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A robust supervised method for estimating soil

moisture content from spectral reflectance
Bikram Koirala, Member IEEE, Zohreh Zahiri, Paul Scheunders, Senior Member IEEE

Abstract—Due to the complex interaction of light with moist
soils, the soil moisture content (SMC) is hard to estimate from
the soils spectral reflectance. Spectral variability, caused by
variations in viewing and illumination angle and between-sensor
variability further complicates the estimation. In this work, we
developed a supervised methodology to accurately estimate SMC
from spectral reflectance. The method determines a proxy for the
SMC of a moist soil, making use of the reflectance spectra of an
air-dried and saturated soil sample. The proxy is made invariant
to illumination and viewing angle, and sensor type. In the next
step, the proxy is normalized with respect to the ground truth
SMC of the saturated soil to make the technique less dependent
on the soil type. The normalized proxy can be directly used as
an estimate of SMC. Alternatively, the nonlinear relationship
between the normalized proxy and the actual SMC can be
learned by supervised regression. Experiments are conducted on
real moist soil data. In particular, we developed data sets of
moist minerals, acquired by two different sensors, an Agrispec
spectrometer, and an Imec snapscan shortwave infrared (SWIR)
hyperspectral camera, under strictly controlled experimental
settings. The proposed methodology is also validated on the
available real moist soil data from the literature. Compared
to state-of-the-art methods, the proposed method accurately
estimates the soil moisture content.

Index Terms—Remote sensing, Hyperspectral, Soil moisture
content, Soil, Machine learning regression

I. INTRODUCTION

Soil moisture is the main source of water for agriculture

and natural vegetation ([1]). Soil moisture relates to the

amount of water contained in the unsaturated soil zone ([2]).

In [3], three main types of soil water are described: (a)

hydration (absorbed) water incorporated into the lattice of

the minerals; (b) hygroscopic (adsorbed) water bound to soil

particles by the surface electrical charges of the minerals;

and (c) free water covering the minerals and occupying the

pores. Soil water plays a key role in crop production by

serving as a solvent for nutrients such as sodium, potassium,

carbon, nitrogen ([1]). It also plays a very important role in

the exchange of mass and energy between the Earth’s surface

and the atmosphere ([2], [4], [5], [6], [7], [8]). Timely and

accurate assessment of soil moisture content is critical in

agriculture, hydrology, horticulture, geotechnical, and other

environmental fields ([3], [4], [5], [9], [10]).

In practice, soil moisture content (SMC) is defined as

the ratio of water to pure (dry) soil, either expressed in

mass (gravimetric SMC) or volume (volumetric SMC) ([2],

[4]). In the remaining of this manuscript, we will refer to
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gravimetric SMC as SMC, unless specified as volumetric

SMC. The most accurate but intensive way of estimating

soil moisture is the gravimetric method ([1], [11]), in which

a fresh soil core sample is weighted and oven-dried until

no further loss of mass is observed. The weight difference

between the wet and dried sample is an estimate of the soil

moisture. The most commonly used ground-based techniques

(time-domain reflectometry, frequency domain sensors, etc.)

estimate volumetric SMC ([2], [3], [9], [12], [13], [14]).

Although these methods can be adapted to monitor temporal

variations of volumetric SMC locally (in a small area),

they cannot be applied to map spatial variations ([12]). To

estimate volumetric SMC globally, a large amount of research

has primarily been focused on the microwave part of the

spectrum ([6], [7], [10]), because moisture strongly affects

soil dielectric properties and longer wavelengths penetrate

relatively deep into the ground ([10]). The major advantage of

the microwave part of the spectrum is that vegetation on the

surface does not influence the longer wavelength microwave

radiation ([4]). Even though a large number of algorithms has

been developed to exploit microwave radiation for volumetric

SMC estimation at a large scale, the data products typically

have coarse spatial resolution, even from airborne systems

([12]) and might be not useful for monitoring e.g., small

catchment areas ([14]). Moreover, information is required

regarding the soil surface roughness and the soil dielectric

constant.

It is well-known that soil moisture largely influences the

reflection from soil surfaces in the VNIR (400–1100 nm) and

SWIR (1100–2500 nm) regions of the spectrum ([8], [15]).

The main advantage of using this region of the spectrum is

that the solar radiation works as a natural illumination source.

Despite the limited light penetration depth (a few micrometers

to a few millimeters), the SMC of the topmost layer of the

soil can be determined at a high spatial resolution using

hyperspectral imaging ([16]). In earlier work, the impact of

soil moisture on reflectance was mainly studied qualitatively.

Anders Ångström ([17]) experimentally observed a decrease

in the reflectance when wetting soils artificially. He explained

this by internal reflections of the reflected radiation in the

water film covering the soil particles. Several authors reported

the same ([18], [19]). These studies were mostly performed on

unsaturated soils ([7], [20]). When the soil moisture content

is over-saturated, the reflectance of a soil can be higher than

that of the saturated soil, due to specular reflection.

More recently, a large amount of quantitative research was

conducted to estimate SMC from reflectance measurements

and results were promising for different types of soils ([10]).
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The methodologies developed in these works can be grouped

into empirical methods and methods based on physical mod-

eling. Empirical methods include spectral indices ([10], [21],

[22], [23]), statistical relationships ([24], [25]), exponential

functions ([7], [8], [26]), wavelet analysis ([27]), and multi-

variate analysis ([28]). Most of these methods utilize a limited

number of wavebands for estimating SMC. For example, in

[10], the normalized soil moisture index (NSMI) was intro-

duced to estimate SMC. Most of these researches concluded

that SWIR bands are better suited for estimating SMC, due to

the strong absorption bands of molecular water around 1400

nm and 1900 nm ([6], [8]), while in the VNIR spectral region,

the reflectance of the soil reaches its minimum value at much

lower SMC ([8]). These methods were mostly validated on

data acquired in a controlled laboratory environment. In field

conditions, the use of the entire wavelength range is required

since the strong absorption bands of molecular water around

1400 nm and 1900 nm are masked by atmospheric absorption

([6], [8]).

Most of the physical modeling techniques ([3], [29], [30])

utilize the entire VNIR and SWIR wavelength region (400-

2500 nm). The main goal of these models is to physically

describe the interaction of light with moist soils. A major

advantage of the physical modeling techniques is that they can

simulate the reflectance spectrum of the moist soil. In [29], the

Bach model was introduced, which describes the reflectance of

wet soil as a function of the soil reflectance in its dry form and

a parameter L that denotes the active thickness of the water

layer. Inversion leads to an estimate of L as a proxy for the

SMC. A supervised regression model uses a training dataset

with known SMC to learn the relationship between L and the

SMC. In [3], MARMIT, an improved multi-layer Bach model

was proposed.

An exception to the physical modeling techniques is the

Sadeghi model ([16]), in that it neither simulates the re-

flectance spectrum of the moist soil nor utilizes the entire

wavelength range. In [16], it was recommended to use the

reflectance value at the wavelength 2210 nm. The model

estimates the SMC from the soil reflectance by making use

of the reflectance of a dry soil sample and a saturated soil

sample.

Both empirical and physical modeling techniques have their

disadvantages. Two major challenges remain for an accurate

estimation of SMC:

• Variations in illumination and viewing angle and sensor

type cause a huge variation in the reflectance spectra of

moist soil samples. Some effects cause a mere scaling

of the reflectance spectra (e.g., illumination and viewing

angle), others cause a multiplication with a wavelength-

dependent function (cross-sensor situations, e.g., differ-

ence in sensor type, white calibration). Most of the phys-

ical models are not invariant to these effects. Although

spectral indices-based methods are invariant to scaling

effect caused by variations in illumination and viewing

angle, they are not invariant to cross-sensor situations.

• The spectral reflectance of a moist soil highly depends

on the soil grain size (texture) and grain size distribution.

These determine the distribution of the water in the soil.

For two soils with identical SMC, the incident light

travels longer distances in the water before reflecting out

from the sample (i.e., the optically active thickness of

the water layer) in the soil containing the largest pore

size. This effect is visible e.g., as differences in the depth

of the absorption bands of molecular water around 1400

nm and 1900 nm (see e.g. Fig. 3). The existing methods

do not properly consider the distribution of the water

in the soil, making the results highly dependent on the

soil type. Spectral indices and the Sadeghi model use

a limited number of bands, making it hard to properly

capture the distribution of the water in the soil. The

Bach and MARMIT model employ the optically active

thickness of the water layer as a proxy for the SMC,

which is soil-dependent. As a consequence, when trained

on one soil type, the models are not transferable to other

soil types. Although the distribution of the water in the

soil is partially characterized by the spectral reflectance

of the saturated soil, it can vary significantly during

drying because of the capillary and adsorptive forces. One

observable effect in lab measurements is a random scaling

of the spectral reflectance of the moist soils (especially

non-hydrophobic soils) due to changes in the thickness

of the sample.

In this work, we will focus on these two challenges. Our

method consists of three steps. In the first step, a proxy for

SMC is generated by describing the moist reflectance relative

to the reflectance of both a dry and a saturated soil sample. The

soil textural information and the distribution of the water in the

soil are partly implicitly embedded in the spectral reflectance

of the saturated soil. The proxy for SMC is made invariant

to random scaling effects, including variations in illumination

and viewing angle, as well as sensor type variations. In the

next step, the proxy is normalized with respect to the ground

truth SMC of the saturated soil to make the technique less

dependent on the soil type. Indeed in the methodology section

(see Figure 7), we will demonstrate this. In the final step,

to estimate SMC, we will propose two different approaches.

As the relation between the normalized proxy and SMC

will be shown to be nearly linear, in the first approach, the

normalized proxy will be directly used as an estimate of SMC.

To improve accuracy, in the second approach, a supervised

regression algorithm is applied to learn the actual relationship

between the normalized proxy and the SMC of the moist soil.

Although in the experimental part, we will demonstrate that

the regression parameters obtained by training the algorithm

on one soil type can be utilized to estimate soil moisture

content of any other soil type without further calibrating for

new soil types, the second approach is more suitable for

soil-specific calibration. The proposed methodology will be

validated experimentally on real moist soil datasets from the

literature ([3]), and a self-crafted hyperspectral dataset of moist

minerals.

The remaining of this article is organized as follows. In

Section II, we describe our dataset and the datasets from the

literature on which our methodology is validated. Section III

is devoted to prior work on some of the physical models that
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TABLE I: Density and grain size (D50) of the minerals used

in the Imec-Visionlab 2021 dataset.

Mineral Density (g/cm3) Grain size (µm)

FeO(OH) 4.25 44

Fe2O3 5.26 0.8

Lime 2.7 -

SiO2 2.64 23

WS 2.64 -

estimate SMC of moist soils. In Section IV, the proposed

methodology is elaborated. In Section V, we describe the

experiments and the results, followed by a discussion in

Section VI. Section VII concludes this work.

II. MOIST SOIL DATASETS

A. Imec-Visionlab 2021

The dataset contains five dry minerals in powder form (see

Table I), typically found in natural soil on the Earth: Goethite

(FeO(OH)), Iron oxide (Fe2O3), Lime, Silicon dioxide (SiO2),

and White Sand (WS). Lime (calcium/magnesium-containing

powders) is often added to the soil to reduce the acidity of the

soil.

Fig. 1: Minerals of the Imec-Visionlab 2021 dataset

Each sample was put inside a round black sample holder

with an interior diameter of 20 mm, a height of 5 mm, and

an edge thickness of approximately 3 mm (see Figure 1).

The sample holder was filled and compacted and smoothened

using a stamp compactor. Before wetting these samples, the

reflectance spectra were measured by an AgriSpec spectrom-

eter (manufactured by ASD (Analytical Spectral Devices))

and a snapscan hyperspectral SWIR camera (manufactured

by Imec). The data from the spectrometer have 1500 spectral

bands, ranging from 1000 nm to 2500 nm with a step size

of 1 nm. The spectral range of the camera is 1100-1670 nm

with a spectral resolution of approximately 5 nm, resulting

in a total of 113 spectral bands. In contrast to push broom

systems, in which either the camera or the sample should

move, the sensor moves inside the snapscan camera, allowing

it to acquire a still full image frame. The original frame

size of the raw images was 100 × 100 pixels. To provide

data with uniform illumination and remove unrelated objects

(edge of the sample holders) the images were clipped to 30

× 30 pixels. Since all samples were homogeneous, no spatial

variation between the spectra was observed, and the spectra of

all pixels were averaged over the entire clipped image. Figure

2 shows the spectra of the air-dried minerals acquired by

both the spectrometer and the camera. A substantial difference

between the acquired spectra of the different sensors can be

observed, due to external variability, including variations in

illumination and distance of the samples to the sensor, causing

global scaling effects and wavelength-dependent variations in

the acquired spectral reflectance.
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Fig. 2: Spectra of the air-dried minerals of the Imec-

Visionlab 2021 dataset, acquired by the spectrometer (red

line) and hyperspectral camera (black line).

Next, water was slowly poured down from the top, until

saturation (when a layer of water starts to appear at the top

level). Water and minerals were mixed homogeneously with

the help of a spatula. Approximately 5-10 mg of the mineral

was found to stick on the spatula during mixing and was

considered when calculating SMC. During drying, the spectra

and the weight of the samples were regularly measured until

the final weight of the sample returned to its initial value (after

approx. 20 hrs). For each measurement, the acquisition of the

reflectance spectra by both the spectrometer and the camera

took approximately three minutes. The time interval between

two different measurements was approximately 15 minutes. As

the original sample was slightly over-saturated, the first few

measurements were removed, leading to approximately 40-

60 different moisture levels for each mineral. SMC (θ) was

calculated by applying the following formula:

θ =
(m−m0)

m0
× 100 (1)

where m is the measured mass of the moist soil sample and

m0 is the initial (air-dried) mass. The resolution of the balance

(Sartorius) is 0.1 mg. Remark that soils with large porosity can

have mass ratio’s larger than 100 %. In Table II, we summarize

this dataset.
Figure 3 shows the spectral reflectance of all measured

samples of the five minerals and their associated SMCs.
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TABLE II: Summary of the dataset. Here, N denotes the

number of reflectance spectra that was acquired during the

course of the drying process.

Mineral N SMC (g/g × 100) Drying protocol

FeO(OH) 52 0-101 % Air-dried

Fe2O3 53 0-47 % Air-dried

Lime 43 0-48 % Air-dried

SiO2 62 0-93 % Air-dried

WS 47 0-44 % Air-dried

Saturated soils are represented by dark red curves, while air-

dried minerals are represented by black curves. To illustrate the

change in the spectral reflectance during the air-drying process,

the reflectance spectra of moist minerals at all intermediate

SMCs are shown.

B. Liu 2002

A large number of soil samples (92 samples) was collected

at several places in the world ([7]). After air-drying these

samples, they were passed through a 2 mm sieve. Each soil

sample was put into a box (radius 5 cm) forming a 1.5 cm

thick layer, considered as optically infinitely thick. To make

the samples fully saturated, water was slowly poured down

from the side of the box. After free water disappeared from

the soil surface (about 24h after the pouring), the drying

process started, during which the spectral reflectance of each

sample was measured frequently. An ASD Pro FR Portable

Spectroradiometer (350–2500 nm) was used to acquire the

reflectance spectra, with a spectral resolution of 1.4 nm in

the shorter wavelengths and up to 2 nm for the longer ones.

For each soil sample, four moisture levels, in the range 0-81

(g/g × 100) were measured. For each moisture level, spectra

were acquired using 28 different acquisition configurations, by

varying the illumination angle from 00 to 600 and the viewing

angle from -450 to 450.

C. Lobell 2002

4 different soils: Argic Aridisol, Xeric Andisol, Ustic Mol-

lisol, and Aridic Entisol were collected from different parts

of the USA ([8]). These soils span a large range of bulk

densities, porosities, and organic C content. Each soil was

passed through a 2 mm sieve and then oven-dried at 700C

for two weeks. A 1 mm thick sample of each soil was placed

in a 5.0 cm wide round aluminum tin. An Analytical Spectral

Devices spectrometer (350–2500 nm) was used to measure the

spectral reflectance of these samples. After capturing spectra

from the dry samples, the samples were humidified until

saturation. During drying, a number of spectral measurements

was performed until the soil mass returned to its initial value.

On each sample, between 9 and 15 moisture levels were

measured in the range 0-109 (g/g × 100).

D. Lesaignoux 2008

32 soil samples were collected from eight locations in

France, representing large soil property variability in visual

coloration and texture ([10], [24]). Each soil sample was

cleared from roots and gravel and put in a Petri dish with

a diameter of 6 cm and thickness of 1 cm. The samples

were humidified until saturation and then dried progressively

in a laboratory oven (333.15 K). After each drying step of

30 minutes, the reflectance spectrum of each soil sample was

measured by using an ASD FieldSpec Pro FR spectroradiome-

ter (400-2500 nm) and weighted to obtain the SMC. For each

soil sample, six moisture levels in the range 0-87 (g/g × 100)

were measured.

E. Philpot 2014

3 different soils: Ithaca soil, Quartz sand, and Masonry

sand were collected to represent three texture groups ([12]).

Ithaca soil contains much clay and organic matter. Quartz sand

consisted of 90 % white translucent silica while Masonry sand

is generally light brown with black particles. In comparison

to Ithaca soil, both Quartz sand and Masonry are moderately

homogeneous. The sample holder (1.2 cm tall black plastic

cylinder with a 5.1 cm inner diameter and a sieve bottom)

was filled with dry soil and the surface was leveled with a

metal straight edge. Instead of pouring water from the top

surface to make the soil sample saturated, it was placed on

a saturated sponge and the sieve bottom allowed water to be

drawn up into the soil sample via capillary action. The weight

of the sample holder was automatically measured during the

entire experiment by putting it on a scale (Ohaus SP200) with

an accuracy of 0.01 g. The reflectance spectra were measured

every 5 min intervals by using an ASD FieldSpec Pro FR

spectroradiometer (350–2500 nm) until the soil mass returned

to its initial value. The number of moisture levels for each

sample varied between 97 and 205 in the range 0-50 (g/g ×
100).

F. Bablet 2016

17 soil samples were collected from Plaine de Versailles

and Tunisia and were passed through a 2 mm sieve ([3]).

The samples were humidified until saturation and then dried

progressively in an oven to obtain successive SMC values. An

ASD FieldSpec Pro FR spectroradiometer (400–2400 nm) was

used to measure the spectral reflectance of these samples. The

number of moisture levels for each sample varied between 6

and 8 in the range 0-79 (g/g × 100).

III. RELEVANT PRIOR WORK

A. The Sadeghi model (SM)

The Sadeghi model ([16]) was derived from the

Kubelka–Munk (KM) theory ([31]). The KM model is a radia-

tive transfer model that describes the interaction of light with

an infinitely thick medium, containing uniformly distributed

absorbing and scattering particles. It relates R, the reflectance

of the mixture with r, the ratio between the light absorption

coefficient (m−1) and the light scattering coefficient (m−1) by

the following equation:

R = 1 + r −
√

r2 + 2r (2)
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(a) (b) (c)

(d) (e)

Fig. 3: Measured reflectance spectra (hyperspectral camera) and corresponding SMCs (see colorbar): (a) Goethite, (b) Iron, (c)

Lime, (d) Silica, and (e) White sand.

Inversion leads to: r = (1−R)2

2R . In [16], the SMC is obtained

as:
θ

θs
=

r − rd
rs − rd

(3)

where θ and θs are SMC of the moist and the saturated soil

respectively, while r, rd and rs are the absorption/scattering

ratio’s of the wet soil, the dry soil and the saturated soil

respectively. The main disadvantage of the Sadeghi model

is that it is applicable only for a single (in principle any)

wavelength. In [16], wavelength 2210 nm was recommended.

B. The Bach model

The Bach model ([29]) was developed by accounting for two

processes: 1) the internal reflection of the reflected radiance

in a water layer covering the soil, which reduces the soil

reflectance:

R =
Rd

n2 × (1−Rd) +Rd

(4)

where R and Rd are the wet and dry soil reflectance, and n
is the refractive index of water. 2) the absorption of the water

that is bound to the soil particles, which can be modelled with

Lambert’s law:

RB = R× exp(−2α× L) (5)

where RB is the soils total reflectance, α is the empirical

absorption coefficient of water, and L is the active thickness

of the water layer. By assuming that the soil surface is a

patchwork of wet and dry areas, an efficiency term ϵ ∈ [0, 1]
was introduced [32]:

RmodB = ϵ×RB + (1− ϵ)×Rd (6)

L is a proxy for the SMC. To establish a relation between

L and the SMC, a linear regression is performed on training

spectra with known SMC.

C. MARMIT

The MARMIT model ([3]) is a multilayer radiative transfer

model to estimate surface SMC. This model describes a wet

soil as a dry soil, covered with a thin film of water (see Figure

4). This model derives the total reflectance of the water/soil

Fig. 4: A thin water layer on top of a rough soil surface.

r12 and r21 are the reflection coefficients at the air-water

interface and water-air interface respectively, t12 and t21 are

the transmission coefficients at the air-water and water-air

interface respectively, Tw is the transmittance of the water

layer, Rd the reflectance of the dry soil, and nw is the

refractive index of water ([3])

.

system by summing the amplitudes of successive reflections
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and refractions at the top of the water layer:

RM = r12 + t12t21RdT
2
w(1 + r21RdT

2
w + r221R

2
dT

4
w + . . . )

= r12 +
t12t21RdT

2
w

1− r21RdT 2
w

(7)

where r12 and r21 are the reflection coefficients at the air-

water and water-air interface, t12 and t21 are the transmis-

sion coefficients at the air-water and water-air interface. An

expression of the reflection and transmission coefficients as

functions of n, the refractive index of water is provided in [3].

Tw = exp(−αL) is the transmittance of the water layer, with

α the absorption coefficient of pure liquid water, provided by

[33]. By assuming r12 to be zero, and introducing an efficiency

term ϵ ∈ [0, 1], the following equation was derived:

RmodM = ϵ×
t12t21RdT

2
w

1− r21RdT 2
w

+ (1− ϵ)×Rd (8)

The mean water thickness L × ϵ is used as a proxy for the

SMC. Based on training data with known SMC, a statistical

relationship between L × ϵ and SMC is established, using a

sigmoid function:

SMC =
K

1 + a exp(−ψ(L× ϵ))
(9)

where K denotes the maximum value of the curve, a a

translation factor, and ψ denotes the steepness of the curve.

Although all these models were developed based on physical

reasoning and validated on datasets, acquired in a controlled

environment, they may produce large errors when the data is

impaired due to variations in illumination and viewing angles.

These effects mostly cause scaling effects on the reflectance

spectra. Even though these effects can be suppressed by

normalizing the data for example by applying the standard

normal variate (SNV), the physical models are not invariant

to such transformations.

IV. A SUPERVISED METHOD FOR ESTIMATING SMC FROM

SPECTRAL REFLECTANCE

As we already mentioned in Section I, the spectral re-

flectance of moist soil is highly affected by the distribution of

the water in the soil. This can be observed e.g., in absorption

bands of molecular water around 1400 nm and 1900 nm. For

soils with large grain sizes (e.g., white sand), for which the

pore size is larger than the wavelength of light, the water

absorption band around 1200 nm becomes also visible (Figure

3(e)). For soils with smaller grain size (e.g., iron), the water

absorption bands are less deep (Figure 3(b)).

For a given soil sample, an increase in the SMC amounts

to an increase in the depth of the water absorption bands, the

deepest valleys are obtained when the soil is saturated. Thus,

to properly capture the distribution of the water in a moist soil,

one should describe its water absorption behaviour relative to

that of its saturated version.

A. Spectral mixture analysis

In this work, we develop a supervised method to estimate

the SMC of moist soil that utilizes the spectral reflectance of

the air-dried and saturated soil and their ground truth SMC.

The main idea is to regard a moist soil as a binary mixture

of an air-dried and a saturated sample of the same soil. In

this way, the problem can be approached similarly as with

spectral unmixing of binary mineral mixtures, which is a

highly nonlinear problem ([34]).

Let us assume that the two endmembers, i.e., the spectrum

of the air-dried soil and saturated soil (with known SMC)

are available. As the data manifold, sampled by a number

of moist soils with varying SMC is a (nonlinear) curve in

spectral space between the two endmembers, the relative

arc length between a moist soil and the two endmembers

can be regarded as a proxy for its SMC. This relative arc

length can be calculated by approximating the curve by a

piece-wise linear curve and by summing up the Euclidean

distances between neighboring samples (see [34] for detailed

information). The more moist soil samples are available, the

better the approximation. In practical situations, only one

moist soil (and the two endmembers) may be available, so

that the approximation for the arc length leads to errors.

All spectra can be projected onto the unit sphere (R = 1)

by normalizing the spectra, i.e., by dividing each spectrum

by its length (a → a

||a|| ). On the unit sphere, the arc length

between any two spectra is simply given by the angle between

them, and can be computed by just calculating the arc cosine

of their dot product. However, it is not guaranteed that, after

projection, all data points lie on the arc connecting the two

endmembers. In figure 5, we demonstrate a scenario where the

spectrum of the moist soil y does not lie on the arc connecting

the two endmembers Rs and Rd (red curve). To estimate the

true arc lengths, the data point y has to be projected on the

red curve resulting a new data point y′. By utilizing the law of

cosines (see equation 10), we can estimate the true arc lengths

without projecting the data points on the red curve:

cos (c) = cos (d) cos (b1)

cos (c′) = cos (d) cos (b2)
(10)

After some calculations, one obtains from Eq. 10:

cos (b1) =
sin(b1 + b2)

√

[

[

cos (c′)
cos (c) − cos (b1 + b2)

]2

+ sin2(b1 + b2)

]

(11)

where b1 + b2 = arccos(RT
d Rs).

The relative arc lengths are then obtained as:

â =

[

b2
b1+b2
b1

b1+b2

]

(12)

where â is the vector containing the relative arc lengths of

the sample between the saturated and the dry endmember

respectively.

The projection onto the unit sphere not only allows a direct

calculation of the relative arc length of a moist sample, it also

automatically becomes invariant to any random scaling of the

spectrum of the measured sample, caused e.g., by illumination

conditions. To demonstrate this, Figure 6 (a)) shows the scat-
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Fig. 5: Red curve: arc connecting the two endmembers;

Blue curves: the arcs connecting the moist soil (y) with the

endmembers. c and c′ denote the arc lengths between y and

the endmembers Rd and RS , respectively. y′ denotes the

projection of y on the arc, and b1 and b2 denote the true

arc lengths between y′ and the endmembers.

terplot of the relative arc lengths of the soils of the Liu 2002

dataset for a particular configuration (illumination angle: 150

and zenith angle: 00) vs. all 28 configurations. Moreover, in all

cases the endmembers are taken as the air-dry and saturated

soil spectra at the illumination angle: 150 and zenith angle:

00. As long as the spectra of the moist soil and both the air-

dry and saturated soil are measured with the same equipment

(same sensor, same white calibration, ...), this representation is

also invariant to cross-sensor situations. To demonstrate this,

in figure 6 (b), the estimated relative arc lengths of moist

Goethite, measured by the hyperspectral camera are plotted

against the ones from the spectrometer measurements (Imec-

Visionlab 2021 dataset).

A direct relation exists between the relative arc lengths and

the SMC. This relation is expected to be similar for all soils

that can hold the same amount of water in their saturated

form. This amount however substantially differs between soils

(see Table II). When normalizing the relative arc length with

respect to the SMC of the saturated soil, by multiplying the

relative arc length of the moist soil (â) by the SMC of the

saturated soil (θs) (â → â × θs), a more general relation

between the arc length and the SMC is obtained, that is

similar for different soils. In Figure 7, this is demonstrated, by

plotting the normalized relative arc lengths (NRAL) of moist

soils vs. measured ground truth SMC of all soils involved in

this study, i.e., from the five datasets from the literature and

the five minerals from our own dataset. It can be observed

that all points follow the same data manifold. The random

scattering around the data manifold is due to complex soil-

water-light interactions, which are not accounted for in this

method. In general, we can claim that NRAL is a nearly

(a)

0 0.2 0.4 0.6 0.8 1

Relative arc length of Goethite (Hyperspectral camera)

0

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 a
rc

 l
e

n
g

th
 o

f 
G

o
e

th
it
e

 (
S

p
e

c
tr

o
m

e
te

r)

(b)

Fig. 6: (a) The estimated relative arc lengths of moist soils

of the Liu 2002 dataset (Illumination angle: 150 and zenith

angle: 00 vs. all 28 configurations); (b) The estimated relative

arc lengths of moist Goethite (hyperspectral camera vs. spec-

trometer)

.

invariant measure of SMC. Among 153 soil samples studied in

this work, silica deviates most (see section VI). From Figure 7,

it is quite clear that the relationship between measured ground

truth SMC and NRAL is slightly nonlinear. When assuming

that the relationship is linear, NRAL can act as an estimate of

SMC. In the experimental part, we will show the performance

of the proposed method when NRAL is used as an estimate of

SMC. However, to refine the estimation accuracy, the nonlinear

relationship between NRAL and measured ground truth SMC

should be learned.

B. Map normalized arclength to SMC

To estimate the SMC (θ) from NRAL accurately, a su-

pervised approach is required to learn the mapping between

both. For this, a set of n training samples with known θ:

D = {(y1, θ1), . . . , (yn, θn)} should be available. Here, yi
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Fig. 7: The normalized relative arc lengths versus the ground

truth SMC of all moist soils involved in this study.

indicates the reflectance spectrum of the i-th moist soil training

sample.

1) Lookup table-based method: The simplest approach is

to generate an ordered lookup table containing the normalized

relative arc lengths and their corresponding SMC of all training

samples. To estimate the SMC of a test sample, the normalized

relative arc length is matched to the lookup table values,

and eventually linearly interpolated in between two values.

This approach assumes that the lookup table contains enough

training data.

2) Supervised regression: The better approach is to apply a

supervised regression model on the training data. In this work,

we choose the Gaussian process as a regression model [35].

The estimated map of the normalized relative arc lengths of

N test samples (Ât = {âi}
N
i=1) to their SMC (Θt = {θ̂i}

N
i=1)

is given by:

Θt = ΘD(K(ÂD, ÂD) + σ2
nI)

−1K(Ât, ÂD)
T (13)

Here, ΘD is a row vector containing training SMC,

K(ÂD, Ât) is the matrix of kernel functions between the

training normalized relative arc lengths (ÂD) and the test

normalized relative arc lengths, and K(Ât, Ât) is the matrix

of kernel functions between the test normalized relative arc

lengths. σ2
n is the noise variance of the normalized relative arc

lengths in the training set. The kernel function is computed by

the following equation:

k(âi, âj) = σ2
f exp

(

−

p
∑

b=1

(

âbi − âbj
)2

2l2b

)

(14)

where σ2
f is the variance of the input normalized relative arc

length, p = 2 is the number of endmembers and lb is a

characteristic length-scale for each endmember. The hyperpa-

rameters of this kernel function are optimized by minimizing

the negative log marginal likelihood of the training dataset

(-log(p(ΘT
D|Â

T
D))).

Remark that the entire procedure of calculating the arc

lengths, including the projection and normalisation generates

a universal representation for the SMC, invariant to scaling

effects, cross-sensor situations and partially accounting for the

distribution of the water in the soil (see Figure 7). In the next

section, We will demonstrate that the model can be trained

with any (or multiple) soil types for which ground truth is

available and is transferable to other soil types, irrespective of

the sensor type or acquisition conditions.

In the remaining of this work, we will refer to this method-

ology as the supervised method for estimating SMC from

spectral reflectance (SMS).

V. EXPERIMENTS AND RESULTS

The proposed methods NRAL and SMS are validated and

compared to two physical models and a method based on a

spectral index:

• NSMI: The normalized soil moisture index [10]. This

method relates the spectral reflectance to SMC by the

following equation:

SMC =

(

R(1800 nm)−R(2119 nm)

R(1800 nm) +R(2119 nm)
− a

)

/b (15)

where the values a = 0.032 and b = 0.00897 were

obtained by a regression model, trained on a large number

of soils. This index is scale invariant. However, it only

uses information from two specific wavelengths, and it

does not account for the distribution of the water in the

soil to make the technique less dependent on the soil type.

• SM: Although the linear Sadeghi model is applicable to

any of the SWIR wavelengths, it was recommended to

use the reflectance value at the wavelength 2210 nm,

as it is better correlated with the soil moisture content

in comparison to other bands (see [16], Fig. 11). This

method is not invariant to scaling, but it partially accounts

for the distribution of the water in the soil, as it makes

use of the spectral information of a saturated soil. Its

main limitation is that it only uses information from one

particular wavelength.

• MARMIT: The MARMIT model. This model requires the

spectra of air-dried soil of the test dataset and a regression

model, calibrated on training data from the same soil type.

The MARMIT model is not invariant to scaling. As it

does not incorporate information from a saturated soil

sample, it is expected that a trained model is not or only

to a limited extent transferable to other soil types.

• NRAL: The first methodology proposed in this work.

Our methodology requires the spectra of an air-dried soil

and saturated soil sample (endmembers) and their ground

truth SMC for each test dataset. The relationship between

normalized relative arc length and the SMC is assumed

to be linear.

• SMS: The second methodology proposed in this work.

The relationship between normalized relative arc length

and the SMC can be trained on data from the same soil

type as the test data, or from one particular soil type.

In that case, the spectrometer dataset of Pure Goethite

of the Imec-Visionlab 2021 dataset is applied as training

data because its SMC has a wide range, varying between

0-101 (g/g × 100).
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The quantitative comparisons are provided by the root mean

squared error (RMSE), i.e. the error between the estimated

SMC (θ̂) and the ground truth SMC (θ):

RMSE =

√

√

√

√

1

N

N
∑

i=1

(

θ̂i − θi

)2

× 100 (16)

where N is the number of test spectra.

We have performed three different types of experiments

that required different applications of the datasets. In the first

experiment, no variability is introduced. For this, MARMIT

and the proposed method were trained and tested on the same

data (i.e., data from the same soil type and same illumination

and viewing angle). Philpot 2014 and Imec-Visionlab 2021

datasets are suitable for this experiment because they contain

sufficient data to be able to train the models.

In the second experiment, we validated the proposed approach

for its invariance to a) illumination and viewing angle, and to

b) sensor type. As the Liu 2002 dataset contains data acquired

at various illumination and viewing angles and our dataset

contains data acquired by two different sensor types, these

have been applied in this experiment.

In the third experiment, we validated our approach for its near

invariance to soil type. For this reason, the model is trained on

one particular soil, i.e., Goethite from our dataset, and is tested

on all datasets used in this study. We like to clarify that, in

this experiment, the regression parameters obtained from the

Goethite dataset were fixed and not further calibrated for new

soil types.

A. Experiment 1: no variability in illumination and viewing

angle and sensor type

In the first experiment, the methods are applied without

introducing any variability. For this, all methods are applied on

each soil type separately. NRAL, NSMI and SM do not need

any training. SM and the proposed methods (NRAL and SMS)

require air-dried soil and saturated soil spectral reflectances

and ground truth SMC, while MARMIT requires only air-dried

soil data. As MARMIT and SMS require sufficient training

data, we have only applied them on the Philpot 2014 and the

Imec-Visionlab 2021 datasets. On these datasets, half of the

data was used for training and the other half for testing, and 10

independent runs with different training data were performed.

Results are shown in Table III.

The outcomes of the experiments can be summarized as

follows:

• The performance of NSMI is poorest. The low perfor-

mance of NSMI suggests that a single regression model

is not valid for every soil type. The performance of

NSMI could be improved by fine-tuning the regression

parameters (a and b) for each dataset separately.

• SM performed much better than NSMI. This is because

the model makes use of information from the the air-

dried and saturated soil endmembers. The drawback of

this model is that it only utilizes spectral information from

the band at 2210 nm.

• MARMIT performs similarly as SM. It does not require

the saturated endmember, but it is trained on half of the

ground truth.

• NRAL accurately estimated SMC, because it makes use

of information from the the air-dried and saturated soil

endmembers. The real advantage of NRAL is its invari-

ance to illumination and viewing angle and acquisition

conditions, as will be demonstrated in the following

experiments.

• SMS accurately estimated SMC, because it makes use of

both air-dried soil and saturated soil endmembers and half

of the ground truth. In comparison to NRAL, the perfor-

mance of SMS is much better for the Philpot 2014 and

Imec-Visionlab 2021 datasets. This suggests that SMS is

suitable for soil-specific calibration. The real advantage

of SMS is its invariance to illumination and viewing angle

and acquisition conditions and transferability, as will be

demonstrated in the next experiments.

B. Experiment 2: variability in illumination and viewing angle

and sensor type

In the next experiment, the invariance of the proposed

methods NRAL and SMS with respect to illumination and

viewing angle, and sensor type is validated. For this, both the

Liu 2002 and the Imec-Visionlab 2021 datasets are applied.

In the former dataset, the illumination and zenith angles vary.

To include variability, MARMIT and the proposed method

(SMS) are trained using one particular viewing configuration

(illumination angle: 150 and zenith angle: 00), and tested on

all other configurations. Due to lack of sufficient training data,

the models are trained on all soil types of that configuration

simultaneously. Moreover, the endmembers of air-dried soil

(for MARMIT, SM, NRAL, and SMS) and saturation soil

(for SM, NRAL, and SMS) of that particular configuration

are used for all test data. As NSMI is invariant to scaling, its

results will be similar for the different configurations, and need

not to be shown again. In the Imec-Visionlab 2021 dataset,

data from two different sensors, a hyperspectral camera and

a spectrometer are available. MARMIT and SMS are trained

with the camera data, and tested on the spectrometer data. In

this case, each mineral is trained separately, again 50 % of the

camera data is applied for training, and 10 independent runs

are performed. Endmembers are taken from the spectrometer

data.

Results are shown in Table IV. In Fig. 8, a scatterplot

displays the estimated versus ground truth SMC of the four

methods on the Liu 2002 dataset. From the results, it is clear

that the SM model is not able to capture the introduced

variability at all. This is due to the fact that the SM model

was developed by assuming that the saturated and dry end-

members are captured under the same conditions as those

of the unsaturated spectra. The result of MARMIT is worse

than in experiment 1, while the proposed approaches obtained

similar results (see Fig. 8 (a) and (b)). From Fig. 8 (c), it

can be observed that the MARMIT model shows a serious

underestimation for high SMC and overestimation for low

SMC. The former is caused by the use of the sigmoid function
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TABLE III: The results of different SMC estimation techniques in terms of RMSE (%). For MARMIT and SMS on both

Philpot 2014 and Imec-Visionlab 2021, 50% of the samples have been used for testing (10 runs, mean and standard deviations

are shown).

Dataset MARMIT NSMI SM NRAL (Ours) SMS (Ours)

Liu 2002 - 17.17 15.98 4.41 -

Lobell 2002 - 30.04 7.04 5.74 -

Bablet 2016 - 12.25 7.32 6.12 -

Lesaignoux 2008 - 23.04 5.17 3.94 -

Philpot 2014 6.62±2.52 15.58 4.21 3.40 0.73±0.05

Imec-Visionlab 2021 15.32±5.14 22.71 17.78 6.27 3.56±0.50

TABLE IV: The results of SMC estimation in terms of RMSE (%), on data including variability in illumination and viewing

angle and acquisition conditions. On the Imec-Visionlab 2021 dataset, 50% of the samples have been used for training (10

runs, mean and standard deviations are shown).

Dataset MARMIT SM NRAL (Ours) SMS (Ours)

Liu 2002 12.88 144.51 3.59 3.56

Imec-Visionlab 2021 20.37±2.05 17.78 6.27 4.08±0.36

as a regression model, restricting the soil moisture content to

be below 40 (g/g × 100). The latter is caused by the fact that

the MARMIT model cannot tackle spectral variability caused

by differences in the illumination and viewing angle. The

small under-and overestimations in our methods (see Figure

8 (a) and (b)) are caused by the fact that saturated and dry

samples from one particular configuration are chosen. This

way, some of the saturated samples from other configurations

have higher optical path length, and their SMC is restricted

to the saturated SMC of the chosen configuration. However,

the SMC of saturated samples with lower optical path length

than the chosen configuration is underestimated. The inverse

argumentation holds for the low SMC samples.

C. Experiment 3: variability in soil type

As we already demonstrated in Figure 7, NRAL of moist

soils is a measure of soil moisture that is nearly invariant to soil

type. To experimentally validate SMS, in the final experiment,

training samples are acquired from one soil type and testing is

performed on other soil types. The training is performed solely

on the spectrometer data of the Goethite mineral of the Imec-

Visionlab 2021 dataset. Results on all datasets are shown in

Table V.

Results on the Philpot 2014 and Imec-Visionlab 2021

datasets show that MARMIT performs worse when compared

to experiments 1 and 2. This is because the proxy estimated by

the the MARMIT model is soil dependent. As a consequence,

when trained on one soil type, the models are not transferable

to other soil types. SM performed as good as the proposed

method for four out of six datasets. However, its performance

dropped dramatically on the Liu 2002 (92 soil samples) and

the Imec-Visionlab 2021 dataset. It is interesting to observe

that NRAL outperformed both MARMIT and SM for all six

datasets. This demonstrates that the normalized relative arc

length is a nearly invariant measure of soil moisture. SMS

also produced consistent results (RMSE between 2-7 %) in

all of the experiments and is the best performer for four out

of six datasets.

VI. DISCUSSION

From the experiments, the following general conclusions

can be drawn:

• NSMI is an easy method that only requires spectral

reflectance at two specific wavelengths. It is based on

a regression model, trained on a large number of soil

types. It is scale-invariant, and thus invariant to most

variability in illumination and viewing angle. In general,

NSMI does not perform well in estimating SMC from

moist soil samples. Its major drawbacks are that it only

makes use of limited spectral information, and that it does

not account for the structure of water in soils. To improve

its performance, the parameters of the model (a and b)
should be fine-tuned for each dataset separately, requiring

ground truth training samples, which makes it impractical

in real world scenarios.

• The SM model only uses very limited spectral infor-

mation, but does not need any training. It requires the

spectral reflectance of both an air-dried and saturated

soil sample, partially accounting for the distribution of

the water in the soil. It is not invariant to scaling.

SM performed very well for four out of six datasets

without variability in illumination and viewing angle but

completely failed in the case of variability in illumination

and viewing angle. For the SM model to perform well, the

spectra of the air-dry, moist and saturated sample should

be acquired with the same illumination/viewing configu-

ration. This makes the use of the SM model impractical in

real world scenarios. When applied outdoors, reflectance

spectra are inevitably impaired by variations caused by

surface topography and illumination conditions. Varia-

tions in illumination conditions cause random scaling

effects in spectral reflectances. This makes single-band

models less robust for predicting soil moisture content

because they cannot remove the scaling factor from the

spectral reflectance. Because the random scaling factor is

the same for all bands, most soil moisture indices (e.g.,
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(a) (b) (c) (d)

Fig. 8: Ground truth SMC vs. estimated SMC of moist soils (Liu 2002 dataset). (a) SMS (Ours), (b) NRAL (Ours), (c)

MARMIT, and (d) SM.

TABLE V: The results of SMC estimation on all datasets in terms of RMSE (%). Training is performed on Goethite from the

spectrometer data of the Imec-Visionlab 2021 dataset. In the latter dataset, RMSE is computed only for Iron, Lime, Silica,

and White Sand.

Dataset MARMIT SM NRAL (Ours) SMS (Ours)

Liu 2002 48.14 15.98 4.41 4.36

Lobell 2002 44.68 7.04 5.74 7.52

Bablet 2016 53.80 7.32 6.12 4.04

Lesaignoux 2008 42.01 5.17 3.94 5.59

Philpot 2014 28.23 4.21 3.40 2.63

Imec-Visionlab 2021 51.52 17.78 6.27 5.02

NSMI) utilize spectral reflectance from at least two bands

to cancel out the scaling factor.

• MARMIT requires training and the use of the air-dried

soil spectral reflectance. It is not invariant to scaling.

As MARMIT is learning a regression between the pa-

rameter L × ϵ and SMC, this relation is soil-dependent.

When trained on each soil separately, MARMIT performs

equally well as SM, but this approach is impractical in

real world situations. When tested on other soil types, the

trained model fails. The performance may be improved

by training specific models for similar soils. In [3],

training was performed separately on distinct classes of

soils, based on their textural, mineralogical, and spectral

properties. To significantly improve the performance of

the MARMIT model, one should partially account for

the the distribution of the water in the soil, by utilizing

the relation between L × ϵ and SMC of a saturated soil

sample.

• The proposed approach SMS was found to be the most

consistent and performed well for almost all soil datasets

used in this study. This demonstrates the potential of

the proposed methodology, in particular, in cross-sensor

situations and in case of spectral variability caused by

variations in acquisition and illumination conditions. By

utilizing the spectrum of the saturated soil and its ground

truth SMC the estimated proxy becomes nearly invariant

to the soil type.

• NRAL performed as well as SMS, without having to

perform any training. The results suggest that SMS is

more suitable for soil-specific calibration when the accu-

racy requirement is very high (RMSE < 3.5 %) while

NRAL can be applied when the error in moisture content

estimation can be in the range of 3-6 %.

• In the third group of experiments, it was demonstrated

that the trained model is transferable from one soil type

to any of the applied datasets from the literature. The

only mineral for which the proposed approach does not

seem to work was pure SiO2. Although silica is present in

almost all soils, even in high percentages, in its pure form,

it is quite challenging to produce a homogeneous mixture

of water and silica, because of its hydrophobic nature. In

this scenario, the optically active thickness of the layer of

water can vary with the different incident angles of the

light. Mixing it with even a very low percentage of other

hydrophilic minerals is sufficient to reduce this effect.

• In outdoor environment, the strong absorption bands

of molecular water around 1400 nm and 1900 nm are

masked by atmospheric absorption ([6], [8]). To demon-

strate that the method still works in field conditions,

we removed these absorption regions and only utilized

reflectance values between 1118-1300 nm and 1501-1654

nm on the Liu 2002 dataset in experiment 2. The drop

in performance was less than 0.3%.

• Even though our method was found to be robust to

external variability, the problem will be challenging in

case of spatial variations of the physical properties and

chemical composition of the soil. To demonstrate its

applicability in highly heterogeneous scenarios, three

similar soil samples (PrairieA, PrairieB, and PrairieC)

from the Lesaignoux 2008 dataset were processed. For

both PrairieA and PrairieC, dry and saturated spectra

of PrairieB were utilized for estimating the normalied

relative arc length. The algorithm was trained on Goethite

and tested on moist soil samples of PrairieA and PrairieC.
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The performance of SMS for estimating SMC decreased

by less than 1% for PrairieA and less than 3% for

PrairieC.

• In comparison to microwave radiation-based methods,

most of the reflectance-based methods, including our

method, are limited to bare soil. A major challenge would

be to remove the effects of vegetation on the spectral

reflectance.

All methods were developed in MATLAB and ran on an

Intel Core i7-8700K CPU, 3.20 GHz machine with six cores.

The runtime of NSMI, SM, and NRAL was below 1s. MAR-

MIT and SMS require training, which took approximately 1s

for both MARMIT and SMS, when trained on the Goethite

data. Testing of both models is done within one second.

VII. CONCLUSION

In this work, we developed a normalized relative arclength

(NRAL) as a proxy for soil moisture content, which is in-

variant to illumination and viewing angle, and sensor type.

Moreover, the proxy is made less dependent on soil type,

by utilizing the spectral reflectance of the saturated soil and

its ground truth SMC. Next to NRAL,a supervised approach

(SMS) was proposed for soil moisture content estimation.

The proposed approaches were validated and compared to a

number of methods from the literature on a large number

of soil data, including data with variable illumination and

viewing angles and in cross-sensor situations. The results

suggest that the proxy NRAL can be used as an estimate of

SMC. For the supervised approach (SMS), the trained models

were demonstrated to be transferable from one soil type to

another soil type. The only drawback of this work is the

requirement of saturated soil information. In future work, we

will attempt to remove this drawback. Although the proposed

methods are claimed to be less dependent on soil type, some

initial measurements showed that their performance dropped in

the case of hydrophobic minerals. This should be investigated

in more detail.
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