necklace maps of Notation 2.2.13 generate \ ec as a monoidal category
in the following sense. A necklace map f : (T,p) — (U, q) can be uniquely factorized as
an active map followed by an inert map:
(T.p) T (£(T).q) * (U.)

Now suppose T' = {0 = tg < t; < ... < t)—1 < t, = p} C [p]. By Remark 2.1.4, the
underlying morphism f : [p] — [¢] in A can be written as f = f1 + ... + f; for some
unique f; : [t; —ti—1] = [f(t:) — f(ti—1)] with j € {1, ..., k}. By Remark 2.1.2, each f; has
a unique representation

fi = (%1 (Sﬂl O'lzi "'Jl?i

It follows that

f/ =fiVv..V fiy= (6J116Ji1 Ul}"'o-lél) V..V ((5]5(5]& Ul’f"'o-l?k)

Further, write U = {0 = ug < w1 < ... < w—1 < w = ¢} C f(T). Let (V4,...,V}) be the
splitting of f(T") over U. It follows from Proposition 2.2.12 that

L:VVI\/...\/VVl

Note that each vy, can be further written as a composition of wedges of some maps v,
with r, s > 0. But this decomposition will no longer be unique. For example, the unique
inertmap v, .+ : {0 <7 <r+s<r+s+t} = {0 <r+s+t} has the representations

Vrsit = Vrs+t(1d{o<r) VVst) = Vrgs i (Vrs V idgo<ty)
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2.2.2 Quasi-categories in a monoidal category

We now describe a generalization of quasi-categories in the context of templicial objects,
which we call quasi-categories in V. They are similarly defined by means of a lifting
property along horn inclusions (Definition 2.2.26).

As a naive attempt, one might want to consider templicial objects X with the right lifting
property with respect to all inner horn inclusions F (A}) — F(A™) in SgV. However, in
Example 2.1.44 we have seen that the templicial morphisms F(A") — X are rather bad
behaved. More precisely, not every n-simplex = € U(X,,(a, b)) is represented by such a
morphism F(A™) — X, unlike the classical situation of Proposition 1.3.10. To resolve
this issue, we can pass to the category VNe¢™” of functors Nec®” — V. Let us start by
explaining how to obtain a functor X,(a,b) : N'ec®” — V from a given templicial object
X with vertices a and b.

Notation 2.2.15. Let (X, S) be a templicial object with comultiplication p. For any
necklace T = {0 =ty < t1 < ... < tx—1 <ty = p}, we write

XT = th Rg th—tl X5 ... Qs Xp_tk71 S VQuiVS

and
KT = Kty to—ty,...,p—tp_1 * XP — Xr

Construction 2.2.16. Let (X, S) be a templicial object of V with vertices a,b € S. We can
extend the assignment 7" — X7 to a strong monoidal functor

Xe : Nec®”” =V Quivg
as follows. In view of Remark 2.2.14, it suffices to define X, on inert and active necklace
maps. Let f : (T,p) — (U, ¢) be a map of necklaces.
e If fisinert, thenp = gand U C T. Let (T4, ...,T}) be the splitting of T' over U so
that 7' =T} V ... V T; by Proposition 2.2.12. Then set

X(f): Xy LnEOm,

e If f is active, write the necklace T"as {0 = tg < t; < ... < tx = p}. Then there exist
unique f; : [t; —t;—1] = [f(¢t;) — f(ti—1)] in Ay such that f = fi + ... + fi. Now set

X(f1)®...0X (fr)

X(f): Xvu 2 X)) @ @ Xg gt Xr

where the isomorphism is induced by the strong unitality of X and the fact that
U= f(T).

It follows from the coassociativity of x that X, is functorial on inert morphisms, and
from the functoriality of X that X, is functorial on active morphisms. Then it follows
from the naturality of u that X, is functorial on all morphisms.

If we fix vertices a, b € S, then we obtain a functor

Xeo(a,b) : Nec®® =V : T — Xp(a,b)
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Example 2.2.17. Assume V = Set. Let K be a simplicial set with vertices a and b and
T={0=1ty <t <..<tr=p}anecklace. It follows from Proposition 1.3.10 that

Kr(a,b) = I Kulaa)x..x Ky, (ar—1,b)
ai,...,ar—1€Ko

is in bijection with the set of maps T" — K, ; in SSet, .. Clearly, this bijection is natural
in T so that we have an isomorphism of functors Nec’” — Set:

Ko(a,b) ~ SSety «(—, Ko p)

Recall the inner horns and boundaries in SSet (Definition 1.3.8). Let us investigate how
they behave under the construction K, — K, (a,b). It turns out the resulting objects in
SetVee” can be described very similarly.

Proposition 2.2.18. For any n > 0,

n—1 n—1

0AL(0,n) = | 6:(A™)e(0,n) U | J(AF v A™F)4(0,n)
i=1 k=1

and for every 0 < j < n,

n—1 n—1

(A7)e(0,n) = | 6:(A"H)a(0,n) U | (AF v A™F)4(0,n)
=1 k=1
i#]

as subfunctors of A™(0,n) in Set™Ve”",

Proof. We prove the statement for A} The case for 0A™ is proven similarly. Let0 < j < n.
Forall 0 < k,i < n with i # j, we have inclusions A* v A"~% C A and §;(A"~!) C dA™
in SSet. It follows that

L_J §i(A" 14 (0,n) U L_J (AF v A"F)4(0,n) € (A)e(0,n)
1=1 k=1
1#]

Conversely, let f : 7" — (A”)o,, be a map in SSet. . with (T, p) a necklace. Suppose first
that f is surjective on vertices. As the unique non-degenerate n-simplex of A™ is not
contained in A7, there must be some k € T'such that 0 < f(k) < n. Therefore, f factors
through A v An~! with | = f(k). Now suppose that f is not surjective on vertices. Then
f must factor through &;(A"~!) for some i € [n] \ {j}. As a map in SSet. ., f always
reaches the vertices 0 and n of A™ and thus 0 < 7 < n. O

Example 2.2.19. The outer horns aren’t as well-behaved in Set’V'*” as the inner horns.

For example, A§ is the pushout A' I, A' in SSet, but (A§).(0,2) is isomorphic to just
AL(0,1) as all maps T' — (A3)o,2 in SSet, . must factor through the edge 0 — 2 of AZ.

Corollary 2.2.20. Let (T, p) be a necklace. For all n > 0 we have a bijection
OAGF(0,n) = {f : T = A" in Nec| f([p]) # [n] or {0 <n} C f(T)}
and for all 0 < j < n we have a bijection

(A7)7(0,n) ~{f : T — A" in Nec| f([p]) 2 [n]\ {j} or {0 <n} C f(T)}
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Proof. This follows from Proposition 2.2.18 by observing that a map f : T'— A" in Nec
factors through 6;(A""1) with 0 < i < n if and only if f([p]) C [n] \ {i} and f factors
through A* v A"~* with 0 < k < nif and only if k € (7). O

Proposition 2.2.21. Let K be a simplicial set with a,b € Ko. Then there is a canonical
isomorphism }
F(K)e(a,b) = F(Ko(a,b))

where F : SetN ™" — YNee™ s the functor given by post-composition with I : Set — V.

Proof. This follows immediately from the definitions since F' is strong monoidal and
preserves coproducts. O

Corollary 2.2.22. Let (X, S) be a templicial object with a,b € S.

1. Let T be a necklace. There is a bijective correspondence between morphisms
F(T)e(0,n) — X(a,b) in VN and elements o € U(Xr(a,b)).

2. Let n > 0 be an integer. There is a bijective correspondence between morphisms
F(OA™)e(0,n) — Xo(a,b) in VN<" and elements

zy € U((Xk ®s Xn—p)(a,b)) and y; € U(Xy-1(a,b))
forall 0 < k,i < n, which satisfy:

e forall0 <i<i <n,
di’—l(yi) = i(yi/)a

e forall0 <k <l<n,
(idx, @p1—kn—1)(@r) = (Hri—r ®1dx,_,)(21)

e forall0<k<n—1and0<i<n,

(di @idx, _,_,)(¥k41) ifi<k

Mk,nfkfl(yi) = {(lka ®d;—k)(xk) le >k

3. Let 0 < j < n be integers. There is a bijective correspondence between morphisms
F(A7)e(0,n) — X,(a,b) in VN and elements
zp € U((Xi ®s Xn—k)(a,b)) and y; € U(X,-1(a,b))
forall 0 < k,i < nwithi # j, which satisfy:
o forall0 <i<i <nuwithi#j#1,
dir—1(y:) = di(y),
e forall0 <k <l<n,

(idx, @p1—kn—1)(@r) = (Hri—r ®idx,_,)(21)
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e forall0 <k<n—1land0<i<nuwithi#j,

(di @idx, , ) (@e41) i<k

Pren—k—1(Yi) = {(ika ®d; ) () ifi >k

Proof. By Proposition 2.2.21, a morphism F(T)(0,n) — X,(a,b) corresponds to a
morphism T,(0,n) — U(X.(a,b)) in SetVee”, which corresponds to an element o €
U(Xr(a,b)) by applying the Yoneda lemma to the necklace T'. This shows 1. Statements
2 and 3 follow from Construction 2.2.16 and Proposition 2.2.18. O

Notation 2.2.23. We denote
Horn = { F(A7)s(0,n) = F(A")a(0,n) in Vo< ( 0<j<n}
Cell = { F(0A™)a(0,7) = F(A™)o(0,n) in YV ] n>0}

where the morphisms are induced by the inclusions A7 C A™ and 9A™ C A" respectively.

Remark 2.2.24. Assume the monoidal unit I of V is small in the sense of Definition 1.2.9.
Then the forgetful functor U = V(I,—) : V — Set preserves A-sequences with A > 0 a
r-directed ordinal for sufficiently large regular cardinals . Since every object of SetVee
is small by Example 1.2.10, it follows from Proposition 2.2.21 and the adjunction F' 4 U
that F(K)4(a,b) is small in VN¢”” for every simplicial set K with a,b € K.

Consequently, by the Small object argument (Proposition 1.2.11), we obtain weak factor-
ization systems (Horn, Horn?) and (Cell, Cell?) for YNee™.

Lemma 2.2.25. We have an inclusion of weakly saturated classes in VN ;

Horn C Cell

Proof. It suffices to show that the morphism F(A"),(0,n) — F(A™)4(0, n) belongs to Cell
for all 0 < j < n. From Proposition 2.2.18 we have that

(0A™)o(0,n) = (A})a(0,7) U (6;(A"71))a(0,n)

in SetVee” . Further, we have that 6;(0A™1),(0,n) = (A7)e(0,m) N (3;(A™1))e(0,7).
Thus by Proposition 2.2.21 and the fact that F* preserves colimits, we obtain a pushout in

Vnec"p .

FOA™1)4(0,n) 22, F(A)a(0,n)

! !

F(A”_1)0<0’ n) F;) F(aAn).((), n)
It now suffices to note that the morphism F (A%)e(0,n) — F(A™)4(0,n) is the composition
of the right vertical morphism with F(QA™)(0,n) — F(A™)4(0,n). O
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Definition 2.2.26. Let Y : Nec®? — V be a functor. We say Y lifts inner horns if it has the
right lifting property with respect to Horn in VV¢¢””. That is, for all 0 < j < n any lifting
problem

F(A7)e(0,n) —— Y

F(A™)4(0,n)

has a solution in VN¢”". We say Y lifts inner horns uniquely if every such lifting problem
has a unique solution in V"¢¢”".

A templicial object (X, .S) in V is called a quasi-category in V if the functor X,(a,b) lifts
inner horns for all a,b € S. In this case, we will refer to the elements of S as the objects of
X and to elements of U(X1(a, b)) as the morphisms a — bin X.

Remark 2.2.27. Let Y : Nec®? — V be a functor. Note that by Proposition 2.2.21 and
the adjunction F 4 U, Y lifts inner horns in YY" if and only if the composite UY" :
Nec?P — Set lifts inner horns in Set™V ",

As for ordinary quasi-categories, there is an elementwise characterization of quasi-
categories in V, although it is bit more cumbersome to describe.

Proposition 2.2.28. Let (X, .S) be a templicial object. The following statements are equivalent.

(1) X is a quasi-category in V.

(2) Let a,b € Sand 0 < j < n. For all collections of elements (z);_1, (yi)i—;';, satisfying
the conditions of Corollary 2.2.22.3, there exists an element z € U(X,,(a,b)) such that

pkn—k(2) =zp and di(z) =y
forall 0 < k,i < nwithi # j.

Proof. This immediately follows from Corollary 2.2.22. O

Remark 2.2.29. Note the similarities with the classical elementwise characterization (see
Proposition 1.3.14). The elements y; with 0 < i < n, ¢ # j represent all inner faces of
the horn A7. They still have to satisfy the same conditions as before. However, the two
outer faces of the horn are replaced by the elements x; with 0 < k < n. The two new
conditions of Corollary 2.2.22.3 merely express that these outer faces are glued to each
other and to the inner faces in the appropriate way.

Indeed, in case V = Set we recover the classical notion of a quasi-category.

Proposition 2.2.30. A simplicial set is a quasi-category if and only if it is a quasi-category in
Set (in the sense of Definition 2.2.26) .

Proof. Let X be a simplicial set, considered as a templicial set with X its set of vertices.
Then the assignment (z1,){Z ~ (x}_;,2?) defines a bijection between the set of all

n—1»
collections of elements )
e

(xk = (l.llcax%) € X x Xn*k)k=1
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satisfying (2}, ti—kn—1(73)) = (ri—r(zh),2?) forall 0 < k < I < n, and the set of all
pairs (yn,Yo) € Xpn_1 x X1 satisfying d,,_1(yo) = do(yn)- It follows that condition (2)
of Proposition 2.2.28 is equivalent to

(2') Let 0 < j < n. Consider elements y; € X,,_; for all 0 < i < n with ¢ # j, which
satisfy forall 0 < i < ¢/ <nwithi # j # "

di—1(yi) = di(ya)

Then there is an element 2 € X,, such that d;(z) = y; for all 0 < i < n with i # j.

But this precisely expresses that X is a quasi-category by Proposition 1.3.14. O
Proposition 2.2.31. Let X be a quasi-category in V. Then U(X) is a quasi-category.
Proof. Suppose (X, S) isa quasi-category in V. Consider a simplicial map a : A — U(X)
with 0 < j < n. It follows from Proposition 2.1.26 this is equivalent to a choice of vertices
agp, ..., an € S along with elements

Qg1 € U(Xl_k(ak,al)) and ,81 S U(Xn_l(ao,an))

forall 0 < k <1 < nwith (k,1) # (0,n) and 0 < 7 < n with i # j, which satisfy

e forall0 <i < i <nwithi#j#4,
dir—1(Bi) = di(Bir)
e forall0 <k < i< <nwith (k1) # (0,n),
fimted—i (k1) = Qi @ iy
e forall0 <k <n—1land 0 < i< nwithi#j,

di(aor) ® g1, ifi <k
agk @di—k(agn) ifi>k

Mren—k—1(3i) = {

Now set z, = o ® ag,, and y; = f; forall 0 < k,i < nwith i # j. Then by Proposition
2.2.28, there exists an element «y ,, € U(X,,(ao, an)) such that pig (o) = a0k @ apn
and d;(ap,n) = B;. Now the vertices ay, ..., a,, and the collection (o ;)o<k<i<n define a
map A" — U(X) which extends o by Corollary 2.1.27. O

The converse to Proposition 2.2.31 does not hold.

Example 2.2.32. Consider the over category V = Ab /Z of abelian groups A with a Z-
linear map p : A — Z. Then V is bicomplete and symmetric monoidal closed with
monoidal unit given by idz : Z — Z. The forgetful functor U : V — Set associates to
everymap p: A — Ztheset {a € A|p(a) =1}.

Now consider the simplicial set A? I oy Af:
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C1

fi g1

f2 g2

C2

Set X = F(A?TIIjy A?) € Sg Ab. We can promote X to a templicial object in V by
equipping it with Z-linear maps p : X,,(x,y) — Z defined as follows:

p(f1) =p(f2) =p(g2) =p(h) =1, p(g2) =2 and p(w) =1

Then for example U(X (a,c2)) = {f2} but U(X;(c,b)) = 0. Consider U : SgV — SSet
as induced by the forgetful functor U above (not by Ab — Set). Then it follows that
U(X) ~ A? 5y A', which is clearly a quasi-category.

However, X is not a quasi-category in V. To see this, consider the element
a=fr®g —f1i®g €U(X1®X1)(a,b))

(note that indeed, (p ® p)(«) = p(f2)p(g92) — p(f1)p(g1) = 1). But there exists no element
¢ € U(X2(a,b)) such that 1 1(€) = .

2.2.3 Frobenius structures

We introduce Frobenius structures on a templicial object, which are based on the Frobenius
monoidal functors of Day and Pastro [DP08]. These will mostly come into play in Section
4.2 when we restrict to V = Mod(k) for some unital commutative ring k. But even
for general V, Frobenius structures turn up naturally. Many examples of templicial
objects that we will encounter, like the templicial variants of the nerve (§2.3.1), homotopy
coherent nerve (§4.1.2) and dg-nerve (§4.2.3) all carry canonical Frobenius structures.

First we introduce the more general notion of a non-associative Frobenius structure on an
arbitrary colax monoidal functor. Then we discuss how this applies to templicial objects,
and how a naF-structure interacts with the comultiplication morphisms using splittings
of necklaces (see Proposition 2.2.40).

Definition 2.2.33. Let H : I/ — V be a functor between monoidal categories with a colax
monoidal structure (u, €). A nonassociative Frobenius (naF) structure on H is a pair (Z,n)
withn : I — H(I) a morphism in V, called the unit, and

Z: H(-)®H(-) = H(— o —)

a natural transformation, called the multiplication, such that the following diagrams
commute for all A, B,C € U:

na,B®id
—

H(A® B)® H(C) H(A)® H(B) ® H(C)
ZA@B’C\L lid ®ZB,c (2.6)
HA®B®C) —— H(A) @ HB®C)

1A, BRC
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H(A)© HB o C) "2 1 (A) @ H(B) ® H(C)

ZA,B®C\L J/ZA,B®id (2-7)
HA®B®C) ——— H(A® B)® H(C)

HA®RB,C

and
HA) @ H(I) 225 H(AeD) H(I)o H(A) 22 H(I® A)
()| o0 moma] | HOw)
H(A)@IPH—TA)*H(A) I@H(A)TH(A)
where ) and p denote the left and right unit isomorphisms respectively.

For the purposes of this thesis, we will always assume that a naF-structure is strongly

unital. That is, € is invertible and

n=e¢'

Then the naF-structure (Z,7) is completely determined by Z.

Definition 2.2.34. Let H : i/ — V be a colax monoidal functor with a naF-structure. In
the special case where the multiplication Z is associative, that is

Zawp,c(Zap ®idc) = ZaBec(ida ®Zp,c) (2.8)

forall A, B,C € U, we refer to the naF-structure (Z, n) as a Frobenius structure and we call
H a Frobenius monoidal functor. Note that in this case, H is both a lax and colax monoidal
functor.

Given Frobenius monoidal functors H, H' : Y — V, we call a natural transformation
H — H' bimonoidal if it is monoidal with respect to both the lax and colax structures of
Hand H'.

Remark 2.2.35. A Frobenius monoidal functor as defined above is precisely a Frobenius
monoidal functor of [DP08] for which the unit and counit are each others inverses.

Example 2.2.36. A strong monoidal functor is exactly a Frobenius monoidal functor
whose multiplication and comultiplication are each others inverses. In particular, the
Frobenius structure is uniquely determined.

Let (X, S) be a templicial object. Then in particular we have a colax monoidal functor
X : AY = VQuivg. So it makes sense to consider naF-structures on X. Suppose X
has a naF-structure whose multiplication we denote by Z. Then Z consists of quiver
morphisms

(201 Xy @5 Xg = Xpiq)

p,q>0

which are natural in p and ¢. The diagrams (2.6) and (2.7) then come down to

Zp,k‘fp cd .d 3 'f < k
[ 2P = {( ®idx,)(idx, @ur—ps) ifp < 29)

(idx, ®ZP %9 (g pi ®idx,) ifp>k

for all k,1,p,q > 0 such that k + [ = p + q. Note that in particular u;, ; Z%! = idx, g x, for
all k,1 > 0 by the strong unitality.
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In §2.1.2 we discussed how the comultiplication morphisms py; : Xp1 — X ®5 Xi
should be interpreted as “pulling a (k + [)-simplex apart into outer faces”. Similarly, the
morphisms Z kU Xp @9 X; — X4 should be interpreted as “filling up necklaces to an
entire simplex”. In that respect, a templicial object with a naF-structure is reminiscent of a
quasi-category in V. But there are two crucial differences. First, naF-structures only allow
to fill up necklaces and not inner horns. Second, Frobenius structures give a specified
choice of fillers while quasi-categories only requires that they exist. Nonetheless, both
are related. In Proposition 3.1.32 we’ll see that a quasi-category in V can be equipped
with a naF-structure if it satifies an additional projectivity hypothesis. Moreover, if we
restrict to V = Mod(k), then the converse holds as well (see Theorem 4.2.62).

>

Proposition 2.2.37. Let (W, ®,I) be a monoidal category with coproducts such that — ® —
preserves coproducts in each Uarzable Let H : W — V be a strong monoidal functor. Assume H
preserves coproducts. If (X, S) is a templicial object of W with naF-structure Z, then the quiver
morphisms

- H ZP q
(ZZ?X)  Hs(X,) ® Hs(X,) = Hs(X, ® X,) 220, Hs(Xp+q))
p,q=>0

define a naF-structure on H(X) € SgV, with H as in Construction 2.1.19.

Proof. Write p and € for the comultiplication and counit of X respectively. Givenp, ¢ > 0,
denote by ¢, ; the isomorphism of k-quivers

HS(Xp ® Xq) = HS(XP) Y HS(Xq)

Then by definition, we have for all p, ¢ > 0:

while the comultiplication of H(X) is given by, for all k&, > 0:

Nng(X) = @p,1 0 Hs(p,)

It easily follows that (Z )p.g>0 is a naF-structure on H(X). O

D,q
H(X)
Notation 2.2.38. Let (X, S) be a templicial object with naF-structure Z. Given a necklace
T={0=ty <t <..<ty=p}, recall the quiver morphism pr : X,, = Xr of Notation
2.2.15. We'd like to similarly define a quiver morphism

7T Xr — X,

However, since Z is not assumed to be associative, this will depend on how we compose
the two-variable morphisms Z k.l Nevertheless, making an arbitrary choice, we can

define
ZP1yPk — 7P1.p2t. APk (iprl ®ZP2;--'7Pk)
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inductively on k > 2, for all py, ..., pr > 0, and subsequently set

e ! ifk=0
ZT ={idy ifk=1
Ztute—ti,p—te—1  {f ko > 92
Remark 2.2.39. Let (X, S) be a templicial object with naF-structure Z. Consider a necklace
T={0=1ty < .. <ty =p}. Itfollows from the naturality of Z that for all 4, j € [p] \ T"
d;2" = 2% M(id .. ®ided;_;, , ®id®..®id)
8,27 =277 M (d®... ®id®s;_;, , ®id®... ®id)

where m € {1,...,k} is minimal such that ¢ < i, or j < i,, respectively. On the other
hand, if 1 € T, then

5,27 = 27 M (id®... ® id @506 @ id ®... ® id)

However, if 0 < j < nand j € T the naturality of Z doesn’t supply us with a formula to
pass the face map d; through Z.

Proposition 2.2.40. Let (X,S) be a templicial object with naF-structure Z. Let p > 0 and
T,U € Pp. Then
prZY = (29 @ ... @ Z9) (ur, @ ... ® pr,) (2.10)

where (Un, ..., Uy) is the splitting of U over T and (T4, ..., Ty) is the splitting of T over U.

Proof. We use induction on k = ¢(T") and | = ¢(U). If either k = 0 or [ = 0, then both are
zero and (2.10) is trivially true. For k = 1, both sides of (2.10) reduce to ZU. Similarly, if
I = 1 both sides reduce to pr.

Assume further that k,1 > 2. Lett € T and v € U be minimal such that 0 < ¢t and 0 < u.
We can write T’ = {0 < t} VT" and U = {0 < u} vV U’ for some unique 7" € P,_; and
U' € Pp—u. Then:

prZY = (idx, @ur e p-e 247" (idx, ®27")
Ift <w,then ju , ¢ Z"P~" = (idx, ®Z"“""P~") (j1¢,u—t ®idx, _, ) by (2.9), and we can write
T, = {0 < t} v T} for some unique 7] € P,_;. So, by the induction hypothesis, we have

przY = (idx, @ur 27" (yu—y @ ZY°)
Z{O<u7t}\/U')(

(
(idx, ®pr Ptu—t @idx,,)

(idx, ®2%2 @ ... ® ZY*)((idx, @y )it u—t @ P, @ .o @ i)
=72V 02" ® .0 Z29) (ur, @ pr, @ ... @ ;)

where we used that U; = {0 < t} since ¢ < u. A similar argument shows the case for
t>u. O
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Corollary 2.2.41. Let p > 0and T,U € P,. The following statements are true.

1. If T CU,and (Un, ..., Uy) is the splitting of U over T, then

prZY =729 @ ... @ ZU
2. IfU CT,and (Ty,...,T;) is the splitting of T over U, then
prZ% = pr, © ... ® pr,

3. We have /LTZUpLU = [LTZTUUuTuU.

Proof. Statements 1 and 2 follow from Propositions 2.2.12.2 and 2.2.40.

To prove 3, consider the splittings (U, ..., Ux) and (11, ...,T;) of U over T and T over U
respectively. By Proposition 2.2.12.1, (Uy, ..., Uy) is also the splitting of T U U over T.
ThusasT C T U U, it follows from 1 that

prZT% proy = (29 @ .. @ 2V urou = (29 @ .. @ ZY) pr vt
= (ZU1 ®...R ZUk)([LTl ®...Q /LTL)MU = MTZU,LLU

where we used the coassociativity of p. O
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2.3 Enriched categories as templicial objects

2.3.1 The templicial nerve

Recall the classical nerve functor N : Cat — SSet (Definition 1.3.22). Given a small
V-enriched category C, one might want to similarly define a simplicial object N(C) € SV.
By analogy with the classical case, we can set for n > 0:

N(C)p = 1T C(Ap, A1) ® ... @ C(An_1, Ay)
Ag,...,An€0Db(C)

Then the degeneracy maps and inner face maps can be defined in completely the same
way by using the reverse composition law and the identities of C. However to define
the outer face map dy (and similarly d,,), we run into a problem because there exists no
projection morphism

C(Ao, Al) ®C(A1,A2) R...& C(An—17A7z,) — C(Al,AQ) R...& C(An—hAn)

in general (non-cartesian) monoidal categories V.
This issue can be resolved by considering templicial objects instead. We will construct
a fully faithful functor Ny : YV Cat — SgV which recovers the classical nerve functor

when V = Set. Moreover, just like Proposition 1.3.24, the nerves of V-categories are
characterized by a unique horn lifting property (see Proposition 2.3.8).

Construction 2.3.1. Let C be a small V-enriched category. We denote its underlying
quiver in V Quivgy, ey by C as well. Let uc : Is — C denote the unit of C. Consider the
reverse composition law 7¢ : C ®op(cy C — C of Remark 1.1.22:

(me)ac: J] C(AB)®C(B,C)—C(AC)
BeOb(C)
forall A,C € Ob(C).
For all n > 0, define the V-quiver
Ny(C),, = C®"
and forall0 < i <nand 0 < j < n, define
dj =idg’ " @me @idg" T e — con
si = 1d$" @ue ® €O~ 0¥ — Ot
By the associativity and unitality conditions on C, this defines a functor
Ny(C) : AY =V Quiveyey
Further, for any k,l > 0 we let
fiey 2 CEF = C®F @01,y C¥' and  €:C%° = Iy

be the canonical isomorphisms in V Quivgy,ey. Thus this defines a strong monoidal
structure on Ny (C). In particular, we obtain a templicial object

(Nv(C), Ob(C))

which we call the templicial nerve of C.
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Recall the base change functors fi : VQuivg — VQuivy and its right-adjoint f* :
VY Quivy — V Quivg for a given map of sets f : S — T (see Construction 1.1.16).

Lemma2.3.2. Let (X, S) beatemplicial object, C a small V-enriched categoryand f : S — Ob(C)
a map of sets. Then we have a bijection between monoidal natural transformations fiX — Ny(C)
and quiver morphisms H : X1 — f*(C) such that the diagrams

X2 A2 pe)ez (o2 Is —— *(Iov)
o [#6me) / [Fee @D
X5 @ X, 7 f*(C) Xo 0 X4 = f*(C)

commute.

Proof. For a monoidal natural transformation « : fi.X — Ny(C), define H,, : X; — f*(C)
to be the adjoint of oy : fi(X;1) — C. It follows from the monoidality of « that for all
n > 0, oy, is the composite

X L ves1)
where we used the colax monoidal structure of f, (see Lemma 1.1.18). So the assignment

a — H, is injective. Moreover, it then follows from the naturality of « that H,, satisfies
(2.11).

AXE™) = f(xen 25 con

Conversely, if H : X; — f*(C) satisfies (2.11), then defining a4 as adjoint to H and «, as
above, it follows that a : fiX — Ny(C) is a natural transformation. It is immediate that
« is also monoidal. O

Remark 2.3.3. Let C and D be small V-enriched categories, f : Ob(C) — Ob(D) a map
of sets and H : C — f*(D) a morphism in V Quivpy,c). Then the diagrams (2.11) with
X = Ny(C) precisely express that (H, f) is a V-enriched functor C — D.

Construction 2.3.4. Let (H, f) : C — D bea V-enriched functor between small V-enriched
categories. By Lemma 2.3.2, there exists a unique templicial morphism

Ny(H) : Ny(C) — Ny(D)

such that the quiver morphism Ny, (H); : fi(C) — D corresponds to H : C — f*(D) by
adjunction. Explicitly,

Ny (H)™
AL TN

Ny(H),, : fIC®™) — f(C)®™ D

for all n > 0. It follows that we obtain a functor
Ny : VCat — SgV,
which we call the templicial nerve functor.

Remark 2.3.5. It is clear from the construction that in case V = Set, the templicial nerve
functor Ny, : V Cat — SgV reduces to the classical nerve functor N : Cat — SSet.

Proposition 2.3.6. The templicial nerve functor Ny, : V Cat — SgV is fully faithful.
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Proof. This follows from Lemma 2.3.2 and Remark 2.3.3. O

Lemma 2.3.7. Let (X, S) be a templicial object such that for all a,b € S, X4(a,b) lifts inner
horns uniquely. Suppose U : V — Set is conservative. Then for any inert necklace map
(T,p) = (T, p), the induced quiver morphism

X(f) X — X

is an isomorphism.

Proof. As T — T’ is inert, we have that 7" C T'. Let (T4, ..., T;) be the splitting of T over
T'. Then X(f) = pr, ® ... ® pry. Thus we are reduced to showing that pp : X, — X is
an isomorphism for all necklaces T'. Writing T = {0 = ¢; < ... < t;, = p}, we have

Hr = (idth ®... ® idth_thk_:, ®/J‘tk—1*tk—2,;0*tk—1) e (idth ®Mt2*t1,17*t2);u’t1,;0*t1

and thus it suffices to show that each comultiplication morphism i ,—r With0 < k <n
is an isomorphism. We proceed by induction on n.

If n = 1, there is nothing prove. Soletn > 2 and 0 < k¥ < n. Take a,b € S and
xp € U((Xg ® X, —g)(a,b)). Forany 0 < | < n with [ # k, define

- (idx, ®N’l;71l,nfk>(ﬂl,kfl ®idx, )(wg) ifl<k
(Hpi—p ®idx, ) (idx, Qp—n—t) (@) ifl>k

Further set, for all 0 < ¢ < n with i # k:

s —  Pimrni(di ®idx, ) (@) ifi <k
’ :ulzjz—k—l(ika Qdi—i)(xg) ifi>k

It follows that the elements (z;)]";' and (yz)fglll . satisfy the conditions of Corollary
2.2.22.3 and thus there is a unique element z € U(X,,(a, b)) such that y; ,—;(2) = z; and
di(z) = x; forall 0 < [,i < n with ¢ # k. In particular p, ,,—1(2) = xx. For any other
z' € U(Xy,(a,b)) with ug n—r (") = zi, it follows from the definitions of the z; and y; that
also . n—i(7') = xyand d;(2') = y; for all 0 < I,% < n with ¢ # k. Thus 2’ = z and hence
the map

Ulttkn—1) : U(Xn(,5)) = U((Xi © Xo—t)(a,b))

is a bijection. As U is conservative, pixn—k : Xn — X ® Xp,—p is an isomorphism of
V-enriched quivers. O

Proposition 2.3.8. Let (X, S) € SgV. Consider the following statements.

(1) The functor X : A} — V Quivg is strong monoidal.
(2) (X, S) is isomorphic to the templicial nerve of a small V-category.
(3) Forall a,b € S, Xq(a,b) lifts inner horns uniquely.

Then (1) and (2) are equivalent and they imply (3). Moreover, if the functor U : V — Set is
conservative, then (1), (2) and (3) are all equivalent.
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Proof. The implication (2) = (1) is clear by definition of the templicial nerve. Conversely,
suppose X is strong monoidal, i.e. its comultiplication p is an isomorphism. Then we
have isomorphisms for all n > 0:

Hi,..., 1:an>X1®S...®SX1

in YV Quivg. Through these isomorphisms, the face d; : Xo — X; and degeneracy
50 : Xo — X1, give us quiver morphisms

Th:X1®SX1—>X1 and U,le—>X1

It follows by the simplicial identities and the naturality, coassociativity and counitality of
 that these morphisms define the structure of a V-enriched category on X; with set of
objects given by S. Again by the naturality of y, the morphisms y; .. ; combine to give an
isomorphism X =~ Ny (X) between functors A%’ — V Quivg. This natural isomorphism
is monoidal by the coassociativity of 11, showing that (X, S) is isomorphic to (N (X1), 5)
in S@ V.

Assume that (1) holdsand let0 < j < nanda,b € S. Takezy, € U((X;® Xp—1)(a,b)) and
y; € U(Xp—1(a,b)) forall 0 < k,i < nwithi # j which satisfy the conditions of Corollary
2.2.22.3. We wish to show that there is a unique z € X,,(a,b) such that py ,—x(2) = =
and d;(z) = y; forall 0 < k,i < n with i # j. As the uy i are isomorphisms, we have
by the hypotheses on the z;, that

iu’l_,’}b—l('rl) = MQ_,’}L—Q(:L‘2) == N:Lim(xn—l)

Setting z to be equal to these elements, it follows from the hypotheses on the zj and y;
that for all 0 < ¢ < n with ¢ # j, we have d;(z) = y;. This shows (3).

Assume that (3) holds and that U is conservative. Then by Lemma 2.3.7, the comulti-
plication morphism g, ; is an isomorphism for all k,7 > 0. As p,, o and po,,, are always
isomorphisms for n > 0, this shows (1). O

Corollary 2.3.9. For any small V-enriched category C, the nerve Ny,(C) is a quasi-category in 'V
with a unique Frobenius structure.

Proof. This immediately follows from Proposition 2.3.8 and Example 2.2.36. O

We end this subsection with some compatibility results.

Notation 2.3.10. The adjunction F' 4 U between Set and V also induces an adjunction
between small categories and small V-enriched categories by Proposition 1.1.23. We will
denote this adjunction by
_7_'
Cat ; V Cat

Proposition 2.3.11. We have a natural isomorphism

NyoF~FoN
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Proof. Let C be an ordinary small category. Consider its nerve N(C) as a templicial
set (Proposition 2.1.15). As F' is strong monoidal and preserves colimits, we obtain a
canonical isomorphism

a, : F(C*™) = F(C)®"
where C*™ denotes the n-fold monoidal product of C as a quiver in Quivgy,c). It is easy
to see that these isomorphisms combine to give an isomorphism of templicial objects:

a: F(N(C)) = Ny(F(C))
which is clearly natural in C. O

Proposition 2.3.12. We have a natural isomorphism

UoNy~Nol

Proof. Let C be a small V-category and n > 0. Then we have the following isomorphisms,
natural in n and C:

U(Ny(C))n = SeV(F(A™), Ny(C)) =~ SgV(Ny(F([n]), Nv(C))
~V Cat(F([n]),C) ~ Cat([n],U(C)) =~ NU(C))n

where we subsequently used the isomorphism A™ ~ N([n]), Proposition 2.3.11, Propo-
sition 2.3.6, and the adjunction F - U. O

2.3.2 The homotopy category of a templicial object

Just like the classical nerve functor, the templicial nerve functor Ny of Construction
2.3.4 has a left-adjoint hy : SgV — V Cat which associates to every templicial object its
homotopy category (Proposition 2.3.14). Moreover, in Proposition 2.3.25 we’ll show that
the homotopy category hy X is significantly easier to describe when the templicial object
X is a quasi-category in V. This generalizes the classical Proposition 1.3.28.

Construction 2.3.13. Let (X, S) be a templicial objectand a,b € S. We construct an object
hyX(a,b) € V by the following coequalizer:

1 Xr(a,0) == I1X{"(a,b) — hyX(a,b) (2.12)
= s

where o, § are defined as follows. For (T, p) € Necwithp > 0, let k = £(T'). Then set

inert

avr = 4, X (([pl,p) 25 (T, p))
Bur = wX(([K], k) 2% (T, p))

where we used the unique inert and active maps of Remark 2.2.8. Note that this coequal-

izer is reflexive where the common section « of o and f3 is given by i, = ([ p)-
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We construct a V-category hyX with object set S, whose hom-objects are given by
hyX(a,b) for all a,b € S. Consider hyX as a quiver. Then define

. .
w:ls 2 Xy 5 [ X772 > by X
p>0

Further, as the coequalizer (2.12) is reflexive, it is preserved by — ® — in both variables
simultanously, so that we obtain a reflexive coequalizer of quivers

a®a
H Xrvu = H X1®r+s Hq(gq th Xs hVX
T.UeNec BRB  r,s>0

T,U#{0}
It follows that there is a unique quiver morphism
m:hyX ®s hyX — hpX

such that m(qu, ® qts) = qir4s for all r;s > 0. It easily follows that m is associative.
Moreover, it is unital with respect to u. Indeed, forp > 0, set T = [p — 1] V {0 < 2}. Then
we have
Midny, x @u)qe, = m(g ® q) (L, @ trsoe ") = qrpr1 (Id5Y ©soe ")
= qu+1(id382;i)—1 ®ILL1,181) = qO(LT(id?éz:_l ®$1)
= qBur(id®P " @s1) = qu(id;e}fil ®@d181) = qip

and thus m(idy,, x ®u) = idp,, x. Similarly, m(u ® idp,, x) = ids,, x. Thus m and u define
the structure of a V-category on the quiver hy X.

Proposition 2.3.14. The assignment X — hyX of Construction 2.3.13 extends to a functor
hy : SgV — V Cat which is left adjoint to the templicial nerve functor Ny, : V Cat — SgV.

Proof. We use the same notation as in Construction 2.3.13. Consider the composite quiver
morphism q¢; : X; — hyX. Then the following diagrams commute

11)®2
Xy Aty xer ) ven and Is
m soe ! ¢
k& l 0 J \
X1 T> hVX Xl T hVX

Indeed, the right hand diagram commutes by definition and the left hand diagram
commutes because

m(quy ® qui)pi1 = qlap = qatfo<ay = qBLio<ay = qidy

Thus by Lemma 2.3.2, there is a unique templicial morphism nx : X — Ny(hyX) such
that nx, : X1 — hypX is qu;. We claim that nx is the unit of an adjunction hy - Ny,.

Now let C be an arbitrary small V-category and (¢, f) : X — Ny(C) a templicial mor-
phism. By Lemma 2.3.2, { corresponds to a quiver morphism H : X; — f*(C) such
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that the diagrams (2.11) commute. Then it follows from the associativity of m¢, and the
coassociativity of the comultiplication 4 that the diagram

X S xpr A (o) — f(e®)

XPY e IO —— 1) oy 1'(O)

commutes as well for all necklaces (7', p) with p > 0 and k = /(7). Thus by (2.12), we get
a unique quiver morphism H : hy X — f*(C) such that Hq is the composite
Q®p Hp>0 HE? * ®P * ®Rp (f*(m(cp)))p>0 *
[ =TI r© = I rc*) —= 1
p>0 p>0 p>0

It follows from the definition of the composition in hyX that H defines a V-functor

hyX — C and it is clearly unique such that Ny, (H) onx = (¢, f). O

Remark 2.3.15. By comparing left-adjoints, Remark 2.3.5 shows that hy : SgV — V Cat
reduces to the classical homotopy functor SSet — Cat when V = Set.

Corollary 2.3.16. We have a natural isomorphism

hyoF ~ Foh
Proof. This follows by comparing left-adjoints using Proposition 2.3.12. O

We collect some of the previous results in the following theorem.
Theorem 2.3.17. There is a diagram of adjunctions

F
Cat .+ ° VCat

u
hT—iJ{N h\;T—{J{N\;
F
—
SSet % S@V
U
which commutes in the sense that we have natural isomorphisms:

NyoF~FoN, UoNy~Nold and Foh= hyoF
Proof. Combine Propositions 2.3.11 and 2.3.12, and Corollary 2.3.16. O
Consider the unit ids,y — Nyhy of the adjunction hy, - Ny. Applying U, Proposition
2.3.12 provides a natural transformation
U — UNyhy ~ NUhy,
which by the adjunction » 4 N corresponds to a natural transformation

hU — Uhy,
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In general this will not be an isomorphism, as is shown in the following example. How-
ever, assuming some conditions on the forgetful functor U : V — Set, we do find an
isomorphism if we restrict to quasi-categories in V' (see Corollary 2.3.26).

Example 2.3.18. Let V = Mod(k) with k an arbitrary unital commutative ring. In this
case we denote hy = hyioq(r)- Consider the templicial k-module X = F(0A?). Then by
Corollary 2.3.16, the hom-object (h;X)(0, 2) is isomorphic to

1
F(OA2)(0,2) = F({ go”" Sep. 00— 2 }) = k@ k

On the other hand, the set h{7(X)(0,2) consists of equivalence classes of sequences of
edges (ay, ..., a,) from 0 to 2 in U(X). Note that each edge in U(X) between two given
vertices is uniquely determined by an element a; € k. One can check that there is a
bijection
hUF(0A?)(0,2) = U(k) Ly o) U(k)

which sends a sequence (a1, ...,a,) to its product a,, ---a; in k. The two terms U (k)
correspond to paths either passing through the vertex 1 or not. Now the induced map
hUF(8A2)(0,2) — U((htX)(0,2)) on hom-sets corresponds to the canonical map

which is certainly not a bijection if & is not the zero ring. Hence, the canonical functor

hU(X) = U(heX)
is not an equivalence of categories.
We now turn our attention to the description of the homotopy category hy X when X is
a quasi-category in V.

Construction 2.3.19. Let (X, S) be a templicial object and a,b € S. We define an object
Hom% (a,b); € V by the following pullback:

Hom% (a,b); —2—— Xy(a,b)

”ll J/H’fl

Xi(a,b) ——— (X1 ®s X1)(a,b)

—®sg

Further, we denote d; = 71, dy = dy T and we let so : X;(a,b) — Hom%(a7 b); be the
unique morphism such that m sy = idx, (4,) and w2509 = s7*. We obtain a reflexive pair:
_do ,
Hom% (a,b), « Zo = Xi(a,b)
1

Finally, we define an object 1}, X (a, b) by the following coequalizer:

do
Hom% (a,b); d:; Xi(a,b) —2» hi{,X(a,b) (2.13)
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Remark 2.3.20. It is possible to extend Construction 2.3.19 to obtain a simplicial object
Hom (a,b) : A% — V which generalizes the left-pinched morphism space of a simplicial set
(as defined in [Lur18, Tag 01KX]). In particular, Hom¥% (a, b)o = X, (a, b). The morphisms
do,dq : Hom%(a, b)1 = Xi(a,b) and s : Xi(a,b) — Homﬁ(a, b); then constitute the
lowest dimensional face and degeneracy morphisms of Hom’ (a, b). We will not go into
them here however and leave their investigation to future research (also see Chapter 5).

Remark 2.3.21. Note that as U preserves pullbacks, we find that U(Hom% (a, b)) is the
set of all 2-simplices (o2, @01, a1,2) of U(X) (see Corollary 2.1.27) with vertices ag =
a,a] = b, a9 = band Q1.2 = So(b).

Assuming that U(X) is a quasi-category and that U preserves reflexive coequalizers, it
follows from Lemma 1.3.27 and Proposition 1.3.28 that we have an isomorphism:

U(hyX(a,b)) = hU(X)(a,b)

and the canonical morphism X (a, b) — h},X (a, b) precisely takes the homotopy class [f]
in hU(X) of any f € U(X1(a,b)).

Lemma 2.3.22. Assume that U : V — Set preserves reflexive coequalizers. Let X be a quasi-
category in V with objects a and b. For any w,w’ € U(Xa(a,b)) such that (¢ ® q)p,1(w) =
(q ® q)p1,1(w'), we have that q(d5¥ (w)) = q(d5¥ (w')) in h}, X (a,b).

Proof. Let Q denote the quiver given by Hom (a,b); for all objects a and b of X. Let
ceU((Q®Q)(a, b)) and w,w" € U(Xz(a,b)) be such that y; 1(w) = (do ® do)(co) and
p1,1(w') = (di ® dy)(o). Then:

* The elements z1 = (di ® s5d1)(0) € U((X1 ® X3)(a,b)), x2 = (m2 @ d1)(0) €
U((X2®X1)(a,b)) and yo = w € U(X3(a,b)) deﬁneahorn F(A3)4(0,3) = X4(a,b)
which extends to an element z € U(X3(a,b)). Then set w” = di¥(z) € U(Xa(a,b)).
Note that d5* (w”) = d5¥ (w).

¢ Likewise, the elements z; = (do ®m2)(0) € U((X1 ® X2)(a,b)), 22 = w" @ s§ (b) €
U((X2®X1)(a,b))and ys = w defmeahornF( 3)e(0,3) — X4 (a,b) which extends
to an element 2z € U(X3(a,b)). Then set 7 = di¥(2) € U(X2(a,b)).

It follows that p11 1 (7) = df (w) ® s¢ (b) and df (1) = d5° (w'). Hence, qd5* (w) = qdf (w').

As the diagram (2.13) is a reflexive coequalizer, it is preserved by — ® — in both variables
simultaneously so that we again have a reflexive coequalizer

@ Q)(a.b) =% (i@ X)(a,b) s (WX 14,X)(a.b)

Now assume that (¢ ® q) 1,1 (w) = (¢®q)p1,1(w'). As U preserves reflexive coequalizers,
there exist ay, ..., a, € U((X71 ® X1)(a,b)) such that u 1(w) = ag, o, = p1,1(w) and for
alli € {1,...,n} thereexistsa o € U((Q ® Q)(a,b)) such that

a1 = (do ® dp)(o) and (dy ® d1)(0)
or Qi1 = (dl X dl)(d) and (do X do)(d)

Q;
«

%



64 CHAPTER 2. TEMPLICIAL OBJECTS

For every 0 < i < n, ; defines a horn F(A}).(0,2) — X.(a,b) which we can extend to
an element w; € U(X2(a,b)) so that u1,1(w;) = ;. Thus it follows by the previous that

qdi(w) = qdi(wy) = ... = qdy(w,_1) = qdp (W)
O

Lemma 2.3.23. Assume that U : V — Set is faithful. Let g : X — Y and f : X — Z be
morphisms in V such that g is a reqular epimorphism. Suppose that for all x,y € U(X), we have

g(x)=gly) = fl=)=f(y)

Then there exists a unique morphism h : Y — Z such that hg = f.

Proof. Denote the kernel pair X xy X = X of g by m; and m,. In view of Definition
1.2.12, it suffices to show that fm; = fm. As U is faithful, this is equivant to showing
that for all (x,y) € U(X) xyy) U(X), we have f(z) = f(y). But this is equivalent to the
hypothesis on f and g. O

Construction 2.3.24. Assume that U : V — Set is faithful and preserves and reflects
reflexive coequalizers. Let (X, .S) be a quasi-category in V. We construct a V-enriched
category h{, X whose hom-objects are given by h{, X (a, b) of Construction 2.3.19. Let h{, X
denote the quiver given by h{, X (a,b) for all a,b € S, and let ¢ : X; — h{,X denote the
canonical quiver morphism.

First define v : Is =% X; % h},X. Note that U also reflects regular epimorphisms
(as they are the coequalizer of their kernel pair). Thus as X is a quasi-category in V,
the comultiplication p1,1 : X2 — X; ®g X is a regular epimorphism. Further, ¢ is
a regular epimorphism by definition (also see Remark 1.2.13). Now — ® — preserves
reflexive coequalizers in each variable and thus also regular epimorphisms. It follows
that ¢®2o 1,1 is aregular epimorphism as well. Using Lemmas 2.3.22 and 2.3.23, we have
a unique quiver morphism 7 : h{,X ®g h},X — h{,X such that the following diagram
commutes:

®2

Xy A X2y (X)2
k‘ Lﬁz
Xy ———— WX

Given a 2-simplex (agz, @01, 12) of U(X) with vertices a, b and ¢, we have 1 1(2) =
ap1 ® a2 and thus m(g(ao1) ® g(ao2)) = ¢(d1(ao2)). Therefore, the induced map

U(ma,p,ec

U(ByX (a,b)) x U(RYX (b, ) — UK, X (a,b) © KX (b, ¢)) 2 U(h, X (a, ¢))

coincides with the reverse composition law of hU(X) (see Remark 1.1.22) under the
isomorphisms supplied by Remark 2.3.21. The element u, = q(so(a)) : I — h},X(a,a)
is clearly the identity at a in hU(X). It then follows from the faithfulness of U that 7 is
associative and unital with respect to u. So we obtain a V-category h,X.

Note that by construction we have an isomorphism of categories

UR,X) ~ hU(X)
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Proposition 2.3.25. Assume that U : V — Set is faithful and preserves and reflects reflexive
coequalizers. The assignment X > h{, X of Construction 2.3.24 extends to a functor hi, from
the full subcategory of SgV spanned by all quasi-categories in V) to V Cat, which is left-adjoint to
the templicial nerve functor Ny.

In particular, there exists a canonical isomorphism of V-enriched categories:
hyX ~ h}, X
for every quasi-category X in V.
Proof. We'll show this similarly to the proof of Proposition 2.3.14, using Lemma 2.3.2.
By Construction 2.3.24, the appropriate diagrams commute so that we have a unique

templicial morphism 7x : X1 — Ny (h},X) such that nx, : X1 — h},X is precisely ¢. We
claim that 7)x is the unit of an adjunction »}, 4 Ny.

Now let C be an arbitrary small V-category and (¢, f) : X — Ny(C) a templicial mor-
phism. By Lemma 2.3.2, { corresponds to a quiver morphism H : X; — f*(C) such that
the diagrams (2.11) commute. Letting () denote the quiver given by Hom% (a, b), for all
objects a and b of X, we have a commutative diagram

do

— Y. *
Q=% = X s ()
1
dy :‘ITIJ/ l/“fl Tf*(ﬁlc)
—®5) @2 H®. @2 (@2
X1 — X777 ——= [1(0)%° —— fr(C¥%)
H®u

It follows that Hdy = Hd, : Q — f*(C) and thus there exists a unique quiver morphism
H':h),X — f*(C)suchthat H'q = H. By construction, H' defines a V-functor h{,X — C
which is clearly unique such that Ny, (H) o nx = (¢, f). O

Corollary 2.3.26. Assume that U : V — Set is faithful and preserves and reflects reflexive
coequalizers. Let X be a quasi-category in V. The canonical functor

WU (X) — U(hypX)

is an isomorphism of categories.

Proof. This is now an immediate consequence of Proposition 2.3.25 and the fact that
UR,X) ~ hU(X). O
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Chapter &8

Categorical properties
of templicial objects

“What the hell is going on?! What do you know about these things?”

— Captain Robert Witterel (Return of the Obra Dinn)

Now that the basic definitions are covered, we are ready to discuss some properties of
SgV as a category. This chapter is divided into two main sections. In both sections, but
more prominently in the second, Dugger and Spivak’s necklaces (see §2.2.1) will play an
essential role.

In Section 3.1 we define and study free and projective templicial objects and morphisms
(Definitions 3.1.6 and 3.1.24). They are based on, and behave similarly to, the free and
projective morphisms discussed in §1.2.2. As such, the projective templicial morphisms
appear as the left lifting class in a weak factorization system on SgV (Theorem 3.1.28),
where we call the morphisms in the right lifting class contractible (Definition 3.1.18). In
case V = Set, then the classes of projective and free templicial morphisms both coincide
with the class of monomorphisms of simplicial sets, while the contractible templicial
morphisms coincide with the trivial fibrations. As such, every simplicial set is free
(Corollary 3.1.9). The concept of free templicial objects thus only becomes meaningful
for other choices of V. Classically, trivial fibrations are characterized as those simplicial
maps having the right lifting property with respect to all boundary inclusions. A similar
characterization can be shown for contractible templicial morphisms, but this requires
the use of necklaces. More precisely, a templicial morphism is contractible if and only
if the induced morphisms in V¢ under Construction 2.2.16 have the right lifting
property with respect to all boundary inclusions (Proposition 3.1.19). Finally, we will
explain how free templicial objects allow for a notion of non-degenerate simplices, which
general templicial objects lack.

Next, Section 3.2 introduces necklace categories, which are categories enriched in the
category VYV, considered as a monoidal category with the Day convolution (Con-
struction 3.2.1). We then extend Construction 2.2.16 to a fully faithful left-adjoint
(=)™ : SgV — VCatpe. (Construction 3.2.5), where V Catpre. denotes the category
of small necklace categories. The rest of the section is devoted to showing how passing
to necklace categories can simplify proofs for templicial objects.

67
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3.1 Freeness and projectivity

This section is heavily inspired by the theory of Reedy categories. For more details on
this, we refer to the literature (e.g. [RV14] or [Hir03, Chapter 15]).

Recall that the simplex category A is a Reedy category which allows to inductively build
up a simplicial set X through its skeleta sk, (X). We adapted this approach to define
skeleta for templicial objects in §2.1.5. Further, one can use the Reedy structure to lift the
weak factorization system (injective, surjective) on Set to a weak factorization system on
SSet where the left lifting class consists of the monomorphisms and the right lifting class
consists of the trivial fibrations (Definition 1.3.16). We can adapt this approach as well,
starting from the weak factorization system (projective, regular epimorphic) on V (see
Proposition 1.2.20.4). This will result in a weak factorization system on Sg) where the
templicial morphisms in the left lifting class will be called projective and those in the right
lifting class contractible. Beware that we are not constructing a Reedy model structure on
SgV. We are simply using Reedy techniques to lift a single weak factorization system
from V to Sg V.

In [Bac12, Definition 6.1], Bacard introduced locally Reedy 2-categories, that is, a category
enriched in Reedy categories. Further, in [Bac13] they defined latching and matching
objects for colax functors R — M where R is a locally Reedy 2-category and M is a
2-category. The category of finite intervals A is well known to be Reedy, but it is also a
monoidal Reedy category (i.e. alocally Reedy 2-category with one object). In Definitions
3.1.1 and 3.1.14 we define latching and matching objects for a given templicial object
(X, S). Although defined slightly differently, they ultimately coincide with those of
Bacard, applied to the colax monoidal functor X : A%’ — VQuivg. Constructing the
weak factorization system on SgV now follows completely analogously to the case for
classical Reedy categories. Because we still have to deal with the base change of the sets
S, and to make this section more self-contained, we’ll still provide all proofs in full. But it
is important to note that all Reedy-type proofs (that is Remark 3.1.21, Proposition 3.1.22
and Theorem 3.1.28) were essentially already shown in [Bac12] and [Bac13].

We also introduce free templicial morphisms which occupy a slightly smaller class than
the projective ones. In fact, every templicial morphism can be factored as Sa where
B is contractible and « is free, not just projective (Proposition 3.1.22). Free templicial
objects also provide the right context to talk about non-degenerate simplices, which is
impossible for general templicial objects. We then also obtain an analogue of the classical
Eilenber-Zilber lemma (Lemma 3.1.39).

For this section we impose the additional standing hypotheses that the forgetful functor
U=V(,-):V — Set preserves and reflects regular epimorphisms. Note that then in
particular the monoidal unit I of V is a projective object in the sense of Definition 1.2.14.
Thus we may apply Proposition 1.2.20.

3.1.1 Free templicial morphisms

We will first focus on free and contractible templicial morphisms (see Definitions 3.1.6
and 3.1.18). For both, we give equivalent characterizations in Propositions 3.1.7 and
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3.1.19. Further, Proposition 3.1.22 shows that every templicial morphism may be factored
as a free templicial morphism followed by a contractible one. Free and contractible
morphisms do not form a weak factorization system on Sg ) however as the free templicial
morphisms are not closed under retracts. Taking their closure under retracts yields the
projective templicial morphisms, whose discussion we postpone to the next subsection.

Recall the category A,,; C Ay consisting of all surjective morphisms in A (see Defi-
nition 2.1.1).

Definition 3.1.1. Let (X, S) be a templicial object. For every n > 0, we define the nth
latching object of X as the following colimit in V Quivg:

Xde9 =1, X = (io]lin[l ] X
o:[n]—k
0<k<n

where the colimit is taken over the full subcategory of ((Asm,j)[n] /)Op spanned by all
morphisms o : [n] - [k] in A,y,; with 0 < k < n. Note that we have a canonical quiver
morphism

Xde9 5 X,

For any a,b € S, we may also refer to X2°9(a,b) € V as the object of degenerate n-simplices
of X with first vertex a and last vertex b.

Remark 3.1.2. Note that in view of Construction 2.1.37, we have
X9 ~ sk, 1(X),

and thus the nth latching object of X only depends on the skeleton sk,,_1(X). In fact,
Xde9 only depends on the functor X|a<n yor : (A5;) — V Quivg where AJ] is the

suryj suryj

full subcategory of A,,,-; spanned by all the objects [k] with k < n.

The following is well-known.

Example 3.1.3. In case V = Set, let K be a simplicial set and n > 0. Take a,b € Ky and
z € Ki(a,b), y € K;i(a,b) along with morphisms ¢ : [n] — [k] and 7 : [n] — [I] in Ay,
such that K (o)(z) = K(7)(y). By the Eilenberg-Zilber lemma (Lemma 1.3.7), there exist
morphisms o’ : [k] - [m] and 7’ : [[] - [m] in A,,,; and a non-degenerate m-simplex z
of K suchthatx = K(0')(2),y = K(7')(z) and ¢’c = 7'7. Therefore x and y represent the
same element in the colimit K9 (a,b) = colimy. () (k] k<n K (a,b). Hence, the quiver
map
K9 & K,

is a monomorphism and thus projective in Quivg. In fact, the set [ [, ,c s, & d¢9(a,b) can
be identified with the set of degenerate n-simplices of K.

An important distinction between simplicial sets and templicial objects is that the canon-
ical quiver morphism
X9 — X,

need not be projective in general as Example 3.1.4 shows.

Intuitively, we might interpret the quiver X only as a prototype expressing how the
degenerate simplices of X “should” behave. For example:
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e If n = 1, then X{* ~ X,. Intuitively, this means that X should have a unique
degenerate 1-simplex for each 0-simplex.

o If n = 2, then Xgeg is given by the cokernel pair X; IIx, X; of so : Xo — Xj.
Intuitively, this means that X should have two degenerate 2-simplices for each
1-simplex, which coincide precisely if the 1-simplex was already degenerate.

Example 3.1.4. Consider the ring Z/2Z as a one object Ab-enriched category and take its
templicial nerve X = Ny(Z/2Z) € Sg Ab (Construction 2.3.1). Then the canonical map

X ~ Xy — X is given by the quotient map Z — Z /27, which is clearly not projective.

We will isolate the templicial objects for which the degenerate simplices are well-behaved
as those for which the canonical quiver morphism X9 — X, is free (Definition 3.1.6)
or more broadly, projective (Definition 3.1.24).

Definition 3.1.5. Let (a, f) : (X,5) — (Y,T') be a templicial morphism. As fi is a left-
adjoint and thus preserves colimits (Construction 1.1.16), we have a canonical quiver
morphism for every n > 0:

F(XR50) = Y0

We define the nth relative latching morphism of («, f) as the induced quiver morphism

ydeg ]_[f!(Xzeg) h (Xn) —Y,

n

Definition 3.1.6. We call a templicial morphism (e, f) : (X, S) — (Y, T) free if

(a) themap f: S — T is injective, and

(b) the nth relative latching morphism Y,%9 11 (<o) f1(X,) = Y, is free in V Quiv, (in
the sense of Remark 1.2.21) for all n > 0.

In particular, we call a templicial object free if the initial morphism 0 — X in SgV is free.
Equivalently, the quiver morphism X deg 5 X, is free for all n > 0.

Proposition 3.1.7. Let (a, f) : (X,S) — (Y, T) be a templicial morphism. Then (c, f) is free
if and only if

(a) themap f: S — T is injective, and

(b) there exists a functor Z : ALV . — Quivy such that for all n > 0 and a,b € T the

canonical map Z3°9(a,b) — Z,(a,b) is injective, along with an isomorphism Y| A~
fiX|aer TIFZinFun(AZ .,V Quivy) such that the natural transformation o : fiX —Y

corresponds to the coprojection X — fiX 11 FZ.

In particular, the induced morphism X, (a,b) — Y, (f(a), f(b)) is free in V for any n > 0 and
a,bes.

Proof. Suppose (a, f) satisfies conditions (a) and (b). As fi and F preserve colimits, we
have for all n > 0 that

ydes — colim Yj, =~ colim (fiXy T F(Zy)) ~ fi(X3e9) 11 F(Z4e9)
“othen) otk
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and therefore
YOI, aeoy [i(Xn) = fi(Xn) ILF(Z5%9)

Under these isomorphisms, the nth relative latching morphism of («, f) becomes the
following quiver morphism induced by the monomorphism Zde9 — 7,

A(X) L F(Z89) — f(X,) L F(Z,,)
which is clearly free.

Conversely suppose that (a, f) is free. Then condition (a) holds by assumption. We

construct a functor Z : A} . — Quivy as in condition (b) by induction. First define

Lol g) = {{*} ifz=yeT\f(5)

®  otherwise

As f is injective, we have a bijection of sets: T ~ (T'\ f(S)) I S. It follows that
ag @ fiXo — Yy is isomorphic to the coprojection fi(Is) — fi(Is) Il F(Zy).

sur,

[k] with & < n. Assume we have already defined a functor Z,, : (A5]};)?” — Quivy such

that 249 — 7, isamonomorphism forall 0 < m < n,and anisomorphism Y| (A<n yop =
i

[iX|as<n er LF Z <y, in Fun((Ag)).;)°, Quivy) such that the natural transformation ., :

fiX — Y corresponds to the coprojection fiX — fiX 1 FZ_,. As Y29 is depends only
on Y| N (Remark 3.1.2), we have by the same argument as above that

Now let n > 0 and let A7, denote the full subcategory of A,,; spanned by all objects

Yoo Hf!(xffc-‘?) Fi(Xn) = fi(X) LF(Z39)

Since the nth relative latching morphism of (o, f) is free, it is isomorphic to the copro-
jection fi(X,) Il F(Z3*9) — (fi(X,) D F(Zd)) I F(Z,) for some Z/, € Quivg. Thus
setting Z,, = 7911 7!, we can extend Z_,, to a functor

9 1 .
Zensrt (AZLTH) — Quivy

such that also Z4%9 — Z,, is a monomorphism and a,, is isomorphic to the coprojection
X = AXTOFZ 41 in Fun((A:uﬁJjTl)"p, Quivy). Finally, the functors (Z<,,),>0 combine

to define a functor Z : A% . — Quiv, as in condition (b).

surj

Finally, take n > 0 and a,b € S. As f is injective, we have fi(X,,)(f(a), f(b)) ~ X, (a,b).
Thus the induced morphism X, (a,b) — Y,,(f(a), f(b)) is obtained by evaluating «,, :
fi(Xn) = fi(Xy) I F(Z,) in the pair (f(a), f(b)) and is therefore free. O

Corollary 3.1.8. A templicial object (X, S) is free if and only if there exists a functor Z :
A% — Quivg such that for all n > 0 and a,b € S, the canonical map Z%9(a,b) — Z,(a,b)

surj

is injective, along with an isomorphism X | acr =~ FZin Fun(AZ .,V Quivg).

Proof. This is an immediate consequence of Proposition 3.1.7. O

Corollary 3.1.9. If V = Set, then a simplicial map is free if and only if it is a monomorphism.
In particular, every simplicial set is free.
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Proof. Let A — B be a simplicial map. If it is either free or a monomorphism, then the
map f : Ag — By is injective. Recall by Example 1.2.19.1 that a morphism in Set is free if
and only if it is an injective map of sets.

So if A — B is free we have by Proposition 3.1.7 that for all n > 0 and a,b € A that the
map Ay, (a,b) — B,(f(a), f(b)) is injective. Taking the coproduct over all a,b € Ay, we
see that A,, — B, is an injective map as well.

Conversely, if A C B is a simplicial subset, we can define a functor
B\ A: A‘;ﬁ” — Quivg, : [n] = B, \ fid,
Then B ac o~ AT (B\ A) in Fun(AZ ;, Quivg,) and the natural transformation

ftA — B corresponds to the coprojection fid — fiAIl (B \ A). Finally, for all » > 0 and
a,b € By, themap (B\ A)%9(a,b) — (B\ A),(a,b) is a restriction of B9 (a,b) — B,,(a,b)

and is therefore injective by Example 3.1.3. O

Corollary 3.1.10. For any monomorphism A — B of simplicial sets, the induced templicial
morphism F(A) — F(B) is free. In particular, F(K) is a free templicial object for every
simplicial set K.

Proof. This follows from Corollary 3.1.9 as F' : Set — V preserves colimits and free
morphisms (see Proposition 1.2.20.1). O

Example 3.1.11. Let X be the templicial abelian group of Example 2.1.44. Then X is free
but it is not isomorphic to F(K) for any simplicial set K. Indeed, like any free templicial
object, the degeneracy maps of X preserve the basis elements by Corollary 3.1.8. But the
inner face maps of X don't.

We now turn our attention to contractible morphisms of templicial objects. Note that
while the latching objects are defined completely analogously as for classical Reedy
categories, the matching objects require passing to necklaces via Construction 2.2.16.

Notation 3.1.12. Let (7, n) be a necklace. We denote d(T") for the maximal dimension of
all beads of T'. More precisely, if we write T' = {0 =ty < t1 < ... < t;, = p}, then

d(T) =max{t; —t; 1 |1 <i<k}

Notation 3.1.13. We denote
N@Cin]’

for the subcategory of Nec consisting of all necklace maps (7', p) — (U, q) for which the
underlying morphism [p] — [¢] in Ay is injective. Note that Nec;,; contains both the
active injective maps as well as the inert maps.

Definition 3.1.14. Let (X, S) be a templicial object. For every n > 0, we define the nth
matching object of X as the following limit in V Quivg:
M,X = lim Xp
T—{0<n}
d(T)<n
where the limit is taken over the full subcategory of ((Necin;)/{o<n})°” spanned by all
necklaces maps T' < {0 < n} in Nec;,,; with d(T') < n. Note that we have a canonical
quiver morphism
X, = M, X
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Remark 3.1.15. Note that the nth matching object M,, X only depends on the functors
Xo|(Weeznyor + (Necs5)P — V Quivg (see Construction 2.2.16) where NVec,s denotes the
ing

inj inj

full subcategory of Nec;,; spanned by all necklaces T" with d(T") <
Example 3.1.16. Given a templicial object (X, .S), let us analyze the matching objects
M, X for low values of n.

e If n =1, then M; X is the terminal object of V Quivg.

o Ifn= 2, then MQX ~ X1 X (Xl Xs Xl)

e If n = 3, then M3X is the limit of the following diagram of quivers:

X1 ®g Xo X5 ®g X1 Xo X2
‘ \id ®dy M1.1®1d d1®1d l‘l,
id®#1,1/& A A
X1 ®s X1 ®s Xy X1 ®s X1 X1 ®s X1

Definition 3.1.17. Let («, f) : (X,5) — (Y, T) be a templicial morphism. As f* is a
right-adjoint and thus preserves limits (Construction 1.1.16), we have a canonical quiver
morphism for every n > 0:

M, X — f*M,Y

We define the nth relative matching morphism of («, f) as the induced quiver morphism
Xn — f*Yn X f*M,Y MnX

Definition 3.1.18. We call a templicial morphism («, f) : (X,S) — (Y, T) contractible if

(@) themap f: S — T is surjective, and

(b) the nth relative matching morphism X,, — f*Y,, X ¢-u, v M, X is a regular epimor-
phism in V Quivg for all n > 0.

Proposition 3.1.19. Let (o, f) : (X,S) — (Y, T) be a templicial morphism. Then («, f) is
contractible if and only if

(a) themap f: S — T is surjective, and

() for all a,b € S, the induced morphism Xo(a,b) — Yo(f(a), f(b)) has the right lifting
property with respect to Cell in YN,

Proof. Take a,b € Sandn > 0. AsU : V — Set preserves limits, we see that an
element of U(M,, X (a, b)) is equivalent to a choice of collections (z1)}Z] and (y;)=,' with
zp € U(Xpr®sXn—k)(a,b)) and y; € U(X,,—1(a, b)) satisfying the cond1t10ns of Corollary
2.2.22.2 which thus determine a morphism F(OA"),(0,n) — X, (a,b) in VN, On the
other hand, an element of U(X,(a,b)) is equivalent to a morphism F(A")4(0,n) —
Xe(a,b) by Corollary 2.2.22.1.
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Since U preserves and reflects regular epimorphisms, we conclude that the nth rela-
tive latching morphism X, (a,b) — Y,.(f(a), f(b)) X a1, v (f(a),f(v)) MnX(a,b) is a regular
epimorphism in V if and only if every lifting problem

F(OA™)4(0,n) —— X,(a,b)

L

in VNVe¢” has a solution. O
Corollary 3.1.20. Let (a, f) : (X,S5) — (Y,T) be a contractible templicial morphism. Then
U(a) : U(X) — U(Y) is a trivial fibration of simplicial sets.

Proof. By hypothesis, f = U(a)o : U(X)o — U(Y)o is surjective. So U(a) has the right
lifting property with respect to the simplicial map ) = 9A? — A°.

Take n > 0 and consider a lifting problem in SSet:

OA" —— U(X)

//7 ~
J lma)

A" —— U(Y)

Then by Propostion 2.1.26, the top horizontal map is equivalent to a choice of vertices
aop, ..., an € S along with elements

Bry € U(Xj—k(ag,a;)) and v; € U(Xp—1(ao,an))
forall 0 < k < <nwith (k1) # (0,n) and 0 < ¢ < n, which satisfy
e forall0 < i< <n,
di(vir) = dir—1 (i)

e forall0 <k < i< <nwith (k1) # (0,n),
pr—ii—k(Br,1) = Bri @ Biy
o forall0<k<n—land0<i<n,

di(Bok) ® Brg1n ifi<k

honk-1() = {ﬁo,k @ dii(Ben) ifi >k

Further, the bottom horizontal map making the diagram commute is equivalent to an
element ) ,, € U(Y,(f(ao), f(an))) such that us n—1(5.,) = ar(Box) ® an—k(Brn) and
di(Bp.,) = an—1(y:) for all 0 < k,i < n. Solving the lifting problem then comes down to
finding an element 3y, € U(Xy(ao,a,)) such that a,,(80.n) = By, and pg n—k(Bon) =
Bo.k @ Brn, di(Bon) = forall 0 < i < n.
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Now setting z = fo.x ® Br,n and y; = ; we obtain collections satisfying the conditions
Corollary 2.2.22.2, so that the collections ()7 ~] and (y;)}=;' and the element By, define
a commutative diagram in VN ee™":

F(A™)o(0,n) —— Ya(f(a), f(b)

which has a lift by Proposition 3.1.19. This lift provides the element 3y ,, as desired. [

Remark 3.1.21. Let X be an (n — 1)-skeletal templicial object for some n > 0. Then we
have a canonical quiver morphism

X9 = sk, 1(X)p ~ X, — M, X

It follows from the definitions of the latching and matching objects that there is a bijective
correspondence between (isomorphism classes of) n-skeletal templicial objects X with

sk,—1(X) ~ X, and (isomorphism classes of) factorizations
X9 5 X, - M, X
of the canonical quiver morphism X %9 — M, X.

Let (o, f) : (X,S5) — (Y, T) be a morphism between (n — 1)-skelatal templicial objects
and let X and Y be n-skeletal templicial objects such that sk, (X) ~ X and sk, (Y) ~ Y.
Then there is a bijective correspondence between templicial morphisms @ : X — Y and
commutative diagrams in V Quiv:

fiXdes hXx fM, X

[

Yies — 5V, — MY

where the top and bottom horizontal rows are the factorizations corresponding to X and
Y, and the left and right vertical morphisms are induced by c.

Proposition 3.1.22. Every templicial morphism can be factored as a free templicial morphism
followed by a contractible templicial morphism.

Proof. Take a templicial morphism (c, f) : (X,5) — (Y, T). We use induction onn > 0
to construct factorizations

(B<n»9) (v<n:h)

sk, (@) : sky,(X) Z<n

sk, (Y)

in S@S@"V such that g is injective, h is surjective and for all 0 < m < n, the mth relative
latching morphism of <, is free and the mth relative matching morphism of v<,, is a
regular epimorphism.

If n = 0, then SQ%OV ~ Set and we can use Proposition 1.2.20.4 to factor f as an injective
map g : S — U followed by a surjective map h : U — T. If n > 0, assume that we
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have already constructed a factorization of sk,_;(c) as above. Consider the following
morphism in V Quivy;:

b ZR W, aeoy 1(Xn) = B (Yn) Xpe (ar, vy MnZ

determined by the following quiver morphisms:

o 79 — h*(Y,) is adjoint to the morphism h(Z29) — Y,%9 — Y, induced by
Y<n—1-

QU

* g(X,) — h*(Y,) is adjoint to the morphism hg(X,,) ~ fi(X,) — Y,,.
e Z%¢9 — M, 7 is the canonical morphism of Remark 3.1.21.

* g(X,) — M,Z is adjoint to the morphism X,, — M, X — ¢*(M, Z) induced by
ﬂgn—l-

Then by Proposition 1.2.20.3 that we can factor ¢ as

e 7/)1 'l’ *
Zaf9 W, teoy 9((Xn) = Zn =2 B*(Yn) Xne(u,v) MnZ
in V Quivy; where ¢, is free and 1), is a regular epimorphism. Consequently, by Remark
3.1.21 we have an object Z<,, € sg"v and morphisms

(Bsn,g) : Skn(X) — Zgn and (’}/Sn, h) : Zgn — Skn(Y)

which factor sk, («) as above, such that sk, _1(Z<,) = Z<n—1, skn—1(8<n) = B<n—1 and
skn—1(v<n) = Y<n—1-

Finally, taking the colimit over n > 0, we obtain a factorization of («, f) by Proposition
2.1.42:

(. f) (X, 8) L2 (z,0) &8 (v, 1)

where Z = colim,>¢ Z<,. Moreover, by construction (3, g) is free and (v, h) is con-
tractible. O

3.1.2 Projective templicial morphisms

Despite Proposition 3.1.22, the classes of free and contractible templicial morphisms do
not form a weak factorization system on SgV. Indeed, as one might expect, Example
3.1.23 shows that the class of free templicial morphisms is not closed under retracts
and thus it cannot be a left lifting class. Taking the closure under retracts, we obtain
the projective templicial morphisms (Definition 3.1.24), and this class does yield a weak
factorization system with the contractible templicial morphisms (see Theorem 3.1.28).

Moreover, in Proposition 3.1.32 we show that a projective quasi-category in V can always
be equipped with a naF-structure.
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Example 3.1.23. The class of free templicial objects (and more generally morphisms) is
not closed under retracts. Indeed, consider a unital commutative ring & and any non-free
k-module P that is a retract of k£ in Mod(k) (e.g. k = Z/6Z and P = Z/2Z). Then we
have a map k& — P so that we can consider P as a unital Mod(k)-enriched quiver with
vertex set S = {x} (see Example 2.1.35.2). Similarly, we can consider k as a unital quiver
with the identity on k as unit. Then P is also a retract of k in k Quiv,, ~ S;l Mod(k).
Under the embedding Sgl Mod(k) < Sg Mod(k), we can consider P and k as templicial
k-modules. It is now easy to see that k is free (in fact, it is isomorphic to F(A®)), but P is
not.

Definition 3.1.24. We call a templicial morphism («, f) : (X, S) — (Y, T) projective if

(a) themap f: S — T is injective, and

(b) the nthrelative latching morphism Y4911, . acq, f1(X,) — Y, is projectivein V Quiv
g P n o (xdesy proj T
(in the sense of Remark 1.2.21) for all n > 0.

In particular, we call a templicial object X projective if the initial morphism 0 — X is
projective.

Example 3.1.25. If V = Set, it follows from Example 1.2.19.1 and Corollary 3.1.9 that a
simplicial map is projective if and only if it is free, if and only if it is a monomorphism.

Lemma 3.1.26. Every free templicial morphism is projective.

Proof. This is clear from the definitions and Proposition 1.2.20.2. O

Lemma 3.1.27. The classes of projective and contractible templicial morphisms are closed under
retracts.

Proof. Let (a, f) be a projective templicial morphism and let (3, g) be a retract of (¢, f).
Then in particular g is a retract of f in Set and is therefore again injective. Moreover, each
relative latching morphism of (3, g) is projective as it can be written as a retract of (a base
change of) a relative latching morphism of («, f) (projective morphisms in V are closed
under retracts since they form a left lifting class by Proposition 1.2.20.4). Thus (8, g) is
also projective.

The proof for contractible templicial morphisms is similar. O
Theorem 3.1.28. The classes of projective and contractible templicial morphisms form a weak

factorization system on Sg V.

Proof. First note that by Propositions 3.1.22 and 3.1.26, every templicial morphism may
be factored as a projective morphism followed by a contractible one.
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Let (o, f) : (A, S) = (B,T) be projective and (,¢) : (X,U) — (Y, V) contractible in
SeV. We wish to solve the following lifting problem in SgV:

(4,5 2 (x.0)

>
N 3.1
(,f)l l(m) 3.1)
(B, T) —— (Y, V)

7,h

We show by induction that each induced lifting problem in Sg”V

skn(A) 2 e (x)

-t
sk, (a g sk (B
@ o |5k ®)
k,(B) —— sk, (Y
skn(B) 7 ska(Y)

has a solution for all n > 0. If n = 0, then SQ%OV ~ Set and it follows from Proposition
1.2.20.4 that we have a map of sets b/ : T — U such that ' f = hand gh’ = h. If n > 0,
assume we have already defined a lift v.,,_; : sk,—1(B) — sk,_1(X) as above. Then
consider the following lifting problem of quivers:

h(B3e9) T, geo) a(An) ——————— X,

h(Bn) ———————— 9" (Ya) Xg= (a1, v) Mn X

where the left vertical morphism is given by applying h| to the nth relative latching mor-
phism of (¢, f) and the right vertical morphism is the nth relative matching morphism
of (8,9). The top and bottom horizontal morphisms are induced by v, 7 and ~.,,_;.
By hypothesis, the left vertical morphism is projective and the right vertical morphism
is a regular epimorphism, so that we have a lift 4], : /B, — X,,. Then it follows by
Remark 3.1.21 that we have a lift ., : sk, (B) — sk, (X) of the diagram above such that
skn—1(7%,,) = 7%,_;. Finally, it follows by Proposition 2.1.42 that the original diagram
(3.1) has a lift.

Now take a templicial morphism « having the left lifting property with respect to all
contractible templicial morphisms. We can factor o = v with 3 projective and ~ con-
tractible. By the Retract argument (Lemma 1.2.7), « is a retract of 5 and is therefore itself
projective by Lemma 3.1.27. A similar argument shows that every templicial morphism
having the right lifting property with respect to all projective templicial morphisms is
contractible. O

Corollary 3.1.29. A templicial morphism is projective if and only if it is a (strong) retract of a
free templicial morphism.

Proof. Suppose « is a projective templicial morphism. By Proposition 3.1.22, we can
factor a = 8 in SgV with 3 free and v contractible. As « has the left lifting property
with respect to v by Theorem 3.1.28, it follows by the Retract argument (Lemma 1.2.7)
that « is a retract of 5. Moreover, this retract may always be chosen to be strong.
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Conversely, it suffices to note that every free templicial morphism is projective by Propo-
sition 3.1.26 and so are their retracts by Lemma 3.1.27. O

Corollary 3.1.30. If V = Set, then a simplicial map is contractible if and only if it is a trivial
fibration.

Proof. This follows from Remark 1.3.18, Example 3.1.25 and Theorem 3.1.28. O

Lemma 3.1.31. Let f : A — Band g : C — D be free (resp. projective) morphisms in V. Then
the canonical morphism

fRg:(A®D)lage (B®C) - B®D

is free (resp. projective).

Proof. Suppose first that f and g are free. So we have sets S and T such that f is the
coprojection A — A Il F(S) and g is the coprojection C' — C' I F(T'). Then the domain
and codomain of f X g are respectively

(A® (CUF(T)) Iage (ALLF(S)) @ C) ~ (A® F(T)) 11 (A® C) I (F(S) @ C)
(AILF(S)) ® (BILF(T)) ~ (A® F(T)) Il (A® C) 11 (F(S) ® C) IL F(S x T)

and f X g is given by the coprojection. Thus f X g is free.

Now suppose f and g are projective. Then by Proposition 1.2.20.2, f and ¢ are strong
retracts of some free morphisms f’ and ¢’ respectively. It follows that f K g is a retract of
f'®g’. So by the previous, f K g is projective. O

Proposition 3.1.32. Let (X, S) be a projective templicial object. If X is a quasi-category in V),
then X has a naF-structure.

Proof. Given 0 < j < n let us define

M; , X = li X i
X = i X €V Quiv
d(T)<n
F#6;

where the limit is taken over the full subcategory of ((Neciy;) /{0<n})0p spanned by
all necklace maps T' < {0 < n} in Nec;,; with d(T) < n, except the necklace map
9; : {0 <n—1} = {0 <n}. AsU : V — Set preserves limits, we see that an element of
U(M; X (a,b)) with a,b € S may be identified with collections (z3)}'~] and (yi)fz_ll’#.
satisfying the conditions of Corollary 2.2.22.3. Hence, an element of U(M; X (a, b)§
is equivelant to a morphism F(A?).(O,n) — Xo(a,b) in VN Consequently, the
condition that X is a quasi-category in V is equivalent to the condition that the canonical
quiver morphism X,, — M;, X is a regular epimorphism (as U preserves and reflects
regular epimorphisms).

We define quiver morphisms Z7¢ : X, ® X, — X, by induction on n = p + g, for
all p,q > 0. Define ZP:* and Z%7 to be the left and right unit isomorphisms. Now take
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n > 0 and let p, ¢ > 0 be such that p + ¢ = n. Then consider the following commutative
diagram:

(Xgeg ® Xq) H(Xgeg®X;ieg) (Xp X Xgeg) ﬂ X,

Xp @ Xq - MpnX

As X is a projective templicial object, the left vertical morphism is projective by Lemma
3.1.31. The top horizontal morphism is induced by the already defined morphisms Z*
with k + 1 < n, which is well-defined by the fact that the Z*! are natural with respect
to the degeneracy maps of X. The bottom horizontal morphism is determined by the
morphisms

X, ® Xy 2 X, @ Xpop and X, ® X, <5 X,

forall 0 < k,i < n with i # p, where

P =

£ = (Zp’kip ® iXm)(idxp ®Nk—p,l) ifp<k _ prl’q(di & idxq) ifi<p
"7 lidx, ©2P ) (g @idx,) ifp >k Zra-1(idx, ®d; ) ifi>p

Hence, there exists a lift ZP? : X, ® X, — X,, which by construction is natural with
respect to the degeneracy and inner face morphisms of X, and satisfies the Frobenius
equations (2.9). O

Example 3.1.33. Since every simplicial set is projective by Example 3.1.25, it follows from
Propositions 2.2.30 and 3.1.32 that every quasi-category has a naF-structure.

The converse to Proposition 3.1.32 is false in general, as Example 3.1.34 shows. However,
in Chapter 4 we will see that the converse does hold in case V = Mod(k) for a unital
commutative ring k (see Theorem 4.2.62).

Example 3.1.34. Let X be the simplicial set defined as the colimit of

A3 Ag
3 3 A3

A A

It is the standard 3-simplex A®, whose simplices we will represent by their vertices
lig, ..., im], with two non-degenerate 3-simplices = and y glued on. We have

Vi€ {0,1,2) : di(z) = [0,.... /... 3] butds(z) #£[0,1,2]
Vje{1,2,3} :d;i(y) = [0,..../,...,3] butdo(y) # [1,2,3]

In X, not all horns can be filled. Indeed, since

dodg(.%') = d2([1,2,3]) = [1,2] = do([o, 1,2]) = dgdo(y),
dads(z) = [0,1] = d2([0,1,3]) and dido(y) = [1,3] = do([0, 1,3])
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the faces ds(z), do(y) and [0, 1, 3] form a horn A} in X. But there is no 3-simplex in X
with these faces.

However, X does have a naF-structure. It suffices to define Z”:9(a, b) on non-degenerate
simplices a and b. For those contained in A3, define
ZP9([00y oy ipls [ips ooy Tptgl) = [0y -vs Tptq]
note that this includes all edges of X. Further, set
7%Nd3(@),[2,3)) =, and  Z"2([0,1),do(y)) = y

It is easy to check that this satisfies the Frobenius equations (2.9).

Proposition 3.1.32 does not hold without assuming projectivity.

Example 3.1.35. Let V = Mod(Z) = Ab and consider the unital Ab-enriched quiver Q
with vertex set S = {a,b} and

Z fx=a,y=>
Qx,y) = 7Z/27 ifx=y
0 otherwise

The unit of @ is given by the quotient map ¢ : Z — Z/27Z. Consider () as a templicial
abelian group X via the embedding Sgl Ab — Sg Ab. Then X is easily seen to be a
quasi-category in Ab, but the canonical map X“/(a,a) — X, (a, a) is given by ¢ which
is not projective. Note that X does not have a naF-structure, because this would require
the existence of a map

78 (X @ X1)(a,b) 2 Z/22 @ Z)27 — Xo(a,b) ~Z &7

whichisasectionof u11 =q®q:ZSZ - Z/2Z & ZL/2Z.

3.1.3 Non-degenerate simplices

Unlike the case for simplicial sets, a general templicial object does not have a well-defined
notion of non-degenerate simplices. Given a templicial object X and n > 0, one might
expect to have a quiver N € V Quivg such that the canonical morphism X249 — X,, is
isomorphic to the coprojection

Xdeg — xde9 I N

We might then consider N(a, b) as the “object of non-degenerate n-simplices of X from a
to b” where a and b are vertices of X. Such a quiver N need not exist however, as Example
3.1.36 shows. But if we restrict to free templicial objects, a choice for N can always be
made (Definition 3.1.38).

Example 3.1.36. Consider the monoidal category V = Mod(Z) = Ab of abelian groups.
Let S = {} be a singleton and define a functor X : A%’ — Ab by setting X,, = Z for all

n > 0 with s : Xg = Z 25 X, = Z and all other face and degeneracy maps given by the
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identity on Z. Then X is a strongly unital, colax monoidal functor with comultiplication
map p,; for k,1 > 0 given by

2z ifk,I>0

Xy =72 — X X 27z
[kl k41 k@A z {z ifk=00rl=0

We thus find a templicial abelian group (X, S). Now note that the image of X{* — X,
is given by the submodule 2Z C Z which doesn’t have a direct complement.

Remark 3.1.37. Note that actually we do not use the hypothesis that U : V — Set preserves
or reflects regular epimorphisms to obtain the result of Propositoin 3.1.7. Thus the
following definition and lemma apply even without this assumption.
Definition 3.1.38. Let (X, 5) be a free templicial object and let Z : A}  — Quivg be
a functor such that X\A:Z”_ ~ FZ in Fun(Agy ;,V Quivg) and Z49(a,b) — Z,(a,b) is
injective for all n > 0 and a,b € S. Then in particular X4 ~ F(Z29) for all n > 0. We
define the object of non-degenerate n-simplices of X from a to b as

X;de(a7b) - F(Zn(av b) \ Zzeg(a’a b)) eV
This yields a quiver X”¢ € V Quivg along with an isomorphism

X, ~ Xdeg 11 x4

which identifies the morphism X4 — X,, with the coprojection X2¢9 — Xde9 IT X4,
Further, we set XJ¢ = X.

Whenever writing X"¢ for a free templicial object X, we implicitly assume a functor

op
Z: Ag,.; — Quivg as above has been chosen.

Recall the Eilenberg-Zilber lemma for simplicial sets (Lemma 1.3.7). Equivalently, this
lemma states that for every simplicial set X' and n > 0, there exists a bijection

K,~ T[] K

o] K]
m Asurj

where K'Y C K, denotes the subset of non-degenerate k-simplices of K. We can prove
the analogue for templicial objects if we assume that they are free.

Lemma 3.1.39. Let X be a free templicial object and n > 0. We have an isomorphism of quivers:
X, ~ H xpd

o:[n]—>[k]
in Dgurj

Proof. By definition, Xy = X7?. Take n > 0, then it follows by induction that

X, ~ XM X399 = X colim X, ~ X 1T colim xpd
[n]—[k] [(n]—[k]
0<k<n 0<k<n o:[k]—=>[l]
~ X1 ]_[ colim Xyt~ xprd1r ] x4
n] [k [l ,
q[z] o:[n]—[]
0<l<n o= ‘72‘71 0<i<n

The last isomorphism is obtained by noting that the colimit on the left hand side is taken
over a category which has a terminal object given by the factorization [n] — [n] 5 []. O
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3.2 Necklace categories

There is a classical adjunction € : SSet = Cata : N"© between simplicial sets and sim-
plicial categories, originally constructed by Cordier and Porter [CP86]. The composition
in a quasi-category is only well-defined, associative and unital up to homotopy, while
the composition in a simplicial category is by definition associative and unital “on the
nose”. One can thus see the functor ¢ as a “rigidification” of quasi-categories. We will
consider the adjunction € - N"¢ in more detail in Chapter 4 when we generalize it to
an adjunction €y, 4 NJi° between templicial objects and categories enriched in simplicial
objects SV (see §4.1.2).

This section introduces a functor (—)"°¢ : SgV < V Cat yre. from templicial objects (and
thus simplicial sets if 1V = Set) to a category of small enriched categories V Cat pre. which
we call necklace categories. Like €, the functor (—)"°° can thus also be seen as a type of
rigidification. The functor € is not a full embedding but we will see that (—)"° is fully
faithful in Proposition 3.2.6. So we can interpret (—)"* as a rigidification which does not
lose any information. Moreover, the functor €y, above will factor through (—)™¢c.

Passing to necklace categories makes a lot of facts about templicial objects easier to
prove. Many constructions, like the templicial nerve Ny and the functor U actually factor
through V Cat s (Propositions 3.2.11 and 3.2.14). Moreover, we will identify conditions
on a necklace category C so that its associated templicial object C**? is a quasi-category
in V or has a Frobenius structure (Proposition 3.2.20 and Corollary 3.2.22). Finally, we
use V Catpse. to show that SgV is locally presentable (Theorem 3.2.29) and we briefly
discuss its limits.

3.2.1 Coreflective embedding

We open the section by equipping the functor category V" with the (non-symmetric)
monoidal structure of the Day convolution (Construction 3.2.1). Necklace categories
are then defined as categories enriched in VV°*””. We continue by constructing the full
embedding (—)"¢ (Construction 3.2.5) and showing that it is coreflective in the sense that
it has a right-adjoint (=)' : V Catarec — SgV. The functor (—)"™P can be described
relatively explicitly by induction on the dimension (Construction 3.2.8).

Construction 3.2.1. Consider the category VN of functors Nec®”” — V. As Nec?
and V are both monoidal categories, we can endow V" with the monoidal structure
given by Day convolution (see [Day70]). We denote the resulting monoidal category by
(V./\/ec"p7 ®Day; l)

Given two functors X,Y : Nec” — V, their Day convolution X ®p,, Y is obtained by
the left Kan extension of the composite

XxY —®—
Nec®”” x Nec? 225 xp =25 p
along V : Nec? x Nec? — NecoP:

X ®Day Y = La,l’l\/(X(—) & Y(_))
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Further, the monoidal unit of V<™ is given by the representable functor on the monoidal
unit {0} of Nec. As {0} isalso the terminal object of N'ec, we find that F(Nec(—, {0})) ~ I
is the constant functor on I, the monoidal unit of V.

Beware that the monoidal category (VN @ pq,, I) is not symmetric.

Proposition 3.2.2. Let X and Y be functors N'ec®? — V and T a necklace. Then there is a
reflexive coequalizer

o
I XueYy «— [l Xv®Yy — (X ®pay Y)r (3.2)
s T

where o and (3 are given by, for all U, N,V € Necwith UV NVV =T:

awy,ny = tovn,v (X (dy Von) @ idyy, )
Bun,v = tu,nvv (idx, @Y (on Vidy))

with oy : N — {0} the terminal necklace map.

Proof. By Construction 3.2.1, we have a (reflexive) coequalizer diagram:

’

o /
H XU’ ®YV/ :;/ H XU ®YV % (X ®Day Y)T

i 7 orhow
g: V=V’ maec

where o'ty 54 = t(X(f) ® Y(g)) and B'tn 5y = t(pvgn forall h : T — UV V and
f:U=U,g:V —V'inNec.

On the other hand, let ¢ : [[,,,,,_y Xu ® Yy — C denote the coequalizer of a and /3 in
(3.2). Consider the morphism ¢ : [[;;,v_7 Xv ® Yv = [1;_, vy Xu @ Yy defined by
sending a pair of necklaces (U, V) with U V V' = T to the identity on T'. Then it easy to
see that ¢ decends to a morphism

@Z C—> (X ®Day Y)T

Conversely take necklaces (U, p), (V,¢) and (T,n), and a necklacemap h : T — U V V.
Let k € T be minimal such that h(k) = p. This minimum exists as U V V' C h(T).
As a morphism in Ay, h : [n] — [p + ¢] has a unique representation as h = hy + hy
with hy @ [k] — [p] and hy @ [n — k] — [¢)] in Ay. Nowset U’ = {t | t € T,t < k}
and V! = {t—k |t € T,k <t}. Then (U',k) and (V',n — k) are necklaces such that
T = U’ v V'. Moreover, we have induced necklace maps hyy : U’ — U and hy : V! -V
such that h = hy V hy. Define a morphism

v: I Xvevw-— ][] Xvew

by setting ¥, = vy v (X (hy) @ Y (hy)). It follows that ¢ descends to a morphism

Y (X ®pay Y)r = C
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Indeed, take necklace maps h; : T' = Uy VViand f : Uy — Us, g : Vi — V3, and set
he = (f V g)h1. As above, we have (T,n) = (U/, k;) vV (V/,n —k;) and h; = hy, V hy, with
hy, : Ul = U; and hy, : V! — V,, for i € {1,2}. Observe that

Q¢O/Lh1,f,g = qi/)th (X(f) & Y(g)) = qLU{,Vll(X(thl) ® Y(ghV1))

By the minimality of k2 € T, itfollows thatU; = U,V N, Vy = NVV{ and fhy, = hy,Von,
hy, = on V ghy, for some necklace N and o : N — {0}. Thus as ga = ¢, we have

qLU{,V{(X(thl) & Y(gth)) = qlusvy (X(hUz) ® Y(hvz)) = Q¢5/Lh1,f.,g

Hence, qipa’ = ¢’ and thus there exists a unique morphism ¢ such that gy = 9q’. It
easily follows that ¢ is inverse to @.

Finally, we can define a morphism v : [[,,v_7 Xv ® Yv = [{yynvver Xuv @ Yy by
setting yiy,v = ty,{0},v- Then clearly ay = id = By so that the coequalizer (3.2) is
reflexive. O

Definition 3.2.3. Consider the category
VY Cataree = YNee”” _Cat

of small categories enriched in the monoidal category (VN @p,, I) of Construction
3.2.1. We call the objects of V Cat are. necklace categories and its morphisms necklace functors.

If V = Set, we simply write Cat e, for Set Catarec.

Construction 3.2.4. Let (X, S) be a templicial object and consider the strong monoidal
functor of Construction 2.2.16:

Xe : Nec®” — Quivg(V)

We construct a necklace category X"°¢ with object set .S and hom-objects given by the
functors X, (a,b) : Nec®? — V forall a,b € S.

Take a, b, c € S, then for any necklaces U and V, we have a canonical morphism
myy = Xu(a,b) @ Xy (b,¢) = (Xu ®s Xv)(a,c) ~ Xuyy(a,c)
By the coequalizer diagram (3.2), it follows that we have an induced morphism in V"¢¢”":
Mabe: Xeo(@ ) ®pay Xe(b,¢) = Xo(a,c)

Further, note that X} (a,a) = Xo(a,a) ~ I for all a € S and thus we have an induced
morphism
u:l— Xq(a,a)

It is easy to check that m is associative and unital with respect to u so that we obtain a
VNee™ enriched category X™°°.

Construction 3.2.5. Let (o, f) : (X,5) — (Y, T) be a templicial morphism, we define
a necklace functor ¢ : X" — Y™¢¢ as follows. On objects it is given by the map
f:S — T. Further, for any a,b € S, we have a morphism in V<"

Qap : Xe(a,b) = Yo(f(a), f())
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which is given by, for all necklaces U = {0 = ug < u1 < ... < ux = p}:

au1®...®ap,uk71

(ap)v = Xv(a,b) —————— Yy (f(a), f(b))

where we identified «,, : fiX, — Y, with its adjoint X,, — f*Y,, for all n > 0 (see
Construction 1.1.16). The compatibility of a,; with inert morphisms in NMec follows
from the monoidality of o and the compatibility with active morphisms follows from
the naturality of . It is easy to verify that this defines a VN°*""-enriched functor a™*¢ :
Xnec — YTlEC‘

Finally, we clearly obtain a functor
(=)™ : SV — V Catrec
Proposition 3.2.6. The functor (—)"°¢ : SgV — V Catarec is fully faithful.

Proof. Take templicial objects (X, S) and (Y, T) and a necklace functor H : X™°® — Y™°°,
Let f : S — T be the object map of the functor H. For n > 0 we define

an : fi(Xn) = fiXj0<n}) = Yiocn) = Ya

to be adjoint to the quiver morphism Hopny : X1o<n} — f*(Y70<n}). As H is compatible
with active morphisms, «, is natural inn. Let U = {0 = up < u1 < ... < uy = p} be a
necklace. It follows from Construction 3.2.4 that the quiver morphism Hy : Xy — Yy
is equal to Hygcy,} ® ... @ H{g<p—u,_,} and thus a is monoidal and H = a"*“. Clearly,
(o, f) is also unique with this property. O

Remark 3.2.7. Let S be a set. As V Quivg is isomorphic to the category V9>, we have a
canonical equivalence of categories VV¢¢” Quivg ~ V Quivy *” . Equipping V Quiviy «”
with the Day convolution as well, this equivalence extends to an equivalence of monoidal
categories.

It is well known (see for example [MMSS01, Proposition 22.1]) that monoids in a category
of functors equipped with the Day convolution are equivalent to lax monoidal functors.
In our situation, this amounts to an equivalence of categories:

Mon(VVee™ Quivg) ~ Mon(V Quivy “”) ~ Lax(Nec®, V Quivy)

letting S € Set vary and applying the Grothendieck construction on both sides, we obtain
an equivalence of categories

V Catprec = / Lax(Nec®,V Quivg)
SeSet

Thus we may identify necklace categories with lax monoidal functors N'ec®” — V Quivg
with S a set. Under this identification, the essential image of the functor (—)"°° consists
of the strong monoidal functors Nec®” — V Quivg with S a set.

We will now construct a right-adjoint to the inclusion (—)"*“ : SgV < V Cat zrec.



3.2. NECKLACE CATEGORIES 87

Construction 3.2.8. Fix a necklace category C with set of objects S. For every neckace T,
we have a V-enriched quiver Cr = (Cr(a, b)), ;e s Then the composition and identities of
C induce quiver morphisms

ThU’V :Cuy®sCy - Cyyy and wu:lg — C{O}

for all necklaces U and V. We construct a templicial object (C**?, S) as follows. Set
Co™ = Igand pg = u : C;™™" — Cyo). Now let n > 0. We inductively define an object
Clem? ¢ Y Quivg along with morphisms p,, and fu;,; as the limit of the following diagram

of solid arrows in V Quivg:

C;ﬁlemp 777(7/?317)7167,1777> H C}iemp R Cltemp N H C:ﬁemp R C;emp g Cfemp
| k,1>0 B r,5,t>0
: k+l=n rdst+t=n
Pn |
i lHk,l PLAPI
~
Cio<n) II Crocky ®s Cro<y
k>0
k+l=n
m} J/Hk,l M{0<k},{0<1}
H C{O<k<k+l}
k>0
k+l=n
(3.3)
where « and 5 are defined by
T st = (ldr ®,Ufs,t)7rr,s+t and ’/Tr,s,tﬂ = (Nr,s & idt)ﬂ—r—i-s,t
For example, Ci“™" = Cio,13 with py =ide,, ,,, and CL™P is the pullback of M{0<1},{0<1}

and C(v1,1). We further set yo,, and un,oyto be the left and right unit isomorphisms
respectively:
C;Elemp 1> C(t)emp ®sg Crtlemp7 Crtzemp ; CTtLe'rrzp Qg Céemp

Further, let f : [m] — [n] be a morphism in A ;. We define a quiver morphism C**™?(f) :
CLe™? — CLe™P by induction on m. Set C'*™P(idjy)) to be the identity on Ig. If m > 0, we
let C**™P( f) be the unique morphism satisfying, for all k£, > 0 with k + [ = m:

P CH P (f) = (CP(f1) @5 C* (f2) g

and

PmC P (f) = C(f)pn

where f; : [k] — [p] and f : [I] — [¢] are unique in Ay such that f; + fo = f. (Note that
in case m = 1, the first condition is empty and C**"?( f) is just C(f)pn-)

We have thus constructed a well-defined functor
ctemp . A‘}p — V Quivg

By construction, C**™? is strongly unital and colax monoidal with comultiplication given
by the morphisms (g,1)k.1>0-
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Theorem 3.2.9. The assignment C — C'*™P of Construction 3.2.8 extends to a functor
(=) Y Catpree — SeV

that is right adjoint to the functor (—)™°c.

Proof. Take a necklace category C. For every necklace T' = {0 =ty < t; < ... <t} = p},
consider the quiver morphism

Pt1R...QpPp—t, _ -
gep 1 (C)p ——— Clo.} ® o @ Cloptyr} — Cr

By Construction 3.2.8 this morphism is natural in T and it follows immediately that we
have a necklace functor
ee: (Ctemp)nec N C

For a necklace functor H : X"*® — C with (X, S) a templicial object, define ¢ as the
canonical quiver morphism Xo ~ Is = f*(Ionc)) = f*(C;"") where f : S — Ob(C)
is the object map of H. Then we define a morphism «,, : X,, — f*(C."?) by induction
onn > 0. Let 3, : fi(X,) = fi(X{0,n}) = Cfo,n} be the adjoint to Hyo,}. By the
construction of C**?, we have a unique morphism «, : fi(X,,) = CL™? such that

PnGn = 671
and for all k,! > O with k 4+ = n, py; o a, is equal to the composite

f!(Hi(,L)

where we used to colax monoidal structure of f (Lemma 1.1.18). Hence, we obtain a
templicial morphism (o, f) : (X, S) — (C**™?,Ob(C)). Moreover, by the compatibility of
H with the compositions of X" and C, we have that

H(XL© X1) = f(X3) @ fi(X)) 2222 clemp @ cfem?

ec ca™t =H

Itis clear by construction that « is the unique templicial morphism with this property. [

3.2.2 Some past constructions revisited

We show that the functor U : SgV — SSet (Proposition 2.1.25) and the templicial nerve
Ny :V Cat — SgV (Construction 2.3.4) factor through the category V Cat xr.. of necklace
categories.

Notation 3.2.10. By post-composition, the adjunction F' : Set & V : U induces an ad-
junction F : SetNe*” & pNee™ . [/ Note that as F is strong monoidal and preserves
colimits, the induced functor F : SetNee™ _y YpNee™ ig strong monoidal as well. There-
fore, Proposition 1.1.23 provides an adjunction which we denote by

F
—
Catarec ; VY Cataree
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Proposition 3.2.11. There is diagram of adjunctions

SSet SeV

(_)nec 4 (_)tenlp (_)nec{_' (7)te7np

F
Cataree ; VY Catree

which commutes in the sense that we have natural isomorphisms
()"0 Fov Fo(=)™ and U o (=) o (—)temp oy
In particular, we have a natural isomorphism
0 = (=) oth o ()
Proof. 1t suffices to show the commutativity of the left-adjoints. But this immediately
follows from the fact that F' : Set — V is strong monoidal and preserves colimits. The

final isomorphism U ~ (=)™ o f o (—)"*¢ follows from the fact that (—)" is fully
faithful. O

Lemma 3.2.12. Let C be a finitely complete category. Let f : A — B be a morphism in C and
n > 2. Then A is the limit of the following diagram of solid arrows:

A «
A --=-- y J] A ¢ [] A
! k,1>0 B r,8,t>0
I k+l=n r4+s+t=n
|
|

where A is the diagonal morphism and « and (3 are defined by
Tp,st OO0 = Tp4s ¢t and Tr,s,t © ﬂ = Ty s+t

forallr,s,t > 0withr 4+ s+t =n.

Proof. Suppose Z € Cwithu: Z — ], ,Aand v : Z — B such that ([] , f)u = Av and
au = Su. Then note that for all k, 1, ¥/, l’ > 0with k+1 = k' +1' = n, the projections 7 ju
and 7/ ru coincide. Indeed, we may assume that k < &’ (i.e. [ > ) and thus

MU = Th, 11/ 1 BU = T —p 1 QU = T 11U

Weset h : Z — A to be equal to these morphisms 7, ;u (note that there exists at least one
such morphism since n > 2). Then by construction, Ah = u. Moreover,

fh:ﬂ'k,lAfh:Tl'kJ Hf Ah:ﬂ'kJ Hf u:ﬂ'kylAv:v
k1l k,l

It is clear that A is unique such that Ah = vwand fh = v. O
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Construction 3.2.13. Let (=) : V — VVe”” denote the diagonal functor associating to
every object A € V the constant functor on A.

Itis easy to see that forall A, B € Vand T € Nec, the following diagram is a coequalizer:

[I A9B—= ]| A®B—Y» A®B

U,N,VeNec B U, VENec
UVNVV=T UVV=T
where V denotes the codiagonal and awynv = wun,v, BNy = tunvy for all

UN,V € Necwith U vV NVV = T. It then follows from Proposition 3.2.2 that (=)
is strong monoidal and thus we have an induced functor
(=) : VCat = V Catprec

Proposition 3.2.14. There is a diagram of functors

VY Cat

SeV

Ny

VY Catarec

which commutes in the sense that we have a natural isomorphism

NV ~ (_)te'rnp ° (_)

Proof. Given a small V-enriched category C, denote its underlying V-enriched quiver also
by C. By definition, Cg™™" = Iopc). We proceed by induction on n > 0 to show that
fom” ~ C®" and p,, : fo"”” — C is the reverse composition m(™ : C®" — C (see Remark

1.1.22). Indeed, by Construction 3.2.8, C:*"*? is the limit of the following diagram of solid
arrows:

A (0%
[ R — > [1 C®*ec® —= [ C® ®C® ®C%
| k,0>0 B r,8,6>0
: k+l=n r+s+t=n
Pn |
s
C II ¢&C
k>0
k+l=n
A .
lnk,L m
I] €
k>0
k+l=n

So as m(m“’) ® ﬁl(l)) = m*+D it follows from Lemma 3.2.12 that we may identify Qﬁfmp
with C®" and p,, with (™).

It quickly follows that this identification induces an isomorphism of templicial objects
C'*™ ~ Ny,(C), which is clearly natural in C. O
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3.2.3 Quasi-categories and Frobenius structures

In this subsection we identify sufficient conditions on a necklace category C such that
its associated templicial object C**"? is a quasi-category in V (Corollary 3.2.22) or has a
Frobenius structure (Proposition 3.2.20). To achieve the latter, we embed the category
of necklaces Nec into a larger category Nec. This category also contains what we call
coinert maps which parametrize the multiplication morphisms of a Frobenius structure.
For example, there is a coinert map {0 < p + ¢} — {0 < p < p + ¢} in Nec which should
be interpreted as parametrizing the morphism

7P X, @5 Xy — Xpig

of a Frobenius structure Z on a templicial object (X, S). Therefore, if a necklace category

C can be extended to a VVe¢" -enriched category, then the associated templicial object
C'e™? has a Frobenius structure.

Definition 3.2.15. We define a monoidal category Nec as follows:

The objects of Nec are the same as those of Nec. Given two necklaces (7', p) and (U, q),
a morphism (7,p) — (U,q) in Nec is a pair (f,U’) with f : [p] — [¢] in Ay and
fTuU CU’ < gl

The composition of two morphisms (f,U’) : T — U and (¢,V’) : U — V is given by the
pair (gf, V' Ug(U’)) and the identity on a necklace 7" is given by the pair (idp,, T').

The category N ec has a monoidal structure given on morphisms by
(U V(g V) = (f Ve, U VT
with monoidal unit given by the necklace ({0}, 0).

Finally, note that we can identify N'ec with the non-full monoidal subcategory of Nec
that consists of all morphisms (f,U’) : T — U such that U’ = f(T).

Remark 3.2.16. Let Nec™™" denote the subcategory of Aec consisting of all inert necklace
maps. Note that we can also embed the opposite category (Nec™")°P into Nec by
sending an inert map f : (T,q) — (U, q) to the pair f*° = (id[,,T) : U — T (this is
well-defined as U C T'). Let us call such a morphism a coinert map. Then we can uniquely
decompose every morphism f : T — U in Nec as

rhn i By

where f; is an active necklace map, f5° is a coinert map and fs is an inert necklace map.
It follows that NV ec is characterized by the following universal property:

Let C be a category and F : Nec — C and G : (Nec™*"*)°P — C functors such that for
every commutative diagram of necklace maps

97

T

U’T>U
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with g and ¢’ inert and f'(T") = U’ U f(T'), we have that
G(9)F(f) = F(f)G(9)

Then there is a unique functor B
F:Nec—C

SuCh that F‘N@C = F and F‘(Necinert)op = G.

Remark 3.2.17. Consider the functor category VYNVee™ | As for YVee™ , we can equip YVee
with the monoidal closed structure given by Day convolution (see [Day70]).

Proposition 3.2.18. The restriction functor VNe¢™ — YNee™ is lax monoidal.

Proof. First note that {0} is still the terminal object of Nec and thus as in Construction
3.2.1, the monoidal unit of VV¢¢” is given by the constant functor . Thus the restriction
functor YVee™ — pNee™ ig at least strongly unital.

Now take functors X,Y : Nec” — V and let X®p,,Y denote their monoidal product

. Nec’lP . . . 7 . .
in VNe¢". Then the strong monoidal inclusion ¢ : Nec < Nec induces a canonical
morphism in YV ee”

Xt ®pay Yt =Lany(Xu(—)®Yi(—)) = Lany (X (—) @ Y(—))t = (X®payY )t

It is now easy to see that this morphism is natural in X and Y and that it equips the
forgetful functor VV ec” _y YNee® with a lax monoidal structure. O

Notation 3.2.19. We denote

V Catyres = Ve - Cat
Note that by Proposition 3.2.18 there is an induced forgetful functor
% Catm -V CatNec

Proposition 3.2.20. Let C be a necklace category. Assume that there is an object C in V Catyro;
that resticts to C when applying the functor V Catyro; — V Catrec. Then C**™ has a Frobenius
structure.

Proof. Denote the comultiplication of C**"? by 1. We define a Frobenius structure

k, . ptemp temp temp
(Z . Ck ® Cl - Ck+l )k,lzo

on C!*™P by induction on the pairs (k,l). If & = 0, we set Z%! to be the left unit

isomorphism Z°! : Is @ /™ = . Similarly, if | = 0, we set Z*° to be the right
unit isomorphism. This forces that condition (2.8) of Definition 2.2.34 holds.

Assume further that &, > 0 and set n = k + [. For all p,q > 0 with p + ¢ = n, define a
morphism &, , : €, @ C[™ — CL™P @ CLe™ by

(Zk,l*q ® idc(tlemp)(idc;eemp ®/’L[)—k,q) lf k' < p
€pg = { idgtempggtems ifk=p (3.4)
(idczemp ®Zk7p’l)(ﬂp,q—l ® idc[tenzp) ifk>p
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If k < p, we have a commutative diagram in Nec:

<k} VVp

(O<k<p<nf i<k <n)

u;?,,fkvidmﬁ Tuz?nfk

{O<p<n}T{O<n}

Moreover, we have that

Vip—k © Ve p—k = {05}
Itnow follows from the construction of C**™? (diagram (3.3)) and the induction hypothesis
that

Q

(Vp,g) C (V% 1) go<iy, o< (DK @ p1)

= C(V§%_k V id{o<qy)C(idgo<ky VVp—kn—p) o<k} o<t} (Pk ® D1)

= C(Vi% 1, Vidjocqy) o<k} fo<p—k<i} (idegoy @C(Vp—kn—p)) Pk @ P1)

= C(V§%_k V id{o<q})Mio<k) {0<p—k<i} (Pk @ Mfocp—i} {0<q} Pp—k @ Do) tip—k,q)
= é(yg?p—k N id{0<q}) {0<k<p},{0<q} (m{0<k},{0<p—k}(pk ® Pp—k) k,p—k @ Pq)ép,q
= C(Wi% 1 Vidjocqr)Mio<kep}, fo<q} (C(Whp—1) @idey, ., ) (Pp @ Pg)pg

= C(e%p—k V id0<q))C(Whp—k Vide o, ) (0<p) . {0<q) (P @ Dg)Epg

= M{0<p},{0<q}(Pp ® Pg)p,q

Similarly, C(Vpﬂ)é(yl?,)nfk)m{0<7€},{0<l}(pk ® pi) = Tgo<p} {0<q} (Pp ® Pg)ép,q also holds
when k > p or k = p. Hence, by the construction of C/¢""? as the limit (3.3), there is a

unique morphism
Zk,l . C]tcemp ® Cltemp N CTtLemp

such that p, 25! = C(v§°, _ 1 )Mio<y o<ty (pr @ pr) and pp o 25t = ¢, , forall p, ¢ > 0 with
p + ¢ = n. In particular, the Frobenius condition (2.9) is satisfied.

A similar argument from induction shows that the morphisms Z** are natural in k,l > 0
and satisfy associativity (2.8). O

Let us now investigate when the templicial object C*"*? is a quasi-category in V.

Proposition 3.2.21. Let C be a necklace category with object set S. For any a,b € S, the
canonical morphzsm ec i (C*P)4(a,b) — Co(a,b) has the right lifting property with respect to
Cell in Yree™

Proof. Leta,b € S and n > 0, and consider a commutative diagram

F(OA™)4(0,n) — CL(a,b)

l I

F(A™)4(0,n) —— Cq(a,b)

in YVe¢”” " The top horizontal morphism corresponds to some collections of elements
(z1)7=1 and (y:)7=" with 2, € U((C7™ @ ") (a, b)) and y; € U(CLF (a,b)), satis-
fying the conditions of Corollary 2.2.22.2. Moreover the bottom horizontal morphism
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corresponds to an element 2z’ € U(Cfo<n}(a,b)) and the commutativity of the diagram
comes down to the condition that C(vxn—1)(2') = Myo<k} {0<n—k} Pk ® Pn_r)(zx) and
C(6:)(2") = pn—1(y;) forall 0 < k,i < n.

Then by Construction 3.2.8, there exists a unique element z € U(CLP(a, b)) such that
prn—k(2) =z forall0 < k < n,and p,(z) = z’. Moreover, we have that d;(z) = y; for all
0 < i < n. Indeed, again by Construction 3.2.8, it suffices to note that forall 0 < k,7 < n:

(d(z)) _ (dl & idcie:r;c;il)(ukJan,k(Z)) le S k
Hien—1-k\G (idcltcemp ®di7k)(/ik,nfk(z)) ifi >k
Pr—1(di(2)) = C(6:)pn(z) = C(6;)(2") = pn—1(y:)

= kn—1-k (Vi)

Hence, the element z determines a morphism F(A"),(0,7) — CL™(a, b) which is a lift
of the above diagram. O

Corollary 3.2.22. Let C be a necklace category with object set S. Suppose that for all a,b € S,
Ce(a, b) lifts inner horns in VN Then (C*™P, S) is a quasi-category in V.

Proof. Let a,b € S. By Proposition 3.2.21 and Lemma 2.2.25, the canonical morphism
(CtP)y(a,b) — Ce(a,b) has the right lifting property with respect to the inner horn
inclusion F(A;‘).(a,b) — F(A™)4(a,b) for all 0 < j < n. Thus as Ce(a,b) lifts inner
horns, so does (C**™?)4(a,b). Hence, (C**™?, S) is a quasi-category in V. O

3.2.4 Local presentability

Fix a regular cardinal A. We show that for A > R, the category SgV of templicial objects
is locally A-presentable if V is. This will go via the embedding (—)"* : SgV < V Catyrec
(see Theorem 3.2.29). For background on locally presentable categories, we refer to
[AR94]. Further, we will make use of the following results from the literature.

Proposition 3.2.23 ([KL01], Corollary 3.4). Let (W, ®,I) be a cocomplete monoidal closed
category. Then the forgetful functor

W Cat — W Quiv

preserves filtered colimits.

Proposition 3.2.24 ([KLO1], Proposition 4.4 and Theorem 4.5). Let (W, ®,I) a monoidal
closed category such that W is locally A-presentable. Then W Quiv and W Cat are locally
A-presentable as well.

Theorem 3.2.25 ([Hen20], Theorem A.2). Assume that A\ > N, and let C be a locally -
presentable category. Then for every comonad T on C which preserves A-filtered colimits, the
category of coalgebras over T is locally A-presentable as well.

Corollary 3.2.26. Assume that V is locally A-presentable. Then the category of necklace categories
V Cat e is locally A-presentable as well.
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Proof. By the standing hypotheses, the monoidal product — ® — in V preserves colimits
in each variable. So as V is assumed to be locally presentable, each of the functors A ® —
and — ® A has a right-adjoint for all A € V, and thus V is monoidal closed. Then by
[Day70], the monoidal category (VN e @ Day» L) is also closed. Moreover, as V is locally
\-presentable, so is VN (see for example [AR94, Corollary 1.54]). So it follows by
Proposition 3.2.24 that V Cat /.. is locally A-presentable as well. O

Recall the description of colimits in V Quiv given in Remark 1.1.17.

Lemma 3.2.27. Let Dy, Dy : J — V Quiv be filtered diagrams which coincide after composition
with V Quiv — Set. Let S7 denote the set of objects of D+ (j) and Dx(3) for each j € J and set
S = colimje 7 S7. Then the canonical morphism in ¥V Quiv:

coli (D1(7) 95 Da(s)) = (colim D)) s (colim D))
is an isomorphism.

Proof. Foreach j € J and every t :i — jin J,lett; : S7 — Sand ¢, : S* — S7 denote
the canonical maps. Take z,y € S. Evaluating the above morphism in (z,y), we find the
following morphism in V:

colm [T (D)@ h) @ Do)t Sreotin [T (Di(0)(ah) © D) (¥, 0)
jeg ) L,JET ! )
a,b,ceS? a,beS",b ,ceS?
vj(a)=z vi(a)=x
ti(e)=y ti(e)=y
i (b)=0; (¥

Now define a morphism ¢ from right to left as follows. Take i,j € J and a,b € S,
V,c € S7suchthat;(a) =z, j(c) = yand ;(b) = ;(b). As J is filtered, we can choose a
k € J withmorphisms s : ¢ — kand ¢ : j — k such that ¢s(b) = ¢,(b'). Thenseta = t5(a),
¢ = 1;(c) and b = 15(b) = 1;(v') in S*. Then consider the composite

D1(i)(a,b) @ Da(5)(t, c) = Di(k)(@,b) ® Da(k)(b,¢) — colim (D1 (5) @51 Da (7)) (2, y)

of D1(8)q,5®Da2(t)y . with the canonical morphism. Itis easy to see that these morphisms
define a morphism 1 which is inverse to ¢. O

Proposition 3.2.28. The functor (=)™ : V Catprec — SgV preserves filtered colimits.

Proof. Let D : J — V Catyec be a filtered diagram. Let C denote its colimit and set
S = Ob(C). Then S ~ colim; Ob(D(j)). Let ¢; denote the canonical map Ob(D(j)) — S
for all j € J. Then we have for every T' € Nec that Cr =~ colim; D(j)r in V Quiv
by Proposition 3.2.23. We will show by induction on n > 0 that the canonical quiver
morphism

colim D(j)temp — clemp

JjET

is an isomorphism in V Quiv.
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For n = 0, this follows from the isomorphism S =~ colim; Ob(D(j)). Assume futher that
n > 0. By Construction 3.2.8, C¢? is the limit of the following diagram of solid arrows:

t (tk, 1)k 1 temp temp ol + + temp
ctemp ____MRURL__ y [I ClmPegclr — = [ ClemP g ClemP @ L
| k,1>0 B r,5,t>0
: k+l=n r4+s+t=n
Pn |
i lHk,l PLAPI
~
Cio<ny II Crocky ®s Cro<y
k,0>0
k+l=n

(€)1 lHk,zTh{o<k},{o<z}

H C{O<k<k+l}
k,1>0
k+l=n

where m is the reverse composition of C (see Remark 1.1.22). By the induction hypothesis,
CiE™P ~ colim; D(j)i™ for all 0 < k < n. By Proposition 3.2.24, finite limits commute
with filtered colimits in V Quiv (see for example [AR94], Proposition 1.59). Thus it follows

by Lemma 3.2.27 that also CL™? ~ colim; D(j){e™?. O

n

Theorem 3.2.29. Assume that A > No and V is locally A-presentable. Then the category of
templicial objects SgV is locally A-presentable.

Proof. Consider the idempotent comonad 7" = (—)"“ o (—)*™? on C. Then SgV is
equivalent to the category of coalgebras on 7" (see the dual of [Bor94b, Corollary 4.2.4] for
example). By Proposition 3.2.28, T" preserves M-filtered colimits. Thus the result follows
from Theorem 3.2.25 and Corollary 3.2.26. O

Proposition 3.2.30. Let C and D be cocomplete monoidal categories categories and H : C — D
a lax monoidal functor which preserves M-filtered colimits. Then the induced functor

H :CCat — DCat

preserves Mfiltered colimits as well.

Proof. We first show that the induced functor H : C Quiv — D Quiv preserves A-filtered
colimits. Let D : J — C Quiv : j — (Q7, 57) be a Mfiltered diagram. Set .S = colimje 7 S”.
Consider the canonical quiver morphism

: coli J lim Q7
o0 - 1 (clip)

Then ¢ is given on vertices by the identity on S. Take z,y € S, we wish to show that the
induced morphism

. ; J i J
@oycolim [T H(@(a.0) » H(colim [] @(a.))
a,beS’? a,beS’?
tj(a)=x tj(a)=z
v (b)=y vj(b)=y

is an isomorphism in V. Define a category 7., with objects all triples (j, a, b) with j € J
and a,b € 57 such that ¢j(a) = z and ¢j(b) = y. A morphism (i,a,b) — (j,¢,d) in T, is
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given by a morphism ¢ : i — jin J such that D(¢)(a) = cand D(t)(b) = d. Then it is easy
to see that 7, , is a M-filtered category and ¢, , is isomorphic to the canonical morphism

colim H(Qj(a,b))aH( colim Qj(a,b))
(j’avb)ejm,y (j»a’b)EJa:,y

Hence, ¢, , is an isomorphism by the assumption that I preserves A-filtered colimits.

Now consider the following commutative diagram of functors

CCat —™ 5 DCat

| |

C Quiv — D Quiv
The vertical functors preserve filtered colimits by Proposition 3.2.23 and they are clearly
conservative. Thus it follows that the top horizontal functor also preserves A-filtered
colimits. O

Proposition 3.2.31. Assume that I is \-presentable in V. Then the functor U : SgV — SSet
preserves Mfiltered colimits.

Proof. In view of Propositions 3.2.11 and 3.2.28, it suffices to show that the forgetful
functor U : V Catyee — Catprec preserves A-filtered colimits. As I is A-presentable in
V, the forgetful functor U = V(I,—) : V — Set preserves A-filtered colimits and thus so
does the induced functor VVee™ — SetVe™ . The result now follows from Proposition
3.2.30. O

Proposition 3.2.32. The templicial nerve Ny : V Cat — SgV preserves filtered colimits.

Proof. In view of Propositions 3.2.14 and 3.2.28, it suffices to show that the functor (—) :
V Cat — V Cat . preserves filtered colimits. As the diagonal functor (—) : V — YNee™

preserves all colimits, this follows from Proposition: 3.2.30. O

Under the conditions of Theorem 3.2.29, the category of templicial objects SgV is locally
presentable and thus complete. This can also be seen more directly using the embedding
(=)"ec: SgV — V Catyec.

Proposition 3.2.33. Assume that V is complete. Then the category of templicial objects SgV is

complete.

Proof. AsViscomplete,sois VNV e" and thussois ) Cat ... Asa coreflective subcategory
of V Cataree, SgV is thus also complete and the limits are inherited from V Catpse. by
applying (—)*™? (by the dual of [Bor94a, Prop 3.5.4] for example). O

We end this section by discussing the limits in Sg ) in a little more detail.
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Remark 3.2.34. Fix a small category J and a diagram J — SgV : j — (X7,57). Since
SgV is a coreflective subcategory of V Cat are, the limit of X can be calculated as

L =lim(X7,87) = <1im(Xﬂ, SJ)”“) e pNee
JjeJ JjeJ
As in any category of enriched categories, the limits in V Cat /.. are given pointwise.

Concretely, this means that the object set of lim;e (X7, S7)"* is the limit S = lim ¢y 57
in Set, and for all T’ € Nec we have

<}2§£(Xj’ Sj)neC>T ~ }g W;(X%) € VQuivg
where 7; denotes the canonical map S — 57 forall j € 7.

Further, the composition law of limc ;(X7, 57) is determined by the canonical quiver
morphisms

i s (X0F) @ lim 5 (06)) — lim (w5 (X)) @ 75 (X7)) = lim ) (264, )
where we used the lax structure of 77 (Lemma 1.1.18).

Hence, it follows from Construction 3.2.8 that Ly = Ig, and for all n > 0, L,, is the limit
of the following diagram of solid arrows

(Hé L)k 1 o
1k,
Ln ”””””””””””””” ” H Lk RKs Ll - 3 H Lr RKs Ls Rs Lt
| k,1>0 B r,5,t>0
\ k+l=n r4+s+t=n
Do |
} J/Hkvl PL&PL
~
limje s w‘;‘X% [T limjes 7} X] ®s limje s 75 X/
k>0
k+l=n
(tim, 5 (el ) |
: J Cxd
H hmjej ’/T;(Xk ®Sj Xl )
k>0
k+l=n
in VQuiVS.

So in low dimensions, we have for all a,b € S:

Li(a,b) = lim X{ (Wj (a), Ty (0))
JjET
while Ly (a, b) is given by the pullback:

Lo(ab) —— (nmja7 7 X] ®g limje 7 W;X{) (a,b)

| |

limye g X3 (m; (@), 7;(5) —— limyes (] @0 X7)(m; (@), m;(0)))

where the bottom horizontal morphism is induced by the comultiplications /"{,1 of each
templicial object X7.
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Example 3.2.35. Applying Remark 3.2.34 to the empty diagram J = (), we find that the
terminal object 1 of SgV is given as follows. Its set of vertices is a singleton {*} and for
alln >0,
1, =1®..®1
——

n times

where 1 represents the terminal object of V. Note that this is isomorphic to the templicial
nerve of the terminal object in V-Cat. This isn’t surprising as Ny is a right-adjoint by
Proposition 2.3.14. Let us consider some special cases:

® In case V is (semi-)cartesian, the terminal object 1 of Sg) reduces to the constant
functor on the terminal object 1 of V.

¢ In case V = Mod(k) with k a unital commutative ring, then 1,, = 0 foralln > 0
and 1y = k. Note that this is not isomorphic to the initial object of Sg Mod(k) since
the latter has an empty vertex set. So unlike Mod(k), the category of templicial
k-modules does not have a zero object.
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Chapter /8

Examples of quasi-categories in a
monoidal category

“Kate Walker! I see you managed to produce two XZ2005_B models!”
- Oscar (Syberia)

There are a couple of classical constructions which provide examples of quasi-categories
as simplicial sets. In Chapter 1, we already discussed the nerve functor N : Cat — SSet
and its templicial analogue Ny, : V Cat — SgV.

Another classical construction is the homotopy coherent nerve N"¢ : Cata — SSet from
simplicial categories (that is, categories enriched in simplicial sets) to simplicial sets.
It was introduced by Cordier in [Cor82]. Later, Cordier and Porter showed in [CP86,
Theorem 2.1] that the homotopy coherent nerve N"¢(C) of a simplicial category C is a
quasi-category if every hom-object C(A4, B) is a Kan complex. They also constructed the
left-adjoint € : SSet — Cata to N"¢. This categorification functor was later described in a
very elegant way by Dugger and Spivak in [DS11b].

Fixing a unital commutative ring k, there is also the differential graded (dg) nerve N9 :
k Catqq — SSet from differential graded categories over k to simplicial sets, see [Lur16].
Lurie showed that the dg-nerve N%9(C) of any dg-category C, is always a quasi-category.

The two sections of this chapter are devoted to constructing templicial analogues of
the homotopy coherent nerve and the dg-nerve respectively. For the former, the two
occurences of simplicial sets are generalized differently. The category SSet on its own is
replaced by Sg)V. But SSet as enriching category for Cata is replaced by the category
SV of simplicial objects in V. This yields the category V Cata of small SV-enriched
categories. Inspired by Dugger and Spivak’s description of the categorification functor
¢, we then construct an adjunction €y : SgV < V Cata : N3¢ (§4.1.2) which recovers
the classical adjunction when V = Set. To do this, we'll use the category V Catpsec
of necklace categories (Definition 3.2.3) as an intermediate step. Moreover, if an SV-
enriched category C is locally Kan, then NJi¢ will be a quasi-category in V (Proposition
4.1.20).

The bulk of this chapter is contained in Section 4.2, where we lift the classical dg-nerve N%9
along U to obtain the linear dg-nerve N : k Catyy — Sg Mod(k). This goes in two major

101
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steps. The first equates dg-categories with categories enriched in augmented simplicial
modules St Mod(k), through an augmented version of the Dold-Kan correspondence
(Proposition 4.2.10). The second is an equivalence between these ST Mod (k)-categories
and templicial k-modules equipped with a Frobenius structure (Theorem 4.2.17). More-
over, we will show that N9(C) is a quasi-category in Mod(k) for any dg-category C.
(Corollary 4.2.65). Finally, we’ll compare the linear dg-nerve to the other nerves defined
earlier.

4.1 Categories enriched in simplicial objects

In this section we generalize the adjunction between the categorification functor € :
SSet — Cata and the homotopy coherent nerve N"¢ : Cata — SSet to the templicial
level, yielding an adjunction €y, 4 N{ which depends on V. One can quickly see that ¢
actually factors through the category Catps.. of Definition 3.2.3. Moreover, the functor
Catpree = Cata is determined on hom-objects by a functor n : SetNVee™ 5 SSet. Itis now
straightforward to generalize n to a functor VV¢¢”” — SV (Construction 4.1.11), which in
turninduces a functor V Cat .. — V Cata. Here, V Cata denotes the category of all small
SV-enriched categories. Composing with the embedding (—)"¢¢ : SgV — V Catare.
then yields our templicial categorification €y : SgV — V Cata. Finally, the templicial
homotopy coherent nerve is obtained as the right-adjoint to €.

We open this section by recalling the classical adjunction ¢ <4 N"¢. Then we generalize
it to €y 4 NJ¢, using the approach outlined above. Following Dugger and Spivak’s
description of €, also €y,[X] can be reformulated in a similar way, if we assume that the
templicial object X is free (Proposition 4.1.28). We conclude the section by comparing
the templicial homotopy coherent nerve N to the templicial nerve Ny, defined in §2.3.1
(Proposition 4.1.33).

For this section, we impose the additional standing hypotheses that (V, ®, I') is complete
and symmetric monoidal closed. In other words, V is a Bénabou cosmos.

4.1.1 The classical homotopy coherent nerve

We recall the definitions of the categorification functor € : SSet — Cata and its right-
adjoint, the homotopy coherent nerve N he . Cata — SSet. This is taken from [Lur09a,
§1.1.5] and [DS11b].

Definition 4.1.1. Consider the category of simplicial sets SSet as a monoidal category
with the cartesian product: (SSet, x, A%). A simplicial category is a category enriched in
SSet. A simplicial functor is a SSet-enriched functor between simplicial categories. We
denote

Cata

for the category of small simplicial categories and simplicial functors between them.
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Construction 4.1.2. Let n > 0, we construct a simplicial category €[A"] as follows. Its
objects are given by the set [n] and for all 4, j € [n], we set

e[A" = {éwj-i) o ?7'

where P;_; denotes the poset of Notation 2.2.9 and N : Cat — SSet the classical nerve
functor (Definition 1.3.22). Note that N (P;_;) ~ (AY)*7=""1if { < jand N(P;_;) ~ A°
if i = j. Further, given i < j < k in [n], the reverse composition (see Remark 1.1.22)

g A0, 5) < C[A"](j, k) — C[A"](i, k)
is given by applying N to the order morphism
Pj—i X Pr—j — Pr—i (T, U)—TVvU

of Remark 2.2.10. Finally, the identities are given by the unique vertex of €[A"](i, i) ~ A°

foralli € [n].

Further, given f : [m] — [n] in A, we construct a simplicial functor €[A™] — €[A"] as
follows. On objects, it is given by the map f : [m] — [n] itself. For all ¢ < j in [m], f
induces a morphism in A :
fig U= = 1fG) = F@]: k= [k +1) = F(D)
Then the map
C[A™](,7) — €[A™](f(2), f(7))
is given by applying N to the order morphism of Remark 2.2.10 induced by f; ;:

P(fij): Pi—i = Prigy—ray 2 T = fii(T)

It is now easy to see that the above constructions define a functor
¢[A)]: A = Cata

Definition 4.1.3. Consider the cosimplicial object ¢[A(~)] of Construction 4.1.2. Then
Proposition 1.3.11 provides an adjunction

¢
e
SSet NLM Cata

The left-adjoint € is called the categorification functor and is given by left Kan extension
of ¢[A()] along the Yoneda embedding A « SSet. The right-adjoint N"° is called the
homotopy coherent nerve functor. We have for all small simplicial categories C and n > 0
that

N"¢(C),, ~ Cata(C[A"],C)

Example 4.1.4. Given a small simplicial category C, let us describe its homotopy coherent
nerve in low dimensions.

e The vertices of N"¢(C) are given by the set of objects Ob(C).
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e The edges of N"¢(C) are given by the morphisms of C (that is vertices f € Cy(A, B)
for some A, B € Ob(()).

* A 2-simplex of N"¢(C) is given by a (not necessarily commutative) diagram of

morphisms in C:

A—>B

along with an edge o of C(A, B) from h to the composition g o f.

The first steps of Dugger and Spivak’s streamlining of the description of € are outlined
in the following two propositions. For now this will suffice. We will return to their
reduction in §4.1.3.

Proposition 4.1.5 ([DS11b], Proposition 3.7). There is an isomorphism of simplicial sets
that is natural in all necklaces (T, p) € Nec.

Proposition 4.1.6 ([DS11b], Proposition 4.3). For every simplicial set K with vertices a and
b, there is an isomorphism of simplicial sets

Kl )=, om0
(T;}))ENec '

We now introduce another way of describing the categorification, this time by means
of a weighted colimit. This will make it easier to generalize to the context of templicial
objects. For background on weighted (co)limits, we refer to the relevant literature (for
example, see [Riel4]). Recall by Proposition 2.1.15 that we may view a simplicial set
K as a templicial set and thus we can apply Construction 2.2.16 to obtain a functor
Ko(a,b) : Nec®? — Set : T — Krp(a,b) for any two vertices a and b of K.

Proposition 4.1.7. For any simplicial set K with vertices a and b, €[K]|(a,b) is isomorphic to
the weighted colimit in SSet:
colim®* (a’b)NP(_)

of NP(_y : Nec — SSet with weight Ke(a,b) : N'ec? — Set.

Proof. From Propositions 4.1.5 and 4.1.6, it is clear that €[K](a,b) is isomorphic to the
following coequalizer in SSet:

[I NPr) —= Il N(Pr) — ¢[K](a,b)
T—U—Kap B T—oKay
T,UeNec TeNec

where o and j are given by respectively projecting onto 7' — K, and applying NP_
toT — U forany T — U — K, in SSet, .
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Now note that a morphism 7" — K, in SSet. . with 7" a necklace, is equivalent to an
element of the set Kr(a,b) (which we consider as a constant simplicial set). Hence, we
obtain a coequalizer diagram

11 Ku(a,b) x N(Pr) —= ][ Krla,b) x N(Pr) — €[K](a,b)
gljﬁfgc B TeNec

where o and 3 are given by respectively applying K,(a,b) and NP_y to T' — U in Nec.
But this coequalizer is precisely the weighted colimit described in the statement. O

4.1.2 The templicial homotopy coherent nerve

We quickly recall the pointwise monoidal structure on the category of simplicial objects
in V, so that we can define categories enriched over SV.

Construction 4.1.8. Itis easily seen that the monoidal structure on V induces a symmetric
monoidal structure on SV. Given simplicial objects X and Y, their monoidal product
X ®Y is given by, for all n > 0:

(X®Y),=X,QY,

The monoidal unit in SV is then given by the constant functor on the monoidal unit /
of V, which is isomorphic to FA?. Note that in particular for V = Set, we recover the
cartesian product on simplicial sets (SSet, x, A?).

Moreover, the category SV is enriched and tensored over V. Given two simplicial ob-
jects X and Y, we denote their hom-object by [X,Y] € V. It is the object of natural
tranformations from X to Y and can be realized as the following equalizer in V:

X,Y] —— [IV(X0Ye) —=2 [ V(X.Yn)
n>0 b fm il

where V(—, —) denotes the internal hom of V, which exists by the standing hypotheses.
Further, o and 3 are given by respectively post-composing with Y( f) and pre-composing
with X (f) for a morphism f : [m] — [n] in A.

The tensoring V' - X of an object V' € V with a simplicial object X is given simply by the
monoidal product V ® X where V is the constant simplicial object on V.

Definition 4.1.9. An SV-category is a category enriched in the symmetric monoidal cat-
egory (SV, ®, FA?) of Construction 4.1.8. An SV-functor is an SV-enriched functor. We
denote the category of small SV-categories and SV-functors by

YV Cata = SV Cat

Note that in particular if V = Set, we recover the category of small simplicial categories
Cata.

Notation 4.1.10. Consider the monoidal adjunction F' : Set = V : U. It induces a
monoidal adjunction F' : SSet & SV : U by post-composition. Hence, by Proposition
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1.1.23 we have an induced adjunction between simplicial categories and SV-categories

which we denote by
].'
Cata L " VCata
u

We are now ready to construct the templicial analogue €y : SgV — V Cata of the
categorification functor €. The templicial homotopy coherent nerve N3¢ : V Cata — SgV
will then be defined as the right-adjoint to €y (see Definition 4.1.13). Note that by
Proposition 4.1.7 it is clear that € factors through the functor (—)™¢¢ : SSet — Catre. Of
Construction 3.2.5. Therefore, in order to construct €y,, we will first build an adjunction
between V Catre. and V Cata.

Construction 4.1.11. We construct an adjunction
S
NecP ?
V i Sy

as follows. Given a functor X : Nec? — V), consider the weighted colimit in SV:

5(X) = 7Qg%frgchF]\f'PT

of the composite Nec PO, Cat 2 SSet £ SV with weight X. Explicitly, s(X') may be
realized as the following reflexive coequalizer in SV:

H XU®FN(PT) v — H XT®FN('PT) — E(X) (4.1)
o i

where o and 3 are given by respectively applying X and F'NP_) to a necklace morphism
f:T — U, and v is given by selecting the identity idr for any necklace T'.

As a weighted colimit, s(X) fits into a canonical bijection of sets
SV(s(X),Y) = VN (X, [FNPy,Y])

which is natural in ¥ € SV (see [Riel4, Definition 7.4.1] for example). Hence, the
assignment X — s(X) extends to a functor s : VV¢”” — SV which is left-adjoint to the
functor

n:SY = YN Ly s [FNPy, Y]

Proposition 4.1.12. The adjunction s  n of Construction 4.1.11 is monoidal in the sense of
Definition 1.1.5.

Proof. Consider the monoidal unit I of YNee® that is the constant functor on I. Let
% 1 Nec” — Set denote the constant functor on a singleton so that F'(x) ~ I. Note
that Pgy contains a single element and thus NP, ~ AY. Then since F : SSet — SV
preserves colimits and {0} is the terminal object of Nec, we have

- . 0
s(I)~F (g(e)k}?c NPT) ~F (%gkfrchPT> ~ FNP ~ FA
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Now let X and Y be functors Nec®” — V and consider their Day convolution X ®pgy Y
(Construction 3.2.1). Note that by Remark 2.2.10, we have FNPy ® FNPy ~ FNPyyy
for all necklaces U and V. We construct a commutative diagram in SV as follows:

11 (Xv®@Yy)® FNPyynvy €7~ II XveYy)® FNPyynvyy ————» C

U—=U’ B U,N,VeNec

1l W

H (XU/ ®YV/) ®FNPU\/V — H (XU ®YV) ®FNPU\/V ﬂ 5(X) ®5(Y)

U—U’ U,VeNec

H (X ®Day Y)T/®FNPT — ]7\[[ (X ®Day Y)T(X)FNPT e E(X ®Day Y)
T—T' TeNec
in Nec

The middle and bottom rows are reflexive coequalizers induced by (4.1). In the top row,
«a is given by applying X and Y to the morphisms U — U’ and V' — V’, and f3 is given
by applying FNP_y to the morphism UV NV V — U"V N'Vv V' Also, v selects the
identities idy, idy and idy for any U, N,V € Nec. Then clearly ay = id = 8y and we
define C' as the coequalizer of o and 5. The middle column is a reflexive coequalizer
provided by Proposition 3.2.2. The left hand column is also a reflexive coequalizer and
can be constructed similarly to the proof of Proposition 3.2.2. Consequently, we have an
induced reflexive coequalizer in the right hand column (apply the the dual of [Agu97,
Lemma 1.1.2] for example).

We claim that the epimorphism s(X) ®s(Y) — s(X ®pay Y') is an isomorphism. For this,
it would suffice that the two morphisms C' — s(X) ® s(Y") coincide, which will follow if
we can show that go’ = ¢f’. Take U,N,V € Necand setT = U V N V V. Denote by o
the unique necklace map N — {0}. Then we have
g w,n v = quyn,yv (X (idy Vo) @ idy, ) ® idpnp,

= qLU,V(idXU(X)YV ®FN7D<idU Vo V idv))

= quunvv ((ldx, @Y (0 Vidy)) @ idpyp, = ¢8"w Ny
by virtue of the coequalizer in the middle row of the above diagram.

Finally, it is readily verified that the isomorphism s(X) ® s(Y) >~ s(X ®pqy Y') is natural
in X and Y, and defines a strong monoidal structure on the functor s. O

Definition 4.1.13. By virtue of Propositions 4.1.12 and 1.1.23, the adjunction s 4 n be-

tween VVe¢¢”” and SV induces an adjunction

5
—
VY Cat s 1 " VCatp
ec -

We call the composite

¢y SoV N Y Catpee B V Cata
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the categorification functor. It is left-adjoint to the composite

temp

NEe Y Cata % V Cataee s SgV
which we call the templicial homotopy coherent nerve.

Example 4.1.14. Suppose V = Set. Then the adjunction €, | N} reduces to the classical
adjunction € 4 N he Indeed, it suffices to note that ¢y reduces to ¢, which follows from
Proposition 4.1.7 and Construction 4.1.11.

Remark 4.1.15. Given a templicial object (X, .S), let us make the structure of €y, [X] as a
SV-enriched category a little more explicit.

The object set of €y,[X] is just S. By Construction 4.1.11 we have a reflexive coequalizer

diagram for all a,b € S:

11 Xu(a,b)®@ FN(Pr) ©v— ][ Xr(a,b)® FN(Pr) — €y[X](a,b) (4.2)
f:];\7>U B TeNec

where o and 3 are given by respectively applying X,(a,b) and FNP_y to a necklace
map f : T — U, and v is given by selecting the identity idr for any necklace T'.

Take a,b, c € S. Then the reverse composition law
Ma e E[X](a,b) @ Cp[X](b,c) = €y[X](a,c)

of €y [X]is induced by the morphisms X1 (a,b) ® Xy (b, c) = Xpvu(a, ¢) and the isomor-
phisms Pr x Py ~ Pryu (see Remark 2.2.10) which are natural in 7, U € Nec.

Take a € S. Then the identity on a in €y,[X] is given by
ug : FA® ~ X4(a,a) ® FN(Py) — €y[X](a,a)
where the isomorphism is induced by N(Pyo;) ~ A” and X¢(a,a) ~ I.

Example 4.1.16. Let C be a small SV-category. We describe the templicial object NJ;¢(C)
in low dimenions. Note the analogy with Example 4.1.4.

* The vertex set of NJ:(C) is simply Ob(C).
* Further for any A, B € Ob(C), it follows from N(Pgo<1}) ~ A that

Ny*(C)1(A, B) = n(C) o<1} (A, B) = [FN(Pjo<1y),C(A, B)] = Co(A, B)
* In dimension 2, it follows from N(Pjo<ay) ~ A' and N (Pjoci<2y) ~ A that

11(C){o<2} (A, B) = [FN(P{0<2})7C(A7B)] ~ C1(A, B)
n(C)o<1<2) (A, B) = [FN(Pio<1<2}),C(A, B)] ~ Co(A, B)

The morphism n(C)o<2; (4, B) = n(C){o<1<2} (4, B) is induced by inert necklace
map v 1 : {0 <1 < 2} — {0 < 2} and thus corresponds to the face map
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do : C1(A, B) — Co(A, B). It follows from (3.3) that we have a pullback diagram:

NEe(C)a(A,B) —— ] Co(A,C) ®Co(C, B)

CeOb(C)
J J/’ﬁlg’()

Ci(4, B) Co(A, B)

do

So applying U, we see that the underlying set of the object N}°(C)2(A, B) consists
of pairs (o, &) with o € U(IIceop(c) Co(A, C) ® Co(C, B)) and o an edge in C(4, B)
from h = dy (o) to m(«).

Proposition 4.1.17. There are canonical natural isomorphisms
CyoF~Fo€ and UoNp~N"oU
with F < U the adjunction from Notation 4.1.10.

Proof. As €y 4 Ni¢, € 4 N, F 4 U and F - U, it suffices to only show the first natural
isomorphism. Since F' : SSet — SV preserves colimits and is strong monoidal, it is clear
that

colim "™*T FNPr ~ F (colim XTNPT>
TeNec TeNec
for any functor X : Nec®” — Set. It follows that we have a natural isomorphism
Fos ~ soF of functors SetVee” — SV, and thus also F os ~ s o F of functors
Catprec = V Cata. Thus by Proposition 3.2.11 we have
Fo€~Foso(=)" ~goFo(=)"~so(=)"*“0F~CyoF
O
Remark 4.1.18. The categorification functor ¢, does not commute with the forgetful
functors in the sense that ¢ o €, ~ € o U. In fact, the canonical simplicial functor

C[U(X)] — U(Cy[X]) even fails to be a Dwyer-Kan equivalence in general. This is a
direct consequence of Example 2.3.18 and will be discussed further in Example 4.1.34.

Proposition 4.1.19. Let C be a small SV-category. Then the templicial object N1¢(C) has a
Frobenius structure.

Proof. Note that we can extend the strong monoidal functor P_) : Nec — Cat to a
functor P(_y : N'ec — Cat by setting
Ptuy i Pr—= Py : T = f(T)HUU

for every morphism (f,U’) : T — U in Nec. Then the functor n : SV — VNee™” of
Construction 4.1.11 clearly factors as

Sy I PN pNee™

where T sends a simplicial object Y to the functor [FNP_,Y]: N ec”’ — V. It follows
that n : V Cata — V Caty. factors through the forgetful functor V Catyr; — V Catarec.
Thus the result follows from Proposition 3.2.20. O
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Proposition 4.1.20. Let C be a small SV-category such that for all A, B € Ob(C), the simplicial
set U(C(A, B)) is a Kan complex. Then the templicial object N1i(C) is a quasi-category in V.

Proof. By Corollary 3.2.22, it suffices to check that for all A, B € Ob(C), the functor
n(C(A,B))e = [FNP_,C(A,B)] : Nec”? =V

lifts inner horns in VV¢¢””. By the adjunction s - n, this is equivalent to showing that for
all 0 < j < n, every diagram of solid arrows

5 (F(A?).(O,n)) . C(A,B)

T

5 (F(A”).(O, n))
in SV has a lift given by the dotted arrow. Now by Proposition 4.1.17,
s (F(A)a(0,m)) = Eu[F(A})](0,n) = F (€[A](0,m))
5 (F(AM)4(0,7)) = Ey[F(AM)](0,n) = F (€[A")(0,n))
So by the adjunction F' 4 U, the above lifting problem is further equivalent to

¢[A?](0,n) — U(C(A, B))

in SSet. Thus as U(C(A, B)) is a Kan complex, it suffices to prove that the left vertical
map is anodyne (Definition 1.3.16), which was done in [Lur09a, Proposition 1.1.5.10] and
is given in more detail in [Lur18, Tag 00LH] (beware that in the latter, the notation Path
is used instead of €). O

4.1.3 Categorification in terms of flanked flags

In this subsection we continue adapting Dugger and Spivak’s simplification of € to the
templicial setting. Given a simplicial set K with vertices a and b, and a fixed n > 0, they
describe the set of n-simplices of €[K](a,b) much more simply by means of so-called
flags of a necklace T" and totally non-degenerate maps T' — K, ;. Let us first recall these
definitions.

Definition 4.1.21. Let (T, p) be a necklace and n > 0. A flag of length n on T is defined
as an n-simplex of the nerve N(Pr). Explicitly, a flag of length n on 7' is a sequence of
inclusions

—

T= (TO c..C Tn)

such that T C T and T, C [p]. We call a flag T on a necklace T flanked if T = Ty and
T, = [p|.
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Definition 4.1.22. Let K be a simplicial set with vertices a and b,and T' = A™ Vv ... vV A"k
a necklace. A map T' — K, in SSet, . is totally non-degenerate if for every i € {1,...,k},
the composite map in SSet

A" =T = Kap

represents a non-degenerate n;-simplex of K.

As an immediate consequence of Proposition 4.1.6 (see [DS11b, Corollary 4.4]), we see
that an n-simplex of €[K](a, b) consists of an equivalence class

—.

[T, T — Ko, T] (4.3)

of triples (T, T — K, 5, T) where

e T'is anecklace,
e T — K, is amap in SSet, . (equivalently, an element of Kr(a, b)),

e Tisa flag of length non 7.

-,

The equivalence relation is generated by considering two triples (T',7 — K, ;,T) and
(U, U = Kap, U ) to be equivalent if there exists a map of necklaces f : T — U making
the obvious diagram commute, such that f(T;) = U; forall 0 < i < n.

It is then shown in [DS11b, Lemma 4.5 and Corollary 4.8] that we can make the following
reductions:

1. In every equivalence class (4.3) there exists a triple (T, T — K, T) such that T
is flanked. Moreover, two such triples are equivalent if and only if they can be
connected by a zig-zag of morphisms of flagged necklaces in which every triple has
a flag that is flanked.

—.

2. In every equivalence class (4.3) there exists a unique triple (I, T — K, 3,T) such
that 7' is flanked and T — K. a,b is totally non-degenerate. In other words, there is a
bijection

C[K]n(a,b) ~ H K7(a,b)
~ TeNec
T flag of length n

where K24(a,b) C Kr(a,b) is the subset of totally non-degenerate maps 7' — K p.

Generalizing the first of the above reductions to templicial objects is fairly straightforward.
This is done in Proposition 4.1.25 and the proof is essentially that of [DS11b]. Because
the second reduction involves non-degenerate simplices, we will have to restrict to free
templicial objects (see §3.1.3). This is the content of Proposition 4.1.28.

Notation 4.1.23. We denote by
Nec [n]
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the category of pairs (T, T) where T is a necklace and T' = (T, ..., Ty,) is a flag of length

,T)
nonT. A morphism (T,T) — (U,U) in Nec! [n] is a necklace map f : T'— U such that
f(T;) = U; for all i € [n]. Further, we let

N ec}[n]

denote the full subcategory of N ec [n] spanned by flagged necklaces whose flags are
flanked. Note that a morphism in N\ ec}[n] is necessarily active and surjective on vertices.

Lemma 4.1.24. Let n > 0. The subcategory v : N ec}[n} < Nec! [n] is coreflective. We call the
right adjoint to ¢ the flankification functor.

Proof. We construct the flankification functor ~ : N. ec! [n] = N ec}[n}. For (T,p) € Nec

and T a flag of length n on T, there is a unique isomorphism of posets T}, ~ [k] where
k = ¢(T). For all i € [n], write T] for the image of T; under this isomorphism so
that T; C ... C T} = [k]. Further set T = T so that the flag T" is flanked on T".
Then define v(T,T) = (1”,7"). We moreover obtain a morphism of flagged necklaces
e :1y(T,T) — (T, T) with underlying morphism [k] ~ T}, < [p]in Ay.

Given (U,U) € /\/'ec}[n] with (U, q) a necklace, and a morphism f : (U, U) — (T,T) in

Nec [n], we have in particular that T,, = f(U,,) = f([g]). So the morphism f : [¢] — [p] in
Ay factors uniquely through [k] — [p] as g : [¢] — [k]. Moreover, g defines a morphism
(U.0) = 2(T,1).

We conclude that the functor ¢ : N/ ec}[n] - Nec [n] has a right adjoint which is given on
objects by (T, T) — (T, T). O

Proposition 4.1.25. Let (X,.S) be a templicial object and a,b € S. Then for every n > 0, we
have a canonical isomorphism

Cy[X])n(a,b) =~  colim  Xr(a,b)
(T,f)ENec}[TL]

Proof. We can rewrite the coequalizer (4.2) in dimension » as

I Xu(ab) —= I Xrla,b) — €y[X]a(a,b)

[ T—-U B T ENec
T flagon T T flagon T
of length n of length n

where « is given by X (f) and 3 is given by applying f to T, for a necklace morphism
f:T — U. We thus have a canonical isomorphism

Cy[Xn(a,b) ~  colim  Xp(a,b)
(T, TYeNec[n]

Now as the inclusion N ec}[n] < Nec [n] is a left adjoint by Lemma 4.1.24, the corre-
sponding functor between opposite categories is a right adjoint and thus a final functor.
Hence, the result follows. O
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Remark 4.1.26. The simplicial structure of €y [X](a,b) = colim™* (¥ N Py is given by
that of NPy, i.e. by deleting and copying terms in a flag, but the simplicial structure on

colim 7. 7o vt Xr(a,b) is slightly more difficult. The degeneracy maps and inner face
’ s

maps are still given by respectively copying and deleting terms in the flags. The outer
face maps however are given by first deleting the term T or T, from a flag (T, ..., T},)
and then applying the flankification functor.

Notation 4.1.27. Let (X, S) be a free templicial object and 7" a necklace which we write
as {0 =tg < t1 <ty <..<ty=p} Then we denote

X3t = X" 05 XP4, ®s .05 X2, €V Quivg

pP—trp—1
where X¢ denotes the quiver of non-degenerate simplices of Definition 3.1.38.

Proposition 4.1.28. Let (X, S) be a free templicial object. For all n > 0 and a,b € S, we have
an isomorphism in V:
Cy[X]n(a,b) ~ H X74(a,b)
(T, T)eNecln]

Proof. By Proposition 4.1.25 and Lemma 3.1.39, we have an isomorphism

Cy[X]n(a,b) ~  colim XM @s ... ©5 X4 (a,b)
(T, T)eNecln] £l H (X )

ii[ti—ti—1]—[n]
ie{l,...,k}

where we've written T' = {0 = ¢y < t; < ... < ty, = p} for any (T, T) € J\fec}[n]. Now let
f:(T,p) — (U, q) be an active necklace map such that its underlying morphism f : [p] —
[q] in A is surjective. By Remark 2.1.4 we can uniquely decompose f = f1 + ...+ fx with
fi  [ti — tiza] = [ni] in Agyy; forall i € {1,...,n}. Moreover, given a flag T of length n
on T, there is a unique flanked flag U = (U, ..., U,) on U such that f : T — U lifts to a
morphism f : (T,T) — (U,U) in N ec.lf[n] (simply set U; = f(T;)). It follows that

(b~ colim, - J] 0 Xp(a0)
(T, T)eNec)n] (T, 7= (U,0)
inNeC}["}
~ H colim _ X7%(a,b) ~ H X'(a,b)
b et TT=UD) v0)eNed]
.0y eN e inNeC}[n] (U 0)eNeclin]

The last isomorphism is obtained by noting that the colimit on the left hand side is indexed
over the category ((N ec}[n]) J(U Tj)) p, which is connected, and the functor involved is

constant on X7*(a, b). O

4.1.4 Comparison with the templicial nerve

Analogous to the classical homotopy coherent nerve, we show that the templicial homo-
topy coherent nerve N{i¢ restricts to the templicial nerve Ny, (Construction 2.3.4) when
applied to ordinary V-enriched categories. This is the content of Proposition 4.1.33.
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Definition 4.1.29. Let Y be a simplicial object. The object of connected components of Y is
defined to be the colimit mo(Y") € V of Y as a functor A°? — V. Equivalently, it is given
by the reflexive coequalizer:

Y, % Yo — mo(Y) (4.4)
The assignment Y — 7 (Y) clearly extends to a functor
m: SV =V
Proposition 4.1.30. We have a canonical natural isomorphism
mgo F >~ Fomy
where o on the right hand side denotes the connected component functor of Definition 1.3.19.

Moreover, if U preserves reflexive coequalizers, then we also have

mooU ~U omy

Proof. The first claim follows from the fact that F' preserves colimits. The second claim
is trivial. O

Proposition 4.1.31. The functor my : SV — V is strong monoidal and left adjoint to the constant
simplicial object functor:
(=): V=58V

Proof. Consider the monoidal unit F'(A%), which is the constant functor on I € V. Then
clearly, mo(F(AY)) ~ I. Further, as the coequalizer (4.4) is reflexive, we have a canonical
isomorphism

7T0(X ® Y) l) WQ(X) ® 7T()(Y)

which is natural in X,Y € SV. It follows that these isomorphisms provide my with the
structure of a strong monoidal functor.

In general, the functor V7 — V taking the colimit of a diagram J — V is left adjoint to
the functor sending an object to the constant diagram J — V. O

Remark 4.1.32. By Propositions 4.1.31 en 1.1.23, there is an induced adjunction

VCata <+ " VCat
=)

which we will denote by the same symbols.

Recall the homotopy functor hy : SgV — V Cat of subsection §2.3.2.

Proposition 4.1.33. We have a canonical natural isomorphisms

N{}COQ:NV and moo &y ~ hy
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Proof. By comparing left-adjoints, we are reduced to showing the first isomorphism. By
definition, NJi* = (=)™ o n, so by Proposition 3.2.14, it suffices to show that we have a
natural isomorphism

no(-)=~(-)

where (—) on the right hand side denotes the diagonal functor V — YNee™  Take an
object A € V. Since the simplicial set N (Pr) is clearly only has one connected component,
it follows from Proposition 4.1.30 that

[FNPr, Al ~ V(7o FNPr, A) ~ V(F(roNPr), A) ~ V(F({x}),A) ~ A

for all necklaces T'. It follows that n(A) is isomorphic to the constant functor on A, that
is A : Nec®? — V. Clearly, this isomorphism is natural in A as desired. O

Example 4.1.34. For a general templicial object X, consider the canonical map of simpli-
cial sets } ~

U(X) = UNpev[X])
By Proposition 4.1.17, U (N}i*€[X]) ~ N"U(€y[X]) and thus by the adjunction € 4 N"¢,
we have a canonical SSet-enriched functor

CU(X)] — U(ey[X])

By construction, this functor is bijective on objects, but it is not a Dwyer-Kan equivalence
in the sense of [Ber07], i.e. it does not induce weak homotopy equivalences (Definition
1.3.21) on hom-objects. More explicitly, given vertices ¢ and b of X, the induced map of
simplicial sets

U (X)l(a,b) = U (€v[X](a, D))

is not a weak homotopy equivalence in general. Indeed, this already fails on the level of
connected components. Consider the induced functor

7T()€[U(X)] — FoUCv[X]

If V = Mod(k), then U preserves reflexive coequalizers and thus by Proposition 4.1.30
and Proposition 4.1.33, we would have an equivalence of categories

hU(X) = U(hy(X))

which fails to be the case in general by Example 2.3.18.
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4.2 Differential graded categories

We fix a unital commutative ring k for the entirety of this section. Consider the monoidal
category Mod(k) with monoidal product given by the tensor product ®; over k and
with monoidal unit given by k. Note that (Mod(k), ®x, k) satisfies all the hypotheses
imposed on V so far. That is, Mod (k) is a Bénabou cosmos and k is projective and finitely
presentable (and thus small in the sense of Definition 1.2.9). Moreover the forgetful
functor U : Mod(k) — Set is faithful and conservative and U preserves and reflects
reflexive coequalizers (thus also regular epimorphisms). We may sometimes simplify
notation by replacing Mod(k) by k in certain expressions. For example, we will write
k Quiv for Mod (k) Quiv and N} for Nﬁcod(k).
The main goal of this section is to introduce and study a k-linear version of the differential
graded nerve N% : k Caty, — SSet, which we aptly call the linear dg-nerve N, ,f 9. Note
that for a given dg-category C,, its dg-nerve N%9(C) is just a simplicial set and thus loses
all reference to the ring k. Intuitively one might consider the linear dg-nerve N, ,f 9(C) as
a way to retain the k-linear structure of C, while still resembling the original dg-nerve.

To construct the linear dg-nerve, we first show a two-step equivalence of categories
between small, non-negatively graded dg-categories over k£ and templicial k-modules
with a Frobenius structure:

k Catgg >0 >~ k Cata, ~ Sg”)b Mod(k)

Here, the middle category has as objects all small categories enriched in augmented
simplicial k-modules St Mod(k) with the join operation. Each equivalence is dealt with
in its own subsection (see §4.2.1 and §4.2.2). The first of these is a consequence of a
monoidal equivalence on the level of hom-objects, which we call the augmented Dold-Kan
correspondence. The second is inspired by the tensor-algebra of a graded k-module, which
as it turns out can always be viewed as a Frobenius monoidal functor. Finally, the linear
dg-nerve is obtained by composing these equivalences with the obvious forgetful functor
SErob Mod(k) — Sg Mod(k) (Definition 4.2.46).

The remaining subsections are devoted to showing three important results concerning
N ,‘j 9. In §4.2.4, we show that we can recover the classical dg-nerve N9 from N, ,‘:g by
composing with the functor U : Sg, Mod(k) — SSet of Proposition 2.1.25. Then in §4.2.3
we show that N,’jg (C) is a quasi-category in Mod(k) for any dg-category C,, as is the
case for the classical situation. In fact, we’ll show that any templicial k-module with a
(non-associative) Frobenius structure is already a quasi-category in Mod(k). Finally, in
§4.2.5 we show that a classical map comparing the homotopy coherent and dg-nerves
can be lifted to a comparison map between the templicial homotopy coherent and linear
dg-nerves.

4.2.1 The augmented Dold-Kan correspondence

The classical Dold-Kan correspondence (which we will recall here shortly, see Proposition
4.2 4) provides an equivalence between the categories of simplicial k-modules S Mod (k)
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and non-negatively graded chain complexes Ch>( (k) through the normalized chain func-
tor N, : S Mod(k) — Ch>o(k). Famously, it is not an equivalence of monoidal categories.
The normalized chain functor does carry both a lax and colax monoidal structure however
(usually called the Eilenberg-Zilber and Alexander-Whitney maps respectively, see [May67,
§29] for details). These promote the Dold-Kan equivalence to a weak Quillen monoidal
equivalence between monoidal model categories in the sense of [SS03].

Alternatively, we can cheat our way out of the non-monoidality of the equivalence
Chxo(k) ~ SMod(k) by replacing S Mod(k) with the category of augmented simpli-
cial k-modules ST Mod(k). Then we still have an equivalence of categories Chx¢ (k) ~
ST Mod(k) (Proposition 4.2.10) which we call the augmented Dold-Kan correspondence.
Now, equipping S* Mod (k) with the monoidal product of the join (Construction 4.2.12),
this equivalence does become monoidal “on the nose” (Theorem 4.2.14). It is important
to note that the join operation is very different from the usual monoidal product on
simplicial objects, which is pointwise (see Construction 4.1.8). It was chosen specifically
so that it would make the augmented Dold-Kan correspondence monoidal.

Definition 4.2.1. A chain complex C, over k is a diagram of k-modules

83 82 61 60 (9_ 1 3_2

Cy Cy Co C_4 C_,

such that for all n € Z, we have 9,,_1 0 9,, = 0. The maps 9 = (9,,)nez are called the
differential of C,. A chain map f : Co — D, between chain complexes is a collection of
k-linear maps (f,, : Cp, = Dy,)n>0 such that the following square commutes for all n € Z:

0,
Cn — Cnfl

fnJ/ J{fn—l

Dn 5 ? Dn—l
n—1

We denote the category of all chain complexes and chain maps by
Ch(k)
Note that Ch(k) is enriched over Mod (k) in an obvious way.
We call a chain complex C, non-negatively graded if C,, = 0 for all n < 0. We denote by
Chx>o(k)
the subcategory of Ch(k) spanned by all non-negatively graded chain complexes.

For more details on chain complexes, we refer to the literature (see [Wei94] for example).
Construction 4.2.2. Let A be a simplicial k.-module. We construct a chain complex N, (A)
as follows. For all n > 0, define

Nn(4) = %
> iz Si(An—1)

It follows from the simplicial identities (1.3) that the ith face map d; : A,, — A,,_; induces
amap d; : N, (A) = N,—_1(A). Then forall n > 1, set

=0
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Again by the simplicial identities it follows that 0 squares to zero.

Given a morphism f : A — B of simplicial k~-modules, it follows from the naturality of
f, that f, : A, — B,, induces a map N, (f) = f: N,(A) — N, (B). This defines a chain
map

No(f) : Na(4) = Nu(B)

We thus obtain a functor
N, : SMod(k) — Ch>o(k)

Given a simplicial set K, we will also write N (K; k) = No(FK) with F' : Set — Mod(k) :
S = @qcsk the free module functor.

Definition 4.2.3. We call the functor N, : SMod(k) — Chxo(k) the normalized chain
functor.

Proposition 4.2.4 ([Dol58], [Kan58]). The normalized chain functor N, is an equivalence of
categories.

We will now discuss the analogue of the Dold-Kan correspondence for augmented sim-
plicial k-modules. Recall the augmented simplex category A from Definition 2.1.1.

Definition 4.2.5. We denote ST Mod(k) = Fun(A%, Mod(k)) for the category of aug-
mented simplicial (k-)modules, i.e. functors A% — Mod(k), and augmented simplicial maps,
i.e. natural transformations, between them.

Notation 4.2.6. For any n > —1, we denote
A" = A (—,[n]) : A — Set

Note that for n > 0, the restriction of A™ to A" is precisely the standard n-simplex in
SSet, and that A™ has a single (—1)-simplex.

Further, (A™1),, =0 foralln > 0and (A71)_; = {x}.
Construction 4.2.7. Given an augmented simplicial k-module A, we construct a non-
negatively graded chain complex N, (A) as follows. For all n > 0, set
N (4) = J”—*l
Zi:o 5i(An_2)

for all n > 0. So in low degrees: N (A) = A_1, N;"(A) = Ag and N5 (A) = A1/s0(Ao).
The differential is given by, for all n > 0:

On1 = (—1)'d; : N}, (A) = N,f(4)
=0

where d; is induced by the ith face map d; : A, — A,—1 of A. It follows from the
simplicial identities (1.3) that this differential is well-defined and squares to zero.

Given an augmented simplicial map f : A — B, set N,/ (f) = f,_; to be the map
N} (A) — N5 (B) induced by f,,—1 : A,,_1 — B,_1. This defines a chain map

NS(f) s NJ(A) = NJ(B)
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by the naturality of f. It is clear that we get a functor
NS : ST Mod(k) — Chso(k)

Given an augmented simplicial set K, i.e. a functor K : A% — Set, we will also write
NJ(K;k) = NS (FX), analogously to the classical normalized chain complex.

Definition 4.2.8. We call the functor N : ST Mod(k) — Chs¢(k) of Construction 4.2.7
the augmented normalized chain functor.

Remark 4.2.9. Pre-composition with the inclusion A — A induces a functor
(=)>0 : ST Mod(k) — S Mod(k)
which forgets the module A_; and the face map dp : A9 — A_; of a given augmented

simplicial module A.

Further, consider the following isomorphism of categories
S Chzo(k) l> Ch>0(k‘)

with sC,, = C,,_; and 9 = 9S*, for all n > 0 and any non-negatively graded chain
complex C,.

Then we have an isomorphism of non-negatively graded chain complexes
NF(A) ~ (sN.(AzO) o, A_1>

which is natural in all augmented simplicial objects A.

Proposition 4.2.10. The augmented normalized chain functor N* : ST Mod(k) — Ch(k) has
a right-adjoint Tt : Ch(k) — ST Mod(k) which is given by, for all chain complexes C,:

I (C,) = Ch(k) (Nj(AH; k), c.) L A% — Mod(k)

Moreover, the restriction
NS
+ ~
S MOd(k) = Chz()(k)

is an adjoint equivalence of categories.

Proof. Because s, (—)>o and N all clearly preserve colimits, it follows from Remark 4.2.9
that Nt preserves colimits as well. Thus the first statement follows from a general nerve
construction applied to the the functor Nt (A(7): k) : A, — Ch(k).

It remains to show that N} : ST Mod(k) — Chx¢(k) is an equivalence, which will follow
from Proposition 4.2.4. Given augmented simplicial modules A and B, it follows from
Remark 4.2.9 that

Ch(k)(NJ(A), NS (B))

=~ Ch(k)(Ne(A>0), Ne(B>0)) XMod(k)(Ao,B_) Mod(k)(A-1, B_1)
~ S Mod(k)(A>0, B>0) XMod(k)(A¢,B_,) Mod(k)(A_1, B_1)

~ S+ Mod(k)(A, B)
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This proves that N : S; Mod(k) — Ch(k) is fully faithful. Further, let C, be a non-
negatively graded chain complex and let Csg € Chso(k) be obtained by forgetting Cy
and 91 : C; — Cy. Then choose a simplicial module A so that Ng(A) ~ s~ 1C~. Note
that Ay ~ C}, so we can promote A to an augmented simplicial module A" by setting
A_; =Cpand dy = 9y : Ag — A_y. It follows that N} (A) ~ C,. Thus N/ is essentially
surjective as well. O

Remark4.2.11. Letus make the functor I'" a little more explicit. Let C, be a chain complex.
For all n > —1, the k-module I'* (C,),, consists of all collections

(ar)rcim) € @ Ciny

that satisfy, forall I = {i; < ... <} C [n]:

For h : [m] — [n] in A4, the map

L (Co)(h) : TT(Co)n = T (Co)m = (ar)icrm) + (ba)scim)
is given by by = ay,(y if h|; is injective and b; = 0 otherwise.
Finally, if f : C¢ — D, is a chain map, then

TFH(f)n :TT(Co)n = T (Do) : (ar)ici) = (f(ar))icm
foralln > —1.

Construction 4.2.12. Asboth Mod(k) and A are monoidal categories (see 2.1.3), we can
endow ST Mod(k) with the monoidal structure given by Day convolution (see [Day70]).
This is also known as the join of augmented simplicial objects. We denote the resulting
monoidal closed category by (ST Mod(k),*, F(A~1)).

Explicitely, the join of two augmented simplicial modules A and B is given by

(AxB),= @ Av®B

k,l>-1
k+l¥1=n

forallm > —1. Given f : [m] — [n], and k,l > —1 such that k + [ + 1 = n, there exist
unique f{ : [p] — [k] and f5 : [¢] = [l withp + ¢+ 1 = m and ff x f§ = f. With these
notations, we have for all k,l > —1withk+1+1=mn:

(Ax B)(f) ot = tpq 0 (A(fF) @ B(f3))

The monoidal unit is given by F(A~!). Thus F(A™!)_; = k and F(A™1), = 0 for all
n > 0.
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Construction 4.2.13. Letusrecall the usual symmetric monoidal closed structure (®, k[0])
on Ch(k). It is defined as follows.

Given two chain complexes C, and D,, their tensor product C, ® D, is given by

P,q€EL
ptg=n
with differential 9¢®? determined by
0,90 (z @ y) = () @ y + (1)’ ® 9 (y)
forall p,g > 0withn =p+qgandz € Cp, y € D,.

The monoidal unit k(0] is the chain complex with

Kol — {k ifn=0

0 otherwise

The symmetry in Ch(k) is defined as follows. For chain complexes C, and D,, consider
the isomorphism
UC,D : Oo®Do %D.(X)Co

determined by
(cop)n(z@y) = ()" y@
forallp,g > Owithn=p+qgandz € Cp,y € D,.

Finally, the subcategory Chxq (k) inherits a symmetric monoidal structure from Ch(k).

Theorem 4.2.14. The adjunction N : ST Mod (k) < Ch(k) : T'" is monoidal.

Moreover, the restriction N} : ST Mod(k) < Chso(k) : I'" is a monoidal equivalence.

Proof. For both statements it suffices to show that N, has the structure of a strong
monoidal functor. Let A and B be augmented simplicial modules. For all » > 0 and
i € [n — 2], the degeneracy map s; : (A% B),,—2 — (Ax B),_1 is given by

. st ®idp, , ., ifi<k
(| A®Br_k—s = . -
ARG En ks ida, @s2, , ifi>k

It follows that the submodule Z?;(f si((A* B)p_2) of (A® B),_1 is equal to

) (zi(sqf‘ ®idp, ,)(Ap-2 ® By-1) + qz_:(idAp_l ®s7)(Ap1 @ Bq—2)>

p,q>0 \i=0 i=0
pt+g=n

Consequently, we have an isomorphism

Ni(AxB)~ @ (N (4) ® Nj(B)) = (N*(4) @ N*(B))n

p,q>0
pt+g=n
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Moreover this isomorphism is a chain map. This follows from the fact that for all n > 0
and i € [n], the face map d; : (A B),, — (A * B),,—1 is given by,

0 _ Jdd ®idg, ifi <k
AAREBT 4y, @dB, , ifi >k

So, we get an isomorphism
jap i NF(Ax B) = N (A) ® NF (B)
It is a direct verification that this isomorphism is natural in A and B, and coassociative.

We clearly have an isomorphism € : N, (A7'; k) = k[0] and it follows easily that p is
counital with respect to e. O

4.2.2 Frobenius structures and S* Mod(k)-categories

This subsection is entirely devoted to showing that there is an equivalence of categories
between small categories enriched in augmented simplicial k-modules S* Mod(k) and
templicial £-modules with a Frobenius structure (Theorem 4.2.17). We will achieve this
by very explicitly defining the functors in both directions, and showing they are inverse
to each other.

Definition 4.2.15. An ST Mod(k)-category is a category enriched in the monoidal category
(ST Mod(k),*, F(A™1)) of Construction 4.2.12. An St Mod(k)-functor is an S Mod(k)-
enriched functor. We denote the category of small St Mod(k)-categories and S* Mod (k)-
functors by

kCata, = ST Mod(k)- Cat

Definition 4.2.16. A Frobenius templicial (k-)module is a pair (X, Z) with (X, S) a templicial
k-module and Z a Frobenius structure on X : A% — k Quivg. Recall that then X is in
particular a lax monoidal functor.

Let (o, f) : (X,S) — (Y, T) be a templicial map and assume that X and Y have Frobenius
structures Zx and Zy respectively. Then f* : k Quivy — k Quivg is lax monoidal by
Lemma 1.1.18. We call (¢, f) a Frobenius templicial map if the induced natural transfor-
mation X — f*Y is monoidal with respect to the lax structures on X and f*Y. This is
equivalent to requiring the following diagram to commute for all &, > 0:

Ji(Xkt1) — s Y

zZet
f,(zjyﬁ \ (4.5)

fi(Xy @5 Xi) —— [i(Xx) @1 [i(XD) ;o2 Vi @1 V)

We denote the category of Frobenius templicial objects and Frobenius templicial maps
between them by
SETb Mod (k)

Note that there is an obvious forgetful functor S5 Mod (k) — Sg Mod(k).
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Theorem 4.2.17. There is an adjoint equivalence of categories

-
—
k Cata ~ " S5Erob Mod(k)
B

Let us illucidate these functors a little bit before delving into the details. Consider a
Z-graded k-module M, that is concentrated in degree > 1 (so M,, = 0 foralln < 0). Then
consider its tensor algebra

TM, = P ME»

p=0

Note that for all n > 0, we have:

TM,, ~ @ Mn1®...®MHP:@MT

p=>0 TEPn
ni+...4np=n
n; >0

where My = M, @ My, ¢, @ .. @ My, if T = {0 < t; < ta < ... <tp1 < n}.
Consider the monoid of natural numbers N (including 0). We can view N as a discrete
monoidal category. Then the non-negatively graded module 7'M, can be identified with
a functor

TM, : N — Mod(k)

Moreover, this functor is Frobenius monoidal in the sense of Definition 2.2.34. The lax
structure is given by concatenating tensors as is usually done in the tensor algebra. The
colax structure is given by separating tensors.

This construction supplies a functor
T : gr>1(Mod(k)) — Frob(N, Mod(k))

from the category of graded k-modules in degree > 1 to the category of Frobenius
monoidal functors N — Mod(k). In fact, by analogous arguments as presented below,
one can show that this functor is an equivalence of categories. Its inverse is the functor

K : Frob(N,Mod(k)) — gr>1 Mod(k)

which sends any Frobenius monoidal functor X : N — Mod(k) to the graded k-module
K(X). given by
n—1
K(X) = () ker(ptrn—)
k=1

for all n > 1, where g n—r : Xn = X ® X,,—j denote the comultiplication maps of X.

The functors 7 and K in the equivalence of Theorem 4.2.17 are constructed in essentially
the same way as the functors 7" and K above. We can interpret this as an upgrade of the
above equivalence, obtained by equipping both sides with a certain simplicial structure
and allowing them to vary over different sets of objects.

For what follows, it will be convenient to extend the augmented simplex category A to
the equivalent category of finite linearly ordered sets.
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Notation 4.2.18. We denote by Lin the category of all finite linearly ordered sets and
order morphisms between them.

Construction 4.2.19. Given finite linearly ordered sets I and J, we denote by I LI J the
disjoint union of I and J endowed with the partial order defined as follows. For all
i,jelul,
i<je@<jinl)or (i<jinJ)or(iclandjeJ)
Given morphisms f : I — I’ and g : J — J’ in Lin, we have the following induced
morphism in Lin:
) ifiel
FUg TUJ T U i 10 i€
g(i) ified
We thus have a functor — U — : Lin x Lin — Lin.

It is readily verified that this defines a monoidal structure on Lin with monoidal unit
given by the empty poset 0.

If I, I, C J are subsets of a finite linearly ordered subset .J, we'll also write I; LI I5 for the
union I; U I, to indicate that ¢ < j forall ¢ € I; and j € I,. Note that up to isomorphism
this coincides with the above definition.

Remark 4.2.20. Note that for any finite linearly ordered set J = {jo < ... < ji}, thereis a
unique order isomorphism J ~ [k] so that we have a canonical equivalence of monoidal
categories

(Lin, L, 0) ~ (A4, *,[-1])

By pre-composing with this equivalence, we can extend every augmented simplicial
object A € ST Mod(k) to a functor Lin® — Mod (k). Concretely, we set

Ay = Ay

for all J € Lin with £ > —1 as above. Given an order morphism f : I — J between finite
linearly ordered sets, consider the unique isomorphisms I ~ [k] and J =~ [I] for some
k,1 > —1andlet g : [k] — [!] be the induced morphism of A . Then we write

A(f)=Alg) : A1 = Ay

Further, the join of two augmented simplicial objects X and Y can be rewritten as follows.
Given a finite linearly ordered set J, we have

(A*B)]: @ A]1®B[2
11,I,CJ
L1Ulx=J

Given an order morphism between finite linearly ordered sets f : J — J’, we have for all
I, I, C J' with I U Iy = J that

(A*B>(f) Olr I, = [‘ffl(h),f*l(b) © (A(f|f*1(11)) ® B(f|f71(12))>

Notation 4.2.21. Let (7, p) be a necklace and write T' = {0 =ty < t; < ... < t;, = p}. For
alli € {1, ..., k}, we denote

jﬂic = {ti—l + 1ati—1 + 27 7tl - 1}
considered as an object of Lin. Note that

TPU..UTE=[pI\T
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From St Mod(k)-categories to Frobenius templicial modules

We start by constructing the functor 7 : k Cata, — SE7°" Mod(k).

Remark 4.2.22. Let C € kCata, and set S = Ob(C). Its underlying S* Mod(k)-enriched
quiver can be identified with a functor

C:AY — kQuivg

which we can extend to Lin®” via the equivalence Lin ~ A, as in Remark 4.2.20. So
concretely, we have a quiver
Cy € kQuivg

for every finite linearly ordered set .J, and a quiver morphism
C(f):Cr—=Cr
for every morphism f : I — J in Lin.
Further, the identities in C may be identified with a quiver morphism
u:ks >Cyp=0C_

where kg is the monoidal unit of k£ Quivg. The reverse composition law of C (see Remark
1.1.22) is determined by quiver morphisms

mr.1, : Cr, ®sCr, = Cy
for all finite linearly ordered sets J with I;, I C J such that I; U I, = J.

Because of the associativity of the composition in C, we also have an induced quiver
morphism, for all p > 2:

mll,__ﬂ[p :Cr, Qs ... Vg C[p —Cy

for all finite linearly ordered sets J with I, ..., I, C J such that I; U... U I, = J. Further,
we write my,, 7, =uifp=0andmy .1, = idcl1 ifp=1.

Construction 4.2.23. Let C be a ST Mod(k)-category with object set S = Ob(C).

* Given an n > 0, consider the quiver

TCn= & TC)r

TePn

where, for every necklace T' = {0 =ty < t; < ... <t =n}

T(C)T = CTf ®s CTQC Rg ... g CT{T
=C;,-2®5Cty—t,2Q5 ... ®5Cp—y,,_,—2 € kQuivg

* Given a morphism f : [m] — [n] in Ay, we define a quiver morphism

TEC)(f):TC)n = T(Chm
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as follows. For T' € P, write U = f~}(T) = {0 = up < u1 < ... < u; = m}. Then
forevery j € {0,...,1}, f(u;) = t,, for some p; € {0, ..., k}. Thus we can restrict f to
flog U7 =Ty U UTG

in Lin for all j € {1, ...,1}. Now define a quiver morphism 7 (C)y — T (C)r as

TC)(f)r =C(flug)mre,..15, ®s ... @5 C(f

ULC)mT;FlJrl,...,T,j

Then 7 (C)(f) is defined by setting, forall T € P,
TE)(f)orr =1y o TC)(f)r

Example 4.2.24. Let 0 < j < n and consider the coface map d; : [n — 1] — [n]in Ay. For
anecklaceT = {0 =ty < t1 < ... < ty, = n}, we have

ifj¢T
ifjeT

idct172 R... ® dj—tp,l—l ®R...Q idcnftk7172
idct172 ®...® mj_tp71_27tp+l_j_2 ® ... ®1id¢

ﬂ@@hz{

n—tp_1—2
where p € {1, ..., k} is the unique integer such that t,_; < j <t,.
Similarly, consider the codegeneracy map o; : [n + 1] — [n] in Ay with 0 < ¢ < n. For a

necklace T'= {0 =ty < t1 < ... < tx = n}, we have

idct1_2 R... R® Si—t,_1—1 ®...R idcn_ik71_2 if 7 Q T
ide,, , ®..®1de,_, | _,®u®ide,  _, ,®..Qide ifieT

T(C)(oi)r = {

where p € {1, ..., k} is the unique integer such that t,_; < i <t,.

Proposition 4.2.25. Let C be a small ST Mod(k)-category. Then the assignments n — T (C)y,
and f — T (C)(f) of Construction 4.2.23 define a Frobenius monoidal functor

T(C) : A(}p -k QuiVOb(C)

and thus (T (C), Ob(C)) is a Frobenius templicial k-module.

Proof. Set .S = Ob(C). We first show that 7 (C) is a well-defined functor. Take morphisms
f:[m] = [nJand g : [n] = [p]in Ay and T € P,. Setting U = g~ }(T) and V = f~1(U),
we must show that

TC)(f)o o T(C)r(g) = TC)(gf)r

By the functoriality of the monoidal product — ® s —, we may assume that £(V') = 1. Now
write U = {0 = up < u1 < ... <w; =n}andlet k = ¢(T). It follows from the naturality
and the associativity of 1 that

TEC)(fluoTC)g)r
flve)mue ue <C(g\Ulc)77~17"1c,...,7";1 Rg ... @5 C(g

¢ VMpe c
UEVTE |yt )

:C(
= C((glug U ... Uglug) flve)mry . e
= C(gf|V1°)mTf,“.,T§ = T(C)(gf)T
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Further, for a necklace (T, n) with k = ¢(T") we have

T(C)(id[n])T = C(ide)mTf Rg ... Dg c(idTﬁ)mTE = idch Rg... Dg idCT§

Next we equip 7 (C) with colax and Frobenius structures. First note that by definition,
T(C)o ~ ks is the monoidal unit of k Quivg and 7 (C)r ®s T(C)y ~ T(C)pyy for all
necklaces 7" and U. Then take k,I > 0. Every necklace T' € Py, containing k can be
uniquely splitas T' = T} V Ty with T; € P, and T» € P, so that we have the following
canonical projection and coprojection maps:

per: TCOkp= @ TCr— @ TECr~TECr®sT(C)

TEPk+1 TEPr11
keT
7T esTCh~ @ TCr— P TE)r=TECr
TGP}C_H TGPk+l
keT

Now take f : [k] [pland g : [I] — [¢]in Ay, and T € P,, U € P,. Then we have
FUT) Vgt U) = (f +g)"YT v U) and it follows from Construction 4.2.23 that

T +9)rve =TC)(f)r ®s T(C)(9)u
From this it is easy to see that i, ; and Z*! are natural in k,1 > 0.

We complete the proof by showing that the maps s, and Z*! satisfy the Frobenius
equation (2.9). Take k, 1, p, ¢ > 0 such that k& + [ = p + ¢ and assume that k¥ > p. Then for
all T € P, withp € T we have

LT ifkeT

— 1y 7P
0 ifkgT M7

(ZPF7F @5 idr(ey,) (id7(c), @shr—p)ir = {

A similar proof shows the case k < p. O

Construction 4.2.26. Let H : C — D be an ST Mod(k)-functor between small S* Mod(k)-
categories and let f : S — T denote its object map. For every n > 0, we construct a
quiver map in k Quivy:

T(H)n : f'(T(C)n) — T(D)n

For every finite linearly ordered set J, we have a quiver map H : C; — f*(D;) in k Quivg.
Denote its adjoint in k£ Quiv, by

Hf; : fI(CJ) —Dy
Then define, for all necklaces (U, n) with k = £(U):

T(H)u : f(T(C)v) = filCus) @1 ... @1 fi(Cug)

Finally, for n > 0, set

T(P)u

T(H),: HTEn) = @ /T 2% @ 7(D)y = T(D),
UvepP, UuepP,
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Lemma4.2.27. Let H : C — D bean ST Mod(k)-functor between small S+ Mod(k)-categories.
Then the quiver maps (T (H)n)n>0 of Construction 4.2.26 define a Frobenius templicial map
T(C) — T (D) between Frobenius templicial k-modules.

Proof. We employ the same notations as in Construction 4.2.26. It follows from the
enriched functoriality of H that

e H,fi(C(h)) =D(h)H; forall h: I — J in Lin, and
e forall I, J € Lin, the following diagram commutes

’
HI\_IJ

filCruy) ———— Drug .
N(Cr®sCy) —— fi(Cr) @1 fi(Cy) 57—, Dr@r Dy

Hi®rHj
From this it easily follows that the quiver maps (7 (H),)n>0 define a natural transforma-
tion 7(H) : iT(C) — T (D) between functors A" — k Quivy.
Further, it is clear that for all necklaces U and V, T (H)yvv is equal to the composite

f!(T(C)U\/V> — fr(T(C)U) 7T f'(T(C)V) m

From this it is easy to see that the natural transformation 7 (H) is monoidal and satisfies
(4.5). Thus (T (H), f) : (T(C),S) — (T(D),T) a Frobenius templicial map. O

T(D)vy @1 T(D)v =~ T(D)uvv

Proposition 4.2.28. The assignments C — (T (C),Ob(C)) of Proposition 4.2.25 and H —
T (H) of Lemma 4.2.27 define a functor

T : kCata, — S5 Mod(k)

Proof. This is now immediate from the definitions. O

From Frobenius templicial modules to S Mod(k)-categories

We will now construct the inverse K : S5 Mod(k) — k Cata, to 7.

Lemma 4.2.29. Let (X, .S) be a templicial k-module with comultiplication yand m,n > 1. Let
f i [m] — [n] be an order morphism such that f=*({0}) = {0} and f=1({n}) = m. Then the
quiver map X (f) : X,, — X, restricts to

n—1 m—1
m ker(p1gn—k) — ﬂ ker (4p,m—p)
k=1 p=1

Proof. Take a,b € S and z € X,,(a,b) such that py, ,—r(z) = 0 for all 0 < k < n. Then for
all 0 < p < m, there exist unique morphisms f; : [p] — [k] and f2 : [m — p] = [n — k] in
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Ay such that f1 + fo = f with k = f(p) (Remark 2.1.4). By the hypothesis on f, we have
that 0 < k£ < n as well. Now

tp,m—p(X(f)(2)) = (X(f1) @s X(f2))pk,n—k(x) =0
and the result follows. O

Construction 4.2.30. Let (X, S) be a templicial k-module with a Frobenius structure Z.
We construct an S Mod(k)-enriched quiver K(X) as follows.

Set Ob(K(X)) = S. Take n > —1 and consider the subquiver

n+1

K(X)n = ﬂ ker(pirni2—k) € Xnio
k=1

So for example (X)_1 = X; and K(X)o = ker(u1,1). Given f : [m] — [n] in A4, the
morphism
0] % f*[0] : [m+2] = [n+2]

satisfies the hypothesis of Lemma 4.2.29 and thus induces a quiver map
KX)(f) : K(X)n = K(X)m
It is clear that this defines a functor K(X) : AP — k Quivg, or equivalently a quiver
K(X) € ST Mod(k)- Quivg
Lemma 4.2.31. Let f : [k] — [p| and g : [I] — [q] be morphisms in A. Then

Sp+2([0] % f > g% [0]) = ([0] % f % [0] + [0] % g * [O]) 42

Proof. Clearly the morphisms on both sides of the equation preserve the endpoints.
Evaluating either sidein 0 < ¢ < k + [ + 3, we obtain

fG—-1)+1 ifi<k+1
gli—k—=2)+p+3 ifi>k+2
O

Proposition 4.2.32. Let (X, S) be a templicial k-module with Frobenius structure Z. Then the
quiver maps
(mpﬂz = p+22p+2’Q+2|IC(X)p®le(X)q : K(X)p ®s K(X)q — K(X)p-‘rq-kl)

p,q>—1

define a reverse composition law on the quiver (X)) of Construction 4.2.30 with identities
determined by the quiver map

u:ksiXos—O)Xlilc(X)_l

Consequently, K(X) has the structure of an St Mod(k)-category.
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Proof. Letp,q > —1 and set n = p + ¢ + 3. consider the quiver map
dp+2Zp+2;q+2 . Xp+2 Rg Xq+2 N Xp+q+3
For all 0 < k < n, we have

(dpr2 ®sidx, k1 £ ZPT29T2 ifp+2 <k

k. _xd Zp+2,q+2 — ' ]
Hhem—kCp2 (idx, @sdpro—i)pkn—k+1ZPT29P2 ifp+ 2>k

_ (dp2 2Pt  @gidx, )(idx,, s @stk—p-1,n—k) Hp+2<Ek
((ika ®Sdp+2,kZp+2_kvq+2)(Mk,er?—k ®s iqu+2> ifp+2>k
which implies that d, 2 ZP+2:972 restricts to a quiver map

Mp.q : K(X)p ®s K(X)g = K(X)ptqt1

Take morphisms f : [k] — [p]and g : [[] = [¢] in A;. By Lemma 4.2.31, we have that
X([0] % f# g [0])dps2ZP 2142 = dy 2 22172 (X([0] % f % [0]) @5 X ([0] % g+ [0])
It follows that the quiver maps (1, 4)p,q>—1 define a quiver map in S Mod(k)- Quivg:

i K(X) xs K(X) = K(X)

It remains to show that 7 is associative and unital with respect to u. For this it suffices
to note that for all p, ¢, r > —1:

+q+3,7+2 2,q+2 o
dp+q+3Zp e (dp+22p+ ™ ®s 1er+2)
_ A2 2,042 o
= dptq+3dpr2 27" (ZPT297 @ 1er+2)
— +2,qg+r+4(; +2,r+2
= dpyodprqra 2P0 (1dx, ,, ®5 27 )

2,q+r+3; 2,742
= dp+2Zp+ q+r+ (ldxp+2 ®qu+2Zq+ r+ )

p+2,1 — p+2,0 -1y
dp+2Z (lpr+2 ®Su) = ;D+25p+2Z (lpr+2 ®se ) - 1pr+2

i Z"P P (u g idy,,,) = disoZ"P (e ®sidx,,,) = idx, .,

where € : Xg = kg is the counit of X and kg is the monoidal unit of k& Quiv g O
Proposition 4.2.33. The assignment (X, Z) — K(X) of Proposition 4.2.32 extends to a functor
K : S5 Mod(k) — k Cata,

Proof. Take a Frobenius templicial map o : X — Y with vertexmap f : S — T'. Consider
the underlying natural transformation « : fiX — Y and its adjoint o’ : X — f*Y (see
Construction 1.1.16). Then o clearly restricts to a natural transformation

K(a): K(X) = f*K(Y)
between functors A%’ — k Quivg, which can equivalently be considered as a morphism
in ST Mod(k)- Quivg. It then follows from the compatibilty of o with the Frobenius
structures that IC(«) is an St Mod(k)-functor.
It immediately follows from the definitions that this defines a functor

K : SETP Mod(k) — k Cata,
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Proving the equivalence

We finish this subsection by showing that the functors 7 and K are each other’s inverses.
Construction 4.2.34. Let (X, 5) be a templicial k-module with Frobenius structure Z.
Then from the inclusions (K(X), < Xj+2),5 _,, we obtain a quiver map

T]C(X)T = K(X)tl_g Xs ... s K(X)n_tk71_2 — th Rg ... s Xn—tk,l =Xr

for any necklace T' = {0 = ¢y < t; < ... < ty = n}. Thus for any n, we can consider the
quiver map

ex,  TK(X)w = @ TEX)r - B xr L5 X,
TeEP, TeP,

Proposition 4.2.35. Let X be a Frobenius templicial k-module. The quiver morphisms (€x,, )n>0
of Construction 4.2.34 define a Frobenius templicial map

ex :TK(X) = X

which is natural in X.

Proof. LetT = {0 =1ty < t1 <tz < ... <ty = n} be anecklace. Writing /n for the reverse
composition law of (X)) (see Proposition 4.2.32), note that
ire,.re = X(01) 2" | 7c(x)r : K(X) 1 @5 o @5 K(X) 12 = K(X)pup\ 1

where we denoted 07 = 0y, _, - - 04,0,,. Now take a morphism f : [m] — [n] in A with
anecklace T € P, and set U = f~H(T). Write U = {0 = up < u3 < ... < w; = m} and
let (T4, ..., T;) be the splitting of T over f(U). Further, f = fi + ... + f; for some unique
fi v wi —ui—1] = [f(u;) — f(ui—1)] in Ay. In fact, we have the following equality of
morphisms in A:

fi = 61, ([0] * flue % [0])

where we identified Uf with [u; — u;—; — 2]. Hence, we find that
2V rxx)0 © TR(X)(f)r
— 2V (KOO(flop) X (57) 27 @5 .. 05 KCO(Flog) X (0r)2™) I
=27 (X(f1)Z" ®s .. ®s X(7)Z") 7K (3
= X(NZ' (2" @5 ... ®5 2™l rr(x)r = X (f) 0 Z7 |k (x)r
where we used the associativity of Z in the last equality. We have thus shown that
ex : TK(X) — X is a natural transformation between functors A% — k Quivg.

Next, it follows from Proposition 2.2.40 that for all necklaces (T,n) and 0 < k < n:

ZM1k(X)r, @5 22| 7K(x)p, ifkET

n k2" =
Hkn—kZ " | THC(X) 7 {0 ifkgT

where (T1,T) is the splitting of T over {0 < k < n}. From this is it easy to see that
ex is respects the comultiplications of 7/ (X) and X as well. Then it is clear from the
definitions that ex is in fact a Frobenius templicial map.

Finally, the naturality of ex in X quickly follows from the definitions of 7 and K, and
the diagram (4.5). O
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Lemma 4.2.36. Let X be a Frobenius templicial object and n > 1. The inclusion of quivers
K(X)n—2 < X, has a retraction

&= (=) ZTpp
TeP,

Proof. Take 0 < k < n, then by Corollary 2.2.41.3, we have

ke n—k < > (_1)Z(T)ZT,UT> => > Dz

TEPn UeP, TEPx
TU{k}=U
> <(_1)aU\{k}> n (_1)e<U>> pkn—iZ% py =0
UePr
keU

This shows that &, : X,, — K(X),,—2 is well-defined.

Further note that for T' € P,,, we have ur|x(x),_, = 0 unless T' = {0, n}, by definition of
K(X)n—2. It follows that {|x(x),_, = idk(x),_, as desired. O

Lemma 4.2.37. Let n > 0and V C U necklaces in P,,. Then

PONCEVEE

TEP,
VCTCU

Proof. Choose k € U\ V, then T + T\ {k} defines a bijection
{TeP, |VCTCUkKeT} S{TeP,|VCTCUkgT}
Moreover, if k € T, then ¢(T \ {k}) = ¢(T) — 1. The result follows. O
Proposition 4.2.38. The natural transformation of Proposition 4.2.35
€ TO IC — idsg”"’ Mod(k)

is an isomorphism.

Proof. Fixn > 0. Given anecklace T' = {0 =ty < t; < ... < t;, = p} we set
ET = gtl ®S ®S fn—tk,1 : XT — T’C(X)T

where for each p > 1, §, denotes the retraction from Lemma 4.2.36. We claim that the
quiver morphism

Erpr)r : X = P TKX)r = TK(X),

TeEPn

is inverse to ex .

It follows from Remark 2.2.4 and the coassociativity of x that

Erpr = Z (-1 O+ (N @g .. 05 ZV )y + X = TE(X)r

Uep,
TCU
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where (Uy, ..., Ux) denotes the splitting of U over T'. It follows from Lemma 4.2.37 (with
V = {0 < n}) and the associativity of Z that

TE(X)rSTHT = - MU
Z 27| ¢ Z( 1){+UT) ZU

TeP, veP,
TCU

- | S | 20—y,
UeP, TEP,

Hence, (é7pr)r is a section of ex, .

Conversely, take necklaces T',U € P,,. Then by Proposition 2.2.40:

onvZ” kx)r = (Eun Z™ ®s oo ®8 Enmw 1 Z7) (b1, ®s - ®s by, ) | Tr(X) 0

whereU = {0 =up < w1 < ... <y =n}and (11, ...,T;) and (Uy, ..., Uy) are the splittings
of T over U and U over T respectively. Now since Z is associative, it follows completely
dually to the proof of Lemma 4.2.36 that for all j € {1,...,1},

T
é-u]'f’u,j,lZ 7 =

whenever ¢(7T;) > 1. Hence the right hand side of the above equation vanishes unless
the length of every U; and Tj is 1. In the latter case, we have T' = U and thus

ConvZ" e x)r = &rlre e = 7o s
Thus (&ppr)r is also a post-inverse of e, . O
Construction 4.2.39. Let C be an S* Mod(k)-category with object set S = Ob(C). Note
that for all n > —1, we can consider the following coprojection in k Quiv g:
Crn = Clo<ntaye < @ Cre @5 .. @5 Cre = T (C)nt2

TEPn42

It immediately follows from the definition of the comultiplication of 7 (C) that this quiver
map factors as

Cpn 2 KT(C)p > T(C)n

where 7¢,, is an isomorphism and the second quiver map is the canonical inclusion.

Proposition 4.2.40. Let C be a small St Mod(k)-category. Then the quiver morphisms
(nc,, )n>—1 of Construction 4.2.39 define an isomorphism in k Cata_ :

n:C— KT(C)
that is natural in C.
Proof. If f : [m] — [n]isamorphismin Ay, then g = [0]x f*[0] : [m+2] — [n+2] belongs
to Ayand g7 ({0 < n+2}) = {0 < m+2}. Thus T(C)(f){o<n+2} = C(f). It follows that

the quiver maps (7c, )n>—1 define a map n¢ : C — KT(C) in S™ Mod(k)- Quivg where
S = Ob(C).
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To show that 7 is also an St Mod(k)-functor, let 7 denote the reverse composition law of
C. Also, let the quivermap u : kg — C_; represent the identities of C with ks the monoidal
unit of k Quivg. For p,q > —1, consider the coface map dp412 : [p+ ¢+ 3] = [p+ g+ 4]
Then it suffices to note that 1), 4 is precisely

T(C)(5p+2){0<p+2<p+q+4} : Cp ®s Cq - CP+Q+1
and that the degeneracy map sy : 7(C)o — 7 (C)1 coincides with w.

Finally, the naturality of 7¢ follows immediately from the definitions. O

Proof of Theorem 4.2.17. In view of Propositions 4.2.38 and 4.2.40, it remains to verify the
triangle identities for the unit  and the counit e.

Let (X, Z) be a Frobenius templicial module. Then K(ex) onic(x) = idk(x), follows from
the fact that for all n > —1, Z10<"+2} | is the identity on K(X),,.

Let C be an S* Mod(k)-category with object set S = Ob(C). Then to prove ez(cyo T (1¢) =
id(cy, it suffices to note that the composite

(Z7)r

TCn= &P Crs @5...05Cre = @ T, @5 ... @5 T(Chn—ty, — T(C)n

TEP, TeP,

is the identity for all n > 0, where Z is the Frobenius structure of 7 (C). The latter follows
quickly from the definition of Z. O

4.2.3 The linear differential graded nerve

We are now ready to define the linear dg-nerve N,fg . kCatgy — SgMod(k). Itis
constructed using the two equivalences from the previous subsections (Definition 4.2.46).
The remainder of this subsection is devoted to showing that the linear dg-nerve IV Z g
lifts the classical dg-nerve N% along U : Sg Mod(k) — SSet (Corollary 4.2.54). We
will achieve this by proving the more general Proposition 4.2.53 which characterizes
templicial maps into the linear dg-nerve.

Definition 4.2.41. A differential graded category or dg-category over k is a category enriched
in the monoidal category (Ch(k), ®, k[0]) of Construction 4.2.13. A dg-functor is a Ch(k)-
enriched functor. We denote the category of small dg-categories over k and dg-functors
between them by

k Catqy = Ch(k)-Cat

We call a dg-category C non-negatively graded if for all A, B € Ob(C), the chain complex
C.(A, B) is non-negatively graded. We denote

k Catdg’zo

for the full subcategory of k Catq, spanned by all non-negatively graded dg-categories.
Equivalently, we can define k Catqg >0 as the category Chxo(k)- Cat of small categories
enriched in (Ch>(k), ®, k[0]).
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For more details on dg-categories, we refer to the literature. See [Kel06] and [Toé11] for
example.

Remark 4.2.42. Let C, be a dg-category. As noted in Remark 1.1.22, C, comes equipped
with a chain map
M :Ce(A,B)®Ce(B,C) — Cu(A,C)

for all A, B,C € Ob(C), while the composition law of a dg-category is conventionally
given by chain maps
m:Ce(B,C) ®Ca(A,B) = Cu(A,C)

We can of course easily pass from one to the other by composing with the symmetry in
Ch(k): 0 : Ce(A, B) @ Co(B,C) = Co(B,C) ® Co(A, B). But beware that this introduces
asign; forall f € C,(A,B) and g € Cy(B, C) we have

o(feg) =DM f

Further, we reserve the notation

gof=m(g® f)

for the conventional composition. Thus we have

m(f®g)=(=1)"gof

The classical dg-nerve

Let us first recall the classical dg-nerve functor
N9 . k Catqy — SSet

which implicitly goes back to Block and Smith [BS14], but was formally constructed and
named by Lurie [Lurl6, Construction 1.3.1.6]. A few different versions of N%9 exist in
the literature, with varying sign conventions. Most notably there is Faonte’s “small dg-
nerve” [Faol7, Definition 2.2.8] and a second version by Lurie [Lurl8, Tag 00PL]. They
are however all isomorphic to each other. For our purposes, Faonte’s version is the most
convenient, which is why we will use it here. It is defined as follows.

Given a small dg-category C,, the differential graded (dg) nerve N%9(C) is the simplicial set
where for every n > 0, an n-simplex is a pair

((Ai)?_m (fI)Ig[n]>

[1]>2

where Ay, ..., A, € Ob(C) and for each subset I = {ip < ... < iy} C [n] withm > 1,
fr € Cr—1(44y, A4;,,) such that

Tm

m—1

ofr)=> ((—1)j71f1\{ij} + ()OI G iy o f{i0<...<7§j})

Jj=1
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or, when employing the reverse composition law of C, (see Remark 4.2.42):

m—1
a(fr) = Y (fivgigy — (fio<.<iyt @ flij<o<im}))

j:1

For any h : [m] — [n] in Ay, the map N%(C),, = N99(C),, is given by

<(Ai)?_07 (fI)Ig[n]> — ((Ah(i))?im (h*fJ)Jg[m]>

[1]1>2 |J]|>2

where
Jnesy if his injective on .J

h*fJ: idAi lfJ:{jQ<_71}W1thh<j0):Z:h<]1)
0 otherwise

Example 4.2.43. Given a small dg-category Ca, let us decribe the dg-nerve N%9(C) in low
dimensions.

* The vertices of N99(C) are given by the object set Ob(C).

* The edges of N%(C) are given by the 0-cycles of the chain complex Co (Ao, A1) for
some A(), A € Ob(C), ie. f01 € Co(A(), Al) such that 8(f) =

e A 2-simplex of N9(C) is given by a (not necessarily commutative) diagram of
p & y y &

0O-cycles:
no ﬂf\

A04 >A2

with fo12 € C1(Ao, A2) such that O(fo12) = fo2 — f12 © fo1- So fo12 is a homotopy in
Ce(Ag, Az) from foa to f12 0 fo1.

The linear dg-nerve

Proposition 4.2.44. The adjunction N} : ST Mod(k) < Ch(k) : I't of Proposition 4.2.10
induces an adjunction
NS
—
k CatAJr J:r k Catdg
r

Moreover, the restriction
NS

—
k CatAJr ~ k Catdg’>0

is an equivalence of categories.
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Proof. This immediately follows from Theorem 4.2.14. O
Corollary 4.2.45. There is an equivalence of categories

ngb Mod(k) ~ k Catqg,>0

Proof. Combine Proposition 4.2.44 and Theorem 4.2.17. O

Definition 4.2.46. We define the (k-)linear differential graded (dg) nerve as the composite

N k Catgy ~ kCata, L» SE™ Mod(k) — Se Mod(k)

where I'"" is the right-adjoint from Proposition 4.2.44, T is the equivalence from Propo-
sition 4.2.28 and the third arrow represents the forgetful functor.

Notation 4.2.47. Givenn > 0,asubset ] C {0 <n}°={1,..,n—1}and k € {1,....,n —
1}\ I, we write

Iy ={ili<k} and ILp={i—k|iecl,i>k}

and consider I, and Iy as subsets of {0 < k}¢ = {1,....k —1} and {0 < n — k}° =
{1,...,n — k — 1} respectively. Note that Iy Ul I~ ~ I as linearly ordered sets (see
Construction 4.2.19).

Remark 4.2.48. Given a small dg-category C,, let us make the templicial object IV, ,‘: 9(C) a
little more explicit. The vertex set of N&9(C) is simply S = Ob(C).

Take n > 0. From Construction 4.2.23 we have (also see Notation 4.2.21):

NF# €)= TCHC)r = P I'"(C)rs ®s ... @5 TT(C)1p € kQuivg
TEP, TeP,

Forall A, B € Ob(C), T (C)1¢(A, B) =T (Ca(A, B))re is the k-module

{(a[)j S @ C‘I‘(A,B a[ Z / a,[\{ZJ }

ICTE j=1

where we've written I = {i1 < ... < ip} CTF.

In view of Proposition 4.2.25, the counit of NV, ;jg (C) is just the identity N ,‘jg (C)o = kg, the
monoidal unit of £ Quivg. The comultiplication maps y, , and Frobenius structure maps
ZP-4 are defined by the canonical projections and coprojections respectively:

Cpig= P TOTC)r— P TAETC)r~ NI (), s NP(C),

Tepp+q TE’Perq
peT
ZP1: NP9(C), 05 NP (C)g~ @@ TEHCO)r = @ TOTEC)r = NP(C)piq
Tepp+q Tepp-%—q
peT

Finally, the inner face maps and degeneracy maps of NV ,f 9(C) are completely determined

by projection onto the component I'* (C) (o<} of Ni?(C), corresponding to the necklace
T = {0 < p} € Pp. More precisely:
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e Forall 0 < j < n, the composite of d; : Ngg C)p — N,fg (C)n—1 with the canonical
projection N{9(C),,_; — I'"(C){o<n—1}e is equal to the composite

(dJT,er)
N (C)n = TT(C)pocnye ® (TF(C)go<iie @5 TH(C) gjcnye) ——— TT(C) (0<n_1)e

If 1 is the reverse composition law of C,, then dj and m™* are defined by:

df ((ar)icqo<nye) = (as, (1)) sc{o<n—1}e
m* (((a1)1§{0<j}° ® (bJ)J§{0<nfj}C) = (m(aéj(K)q ® b5j(K)>j))Kg{o<n—1}v
where we used Notation 4.2.47.

e For all 0 < i < n, the composite of s; : N,fg(C)n — Ngg(C)nH with the canonical
projection N{9(C), 41 — I't(C){o<n+1}e is equal to

N (C)p — TF(C) fo<nye = T+ (C)ocntrye f0<i<n
Ngg(C)o :IOb(C) 1>ZQ(C) =F+(C)@ ifn=i=0
0 otherwise
where u : kg — Cp represents the identities in C,, Z; denotes the functor taking
0-cycles and
si ((ar)rcgoenye) = (br)scfocntiye
with b; = Ao, (J) if {i,i+1} € Jand by =0if {i,i + 1} C J.

Example 4.2.49. Givensmall a dg-category C,, let us describe the templicial object V, ,‘f 9(C)
in low dimensions. Note the analogy with Example 4.2.43.

® The vertices of N ,fg (C) are given by the object set Ob(C).
¢ Take objects A, B € Ob(C). Then
NL(C)1(A, B) = T*(Ca(A, B)) 1 = Zo(Ca(A, B))
is the submodule of Cy (A, B) of 0-cycles.

¢ In two dimensions, we have

N(C)a(A,B) =T*(Ca(A,B))o® €D TH(CW(A,C))-1 @ TH(Ca(C, B)) 1
Ce0b(C)

~C(A,B)® P Zo(C.(A C))® Zo(Ca(C, B))
CeOb(C)

The comultiplication map 1 1 : N29(C)y — N(C), © N29(C), is given by projec-
tion onto the second term in the expression above. On the other hand, the face map
dy : NJ9(C)y — N(C), is defined as follows. Given a pair (h, a) with h € C; (A, B)
and «a a tensor belonging to the second term in the expression above, we have

dy(h, ) = 9(h) + m(«a)

where 0 : C1(4, B) = Zy(Ce(A, B)) is the differential. Setting f = d; (h, o), we thus
find that h describes a homotopy in C.(A, B) between f and m(«).
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Templicial maps into the linear dg-nerve

The description of the simplices of the dg-nerve in Example 4.2.43 can be generalized to
the following remark from [Lur18].

Remark 4.2.50 ([Lurl8], Tag 00PV). Let Co be a small dg-category over k and let K be a
simplicial set. A map of simplicial sets f : K — N9(C) is equivalent to the following
data:

e A map of sets fo : S — Ob(C).

e Foralla,b € Kyand n > 0,amap

I Kn(a7 b) - U (Cn—l(fO(a)v fO(b)))
Moreover, this data must satisfy the following conditions:

(@) Foralla,b e Ky,0<i<nando € K,(a,b),

id ifn=0,a=0
fn+1(sf((0)) - {0 e ;therv\?i;e
(b) Foralla,b € Ky,n>0and o € K,(a,b),
n—1
O(fu(0) =D (1) (far(df (o) = M f5(d 1l (0)) @ frj(dEf . (0))))
j=1

We will now show the templicial analogue of Remark 4.2.50 (see Proposition 4.2.53). In
the following lemma we again make use of Notation 4.2.47.

Lemma 4.2.51. Let C, be a dg-category over k with object set S and denote its reverse com-
position law and identities by m and w respectively. Let (X, S) be a templicial k-module with
comultiplication ji. Define

e the set Sy of all collections of morphisms in k Quivg:
(ﬁn : Xn — Cnfl)n>()

o the set Sy of all collections of morphisms in k Quivg:
(O‘I tXn = Clll)lg{l,.“,n—l},n>0
such that forallm > 0,1 C{1,...n—1}and j € {1,...,n — 1} \ I, we have:

oy = Oéé;l(l)dj( — ﬁL(Oq<]. Xs Oq>_7.)‘u,;7(n_j (46)

where §; is the coface map [n — 1] — [n].
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Then the map
Sy — S1:(ar)rcq1,..m—1}m>0 F (Qq1,...n—1})n>0

is a bijection.

Proof. It follows from equation (4.6) that a collection («r); in Sy is completely determined
by the morphisms oy . ,—1} for n > 0. Thus the above map is injective. We now show
the surjectivity.

Let (B, : X, = Cn_1)n>0 be a collection of quiver morphisms. For every n > 0, set
aqi,..n—1} = Bn. Given I C {1,...,n — 1}, choose some j € {1,...,n — 1} \ I and define

ay : X, — Cy(ry—1 by equation (4.6), inductively on n. Note that this doesn’t depend on
the choice of j. Indeed, if j < kin {1,...,n — 1} \ I, then we have by induction that:

aajl(l)de —mlar; ®s O‘I>J‘)“J)€n—j
= a&;jléjfl(])di(—ldg)‘( - m(a5;1(1)<k71 ®s a5;1(1)>k71)ukx—1,n—kd]x
— (a1<j D5 (@1 (1o By =1 (@) cusy @ 0‘(1>j)>k7j)ﬂf—j,n—k)) My
= s, -1(nd) diy — mas-1(r_,) ®s ar e 1 kdy
—m (O‘Iq ®s 0‘6,;5(5») Him—jadi + 0 (a1, @5 0., @5 ar) Bk gk

which is can be seen to equal a5 1 ;) dif — (o, ®s ar., )1 . by a similar calculation.
Hence, (a7)s belongs to the set Ss. O

Lemma 4.2.52. Let C, be a dg-category over k with object set S and denote its reverse com-
position law and identities by m and w respectively. Let (X, S) be a templicial k-module with
comultiplication ji. Consider the bijection So — Sy of Lemma 4.2.51. Then for all (o) € Sa
with (Bn)n>0 = (a{l,...,n—l})n>0:

1. The following statements are equivalent:

(i) foralln >0and I = {i1 < ... <in,} C{l,..,n—1},

804[ = Z(—l)j_loé]\{ij}
j=1
(ii) forallmn > 0,
n—1 )
0Bn = (1) (Buord — (B @5 Bt ;)
j=1

2. The following statements are equivalent:
(i) forall0 <i<nandI C{1,..,n},
u ifn=0

ars; = agy f0<i<n{i,i+1}¢I
0 otherwise
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(ii) forall0 <i<m,

x_ Ju ifn=0
Prasi _{0 ifn>0

Proof. Fix an element (ar)r of Sz and let (8,)n>0 = (@41,....n—1})n>0- Let us first prove
1. It is immediate from the definitions that (i) implies (i7). Conversely, assume that (i)
holds. Let I = {i; < ... < ip} C {1,...,n — 1} with n > 0. We show by induction on
n that day = Z;”:l(—l)j_loq\{ij}. If I = {1,..,n — 1}, this follows directly from (ii).
Note that this also covers the case n = 1. Otherwise, choose k € {1,...,n — 1} \ I and let
p = |I<k|. Then:

OJay = 8045;1(1)de — 6ﬁ’b(al<k XKs 041>k),ukx,n—k

i—1 X i—1 X
=D V) gy + Y0 (D gy - AR
Jj=p+1

(8a1<k ®S a1>k)lukX,n7k - (_1)pm(al<k ®S 8a[>k)ﬂ}§,n7k

N
-
i

=

(=1~ (a%l(f\{ij})d;{ —mar .\, ©s a1>k)MkX,n7k>

[
.ME

<
I
—

+ Z (-1’ <a6;1(1\{ij})dj( —m(az, ®s a1>k\{ij—k’})ukx,n7k)
j=p+1

<
I

(=17 tan iy

I

=1

It remains to show 2. As before, (4) trivially implies (i¢). Assume now that (i) holds and
take0 <i<mnandI C {1,...,n}. When I = {1, ...,n}, (i) follows directly from (i7). In
particular, this covers the case n = 0. Otherwise, choose j € {1,...,n}\ I. Without loss of
generality, we may assume that j < i. We proceed by induction on n > 0 using equation
(4.6). Consider the following four cases:

e Ifj < i < n,thenthestatements {i,i+1} C I, {i—1,i} C 6;1(1) and {i,i+1} C I;
are all equivalent and thus

arsy = 0‘5;1(1)55(—16@( —m(ar,; ®sar, Si'X—j)“fn—j
oo s an@ —mlar, @s o)y = oy i {Gi+1}ET
0 if {i,i+1} C 1
e If j =i < mn,then {i,i+ 1} Z I and thus

X _ - Xy, X _ —
Ors; = Qs—1(1) — m(ar., @8 ., 55 JWin—i = Q5= = You(l)

e Ifj<i=n,

X _ X X ~ X X —
ars, = O‘a;l(j)sn—ldj —mlar; s ar; s, )5 =0
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e lfj=i=mn,

X _ ~ Xy, X _ _
Sy = sy — m(ar., ®s apsy )ino = Qg1 — e, =0

Hence we have shown (7). O

Proposition 4.2.53. Let C, be a small dg-category over k and (X, S) a templicial k-module. A
templicial map (o, f) : X — N,fg(C) is equivalent to the following data:

e Amapofsets f: S — Ob(C).

¢ Forall n > 0, a quiver map
677, : Xn — f*cn—l

satisfying the following properties:

(a) Forall0 <i<mn,
¥ u ifn=0
1SN = 4.7
Bn+18; {0 ifn >0 (4.7)
where u denotes the identities of the dg-category f*C,.

(b) Forallm > 0,
n—1

0Bn =Y (=17 (Buad} = 1i(B; @5 Bo-i)1i5n5) (4.8)

j=1

where m and O are respectively the reverse composition law and the differential of the dg-
category f*Co (induced by the lax structure of f*, see Lemma 1.1.18).

Moreover, for all n > 0, 3, is adjoint to the composite

T{o<n}¢c

AX 25 NP (C)n — TT(C) fo<nye Cr

Proof. Note that f*C, is a dg-category with set of objects S, we may replace C, by f*C,
and assume that f is the identity on S.

We can translate the data of a templicial map (a,idg) : X — N ,fg (C) as follows. Let
(n + Xy — N,fg(C)n),»o be a collection of morphisms in k£ Quivg. For any n > 0 and
I C {0 < n}°, consider the following composite:

ar: Xn 25 NY(C)p — TH(C) jo<nye —= O

It follows from the templicial structure of the linear dg-nerve (Remark 4.2.48) that the
assignment (v, )n>0 F (1) 1c{0<n}e,n>0 induces a bijection:

) N (c
{(an X, — N:Q(C)n)n>0 VO<j<mn: pj,fl_(j )an = (a; ®g anj)ufn_j}

~

c
Ic{o<n} =

{(oq : Xn = Cp) n>0  |Vn,VI:Oar = Z(_l)j_laf\{ij}}
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where we have denoted I = {i; < ... < iy} C{1,....,.n —1}.

Further, it follows that the morphisms (a;,),,>0 are compatible with the degeneracy maps
ifandonlyifforall0 <¢<mnand I C {1,...,n},

U ifn=20
arsy = g,y HO0<i<n{i,i+1}Z1
0 otherwise

and (ay)n>0 are compatible with the face maps if and only if for all 0 < j < n and
IC{l1,..,n—2}%

O‘Idj( = a5+ m(aéj(l)q' ®s a5j(1)>j71)“fn—j
Hence the result follows from Lemma 4.2.52. O

Corollary 4.2.54. There is a natural isomorphism U o N ,fg ~ N9,

Proof. Let C, be a small dg-category over k and n > 0. By Proposition 4.2.53, a templicial
map F(A") — N ,fg (C) is equivalent to a map of sets f : [n] — Ob(C) with a collection
of quiver morphisms f,, : F(A"),, — f*Cp,—1 for m > 0 satisfying properties (4.7) and
(4.8). The map f is equivalent to a choice of objects Ao, ..., A, € Ob(C). Further, for
i,7 € [n] we have

F(A™)n(i,j) = F({h € A([m], [n]) | h(0) = i, h(m) = j})

and thus we may represent (3, by a collection of elements §;,... ., € Cm—1(A4i,, A;,,) for
0 <ip < ... < iy < n. Then by property (4.7), 8;; = id; and B;,,...;,, = 0 whenever
m > 2 and i, = ip41 for some p € [m — 1]. Hence, 3, is completely determined by the
elements B¢; <. <,y withig < ... <i,,. Moreover, property (4.8) translates to

m—1
(ﬂ{zo< <1m} = ﬁ]\{z}— (5{i0<...<¢j}®5{ij<...<im}))

J:1

Hence, the pair ((a;), (81)r) is precisely an n-simplex of N%9(C),,. We have thus obtained
a bijection between U (N (C)),, and N%(C),,.

It now follows easily from the definitions that this bijection is natural in n and C,. O

4.2.4 Quasi-categories and Frobenius structures

Our main result in this subsection is Corollary 4.2.65 which states that the linear dg-nerve
of any dg-category is a quasi-category in Mod(k). This will be a consequence of the more
general Theorem 4.2.62 that every templicial k-module with a naF-structure is already
a quasi-category in Mod(k). As a byproduct, we find that this applies to F(C) for any
ordinary quasi-category C as well (Corollary 4.2.63).

We start by introducing the wings W" of a simplex A" for n > 2, which are defined as
the union of its two outer faces. Given a necklace (7, n) and 0 < j < n, the unique inert
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necklace map T' — {0 < n} can thus be identified with a composite of inclusions of
bipointed simplicial sets:
TCW"CAMCA"

By design, a naF-structure on a templicial object X allows to fill up any necklace 7" in
X to a simplex via the morphism Z7 : X; — X,,. For general monoidal categories V,
this is all we can say. For V = Mod(k) however, we can use an alternating sum of the
maps Z7 to show that also all wings W™ in X can be filled to a simplex (see Proposition
4.2.59). Finally, from this also all inner horns in X can be filled by appropriately adding
and subtracting degenerate simplices (Proposition 4.2.60). This last argument employs
the same technique as the one used to show that every simplicial group is a Kan complex
(see for instance [M0058]).

Definition 4.2.55. Let n > 2. We write W™ for the simplicial subset of A™ defined by
W"([m]) ={f:[m] = [n] | f(m) <n—1or f(0) > 1}
for all m > 0. We call W™ the wings of A™. It consists of the Oth and nth face of A™.

We say a functor Y, : Nec? — V lifts wings if for all n > 2, any lifting problem in YV e

F(W™)e(0,n) —— Y,

F(A™)4(0,n)
where the vertical morphism is induced by the inclusion W™ C A", has a solution.

Proposition 4.2.56. For all n > 2, we have
W (0,n) = U (AF v A"F) (0, 1)

as a subfunctor of A} (0,n). In particular, we have for all necklaces (T, p):

Wi0,n)={f:T— A"inNec|{0<n} C f(T)}

Proof. This is shown similarly to Proposition 2.2.18 and Corollary 2.2.20. O

Lemma 4.2.57. For all n > 2, the inclusion W' (0,n) — AZ(0,n) belongs to Horn.

Proof. Given 0 < k < n, let us denote by A} the simplicial subset of A™ given by the
union of the faces 0, ..., kK — 1 and n. Then A} contains all vertices of A™ and

k—1

(A7) (0,n) = WO, ) U (] 6;(A")a(0,m)

Jj=1

by Proposition 4.2.56. We will show by double induction onn > 2 and 0 < k£ < n that
the inclusion
(A%)e(0,n) = AJ(0,n) (4.9)
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belongs to Horn. The result then follows by choosing k = 1.

If k = n — 1, then (4.9) coincides with the horn inclusion (A?_;)e(0,n) — AZ7(0,n) by
Proposition 2.2.18. Note that this covers the entire case n = 2.

Assume further that k < n—1andlet (T, p) beanecklace. Recall thatforamaph : T — A"
in SSet, . and 0 < i < n, h factors through (A* Vv A"~%)4(0,n) if and only if i € h(T), and
h factors through 6; (A1) if and only if 2([p]) C [n]\ {i}. Now takeamap g: T — A"~!
in SSet, .. It follows that d,g : T — A" factors through (A7)o.,, N6 (A" 1) ,, if and only
if g factors through (A}~ ")o.,—1. Hence, we obtain a pushout diagram in SetVee™:

(A7 )e(0,n — 1) —2s (A7) (0,n)

[ /

A:l_l((),n_ 1) T> (AZ+1).(O7TL)

By the induction hypothesis, the left vertical map belongs to Horn and thus so is the right
vertical map. By the induction hypothesis, the inclusion (A}, ;)e(0,n) — A7(0,n) also
belongs to Horn. This completes the proof. O

Proposition 4.2.58. Let (X, S) be a quasi-category in V. Then for every a,b € S, the functor
Xeo(a,b) : Neco? — V lifts wings.

Proof. This is an immediate consequence of Lemma 4.2.57. O
Proposition 4.2.59. Let (X, S) be a templicial k-module with a naF-structure. Then for every
a,b € S, the functor X4(a,b) : Nec®? — Mod (k) lifts wings.

Proof. Let Z denote the naF-structure of X. Take n > 2 and a,b € S. By Proposition
4.2.56, a morphism F(W™)4(0,n) — X, (a,b) in Mod (k)N " corresponds to a collection
(z)7—; of elements with z;, € U((Xy ®s X,—1)(a,b)) for all 0 < k < n such that for all
0 <k <l <nwehave

(idx, @p—kn—1)(@r) = (pri—kx @ idx, ) (x;) (4.10)

To extend the above morphism to F(A™)4(0,n), we must find an element z € X,,(a,b)
such that pg —r(2) =z forall 0 < k < n.

GivenT € P,, with ¢(T') > 2, we can choose k € T'\ {0, n}. Consider the splitting (71, T5)
of T over {0 < k < n}. Then set

Trr = (MTl Y ,LLTz)(Ik) € U(XT(aab))

Note that by (4.10), this expression does not depend on the choice of k. Then it follows
by Proposition 2.2.40 and Corollary 2.2.41.1 that

ek 2" (zr) = (2" @ Z)(id @pr @ id)(er)
= (Z" @ Z")(zrophy) = M-k ZT " (@roy)
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where 7" is some necklace with ¢(7”) = 2 and the second equality follows from (4.10).

Now consider
2= Y (=)D Z"(ar)

TeP,
(T)>2

Then we have for all 0 < k < n that uy,,—x(2) is equal to

S D) M2 @)+ Y (D D gk 27 @70 )

TEP, TEP,

o(T)>2 o(T)>2

kET kgT

= > (VP Z"(@r) + Y (D) gk 2% (aw)
TeP, Uep,
E(Te’)22 Z(5)23
kET keU

= Mk,7l—kzk’n7k(f{o<k<n}) =Tk
O

Proposition 4.2.60. Let (X, S) be a templicial k-module. Then the following statements are
equivalent.

(1) X is a quasi-category in Mod(k).
(2) Forall a,b € S, the functor Xe(a,b) : Nec’? — Mod (k) lifts wings.

Proof. If X isa quasi-category in Mod(k), then (2) holds by Proposition 4.2.58. Conversely,
take 0 < j < n, a,b € S and let (v4)}Z] and (yl):l;lll ; be collections of elements
satisfying the conditions of Corollary 2.2.22.3. Consider the following condition on
elements z € U(X,,(a,b)):

pri(z) = (forall0 < k < n) (4.11)
Let us start by noting that if z € X, satisfies (4.11), then we have for all 0 < k£ < n that

Pkn—k(si(yi —di(2))) =0 (forall 0 < i < j)
ke n—k(si-1(yi — di(2))) =0 (forall j <i<mn)
Indeed, for the first equation, there are three cases:
Pken—k(8i(yi — di(2)))
(Si (9 idX,,,_k)(/ikfl,nfk(yi) — (dz &® idxn_k)(xk)) ifi <k
= 9 (idx, ®s0)(kkn—k—1(yr) — (di @ idx, , ) (Tpt1)) ifi=k
(idx, ®@si—k)(Hkn-k-1(yi) — (idx, @di—k)(zk)) ifi >k
=0

The second equation follows similarly.

Now assuming (2), there exists an element 2° € U(X,,(a, b)) satisfying condition (4.11).
Then define, inductively on! € {1, ...,5 — 1}:

=2 sy —di(z') € U(Xa(a, b))
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By the previous remarks, each z! satisfies (4.11). We then prove by induction on [ that for
all0 <i <

di(2") = y;
Indeed, for [ = 0 this is trivial and if { > 0 we have:

dy(2) = {yi —s1—1(di(y)) — di—1(ys)) ifi <l

Ny —diY ifi=1

Finally, set 2" = 277! and define inductivelyonl € {j + 1,....,n — 1}:
2= s (g — di(ZY)

Then again 2! satisfies (4.11) for all j < I < n. We prove by induction on [ that for all
ie{l,..,j—1}U{l,...,n—1}
di(2") = yi

Again this is trivial for | = n and if | < n we have

yi — si—o(di(y)) — di— (y)) ifi<l—1
di(zl) = dl(z“'l) + Yy — dl(zl+1) ifi =1 = Y;
Yi — Si—1(di—1(y) — di(y;)) ifi >1

Note that the case i = | — 1 does not occur. Following Proposition 2.2.28, it thus suffices
toset z = zI+1, 0

The previous proposition does not hold for ordinary simplicial sets, as the following
example shows.

Example 4.2.61. Consider the simplicial set X = A3 IIgaz A2, gluing an extra 2nd face
to the standard 3-simplex. Formally, it is the pushout of the inclusion 9A? C A? along
the map A% — A3 sending vertices 0 — 0, 1 — 1 and 2 — 3. Denote the simplices of
A3 by ordered sequences [ig, ..., ir,] and denote the extra face by z € X5. We then have
do(z) =[1,3], di(z) = [0,3] and da(x) = [0, 1], but = # [0, 1, 3].

Then X is certainly not a quasi-category as there exists no 3-simplex z with dy (z) = [1, 2, 3],
da(z) = zand ds(z) = [0, 1, 2].

However, all wings in X canbe filled. Indeed, amap o : W™ — X is uniquely determined
by simplices y,z € X,,_; such that do(y) = dn_1(z). If either y or z is degenerate, «
extends trivially to A™. Assuming they are both non-degenerate, we have either n = 2
orn = 3. As W? = A? and the quasi-category A? contains all edges of X, the case n = 2
is covered. If n = 3, we must have y = [0,1,2] and z = [1, 2, 3], which can be filled by
[0,1,2,3] itself.

Theorem 4.2.62. Let X be a templicial k-module with a naF-structure. Then X is a quasi-
category in Mod (k).
Proof. Combine Propositions 4.2.59 and 4.2.60. O

Corollary 4.2.63. Let C be an ordinary quasi-category. Then F(C) is a quasi-category in Mod (k).
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Proof. This follows from Proposition 2.2.37, Example 3.1.33 and Theorem 4.2.62. O

Corollary 4.2.64. Let C be a small ST Mod(k)-category. Then the underlying templicial k-
module of T (C) is a quasi-category in Mod (k).

Proof. This immediately follows from Theorem 4.2.62. O

Corollary 4.2.65. Let C, be a small dg-category over k. Then its linear dg-nerve N, ,fg (C)isa
quasi-category in Mod (k).

Proof. Apply Corollary 4.2.64 to the ST Mod(k)-category I't(C,). O

4.2.5 Comparison with other nerves

In this final subsection, we compare the linear dg-nerve NV, g 7 to the two other nerves we
defined so far, namely the templicial nerve functor N, (Construction 2.3.4) and templicial
homotopy coherent nerve functor N (Definition 4.1.13).

Notation 4.2.66. Any small k-linear category can be considered as a small dg-category
concentrated in degree 0. We denote this embedding by ¢ : k Cat — k Catg,. Conversely,
we can apply the Oth homology functor to all hom-complexes of a small dg-category to
get a functor Hy : k Caty, — k Cat.

Proposition 4.2.67. We have natural isomorphisms

N¥oir~N, and hyo N ~ H,

Proof. Let us denote the functor from left to right in the equivalence of Corollary 4.2.45 by
DG = NJK : SEr°* Mod(k) — k Catgg,>o. Clearly, ¢ factors through k Catgg >0 and the
templicial nerve functor Ny, factors through S57°" Mod(k) by Corollary 2.3.9. Therefore,
it suffices to show that we have natural isomorphisms

t~DGoN, and hy~ Hyo DG

Let C be a small k-linear category. Since the comultiplication maps of N (C) are invertible,
we have that the S Mod(k)-category K(N(C)) is concentrated in degree —1 and thus
DG (Ng(C)) is concentrated in degree 0. It follows that DG o Ny, is naturally isomorphic
to .

Let (X, S) be a Frobenius templicial k-module. Boiling down the definitions, we see
that the set of objects of DG,.(X) is S as well and that for every a € S, the degenerate
1-simplex so(a) represents the identity in both h; X and Hy(DGe(X)). Take a,b,c € S.
Then the differential 0 : DG4 (X)(a,c) — DGo(X)(a, c) is just the restriction d[xer(y, ,) :
ker(pi1)(a,c) — Xi(a,c). Hence, for any three f € Xi(a,b), g € Xi(b,c) and h €
Xi(a, ¢), the composition gf is homologous to i in DG4(X) if and only if there exists
aw € ker(p1,1)(z, z) such that di(w) = h — gf. This is equivalent to the existence of a
templicial map o : F(A?) — X with ag; = 0, a12 = so(z) and ag» = h — gf (using the
notation of Corollary 2.1.27). In other words, [g] o [f] = [h] in hxX. Specializing to the
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case f = so(x), we find that [g] = [h] in Hy(DG4(X)) if and only if [g] = [f] in hxX. This
shows that [f] — [f] defines an isomorphism of k-linear categories

hi X = Ho(DGe(X))

It follows easily that this isomorphism is natural in X. O

Given a dg-category, there is a classical comparison map between its dg-nerve and the
homotopy coherent nerve of its associated simplicial category. We will lift this map to a
templicial analogue in Corollary 4.2.70. To achieve this, we’ll first prove a general lifting
result for Frobenius templicial k-modules (Proposition 4.2.69).

Lemma 4.2.68. Let (X, S) be a Frobenius templicial k-module and let ¢ - FU(X) — X be the
canonical templicial map. For all n > 0 and a,b € S, the induced k-linear map

€n : F(U(X)n(a,b)) = X, (a,b)

is surjective.

Proof. Fix some a,b € S and n > 0. As ¢ clearly is an isomorphism, we may assume
n > 0. Let us call an element = € X,,(a, b) pure if there is an n-simplex o € U(X),,(a, b)
such that ag, = = (using the notation of Corollary 2.1.27). We wish to show that the
k-module X, (a,b) is generated by pure elements.

Denote the Frobenius structure of X by Z. We first make some observations:

1. If x € X,,(a,b) satisfies px ;(z) = 0 for all k,1 > 0 with k + [ = n, then z is pure.
Indeed, we can simply define o € U(X),,(a,b) as follows:

x ifi=0,7=n
o =
e 0 otherwise

forall0 <i<j<n.

2. LetT = {0 =1ty <t <..<t, =n}beanecklace and ay,,...,a;, , € S, and set
ap = a,a, = b. If wehave pureelementsz; € Xy, _, ,(as, ,,a,)foralli € {1,...,p},
then

7T (1 ® ... ® zp) € X,(a,b)

is pure as well.

Indeed, take an r € {1, ..., p}. Then we can choose elements
Qt, 141y Gt —1 € S and Q5 € Xj,i(ai,aj) for all tr—1 <1<j<t,

suchthat oy, | ;. =@y and pp—; j—p( ;) = @i @ oy j foralli < k < j. Now given
any 0 <i < j<n,letr,s € {l,...,p}besuchthatt,_; <i<t,andt;_; <j <t
and define ,

Q5 = ZT (amr RLry1 P ... @51 ® Oét5717lj)

where (T%,1",T5) is the splitting of T' over {0 < i < j < n}. Note that whenever
tr—1 < i < j < t, for some r € {1,...,p}, this definition coincides with the «; ;
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already defined. Further, when (i, j) = (0,n), we get ap, = Z7 (21 ® ... ® z,). Now
take any ¢ < k < j. Then by Proposition 2.2.40,

Pk—i j—k (i) = QG @ Q. j
showing that o = ((a;)1 ¢, (@i j)o<i<j<n) is an n-simplex of U (X).
We proceed by induction on n > 0 to show that X, (a, b) is generated by pure elements.

If n = 1, then every element of X,,(a, b) is pure. Now letn > 2 and z € X,,(a,b). Given a
necklace T = {0 =ty < t; < ... < t, = n} withp > 2, we have

N
pr(z) = szl ® ... ®x;
i=1

for some N € N, a = ay,ai,...,a,_1,a, = b € Sand z; € Xy, 4, ,(aj_4,a}). By the

induction hypothesis, we may assume that all z% are pure. Set

Y= § (—1)€(T)+1ZT,U,T(ZL')
TEPy
oT)>2

Then by observation 2, y is a linear combination of pure elements. By the same argument
as in the proof of Lemma 4.2.36, we find that

[ (T +Y) = H ( > (UaT)HZTMT(T/)) =0

TEPn

for all k,1 > 0 with k + [ = n. Hence, by observation 1, = + y is pure as well and thus
x = (z +y) — y is a linear combination of pure elements. O

Proposition 4.2.69. Let (X, S) bea Frobenius templicial k-module. Let C, be a small dg-category
over k. Suppose f : U(X) — N(C) is a simplicial map that (as in Remark 4.2.50) corresponds
toamap fo : S — Ob(C) along with the following composites for all a,b € S and n > 0:

Fu s U(X)n(a,b) = U(Xn(a,0)) 28 U (Col i (fola), fo()))

with (B, : Xy — f§Crn_1)n>0 some collection of morphisms in k Quivg.
Then there is a unique templicial map (o, fo) : X — N, ,fg (C) such that f coincides with

U(a)

U(X) —= U(N#(C)) ~ N¥(C)

where the isomorphism is provided by Corollary 4.2.54.
Proof. In order to construct a,, we want to show that the morphisms (8, ),>0 satisfy the
properties (4.7) and (4.8) of Proposition 4.2.53. Consider the counit ¢ : FU(X) — X of

the adjunction F 4 U. The hypothesis on f guarantees that for any n-simplex o of U (X),
considered as a simplex of F'U(X), we have

U(ﬁnen)(a) = fn(g)
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As ¢, is surjective (Lemma 4.2.68) and U is faithful, 3, is uniquely determined by f,,. Fur-
ther, to verify properties (4.7) and (4.8), it suffices to check that they hold after evaluating
in €, (o) for arbitrary o € U(X),, and n > 0. This now follows from Remark 4.2.50.

Moreover, it follows from Remark 4.2.50 and Corollary 4.2.54 that («, fj) is the unique
templicial map such that U(«a) : U(X) — U(N,jg (C)) ~ N99(C) is precisely f. O

The classical normalized chain functor N, : SMod(k) — Ch(k) has a colax monoidal
structure given by the Alexander-Whitney homomorphism (see [May67, §29] for exam-
ple). Thus the right-adjoint to N,:

T : Ch(k) — S Mod(k)

has an induced lax monoidal structure by Lemma 1.1.4. Given a small dg-category C,,
we can consequently apply I" to the hom-complexes of C, to obtain an S Mod(k)-category
C® with the same objects as C,. In [Lur16, Proposition 1.3.1.17], Lurie shows that there is
an equivalence of quasi-categories (which was later shown to even be a trivial fibration
[Lurl8, Tag 00SV]):

3 N"™U(C?)) — N¥9(C)

which satisfies the following two properties:

* The map 3 is given by the identity on vertices.

e For any A,B € Ob(C), n > 0 and 0 € N"(U(C?)).(A, B), the (n — 1)-chain
3(0)r € Cro1(A, B) for I = [n] is given as follows.

The n-simplex o can be identified with a simplicial functor €[A"] — U(C%) (see
§4.1.2), which induces a simplicial map

f:O"h = N(Pa) = €[A")(0,n) — U(P(Ca(A, B)))

As T is right-adjoint to the normalized chain complex N, : S Mod(k) — Ch(k), this
map determines a chain map

f/ i Ne(O" 15 k) — Ca(A, B)
Then 3(0); is defined as the image under f’ of the following (n — 1)-chain:

o1 = Z sgn(7)F € N, (0" 4 k)

TEX 1
where sgn(7) € {—1, 1} denotes the sign of a permutation 7 € ¥,,_; and
7= ({0,n} C{0,7(1),n} C{0,7(1),7(2),n} C ... C{0,...,n})
is a non-degenerate (n — 1)-simplex of 0" ~! = N(P,,).
In fact, the map 3 is unique with these two properties as is shown in [Lurl8, Tag 00SN],
where [[0"71] is called the fundamental chain of 0"~'. For more details on the map 3,

see [Faol7] or [Lurl8]. Note however that they use slightly different versions of the
homotopy coherent nerve.
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Corollary 4.2.70. Let C, be a small dg-category over k. Then there is a unique templicial map
NIe(C2) — N9(C) such that 3 is equal to the composite

N'eW(C?)) ~ UNPe(C?) — UNH(C) ~ N¥(C)

where the isomorphisms are provided by Proposition 4.1.17 and Corollary 4.2.54.

Proof. By Proposition 4.1.17, we have an isomorphism of simplicial sets N"(U/(C*)) ~
UN}<(C). It follows from the properties of 3 that for all A, B € Ob(C) and n > 0, we have
a commutative diagram:

ON](CO)n(A, B) —2 NU(C), (A, B)

| l

U(NI?C(CA)H(A7 B)) m U(Cnfl(Av B))

where 3, is the k-linear map given by the composite of
NE(C2)u(A, B) 22 [FN(P,),T(Cu(A, B))] ~ [Na(0" 1 k), Cu(A, B)]
with the evaluation map at [0"~!]:
evge-1] : [Ne(O" "1 k),Ce(A, B)] = C—1(A, B)

Hence, the result follows from Propositions 4.1.19 and 4.2.69. O



Future research

“And so I close, realizing that perhaps the ending has not yet been written.”

— Atrus (Myst)

In this final chapter we pose some open questions and discuss possible avenues for
answering them.

Model structure

The most glaring open problem regarding templicial objects is the lack of any homotopy
theory. Specifically, it is desirable to have a model structure on the category Sg)V. For
details on model categories we refer to the relevant literature (see [Hov99] or [Hir03] for
example).

The Joyal model structure (originally constructed in [Joy08, Chapter 6], a modern account
is given in [Cis19, §3.3]) is the unique model structure on SSet whose cofibrations are the
monomorphisms and whose fibrant objects are the quasi-categories. Let us denote it by
SSet ;. By analogy, we can ask the following question:

Question 1. Given a suitable monoidal category V, does there exist a model structure on SgV
whose fibrant objects are the quasi-categories in V (Definition 2.2.26) and whose cofibrations are
the projective templicial morphisms (Definition 3.1.24)?

By a result of Joyal [Joy04, p. 50.10], this would fully determine the model category
structure. Of course the issue is showing existence.

One major source of difficulty is the fact that we do not have a set which generates the
class of projective templicial morphisms as a weakly saturated class. Unlike in SSet,
where the boundary inclusions 9A™ < A™ for n > 0 generate the monomorphisms, the
induced morphisms F(9A") — F(A™) in SgV do not generate the projective templicial
morphisms. Thus we currently do not have access to recognition theorems for cofibrantly
generated model categories like [Bek00, Theorem 1.7] or [Hir03, Theorem 11.3.1].

153
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Let us first consider what doesn’t work. In [Qui67, I1.3, I1.4], Quillen constructed a
model structure on SSet with fibrant objects the Kan complexes, and showed that it
can be right transferred along the forgetful functor U : SV — SSet (for suitable V).
Similarly, one could hope to construct a model structure on SgV via right transfer along
U : SgV — SSet;. However, it is possible to adapt Example 2.3.18 to show that this
model structure does not exist.

An alternative approach is the following. In [Ber07], Bergner constructed a model struc-
ture on the category Cata of simplicial categories. It was shown by Lurie in [Lur09a] that
the categorification functor € : SSet — Catx is the left-adjoint in a Quillen equivalence
between the model categories Cata and SSet;. Moreover, € preserves and reflects weak
equivalences (see [DS11a, Proposition 8.1] for example). It is further not difficult to see
that € also preserves and reflects cofibrations. So in fact, the Joyal model structure SSet ;
is given via left transfer along € : SSet — Cata. From Quillen’s model category SV,
several results [BM13][Stal4][Murl5] produce an induced model structure on V Cata,
generalizing the one of Bergner. So one could similarly try to equip SgV with a model
structure by left transfer along €y : SgV — V Cata (Definition 4.1.13). Recall that SgV
is locally presentable if V is, by Theorem 3.2.29. So in this case, the results of [HKRS17]
would become available. At present it is still unclear whether such a model structure
exists, or whether it would have the same cofibrations and fibrant objects as posited in
Question 1.

A third, less straightforward approach is through the use of necklace categories V Cat prec.
The author believes it should be possible to construct a model structure on V" whose
cofibrations and trivial cofibrations are generated by Cell and Horn respectively (see
Notation 2.2.23 and Remark 2.2.24). In that case, a templicial object (X, S) would be a
quasi-category in V if and only if the X, (a, b) is fibrant in VN¢¢” for all a,b € S. In any
case, a more thorough investigation of the category V¢¢”” is necessary.

Morphism spaces

Consider a simplicial set K with vertices a,b € K¢. In [Lur09a, §1.2.2], Lurie constructed
simplicial sets HomZ% (a, b), Hom%’l (a,b) and Hom% (a, b), called the left-pinched morphism
space, morphism space and right-pinched morphism space respectively. If K is a quasi-
category, then these are all homotopy equivalent Kan complexes. As noted by Dugger
and Spivak in [DS11a], these morphism spaces can be described by certain cosimplicial
objects Cit, : A — SSet, . where h e {L, cyl, R}. Indeed:

Hom®-(a, b) ~ SSet*’*(C’ﬁ(;)7 Kap)
Moreover, they constructed a zig-zag of weak homotopy equivalences in SSet:
¢[K](a,b) = Hom} (a,b) (5.1)
assuming K is a quasi-category.

In fact, for every n > 0, the simplicial set C} has exactly two vertices 0 and 1. It is not
difficult to see that also

Hom® (a,b) ~ Set"*” ((C7)4(0,1), K4 (a, b))
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Given a templicial object (X, S) with a,b € S, we can now define

Hom% (a,b) = [F(C$7)e(0,1), X4 (a,b)] € SV

Nec”

where [—, —] denotes the canonical enrichment of V¢ over V. It follows quickly that

there is an isomorphism of simplicial sets

U(Hom% (a, b)) ~ Homg(X)(a, b) (5.2)
Thusif X is a quasi-category in V, then U (X ) is a quasi-category by Proposition 2.2.31 and
thus Hom¥% (a, ), Hom%’l(a, b) and Hom¥% (a,b) are weakly equivalent fibrant objects in

Quillen’s model structure on SV mentioned above. The following question now presents
itself.

Question 2. Given a quasi-category X in V with vertices a and b, does there exist a zig-zag of
weak equivalences in SV:
¢y[X](a,b) = Hom% (a, b)

which specializes to (5.1) when V = Set?

If this can be shown, then it would follow from (5.2) that the canonical map
C[U(X))(a,b) = U(€v[X](a,b))

is a weak homotopy equivalence for all quasi-categories X in V. We have already shown
that this holds on the level of connected components (Corollary 2.3.26), and that it fails
if X is not assumed to be a quasi-category in V (Example 4.1.34).

Comparisons with other models

For the following comparisons to make sense, let us assume that the model structure of
Question 1 exists.

Categories weakly enriched in simplicial objects

As mentioned above, the categorification functor € : SSet; — Cata is the left-adjoint in
a Quillen equivalence. The following question is a natural one.

Question 3. Is the adjunction €y, : SgV =V Cata : NJi¢ a Quillen equivalence?

In [GH15] Gepner and Haugseng developed a very extensive theory of co-categories
enriched in a monoidal oco-category W which can be organized as the objects of an
oco-category Cat?’. In the process, they formalized the idea of categories “weakly or
homotopy-coherently enriched in JA”. For example, when V is the monoidal co-category
S of spaces, then Cat3 recovers the co-category of co-categories Cato, introduced by
Lurie in [Lur09a]. Thus quasi-categories are categories weakly enriched in spaces. Given
a monoidal model category M with class of weak equivalences W, then there is an
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associated monoidal co-category M[W ~1] and thus one can consider the co-category

Catﬁg[wfl]. Haugseng then proved in [Haul5] that Catﬁo/‘[wfl} is equivalent to the oco-
category associated to the model category M Cat. Hence, if the answer to the above
question is affirmative, we may view quasi-categories in V as categories weakly enriched
in simplicial objects in V.

Let us specialize to the case V = Mod(k) for a moment. Assuming the question above
has a positive answer, we would thus have a Quillen equivalence Sg Mod(k) = k Cata.
In [Tab05b][Tab10], Tabuada constructed a model structure on the category k Catg, of
small dg-categories over k, and showed that the induced model category k Catqg >0 is
Quillen equivalent to the model category k Cata. Thus we would get a zig-zag of Quillen
equivalences between Sg Mod(k) and k Caty, as well. How does this zig-zag relate to
the linear dg-nerve NV, ,‘: 9 : kCatgy,>0 — Sg Mod(k) (Definition 4.2.46)? By analogy with
the classical situation, we arrive at the following question.

Question 4. Let C, be a dg-category. Is the templicial morphism N}*(C2) — N,fg (C) of
Corollary 4.2.70 contractible in Sg Mod(k)?

Segal enriched categories

Recall that a Segal precategory is a bisimplicial set X : A°? — SSet such that the simplicial
set X is discrete. A Segal precategory X is called a Segal category if it satisfies the Segal
condition, that is the canonical map

Xn %Xl X Xqo -+ XX, X1
is a weak homotopy equivalence of simplicial sets for all n > 0.

Segal categories were originally introduced by Dwyer, Kan and Smith in [DKS89] (under
a different name). They were extensively studied by Hirschowitz and Simpson in [HS01]
who also put a model structure on the category of Segal precategories SePC with as fibrant
objects the Reedy fibrant Segal categories. In [JT07], Joyal and Tierney constructed two
Quillen equivalences between SSet ; and SePC.

Later, Bacard defined Segal categories enriched in a non-cartesian monoidal model cat-
egory M. These are many-object versions of the homotopy monoids appearing in [Lei00].
In fact, Leinster’s observation that we used to define templicial objects (Proposition 2.1.6)
originally appeared in this context as well. Following the same philosophy, Bacard
replaced the bisimplicial object X by a colax monoidal functor

XPg—)M

where S is a set and Pg is a labelled version of A, ~ A% to allow for a discrete set
of vertices. Let us call such a functor X a Segal M-precategory. Then X is called a Segal
M-category if it satisfies the Segal condition which imposes that the comultiplication and
counit morphisms

Xk;+l(a7 b, C) — Xk((l, b) & Xl(b, C) and Xo(a) — 11 (53)
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are weak equivalences in M for all a,b,c € S'and k,l > 0. If M = SSet, this recovers the
classical Segal categories. If the morphisms (5.3) are all isomorphisms, this recovers M-
enriched categories. In this sense, Segal enriched categories can also be seen as categories
“weakly enriched in M”.

In view of the discussion above on Gepner and Haugseng’s enriched oo-categories, the
author expects quasi-categories in V to relate to Segal SV-categories in the same way
that ordinary quasi-categories relate to ordinary Segal categories. At the time of writing,
the author is unaware of the existence of any model structure for Segal M-categories for
general (non-cartesian) M. But we can still ask the following.

Question 5. Can the Quillen equivalences of [JT07] be generalized to adjunctions between the
categories of templicial objects in V and Segal SV-precategories?

Enhancements of triangulated categories

Stable co-categories were introduced by Lurie in [Lur09b] as quasi-categories C with a zero
object and a good notion of loop and suspension functors €2, % : C — C. The homotopy
category hC of a stable co-category C always comes equipped with the structure of a
triangulated category in the sense of [Ver96]. As such, stable co-categories are often
called enhancements of triangulated categories.

A different enhancement of triangulated categories are pretriangulated dg-categories in
the sense of [BK90]. In [Coh16], Cohn showed that these two types of enhancements are
equivalent. More precisely, Tabuada [Tab05a] constructed a model structure on % Catgg
whose weak equivalences are given by the Morita equivalences and the fibrant objects are
in particular pretriangulated dg-categories. Cohn proved that the co-category associated
to k Catqy is equivalent to the oo-category of idempotent-complete k-linear stable oo-
categories.

We have already related dg-categories over k with quasi-categories in Mod(k) via the
linear dg-nerve N ,‘j 9 k Catgg — Sg Mod (k). It would be interesting to see which quasi-
categories X in Mod (k) correspond to pretriangulated dg-categories and what conditions
on X induce a stable co-category U(X).

Question 6. What is the relation between quasi-categories in Mod (k) and k-linear stable oo-
categories or pretriangulated dg-categories over k? Moreover, what is the relation between the

linear dg-nerve N and Cohn’s result [Coh16]?

Some smaller questions

General nerve constructions

Recall from Proposition 1.3.11 that any cosimplicial object C' : A — D in a cocomplete
category D gives rise to an adjunction C : SSet < D : N¢. Many examples of simplicial
sets, like the nerve of a category, the homotopy-coherent nerve of a simplicial category
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and the singular set of a topological space arise in this way. Even if D is not cocomplete,
the formula (1.4) still makes sense. Similarly, we can ask:

Question 7. What structure on a category D and what small amount of data in D determines
an adjunction SgV < D, or simply a functor D — SgV?

Monoidal closure

Because the category of simplicial sets is just a category of presheaves, it is cartesian
closed and its internal hom-objects are very easy to describe. Assume V is a Bénabou
cosmos as in Section 4.1. Given templicial objects (X, S) and (Y,T), we can construct
their pointwise monoidal product (X, S) K (Y, T') as follows. It has vertex set S x T and
forall (a,b), (¢,d) € S x T'and n > 0, we set

(X X Y)n((av b)’ (C, d)) = Xn(a7 C) ® Yn(ba d)

It is relatively painless to see that this defines a monoidal structure (X, F(A%)) on Sg V.
Moreover, it immediately follows that — X — preserves colimits in each variable.

Assuming V is locally presentable, then so is Sg)V by Theorem 3.2.29. Hence, SgV is
monoidal closed. Unfortunately, this does not give us an explicit description of the
internal hom-objects.

Question 8. Can the internal hom-objects of SgV be described more explicitly?

Linear A -nerve

In [Fao17], Faonte extended the dg-nerve N% to an A.,-nerve N4> : kCata__ — SSet
from the category of small A..-categories over k to simplicial sets. For background on
Aso-categories, we refer to the literature (see [KelO1] for example).

Question 9. Does the linear dg-nerve N{¥9 : k Caty, — Sg Mod(k) (see §4.2.3) extend to a
functor N2> : k Cata_ — Sg Mod(k) so that there is an isomorphism U o Nj*= o~ N4=?
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Alternative definition
of templicial objects

We discuss an alternative definition of templicial objects, which we’ll also call based colax
monoidal functors (Definition A.1.2). They are conceptually simpler than Definition 2.1.9
and don't rely on quivers, but for our purposes they turned out to be less practical. As
in Chapter 2, we fix a monoidal category V which is bicomplete such that the monoidal
product — ® — preserves colimits in each variable. We will identify some conditions on V
for which based colax monoidal functors coincide with templicial objects (see Definition
A.2.8 and Theorem A.2.10).

A.1 Based colax monoidal functors

Remark A.1.1. Let S be a set. Note that S has a unique comonoid structure in (Set, x, {*})
with the diagonal A : S — S x S as comultiplication and the terminal map ¢ : S — {x}
as counit. This extends to an equivalence of categories:

Set ~ Comon(Set)

As the free functor F': Set — V : S — []
functor

wcg I 1s strong monoidal, we have an induced

F : Set ~ Comon(Set) — Comon())

Definition A.1.2. Let (X, p,e€) : A;’f’ — V be a colax monoidal functor. Then X, has the
structure of a comonoid with comultiplication given by 10,0 : Xo — Xo ® X and counit
givenby e : Xy — I. Wecall a set S a base of X if it comes equipped with an isomorphism
of comonoids ¢ : Xo = F(S). We call the triple (X, S, ¢) a based colax monoidal functor.

Consider the functor

(=)o : Colax(A%",V) — Comon(V) : (X, u, €) = (Xo, 0,0, €)

159
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We define the category Colax; (A", V) by the 2-pullback

Colaxy (A%, V) —— Colax(A%",V)

| L=

Set ————— Comon(V)

Note that its objects are precisely the based colax monoidal functors.

A morphism X — Y in Colaxb(A;” ,V) with respective bases S and 7' is a monoidal
natural transformation « such that through the isomorphisms Xy ~ F(S)and Yy ~ F(T),
oy is induced by some map of sets f : S — T

We now describe a comparison functor from templicial objects to based colax monoidal
functors. In the next subsection, we will give sufficient conditions on V for this functor
to be an equivalence.

Construction A.1.3. Consider the natural transformation ¢ : idge; — * given by the
terminal map tg : S — {*} for every set S. This induces a pseudonatural transformation

Pyt : Dy — Dy 0

between pseudofunctors Set — Cat, where ®, = Colax(A%’, (—)) is as in Proposition
2.1.18. Through the Grothendieck construction, we obtain a functor

CZ/‘PV—)/(I)VO*ECOIZ-LX(A?D,V)XSet

Explicitly, this functor sends a pair (X, S) with S a set and X : A" — V Quivg colax
monoidal to the pair (¢X,.S), where

Xy = (ts)(Xn) = [] Xn(a,b)
a,besS

for all n > 0. The comultiplication and counit are induced by those of X. Moreover, a
templicial morphism (¢, f) : (X,5) — (Y, T) is sent to the pair (ce, f), where for every
n >0,

Chp © H Xn(aa b) — H Yn(xay)

a,besS z,yeT
factors through (o, )q,b © Xn(a,b) = Y, (f(a), f(b)) foralla,b € S.

Note that, up to equivalence, we may consider Colax,(Af%",V) as a subcategory of
Colax(A%, V) x Set.

Proposition A.1.4. The functor ¢ : [ ®y — Colax(A%",V) x Set of Construction A.1.3
restricts to a functor
¢ : SgV — Colaxy (A, V)
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Proof. Note that for any set S, (t5)1(Is) ~ [[,cq I = F(S). Take an object (X, S) of [ @y,
then the counit e : Xy — Is induces a morphism

P(x,s) : cXg = (ts)!(Xo) — F(S)

in V. It easily follows that ¢ x g) is @ comonoid morphism which is natural in (X, S).
Moreover, if (X, S) is a templicial object, then ¢ and thus ¢ x5y is an isomorphism.  []

A.2 Decomposing monoidal categories

We now describe how to invert the comparison functor ¢ : SgV — Colax,(A%”, V). For
this we need to “pull apart” the objects X,, € V of a based colax monoidal functor to
form a quiver. This goes as follows.

Construction A.2.1. Let X : A;p — YV be a based colax monoidal functor with comulti-
plication z and base S. Via the isomorphism Xy ~ F(S) ~ [[,.4 I, we have for every
n > 0, a morphism
H0o,n,0 * Xn =+ Xo® X, ® X~ H X,
a,besS

which assemble into a natural transformation jo o : X — [, ycq X.

Then define X (a, b) as the equalizer

eq Ho,—,0
X(a,b) —% X —= [] X
Cab g bes

in Fun(A%",V), where ¢, is the (a, b)th coprojection.

Lemma A.2.2. Let X be a based colax monoidal functor with comultiplication v and base S. Let
Vi [1,pes X — X denote the codiagonal. Then

( 1T No,,o) Ho,—,0 = ( 11 Ca,b) to,—0 and  Vpg,— o =idx

a,besS a,besS

Proof. Note that through the isomorphism X ~ ], I, the counit € : Xy — I becomes
the codiagonal. Moreover, for all n > 0, the morphisms idx, ®po.n,0 ® idx, and po,0 ®
idx, ®po,0 become [[, , pt0,n,0 and [, ; ca,» respectively. Thus the result follows from
the coassociativity of y and its counitality with e. O

The previous lemma leads us to define the following.

Definition A.2.3. Let C be a category with coproducts. Let S be asetand A € C. We
denote ¢ : A — [[,c 5 A for the jth coprojectionand V : [ [, 4 A — A for the codiagonal.

A morphism f : A — [],.g A is called decomposing if

(Hf) f= (]_[LZ) f and Vf=ids

i€S i€S
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A decomposing equalizer is the equalizer of a decomposing morphism with a coprojection
t; forsome j € S.

Examples A.2.4. 1. Any coprojection ¢; : A — [, A is itself decomposing.

2. By Lemma A.2.2, the natural transformation p,— o is a decomposing morphism in
Fun(Af%", V) and the equalizer of Construction A.2.1 is a decomposing equalizer.

Remark A.2.5. Note that because of the condition V f = id4, a decomposing equalizer is
always coreflexive.

Lemma A.2.6. Let C be a category with coproducts and consider a decomposing morphism
f:A—=Tlcq A Then

L f
A1 A== 11114
€S LI, ieSjes

is a split equalizer.

Proof. LetV : [, I1 ;A — ]1; A denote the codiagonal which collapses the outer coprod-

uct. Then it immediately follows that V][, f = fV and V][], :; = id. By hypothesis, we
also have V f = id 4. O

Proposition A.2.7. Suppose that coproducts commute with decomposing equalizers in V. Let

X be a based colax monoidal functor with base S, comultiplication p and counit e. Then:

1. The canonical natural transformation

(ap)ab : H X(a,b) = X
a,besS

is an isomorphism.

2. If coproducts are disjoint in V, then for all a, b € S, the composition
Xola,a) =% Xo S 1

is an isomorphism, and Xo(a,b) ~ 0if a # b.

3. If the monoidal product — ® — of V preserves decomposing equalizers in each variable, then
forall k,1 > 0and a,b € S, the composite i, 1€, factorizes uniquely as

a,b
Xperaa,b) 25 TT X, 0) @ Xife, b) ool

ceS

X, ® X,

Proof. 1. By Example A.2.4.2, o, o is decomposing and thus [[, ,c5 X (a,b) is the
equalizer of [[, ; tt0,—,0 and ][, , ca,p- Hence by Lemma A.2.6, it is isomorphic to
X. More precisely, for the isomorphism ¢ : [, , X (a,b) = X we have [, , eap =
po,— 0 and thus as e coincides with the codiagonal V : [[, I — I, we get ¢ =
(ea,b)a,b-
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2. As coproducts are disjoint we have an equalizer diagram

f L, x
Ia7:v,b l :; H I
bab =y €8

where I, ,p = I ifa =b =z and I, , ;, = 0 otherwise. Taking the coproduct of this
diagram over all « € S, we find an equalizer

Hz[’mvw
Loy —2 1T == 1] I

€S Ur La,b y,x,zES

where I, , = Iif a = band I, = 0if a # b. Now via the isomorphism X, ~ [], I,
Ho,0,0 becomes [, ¢tz » and thus we have an isomorphism ¢ : Xo(a,b) — I, such
that 14,50 = €45 As € coincides with the codiagonal V, we find that ¢ = ee, .

3. Note that since decomposing equalizers are coreflexive, and they are preserved by
— ® — in each variable, they are also preserved in both variables simultaneously. It
then follows from Example A.2.4.2 that the morphism

€a,c®ec,
HXk-(a,C)@Xl(C,b) —>HC - L HXk®Xl

cesS ceS

is the equalizer of [, t0,k,0 ® 0,0 and [], ca,c ® ccp. Using the isomorphism
Xo =~ [], I, we see that this is equivalently the equalizer of 11,0 ® idx, ®f0,1,0 and
Ca,x @ 140,0,0 ® Cx,p, Where

La®ika.

Can: Xp =2 T® Xy, [ 7@ X~ Xo® X,

a€sS

and similarly for c, p.

Now note that for the morphisms ¢, @ Xpt1 — Xo ® Xy ® Xo and eqp :
Xp1i(a,b) = Xpyy, we have

(110,%,0 ® idx, ®H0,1,0) Hk,0,1€a,b = (1dxy @ptr,0,0,0,1 © idx, )10, k+1,0€a,
= (idx, ®L£,0,0,0, ®idx,)Ca,p€ap = (Cax @ 10,0,0 @ Cx,b) hk,0,1€ab

Thus there is a unique NZ? ¢ Xeqi(a,b) = Jl.cq Xr(a,c) ® Xi(c,b) such that

(I1. ea,c ® ec,b)uZ:? = Uk0,€ap. Composing this equality with the codiagonal
[[. X ® X; = X) ® X, the result follows.

O
Definition A.2.8. We call V decomposing if it satisfies the hypotheses of Proposition A.2.7,
that is:
(a) coproducts commute with decomposing equalizers in V,
(b) coproducts are disjoint in V,

(c) the monoidal product — ® — of V preserves decomposing equalizers in each variable.
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Construction A.2.9. Let V be decomposing. We construct a functor

0 : Colaxy (A}, V) — SgV

Take a based colax monoidal functor X of V with base S, comultiplication x and counit
e. From Construction A.2.1, we have a collection of functors (X (a,b) : A% = V)aes,
which we can regard as a functor

X: A% =V Quivg

By Proposition A.2.7.2, we have a quiver isomorphism ¢ : X, = Is, and the morphisms

/J,Z? of Proposition A.2.7.3 combine to give a quiver morphism

fir : X1 — X @5 Xi

It follows from the coassociativity and counitality of y and e that /i and € define a strongly
unital, colax monoidal structure on X and thus (X, S) is a templicial object in V.

Next, let X and Y be based colax monoidal functors of V with respective bases S and T'.
Let @ : X — Y be a morphism of based colax monoidal functors. As « is a monoidal
natural transformation, there exist unique morphisms a®® : X (a,b) — Y (f(a), f(b))
such that ef(q) pa™” = aeqyp, for all a,b € S. This defines a natural transformation
X — f*Y. It further follows from the monoidality of « that the corresponding natural
transformation & : fiX — Y is monoidal. Hence, (a, f) is a morphism of templicial
objects X — Y.

If further 5 : Y — Zis a morphism of based colax monoidal functors, then by uniqueness,
(Boa)¥t = pfa)f) 6 0o for all a,b € S. It follows that the assignments X + (X, S)
and a — (@, f) define a functor.

Theorem A.2.10. Suppose V is decomposing. Then we have an adjoint equivalence of categories

c
(o]
SgV : Colax, (A%, V)

Proof. The isomorphism of Proposition A.2.7.1 is monoidal by 2. and 3. of the same
Proposition. Moreover, it is directly seen to be natural in X. Thus ¢ 00 ~~ id.

Let (X, 5) be a templicial object of V. We have a functor X (a,b) : A%” — Vforeverya,b €
S. As coproducts are disjoint in V, the equalizer of tq, tc,a + X(c,d) = [, ,c5 X(c,d)
in Fun(A%", V) is X (a,b) if (¢, d) = (a,b) and 0 otherwise. Because coproducts commute
with decomposing equalizers, we get an equalizer diagram

3 Hc,dbc,d
X(a,b) — TI X(e;d) —= 1 I X(c.d)
c,deS L. 4tabc,deSz,yes

Now [], ;X (c,d) is the functor underlying ¢(X,S) and the morphisms [], ;¢4 and
[..4tap correspond to the induced morphisms yo,— o and ¢4, on ¢(X, S) respectively.
Consequently, we have an isomorphism between the underlying functors of (X, .S) and
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oc(X, ). It follows from the definitions that this isomorphism is monoidal and that it is
natural in (X, S). Therefore d o ¢ ~~ id.

Finally, the triangle identities are easily verified. O

We finish this section by giving some examples of monoidal categories that are decom-
posing, and thus for which Theorem A.2.10 is applicable.

Example A.2.11. In a cartesian category V, the product — x — commutes with all equal-
izers. So if we assume that coproducts are disjoint and commute with equalizers, then V
is decomposing.

This is the case for the categories Set of sets, Top of topological spaces, Cat of small
categories and Poset of posets for example.

Lemma A.2.12. Let C be a category enriched over abelian groups. Then any decomposing
equalizer in C is split.

Proof. Let f : A — P,.g A be a decomposing morphism in C and fix j € S. Consider
the equalizer e : £ — A of f and ¢;. Then for the jth projection p : @, ¢ A — A we have

pt; =id, and
fof =y (EB f) f=v (69 Lz-) f=upf
i€S ies
where p' : @, , A — €D,, A is the projection onto the component i = j. So there exists
a unique s : A — FE such that es = pf. Then, ese = pfe = ptje = e and thus se = idg
because e is a monomorphism. O

Proposition A.2.13. If V is enriched over abelian groups, then V is decomposing.

Proof. By Lemma A.2.12, decomposing equalizers in V are split equalizers and are thus
preserved by all functors. In particular, both the coproduct functor V¥ — V and the
monoidal product — ® — preserve decomposing equalizers. Further, in an Ab-enriched
category, coproducts are always disjoint. O
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