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�e internal warehouse replenishment problem: the importance of
storage and replenishment policies

Babiche Aerts Trijntje Cornelissens Kenneth Sörensen

Storing inventory in both a reserve and forward area is a way to improve the e�ciency of a B2C warehouse. Due to the small
size of the forward area order picking distances can be reduced, although internal replenishments from the reserve to the
forward area are necessary to keep the warehouse up and running. In the warehouse literature, the organisation of a forward
area is mostly studied from a tactical point of view, discussing the size of the forward area, the selection of products to store
there and the number of locations to allocate to each product, also known as storage capacity. �e operational implications
of these decisions are o�en ignored or simpli�ed, possibly resulting in (replenishment) cost underestimations. In this
paper we study how the forward area could be replenished such to avoid stockouts during order picking whilst integrating
practical issues that rise during the operation, e.g., limited replenishment force and time. We present the internal warehouse
replenishment problem (IWRP), that determines which products to replenish, in which quantity and by which replenisher.
�e IWRP is solved for di�erent sizes of a rectangular forward area and di�ering storage and replenishment capacities
whilst considering various inventory policies and planning horizons. We consider an out-of-rack forward reserve system
where picking and replenishing is performed in alternating waves. �e IWRP is optimally solved using a standard mixed
integer program solver. Results show how all parameters in�uence the objective, and reveal practical issues that should
be considered when con�guring the forward area. For certain parameter combinations instances were not solved within a
realistic time, hence the call for a heuristic solution method.

Keywords: Inventory; Warehousing; Forward reserve; Replenishment

1 Introduction
A forward reserve storage system divides the storage area of a warehouse in a reserve area or bulk area, and a forward
area (Wu et al., 2020), also referred to as the fast-pick area (Bartholdi and Hackman, 2019). In the reserve area, products
are stored in bulk quantities (e.g., pallets), while in the typically smaller forward area a selection of products is stored in a
format more convenient for item picking (e.g., bins). Due to the restricted size of the forward area, the picking time, still
the primary cost in a B2C warehouse, can be reduced (De Koster et al., 2007). As such, the implementation of a forward
area complements the list of storage allocation, batching and routing policies studied and used to improve order picking
speed and e�ciency (Boysen et al., 2019). For an overview and detail of such policies, we refer to Gu et al. (2007). It should
be noted that although of all warehouse activities order picking is considered to have the most direct impact on customer
order ful�lment (Roodbergen et al., 2015), all e�orts to improve this e�ciency are lost if pick locations are not restocked
as they should be (Carrasco-Gallego and Ponce-Cueto, 2009). �erefore, restocking or replenishing is a crucial operation to
support a smooth order picking process, although it is o�en neglected.

To ensure (su�cient) stock to be available in the forward area, replenishments from the reserve to the forward area need to
be planned and executed, referred to as internal replenishments. Bartholdi III and Hackman (2008) visualise the situation as
a ”warehouse in a warehouse”, and point out that picking and replenishment e�orts must be balanced to organise ma�ers
e�ciently. Indeed, a large forward area will reduce the frequency of internal replenishments, but will increase the order
picking travel instance, and vice versa. �is trade-o� is the primary objective in what is known as the forward reserve
problem which focusses on the organisation of a forward reserve system by determining the size of the forward area, which
stock keeping units (SKUs) to store there, which capacity to allocate to these SKUs and where in the forward area to store
the SKUs (Jiang et al., 2020). Studies found in the warehouse literature, address one or multiple of these decisions while
reducing material handling costs of picking and replenishing (e.g., Hackman et al. (1990)) or minimizing the replenishment
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cost (e.g., Walter et al. (2013)). Acknowledging the tactical focus of these studies, it is noteworthy that o�en strict assump-
tions are taken regarding the practical execution of internal replenishments. It is, for example, common to assume that
replenishment quantities can be replenished in one trip (e.g., Bartholdi III and Hackman (2008)) and that replenishment ef-
fort is independent of the location in the forward area that needs to be replenished. �e actual time required to successfully
perform the replenishment is neglected, costs are possible underestimated and operational problems can be encountered.

An example of such an operational problem is that a replenishment is scheduled but no replenisher is available to execute
the task. �e outcome is that replenishments possibly happen too late and a stockout is experienced. Congestion among
pickers and replenishers contributes to this delay, especially if both picking and replenishing take place simultaneously.
To reduce congestion,Van den Berg et al. (1998) mainly perform (unit-load) replenishments before picking, referred to as
advance replenishments. Replenishing in advance allows to replenish multiple loads (Wu et al., 2020), and to coordinate
the replenishment of loads in one trip if less than pallet-load replenishments are considered. In this paper we extend the
concept of advance replenishment and assume that replenishment and picking are organised in alternating waves, with a
wave de�ned as a group of orders released simultaneously to the pick area (Ardjmand et al., 2018), o�en characterised by
the same delivery time (Rasmi et al., 2022). �at way, the forward area is replenished in advance of picking, knowing the
demand of the upcoming pick wave(s). We subject the replenishment waves to practical constraints, e.g., restricted work
force and time available for replenishment. Because of these restrictions it is possible that not all required replenishments,
those necessary to avoid a stockout, can be performed. Any stockout experienced during the pick wave is handled by
means of an emergency pick: the missing items to complete order ful�lment are directly brought from the reserve area to
the picking depot. Emergency picks greatly disrupt the picking process as e�ciently planned pick tours cannot be carried
out. �erefore, the minimization of emergency picks (elaborated in section 3.2.3), realised through the minimization of the
number of SKUs experiencing a stockout, is a relevant objective that we pursue.

Our contribution to the research on the forward reserve problem is two-fold. (1) We present the internal warehouse replen-
ishment problem (IWRP), a model that organises advance replenishments by determining which SKUs to restock in which
quantity by which replenisher, while considering relevant practical constraints. �e IWRP is solved whilst minimizing the
number of SKUs experiencing a stockout during the upcoming pick wave(s), with a stockout occurring if the inventory
level post replenishment is exceeded by the product’s demand in the upcoming pick wave. �e IWRP is solved for a num-
ber of consecutive replenishment and pick waves, highlighting the dynamic aspect of the problem. Baita et al. (1998) de�ne
dynamicity as a situation in which the same set of questions has to be answered repetitively over a �xed horizon, and
where future decisions are in�uenced by decisions made earlier. Dynamicity is originally introduced in the context of the
inventory routing problem (IRP), which, due to resemblances with the IWRP, has inspired the model proposed in this paper.
(2) We solve the mixed integer model for the IWRP with a standard MIP-solver for di�erent parameters, decisions made on
the tactical level, such as the inventory policy, storage capacity, replenishment resource availability and demand data. �e
results of the experimental study allow us to answer some research questions, centred around the in�uence each parameter
has on the number of stockouts. We emphasize that the aim of this research is not to provide the most e�cient operational
replenishment plan with (near) optimal replenishment routes, but to study and conclude on the impact of tactical decisions
on the number of stockouts whilst delivering a replenishment plan that meets all operational constraints.

�e remainder of this paper is organised as follows. In section 2 we present a literature review. On the one hand, we focus
on the forward reserve storage policy studied in the warehouse literature. On the other hand, we review the literature on
the inventory routing problem given the resemblances with the IWRP proposed in this paper. In section 3 we describe in
detail the IWRP model and assumptions taken. �e mathematical model is presented in section 4. �e experimental setup
and results are discussed in section 5. We conclude this study and elaborate on future research in section 6.

2 Literature review

2.1 �e forward reserve storage policy
In the following sections, we review the literature on the forward reserve storage policy on the strategical, tactical and
operational level.
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2.1.1 Implementation and design of the forward area

Storing inventory in both a reserve and forward area is highlighted by many studies as an opportunity to improve picking
performance. Thomas and Meller (2015) compared 476 design possibilities for a manual, rectangular, case-picking ware-
house and found that the worst performing designs, i.e., designs with the highest amount of labour hours necessary for
picking, put-away and replenishment (analytical models presented by �omas and Meller (2014)), are the ones with no
forward area. A clear guideline as of when it is bene�cial to store a product in the forward and reserve area, is provided by
Wu et al. (2020). �eir analytical study is based on response travel time models which the authors developed for an AS/R
system housing both the forward and reserve area. For such a system, the authors indicate that the forward storage policy
pays o�, i.e., outperforms an ABC class-based storage policy, as long as the number of picks per replenishment is strictly
larger than one. �is implicates that at least two picking orders should be picked from one replenishment load. For an
out-of-rack forward reserve system, with the forward and reserve area situated apart, the authors recommend a ratio of at
least 3 because replenishments take up more time.

Once the call for a forward reserve system is made, various implementations are possible di�ering in design and equipment.
�e forward and reserve area can be located in di�erent racks, an out-of-rack system, or both can be situated in the same
rack. In the la�er set-up it is common to designate the lower levels as forward area, while the upper levels are dedicated
to reserve storage. Equipment-wise, forward reserve systems can di�er in level of automation, with replenishment and/or
picking performed automatically or manually. An overview of the di�erent implementations and relevant literature on each
system is presented by Wu et al. (2020).

2.1.2 �e forward reserve problem

�e forward reserve problem entails several decision problems (Wu et al., 2020):

1. What is the size of the forward area?

2. Which products to store in the forward area?

3. How much storage locations to allocate to each product in the forward area?

4. Jiang et al. (2020) add to this list the assignment of storage locations to products in the forward area.

Hackman et al. (1990) are the �rst to present a model to tackle problems 2 and 3. By means of a heuristic procedure, they
reduce the picking and replenishing material handling costs of a forward area organised with an AS/R system. In fact, they
balance the cost of picking from the forward area (cost a) and the cost of picking from the reserve area (cost b) on the one
hand, for which holds a < b, and the replenish cost on the other hand. Bartholdi III and Hackman (2008) continue the work
of Hackman et al. (1990) with the selection of SKUs stored in the forward area to be known. �ey determine the optimal
storage capacity of small-sized products in the forward area while minimizing the total number of restocks annually. �ey
compare their optimal storage policy to the Equal Space strategy (EQS), that partitions space equally, and the Equal Time
strategy (EQT), that divides space such that each product is restocked the same number of times. Bartholdi III and Hack-
man (2008) prove the outperformance of their optimal storage policy, which also disproves the common belief in warehouse
industry that the EQT strategy minimizes the number of restocks. An optimal solution approach to the problem outlined
by Hackman et al. (1990) is proposed by Gu et al. (2010) with a branch-and-bound algorithm.

Van den Berg et al. (1998) continue the work on the forward reserve problem with a two-fold contribution. First, they
relax the assumption that one trip su�ces to replenish a product in the forward area. �e authors argue that product stor-
age is o�en organised in pallets and that only one replenishment can be executed per trip. Secondly, the authors study a
set-up where picking and replenishing are not solely executed simultaneously. Instead, most unit-load replenishments are
performed during idle periods (e.g., morning shi� or weekend), referred to as advance replenishments. Concurrent replenish-
ments during picking take place in case a product experiences a stockout, which one aims to avoid given the time-intensive
character of the operation. �e authors present a mathematical model to determine which quantities of which products
to store in the forward and which products to replenish in advance while minimizing the expected amount of labour time
(picking and concurrent replenishing). A greedy heuristic is proposed, inspired by the well-known Knapsack problem.
Gagliardi et al. (2008) continue the work on palletized forward areas, assuming a set-up where replenisher and picker(s)
work simultaneously, apart from weekend shi�s dedicated to replenishments. �e authors propose an iterative improve-
ment heuristic to solve the allocation problem (the selection of SKUs is predetermined) while optimizing the total number
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of stockouts. �e authors test di�erent allocation ratios that all have in common to allocate at least two locations to each
SKU, allowing replenishments before the inventory level falls to zero.

A considerable �aw in the studies discussed so far, except studies on unit-load replenishments, is that assignment and/or
allocation decisions are made assuming the forward area space can be continuously partitioned among SKUs (Bartholdi and
Hackman, 2019). Walter et al. (2013) tackle the drawback of this continuous or �uid model, and present the discrete coun-
terpart of the forward reserve problem that allocates discrete units of space. �e authors propose and discuss on several
repair heuristics to convert the continuous output of the �uid model to an integer solution.

Frazelle (1994) extends the forward reserve problem by including the forward area’s size as a decision variable. Heragu et al.
(2005) determine how available space should be divided among a cross-dock, reserve and forward area, as well as to which
area products will be allocated. �e authors present a heuristic approach to solve the problem jointly while minimizing
material handling and storage costs. �omas and Meller (2014) present a model to con�gure the forward area where the
upper aisles are dedicated as reserve area. Speci�cally, the model determines the optimal warehouse shape whilst consider-
ing travel distances for put-away, order picking and internal replenishments. For an overall optimal warehouse shape, the
frequency of operations and distances associated with each operation need to be considered.

Wu et al. (2020) introduce response travel time models for a forward reserve system where both the forward and reserve
area are located in an AS/R system. �e model is used to size both areas and solve the assignment problem whilst minimiz-
ing the response time. In these models the authors consider the probability of picking an item from the forward or reserve
area, the expected retrieval time, and the average inventory restocked by external suppliers. �e authors additionally take
into account the occurrence of single and dual-command cycles, and test both a random and ABC class-based storage policy
for the forward area. Because of these additions, the work of Wu et al. (2020) touches upon many aspects related to the
organisation of a forward reserve policy that go beyond most forward reserve studies. �e authors eventually conclude on
the implementation guidelines of such a forward reserve system, as discussed in section 2.1.1.

In the forward reserve problem the underlying idea is to maximise the value of the restricted space available in the forward
area, hence the comparison with the Knapsack problem. Yu and de Koster (2010) and Bahrami et al. (2019) stress this
challenge and propose innovative ways to deal with it. �e former study a dynamic storage system that swaps products
autonomously such that only the products required for the current batch of picking orders are provided in the forward area.
Bahrami et al. (2019), on the other hand, study an alternative storage assignment policy for the forward area based on the
sharing concept. Storage locations are either shared or dedicated. Shared locations are used to restock any product in the
forward area for which upcoming demand exceeds the predetermined storage capacity stored at the dedicated locations.

2.1.3 Planning of internal replenishments

Once the tactical decisions are made, the internal replenishments need to be planned for execution. We �nd a limited num-
ber of operational studies on the internal replenishment. A summary is given below, making a distinction between studies
on picker-to-parts systems and studies on parts-to-picker systems.

Picker-to-parts systems
To the best of our knowledge, the operational issues of the internal replenishment activity are mainly studied for picker-to-
parts systems in which picking and replenishing take place simultaneously. Gagliardi et al. (2008) assume the performance
of weekend replenishment shi�s to stock up the forward area when no picking is performed, but their actual optimization
only relates to the replenishments happening during week shi�s. �e authors propose di�erent replenishment heuristics
to determine the next replenishment order in a pick-to-belt pick area. �e dominant replenishment heuristic, i.e., the one
resulting in the least number of stockouts, requires upcoming demand as well as pick list sequences to be known in ad-
vance, and replenishes the �rst SKU that is about to experience a stockout. �e performance of the replenishment heuristic,
however, depends on the space allocation heuristic, discussed in section 2.1.2. De Vries et al. (2014) study an environment
in which picking and replenishing solely take place simultaneously, in the same wave. �e wave policy allows to know the
demand of the upcoming wave which the authors use to optimize the sequence of replenishment orders. De Vries et al.
(2014) propose several replenishment policies to determine the priority for products replenished in the next wave. Batching
of replenishment orders is allowed as long as priorities are respected. Both studies have in common to assume a �xed time
for each replenishment order, ignoring the replenishment location and the time it takes to get there.
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�e question of which location to replenish becomes even more important when a sca�ered storage policy is adopted. �e
policy sca�ers a single product over di�erent storage locations in the pick area and aims to reduce picker travel distances
based on the idea that the probability increases to �nd requested items in locations close to each other (Gámez Albán et al.,
2020). Although the policy is primarily studied in terms of the picking activity (Weidinger et al., 2019), Weidinger and
Boysen (2018) emphasize the role of replenishments in the implementation of this storage policy. Frequent replenishments
ensure a high overall inventory level of products with many locations for pickers to pick from. Replenishments triggered at a
low inventory level allow more open storage locations to chose from when sca�ering items over the warehouse. Weidinger
and Boysen (2018) present the sca�ered storage assignment (SSA) problem that assigns empty storage locations to products
to maximize the scateredness of products in the pick area. �eir conclusions support our belief that the replenishment
component cannot be neglected: the authors re-assessed the advantages of an optimized sca�ered storage assignment over
a randomized one when not only the picking but also the replenishment travel component were included. Also Bahrami
et al. (2019) take into account both picking and replenishment travel distances for completeness.

Parts-to-picker systems
Boywitz et al. (2019) study the replenishment in an A-frame system. An A-frame system is a very e�cient system which
pushes items from a channel in an autonomous way towards a central conveyer as the order requesting this product passes
by. �e picking process itself is fully automated, the replenishment process is organised manually. Passing the orders on
the conveyor in an optimized sequence helps to sca�er the replenishments and give replenishers the time they need to
move from channel to channel and perform the required replenishment. Jiang et al. (2020), on the other hand, tackle the
replenishment activity in a robotic mobile ful�lment system (RMFS). �e authors study the synchronization between order
picking and replenishment. �e authors argue that the high number of shelf visits and resulting high picking costs can
be reduced if replenishments were performed more thoughtfully, by for example storing products requested by the same
order on the same shelve. Replenishment time, on the other hand, increases, such that the challenge is to �nd the optimal
balance between picking and replenishment e�ort. �e authors present the picking-replenishment synchronization mech-
anism (PRSM) and propose a variable neighborhood search with a divide-and-conquer paradigm to solve it.

Research opportunities
Summarising the literature on the forward reserve problem, brings us to a practical remark. Solving the forward reserve
problem happens o�en without considering the practical, operational roll-out of the tactical choices that were made, or
by taking strict assumptions. It is, for example, unclear to what extent the storage location of SKUs in the forward area
is included in the replenishment cost. Bartholdi III and Hackman (2008) state that because the forward pick area is such a
small part of the entire warehouse, travel within this area is considered only a fraction of replenishment cost. Other studies
acknowledge replenishment time not to be negligible, but assume all replenishments take the same amount of time. We �nd
this to be in contradiction to the vast research on the warehouse order picking activity, that focusses on the minimization
of pickers’ travel distance or time in the pick area (De Koster et al., 2007); (Van Gils et al., 2018). Solving the forward reserve
problem with these practical simpli�cations can result in more stockouts than anticipated, more concurrent replenishments,
and cost underestimations and ine�ciencies in general.

Research on systems where replenishments mainly take place between two pick waves remains scarce despite its oppor-
tunities to avoid concurrent replenishments (Wu et al., 2020). Advance replenishments allow to replenish multiple loads
rather than performing replenishments when a stockout is imminent or already has occurred. Replenishments can also be
performed in a more coordinated way, whereas in a simultaneous system replenishment orders happen more sca�ered in
time with less interesting consolidation opportunities. Advance replenishments also allow to reduce congestion as pickers
and replenishers coincide to a minor extent (Van den Berg et al., 1998). Time available for advance replenishments in such
a system, however, is not in�nite: time spent on replenishing is considered time not spent on picking. It is therefore in the
warehouse’s interest to restrict the replenishment time, as well as the number of available replenishers to keep congestion
to a minimum and avoid further ful�lment delays.

To achieve more e�ciency, whether expressed in a minimisation of stockouts or a minimal cost, the practical organisation
of internal replenishments should be, to some extent, considered in the tactical decision making progress. We are, however,
aware that the forward reserve problem already quali�es as an NP-hard problem (Walter et al., 2013). Integrating practical
issues would make ma�ers even more complex. Nonetheless, it would be interesting to study the in�uence of tactical
choices on the stockout behaviour when practical limitations are imposed. To the best of our knowledge, such research is
not available for a manual picker-to-parts system where picking and replenishing happens alternately. Although research
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Multi-vehicle IRP
A supplier is responsible for the deliveries of a product to a set of customers or retailers, which he assigns to one of the available vehicles.

Reference Remarks
Coelho et al. (2012) Matheuristic solution method
Guemri et al. (2016) Exact solution method
Raa and Aghezzaf (2009) Integration of �eet sizing and restricted driving time per period
Coelho et al. (2012) Integration of service-related inconveniences.

E.g., driver consistency: serve customer by one vehicle (↔ split delivery)

Multi-product IRP
A supplier is responsible for the distribution of multiple products to a set of customers or retailers.

Reference Remarks
Coelho et al. (2014) Literature review
Moin et al. (2011) Genetic algorithm
Mjirda et al. (2014) Two-phase variable neighborhood search

(1) Solve vehicle routing problem with replenishment quantity equal to demand,
(2) improve solution through neighbourhood exploration

Mjirda et al. (2016) State of the art
General variable neighbourhood search, approaching replenishment quantity as integer problem, rather than continuous

Multi-product and multi-vehicle IRP (MMIRP)
�e demand of multiple customers has to be met through the delivery of multiple products, organised over a limited �eet of vehicles.

Reference Remarks
Coelho and Laporte (2013) Presenting the mixed-integer lineair programming formulations of the MMIRP assuming a shared storage policy

Solved with a branch-and-cut algorithm
Guemri et al. (2016) Grasp-based heuristic

Improves results of Coelho and Laporte (2013) for large instances
Hasni et al. (2017) Variable neighborhood search algorithm

Dominating Coelho and Laporte (2013) in terms of computation time
Cordeau et al. (2015) Decomposed solution method approaching inventory and routing subproblem separately,

followed by feedback model to improve overall solution

Table 1: Overview of literature on the multi-vehicle, multi-product, and multi-product and multi-vehicle IRP.

in the warehouse literature is limited, we �nd many similarities between the planning of internal replenishments and the
inventory routing problem (IRP), a problem extensively studied within the context of vehicle routing. �e decisions typically
handled are more of an operational kind, tackling some of the issues that o�en remain untouched in the forward reserve
problem. A brief overview of the IRP is given in the next section.

2.2 �e inventory routing problem
�e inventory routing problem (IRP) studies the combination of inventory management and vehicle routing decisions (Moin
and Salhi, 2007). �e problem arises typically in a vendor-managed inventory (VMI) context, where the supplier takes
control over the inventory decisions faced by the customers, and coordinates the deliveries to all customers. Because
aggregated information is available at the supplier, serving customers can be done more e�ciently, resulting in signi�cant
cost reductions. A basic version of the IRP is described by Coelho et al. (2014), although the authors remark that a standard
version of the problem not really exists. In this so-called basic IRP, a single distributor or supplier delivers a product to
multiple customers, referring to a one-to-many IRP. �e IRP comprises three subproblems:

1. When to serve a customer.

2. �e quantity delivered at a customer.

3. How to combine customers in a route, as well as the determination of the route.

�e IRP aims to answer these questions while minimizing the total inventory and distribution cost. �e inventory cost is
incurred by both supplier and customers, although some papers assume only one of both parties to incur this cost (e.g.,
Mjirda et al. (2014)). �e distribution cost is determined by the route, that is the distance travelled when moving from the
supplier to the customer(s) and back. O�en, studies decompose the distribution cost into a variable and a �xed component
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to penalise the use of vehicles (e.g., Raa and Aghezzaf (2009), Moin et al. (2011)). Among the constraints, we �nd capacity-
related restrictions: each customer has limited storage space to store deliveries. �e vehicle capacity, on the other hand,
restricts the number of units that can be replenished in one trip.

�e IRP has been studied for di�erent variants. Coelho et al. (2014) distinguish variants based on (1) the structure of the
IRP, and (2) the demand information that is available to solve the IRP, di�ering static from dynamic IRPs. With regards
to the structure of the IRP, IRPs are distinguished based on: the time horizon, the structure (one-to-one, one-to-many
or many-to-many), routing, inventory policy, inventory decision, �eet composition and �eet size. �e authors give an
extensive overview of studies on the IRP, which they classify according to the categorisation just described. Similarities
with the IWRP we envision, are most noticeable with IRPs studied for a multi-product and/or multi-vehicle environment.
An overview of research on these problems is summarised in table 1.

3 �e internal warehouse replenishment problem

3.1 Problem description
�e aim of the IWRP is to organise internal replenishments for an out-of-rack forward reserve system with alternating
replenishment and pick waves. We assume the replenishment operation to be organised in bins, although only minor adap-
tations would be required for alternative handling units (e.g., pallet). We subject the system to practical limitations and aim
for a minimum number of SKUs experiencing a stockout in the upcoming pick wave. We de�ne a stockout as follows:

Stockout: An SKU experiences a stockout if no stock is available in the forward area (inventory level = 0 items), while
there are still unful�lled customer orders requesting the SKU. As a consequence, an emergency pick will be required.

�e replenishment operation is exposed to two capacity constraints.

• Storage capacity constraint: A maximum number of items can be stored in the forward area of each SKU, deter-
mined by the number of storage locations allocated to the SKU. Determining this quantity for each SKU is part of the
forward reserve problem (discussed in section 2.1.2) and solved a priori.

• Replenishment capacity constraint: A restricted capacity is available to perform replenishments. �e capacity is
determined by the number of available replenishers, the maximum number of bins that can be replenished in a single
tour (restricted by the cart’s capacity), and the time available for each replenisher between two pick waves.

Both constraints force to make deliberate choices as probably not all desired replenishments can be executed when re-
quested. �e IWRP is decomposed into �ve questions:

1. Which SKUs will be advance replenished?

2. For each SKU: how many bins will be replenished of each SKU, referred to as replenishment bins?

3. For each replenishment bin: with which other bin(s) will the replenishment bin be batched?

4. For each replenishment batch: by which replenisher will the replenishment batch be executed?

5. For each replenishment batch: can a feasible tour be determined, taking into account the predetermined dedicated
storage assignment?

Note that the aim of the IWRP is not to determine optimal replenishment routes, but to minimize the number of stockouts.
Improving replenishment tours, i.e., visiting locations in a shorter way, is only pursued if the time saved can be employed
to perform more replenishments and avoid additional stockouts.

�ese �ve questions are to be solved for each replenishment wave, given the following information:

• Initial inventory information: all relevant inventory information related to the previous pick wave. �is includes
the stock level of each SKU, and whether or not a less-than-full bin, also called broken bin, of the SKU is available in the
reserve area at the end of the previous pick wave. �e organisation of broken bins will be discussed in section 3.2.3.
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Figure 1: Visualisation of the forward and reserve
area in an out-of-rack implementation.

Figure 2: Organisation of replenishment waves (RW) and pick waves (PW). Replenishments are
always performed in advance of picking; taking into account the demand of the upcoming pick
wave(s).

• Capacity-related data: data related to the storage capacity and replenishment capacity.

• Demand: the demand of the upcoming T pick wave(s) is known for all SKUs.

• Layout and storage allocation: the layout of the forward area is given and the assignment of SKUs to storage
locations is predetermined. �e shortest Manha�an distance to move between SKUs is known.

3.2 Problem context and assumptions
In this section, we give more details on the replenishment set-up and list the assumptions necessary to model the internal
replenishment operation we assume in this paper.

3.2.1 Organisation forward and reserve area

In the remainder of this paper, we consider the organisation of the reserve area (the layout characteristics, the storage
policy, the planning of retrievals from the reserve area,…) out of scope. �e following assumptions hold:

A 1 An out-of-rack forward/reserve area is assumed (see �g. 1).

�e replenishment depot, where all replenishment routes start and end, is located at the intersection of the forward and
reserve area. �e picking depot is situated elsewhere.

A 2 �ere is su�cient stock in the reserve area to execute all planned internal replenishments.

�e planning of external replenishments is not part of the optimization problem.

A 3 �e reserve area is e�ciently organised such that all bins required for an internal replenishment, are retrieved in time.

�e bins are then temporarily stored on a cart, depending on the replenishment batch to which the bin is assigned. �e cart
is picked up by a replenisher to store the bins from the cart in the forward area at the right storage location.

A 4 Replenishers are allowed to execute multiple replenishment batches consecutively, as long as the available replenishment
time allows.

Delays due to congestion between replenishers are neglected, nor do we consider any set-up time between two batches
executed by the same replenisher.
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3.2.2 Organisation replenishment and pick waves in the forward area

Replenishments and picking take place in the forward area in alternating waves, illustrated in �g. 2. �e time available to
perform replenishments is �xed and the same for each replenishment wave, represented by Tmax. In each replenishment
wave, each replenisher has Tmax [time units] available. Any time remaining is not transferable to other replenishers nor
future replenishment waves.

In the remainder of this paper, the organisation of the pick wave is not considered, despite the in�uence picking can have
on the replenishment operation. Indeed, the sequence in which customer orders are picked may impact the timing of a
stockout, but it is not relevant for our objective. We consider the planning of the picking operation to be given and assume:

A 5 �e customer orders to be picked in the upcoming pick wave(s) are known at the beginning of the planning horizon.

We know which products are requested as well as the total quantity requested of each product by the customer pick orders
in the upcoming pick wave(s). �e number of pick wave(s) for which this information is known, depends on the length of
the planning horizon.

A 6 Customer order ful�lment in the reserve area is not considered, unless stockouts occur and emergency picks need to be
performed in the reserve area.

Details on the emergency pick operation are elaborated in section 3.2.3.

A 7 All customer orders of pick wave t are ful�lled by the end of pick wave t.

Incomplete orders cannot be transferred to the next pick wave, but are ful�lled by an emergency pick.

A 8 Replenishments are organised in bins. Each storage location in the forward area is able to �t one bin.

3.2.3 Emergency picks

In case a stockout occurs, emergency picks take place during the pick wave to meet assumption 7. We deliberately choose
the term emergency pick over emergency replenishment. With an emergency replenishment, the product that experienced
a stockout is restocked in the forward area and the replenishment quantity can take any value of the interval [the quan-
tity necessary to complete order ful�lment; the quantity to reach the inventory level associated with the storage capacity
of the product]. An emergency pick only restocks the items actually missing for order ful�lment, although the term ’re-
stock’ might be confusing as the items are not stored in the forward area but brought directly to the picking depot. �is
way, pickers do not have to make a detour but go to the picking depot, which they have to do anyway to close their pick tour.

Knowing the number of items that are missing of a particular SKU, an emergency order is sent to the reserve area, where
the right amount of bins is retrieved from the storage system. It is likely that the number of missing items is not equivalent
to a full bin. Imagine an SKU of which 10 items �t into one bin. �e SKU experiences a stockout during a pick wave of size
22. An emergency request is sent, and three bins (30 items) of the respective SKU are retrieved from the reserve area. With
22 items sent to the picking depot for order completion, 8 items remain in the reserve area in a broken bin. A broken bin
can be handled in two ways:

1. Schedule the bin as a replenishment and store it in the forward area in the next replenishment wave. If so, we make
the following assumption:

A 9 A broken bin is treated as a full replenishment bin.

Broken or full, each bin takes the same amount of space and requires the same amount of time for storage.

2. Keep the broken bin in the reserve area, and use the items in the bin to execute emergency picks (if necessary) in the
next pick wave. If this is the case, we do not allow the respective SKU to be replenished in the next replenishment
wave. I.e.,

A 10 if there is a broken bin of an SKU a�er a previous emergency pick, replenishments for this particular SKU can be
planned only if the broken bin is scheduled for replenishment in the next replenishment wave as well.
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Inventory level Items in broken bin Advance Demand Stockout Inventory level Items in broken bin
begin RW, in FA begin RW, in RA replenishment Yes\no (nb items missing) end PW, in FA end PW, in RA

1. Feasible 0 0 1 bin: 10 items 9 No 1 0
2. Feasible 0 8 1 bin: 8 items 9 Yes (1) 0 1 bin: 9 items
3. Infeasible 0 8 1 bin: 10 items 9 No 1 1 bin: 8 items

↔ assumption 10
4. Feasible 0 8 0 bins 9 Yes (9) 0 1 bin: 9 items
5. Infeasible 0 8 0 bins 9 Yes (9) 0 2 bins: (1) 8 items (2) 1 item

↔ assumption 11

Table 2: Illustration of 5 scenarios with a feasible or infeasible solution with respect to the treatment of a broken bin. �e example is worked out for an
SKU of which 10 items �t into one bin. �e inventory level in the forward area at the end of the pick wave (PW) (column 7) is determined by the inventory
level at the beginning of the replenishment wave (RW), advance replenishments (column 4) and demand (column 5). �e replenishment quantity depends
on the existence of a broken bin in the reserve area (RA) (column 3). �antities are expressed in items unless mentioned otherwise.

�is assumption is imposed such that the amount of less-than-full bins circulating in the reserve area is minimized.
For the same reason, we assume

A 11 in case of an emergency pick, the broken bin is used �rst.

Di�erent scenarios arise, which we illustrate by means of an example in table 2. We distinguish 5 situations, all with an
inventory of 0 items in the forward area to start with and a demand of 9 items in the upcoming pick wave. A stockout is
unavoidable unless a replenishment is performed (one full replenishment bin = 10 items). It is the model that decides which
quantity to replenish (column 4). �e third and ��h scenario lead to infeasible solutions as they strike with assumption
10 and assumption 11.

3.2.4 Layout and storage assignment in the forward area

Notwithstanding the �ndings of �omas and Meller (2014), we keep the determination of an optimal forward area shape
and storage assignment out of scope, and consider these decisions as predetermined. �e only assumption we take:

A 12 A non-sca�ered, dedicated storage policy is adopted to assign SKUs to storage locations.

As such, the model is not supposed to deal with the question ’which location to replenish?’, but rather ’which SKU to
replenish and in which quantity?’. As such, the index i, is used to refer to SKU i, as well as to its storage location. When
multiple locations are allocated to SKU i, locations are chosen such that no or minimal distance is travelled when moving
between them (non-sca�ered). �e location center of SKU i is then determined by taking the average of x- and y-coordinates
of all locations where the SKU is stored, and is used to determine the travel distance to other SKUs.

4 Mathematical model
In this section, we describe the mathematical model that de�nes the IWRP as set out in section 3. �e indices, sets and
decision variables are de�ned in table 3. All parameters are detailed in table 4. In the following sections, we will guide the
reader through all constraints. Note that the model is set out in an if-then formulation, and with non-linear expressions
(e.g., absolute value and ceiling operator). �e linear mathematical model implemented in a standard MIP-solver, can be
found in Appendix A.

4.1 Objective function
�e objective function minimizes the number of SKUs that experience a stockout in the pick wave(s) t ∈ T :

Min
∑
i∈V

∑
t∈T

Zit (1)

with the binary variable Zit de�ned:

Zit =

{
1, SKU i faces a stockout in pick wave t
0, otherwise

∀i ∈ V, t ∈ T

�e objective function does not take into account the size of the stockout, nor does it make a distinction among products;
all stockouts contribute equally to the objective function.
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Indices
i SKUs, location centers
r Replenishers
k Batches
t Waves

Depending on the variable, t refers to replenishment wave t or pick wave t
Sets
V Set of SKUs i (#V = N )
V0 Set containing the replenishment depot v0
R Set of replenishers r (#R = R)
K Set of batches k (#K = K)
T Set of waves t (#T = T )
E Set of edges connecting two nodes i and j (= storage locations to visit)
Decision variables - Inventory problem
Zit ∈ {0, 1} = 1 if SKU i faces a stockout in pick wave t
Iit ∈ N Inventory level of SKU i at the end of pick wave t, expressed in items
Emergit ∈ N �e size of an emergency pick for SKU i in pick wave t, expressed in items
AdvItemikrt ∈ N Number of items replenished of SKU i in batch k, executed by replenisher r, in replenishment wave t
AdvBinikrt ∈ N Number of full bins replenished of SKU i in batch k, executed by replenisher r, in replenishment wave t
BrokenBinikrt ∈ {0, 1} = 1 if the broken bin of SKU i available at the end of pick wave t-1, is stored in the forward area

by batch k, executed by replenisher r in replenishment wave t
BrokenItemikrt ∈ N Number of items of SKU i in the broken bin available at the end of pick wave t-1, stored in the forward

area by batch k, executed by replenisher r in replenishment wave t
Brokenit ∈ {0, 1} = 1 if there is a broken bin of SKU i at the end of pick wave t-1
BrokenQit ∈ N Number of items of SKU i in the broken bin at the end of pick wave t-1
ReserveBinit ∈ N Number of full bins of SKU i retrieved from the reserve area to perform an emergency pick

in pick wave t
Replit ∈ {0, 1} = 0 if SKU i cannot be replenished in replenishment wave t
Decision variables - Routing problem

xijkrt ∈ {0, 1} = 1 if storage location center i is visited before storage location center j by batch k, executed by
replenisher r, in replenishment wave t

Routeikrt ∈ {0, 1} = 1 if storage location center i is visited by batch k, executed by replenisher r in replenishment wave t

Table 3: Decision variables for the IWRP.

Parameters
General
N Number of SKUs stored in the forward area
T �e number of waves for which the IWRP is solved simultaneously

Demand
Dit Total number of items requested of SKU i in pick wave t

Inventory
Ii0 �e initial stock level of SKU i, available at the beginning of replenishment wave 1
Brokeni0 = 1 if a broken bin of SKU i exists in the reserve area, at the beginning of replenishment wave 1
BrokenQi0 �e number of items of SKU i available in the broken bin, at the beginning of replenishment wave 1

SKU speci�cs
bi Number of items of SKU i that �ts into one bin
bmax �e largest number of items carried in one bin, over all SKUs
si �e replenishment level for SKU i associated with the chosen inventory policy
Ci Storage capacity of SKU i associated with the chosen forward area con�guration

Batch
Qk �e capacity of batch k, expressed by number of bins

Distances - routing
cij Shortest Manha�an distance between storage location center of SKU i and storage location center of SKU j
Ttravel Time required to travel 1 meter (seconds/meter)
Tstore Time required to replenish one bin in a storage location (seconds/bin)
Tmax Maximum time to replenish per replenishment wave, equal to the time between two pick waves

M A large positive number

Table 4: Parameters for the IWRP.
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4.2 Stock evolution and stockouts
�e stock evolution of an SKU is presented in eq. (2), where the �nal inventory of pick wave t is determined by the in-
ventory level at the end of the previous pick wave (Ii,t−1), replenishments performed (AdvItemikrt) over all batches and
replenishers in replenishment wave t, and the demand of pick wave t. �e variable Emergit, representing the size of an
emergency pick of SKU i in pick wave t, is added to eq. (2) to avoid a negative stock level in case of a stock out.

Iit = Ii,t−1 +
∑
k∈K

∑
r∈R

AdvItemikrt −Dit + Emergit ∀i ∈ V, t ∈ T (2)

No stock out is recorded if the �nal inventory of the previous pick wave and the performed replenishments su�ce to meet
the upcoming demand. Zit will automatically take the value zero, given the objective, and Emergit is set to zero as no
emergency picks have to be performed eq. (3).

Zit = 0 =⇒ Emergit = 0 ∀i ∈ V, t ∈ T (3)

If the pick wave’s demand exceeds the inventory level post replenishments, a stock out is recorded (eq. (4)). Emergit is
forced to equal the number of items that is missing of SKU i (eq. (5)) to ensure all customer orders of pick wave t are
ful�lled by the end of the pick wave (a 7). Se�ing Emergit equal to the absolute di�erence of the inventory level post
replenishment and the pick wave’s demand is crucial as otherwise Emergit might take a larger value and as such (a) re-
sult in a larger inventory level for the next replenishment wave without the performance of an actual replenishment (the
items are brought to the replenishment depot, not to the storage location of the product), and/or (b) give the opportunity to
optimize the content of broken bins which is not a ma�er to be optimized. Due to eq. (5), Iit equals zero in case of a stockout.

Ii,t−1 +
∑
k∈K

∑
r∈R

AdvItemikrt −Dit < 0 =⇒ Zit = 1 ∀i ∈ V, t ∈ T (4)

Zit = 1 =⇒ Emergit = |Ii,t−1 +
∑
k∈K

∑
r∈R

AdvItemikrt −Dit| ∀i ∈ V, t ∈ T (5)

4.3 Broken bin
In section 3.2.3, we highlighted the possible circulation of broken bins in the reserve area, indicated by the binary variable
Brokeni,t−1. To correctly determine the number of items in such a broken bin at the end of a pick wave, the following
questions need to be answered:

1. What happens with the broken bin if one is available in the reserve area at the beginning of the replenishment wave?
Is the bin stored in the forward area in the current replenishment wave, or is it kept in the reserve area and used for
potential emergency picks? If such a broken bin is available, both options can be considered (eq. (6)).

Brokeni,t−1 = 1 =⇒
∑
k∈K

∑
r∈R

BrokenBinikrt = 0, or = 1 ∀i ∈ V, t ∈ T (6)

�e storage of a broken bin in the forward area cannot be distributed over multiple batches:

BrokenBinikrt = 1 =⇒ BrokenItemikrt = BrokenQi,t−1 ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (7)

2. Do we need to perform emergency picks in the next pick wave?
In case of an emergency pick, we use the items of SKU i in the broken bin, BrokenQi,t−1, �rst (a 11). If the broken
bin not su�ces to complete all pick orders containing SKU i, additional full bins will be retrieved from the storage
system in the reserve area. �e number of additional bins, ReserveBinit, is determined by eq. (8). �e ceiling
function ensures an integer result.

ReserveBinit = d
Emergit − (BrokenQi,t−1 −

∑
k∈K

∑
r∈R

BrokenItemikrt)

bi
e ∀i ∈ V, t ∈ T (8)
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Previous equations allow us to determine the number of items in a broken bin at the end of the pick wave t:

BrokenQit = BrokenQi,t−1 −
∑
k∈K

∑
r∈R

BrokenItemikrt − Emergit + bi ·ReserveBinit ∀i ∈ V, t ∈ T (9)

For a non-zero value of BrokenQit, the variable Brokenit is set to 1 (eq. (10)); otherwise, Brokenit equals 0 (eq. (11)).

BrokenQit > 0 =⇒ Brokenit = 1 ∀i ∈ V, t ∈ T (10)
BrokenQit = 0 =⇒ Brokenit = 0 ∀i ∈ V, t ∈ T (11)

4.4 Inventory replenishment level & replenishment quantity
SKUs are considered for replenishment only if their inventory level is strictly less than a predetermined value, si, dependent
on the chosen inventory policy. Otherwise, the SKU is automatically ignored for replenishment in the current replenishment
wave, as stated by eq. (12).

Ii,t−1 − si ≥ 0 =⇒ Replit = 0 ∀i ∈ V, t ∈ T (12)

By adopting di�erent inventory policies, we study the impact of the SKU replenishment level on the number of SKU stock-
outs.

�e total number of items replenished in batch k by replenisher r (AdvItemikrt), is given by eq. (13) where component
one refers to the replenishment of the broken bin, and component two refers to the replenishment of full bins.

AdvItemikrt = BrokenItemikrt +AdvBinikrt · bi ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (13)

Full bins of a particular SKU can only be replenished to the forward area if no broken bin circulates in the reserve area, that
is if (1) no broken bin exists a�er the previous pick wave (eq. (14)), or (2) if the broken bin is replenished in the forward
area in the current replenishment wave (eq. (15)).

Brokeni,t−1 = 0 =⇒ AdvBinikrt ≥ 0 ∀i ∈ V,∀r ∈ R,∀k ∈ K, t ∈ T (14)∑
k∈K

∑
r∈R

BrokenBinikrt = 1 =⇒ AdvBinikrt ≥ 0 ∀i ∈ V,∀r ∈ R,∀k ∈ K, t ∈ T (15)

At no point in time it is allowed to store more items of SKU i in the forward area than the predetermined storage capacity.
�e maximum number of bins (full or broken) that can be replenished is determined by eq. (16). �e �ooring function
ensures a correct transformation from available storage capacity originally expressed in items, to an expression in bins.

∑
k∈K

∑
r∈R

AdvBinikrt +BrokenBinikrt ≤
⌊
Ci − Ii,t−1

bi

⌋
∀i ∈ V,∀k ∈ K, ∀r ∈ R, t ∈ T (16)

For each replenishment of SKU i performed in replenishment wave t by replenisher r in batch k, a visit to SKU i needs
to be scheduled, represented by the binary variable Routeikrt (eq. (17)). Visiting locations empty handed, i.e., without
performing a replenishment, is not allowed (eq. (18)). We argument that such travel will not impact the objective function,
but it is considered an unnecessary activity and it skews the replenishment e�ort actually required.

AdvBinikrt +BrokenBinikrt > 0 =⇒ Routeikrt = 1 ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (17)
AdvBinikrt +BrokenBinikrt = 0 =⇒ Routeikrt = 0 ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (18)

Equation (19) sets Routeikrt to zero if an SKU is not allowed to be replenished, i.e., the predetermined inventory criterion
has not been met (see eq. (12)).

Replit = 0 =⇒
∑
k∈K

∑
r∈R

Routeikrt = 0 ∀i ∈ V, t ∈ T (19)
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�e number of (less-than-)full replenishment bins assigned to a batch cannot exceed the capacity of that batch. We assume
all batches to be homogeneous with a capacity Qk , expressed in bins:∑
i∈V

(AdvBinikrt +BrokenBinikrt) ≤ Qk ∀k ∈ K,∀r ∈ R, t ∈ T (20)

4.5 Routing
Each batch visiting at least one SKU for replenishment, starts its tour at the replenishment depot:∑
i∈V

Routeikrt > 0 =⇒ Route0krt = 1 ∀k ∈ K,∀r ∈ R, t ∈ T (21)

Equation (22) forces that the visit of SKU i replenished in batch k, executed by replenisher r in replenishment wave t, is
preceded and succeeded by the visit of another SKU j replenished in the same batch k. �e equation also holds for the
replenishment depot. As such, batches visiting at least one SKU, end the tour at the replenishment depot.

Routeikrt =
∑

j∈V ∪V0,j 6=i

xijkrt =
∑

j∈V ∪V0,j 6=i

xjikrt ∀i ∈ V
⋃
V0,∀k ∈ K,∀r ∈ R, t ∈ T (22)

Each replenisher has Tmax [time unit] to perform all replenishment batches assigned to him. �e execution of a replenish-
ment batch, includes

• Travelling between storage location centres, at a cost of Ttravel [time unit] per [length unit].

• Storing the replenishment bin in the dedicated storage location, at a cost of Tstore [time unit] per bin.
�e total time required for each replenisher to perform replenishments is expressed by the le�-hand side of eq. (23) and
may not exceed Tmax.∑
k∈K

(Ttravel · (
∑

i∈V
⋃

V0

∑
j∈V

⋃
V0

cij · xijkrt) + Tstore ·
∑
i∈V

(AdvBinikrt +BrokenBinikrt)) ≤ Tmax

∀r ∈ R, t ∈ T (23)

Subtour elimination constraints are added to the model by means of lazy constraints, i.e., constraints added to the model
only when they are violated by the current solution (Aguayo et al., 2018). �e lazy constraint callback function is called to
check for any subtours in the incumbent solution. A subtour is identi�ed when a tour is associated with multiple lengths,
the lengths of the various subtours. In that case, the smallest subtour which does not contain the depot, is selected. S is
de�ned as a subset of V that contains the locations visited by this particular subtour. �e following constraints are added
to the model (based on the example available at h�ps://www.gurobi.com/documentation/9.5/examples/tsp cpp cpp.html):∑
i∈S

∑
j 6∈S

xijkrt ≥ Routehkrt, ∀h ∈ S, ∀k ∈ K,∀r ∈ R (24)

with h being an SKU/storage location center included in subset S, and t to be known as the subtour was identi�ed for
this particular replenishment wave. Note that subtour elimination constraints are added each time a new subtour has been
identi�ed, and are complementary to lazy constraints already added 1.

4.6 Boundaries
Equations (25) to (29) pose an upper bound on the variables.

Iit ≤ Ci ∀i ∈ V, t ∈ T (25)
AdvItemikrt, AdvBinikrt ≤ Ci ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (26)
BrokenQit ≤ bmax ∀i ∈ V, t ∈ T (27)
BrokenItemikrt ≤ bmax ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (28)
Emergit, ReserveBinit ≤ Dit ∀i ∈ V, t ∈ T (29)

1�e website of Gurobi highlights that node solutions should comply with lazy constraints added previously, although this is not always the case. No
further information was provided (Gurobi, 2021).
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In theory, the number of batches per replenisher is in�nite. In reality, only a limited number of batches can be performed
due to the restricted replenishment time. Knowing the time to store one replenishment bin and the distance from the
replenishment depot (i=0) to the storage location closest to the depot (j=close), K takes the value:

K = b Tmax

c0,closeTtravel + Tstore
c (30)

We highlight that for the model just described, a feasible solution always exists as long as the initial inventory does not
exceed the storage capacity.

5 Computational study

5.1 Experimental setup
In this paper, the proposed IWRP-model is solved to optimality using the Gurobi so�ware (version 7.0.2) with an optimality
gap set to 0%. For each IWRP-instance, the replenishments for a number of consecutive replenishment waves are planned.
�e instances, detailed in section 5.2.2, are solved 12 consecutive times with the �nal inventory of pick wave t used as initial
inventory of replenishment wave t + 1. We also say that one instance contains 12 sub-problems (illustrated in �g. 3). Of
these 12 replenishment waves, the �rst 6 are used to reach a steady state and to create a realistic inventory situation for
replenishment wave 7 to start with. For this reason, the results of the �rst 6 replenishment waves are excluded from the
analysis.

In the experiment, di�erent values for the planning horizon, T , are tested. �e planning horizon indicates the number of
replenishment waves T that are to be solved simultaneously, and requires the demand of the upcoming T pick waves to be
known. Replenishment waves 1-6 are scheduled one replenishment wave at a time, T=1 (�g. 3a). Replenishment waves 7
to 12 are either solved assuming T = 1 (�g. 3b and �g. 3d) or T = 3 (�g. 3c). A�er planning T replenishment waves, the
planning horizon moves forward one pick wave at a time. To illustrate, if T=1, we consecutively solve replenishment wave
7, 8, …, and 12. When T=3, we consecutively solve replenishments waves 7-8-9, 8-9-10,…, and 12-13-14 (illustrated in �g. 3c).

For each instance, the demand between pick waves di�ers (Dit 6= Di,t+1), although not signi�cantly as the demand of each
pick wave follows the same distribution. Additionally, replenishment waves 7 to 12 are solved three times, each time with
a di�erent demand to add variety to the experiment. We refer to the di�erent demand sets as D (�g. 3a, 3b, 3c), D′ (�g. 3d)
and so on.

�e maximum computation time for each sub-problem, independent of the planning horizon or any other parameter value,
is set to 3600 seconds. If no solution is found within this time, no input is generated for the next sub-problem, and the
model moves on to the next instance. Only if all 12 sub-problems are solved, the instance is indicated as ”solved”.

All instances were solved on an Intel(R) Core(TM) i7-4790 CPU, 3.60GHz and 16 GB of RAM.

5.2 Instance generation
�e mathematical model is solved for a random dataset. To create the instances, characteristics such as the storage capacity
of SKUs, layout dimensions and product assignment in the forward area are considered to be known. �erefore, precom-
putation is required, discussed in section 5.2.1. �e characteristics of the IWRP-instances are discussed in section 5.2.2.

5.2.1 Precomputation

To obtain the average demand per pick wave, crucial to con�gure the forward area, random picking orders are generated.
We do this consecutively for 50 and 100 SKUs. Picking orders are generated assuming a B2C environment, where typically
orders contain 1.6 items on average (Weidinger et al., 2019). We follow this guideline for 75% of orders. �e remaining orders
contain on average 3 items per order to take into account slightly larger orders. �e demand distribution follows the Pareto
principle, where 20% of products account for 80% of total demand (Weidinger and Boysen, 2018). �e detailed distribution
can be found in �g. 4a, as well as other data considered known before precomputation. According to these guidelines, 150
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Figure 3: Visualisation of the experimental setup.

orders per pick wave are generated, 10.000 pick waves in total. �e average demand per pick wave and its standard devi-
ation are then used to con�gure the forward area, with the primary question ’howmuch locations are allocated to each SKU? ’.

In this paper, we do not solve the above question to optimality, but we are aware that the available storage capacity can
in�uence the objective signi�cantly. To determine the storage capacity for each SKU, we return to the basics of inventory
management and manage the inventory in the forward area by means of a periodic review policy. With the periodic re-
view policy, the inventory level of products is checked a�er a �xed interval of duration r. A�er each interval, an internal
replenishment order is submi�ed such that the inventory position increases to the inventory level S, also known as the
base-stock level (BSL). In some se�ings, as will be the case for the IWRP, an order is submi�ed only if the current inventory
level falls below a predetermined inventory replenishment level s. �e periodic review policy is therefore also known as
the (s,S)-policy (Arrow et al., 1951). We note that due to capacity restrictions, replenishing up to the base-stock level (S) will
not always be feasible in our model.

�e base-stock level is determined using the average demand during period r and replenishment lead time L, as well as a
safety stock component to cover demand uncertainty during time r + L, with a service level α in mind. �e base-stock
level (S) formula is de�ned as follows:

S = (r + L) · µD + SS, (31)

with µD representing the average demand of an SKU during a time period r, in our case, pick wave. �e safety stock level,
SS, is determined as follows:

SS = z ·
√
µr+Lσ2

D + µ2
Dσ

2
r+L, (32)

with σD representing the standard deviation of the demand during a pick wave, and µr+L and σr+L representing the aver-
age period + lead time, standard deviation of the period + lead time respectively. �e safety factor, z, is associated with the
cycle service level or P1-service level, α, indicating ’the probability of not having a stockout in a replenishment cycle’ (Cardós
et al., 2006). �e desired service level is speci�ed for each SKU.

In what we de�ne as the initial forward area con�guration, abbreviated LI, the storage capacity allocated to SKU i is deter-
mined based on the above theory. �e number of locations allocated to SKU i, is determined as follows:

NbLocationsLI
i = max(2, dr · µDi

+ zi · σDi
·
√
r

bi
e) (33)
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Storage allocation policy
Initial W E

Number of storage locations

FA
si
ze Large NbLocationsLI LI LW LE

Medium 80% of NbLocationsLI / MW ME
Small 60% of NbLocationsLI / SW SE

Table 5: Possible forward area con�gurations included in the experimental study. Each con�guration is characterised by a forward area size (expressed
in a total number of storage locations), and an allocation policy to determine how many storage locations are allocated to each SKU.

In eq. (33) the base-stock level formula can be recognized although some adaptations were enforced:

• As picking and replenishing do not take place simultaneously, the lead time, L, is set to 0, and therefore excluded
from the formula. r is set to the duration of 1 pick wave.

• �e formulas eq. (31) and eq. (32) are expressed in items, while the forward area in our experiments is organised in bins.
�e original base-stock level formula is divided by the number of items in a bin bi, and ceiled to the nearest integer
to move from an item- to a bin-expression. Note that bi di�ers among SKUs (see �g. 4a). Sizing is pre-determined
and follows a uniform distribution.

• Similar to Gagliardi et al. (2008), we impose that each SKU stored in the forward area receives at least two locations.
With only one location, which would be the case for low demanded products, replenishment is only feasible when
the stock level of the product equals zero.

�e experiments in this paper are carried out assuming a service level of 95%.

Summing the number of locations obtained by eq. (33) over all SKUsN , results in a total number of locations,NbLocationsLI ,
which we associate with a large forward area; the largest forward area size we consider in our experiments. To study the
impact of a smaller forward area size on the number of SKU stockouts, we de�ne a medium and small forward area, where
the total number of storage locations is equal to 80%, respectively 60% of the total number of locations allocated in a large
forward area. With a reduction in the forward area size, an alternative allocation technique is required to distribute the
available storage locations over the N SKUs; the selection of SKUs to be stored in the forward area is not re-assessed. We
test two allocation policies for the medium and small forward area sizes. For completeness, we also test both policies for
the large forward area size and compare results to the results obtained by the initial policy:

1. PolicyW: allocates locations according to the algorithm of Walter et al. (2013), which takes into account the demand
of the product. We set the replenishment cost ci to one for all SKUs and use the R4 repair heuristic, proposed by
Walter et al. (2013), to obtain an integer solution.

2. Policy E: based on the EQS policy presented in Bartholdi III and Hackman (2008). Distributes locations evenly among
the SKUs. Le�over locations are assigned randomly.

�e combination of forward area sizes and allocation policies leads to seven forward area con�gurations, including con�g-
uration LI (summarized in table 5). Each forward area con�guration results in a di�erent storage capacity for SKU i. Ci is
determined by multiplying the number of locations allocated to SKU i by the number of items in one bin bi.

�e layout of the forward area in our experiments is �xed to a parallel, one block construction, as illustrated in �g. 4b.
With regards to the dimensions of the forward area layout, we consider part of the data to be �xed, such as the width
and depth of the racks and the (cross-)aisles (summarized and visualised in �g. 4). �e number of racks per aisle and the
number of aisles, on the other hand, are determined in precomputation to �t the number of storage locations calculated
earlier. As all racks have the same length, it is possible that the �nal number of storage locations exceeds the number of
storage locations required for a particular forward area con�guration. Any remaining locations will be kept empty to keep
the storage allocation rules as pure as possible.

Knowing how many locations are allocated to each product, the products can be assigned to the locations. We adopt a
class-based storage policy: high demand products (A products) are stored closest to the depot, while low demand products
(C products) are stored in the back of the forward area. Within a class, products are randomly assigned to locations (Yu
et al., 2015). Acknowledging that order picking still remains the most costly operation in warehousing (De Koster et al.,
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Pick order information
Average number of items per order 75% of orders: 1.6 items, 25% of orders: 3 items
Number of items per bin (bi) 5, 10 or 20
Demand distribution A products: 5% of SKUs, 65% of total demand

B products: 15% of SKUs, 15% of total demand
C products: 80% of SKUs, 20% of total demand
Based on the 20%/80% demand curve presented by Guo et al. (2016)

Forward area layout information
Width rack 0.5 m
Depth rack 0.5 m
Height rack Not integrated in calculations
Storage locations per rack 4
Width aisle 1 m
Width cross aisle 2 m
Distance depot to �rst aisle 1 m

(a) Pick order and forward area layout information. (b) Visualisation of the forward area and rack dimensions.

Figure 4: Data considered given and �xed for precomputation.

2007), we apply the class-based storage policy from the pickers’ point of view, i.e., the most interesting locations are those
located closest to the picking depot. An example is worked out in �g. 4b.

Precomputation delivers the following output:

• �e storage capacity, Ci, for each SKU, adapted to the chosen forward area con�guration.

• A distance matrix, which includes the shortest travel distance in the forward area for each pair of SKUs, cij . We
assume racks on both sides of the aisle to be accessible without additional movements (the replenisher is positioned
in the center of the aisle). Vertical movements are also ignored.

A summary of the statistics related to the demand generated in precomputation, is given in table 6.

50 SKUs 100 SKUs
A B C A B C

Average demand per product, per pick wave 99.74 6.49 1.56 39.85 3.03 0.8
Total average demand per pick wave 199.48 45.4 63.77 199.27 45.39 63.99
Average standard deviation on the demand per product, per pick wave 8.46 2.42 1.25 5.96 1.7 0.89
Average base-stock level per product 114 11,14 5 50 7 3
Average safety stock level per product 14 4.14 3 10 3 2

Table 6: Statistics demand, expressed in items.

5.2.2 IWRP-instances

IWRP-instances di�er in terms of: the number of SKUs, the demand set, the planning horizon, the number of replenishers,
the replenishment time, the storage capacity and the inventory replenishment level. �e la�er depends on the chosen
inventory policy, detailed in table 8. Each instance takes a di�erent combination of the parameter values included in our
experiment, summarised in table 7, which results in 7560 instances solved in total. For parameters, such as the travel and
storage time, a single parameter value is considered. For all instances, we impose that the inventory level of SKU i at the
beginning of replenishment wave 1 is set to 50% of its storage capacity, and that no broken bins are available in the reserve
area.

5.3 Results
In this section we discuss the results in terms of the capability of instances to be solved within limited computation time,
as well as the objective function, the total number of SKU stockouts. A detailed overview of results is shown in Appendix
B.
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Parameters Parameter values
Nb SKUs (N ) 50, 100
Demand set (D) D, D”, D”’
Planning horizon (T ) 1, 3 pick waves

Inventory related parameters
Storage capacity (Ci)
(depends on the forward area con�guration) LI, LW, MW, SW, LE, ME, SE
Inventory replenishment level (s)
(depends on inventory policy, detailed in table 8) BIN, SS, SSCeiled, BSL, BSLCeiled, CAP
Initial inventory level (Ii0) �e initial inventory level of SKU i in replenishment wave 1 equals 50% of its storage capacity Ci

Initial available broken bin (BrokenQi0) In replenishment wave 1, the reserve area holds no broken bins

Replenishment related parameters
Number of replenishers (R) 1, 3, 5
Bins per replenishment batch (Qk) 10 bins
Replenishment time (Tmax) 30, 60, 90, 120, 240 seconds
Travel time (Ttravel) 1 s/m
Storage time (Tstore) 5 s/bin

Table 7: Overview of parameter and parameter values.

Inventory policy Inventory replenishment level
Take the minimum of Ci and …

BIN one full bin + 1 item.
SS the safety stock (eq. (32)).
SSCeiled the safety stock level ceiled to the nearest full-bin equivalent + 1 item.
BSL the base-stock level (eq. (31)).
BSLCeiled the base-stock level ceiled to the nearest full-bin equivalent + 1 item.
CAP the storage capacity of the SKU.

Table 8: Inventory policies tested.

50 SKUs 100 SKUs
T=1 72.96% of instances solved, average computation time: 16.14 s T=1 55.50% of instances solved , average computation time: 33.36 s

FA con�guration LI LW LE MW ME SW SE LI LW LE MW ME SW SE
44.44% 52.59% 80.00% 75.93% 83.33% 84.07% 90.37% 39.63% 37.04% 64.81% 41.85% 68.15% 61.85% 75.19%

Inventory policy Bin SS SSCeiled BSL BSLCeiled Cap Bin SS SSCeiled BSL BSLCeiled Cap
71.75% 73.33% 71.43% 73.65% 73.33% 74.29% 54.92% 59.05% 55.24% 56.19% 54.29% 53.33%

Nb replenishers 1 3 5 1 3 5
78.25% 63.65% 76.98% 45.24% 51.43% 69.84%

Replenishment time 30 60 90 120 240 30 60 90 120 240
37.83% 75.40% 70.37% 88.62% 92.59% 33.33% 44.71% 50.26% 64.81% 84.39%

T=3 50.21% of instances solved, average computation time: 106.15 s T=3 20.42% of instances solved , average computation time: 247.35 s

FA Con�guration LI LW LE MW ME SW SE LI LW LE MW ME SW SE
21.85% 25.56% 55.56% 52.96% 56.30% 65.93% 73.33% 3.33% 16.67% 18.89% 15.19% 22.59% 7.78% 58.52%

Inventory policy Bin SS SSCeiled BSL BSLCeiled Cap Bin SS SSCeiled BSL BSLCeiled Cap
49.21% 55.24% 49.52% 53.97% 47.94% 45.40% 14.92% 33.65% 16.19% 25.40% 15.24% 17.14%

Nb replenishers 1 3 5 1 3 5
23.17% 59.05% 68.41% 5.40% 25.87% 30.00%

Replenishment time 30 60 90 120 240 30 60 90 120 240
4.23% 41.80% 56.61% 69.31% 79.10% 0.00% 13.23% 23.02% 28.31% 37.57%

Table 9: Percentage of instances solved within one hour, set out per number of SKUs and planning horizon. Every quadrant shows the average results
over 3 demand sets, over all instances for a speci�c parameter: forward area con�guration, inventory policy, number of replenishers and replenishment
time.
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5.3.1 Capability of instances to be solved

�e complexity of the problem is expressed through the number of instances completely solved (all 12 replenishment waves)
and the average computation time per sub-problem. In tables 14 to 25 of Appendix B, a slash indicates that the model was
unable to solve the instance in time, i.e., one of its sub-problems was not solved within one hour. �e percentage of instances
that we were able to solve through Gurobi are listed in table 9. For each parameter value, the percentages are averaged over
the 3 demand sets.

Of all parameters, a longer planning horizon seems to in�uence this percentage the most. With T set to 3, only half (for 50
SKUs) or 20% (for 100 SKUs) of the instances can be solved in the given time. Also the number of SKUs has an impact on
whether or not an instance can be solved, proven by the percentages found on the right side of table 9 that are systematically
lower than the ones on the le� side. �is illustrates the need for a heuristic procedure, especially when instances grow to
a realistic number of SKUs.

A deeper look into the results of table 9, show that in general more instances are solved as we move from a large, to medium,
to small forward area, and that the E-policy seems to reduce the problem complexity as opposed to the W-policy. More re-
plenishment capacity, determined by more replenishers and/or more replenishment time, has a positive impact on whether
instances can be solved or not. �e lower the replenishment capacity, the harder it generally gets to solve the sub-problems
to optimality, with even 0 instances solved when Tmax =30 s (100 SKUs, T=3). Between the inventory policies di�erences
are rather limited, although more instances are solved with the SS-policy adopted. A possible explanation is that the SS
replenishment level is o�en lower than the Bin replenishment level. As such, the SS-policy will consider a smaller selection
of SKUs for replenishment, resulting in less replenishment quantities and schedules to be determined.

�e average computation time (over replenishment waves 7-12) per sub-problem is given in table 9, where we distinct
between the number of SKUs and the planning horizon. Only sub-problems of instances completely solved are taken into
account, for which in general we observe an acceptable average computation time. Aligned with prior observations, the
average computation time increases as the number of SKUs grows and/or the planning horizon increases.

5.3.2 Stockouts

In this section, we discuss the number of SKU stockouts in terms of the di�erent parameters. In particular, we aim to answer
the following research questions:

• Does a higher replenishment level bene�t the number of stockouts?

• Does a larger forward area size bene�t the number of stockouts?

• Does a larger replenishment capacity bene�t the number of stockouts?

• Does a longer planning horizon bene�t the number of stockouts?

Inventory policy In �g. 5a and 5b (50 SKUs) and �g. 5c and 5d (100 SKUs), the total number of stockouts over 6 pick waves
is set out per inventory policy (x axis), forward area con�guration (color of the line graph), and replenishment capacity
(pa�ern of the line graph). Figures a and c present the results for T=1, while �gures b and d present the results for T=3. �e
results are shown for demand set D but can be generalised to other demand sets as well. Instances for which no outcome
is registered, remained unsolved.

As �g. 5 clearly points out, an increased number of stockouts is experienced when the SS-policy is adopted. For many
products, the safety stock level is exceeded by the product’s average demand (see table 6). Stockouts for these SKUs are
o�en unavoidable as they are not considered for replenishment despite the fact that their inventory level has fallen below
their average demand. Other inventory policies, including the Bin-policy, generally perform be�er as for most products,
they are associated with higher replenishment levels.
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(d) N = 100, T=3

Figure 5: Total number of stockouts over 6 pick waves, set out per inventory policy. Results are shown for 50 SKUs, demand set D.
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Data Ii,t−1 Dit, Di,t+1, Di,t+2 Ci bi
SKU i 2 3,0,0 10 items 5 items
SKU j 1 2,1,1 10 items 5 items

Scenarios Scenario 1: Replenish SKU i in RW t Scenario 2: Replenish SKU j in RW t

SKU i Ii,t−1
∑

k∈K

∑
r∈R

AdvItemikrt Dit Stockout? Ii,t−1
∑

k∈K

∑
r∈R

AdvItemikrt Dit Stockout?

RW/PW t 2 5 3 No 2 0 3 Yes
RW/PW t+ 1 4 0 0 No 0 0 0 No
RW/PW t+ 2 4 0 0 No 0 0 0 No

SKU j Ii,t−1
∑

k∈K

∑
r∈R

AdvItemikrt Dit Stockout? Ii,t−1
∑

k∈K

∑
r∈R

AdvItemikrt Dit Stockout?

RW/PW t 1 0 2 Yes 1 5 2 No
RW/PW t+ 1 0 0 1 Yes 4 0 1 No
RW/PW t+ 2 0 0 1 Yes 3 0 1 No

Total SKU stockouts over 3 pick waves: 3 1

Table 10: Example illustrating the impact of replenishment freedom imposed by the objective function. In both scenarios, there is only su�cient replen-
ishment capacity for the replenishment of either SKU i or SKU j in replenishment wave (RW) t. Both scenarios have equal chances of being performed,
given that the planning horizon is equal to 1 pick wave (PW).

Among the remaining inventory policies, minor to no di�erences arise, if we ignore the results forR=1 and TMax = 30/60/90
s. Small deviations are observable for the LI, LW, MW, and SW forward area con�gurations. For these con�gurations, in-
creased stockouts are experienced when the Bin or SSCeiled policy is adopted. Both are policies associated with lower
threshold values than the BSL, BSLCeiled or Cap-policy, and consequently, consider only a limited selection of SKUs for
replenishment. For forward area con�gurations that allocate less capacity to each product, e.g., con�gurations adopting the
E-policy, the gap between the inventory threshold values is less pronounced, and the inventory policies tend to behave in
a similar fashion.

Exceptions to the above observations arise when replenishment capacity is low (R=1, Tmax=30/60/90 s). �is behaviour
could be a�ributed to the freedom enjoyed by the model, which is partly imposed by the objective function that treats
all SKU stockouts equally. As such, the selection of SKUs to replenish is, to some extent, chosen arbitrarily. To illustrate,
assume two products, SKU i and j, both requiring the same share of replenishment capacity to avoid a stockout in wave
t. In table 10, we illustrate two scenarios, both with su�cient replenishment capacity to replenish only one of both SKUs
in replenishment wave t. Although the choice for either SKU i or j is not decisive for pick wave t (in each scenario, the
un-replenished SKU will experience a stockout), the �nal decision will have a major in�uence on the number of stockouts
in future pick waves. Indeed, scenario 2 delivers a much be�er outcome in the end, despite the only di�erence being the
choice of the replenished SKU in wave t. A longer planning horizon tries to tackle this problem by considering more demand
information to be known up front. Arbitrariness in one speci�c replenishment wave, however, will always characterise the
IWRP given the dynamic context of the problem. �is also holds for instances with larger replenishment capacity, although
with a larger capacity possibly less replenishment dilemmas arise. We argument this to be an explanation for the deviating
behaviour of results obtained for instances with small replenishment capacity.

We conclude that the impact of a higher replenishment level on the number of SKU stockouts remains limited. Most signif-
icant improvements are realised as we move from the SS- to Bin-policy. Further improvements realised through a higher
replenishment level are in�uenced by the forward area con�guration, although in general, results stabilize once the BSL-
policy is adopted. Because of the good solution quality and the fact that many instances are solved with the BSL-policy, we
focus on the outcomes obtained with this inventory policy as we continue the discussion of the results.

Forward area con�guration To illustrate the impact of the forward area con�guration on the total number of stockouts,
we refer to �g. 6 (50 SKUs) and �g. 7 (100 SKUs). We shi� the focus to the forward area con�guration represented by the
pa�ern of the line graph, and the total replenishment capacity shown on the x-axis in increasing order. We narrowed the
results to those obtained for the BSL-policy.

From �g. 6a and �g. 7a we learn that, in general, results worsen as the forward area gets smaller (LW<MW<SW, and
LE<ME<SE) which is logical given that less storage capacity is allocated to the products. With regards to the allocation
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policy, we �nd that the performance depends on the forward area size and the number of SKUs. We also note that, especially
for instances of 50 SKUs, results di�er between the demand sets. In general, we observe that the W-policy outperforms the
E-policy in a large forward area. For a medium and small forward area, the relationship between both allocation policies is
not consistent. However, all results make clear that of all forward area con�gurations, the LI con�guration works best.

�e combinatorial complexity inherent to the IWRP, makes it hard to �nd an explanation for each of these observations.
�ere are, however, some �ndings which clarify some of the observations above:

1. Many stockouts, especially for A products, are inevitable as insu�cient space is allocated. Even if locations were
fully replenished, the average demand could not be met.
�e bars drawn in �g. 6c and �g. 7c show for each forward area con�guration the total number of locations allocated
to A, B and C products (black pa�ern, to be read on the le� y-axis), and the capacity associated with it (grey pa�ern,
to be read on the right y-axis). �e line graphs represent the total average demand of A, B and C products. �e bars
and line graphs are stacked. As can be seen in �g. 6c and �g. 7c, storage capacity o�en fails to meet the average
demand. Especially for A products, stockouts become unavoidable unless demand would deviate drastically from the
average. For 50 SKUs this is the case for all con�gurations except LI and LW, clarifying the superior performance of
the la�er two. For 100 SKUs, this to true for LE, ME and SE con�gurations, which explains their inferior performance
in �g. 7a.

2. Having two storage locations allocated per product, is not an unnecessary luxury.
For the initial allocation policy we stressed that each SKU should receive at least two storage locations. Due to size
reductions or the adoption of other allocation policies, this guideline cannot always be met. As a result stockouts
are o�en experienced because replenishments cannot be performed unless the SKU’s inventory falls to zero. Fig. 6d
and �g. 7d distinct A, B and C SKUs that received one (grey coloured) versus two or more locations (black coloured),
set out over the di�erent con�gurations. �e �gures show that the W-policy tends to allocate only one location to
C-products as opposed to the initial- and E-policy, which explains the superiority of the LI con�guration over the LW
con�guration.

3. Even with su�cient locations provided and SKUs receiving at least two locations, stockouts can happen.
A possible explanation is that a bin always takes up one location, independent of its content (full or almost empty). For
some B-products, in particular big products (bi = 5 items), we observe that two locations su�ce to meet the average
demand, that is of course if both locations store full bins. If one of both locations is �lled with an almost empty bin,
the replenishment of the other location will not be enough to avoid a stockout.

Exceptions to the observations above arise again when replenishment capacity is low (R=1, Tmax=30/60). Part of these de-
viations can be a�ributed to the arbitrariness explained earlier. Additionally, we reason that with only li�le replenishment
capacity available, the number of replenishment orders one can perform is limited. In these situations, having su�cient
storage capacity becomes unnecessary, more so, it could be experienced as a disadvantage: larger distances possibly need
to be travelled, resulting in more time dedicated to travel and less spare time for storage. (Dis)proving this hypothesis is
not evident as distances between SKUs not only di�er due to the forward area size, but also because of the chosen storage
assignment policy that randomly assigns SKUs belonging to the same class.

We conclude that, in general, a larger forward area size positively impacts the number of SKU stockouts, although the way
in which the available space is used, i.e., which allocation policy to adopt, cannot be overlooked.

Replenishment capacity Previous observations made clear that the replenishment capacity has a signi�cant impact on
the number of stockouts. However, this only seems to be true when capacity is low, i.e., when R=1 and Tmax ≤ 90. From
R=1 and Tmax =120 onwards, all curves, in both �g. 6a and �g. 7a, are �at: an increase in the replenishment capacity
cannot facilitate a further reduction of stockouts. �e storage capacity is perceived as a bo�leneck.
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(a) Total stockouts over 6 pick waves for T=1
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Figure 6: Total number of stockouts over 6 pick waves set out over the replenishment capacity for (a) T=1 (b) T=1 & T=3. (c) Location assignment and capacity detailed per product group, for each
forward area con�guration. (d) Details on the location assignment detailed per product group, for each forward area con�guration. Results are shown for 50 SKUs, demand set D.
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Figure 7: Total number of stockouts over 6 pick waves set out over the replenishment capacity for (a) T=1 (b) T=1 & T=3 with the BSL policy adopted. (c) Location assignment and capacity detailed per
product group, for each forward area con�guration. (d) Details on the location assignment detailed per product group, for each forward area con�guration. Results are shown for 100 SKUs, demand set
D.
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Figure 8: Total number of stockouts over 6 pick waves set out over the replenishment capacity for (a) T=1 & (b) T=3 with the Bin-policy adopted. Results
are shown for (a) 50 SKUs, (b) 100 SKUs, demand set D.

Scenario 1: R=5 Tmax =120 Scenario 2: R=3 Tmax =240

Ii,t−1
∑

k∈K

∑
r∈R

AdvItemikrt Dit stockout? Ii,t−1
∑

k∈K

∑
r∈R

AdvItemikrt Dit Stockout?

RW/PW t 4 10 10 No 9 0 10 Yes
RW/PW t+ 1 4 5 7 No 0 14 7 No
RW/PW t+ 2 2 10 9 No 7 0 9 Yes

Table 11: Example showing the impact of the replenishment freedom included in the model for di�erent replenishment capacities. �e example is worked
out for SKU 7, bi=5, Ci=15.

For completeness, we mention that the observation of �at curves holds when the BSL-, BSLCeiled- or Cap- policy is adopted,
but not so much when the SS-, Bin- or SSCeiled-policy is applied. �is can be seen in �g. 8a (50 SKUs) and �g. 8b (100 SKUs)
which show the results obtained by the Bin-policy. �e curves �uctuate to some extent, and, surprisingly, stockouts may
rise even though replenishment capacity increases. To explain this behaviour, we emphasize that the mathematical model
enjoys a certain degree of freedom: the model is allowed to choose (1) which SKUs to replenish (illustrated in table 10), (2)
the replenishment quantity as long as replenishment and storage capacity are respected, allowing quantities that exceed
what is deemed necessary to avoid a stockout. Because of this freedom, outcomes in future replenishment and pick waves
are in�uenced, resulting in less or more stockouts than if this freedom were to be utilized di�erently. Table 11 shows an
example.

In the example illustrated in table 11, replenishment wave t+ 1 starts with di�erent inventory levels in scenarios 1 and 2.
In both situations the SKU quali�es for replenishment as the inventory level has fallen below the threshold associated with
the Bin-policy. In scenario 1, a replenishment of one bin is su�cient to avoid a stockout. In scenario 2, 4 items remain from
a previous emergency pick. Add to this an replenishment of one bin, and a stockout in pick wave t+1 can be avoided. �e
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model, however, decides to replenish not one but two full bins, whilst respecting storage and replenishment capacity. As
a result, the inventory level in replenishment wave t+ 2 exceeds the threshold associated with the Bin-policy. �e SKU is
not considered for replenishment and a stockout is unavoidable.

�e situation illustrated in table 11 arises mainly when either the Bin-, SS-, or SSCeiled-policy, not by chance the more
”strict” inventory policies, is adopted. For these policies, SKUs are only considered for replenishment when inventory
levels are relatively low. By replenishing additional bins, it is easy to end up with an inventory level that exceeds these
threshold values, and consequently the product is not considered for replenishment in the next replenishment wave, leading
to unavoidable stockouts.

We conclude that a larger replenishment capacity only bene�ts the number of SKU stockouts when the replenishment
capacity is increased from low to medium values. Further improvements are blocked due to a more stringent constraint,
the storage capacity constraint. We also �nd that a positive impact of a larger replenishment capacity on the number of
stockouts cannot be guaranteed when more strict inventory policies than the BSL-policy (e.g., Bin-policy) are adopted.

Planning horizon To discuss the impact of a longer planning horizon on the total number of stockouts, we refer to �g. 6b
and �g. 7b when the BSL-policy is adopted, and �g. 8a and �g. 8b when the Bin-policy is adopted. In all �gures, the grey
lines represent the results for T=1, while the black lines show the results for T=3.

In contrast to what was expected, the bene�ts of a longer planning horizon remain limited. �is is generally the case for
the BSL-policy, where T=1 and T=3 obtain the same results. For the Bin-policy, we regularly �nd deviations, mainly in
favour of a longer planning horizon, although this is not always the case. An example is set out in table 12. For a longer
planning horizon, the model decides to replenish a larger replenishment quantity. �is choice can be explained by the
freedom enjoyed in the model (illustrated in table 11), although the availability of more demand information could have led
to a more informed decision as well. �e larger replenishment quantity in the �rst replenishment wave allows to employ
replenishment capacity in the next two replenishment waves elsewhere. Because of this decision, the SKU is not considered
for replenishment until replenishment wave 11, which results in a stockout in pick wave 10. In scenario 1, such problem is
not encountered.

Scenario 1: T=1 Scenario 2: T=3

Ii,t−1
∑

k∈K

∑
r∈R

AdvItemikrt Dit Stockout? Ii,t−1
∑

k∈K

∑
r∈R

AdvItemikrt Dit Stockout?

RW/PW 7 0 15 11 No 0 25 11 No
RW/PW 8 4 0 3 No 14 0 3 No
RW/PW 9 1 20 4 No 11 0 4 No
RW/PW 10 17 0 12 No 7 0 12 Yes
…

Table 12: Example to illustrate the impact of a longer planning horizon. �e example is worked out for SKU 6, bi=5, Ci=25, R=5 and Tmax=240.

We conclude that a longer planning horizon does not bene�t the number of SKU stockouts. However, we recall that many
instances, especially those with a longer planning horizon, were not solved. We also reason that the largest improvements of
a longer planning horizon are probably expected for instances with a larger forward area. For such area sizes, more storage
capacity can be allocated to SKUs and larger quantities can be replenished, which allows to anticipate on replenishments in
future replenishment waves. Instances characterised by a larger forward area, however, currently o�en remained unsolved.

6 Conclusion
In this paper, we introduced the internal warehouse replenishment problem (IWRP) that takes place in a warehouse where
inventory is stored in both a forward and reserve area. As extension to the warehouse literature which mainly focuses on
the tactical organisation of a forward reserve storage system, the IWRP takes into account operational issues, e.g., limited
work force and time, which are o�en ignored or simpli�ed in existing research. �e aim of the IWRP is to plan internal
replenishments and avoid SKU stockouts in an out-of-rack forward reserve system where picking and replenishing do not
take place simultaneously but in alternating waves; a forward reserve set-up that is researched to a minor extent. We
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discussed the details of the replenishment set-up and presented a mixed-integer linear program to plan the replenishment
operation, organised in bins.

�e IWRP was solved to optimality using the Gurobi so�ware for a variety of instances. Instances di�ered in terms of
number of SKUs, storage capacity, planning horizon, inventory policy and replenishment capacity. We found that most
parameters, individually and/or in combination to other parameters, in�uence the number of stockouts, although some
in�uences remain small, e.g., planning horizon. Some observations are easy to clarify, e.g., certain SKU stockouts are
unavoidable when storage capacity is insu�cient to meet demand (e.g., small forward area). Other �ndings are more com-
plicated to explain due to the combinatorial complexity of the IWRP. Key takeaways include the recommendation to allocate
minimally two locations to products stored in the forward area. Many of the stockouts experienced in the experiment can
be a�ributed to the lack of this feature. �e adoption of the base-stock level as inventory policy resulted in good and stable
results. Also, increasing replenishment capacity is not a convenient way to systematically improve the number of stockouts.
Indeed, at some point the increase in replenishment capacity is o�set by the (limited) storage capacity.

�e conclusions stated above, however, should be read with some caution as only a part of instances were solved in the
available time. In particular, we believe that the power of a longer planning horizon to in�uence the number of stockouts
is underestimated as the most promising instances in terms of this feature currently remain unsolved. We encourage the
study of a heuristic approach that is able to solve realistic IWRP instances, i.e., instances with a larger number of SKUs and
with su�cient storage capacity allocated, to extend and complete the observations of our experiments.

In this paper we planned the execution of internal replenishments a�er tactical decisions were made. Earlier, we mentioned
that the integration of both levels, tactical and operational, would lead to a very complex ma�er. In future research, however,
we encourage the consideration of practical issues when deciding on tactical ma�ers as cost underestimations can quickly
rise. Furthermore, interesting research opportunities lie in the combined optimization of the picking and replenishing
operations by, for example, studying the IWRP with an objective based on pick order stockouts, rather than SKU stockouts.

Appendix A - Mathematical model
For comprehensibility, the constraints in the mathematical model given in section 4 were described in an if-then manner.
�ese constraints can be linearised with the help of the following auxiliary variables:

Auxiliary variables

uit, vit
Continuous variables to determine the absolute value of
Ii,t−1 +

∑
k∈K

∑
r∈R

AdvItemikrt −Dit of SKU i in wave t

uit takes a non-zero value when no stockout occurs in pick wave t
vit takes a non-zero value if a stockout occurs in pick wave t

Absit = 1 if uit >0

MaxBinit
�e maximum number of bins that can be replenished in replenishment wave t given the
capacity and inventory level of SKU i at the beginning of replenishment wave t

ε Very small number, e.g., ε = 0.001

Table 13: Auxiliary variables used in the linear mathematical model.

Objective function

Min
∑
i∈V

∑
t∈T

Zit (34)

Inventory level & emergency replenishments

Iit = Ii,t−1 +
∑
k∈K

∑
r∈R

AdvItemikrt −Dit + Emergit ∀i ∈ V, t ∈ T (35)
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Ii,t−1 +
∑
k∈K

∑
r∈R

AdvItemikrt −Dit ≥ −M · Zit ∀i ∈ V, t ∈ T (36)

Ii,t−1 +
∑
k∈K

∑
r∈R

AdvItemikrt −Dit ≤M · (1− Zit)− 1 ∀i ∈ V, t ∈ T (37)

Ii,t−1 +
∑
k∈K

∑
r∈R

AdvItemikrt −Dit = uit − vit ∀i ∈ V, t ∈ T (38)

uit ≤M ·Absit ∀i ∈ V, t ∈ T (39)
vit ≤M(1−Absit) ∀i ∈ V, t ∈ T (40)
Emergit ≤ uit + vit ∀i ∈ V, t ∈ T (41)
Emergit ≥ uit + vit +M(Zit − 1) ∀i ∈ V, t ∈ T (42)
Emergit ≤M · Zit ∀i ∈ V, t ∈ T (43)

Broken bin

BrokenQit = BrokenQi,t−1 −
∑
k∈K

∑
r∈R

BrokenItemikrt − Emergit + bi ·ReserveBinit

∀i ∈ V, t ∈ T (44)
Emergit − (BrokenQi,t−1 −

∑
k∈K

∑
r∈R

BrokenItemikrt)

bi
≤ ReserveBinit

∀i ∈ V, t ∈ T (45)
Emergit − (BrokenQi,t−1 −

∑
k∈K

∑
r∈R

BrokenItemikrt)

bi
−ε ≥ ReserveBinit − 1

∀i ∈ V, t ∈ T (46)
BrokenQit ≤M ·Brokenit ∀i ∈ V, t = 0, ..., T (47)
BrokenQit ≥ Brokenit ∀i ∈ V, t = 0, ..., T (48)

Internal replenishments of full & broken bins∑
k∈K

∑
r∈R

BrokenBinikrt ≤ Brokeni,t−1 ∀i ∈ V, t ∈ T (49)

BrokenItemikrt ≤M ·BrokenBinikrt ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (50)
BrokenItemikrt ≤ BrokenQi,t−1 ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (51)
BrokenItemikrt≥ BrokenQi,t−1 −M(1−BrokenBinikrt)

∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (52)
Ii,t−1 − si ≤M(1−Replit)− 1 ∀i ∈ V, t ∈ T (53)

M · (1− (Brokeni,t−1 −
∑
k∈K

∑
r∈R

BrokenBinikrt)) ≥ AdvBinikrt

∀i ∈ V,∀r ∈ R,∀k ∈ K, t ∈ T (54)
Ci − Ii,t−1

bi
≥MaxBinit ∀i ∈ V, t ∈ T (55)

Ci − Ii,t−1
bi

+ ε ≤MaxBinit+ 1 ∀i ∈ V, t ∈ T (56)∑
r∈R

∑
k∈K

AdvBinikrt +BrokenBinikrt ≤MaxBinit ∀i ∈ V, t ∈ T (57)

BrokenItemikrt +AdvBinikrtbi = AdvItemikrt ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (58)
AdvBinikrt +BrokenBinikrt ≤M ·Routeikrt ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (59)
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AdvBinikrt +BrokenBinikrt ≥ Routeikrt ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (60)

Routing∑
r∈R

∑
k∈K

Routeikrt ≤M ·Replit ∀i ∈ V, t ∈ T (61)∑
i∈V

AdvBinikrt +BrokenBinikrt ≤ Qk ∀k ∈ K,∀r ∈ R, t ∈ T (62)∑
i∈V

Routeikrt ≤M ·Route0krt ∀k ∈ K,∀r ∈ R, t ∈ T (63)

Routeikrt =
∑

j∈V ∪V0,j 6=i

xijkrt =
∑

j∈V ∪V0,j 6=i

xjikrt ∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (64)

∑
k∈K

(Ttravel(
∑

i∈V∪V0

∑
j∈V∪V0

cijxijkrt) + Tstore
∑
i∈V

(AdvBinikrt +BrokenBinikrt)) ≤ Tmax

∀r ∈ R, t ∈ T (65)

Domain
Zit, Replit, Brokenit, Absit∈ {0, 1} ∀i ∈ V, t ∈ T (66)
Iit, Emergit, BrokenQit, uit, vit,MaxBinit ≥ 0 ∀i ∈ V, t ∈ T (67)
BrokenBinikrt, BrokenItemikrt, AdvBinikrt, AdvItemikrt ≥ 0

∀i ∈ V,∀k ∈ K,∀r ∈ R, t ∈ T (68)
xijkrt, Routeikrt ∈ {0, 1} ∀i ∈ V ∪ V0,∀j ∈ V ∪ V0,

∀k ∈ K,∀r ∈ R, t ∈ T (69)

Added to the model by means of lazy constraint:∑
i∈S

∑
j 6∈S

xijkrt ≥ Routehkrt ∀h ∈ S,∀k ∈ K,∀r ∈ R (70)
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Appendix B - Detailed results

FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin 120 52 / / / / / / / 5 / / 6 6 6

SS 111 53 / / / / / / / 12 / / 9 12 12

SSCeiled 120 52 / / / / / / / 4 / / 1 5 4

BSL 123 50 / 12 / / / / / 1 / / 1 1 1

BSLCeiled 123 47 / / / / / / / 1 / / 1 1 1

Cap 123 47 / 12 / / / / / 1 / / 1 1 1

LW

Bin 155 72 / / / / / / 13 11 / / 11 12 12

SS 151 68 / 28 20 / / / / 19 / / 20 21 16

SSCeiled 155 72 / / / / / / 13 11 / / 11 12 11

BSL 154 74 / / 13 / / / 11 11 / / 11 11 11

BSLCeiled 155 72 35 19 / / / / 11 11 / / 11 11 11

Cap 155 72 / 19 / / / / 11 11 / / 11 11 11

MW

Bin 157 70 / 26 22 / / 22 22 22 / 22 24 23 23

SS 146 73 / 31 28 / / 27 28 28 / 27 28 28 29

SSCeiled 157 70 / 26 22 / / 22 22 22 / 22 24 23 23

BSL 149 75 / 27 22 / / 22 22 22 / 22 22 22 22

BSLCeiled 154 76 / 27 22 / / 22 22 22 / 22 22 22 22

Cap 154 76 / 27 22 / / 22 22 22 / 22 22 22 22

SW

Bin 160 73 46 39 39 / 40 39 40 42 / 39 39 41 39

SS 151 78 / 47 48 / 47 47 47 49 / 48 47 47 48

SSCeiled 160 73 46 39 39 / 40 39 40 42 / 39 39 41 39

BSL 157 72 46 39 39 / 39 39 39 39 / 39 39 39 39

BSLCeiled 165 72 46 39 39 / 39 39 39 39 / 39 39 39 39

Cap 165 72 46 39 39 / 39 39 39 39 / 39 39 39 39

LE

Bin 111 54 / 14 14 / 14 14 14 14 / 14 14 14 14

SS 109 54 31 21 21 / 21 20 22 19 / 22 20 20 21

SSCeiled 111 / / 14 14 / 14 14 14 14 / 14 14 14 14

BSL 109 59 / 14 14 / 14 14 14 14 / 14 14 14 14

BSLCeiled 111 / / 14 14 / 14 14 14 14 / 14 14 14 14

Cap 106 56 21 / 14 / 14 14 14 14 / 14 14 14 14

ME

Bin 113 44 20 16 16 / 16 16 16 16 / 16 16 16 16

SS 112 50 27 21 21 / 21 20 21 21 / 21 20 21 21

SSCeiled 113 44 20 16 16 / 16 16 16 16 / 16 16 16 16

BSL 110 43 19 16 16 / 16 16 16 16 / 16 16 16 16

BSLCeiled 113 51 20 16 16 / 16 16 16 16 / 16 16 16 16

Cap 105 42 19 16 16 / 16 16 16 16 / 16 16 16 16

SE

Bin 140 57 38 36 36 / 36 36 36 36 36 36 36 36 36

SS 137 61 40 37 38 / 37 38 38 38 37 38 38 38 38

SSCeiled 140 57 38 36 36 / 36 36 36 36 36 36 36 36 36

BSL 133 62 38 36 36 / 36 36 36 36 / 36 36 36 36

BSLCeiled 140 61 38 36 36 / 36 36 36 36 36 36 36 36 36

Cap 140 63 38 36 36 / 36 36 36 36 / 36 36 36 36

Table 14: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 50 SKUs, T = 1, Demand set = D.
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FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin 136 54 / / / / / / / 1 / / 2 4 0

SS 128 62 32 / / / / / / 8 / / 7 7 8

SSCeiled 136 54 / / / / / / / 1 / / 1 2 1

BSL 131 59 / / / / / / / 0 / / 0 0 0

BSLCeiled 131 55 / / / / / / / 0 / / 0 0 0

Cap 131 55 / 13 / / / / / 0 / / 0 0 0

LW

Bin 166 85 / / 12 / / / 8 11 / / 10 10 10

SS 157 80 / / 23 / / / 19 19 / / 18 19 19

SSCeiled 166 85 / / 12 / / / 8 9 / / 10 10 10

BSL 160 85 / 18 12 / / / 8 8 / / 8 8 8

BSLCeiled 166 85 36 / 12 / / / 8 8 / / 8 8 8

Cap 166 85 36 18 12 / / / 8 8 / / 8 8 8

MW

Bin 154 70 / 23 16 / / 16 16 17 / 16 17 16 16

SS 155 77 41 / 21 / / 22 23 26 / 23 22 21 22

SSCeiled 154 70 / 23 16 / / 16 16 16 / 16 16 16 16

BSL 159 76 / / 16 / / 16 16 16 / 16 16 16 16

BSLCeiled 159 74 35 23 16 / / 16 16 16 / 16 16 16 16

Cap 159 74 35 21 16 / / 16 16 16 / 16 16 16 16

SW

Bin 166 76 / 32 31 / 31 31 32 33 / 32 34 32 32

SS 165 75 / 33 33 / 33 33 34 34 / 33 34 33 33

SSCeiled 166 76 / 32 31 / 31 31 32 33 / 32 34 32 32

BSL 158 74 / 31 31 / 31 31 31 31 / 31 31 31 31

BSLCeiled 165 70 / 31 31 / 31 31 31 31 / 31 31 31 31

Cap 165 70 / 31 31 / 31 31 31 31 / 31 31 31 31

LE

Bin 122 / / 15 15 / 15 15 15 15 / 15 15 15 15

SS 117 63 / 26 26 / 25 24 25 25 / 26 27 26 25

SSCeiled 122 / / 15 15 / 15 15 15 15 / 15 15 15 15

BSL 124 66 20 15 15 / 15 15 15 15 / 15 15 15 15

BSLCeiled 122 62 19 15 15 / 15 15 15 15 / 15 15 15 15

Cap 119 60 / 15 15 / 15 15 15 15 / 15 15 15 15

ME

Bin 119 55 / 15 15 / 15 15 15 15 / 15 15 15 15

SS 114 59 / / 24 / 24 23 23 24 / 24 24 25 24

SSCeiled 119 55 / 15 15 / 15 15 15 15 / 15 15 15 15

BSL 122 50 / 15 15 / 15 15 15 15 / 15 15 15 15

BSLCeiled 119 53 / 15 15 / 15 15 15 15 / 15 15 15 15

Cap 111 49 / 15 15 / 15 15 15 15 / 15 15 15 15

SE

Bin 136 58 34 32 32 / 32 32 32 32 32 32 32 32 32

SS 135 61 39 36 36 / 36 36 36 36 36 36 36 36 36

SSCeiled 136 58 34 32 32 / 32 32 32 32 32 32 32 32 32

BSL 135 61 / 32 32 / 32 32 32 32 32 32 32 32 32

BSLCeiled 136 64 34 32 32 / 32 32 32 32 32 32 32 32 32

Cap 136 62 34 32 32 / 32 32 32 32 32 32 32 32 32

Table 15: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 50 SKUs, T = 1, Demand set = D′.32



FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin 135 56 / 12 / / / / / 2 / / 2 4 2

SS 128 66 36 24 / / / / / 13 / / 11 12 13

SSCeiled 135 56 / 12 / / / / / 2 / / 1 2 1

BSL 142 60 / 12 / / / / 0 0 / / 0 0 0

BSLCeiled 134 55 / 12 / / / / / 0 / / 0 0 0

Cap 134 55 / 12 / / / / / 0 / / 0 0 0

LW

Bin 156 70 / / / / / / 8 9 / / 8 9 8

SS 155 73 / / / / / / 20 19 / / 18 21 18

SSCeiled 156 70 / / / / / / 8 8 / / 8 8 8

BSL 154 75 / 17 / / / / 8 8 / / 8 8 8

BSLCeiled 156 70 / / / / / / 8 8 / / 8 8 8

Cap 156 70 / / / / / / 8 8 / / 8 8 8

MW

Bin 155 62 / 24 18 / 18 19 18 20 / 18 21 18 19

SS 151 71 42 32 27 / / 26 27 27 / 28 26 25 26

SSCeiled 155 62 / 24 18 / 18 18 18 19 / 18 21 18 19

BSL 148 64 / 23 18 / 18 18 18 18 / 18 18 18 18

BSLCeiled 151 64 / 23 18 / 18 18 18 18 / 18 18 18 18

Cap 151 64 / 23 18 / 18 18 18 18 / 18 18 18 18

SW

Bin 161 67 38 31 31 / 31 31 32 31 / 31 31 32 31

SS 159 67 45 38 40 / 38 37 39 38 / 39 38 37 38

SSCeiled 161 67 38 31 31 / 31 31 32 31 / 31 31 32 31

BSL 153 67 38 31 31 / 31 31 31 31 / 31 31 31 31

BSLCeiled 158 64 38 31 31 / 31 31 31 31 / 31 31 31 31

Cap 158 64 38 31 31 / 31 31 31 31 / 31 31 31 31

LE

Bin 111 / 23 19 19 / 19 19 19 19 / 19 19 19 19

SS 108 59 / 25 23 / 25 24 25 23 / 25 25 24 25

SSCeiled 111 / 24 19 19 / 19 19 19 19 / 19 19 19 19

BSL 111 65 23 19 19 / 19 19 19 19 / 19 19 19 19

BSLCeiled 111 / 24 19 19 / 19 19 19 19 / 19 19 19 19

Cap 112 / 21 19 19 / 19 19 19 19 / 19 19 19 19

ME

Bin 123 51 / 20 20 / 20 20 20 20 / 20 20 20 20

SS 122 59 38 31 31 / 31 31 31 30 / 30 29 31 31

SSCeiled 123 51 / 20 20 / 20 20 20 20 / 20 20 20 20

BSL 116 52 23 20 20 / 20 20 20 20 / 20 20 20 20

BSLCeiled 123 53 / 20 20 / 20 20 20 20 / 20 20 20 20

Cap 114 48 23 20 20 / 20 20 20 20 20 20 20 20 20

SE

Bin 142 63 / 35 35 / 35 35 35 35 35 35 35 35 35

SS 144 68 43 39 39 / 39 39 39 38 39 39 39 39 39

SSCeiled 142 63 / 35 35 / 35 35 35 35 35 35 35 35 35

BSL 144 68 / 35 35 / 35 35 35 35 35 35 35 35 35

BSLCeiled 142 62 / 35 35 / 35 35 35 35 35 35 35 35 35

Cap 142 63 / 35 35 / 35 35 35 35 35 35 35 35 35

Table 16: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 50 SKUs, T = 1, Demand set = D′′.33



FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin / / / / / / / / / 1 / / 4 / /

SS / / / / / / / / / 7 / / 7 7 /

SSCeiled / / / / / / / / / / / / 1 / /

BSL / / / / / / / / / 1 / / 1 1 1

BSLCeiled / / / / / / / / / 1 / / / 1 /

Cap / / / / / / / / / 1 / / / 1 1

LW

Bin / / / / / / / / 12 11 / / 11 12 11

SS / / / / / / / / 17 15 / / 17 18 16

SSCeiled / / / / / / / / 12 11 / / 11 12 11

BSL / / / / / / / / 11 / / / 11 11 11

BSLCeiled / / / / / / / / 11 11 / / 11 11 11

Cap / / / / / / / / 11 11 / / 11 11 11

MW

Bin / / / / 22 / / 22 22 22 / 22 24 22 23

SS / / / / 26 / / 25 26 25 / 24 25 25 25

SSCeiled / / / / 22 / / 22 22 22 / 22 24 22 23

BSL / / / / 22 / / 22 22 22 / 22 22 22 22

BSLCeiled / / / / 22 / / 22 22 22 / 22 22 22 22

Cap / / / / 22 / / 22 22 22 / 22 22 22 /

SW

Bin / / / 39 39 / 39 39 40 40 / 39 39 40 39

SS / / / 45 45 / 46 45 45 45 / 44 46 44 44

SSCeiled / / / 39 39 / 39 39 40 40 / 39 39 40 39

BSL / / / 39 39 / 39 39 39 39 / 39 39 39 39

BSLCeiled / / / 39 39 / 39 39 39 39 / 39 39 39 39

Cap / / / 39 39 / 39 39 39 39 / 39 39 39 39

LE

Bin / / / / 14 / 14 14 14 14 / 14 14 14 /

SS / / / 17 18 / 18 19 18 16 / 18 19 18 19

SSCeiled / / / 14 14 / 14 14 14 14 / 14 14 14 14

BSL / / / 14 14 / 14 14 14 14 / 14 14 14 14

BSLCeiled / / / 14 14 / / 14 14 14 / 14 14 14 14

Cap / / / / 14 / 14 14 14 14 / / 14 / /

ME

Bin / / / / 16 / 16 16 16 16 / 16 16 / /

SS / / / 20 20 / 20 19 20 20 / 20 20 20 20

SSCeiled / / / / 16 / 16 16 16 / / 16 16 16 16

BSL / / / 16 16 / 16 16 16 16 / 16 16 16 16

BSLCeiled / / / / 16 / 16 16 16 16 / 16 16 16 16

Cap / / / 16 16 / 16 16 16 / / 16 16 16 /

SE

Bin / / / 36 36 / 36 36 36 36 36 36 36 36 36

SS / / 37 37 37 / 37 37 37 37 37 37 37 37 37

SSCeiled / / / 36 36 / 36 36 36 36 36 36 36 36 36

BSL / / 36 36 36 / 36 36 36 36 36 36 36 36 /

BSLCeiled / / / 36 36 / 36 36 36 36 / 36 36 36 /

Cap / / / 36 36 / 36 36 36 36 36 36 36 36 /

Table 17: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 50 SKUs, T = 3, Demand set = D.
34



FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin / / / / / / / / / 0 / / 2 1 0

SS / / / / / / / / / 5 / / 6 7 6

SSCeiled / / / / / / / / / 0 / / 0 0 0

BSL / / / / / / / / / 0 / / 0 0 0

BSLCeiled / / / / / / / / / 0 / / / 0 0

Cap / / / / / / / / / 0 / / 0 0 /

LW

Bin / / / / / / / / / / / / 8 / /

SS / / / / / / / / 15 15 / / / 15 14

SSCeiled / / / / / / / / / 8 / / / 9 9

BSL / / / / / / / / / 8 / / / 8 8

BSLCeiled / / / / / / / / / / / / / / /

Cap / / / / / / / / / / / / 8 / 8

MW

Bin / / / / 16 / / 16 16 16 / 16 16 16 16

SS / / / / 20 / / 20 20 21 / 20 21 20 20

SSCeiled / / / / 16 / / 16 16 16 / 16 16 16 16

BSL / / / / 16 / / 16 16 16 / 16 16 16 16

BSLCeiled / / / / 16 / / 16 16 16 / 16 16 16 16

Cap / / / / 16 / / 16 16 16 / 16 16 16 16

SW

Bin / / / 31 31 / 31 31 31 31 / 32 32 31 31

SS / / / 33 33 / 33 33 33 33 / 32 33 32 33

SSCeiled / / / 31 31 / 31 31 31 31 / 32 32 31 31

BSL / / / 31 31 / 31 31 31 31 / 31 31 31 31

BSLCeiled / / / 31 31 / 31 31 31 31 / 31 31 31 31

Cap / / / / 31 / 31 31 31 31 / 31 31 31 31

LE

Bin / / / / 15 / 15 15 15 15 / 15 15 15 15

SS / / / / 22 / 23 23 22 22 / 24 25 24 23

SSCeiled / / / / 15 / 15 15 15 / / 15 15 / /

BSL / / / 15 15 / 15 15 15 15 / 15 15 15 15

BSLCeiled / / / / 15 / 15 15 15 15 / 15 15 15 /

Cap / / / / 15 / 15 / 15 / / 15 15 / /

ME

Bin / / / / 15 / 15 15 15 15 / 15 15 15 15

SS / / / 22 21 / 21 21 21 21 / 22 22 22 21

SSCeiled / / / / 15 / 15 15 15 15 / 15 15 / /

BSL / / / 15 15 / 15 15 15 15 / 15 15 15 15

BSLCeiled / / / / 15 / 15 15 15 / / 15 15 / 15

Cap / / / / 15 / 15 15 15 / / 15 15 15 15

SE

Bin / / 32 32 32 / 32 32 32 32 32 32 32 32 32

SS / / 36 36 36 / 36 36 36 36 36 36 36 36 36

SSCeiled / / 32 32 32 / 32 32 32 32 32 32 32 32 32

BSL / / 32 32 32 / 32 32 32 32 32 32 32 32 32

BSLCeiled / / 32 32 32 / 32 32 32 32 / 32 32 32 32

Cap / / 32 32 32 / 32 32 32 32 32 32 32 32 32

Table 18: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 50 SKUs, T = 3, Demand set = D′.
35



FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin / / / / / / / / / 0 / / 2 2 /

SS / / / / / / / / / 9 / / 10 10 10

SSCeiled / / / / / / / / / 0 / / 0 1 0

BSL / / / / / / / / / 0 / / 0 0 0

BSLCeiled / / / / / / / / / 0 / / 0 0 0

Cap / / / / / / / / / 0 / / / 0 0

LW

Bin / / / / / / / / 8 8 / / 8 8 8

SS / / / / / / / / 17 14 / / 15 17 18

SSCeiled / / / / / / / / 8 8 / / 8 9 9

BSL / / / / / / / / / 8 / / 8 / 8

BSLCeiled / / / / / / / / 8 8 / / 8 / 8

Cap / / / / / / / / 8 8 / / 8 8 8

MW

Bin / / / / 18 / / 18 18 18 / 18 20 18 19

SS / / / / 24 / / 23 23 24 / 23 22 22 23

SSCeiled / / / / 18 / / 18 18 18 / 18 20 18 19

BSL / / / / 18 / / 18 18 18 / 18 18 18 18

BSLCeiled / / / / 18 / / 18 18 18 / 18 18 18 18

Cap / / / / 18 / / 18 18 18 / 18 18 18 18

SW

Bin / / / 31 31 / 31 31 32 31 / 31 31 32 31

SS / / / / 36 / 38 37 37 38 / 38 37 37 36

SSCeiled / / / 31 31 / 31 31 32 31 / 31 31 32 31

BSL / / / 31 31 / 31 31 31 31 / 31 31 31 31

BSLCeiled / / / 31 31 / 31 31 31 31 / 31 31 31 31

Cap / / / 31 31 / 31 31 31 31 / 31 31 31 31

LE

Bin / / / / / / 19 19 19 19 / 19 19 19 19

SS / / / 22 22 / 22 22 22 21 / 22 22 22 22

SSCeiled / / / / 19 / 19 19 19 19 / 19 / 19 19

BSL / / / 19 19 / 19 19 19 19 / 19 19 19 19

BSLCeiled / / / / 19 / 19 19 19 19 / 19 19 19 19

Cap / / / / 19 / / 19 19 / / 19 / 19 /

ME

Bin / / / / 20 / 20 20 20 / / 20 20 20 /

SS / / / 28 29 / 29 30 28 28 28 28 28 29 29

SSCeiled / / / / 20 / 20 20 20 20 / 20 20 20 /

BSL / / / 20 20 / 20 20 20 20 20 20 20 20 /

BSLCeiled / / / / 20 / 20 20 20 20 / 20 20 / /

Cap / / / / 20 / / 20 20 / / 20 20 20 /

SE

Bin / / / 35 35 / 35 35 35 35 35 35 35 35 /

SS / / 38 38 38 / 38 38 39 38 38 39 39 39 38

SSCeiled / / / 35 35 / 35 35 35 35 35 35 35 35 /

BSL / / / 35 35 / 35 35 35 35 35 35 35 35 35

BSLCeiled / / / 35 35 / 35 35 35 35 / 35 35 35 35

Cap / / / 35 35 / 35 35 35 35 / 35 35 35 35

Table 19: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 50 SKUs, T = 3, Demand set = D′′.
36



FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin 152 85 / / / / / / 2 4 / / 2 2 3

SS 153 88 / 30 / / / / 9 8 / / 11 9 8

SSCeiled 152 85 / / / / / / 2 4 / / 2 2 3

BSL 155 84 / 22 / / / / 2 2 / / 2 2 2

BSLCeiled 152 / / / / / / / 2 2 / / 2 2 2

Cap 152 / / / / / / / / 2 / / / 2 2

LW

Bin 177 108 / / / / / / / 7 / / 5 8 7

SS 178 116 / / / / / / / 14 / / 11 11 15

SSCeiled 182 108 / / / / / / / 7 / / 5 8 7

BSL 183 99 / / / / / / / 5 / / 5 5 5

BSLCeiled 185 113 / / / / / / / 5 / / 5 5 5

Cap 185 / / / / / / / / 5 / / 5 5 5

MW

Bin 218 / / / / / / / / 14 / / 13 16 17

SS 210 129 / 43 / / / / / 21 / / 20 18 21

SSCeiled 218 / / / / / / / / 14 / / 13 12 15

BSL 212 130 / / / / / / / 12 / / 12 12 12

BSLCeiled 213 133 / / / / / / / 12 / / 12 12 12

Cap 213 133 / / / / / / / 12 / / 12 12 12

SW

Bin 215 / / / 28 / / 29 28 29 / 29 30 29 29

SS 218 138 / / 35 / / 35 34 36 / 35 35 34 35

SSCeiled 215 140 / / 28 / / 29 28 29 / 29 30 29 29

BSL 220 / / / 28 / / 28 28 28 / 28 28 28 28

BSLCeiled 220 / / / 28 / / 28 28 28 / 28 28 28 28

Cap 220 / / / 28 / / 28 28 28 / 28 28 28 28

LE

Bin 149 / / / 26 / 25 25 26 25 / 25 25 25 26

SS 152 / / 32 31 / 31 31 31 31 / 31 30 31 31

SSCeiled 149 / / / 26 / 25 25 26 25 / 25 25 25 26

BSL 149 / / / 25 / 25 25 25 25 / 25 25 25 25

BSLCeiled 149 / / / 25 / 25 25 25 25 / 25 25 25 25

Cap 146 / / / 25 / 25 25 25 25 / 25 25 25 25

ME

Bin 161 / / 36 36 / 36 36 36 36 / 36 36 36 36

SS 163 / / 41 41 / 41 41 41 41 / 41 41 41 41

SSCeiled 161 / / 36 36 / 36 36 36 36 / 36 36 36 36

BSL 163 / / 36 36 / 36 36 36 36 / 36 36 36 36

BSLCeiled 161 / / 36 36 / 36 36 36 36 / 36 36 36 36

Cap 161 / / / 36 / 36 36 36 36 / 36 36 36 36

SE

Bin 205 / / 50 50 / 50 50 50 50 / 50 50 50 50

SS 201 / / 52 52 / 52 52 52 52 / 52 52 52 52

SSCeiled 205 / / 50 50 / 50 50 50 50 / 50 50 50 50

BSL 195 / / 50 50 / 50 50 50 50 / 50 50 50 50

BSLCeiled 205 / / 50 50 / 50 50 50 50 / 50 50 50 50

Cap 210 / / 50 50 / 50 50 50 50 / 50 50 50 50

Table 20: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 100 SKUs, T = 1, Demand set = D.37



FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin 161 94 / / / / / / / 5 / / / 5 6

SS 160 98 54 / / / / / 20 19 / / 20 20 18

SSCeiled 161 94 / / / / / / / 5 / / / 5 6

BSL 158 96 / / / / / / / 5 / / 5 5 5

BSLCeiled 161 92 / / / / / / / 5 / / / 5 5

Cap 161 92 / / / / / / / 5 / / / 5 5

LW

Bin 185 / / / / / / / / 10 / / 9 12 14

SS 191 122 / / / / / / / 21 / / 20 20 23

SSCeiled 181 / / / / / / / / 10 / / 9 13 12

BSL 182 121 / / / / / / / 9 / / 9 9 9

BSLCeiled 182 / / / / / / / / 9 / / 9 9 9

Cap 189 120 / / / / / / / 9 / / 9 9 9

MW

Bin 213 140 / / / / / / 15 16 / / 16 16 21

SS 209 138 / / / / / / / 29 / / 29 29 29

SSCeiled 213 140 / / / / / / / 16 / / 16 16 20

BSL 210 142 / / / / / / / 15 / / 15 15 15

BSLCeiled 212 145 / / / / / / / 15 / / 15 15 15

Cap 212 145 / / / / / / / 15 / / 15 15 15

SW

Bin 227 146 / / 35 / / 35 35 35 / 35 36 36 35

SS 224 146 / / 44 / / 43 45 44 / 44 44 46 43

SSCeiled 227 146 / / 35 / / 35 35 36 / 35 36 36 37

BSL 231 145 / / / / / 35 35 35 / / 35 35 35

BSLCeiled 230 146 / / 35 / / 35 35 35 / / 35 35 35

Cap 230 146 / / 35 / / 35 35 35 / 35 35 35 35

LE

Bin 151 / / / 24 / / 24 24 24 / 24 24 24 24

SS 152 91 / / 40 / / 40 40 40 / 40 41 40 40

SSCeiled 151 / / / 24 / / 24 24 24 / 24 24 24 24

BSL 154 / / / 25 / / 25 25 25 / 25 25 25 25

BSLCeiled 151 / / / 24 / / 24 24 24 / 24 24 24 24

Cap 156 / / / 24 / / 24 24 24 / 24 24 24 24

ME

Bin 167 / / / 35 / / 35 35 35 / 35 35 35 35

SS 170 / / / 46 / / 45 45 46 / 46 46 46 45

SSCeiled 167 / / / 35 / / 35 35 35 / 35 35 35 35

BSL 172 / / 38 35 / / 35 35 35 / 35 35 35 35

BSLCeiled 167 / / / 35 / / 35 35 35 / 35 35 35 35

Cap 167 / / / 35 / / 35 35 35 / / 35 35 35

SE

Bin 204 / / 59 59 / 59 59 59 59 / 59 59 59 59

SS 215 / / 64 64 / 64 64 64 64 / 64 64 64 63

SSCeiled 204 / / 59 59 / 59 59 59 59 / 59 59 59 59

BSL 201 / / 59 59 / 59 59 59 59 / 59 59 59 59

BSLCeiled 204 / / 59 59 / 59 59 59 59 / 59 59 59 59

Cap 205 / / 59 59 / 59 59 59 59 / 59 59 59 59

Table 21: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 100 SKUs, T = 1, Demand set = D′.38



FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin 150 / / / / / / / / 7 / / 5 5 5

SS 156 87 / / / / / / 14 12 / / 12 14 13

SSCeiled 150 / / / / / / / 7 7 / / / 5 5

BSL 155 / / / / / / / 6 6 / / 6 6 6

BSLCeiled 150 / / / / / / / 5 5 / / 5 5 5

Cap 150 / / / / / / / / 5 / / / 5 5

LW

Bin 175 / / / / / / / / 10 / / 7 9 9

SS 184 / / / / / / / / 15 / / 13 15 15

SSCeiled 175 / / / / / / / / 8 / / 7 8 8

BSL 174 109 / / / / / / / 7 / / 7 7 7

BSLCeiled 181 / / / / / / / / 6 / / 6 6 6

Cap 181 106 / / / / / / / 6 / / 6 6 6

MW

Bin 207 115 / / / / / / 12 17 / / 13 13 14

SS 200 116 / 47 / / / / 23 29 / / 23 24 24

SSCeiled 207 115 / / / / / / 16 17 / / 13 13 14

BSL 202 118 / / / / / / 13 13 / / 13 13 13

BSLCeiled 203 129 / / / / / / / 12 / / 12 12 12

Cap 203 129 / / / / / / / 12 / / 12 12 12

SW

Bin 210 136 / / / / / 30 29 30 / 29 29 30 29

SS 212 131 / / 33 / / / 33 34 / 32 34 34 34

SSCeiled 210 136 / / / / / 30 29 30 / 29 29 30 29

BSL 218 136 / / / / / / 29 29 / 29 29 29 29

BSLCeiled 214 136 / / / / / 29 29 29 / 29 29 29 29

Cap 214 136 / / 29 / / 29 29 29 / 29 29 29 29

LE

Bin 142 / / / 25 / 25 25 25 25 / 25 25 25 25

SS 145 / / / 34 / 34 32 34 33 / 34 33 34 34

SSCeiled 142 / / / 25 / 25 25 25 25 / 25 25 25 25

BSL 147 / / / 26 / 26 26 26 26 / 26 26 26 26

BSLCeiled 142 / / / 25 / 25 25 25 25 / 25 25 25 25

Cap 147 / / / 25 / / 25 25 25 / 25 25 25 25

ME

Bin 163 / / / 37 / 37 37 37 37 / 37 37 37 37

SS 165 100 / / 43 / 42 42 43 42 / 42 43 41 43

SSCeiled 163 / / 37 37 / 37 37 37 37 / 37 37 37 37

BSL 166 96 / 38 38 / 38 38 38 38 / 38 38 38 38

BSLCeiled 163 / / / 37 / 37 37 37 37 / 37 37 37 37

Cap 163 / / 37 37 / 37 37 37 37 / 37 37 37 37

SE

Bin 195 112 / 52 52 / 52 52 52 52 / 52 52 52 52

SS 195 114 / 53 53 / 53 53 53 53 / 53 53 53 53

SSCeiled 195 112 / 52 52 / 52 52 52 52 / 52 52 52 52

BSL 190 / / 52 52 / 52 52 52 52 / 52 52 52 52

BSLCeiled 195 112 / 52 52 / 52 52 52 52 / 52 52 52 52

Cap 192 112 / 52 52 / 52 52 52 52 / 52 52 52 52

Table 22: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 100 SKUs, T = 1, Demand set = D′′.39



FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin / / / / / / / / / / / / / / /

SS / / / / / / / / 9 8 / / 9 9 8

SSCeiled / / / / / / / / / / / / / / /

BSL / / / / / / / / / 2 / / 2 2 /

BSLCeiled / / / / / / / / / / / / / / /

Cap / / / / / / / / / / / / / / /

LW

Bin / / / / / / / / / 6 / / / / 6

SS / / / / / / / / / 10 / / 10 10 12

SSCeiled / / / / / / / / / 6 / / / 5 6

BSL / / / / / / / / / 5 / / / 5 /

BSLCeiled / / / / / / / / / 5 / / / 5 5

Cap / / / / / / / / / / / / / 5 5

MW

Bin / / / / / / / / / 12 / / / 12 /

SS / / / / / / / / / 17 / / 18 15 18

SSCeiled / / / / / / / / / 12 / / / 12 /

BSL / / / / / / / / / 12 / / / 12 12

BSLCeiled / / / / / / / / / 12 / / / 12 12

Cap / / / / / / / / / 12 / / 12 12 12

SW

Bin / / / / / / / / 28 / / / 28 28 /

SS / / / / / / / / / 35 / / 35 / /

SSCeiled / / / / / / / / / 28 / / 28 28 /

BSL / / / / / / / / 28 28 / 28 28 / /

BSLCeiled / / / / / / / / / 28 / / 28 28 /

Cap / / / / / / / / 28 28 / / 28 28 /

LE

Bin / / / / / / / / 25 / / / / / /

SS / / / / 31 / 32 31 31 31 / 32 30 32 32

SSCeiled / / / / / / / 25 / / / / / 25 /

BSL / / / / 25 / / 25 25 25 / 25 25 / 25

BSLCeiled / / / / / / / / / 25 / / 25 / /

Cap / / / / / / / / / 25 / / / / /

ME

Bin / / / / / / / 36 36 / / / 36 / /

SS / / / 41 41 / 41 41 41 41 / 41 41 41 41

SSCeiled / / / / / / / 36 36 / / / 36 / /

BSL / / / / 36 / / 36 36 / / / 36 36 /

BSLCeiled / / / / / / / / / / / / 36 / /

Cap / / / / 36 / / / / / / / / 36 /

SE

Bin / / / / 50 / 50 50 50 50 / 50 50 50 /

SS / / / / 52 / 52 52 52 52 / 52 52 52 52

SSCeiled / / / / 50 / 50 50 50 50 / 50 50 50 50

BSL / / / / 50 / 50 50 50 50 / 50 50 50 /

BSLCeiled / / / / 50 / 50 50 50 50 / 50 50 50 50

Cap / / / / 50 / 50 50 50 50 / 50 50 50 /

Table 23: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 100 SKUs, T = 3, Demand set = D.
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FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin / / / / / / / / / / / / / / /

SS / / / / / / / / / / / / / / /

SSCeiled / / / / / / / / / / / / / / /

BSL / / / / / / / / / / / / / / /

BSLCeiled / / / / / / / / / / / / / / /

Cap / / / / / / / / / / / / / / /

LW

Bin / / / / / / / / / 9 / / / / 11

SS / / / / / / / / / 17 / / 16 14 /

SSCeiled / / / / / / / / / 9 / / / / 10

BSL / / / / / / / / / / / / / 9 9

BSLCeiled / / / / / / / / / 9 / / / / 9

Cap / / / / / / / / / 9 / / / 9 9

MW

Bin / / / / / / / / / 15 / / / / /

SS / / / / / / / / / 25 / / 23 21 /

SSCeiled / / / / / / / / / 15 / / / 15 /

BSL / / / / / / / / / 15 / / / 15 /

BSLCeiled / / / / / / / / / 15 / / / 15 /

Cap / / / / / / / / / 15 / / / / 15

SW

Bin / / / / / / / / / / / / / / /

SS / / / / / / / / / / / / / / /

SSCeiled / / / / / / / / / / / / / / /

BSL / / / / / / / / / / / / / / /

BSLCeiled / / / / / / / / / / / / / / /

Cap / / / / / / / / / / / / / / /

LE

Bin / / / / / / / / 24 / / / / / /

SS / / / / 36 / / / 36 36 / 36 36 37 38

SSCeiled / / / / / / / / 24 / / / / / /

BSL / / / / 25 / / / 25 / / 25 25 / /

BSLCeiled / / / / / / / / / / / / / / /

Cap / / / / / / / / / / / / / / /

ME

Bin / / / / / / / / / / / / 35 / /

SS / / / / 45 / / 45 44 44 / 45 44 45 45

SSCeiled / / / / / / / / / / / / 35 / /

BSL / / / / 35 / / / 35 / / 35 35 35 /

BSLCeiled / / / / / / / / / 35 / / / / /

Cap / / / / / / / / / 35 / / 35 35 /

SE

Bin / / / / 59 / 59 59 59 59 / 59 59 59 /

SS / / / / 64 / 64 64 64 64 / 63 63 63 64

SSCeiled / / / / 59 / 59 59 59 59 / 59 59 59 59

BSL / / / / 59 / 59 59 59 59 / 59 59 59 59

BSLCeiled / / / / 59 / / 59 59 59 / 59 59 59 59

Cap / / / / 59 / 59 59 59 59 / 59 59 59 59

Table 24: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 100 SKUs, T = 3, Demand set = D′.
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FA Con�g\R= 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

Inv policy\Tmax 30 60 90 120 240 30 60 90 120 240 30 60 90 120 240

LI

Bin / / / / / / / / / / / / / / /

SS / / / / / / / / / / / / / 11 /

SSCeiled / / / / / / / / / / / / / / /

BSL / / / / / / / / / / / / / / /

BSLCeiled / / / / / / / / / / / / / / /

Cap / / / / / / / / / / / / / / /

LW

Bin / / / / / / / / / 7 / / / 6 7

SS / / / / / / / / / 10 / / 11 12 13

SSCeiled / / / / / / / / / 7 / / / / /

BSL / / / / / / / / / 7 / / 7 7 /

BSLCeiled / / / / / / / / / 6 / / / / /

Cap / / / / / / / / / 6 / / / 6 6

MW

Bin / / / / / / / / / 12 / / / / /

SS / / / / / / / / / 20 / / / 18 /

SSCeiled / / / / / / / / / 12 / / 12 / /

BSL / / / / / / / / / 13 / / / 13 /

BSLCeiled / / / / / / / / / 12 / / / 12 /

Cap / / / / / / / / / 12 / / / 12 /

SW

Bin / / / / / / / / / / / / / / /

SS / / / / / / / / / 32 / / / / /

SSCeiled / / / / / / / / / / / / / / /

BSL / / / / / / / / / / / / / / /

BSLCeiled / / / / / / / / 29 / / / / / /

Cap / / / / / / / / / / / / / / /

LE

Bin / / / / / / / / / / / / 25 / /

SS / / / / 31 / / 32 32 32 / 31 31 32 /

SSCeiled / / / / / / / 25 / / / / / / /

BSL / / / / 26 / / 26 26 / / 26 26 26 /

BSLCeiled / / / / / / / / / / / / / / /

Cap / / / / / / / / / / / / / 25 /

ME

Bin / / / / / / / / / / / / 37 / /

SS / / / / 41 / 41 42 42 42 / 42 42 41 /

SSCeiled / / / / / / / / / / / / 37 / /

BSL / / / / 38 / / 38 38 38 / 38 / 38 /

BSLCeiled / / / / 37 / / / / / / / / / /

Cap / / / / / / / / / / / / 37 / /

SE

Bin / / / / 52 / 52 52 52 52 / 52 52 52 52

SS / / / 53 53 / 53 53 53 53 / 53 53 53 53

SSCeiled / / / / 52 / 52 52 52 52 / 52 52 52 52

BSL / / / / 52 / 52 52 52 52 / 52 52 52 52

BSLCeiled / / / / 52 / 52 52 52 52 / 52 52 52 52

Cap / / / / 52 / 52 52 52 52 / 52 52 52 52

Table 25: Total number of stockouts over 6 pick waves, listed per parameter combination. Results are shown for 100 SKUs, T = 3, Demand set = D′′.
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Mjirda, A., Jarboui, B., Macedo, R., Hana�, S., and Mladenović, N. (2014). A two phase variable neighborhood search for the
multi-product inventory routing problem. Computers & Operations Research, 52:291–299.
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