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Et enfin, merci à toi, Noémie, pour toutes ces années passées ensemble, pour tout ton
soutien, pour tout ton amour et pour avoir toujours cru en moi, même dans les moments
les plus dures : cette thèse t’est dédiée.
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Introduction

Gli uomini universalmente, volendo
vivere, conviene credano la vita bella e
pregevole; e tale la credono; e si
adirano contro chi pensa altrimenti.
Perché in sostanza il genere umano
crede sempre, non il vero, ma quello
che è, o pare che sia, più a proposito
suo. Il genere umano, che ha creduto
e crederà tante scempiataggini, non
crederà mai né di non saper nulla, né
di non esser nulla, né di non aver
nulla a sperare.

G. Leopardi,
Operette morali

Differential graded categories (or dg-categories for short) are fundamental objects in al-
gebraic geometry and higher category theory. After their introduction by Kelly [Ke] in
the context of homological algebra, Bondal-Kapranov [BK] used dg-categories in order
to “enhance” triangulated categories and since then the study of dg-categories and their
category Cdg(k) has increased intensively, see e.g. [Dr], [Kel2], [Tab], [To2].

Dg-categories

Let us recall the basic data of a dg-category C over a commutative ring k: a set of objects
Ob(C) and, for any X,Y ∈ Ob(C), a cochain complex of k-modules C(X,Y ) of morphisms
from X to Y . These data alone form a dg-quiver, and to turn this into a dg-category one
needs more structure: for any triple of objects X,Y, Z a strictly associative composition
operation

◦X,Y,Z : C(Y,Z)⊗ C(X,Y ) → C(X,Z)

and for any object X ∈ Ob(C) a degree 0 morphism idX ∈ C(X,X), which is the strict
identity for the composition:

f ◦ idX = f = idY ◦f
for any f ∈ C(X,Y ). By the Leibniz rule, it follows that d(idX) = 0, i.e. the identity
morphisms are closed.
But why should one care about these gadgets?

One motivation comes from algebraic geometry: given a scheme X, one can recover its
geometrical and higher cohomological informations from the derived category D(QC(X))

xi
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of quasi-coherent sheaves on X. This latter is obtained from the category K(QC(X)) of
complexes of quasi-coherent sheaves, by localizing it over the quasi-isomorphisms.
Moreover, derived categories are example of triangulated category, whose theory was
introduced and studied by Verdier. However, many geometrical constructions behave
badly in this setting: functor categories and tensor products of triangulated categories
are not triangulated anymore, the cone is not functorial, et cetera.

One way to overcome these problems is to consider a “dg-enhancement” C of a triangulated
category T, i.e. a (pretriangulated) dg-category C such that H0(C) → T is an equivalence
of triangulated categories. Such a dg-enhancement has been shown to exist and to be
unique in many geometrical examples. In addition to that, such a dg-category allows to
compute many invariants (K-theory, Hochschild co/homology), that the derived category
alone cannot.

Now let us turn back to the definition of the derived category D(QC(X)): it is obtained
from the category of complexes K(QC(X)) by formally inverting the quasi-isomorphisms
of complexes. This procedure is known as the Gabriel-Zisman localization and it is
relevant in homotopy theory and homological algebra. Whenever one has a category
with weak equivalences (C,W), this construction gives, if it exists, the localized cat-
egory C[W−1]. Thus D(QC(X)) = K(QC(X))[W−1], where W is the class of quasi-
isomorphisms.

However, the Gabriel-Zisman localization is known to be problematic, as the resulting
category may not be locally small. One method to avoid this issue is to construct a
model structure on the category C of interest, specifying two other classes of morphisms
(cofibrations and fibrations) in addition to the weak equivalences W, and showing that
these three classes satisfy certain properties and the small co/completeness of C. Quillen
proved in [Q] that to any model category C, one can assign an homotopy category Ho(C),
and this turns out to be equivalent to the localized category C[W−1] obtained via the
Gabriel-Zisman construction.

Tabuada in [Tab] showed that Cdg(k) admits a model structure where the weak equiv-
alences are the quasi-equivalences of dg-categories, paving the way for Toën to develop
derived Morita theory.

Weakly unital dg-categories

From now on let us assume k to be a field of characteristic 0. Along with Cdg(k), people
introduced a “relaxed” version of dg-categories, known as A∞-categories: if a dg-category
is a dg-quiver with an associative and unital composition operation, a (strictly unital)
A∞-category is a graded-quiver with (unital) composition which is associative only up
to homotopy. This amounts to ask for n-ary operations mn, n ≥ 1, satisfying some
constraints which in low dimension read as:

m1 ◦m1 = 0, i.e. m1 is a differential,

m2(id⊗m1) +m2(m1 ⊗ id) = m1(m2) i.e. m1 is a derivation w.r.t the composition m2,

m2(id⊗m2 −m2 ⊗ id) = [m1,m3] i.e. m2 is associative up to homotopy,

where [−,−] is the commutator.
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In particular, any dg-category can be seen as an A∞-category by setting m1 to be the
differential, m2 the composition, and all the higher mn to be 0, and so there is a canonical
embedding: i : Cdg(k) → CA∞(k). The drawback is that the category of (unital) A∞-
categories CA∞(k) does not admit a model category structure, since it does not have all
coequalizers.

By setting the unitality condition to hold up to homotopy as well, Fukaya introduced
weakly unital A∞-categories in the context of Homological mirror symmetry [Fu]. Since
then, weakly unital dg- and A∞-categories have been studied by many authors, e.g.
[LyMa], [Ly1], [LH], [KS2], [COS] among others.
But what does it mean in the dg-setting? Any object X ∈ Ob(C) has its own closed
morphism idX of degree 0, but

idY ◦f ̸= f ̸= f ◦ idX .

These equalities hold only up to homotopy, i.e. there exist morphisms p(f, 1), p(1, f) ∈
C(X,Y ) such that

d(p(f, 1)) = f − f ◦ idX d(p(1, f)) = f − idY ◦f

There are many ways to phrase this homotopy unitality out and up to now there are three
different definitions of a weakly unital A∞- (or dg-) category, which are due to Fukaya,
to Lyubashenko, and to Kontsevich-Soibelman. It was proven in [LyMa] that the three
definitions are equivalent, which means that if a given A∞-category is weakly unital in
one sense, it is also weakly unital in the other ones. Nevertheless, the three categories
of weakly unital A∞-categories are not equivalent. However, their homotopy categories
are expected to be equivalent, and equivalent to the homotopy category of strictly unital
dg-categories (and in fact Theorem 2.2 of [COS] confirms this claim for the category
of Lyubashenko weakly unital dg-categories, even though it seemingly does not admit a
model structure, and the proof in loc.cit. is direct).

Despite the seeming oddity of weakly unital dg-categories, many algebraic constructions
give rise to weakly ones. The simplest example is the Cobar-Bar resolution R(A) =
Cobar(Bar(A)) of a dg-algebra A (or of a dg-category A): given a unital dg-algebra A,
R(A) is a Kontsevich-Soibelman weakly unital dg-algebra, see Example 2.1.6. Further-
more, the Cobar-Bar construction is a very natural resolution and one would like to
consider it as a cofibrant replacement of A, when computing Hom-sets in the homotopy
category. However, Cdg(k) does not give room to such a construction!

Certainly one could consider Hom(Cobar(Bar(A)), B) in the non-unital setting, and then
he would get the set of all A∞-maps from A to B (or A∞-functors, for the case of
dg-categories), where an A∞-map F between dg-algebras A and B is a sequence of ho-
mogeneous maps Fn : A

⊗n → B, n ≥ 1, of degree 1 − n, such that for all n ≥ 1 we
have:

[d, Fn] =
∑
i+j=n

±mB(Fi, Fj) +
∑

κ+ℓ=n−2

±Fn−1(id
⊗κ⊗mA ⊗ id⊗ℓ).

Looking at these equations for n = 1, 2, we see that F1 induces a morphism of complexes
from A to B, compatible with the algebra structure up to an homotopy given by F2.

However, it is well-known [LH] that the correct Hom-set in the homotopy category is
defined via the unital A∞-maps (respectively, unital A∞-functors), i.e. those A∞-maps
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F : A→ B such that F1(1A) = 1B and Fk(. . . , 1A, . . . ) = 0 for k ≥ 2. The reason is that
one has to take Hom(Cobar(Bar(A)), B) in the category of (Kontsevich-Soibelman) weakly
unital dg-categories, see Definition 2.1.1, that gives rise exactly to the unital A∞-functors
A→ B, see Example 2.1.7.

Another motivating example is a further generalisation of the twisted tensor product
of small dg-categories [Sh2], [Sh3], which is supposed to have better homotopical and
monoidal properties, and which exists only in the weakly unital context. Therefore, it
would be beneficial to have a model category structure on the category Cdgwu(k) of small
weakly unital dg-categories, and to show that this is Quillen equivalent to the model
category of Cdg(k) small dg-categories. In the first part of this work, we completely solve
this problem: we endow Cdgwu(k) with a model structure where the weak equivalences
are the quasi-equivalences (as in the Tabuada model structure on Cdg(k)), and we show
that the two model categories Cdgwu(k) and Cdg(k) are Quillen equivalent.

Note that, among the three definitions of a weakly unital dg-category recalled above, only
the one given by Kontsevich and Soibelman [[KS2], Sect. 4.2] seems to admit a model
structure.

Monoidal k-linear categories

In the second half of this thesis, we address a second problem. Given a monoidal k-linear
category C, one has two deformation complexes attached to it: the first is the well-known
Hochschild cohomological complex CH∗(C,C) (associated to any k-linear or dg-category)
whose cohomology governs the deformations of the k-linear structure (i.e. the composi-
tion); the second is the Davydov-Yetter complex CDY

∗(IdC), introduced independently by
Davydov [Da], Crane and Yetter [CY], [Ye1], [Ye2] at the end of the nineties. The coho-
mology of this complex describes the infinitesimal deformations of the monoidal structure
of a k-linear monoidal functor F : C → D or the tensor structure of a k-linear monoidal
category (when F = IdC). Both these complexes can be obtained as the totalization of
functors from ∆ to Ch(k), where ∆ is the subcategory of Cat whose objects are finite
ordinals [n] (remember that any partial order set defines a category in a canonical way),
and functors between [n] and [m] are order-preserving maps.

Thus, in order to control the complete deformation theory of C, one should “pack” together
these two complexes. In this work we do so by constructing a functor (See Definition 3.2.3)

A(F, F ) : Θ2 → Vect(k)

for each k-linear monoidal functor F : C → D. Θ2 should be considered as the analogue of
∆ for 2-categories (for a precise definition of what Θn are, for each n ≥ 1, see Section 1.4).
The objects of Θ2 are tuples ([n]; [ℓ1], . . . , [ℓn]), with [n], [ℓi] ∈ Ob(∆) and morphisms be-
tween two such tuples ([n]; [ℓ1], . . . , [ℓn]) and ([m]; [κ1], . . . , [κm]) are again tuples (ϕ;ϕij),

where ϕ : [n] → [m] and ϕij : [ℓi] → [κj ] are morphisms in ∆.

As an example of an object of Θ2, S = ([2]; [1], [2]) represents the free 2-category over the



CONTENTS xv

following diagram:

q q q⇐

⇐
⇐

Given an object T = ([k]; [n1], . . . , [nk]) ∈ Ob(Θ2), the value of A(F, F )T is defined as a
subcomplex of:

Â(F, F )T =∏
Xi∈C
Yi∈C

Homk

(
Morn0

(X0, Y0)⊗k · · · ⊗k Mornk
(Xk, Yk), D(FX0 ⊗D · · · ⊗D FXk, FY0 ⊗D · · · ⊗D FYk)

)
(0.0.1)

where Morn(X0, Xn) is the k-vector space defined as:

Morn(X0, Xn) =
⊕

X1,...,Xn−1∈Ob(C)

C(Xn−1, Xn)⊗ C(Xn−2, Xn−1)⊗ · · · ⊗ C(X0, X1).

This functor is such that its 2-cocellular totalization TotΘ2
(A(F, F )) is the desired defor-

mation complex.

Example 0.0.1. Let S = ([2]; [1], [2]) as above, then a S-diagram in our monoidal k-linear
category C is of the following form:

X1,0

X1,1

X2,0

X2,1

X2,2

f1,1

f2,1

f2,2

where we interpret the “1-morphisms” of Θ2 as objects Xi,j of our monoidal dg-category C

and the “2-morphisms” of Θ2 as 1-morphisms fi,j of C. A cochain Ξ ∈ A(F, F )S produces
a morphism in D out of any such S-diagram in C:

X1,0

X1,1

X2,0

X2,1

X2,2

Ξ7−→
FX1,0 ⊗ FX2,0

FX1,1 ⊗ FX2,2

f1,1

f2,1

f2,2

The idea is to pack the Hochschild cochain complex “vertically”, i.e. considering the
restriction along the vertical embedding of ∆ into Θ2

v : ∆ → Θ2 : [n] 7−→ ([1]; [n]),

we get:

(Â(F, F ) ◦ v)([n]) =
∏

Xi∈Ob(C)

Homk (Morn(X0, Xn),D(FX0, FXn))
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which is nothing but CHn(C,C) when F = IdC.

Similarly we pack the Davydov-Yetter complex “horizontally” i.e. considering the restric-
tion along the horizontal embedding of ∆ into Θ2

h : ∆ → Θ2 : [n] 7−→ ([n]; [0], . . . , [0]),

we get:

(Â(F, F ) ◦ h)([n]) =
∏

Xi∈Ob(C)

D(FX1 ⊗D · · · ⊗D FXn, FX1 ⊗D · · · ⊗D FXn),

which is the “unnatural”1 version of

CDY
n(F ) := End(F⊗n),

the endomorphism algebra of natural transformations from F⊗n to itself.

As we are interested in the deformation theory of k-linear monoidal categories, the
general “deformation problem mantra” tells us that the cohomology of our complex
TotΘ2

(A(IdC, IdC)) (appropriately shifted) should be a dg-Lie algebra (or its homotopy
analogue L∞-algebra). This structure could be inherited by an homotopy n-algebra struc-
ture on TotΘ2(A(IdC, IdC)) (i.e. an algebra over the Ch q(En,k), the chain operad of n-
disks).
It was shown by Batanin and Davydov in [BD] that the Davydov-Yetter complex CDY

∗(C)
is an homotopy 3-algebra and therefore the infinitesimal deformations of the tensor struc-
ture are controlled by H3

DY (C). The Hochschild cochain complex CH∗(C,C) is known to
be an homotopy 2-algebra by the Deligne conjecture (now a theorem), and so the in-
finitesimal deformations of the k-linear structure are controlled by HH2(C,C).
This asymmetry is a feature rather than a bug in our complex, by the following argument:
as the dimension of a Θ2 object T = ([k]; [n1], . . . , [nk]) is defined as

dim(T ) := k +

k∑
i=1

ni,

it follows that both Davydov-Yetter CDY
3(C) and Hochschild cochains CH3(C,C) sit in

TotΘ2
(A(IdC, IdC))

3 (since the horizontal embedding h maps [3] to ([3]; [0], [0], [0]) and
the vertical embedding v maps [2] to ([1]; [2])). As a consequence to this fact, we expect
TotΘ2

(A(IdC, IdC)) (respectively, TotΘ2
(A(F, F ))) to be an homotopy 3-algebra (respec-

tively, an homotopy 2-algebra).

As we said above, Batanin and Davydov proved that CDY
∗(IdC) (respectively, CDY

∗(F ))
is an homotopy 3-algebra (respectively, an homotopy 2-algebra), by showing that the cor-
responding cosimplicial monoids are 2-commutative (respectively, 1-commutative) (see
Subsection 1.3.3). Taking inspiration from their work, we consider the ∆-totalization
Tot∆(A(F, F )) ofA(F, F ), which is a cosimplicial monoid, and show that it is 1-commutative.
This implies that TotΘ2

(A(F, F )) is an homotopy 2-algebra. Unfortunately, in the case
F = IdC the cosimplicial monoid Tot∆(A(IdC, IdC)) fails to be 2-commutative.

1This is a delicate point of the story: if we did not consider the sub-complex A(F, F ) as we do in

Definition 3.2.3, we would fail to have a 2-cocellular object or, alternatively, Â(F, F ) does not define a
functor Θ2 → Vect(k). For a more detailed explanation, see Example 3.2.4 and Remark 3.2.5.
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The reason for this failure is due to the nature of our cochains: in the Davydov-Yetter
complex case the cochains are natural transformations, and the naturality is a crucial
condition for the 2-commutativity to be satisfied. As our cochains lack full naturality,
our cosimplicial monoid Tot∆(A(IdC, IdC)) is not 2-commutative, but it satisfies an “ho-
motopy” 2-commutativity. However, this concept is hard to phrase out precisely and will
be object of further study.

Overview

Chapter 1 provides a basic and essential summary of the theory and properties of the
mathematical tools that we will employ in this work: none of the results present there
is new. In Section 1.1 we give the basic definitions of dg- and k-linear category, dg- and
k-linear functors and describe the family of dg-functors considered by Tabuada in [Tab]
to construct the closed model structure of Cdg(k). In Section 1.2 we revise the basic
notions of model categories, together with some examples. In Section 1.3 we give a brief
introduction to the world of operads and higher operads, together with their algebras and
some examples, notably the lattice paths operad L and the paths operad M. In Section
1.4 we describe the three equivalent ways of defining the categories Θn. In Section 1.5
we describe the basics of monad theory. In Section 1.6 we recall the basics of monoidal
categories and fix the notation.

Chapter 2 is based on the two articles [PS1] and [PS2] by the author and the supervisor. In
Section 2.1 we define Kontsevich-Soibelman weakly unital dg-categories and their category
Cdgwu(k). In Section 2.2 we prove the small co/completeness of Cdgwu(k) (Proposition
2.2.9), together with the monadicity Theorem 2.2.11 for the monad T induced by the
dg-operad O′ (telling us that Cdgwu(k) is equivalent to the category of T -algebras in
Gdgu(k)). In Section 2.3 we construct a technical and essential tool in order to prove
the closed model structure on Cdgwu(k), i.e. the pretriangulated hull of a weakly unital
dg-category (Definition 2.3.4). In Section 2.4 we prove the first main theorem of the
chapter:

Theorem 0.0.2 (proven in Theorem 2.4.14). For a field k, there is a cofibrantly generated
Quillen model structure on Cdgwu(k).

We do so by introducing a weakly unital replacement of the Kontsevich dg-category K

(Subsection 2.4.1). In Section 2.5 we prove the second main theorem of the chapter:

Theorem 0.0.3 (proven in Prop. 2.5.2 and Theorem 2.5.3). There is a Quillen equiva-
lence

L : Cdgwu(k)⇄ Cdg(k) : R

where Cdg(k) is endowed with the Tabuada closed model structure [Tab].

In Section 2.6 we provide an explicit and canonical cofibrant resolution of a unital dg-
algebra in Proposition 2.6.2. Sections 2.7 and 2.8 serve as an appendix to the chapter: in
the former we give a proof of a technical Proposition and in the latter we compute the
cohomology of the dg-operad O′, proving Theorem 2.2.3. This is a fundamental result in
the proof of the Quillen equivalence stated above: if there were not a quasi-isomorphism
of operads O′ → Assoc+, Cdgwu(k) would not be Quillen equivalent to Cdg(k).
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Chapter 3 is based on the preprint [PS3] by the author and the supervisor. In Section
3.1 we recall some basics of deformation theory and define the complexes of our interest,
namely the Hochschild and the Davydov-Yetter complexes, describing the deformations
of an associative algebra (or dg-category) and the deformations of the tensor structure
of a monoidal k-linear category, respectively. In Section 3.2 we define our main object
of interest: a 2-cocellular vector space, named A(F, F ), associated to a monoidal functor
F : C → D, for C,D k-linear monoidal categories. We also give an explicit list of degen-
eracy and face maps in Θ2 in Subsection 3.2.1, together with their action on A(F, F )
in Subsection 3.2.6. Moreover we describe explicitly the totalization of a 2-cocellular
chain complex X q in Subsection 3.2.2. In Section 3.3 we introduce an abelian category
2-Bimod(C) of 2-bimodules over any k-linear bicategory C. Moreover we give an intrinsic
homological algebra interpretation of our complex A(C,D)(F,G)(η, θ) in Subsection 3.3.3.
In Section 3.4 we explicitly compute a relative ∆-totalization of A(F, F ) and we prove
the main theorem of the chapter:

Theorem 0.0.4 (proven in Theorem 3.4.9). Let C,D be k-linear monoidal categories,
F : C → D a k-linear monoidal functor. Then the 2-cocellular totalization TotΘ2(A(F, F ))
has a structure of an algebra over an operad homotopically equivalent to Ch q(E2;k).

In Section 3.5 we describe the totalizations of A(F, F ) and A(IdC, IdC) as deformation
complexes of monoidal functors and monoidal k-linear categories, giving an example when
these deformations are relevant. In addition, we prove the following theorems:

Theorem 0.0.5 (proven in Theorem 3.5.3). Let C be a k-linear (or a dg- over k) monoidal
category. The third cohomology H3(TotΘ2

A(IdC, IdC)) is isomorphic to the equivalence
classes of infinitesimal deformations of the monoidal k-linear (or dg-) category C.

and

Theorem 0.0.6 (proven in Theorem 3.5.5). Let C,D be k-linear (or dg- over k) monoidal
categories, F : C → D a monoidal dg-functor. The second cohomology H2(TotΘ2

A(F, F ))
is isomorphic to the equivalence classes of infinitesimal deformations of the functor F .

Sections 3.6 and 3.7 serve as an appendix to the chapter: in the former we explicitly give
a list of relations for the degeneracy and face maps in Θ2, while in the latter we give a
proof of a technical Proposition.

Chapter 4 discusses a possible way to show that TotΘ2(A(IdC, IdC)) is a homotopy 3-
algebra. We do so by introducing a 2-dimensional generalization of the lattice path
operad.

Notations and Assumptions

(i) We denote by calligraphic letters A, C and D generic (enriched) categories and by
capital letters X,Y, Z, T, . . . the objects of a category. We will denote by C(X,Y )
the hom-object of an enriched category C between two objects X,Y and by capital
letters F,G generic (enriched) functors from C to D.

(ii) We denote by E a symmetric monoidal (closed) category.
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(iii) We denote by O a generic (non-)symmetric operad.

We assume that k is a field of characteristic 0.

List of Symbols

Ch(k) - the category of cochain complexes of vector spaces over k

Vect(k) - the category of vector spaces over k

Cdg(k) - the category of small dg-categories over k

Cdgwu(k) - the category of small weakly unital dg-categories over k

C(k) - the category of small k-linear categories

CA∞(k) - the category of small A∞-categories over k

Gdg(k) - the category of dg-quivers over k

Gdgu(k) - the category of unital dg-quivers over k

K - the Kontsevich strictly unital dg-category

K′ - the Kontsevich weakly unital dg-category

∆ - the category of finite ordinals [n] and order-preserving morphisms

I - the category of finite intervals ⟨n⟩ and morphisms preserving both the order and
the endpoints

Θ2 - the category of Θ2-objects and Θ2-morphisms

Ordn - the category of n-ordinals

Ωn - the category of n-stage trees

Ω
(p)
n - the category of pruned n-stage trees

Cat - the category of small strict categories

Cat∗,∗ - the category of bipointed categories

Catn - the category of small strict n-categories

Diskn - the category of n-disks

L - the lattice path operad

M - the commutative path operad

En - the topological operad of little n-disks

Ch q(En,k) - the dg-operad of little n-disks

en - the homology dg-operad of Ch q(En,k)
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Poisn - the dg-operad of Poisson n-algebras

CH∗(A,A) - the Hochschild cochain complex of a k-linear category A

HH∗(A,A) - the Hochschild cohomology of a k-linear category A

CDY
∗(F ) - the Davydov-Yetter cochain complex of a monoidal functor F

HDY
∗(F ) - the Davydov-Yetter cohomology of a monoidal functor F

Tot(X q) - the totalization of a cosimplicial object X q
TotΘ2

(Y q) - the totalization of a 2-cocellular object Y q



Nederlandse Samenvatting

Differentiaal gegradeerde categorieën (afgekort: dg-categorieën) zijn fundamentele ob-
jecten in de algebräısche meetkunde en hogere categorietheorie. Na hun introductie door
Kelly in de homologe algebra, werden dg-categorieën gebruikt door Bondal-Kapranov om
getrianguleerde categorieën te veredelen. Sindsdien is de studie van dg-categorieën en
hun categorie Cdg(k) intensief toegenomen.

Samen met Cdg(k) werden er “gerelaxeerde” versies van dg-categorieën ingevoerd, onder
de naam A∞-categorieën. Waar een dg-categorie een dg-graf is met een associatieve en
unitale samenstellingsoperatie, is een A∞-categorie een dg-graf met een unitale samen-
stelling die enkel associatief is op homotopie na. Hierop voortbouwend introduceerde
Fukaya, in zijn werk over Homologe Spiegelsymmetrie, zwak unitale A∞-categorieën door
te vereisen dat ook de unitaliteit enkel geldt op homotopie na. Sindsdien werden zwak
unitale dg- en A∞-categorieën bestudeerd door vele auteurs.

Het zou voordelig zijn om een meer gerelaxeerde model categorie te hebben (dan de
model categorie van kleine dg-categorieën), die bestaat uit de kleine, zwak unitale dg-
categorieën, en die Quillen equivalent is met de modelcategorie van kleine dg-categorieën.
Dit probleem lossen we volledig op in het eerste deel van dit werk.

In de tweede helft van deze thesis behandelen we een tweede probleem. Gegeven een
monöıdale k-lineaire categorie C, dan zijn er twee deformatiecomplexen die ermee geasso-
cieerd zijn: de eerste is het bekende cohomologe Hochschild complex CH

q
(C,C) (geasso-

cieerd aan elke k-lineaire of dg-categorie) waarvan de cohomologie de deformaties van de
k-lineaire structuur (i.e. de samenstelling) controleert; de tweede is het Davydov-Yetter
complex. De cohomologie van dit complex beschrijft de infinitesimale deformaties van de
monöıdale structuur van een k-lineaire monöıdale functor F : C → D of de tensorstructuur
van een k-lineaire monöıdale categorie (wanneer F = IdC).

Dus om de volledige deformatietheorie van C the controleren, moet men deze twee com-
plexen “samenvoegen”. We bereiken dit in dit werk door een functor A(F, F ) : Θ2 →
Vect(k) te construeren voor een k-lineaire monöıdale functor F : C → D zodanig dat de
2-cocellulaire totalisatie TotΘ2

(A(F, F )) het gewenste deformatiecomplex is.

De thesis is als volgt gestructureerd:

Hoofdstuk 1 geeft een elementaire en essentiële samenvatting van de theorie en eigen-
schappen van het wiskundige gereedschap dat we zullen gebruiken in dit werk. Geen
enkel van de resultaten daar zijn nieuw.

Hoofdstuk 2 is gebaseerd op twee artikels [PS1] en [PS2] van de auteur en de promo-
tor. In Sectie 2.1 definiëren we Kontsevich-Soibelman zwak unitale dg-categorieën en
hun categorie Cdgwu(k), en we bewijzen de kleine (co)compleetheid van Cdgwu(k) en een

xxi
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monadiciteitsstelling. In Sectie 2.2 construeren we een technisch en essentieel hulpmiddel
om de modelstructuur op Cdgwu(k) te bewijzen, namelijk het gepretrianguleerd omhulsel
van een zwak unitale dg-categorie. In Sectie 2.3 bewijzen we één van de hoofdstellin-
gen: for een lichaam k bestaat er een cofibrant voortgebrachte Quillen-modelstructuur
op Cdgwu(k). We doen dit een zwak unitale vervanging voor de Kontsevich dg-categorie
K′ te introduceren. In Sectie 2.4 bewijzen we de tweede hoofdstelling van dit hoofdstuk:
er is een Quillen-equivalentie tussen Cdgwu(k) en Cdg(k), uitgerust met de Tabuada-
modelstructuur. In Sectie 2.5 geven we een expliciete en canonieke cofibrante resolutie
van een unitale dg-algebra. Secties 2.6 en 2.7 zijn technischer: in de eerstgenoemde geven
we een bewijs van één propositie en in de laatstgenoemde berekenen we de cohomologie
van de dg-operad O′.

Hoofdstuk 3 is gebaseerd op de preprint [PS3] van de auteur en de promotor. In Sectie 3.1
brengen we de basis van deformatietheorie in herinnering en beschrijven we de Hochschild
en Davydov-Yetter complexen. In Sectie 3.2 definiëren we het belangrijkste object waarin
we gëınteresseerd zijn: een 2-cocellulaire vectorruimte genaamd A(F, F ), geassocieerd aan
een monöıdale functor F : C → D tussen k-lineaire monöıdale categorieën C enD. In Sectie
3.3 berekenen we expliciet de ∆-totalisatie van A(F, F ) en we bewijzen de hoofdstelling
van dit hoofdstuk: voor C en D k-lineaire monöıdale categorieën en F : C → D een k-
lineaire monöıdale functor, heeft de 2-cocellulaire totalisatie TotΘ2

(A(F, F )) de structuur
van een homotopie-2-algebra. In Sectie 3.4 beschrijven we de totalisaties van A(F, F )
en A(Id, Id) als deformatiecomplexen van monöıdale functoren en k-lineaire monöıdale
categorieën, en geven we een voorbeeld waar deze deformaties relevant zijn. Secties 3.5
en 3.6 zijn technischer: in de eerstgenoemde geven we een expliciete lijst van relaties voor
de ontaardings- en zijvlakafbeeldingen in Θ2 en in de laatstgenoemde geven we een bewijs
van één propositie.

Hoofdstuk 4 bespreekt een mogelijke manier om te tonen dat TotΘ2(A(IdC , IdC)) een
homotopie-3-algebra is. We doen dit door het introduceren van een 2-dimensionale ver-
algemening van de roosterpadoperad.
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Preliminary results

Eine Seele ohne Körper ist so
unmenschlich und entsetzlich wie ein
Körper ohne Seele, und übrigens ist
das erstere die seltene Ausnahme und
das zweite die Regel.

T. Mann,
Den Zauberberg

This chapter serves as a brief (and far from being exhaustive) overview of the theory
needed in the two main chapters. We begin by introducing the theory of dg-categories:

1.1 Dg-categories

The reader is referred to the survey [Kel2] and the lecture notes [To2].

Definition 1.1.1. A k-linear (respectively, dg-) category C consists of the following data:

q a set of objects (Ob(C))q for any pair of objects X,Y , a k-vector space (respectively, a dg-vector space)
C(X,Y ) ∈ Ob(Vect(k)) (respectively, ∈ Ob(Ch(k))),q for any triple of objectsX,Y, Z a composition morphism ◦X,Y,Z : C(X,Y )⊗C(Y,Z) →
C(X,Z), which is a k-linear (respectively, chain) map,q for any object X ∈ Ob(C), a unit morphism e : k → C(X,X). (In the dg-setting, k
denotes the dg-vector space concentrated in degree 0).

These data satisfy the usual associativity and unit conditions.

Definition 1.1.2. Let C and D be k-linear (respectively, dg-) categories, a k-linear (re-
spectively, dg-) functor F : C → D consists of the following data:

q a map of sets F0 : Ob(C) → Ob(D)

1
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q for any pair of objectsX,Y ∈ Ob(C), a k-linear map (respectively, a cochain complex
map) FX,Y : C(X,Y ) → D(F0(X), F0(Y ))

These data satisfy the usual associativity and unit conditions.

The collection of small dg-categories together with dg-functors form a category Cdg(k),
and analogously the collection of small k-linear categories together with k-linear functors
form a category C(k). Taking the 0th-cohomology of complexes defines a functor:

H0(−) : Cdg(k) → C(k)

which is the identity on the objects’ level, and H0(C)(X,Y ) := H0(C(X,Y )) for each
X,Y ∈ C.

We can endow the category Cdg(k) with a tensor product:

⊗ : Cdg(k)× Cdg(k) → Cdg(k),

where
Ob(C⊗D) := Ob(C)×Ob(D)

and
C⊗D((X,Y ), (X ′, Y ′)) := C(X,X ′)⊗k D(Y, Y ′)

and it turns out that (Cdg(k),⊗, I,Hom) is a closed symmetric monoidal category, where
the unit is the dg-category I with only one object ∗ and as hom-complex I(∗, ∗) := k,
where k is concentrated in degree 0.

Definition 1.1.3. A quasi-equivalence of dg-categories is a dg-functor F : C → D,
such that:

• for any two objects X,Y ∈ C, the map of complexes C(X,Y ) → D(FX,FY ) is a
quasi-isomorphism of complexes,

• the functor H0(F ) : H0(C) → H0(D) is an equivalence of k-linear categories.

The collection of quasi-equivalences in Cdg(k) includes all the isomorphisms and is closed
under the 2-of-3 property.

Let us introduce also another class of morphisms in Cdg(k), whose role will become clear
later:

Definition 1.1.4. An isofibration of dg-categories is a dg-functor F : C → D, such that:

• for any two objects X,Y ∈ Ob(C), the map of complexes C(X,Y ) → D(FX,FY ) is
a surjection of complexes,

• for any X ∈ Ob(C) and for any isomorphism g : FX → Z in H0(D), there exists an
isomorphism f : X → Y in H0(C) such that F (f) = g and FY = Z.
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It was shown by Tabuada in [Tab] that the category Cdg(k) is endowed with a model
category structure (and we will describe in the next Section 1.2), thus giving a rigor-
ous and clean tool to define the homotopy category Ho(Cdg(k)). However, Cdg(k) fails
to be a monoidal model category, since the tensor product of cofibrant objects is not
necessarily cofibrant. Thus the internal hom Hom of Cdg(k) cannot induce an internal
hom in Ho(Cdg(k)). Even so, Bertrand Toën proved in [To1] that the homotopy category
Ho(Cdg(k)) is a closed symmetric monoidal category.

For later use we introduce the A∞-functors between dg-categories and we need to specify
the signs in the A∞-identity. As we adapt here to the right to left formalism, our signs
agree with the ones in [Ly1].

Definition 1.1.5. Given C,D (non-unital) dg-categories over k, an A∞-functor F : C →
D consists of the following data:

• a map of sets F0 : Ob(C) → Ob(D),

• for any n ≥ 1 and a sequence of objects X0, . . . , Xn ∈ Ob(C) of degree 1− n

Fn : C(Xn−1, Xn)⊗ · · · ⊗ C(X1, X2)⊗ C(X0, X1) → D(F0(X0), F0(Xn))[1− n]

such that one has:

d(Fn(fn ⊗ · · · ⊗ f1))+∑
a+b=n

(−1)b−1+(a−1)(|f1|+···+|fb|)Fa(fn ⊗ · · · ⊗ fb+1) · Fb(fb ⊗ · · · ⊗ f1) =

n−1∑
k=0

(−1)n−1+|f1|+···+|fk|Fn(fn ⊗ · · · ⊗ fk+2 ⊗ d(fk+1)⊗ fk ⊗ · · · ⊗ f1)+

n−2∑
k=0

(−1)kFn−1(fn ⊗ · · · ⊗ fk+3 ⊗ (fk+2 ◦ fk+1)⊗ fk ⊗ · · · ⊗ f1)

(1.1.1)

Definition 1.1.6. Let C, D be (unital) dg-categories over k, F : C → D an A∞-functor,
{Fi}i≥1 its Taylor components.

(1) F is called strongly unital if F1(idX) = idF (X) and Fn(. . . , idX , . . . ) = 0 for any
object X and n ≥ 2,

(2) F is called weakly unital if F1(idX) = idF (X) for any object X ∈ C (and the second
condition is dropped).

1.1.1 Hochschild cohomology of k-linear categories

Let A be a k-linear category, the cohomological Hochschild complex CH∗(A,A) of A is
defined as:

CH0(A,A) :=
∏

X∈Ob(A)

A(X,X),

CHn(A,A) :=
∏

Xi∈Ob(A)

Homk (A(Xn−1, Xn)⊗ · · · ⊗A(X0, X1),A(X0, Xn)) if n ≥ 1,

(1.1.2)
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and the differential is the Hochschild differential, dn : CH
n(A,A) → CHn+1(A,A):

dn(Ψ)(fn+1, . . . , f1) := fn+1 ◦Ψ(fn, . . . , f1)+
n∑
i=1

(−1)iΨ(fn+1, . . . , fi+2, fi+1 ◦ fi, fi−1, . . . , f1)

−Ψ(fn+1, . . . , f2) ◦ f1

(1.1.3)

It is standard that cohomological Hochschild complex CH∗(A,A) can be interpreted as

RHom
q
A-Bimod(A,A),

where A is the tautological A-bimodule.
Thus the Hochschild Cohomology HH∗(A,A) of A can be interpreted as:

Ext
q
A-Bimod(A,A)

The Hochschild cohomology has a rich algebraic structure which we will investigate in
Subsection 3.1.1.

1.2 Model categories

Model categories were introduced by Quillen (under the name “closed model categories”
in [Q]) in order to tackle the localization problem: i.e. given a category A with a class of
weak equivalences W ⊂ Mor(A), how do we construct its localization A[W−1] along W in
a way that it is locally small? All the results of this Section can be found in [DS], [GS],
[Hi] and [Ho].

Definition 1.2.1. A model structure on a category C is a choice of three distinguished
classes of morphisms: cofibrations Cof ⊂ Mor(C), fibrations Fib ⊂ Mor(C) and weak
equivalences W ⊂ Mor(C) satisfying the following conditions:

• W makes C into a category with weak equivalences, i.e. W contains all isomorphisms
and is closed under 2-of-3: given a composable pair of morphisms f, g, if two out of
the three morphisms (f, g, g ◦ f) are in W, so is the third;

• (Cof,Fib∩W) and (Cof ∩W,Fib) are two weak factorization systems on C, i.e. see
the definition below.

Definition 1.2.2. A weak factorization system on a category C is a pair (L,R) of
classes of morphisms of C such that

• Every morphism f : X → Y of C may be factored as the composition of a morphism
in L followed by one in R:

f : X
∈L−−→ Z

∈R−−→ Y

• The classes are closed under having the lifting property against each other:

– L is precisely the class of morphisms having the left lifting property against
every morphism in R;
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– R is precisely the class of morphisms having the right lifting property against
every morphism in L.

Definition 1.2.3. Amodel category is a small complete and small cocomplete category
C equipped with a model structure.

Remark 1.2.4. It is a well-known fact that Cof (respectively, Fib) and W determine
completely Fib (respectively, Cof).

Given a model category C, we can choose two functors Q and R, called cofibrant and
fibrant replacement respectively. Q assigns to any object X a cofibrant object QX,
such that there is a natural morphism QX → X ∈ Fib ∩ W, i.e. an acyclic fibration.
Analogously, R assigns to any object X a fibrant object RX, such that there is a natural
morphism X → RX ∈ Cof ∩W, i.e. an acyclic cofibration.

Quillen showed in [Q] that the category Ho(C)cf whose objects are objects of C both
fibrant and cofibrant and whose morphisms are homotopy classes of morphisms in C, is
equivalent to the Gabriel-Zisman localization C[W−1] of C along the weak equivalences.

Given two model categories A and C, there is a convenient notion of morphisms, i.e.
Quillen adjunction/pair:

Definition 1.2.5. For A and C two model categories, a Quillen pair (L,R):

L : A⇆ C : R

is an adjoint pair of functors (L,R) such that L preserves cofibrations and acyclic cofi-
brations, or equivalently, R preserves fibrations and acyclic fibrations.

Definition 1.2.6. A Quillen pair L : A ⇆ C : R is a Quillen equivalence if for any
cofibrant object X ∈ A and any fibrant object Y ∈ C, a morphism f : LX → Y is a weak
equivalence in C if and only if its adjoint morphism X → RY is a weak equivalence in A.

Example 1.2.7. Here are some examples of model categories:

1. the category of topological spaces T op is a model category, where weak equivalences
W are weak homotopy equivalences, fibrations Fib are Serre fibration;

2. the category of simplicial sets S S ets is a model category, where where weak equiv-
alences W are simplicial weak equivalences and fibrations Fib are Kan fibrations;

3. the category Cat of small categories is a model category, where weak equivalences
W are equivalences of categories, fibrations Fib are isofibrations.

Remark 1.2.8. The singular simplicial complex/geometric realization (S q(−), | − |) ad-
junction constitutes a Quillen equivalence between T op and S S ets, and it was shown
by Quillen in [Q].

In [Tab], Gonçalo Tabuada constructed a model structure for Cdg(k):

Theorem 1.2.9. The category Cdg(k) of small dg-categories admits a model category
structure, where weak equivalences W are quasi-equivalences, fibrations Fib are isofibra-
tions of dg-categories.
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By Remark 1.2.4, these data determine a model structure on Cdg(k).

The model categories T op,S S ets, Cdg(k) are all cofibrantly generated model categories,
i.e. such that there is a set of cofibrations and one of trivial cofibrations, such that all
other (trivial) cofibrations are generated from these.

Definition 1.2.10. Let C be a category with all colimits and let S ⊂ Mor(C) a class of
morphisms. We write

• rlp(S) for the collection of morphisms with the right lifting property with respect
to S,

• llp(S) for the collection of morphisms with the left lifting property with respect to
S

Moreover, we also write, now for I ⊂ Mor(C):

• I-cell for the relative cell complexes, the class of morphisms obtained by transfinite
composition of pushouts of coproducts of elements in I;

• I-cof for the class of retracts (in the arrow category Arr(C) of elements in cell(I)

• I-inj := rlp(I) for the class of morphisms with the right lifting property with respect
to I, the I-injective morphisms.

Definition 1.2.11. A model category C is cofibrantly generated if there are small sets
of morphisms I, J ⊂ Mor(C) such that:

• I-cof is precisely the collection of cofibrations of C;

• j-cof is precisely the collection of acyclic cofibrations in C;

• I and J permit the small object argument.

In many situations, it is easier to show that a category admits a cofibrantly generated
model structure by using a well-known theorem, [[Ho], Theorem 2.1.19]:

Theorem 1.2.12. Let C be a small complete and cocomplete category. Suppose that W
is a subcategory of C, and I and J are sets of maps. Assume that the following conditions
hold:

1. the subcategory W has 2-of-3 property and is closed under retracts,

2. the domains of I are small relative to I-cell,

3. the domains of J are small relative to J-cell,

4. J-cell ⊂W ∩ I-cof ,

5. I-inj =W ∩ J-inj.
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Then there is a cofibrantly generated closed model structure on C, for which the morphisms
W of W are weak equivalences, I are generating cofibrations, J are generating acyclic
cofibrations. Its fibrations are defined as J-inj.

In [Tab], the author describes explicitly the sets I and J and shows that I and J satisfy
the conditions of the theorem above. Eventually he describes the class of isofibrations
(the fibrations in Cdg(k)) as J-inj.

1.3 Operads and higher operads

Operads are collections of abstract operations, together with the compositions of these,
and are particularly important and useful in all the categories with a good notion of
“homotopy”.

All the results of this Section can be found in [Ba2], [Ba3], [Ba4], [BB], [BD], [GK] and
[Yau].

1.3.1 Definitions and basic examples

Let (E,⊗, e,HomE) be a symmetric monoidal closed category.

Definition 1.3.1. A symmetric operad O in E consists of objects O(n) ∈ Ob(E), n ∈
N, n ≥ 0, together with the following structure:

• composition operations:

◦ : O(k)⊗ O(n1)⊗ · · · ⊗ O(nk) → O(n1 + · · ·+ nk)

• a unit operation 1: e→ O(1)

• for each n ∈ N, right actions of the symmetric group: ρn : Σn → HomE(O(n),O(n))

satisfying conditions of associativity and unitality of composition and the compatibility
with the symmetric group actions.

Example 1.3.2. Here are some examples of symmetric operads:

(i) every monoid N of E defines an operad N, with N(1) = N and N(i) = ∅ otherwise,
where the only non trivial operadic composition ◦ : N(1) ⊗ N(1) → N(1) amounts
to the multiplication of the monoid N ;

(ii) If E = Set, we can define the commutative operad Com with Com(n) = {∗} for
each n ≥ 0.

(iii) If E = Set, we can define the associative operad Assoc with Assoc(n) = Σn, the
n-th symmetric group.
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(iv) Let E = Ch(k), Poisn is the operad generated by two binary operations − · − (of
degree 0) and [−,−] (of degree 1− n). The − · − satisfies associativity and graded
commutativity relations:

(− · (− · −)) = ((− · −) · −), (− · −) = (−1)(|−|+1−n)(|−|+1−n)(− · −) ◦ τ,

where τ ∈ Σ2 is a 2-cycle. The [−,−] satisfies Jacobi identity, Leibniz rule and
alternating relations:

[−, [−,−]] + [−, [−,−]] ◦ σ + (−1)(|−|+1−n)(|−|+1−n)[−, [−,−]] ◦ σ2 = 0,

d[−,−] = [d(−),−] + (−1)|−|+1−n[−, d(−)]

[−,−] + (−1)(|−|+1−n)(|−|+1−n)[−,−] ◦ τ = 0,

where σ ∈ Σ3 is a 3-cycle and τ ∈ Σ2 is a 2-cycle. Moreover these binary operations
satisfy the Poisson relation:

[−,− · −] = (([−,−]) · −) + (−1)(|−|+1−n)|−|(− · ([−,−]))

We call Poisn the n-Poisson operad.

Definition 1.3.3. For any object X of E we can define its endomorphism operad
End(X) as:

End(X)(n) := HomE(X
⊗n, X)

where the composition, unit and symmetric group operations follow from the enriched
functoriality of iterated tensor product.

Definition 1.3.4. Given two operad in E O,P, a morphism of operads F : O → P is a
sequence of Σn-equivariant maps Fn : O(n) → P(n), compatible with the composition and
unit operations.

Definition 1.3.5. An algebra over an operad O is an object X of E endowed with a
morphism of operad: F : O → End(X).

Example 1.3.6. Considering the operads of Example 1.3.2 above:

(i) the algebras over N are objects X endowed with a monoid action of N ;

(ii) the algebras over Com are commutative monoids.

(iii) the algebras over Assoc are associative monoids.

(iv) the algebras over Poisn are Poisson n-algebras: if n = 1 these are simply Poisson
algebras; if n = 2, Poisson 2-algebras are known as Gerstenhaber algebras.

Example 1.3.7. Let n ≥ 1 be fixed and let kT op be the category of compactly gener-
ated spaces, which is a nice category of spaces, i.e cartesian closed category of topological
spaces. The operad of little n-disks is the collection of topological spaces En(k) of recti-
linear embeddings of k little disks in the n-dimensional unit disk, where rectilinear means
that the embedding may rescale and translate the little disks, but not rotate or deform
them otherwise. The operadic compositions are defined through the grafting operation,
i.e. the gluing of configurations of disks, with (properly rescaled) configurations being
inserted in place of small disks.
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These family of topological operads En were introduced by Boardman and Vogt, and later
studied by May in the context of n-fold loop spaces.

Given a symmetric operad O in E and a lax symmetric monoidal functor F : E → V

between symmetric monoidal closed categories, we can consider the collection of objects
in V:

F (O)(n) := F (O(n))

It is straightforward to check that F (O) is a symmetric operad in V, the operadic com-
position induced by the one for O.

If we apply the singular chain complex functor to the topological operads En, we get a
family of dg-operads Ch q(En,k). Similarly we can apply the homology functor to the
dg-operad Ch q(En,k): the resulting dg-operad (with trivial differential) is H q(En,k),
commonly denoted by en. Both these families of operads C q(En,k) and en have been
studied thoroughly in the last decades, and people made a link between these operads
and deformation theory.

The first result in this direction was given in 1976 by Cohen [Co]:

Theorem 1.3.8. Let k be a field, char(k) = 0, then for all n ≥ 2 the operads en and
Poisn are naturally isomorphic.

As we will recall in Subsection 3.1.1, Gerstenhaber proved that, for any associative algebra
A, the Hochschild cohomology complex HH∗(A,A) is a Gerstenhaber algebra (hence the
name), i.e. it is a Pois2-algebra in operadic terms, with the cup product as degree 0
operation and the Gerstenhaber bracket as degree −1 operation.

Then Theorem 1.3.8 states that the homology dg-operad e2 of the little disks dg-operad
Ch q(E2,k) acts on HH∗(A,A), and this led Deligne to raise the following question:
“Does the dg-operad Ch q(E2,k) act on the Hochschild cochain complex of an associative
algebra?”

This question, known as the Deligne conjecture, led to the development of operadic the-
ory and it fundamentally influenced modern deformation theory. This conjecture was
eventually proven to be true, now by many authors, see [MS1], [Tam1], [KS1], [Sh3].

For further need, let us introduce another class of operads:

Definition 1.3.9. Given a set C of colours, a coloured operad O in E consists of:

• an object O(k1, . . . , kn;n) of E for each n ≥ 0 and for each n+1-tuple (k1, . . . , kn;n)
of colours of C,

together with:

• a unit morphism 1c : e→ O(c, c) for every c ∈ C,

• a composition operation:

O(c1, . . . , cn; c)⊗ O(c11, . . . , c
1
k1 ; c1)⊗ · · · ⊗ O(cn1 , . . . , c

n
kn ; cn) → O(c11, . . . , c

n
kn ; c)

for every (n+ 1)-tuple (c1, . . . , cn; c) and n other tuples (ci1, . . . , c
i
ki
; ci), 1 ≤ i ≤ n,
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• a morphism:
σ∗ : O(c1, . . . , cn; c) → O(cσ(1), . . . , cσ(n); c)

for all n, for all tuples and for all σ ∈ Σn,

satisfying all the evident conditions.

Remark 1.3.10. If O is a one-coloured operad (i.e. C = {∗}), O is nothing but a
symmetric operad as in Definition 1.3.1.

Remark 1.3.11. One can consider the unary maps of a coloured operad O: Ou(c1; c2)
for any couple of colours c1 and c2. Then, thanks to the operadic composition and the
associativity and unitality of this, we get that Ou is actually an E-category, with objects
the colours of O.

1.3.2 Higher operads

So far we have treated operads acting at most on a coloured collection of objects Xc,
c ∈ C, of a monoidal category E.

In [Ba2], [Ba3] and [Ba4], Batanin developed a whole theory of higher operads acting on
objects of a monoidal n-globular category, with the purpose to develop the theory of weak
n-categories.

Let us start by recalling the basic definitions:

Definition 1.3.12. An n-globular category C q is a sequence of categories Ci, 0 ≤ i ≤ n,
together with functors si,k, ti,k : Ci → Ck, k < i ≤ n, called source and target functors
satisfying the following conditions:

sk,m ◦ sl,k = sl,m, tk,m ◦ tl,k = tl,m,

sl,l−1 ◦ tl,l+1 = sl+1,l−1, tl,l−1 ◦ sl+1,l = tl+1,l−1.

Definition 1.3.13. A monoidal n-globular category is an n-globular category C q
together with:

• composition functors

⊗k : Ci ×k Ci → Ci, k < i ≤ n,

• cylinder functors
Z : Ci−1 → Ci, i ≤ n,

such that

si,j(T ⊗k S) = si,jT, ti,j(T ⊗k S) = ti,jS, if j < i ≤ k,

si,i−1Z = ti,i−1Z = IdCi−1

sj,i(T ⊗k S) = sj,iT ⊗k sj,iS, tj,i(T ⊗k S) = tj,iT ⊗k tj,iS, if k < i < j,

ZkT ⊗j ZkS = Zk(T ⊗j S);
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together with associativity isomorphisms, left unity isomorphisms, right unity isomor-
phisms and interchange isomorphisms, satisfying the usual diagrams (pentagon condition
for associativity, triangle condition for associativity and left and right unity isomorphisms,
etc..)

Example 1.3.14. There are lots of interesting examples:

(i) Strict n-categories are monoidal n-globular categories where every Ci is a discrete
category.

(ii) Bicategories are monoidal 1-globular categories, with C0 a discrete category. In
particular, every monoidal category C gives rise to a monoidal 1-globular category,
with C0 = {∗} the terminal category.

(iii) If C is a category with pull-backs, the category Spann(C) of n-spans is a monoidal
n-globular category (see [[Ba2], Sec. 2]).

(iv) For every symmetric monoidal category E, the sequence N q = ΣnE, where Ni is
the terminal category for each 0 ≤ i ≤ n− 1 and Nn = E is a monoidal n-globular
category.

(v) The category Ωn of n-stage trees is a monoidal n-globular category (see [[Ba2], Sec.
2] and following Definition).

Let us recall the category Ωn of n-stage trees:

Definition 1.3.15. A n-stage tree (or simply n-tree) is a chain of order preserving
maps of ordinals

[kn]
ρn−1−−−→ [kn−1]

ρn−2−−−→ . . .
ρ1−→ [k1]

ρ0−→ [0]

If i ∈ [km] and there is no j ∈ [km+1] such that ρm(j) = i then we call i a leaf of T of
height i. We will call the leaves of T of height n the tips of T . If for an n-tree T all its
leaves are tips we call such a tree pruned.

Definition 1.3.16. The category Ωn has as objects the trees of height n. The morphisms
of Ωn are commutative diagrams in Sets

[kn] [kn−1] . . . [k1] [0]

[ℓn] [ℓn−1] . . . [ℓ1] [0]

fn

ρn−1

fn−1

ρn−2 ρ1

f1

ρ0

id

ρ′n−1 ρ′n−2 ρ′1 ρ′0

(1.3.1)

and the functions fℓ are such that for all i and all j ∈ [ki−1] the restriction of fi to ρ
−1(j)

preserves the natural order on it.

Moreover it is shown that:

Theorem 1.3.17. The monoidal n-globular category Ωn is the free n-category generated
by the n-globular set Un with one-element set in every dimension.

Remark 1.3.18. This result is analogous to the fact that the set of natural numbers can
be interpreted as the set of 1-cells in the free category generated by one object and one
non-identity endomorphism of this object.
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Actually we can associate to any n-tree its maximal pruned n-subtree, and this construc-
tion is functorial:

(−)(p) : Ωn → Ω(p)
n ,

where Ω
(p)
n denotes the full subcategory of pruned n-trees.

Given a morphism σ : T → S of n-trees, for any tip i ∈ S we can consider its fiber σ−1(i)
together with its induced n-tree structure, and we will denote it by Ti. In the case when

S and T are pruned, we will consider the maximal pruned subtree of Ti, denoted by T
(p)
i .

Batanin showed the following:

Theorem 1.3.19. The category Ordn of n-ordinals and their order preserving maps is

isomorphic to the category Ω
(p)
n of pruned n-trees and their morphisms.

where:

Definition 1.3.20. An n-ordinal S is a sequence of maps in ∆:

[kn]
ρn−1−−−→ [kn−1]

ρn−2−−−→ . . .
ρ1−→ [k1]

ρ0−→ [0]

The category Ordn of n-ordinals has all n-ordinals as its objects, and the morphisms
S → T are commutative diagrams as (1.3.1) above. An object of Ordn is a non empty
n-ordinal.

Example 1.3.21. We denote by Un the terminal n-ordinal, i.e. the n-ordinal where
[ki] = [0] for each i ≥ 1.
We denote instead by znU0 the initial n-ordinal, i.e. the n-ordinal where [ki] = ∅ for each
i ≥ 1.

Similarly to what we did for (non-)symmetric operads, we can use n-ordinals to define
higher operads:

Definition 1.3.22. A pruned (n − 1-terminal) n-operad in ΣnE is a collection AT ,
T ∈ Ordn, of objects of E equipped with the following structure:

• a morphism I : e→ AUn (the unit);

• for every morphism σ : T → S in Ordn, a morphism mσ : AS⊗AT (p)
1

⊗· · ·⊗A
T

(p)
k

→
AT (the multiplication).

satisfying the proper associativity and unitality conditions.

Definition 1.3.23. A pruned (n− 1)-terminal n-operad A is called reduced if

AznU0 = AUn = e

and its unit is given by the identity. A morphism between two reduced n-operads is an
n-operadic morphism which induces identity morphisms in arity znU0 and Un.
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Definition 1.3.24. Let V be a cartesian monoidal model category. A pruned n-operad
A will be called contractible provided the unique map to the terminal n-operad is a
weak equivalence i.e. every AT is a contractible object.
If V is not cartesian monoidal, let A be a pruned n-operad equipped with a map of operads
A → I, where I is an n-operad whose components are tensor unit of your symmetric
monoidal category. Such an A is contractible if this augmentation map is a weak
equivalence for every AT .

In [Ba3], Batanin showed the following result:

Theorem 1.3.25. Let A be a contractible reduced n-operad in Ch(k) such that AT is a
chain complex of projective k-vector spaces for every T (i.e. AT are cofibrant objects in
Ch(k)). Let X be an algebra of A. Then X admits an action of a symmetric reduced
operad weakly equivalent to the operad of k-chains of the little n-disk operad.

In [Tam2], Tamarkin constructed a 2-operad (denoted seq) in Ch(k) coloured in N, acting
on the 2-globular object C of small dg-categories Cdg(k): C0 is the set of small dg-
categories, C1 is the set of dg-functors and C2 is the set of chain complexes Coh(F,G)
of derived dg-transformation, see [[Tam2] Sec. 2],[[Sh2] Sec. 2.1]. Tamarkin showed that
the δ-condensation (see Definition 1.3.35) of seq is contractible, so by Theorem 1.3.25 he
proved a “global” Deligne conjecture.

In [BM1] Batanin and Markl introduced a theory of centers and homotopy centers of
monoids M inside monoidal categories K enriched in duoidal categories D. An exam-
ple of such a center is the 2-category of categories, while examples of homotopy cen-
ters include the Gray-category of 2-categories, 2-functors and pseudonatural transfor-
mations and Tamarkin’s homotopy 2-category of dg-categories, dg-functors and derived
dg-transformations.

In [BM2] the authors proved the corresponding Duoidal Deligne conjecture:

Theorem 1.3.26. The homotopy center of a monoid M in a multiplicative D-category
admits an action of a contractible 2-operad that lifts the duoid structure on the center
Z(M).

generalizing Tamarkin’s result to all such homotopy centers.

1.3.3 (Lattice) paths operads

In the attempt of understanding and generalizing Tamarkin’s construction, Batanin and
Berger introduced the lattice path operad L. The construction involves Joyal duality and
the funny tensor product □ of 1-categories so let us briefly introduce these tools.

Cat∗,∗ is the category which has :

• as objects: bipointed categories, i.e. categories with two distinguished objects;

• as morphisms: functors preserving the two distinguished objects.
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In Cat∗,∗ we have precisely two closed symmetric monoidal structures: the cartesian
product × and the funny tensor product □. As the fundamental objects of Cat are the
ordinals [n], n ≥ 0, categories freely generated by the linear graphs ℓn = (0 → · · · → n)
of length n, the fundamental objects of Cat∗,∗ are the intervals ⟨n⟩, n ≥ 1, bipointed in
(0, n). An interval ⟨n⟩ has the same set of objects of [n], but we keep track of its minimum
and maximal objects (0, n). The collection of intervals ⟨n⟩, n ≥ 1, together with maps
preserving the order and the maximum and minimum objects define a category, which we
will denote by I (note that in our setting we have not included the final object ⟨0⟩). In
particular, the category I is a subcategory of Cat∗,∗.
There is a well known duality among ordinals and intervals, due to Joyal [J]:

Theorem 1.3.27. There is an equivalence of categories

∆
∼−→ (I)op.

In particular, for any n,m ≥ 0:

Cat([n], [m]) ∼= Cat∗,∗(⟨m+ 1⟩, ⟨n+ 1⟩).

Now let us recall the funny tensor product □ on Cat∗,∗: given two small bipointed cate-
gories (A, a⊥, a⊤), (B, b⊥, b⊤), thenOb(A□B) = Ob(A)×Ob(B), bipointed in ((a⊥, b⊥), (a⊤, b⊤)).
Morphisms are generated by the expressions (f, id) and (id, g) where f : a→ a′ in A and
g : b → b′ in B. However, instead of factorizing over (f, id) ◦ (id, g) = (id, g) ◦ (f, id) as
for the cartesian product, we factorize by relations

(f, id)◦(id, g)◦(id, g′) = (f, id)◦(id, g◦g′) and (f ′, id)◦(f, id)◦(id, g) = (f ′◦f, id)◦(id, g)

and similarly on the other side. The result is that in A□B there are two different mor-
phisms (f, id) ◦ (id, g) and (id, g) ◦ (f, id) from (a, b) to (a′, b′) unless one of f or g is the
identity.

Now we can define:

Definition 1.3.28. The lattice paths operad is the N-coloured operad in Sets defined
by:

L(n1, . . . , nk;n) := Cat∗,∗(⟨n+ 1⟩, ⟨n1 + 1⟩□ . . .□⟨nk + 1⟩).

The operadic composition maps are induced by tensoring and composing in Cat∗,∗.

Remark 1.3.29. By Theorem 1.3.27, it follows that the underlying category Lu of L is
∆.

Example 1.3.30. In order to help visualization, this is an example of a lattice path
x ∈ L(2, 1; 2):

(2, 0) (2, 1) • x(3)

(1, 0) (1, 1) x(2) (3, 1)

x(0) x(1) • (3, 0)
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Following ideas from [MS1], they constructed a filtration of operads, based on the com-
plexity of a lattice path: for each 1 ≤ i < j ≤ k, there are canonical projection functors

pij : ⟨n1 + 1⟩□ . . .□⟨nk + 1⟩ → ⟨ni + 1⟩□⟨nj + 1⟩.

These functors, together with the unique functor in Cat∗,∗(< 1 >,< n + 1 >), induce
maps

ϕij : L(n1, . . . , nk;n) → L(ni, nj ; 0) 1 ≤ i < j ≤ k

Definition 1.3.31. For each x ∈ L(n1, . . . , nk;n) and each 1 ≤ i < j ≤ k, let cij(x)
be the number of changes of directions (i.e. the corners of the corresponding lattice
path, as in Example 1.3.30) in the lattice path ϕij(x). The complexity index c(x) of
x ∈ L(n1, . . . , nk;n) is defined by

c(x) = max
1≤i<j≤k

cij(x)

The m-th filtration stage L(m) of the lattice paths operad L is defined by

L(m)(n1, . . . , nk;n) = {x ∈ L(n1, . . . , nk;n)|c(x) ≤ m}

It is easy to check that, for all m ≥ 0, L(m) is a suboperad of L, and moreover these
suboperads make up an exhaustive filtration of L :

∆ = L(0) ⊂ L(1) ⊂ L(2) ⊂ · · · ⊂ L.

Definition 1.3.32. A functor-operad ξ on an E-category C consists of a sequence of
twisted-symmetric E-functors ξk : C

⊗k → C, k ≥ 0, together with E-natural transforma-
tions

µi1,...,ik : ξk ◦ (ξi1 ⊗ · · · ⊗ ξik) → ξi1+···+ik , i1, . . . , ik ≥ 0,

satisfying some constraints similar to the operadic ones.
A ξ-algebra is an object X of C equipped with a sequence of morphisms

αk : ξk(X, . . . ,X) → X, k ≥ 0,

satisfying identities similar to those of an algebra over an operad.

Proposition 1.3.33. Let X,Y be objects of an E-category C with functor-operad ξ, and
let Y be a ξ-algebra. Then C(X,Y ) is a Coendξ(X)-algebra where the coendomorphism
operad is given by

Coendξ(X)(k) = C(X, ξk(X, . . . ,X)), k ≥ 0.

Given a coloured operad O in E, with set of colours C, we can first consider its underlying
category: Ou. As we saw before, Ou is a E-category. Since the unary operations act
contravariantly on the inputs and covariantly on the output, any coloured operad O in E

can be considered as a sequence of functors

O(−, . . . ,−;−) : Oopu ⊗ · · · ⊗ Oopu ⊗ Ou → E, k ≥ 0

The category of E-functors Ou → E and E-natural transformations is the underlying
category of a E-category which we shall denote by EOu . Each coloured operad O in E

induces a sequence of E-functors

ξ(O)k : E
Ou ⊗ · · · ⊗ EOu → EOu k ≥ 0,
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by the familiar coend formulas, given by the Day-Street convolution of the operad:

ξ(O)k(X1, . . . , Xk)(c) = O(−, . . . ,−; c)⊗Ou⊗···⊗Ou
X1(−)⊗ · · · ⊗Xk(−).

Proposition 1.3.34. The sequence ξ(O)k, k ≥ 0, extends to a functor-operad on the
diagram category EOu in such a way that the categories of O-algebras and of ξ(O)-algebras
are canonically isomorphic.

Definition 1.3.35. The composite construction of Propositions 1.3.33 and 1.3.34 above,
assigning a single coloured operad to a coloured one

O 7−→ Coendξ(O)(δ)

for any choice of V -functor δ : Ou → E is called δ-condensation. Moreover, by Proposi-
tion 1.3.33 there is a parallel δ-totalization functor:

HomOu
(δ,−) : AlgO → AlgCoendξ(O)(δ)

which sends an O-algebra A to a Coendξ(O)(δ)-algebra HomOu
(δ, A).

This is the main result of their paper ([BB], Theorem 3.8):

Theorem 1.3.36. Let δ be a standard system of simplices in a monoidal model category
E. If the lattice paths operad L is strongly δ-reductive, then δ-condensation of the different
filtration stages L(m) of L yields Em-operads CoendL(m)(δ) in E.

By this theorem it follows:

Corollary 1.3.37. If E is the category of chain complexes over a commutative ring and
δ(k), k ≥ 0 is the chain complex of simplicial chains of C∗(∆(k)), the totalization Totδ(X)
of a L(n)-algebra X has a natural En-algebra structure.

Remark 1.3.38. Something more general than the corollary above holds (i.e. it holds
for any monoidal model category V and for any standard system of simplices δ such that
L is strongly δ-reductive), but we are adapting the results to our needs.

Similarly to what was done with the □ funny tensor product, Batanin and Davydov in
[BD] introduced the following:

Definition 1.3.39. The paths operad M is the N-coloured operad in Sets defined by:

M(n1, . . . , nk;n) = Cat∗,∗(⟨n+ 1⟩, ⟨n1 + 1⟩ × · · · × ⟨nk + 1⟩).

The operadic substitution maps are induced by cartesian product and composition in
Cat∗,∗.

Let now M(0) = M×Assoc be the product in the category of symmetric colored operads,
where Assoc is the one coloured Set-operad for associative monoids. By definition

M(0)(n1, . . . , nk;n) = Cat∗,∗(⟨n+ 1⟩, ⟨n1 + 1⟩ × · · · × ⟨nk + 1⟩)× Σk,

and the operadic composition is induced by the operadic composition in M by the first
variable and the operadic composition on symmetric groups Σk in the second variable.
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Theorem 1.3.40. The category of algebras of M(0) in any cocomplete symmetric monoidal
category V is isomorphic to the category of cosimpicial monoids in V . The natural pro-
jection M(0) → M is an operadic morphism which induces the forgetful functor from
commutative cosimplicial monoids to cosimplicial monoids.

Definition 1.3.41. Let τ : [p] → [m] and π : [q] → [m] be two maps in ∆. A shuffling
of length n of τ, π is a decomposition of the images of τ and π into disjoint union of
connected intervals

Im(τ) = A1 ∪A2 ∪ · · · ∪As, A1 < A2 < · · · < As

Im(π) = B1 ∪B2 ∪ · · · ∪Bt, B1 < B2 < · · · < Bt
(1.3.2)

with s+ t = n+ 1, satisfying either:

A1 ≤ B1 ≤ A2 ≤ B2 ≤ . . . (1.3.3)

or
B1 ≤ A1 ≤ B2 ≤ A2 ≤ . . . (1.3.4)

(that is, the rightmost end-point of Ai may coincide with the leftmost end-point of the
sequel B). The linking number lk(τ, π) is defined as n is the minimal possible shuffling
of τ, π has length n.

Definition 1.3.42. Let X be a cosimplicial monoid,n ≥ 0. X is called n-commutative if
for any τ : [p] → [m], π : [q] → [m] in ∆ with lk(τ, π) ≤ n, the diagram below commutes:

X(p)⊗X(q) X(m)⊗X(m)

X(q)⊗X(p) X(m)⊗X(m) X(m)

X(τ)⊗X(π)

µ

X(π)⊗X(τ) µ

(1.3.5)

We realize M(n) as a quotient of M(0). For this we introduce a relation on M(0)(p, q; k).
Let (ϕ, σ) be an element of M(0)(p, q; k):

ϕ : ⟨k + 1⟩ → ⟨p+ 1⟩ × ⟨q + 1⟩ and σ ∈ Σ2 = {e, t}.

We say that (ϕ, e) is n-equivalent to (ϕ, t) if lk(ϕ) ≤ n. Let M(n) be the quotient of M(0)

by the equivalence relation generated by n-equivalence relation.

Theorem 1.3.43. The category of n-commutative cosimplicial monoids is equivalent to
the category of M(n)-algebras.

Theorem 1.3.44. There are morphisms of operads p(n) : L(n) → M(n−1) n ≥ 1 making
the following diagram commutative:

L(1) L(2) . . . L(n) . . . L

M(0) M(1) . . . M(n−1) . . . M

p(1) p(2) p(n)
p(∞) (1.3.6)

Corollary 1.3.45. Let X q be an n-commutative cosimplicial monoid in Ch(k). Then
there is an action of an operad homotopy equivalent to Ch q(En+1,k) on the totalization
Tot(X q) ∈ Ch(k).
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1.4 The categories Θn

The categories Θn were introduced by Joyal in the influential preprint [J], in order to
develop a theory of infinite dimensional (weak) categories. Here we recall the definition
of the categories Θn, n ≥ 1, and some of its properties, based on the results of Berger [Be1],
[Be2] and Joyal [J]. We also recall the realization |X| of a cellular set X : Θop → Sets,
and discuss the totalization of a cocellular set Y : Θn → Sets. We denote by [n] the
ordinal 0 < 1 < · · · < n having n + 1 elements. Recall that the simplicial category
∆ has objects [n], n ≥ 0, that is, all non-empty finite ordinals. Its morphisms are the
monotonous maps f : [k] → [l], i.e. f(i) ≤ f(j) if i ≤ j. Recall the relations between
the standard elementary face operators ∂i : [n− 1] → [n] and the elementary degeneracy
operators ϵi : [n+ 1] → [n], i = 0, . . . , n, in ∆:

∂j∂i = ∂i∂j−1 if i < j

ϵjϵi = ϵiϵj+1 if i ≤ j

ϵi∂j =


∂iϵj−1 if i < j;

id if i = j, j + 1;

∂i−1ϵj if i > j + 1

(1.4.1)

1.4.1 n-levelled trees

Let us first define the notion of n-levelled tree, introduced by Berger in [Be1].

Definition 1.4.1. A n-levelled tree T is a collection of finite sets {T (i)}, 0 ≤ i ≤ n,
endowed with a map iT : T≥1 → T which lowers the level by 1, such that T (0) is a
1-element set, and such that the sets i−1

T (x), x ∈ T , are linearly ordered.

Let us introduce some terminology related to levelled trees, which will be used later
on. For x ∈ T (i) we write ht(x) = i, for the height of x. By definition, n = ht(T ) =
maxx∈T ht(x). A vertex x of a levelled tree is called an input, or a leaf, if i−1(x) = ∅. Note
that for an n-levelled tree T , the height of an input may be smaller than n. Moreover,
T (i) can be empty for i > 0.
An edge is a pair (x, y) with x = iT (y). The set of edges of T is denoted by e(T ). We
define the dimension d(T ) = ♯e(T ). A levelled tree is called linear if d(T ) = ht(T ). For
each vertex x ∈ T , the ordered set of incoming edges ex(T ) is defined as i−1

T (x).
For a levelled tree T define a levelled tree T̄ as follows: for each x ∈ T , we set ex(T̄ ) =
ex(T )∪(x, x−)∪(x, x+) with the order in which (x, x−) is the minimal element and (x, x+)
is the maximal element. Thus we add the leftmost and the rightmost element to each set
ex(T ). It results in T̄ = T (i) + 2T (i − 1), and ht(T̄ ) = ht(T ) + 1. A T -sector of height
k is a triple (x; yL, yR) where x ∈ T (k), yL, yR ∈ T̄ (k + 1), iT̄ (yL) = iT̄ (yR) = x, and
yL, yR are consecutive elements of T̄ (k + 1). We say that x supports a sector (x; yL, yR).
It follows that each input vertex x of T supports a unique sector (which is (x;x−, x+)).

1.4.2 The wreath product definition of Θn

The definition of the category Θn is given inductively via the wreath product ∆ ≀A:



1.4. THE CATEGORIES ΘN 19

Definition 1.4.2. Let A be a category. The objects of the category ∆ ≀ A are tuples
([n], A1, . . . , An), where A1, . . . , An ∈ A. A morphism in ∆ ≀A

Φ: ([n], A1, . . . , An) → ([m], B1, . . . , Bm)

is a tuple (ϕ;ϕ1, . . . , ϕn), with ϕ : [n] → [m] a morphism in ∆ and ϕi = (ϕ
ϕ(i−1)+1
i , . . . , ϕ

ϕ(i)
i )

is a tuple of morphisms in A, with ϕki : Ai → Bk, ϕ(i−1)+1 ≤ k ≤ ϕ(i). The composition
is defined in the natural way.

The reader is advised to jump to Lemma 1.4.7 which explains a natural framework in
which the category ∆ ≀A emerges. We set:

Θ1 = ∆ and Θn = ∆ ≀Θn−1, n ≥ 2 (1.4.2)

1.4.3 n-globular sets and strict n-categories

There is another category isomorphic to the category Θn.
Recall that an n-globular set is the data one has on the underlying sets of objects, 1-
morphisms,..., n-morphisms of a strict n-category. In this sense, it is a “pre-n-category”.
For n = 1, it is a quiver. The general definition is as follows:

Definition 1.4.3. An n-globular set is a collection of sets X0, X1, . . . , Xn and maps

Xn Xn−1 . . . X1 X0

sn−1

tn−1

sn−2

tn−2

s1

t1

s0

t0

(1.4.3)

(here sk are source maps and tk are target maps), such that sksk+1 = sktk+1, tksk+1 =
tktk+1, 0 ≤ k ≤ n− 1.

For two n-globular sets X,Y , a morphism f : X → Y is defined as a sequence of maps
fi : Xi → Yi, 0 ≤ i ≤ n, which commute with the source and the target maps s and t.
The category of n-globular sets is denoted by Globn. The reader may easily interpret the
category Globn as some presheaf category.

The following question arises: how one can define the free strict n-category generated by
an n-globular set? More precisely, the question is “How to define a left adjoint functor
ωn to the forgetful functor R : Catn → Globn?”. (The n = 1 case is the well-known
construction of the free category generated by a quiver). In [Ba2] Batanin solved this
problem by introducing the star construction, which associates an n-globular set T ∗ to
an n-levelled tree T .
We recall this construction, following a more explicit treatment given in [[Be1], Lemma
1.2]:

Lemma 1.4.4. Let T be an n-levelled tree, denote by T ∗
k the set of all sectors of T of

height k, 0 ≤ k ≤ n. Then T ∗ is an n-globular set.

Proof. Let (x; yL, yR) ∈ T ∗
k , we have to define sk−1(x; yL, yR) and tk−1(x; yL, yR). Let

xL, x, xR be the three consecutive elements in T̄ (k). Define

sk−1(x; yL, yR) = (iT (x);xL, x) and tk−1(x; yL, yR) = (iT (x);x, xR)

One easily sees that the globular identities hold, see [[Be1], Lemma 1.2] for more detail.
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Example 1.4.5. Let T be a linear n-levelled tree. Then there is a single sector of height
n, and two sectors of any height 0, 1, . . . , n− 1.

Thanks to the T ∗ construction, one can define the left adjoint ωn : Globn → Catn to the
forgetful functor R : Catn → Globn in the following way.
Let X be an n-globular set. We define an n-globular set ωn(X) and prove that it is a
strict n-category. Set

(ωn(X))k :=
⋃

T :ht(T )≤k

HomGlobn
(T ∗, X) (1.4.4)

(one often uses the notation HomGlobn(T
∗, X) = XT ).

First of all, we show that ωn(X) is an n-globular set. Denote by ∂kT the (k− 1)-levelled
tree, obtained by removing all vertices of height higher than k − 1. There are two maps
of n-globular sets s∗k−1, t

∗
k−1 : (∂kT )

∗ → (∂k+1T )
∗. In general, a map of globular sets

S∗ → T ∗ is determined by its restriction to the input sectors of S∗, see [[Be1], Lemma
1.3]. The map s∗k−1 (respectively, t∗k−1) is obtained by assigning to each input vertex x of
∂kT (which uniquely defined its input sector) the leftmost (respectively, rightmost) input
sector in ∂k+1T supported by x. One shows that the maps s∗k−1, t

∗
k−1 satisfy the identities

dual to the globular identities. Thus, for any n-globular set X, and for a k-levelled tree
T, k ≤ n, the pre-compositions with the maps s∗k−1, t

∗
k−1 define maps

sk−1, tk−1 : X
T → X∂kT

It follows that these maps satisfy the globular identities. Thus, ωn(X) is a globular set.
Next, prove that ωn(X) is a strict n-category. The following statement is proven in [[Be2],
Th. 3.7].

Proposition 1.4.6. For any n-ordinals S, T , one has Θn(S, T ) = Catn(ωn(S̄
∗), ωn(T̄

∗)).

The proof is obtained, by induction, from the following nice interpretation of the wreath
product, [[Be2], Prop. 3.5]:

Lemma 1.4.7. Assume that a small category A is a full subcategory of a cocomplete
cartesian monoidal category E. Then ∆ ≀A is a full subcategory of E-Cat.

Proof. Any 1-ordinal [n] can be considered as a linear category n with n + 1 objects
0, . . . , n, with a single morphism in n(i, j) for i ≤ j and with empty set of morphisms
otherwise. Having n objects A1, . . . , An of A, we regard them as objects of E, and consider
the linear E-quiver:

0
A1−−→ 1

A2−−→ 2
A3−−→ . . .

An−−→ n

Consider the E-category generated by this quiver, denote it by FE(A1, . . . , An) (here
we use cocompleteness of E to show that the forgetful functor from E-categories to E-
quivers has a left adjoint). For B1, . . . , Bm ∈ A, a E-functor ϕ : FE(A1, . . . , An) →
FE(B1, . . . , Bm) is defined by its restriction to “generators”, that is, by a map ϕ : [n] →
[m], and, for any 1 ≤ i ≤ n, a morphism Ai → FE(ϕ(i−1), ϕ(i)) = Bϕ(i−1)+1×· · ·×Bϕ(i).
We conclude that these E-functors are the same as the morphisms ([n], A1, . . . , An) →
([m], B1, . . . , Bm) in ∆ ≀A.
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Example 1.4.8. For the case Θ2 = ∆ ≀∆, we set E = Cat, using the embedding ∆ →
Cat: [n] 7→ n. Thus to the element ([n], [ℓ1], . . . , [ℓn]) is associated the 2-category gener-
ated by the 2-globular set T ∗, where T is the corresponding 2-ordinal [ℓ1+· · ·+ℓn+n−1] →
[n− 1].

1.4.4 Disks

The category of disks was introduced in [J]. The category of the non-empty intervals is
denoted by If (including ⟨0⟩). Joyal (loc.cit.) showed that I

op
f ≃ ∆+ where ∆+ is the

category of all finite ordinals (including the empty ordinal which is the initial object, we
denote it [-1]). The functor F : ∆op

+ → If is [n] 7→ ∆+([n], [1]), F ([n]) = [n+1]. The dual
functor G : ∆op

f → ∆+ is [n] 7→ If ([n], [1]), then the initial object [−1] is If ([0], [1]), and
in general G([n]) = [n− 1].

Definition 1.4.9. A disk of finite sets D q is a sequence D1, D2, . . . of finite sets, equipped
with the following data:

(a) a map p : Dk → Dk−1 such that for any x ∈ Dk−1 the pre-image p−1(x) has an
interval structure, k ≥ 1

(b) two maps d0, d1 : Dk−1 → Dk sending x ∈ Dk−1 to the leftmost and the righmost
elements of the interval p−1(x), k ≥ 1

(c) Eq(d0, d1 : Dk → Dk+1) = d0(Dk−1) ∪ d1(Dk−1), k ≥ 1

(d) D0 is a single point.

Example 1.4.10. In order to help visualization, the following 2-disk representsD2 → D1,
where D2 is the set with 15 elements and D1 the set with 6 elements, and the map can
be interpreted as the horizontal projection.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• (1.4.5)

A map of two disks F : D q → D′q is a collection of maps {Fk : Dk → D′
k}k ≥ 0 compatible

with p, d0, d1, such that for any x ∈ Dk the map p−1(x) → p−1(Fk(x)) is a map of
intervals, k ≥ 0. The category of disks is denoted by Disk. For a disk D q the interior
i(Dk) is defined as Dk \{d0(Dk−1∪d1(Dk−1)}. It is an ordinal, and the sequence of maps
of ordinals p : i(Dk) → i(Dk−1), k ≥ 1 makes i(D q) = {i(Dk)}k≥0 a levelled tree. The
height ht(D q) is defined as the height of the level tree i(D q). The category of disks of
height ≤ n is denoted by Diskn.
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The functor i sends disks to levelled trees. The functor T 7→ T̄ is a left adjoint to it. For
any levelled tree T , the levelled tree T̄ is a disk of finite sets. The elements of T̄ in the
image of i are internal, and the elements in T̄ \ T are boundary. A map of disks S̄ → T̄
is “more general” than a map of levelled trees S → T . The reason is that a map of disks
S̄ → T̄ may map an internal point to a boundary point in T̄ . Thus, the category of n-
levelled trees is identified with a not full subcategory of Diskn. The following Proposition
is [[Be1], Prop. 2.2]:

Proposition 1.4.11. For any n-levelled trees S, T one has:

Catn(ωn(S̄
∗), ωn(T̄

∗)) = Diskn(T̄ , S̄)

Thus, the assignment T 7→ T̄ provides an equivalence of Θopn and Diskn.

Remark 1.4.12. We can restrict the assignment from the proof [[Be1], Prop. 2.2] to
the maps of disks S̄ → T̄ which come from maps of levelled trees S → T (that is, which
map internal points to internal). The corresponding sub-category C of Catn has objects
ωn(T̄

∗), T a n-levelled tree, and has the set of morphisms C(ωn(S̄
∗), ωn(T̄

∗)) which is
the subset of Catn(ωn(S̄

∗), ωn(T̄
∗)) formed by maps of n-categories, preserving minima

and maxima, in an appropriate sense. For n = 2, this equivalence is used by Tamarkin in
[Tam2]. In fact, this equivalence (rather than the equivalence of Proposition 1.4.11) can
be thought of as a proper analogue of the equivalence I ≃ ∆op

+ , for n ≥ 2.

1.4.5 The categories Θn as higher analogues of the category ∆;
inner and outer face maps

We have three equivalent descriptions of the category Θn which are:

(a) the definition via the wreath product 1.4.2,

(b) the definition via morphisms of free strict n-categories ωn(T̄
∗), Proposition 1.4.6,

(c) as the dual of the category Diskn, Proposition 1.4.11.

We will take advantage of all three equivalences. In particular, (c) is used to naturally
define the realization/totalization, (b) is used to see that any strict n-category C has a
nerve which is a n-cellular set N(C) : Θopn → Sets, and (a) is the combinatorially most
explicit and manageable. Existence of the latter nerve goes back to Batanin, and was the
main motivation in [J], where the disk categories were defined. It also makes it possible
to consider Θn as an analogue of ∆, for n ≥ 2. Note that the nerve N(C) of the ordinary
category C is a simplicial set, whose components can be defined as

N(C)k := Cat([k], C)

(where [k] is the usual ordinal category with k + 1 objects). We see directly that it gives
rise to a simplicial set, because a map [k] → [m] in ∆ amounts to the same thing as a
map of the ordinal categories [k] → [m].
Let now C be a strict n-category. Define its n-nerve as a cellular set N(C) : Θopn → Sets,
for which

N(C)T := Catn(ωn(T̄
∗), C) (1.4.6)
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It gives rise to an n-cellular set because by Proposition 1.4.6:

Θn(S, T ) = Catn(ωn(S̄
∗), ωn(T̄

∗)).

For any strict n-category C, the n-cellular set N(c) has a property which is a higher
counterpart of the Boardman-Vogt inner horns filling property for n = 1 (which gives
rise to a definition of a quasi-category, or (∞, 1)-category). It was a motivation in [J] to
elaborate this analogy, and was further studied by Ara in [Ara].

1.5 Reminder on monads

Here we recall definitions and some general facts on monads and algebras over monads.
The reader is referred to [ML2], [R2] for more detail.

Let C be a category. Recall that a monad in C is given by an endofunctor

T : C → C

and natural transformations

η : Id ⇒ T and µ : T 2 ⇒ T

so that the following diagrams commute:

T 3 Tµ +3

µT
��

T 2

µ

��
T 2 µ +3 T

T
ηT +3

Id �$

T 2

µ

��

T
Tηks

Idz�
T

A monad appears from a pair of adjoint functors. Assume we have an adjoint pair

F : C ⇄ D : U (1.5.1)

with adjunction unit and counit η : IdC ⇒ UF and ε : FU ⇒ IdD .

It gives rise to a monad in C , defined as:

T = UF, η = η : IdC ⇒ T, µ = UϵF : T 2 ⇒ T

An algebra A over a monad T is given by an object A ∈ C equipped with a morphism
a : TA→ A such that the following diagrams commute:

A
ηA //

IdA !!

TA

a

��
A

T 2A
µA //

Ta

��

TA

a

��
TA

a // A

The morphisms of algebras over a monad T are defined as morphisms f : A → B in C
such that the natural diagram commutes. The category of T -algebras is denoted by C T .
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There is an adjunction
FT : C ⇄ C T : UT

which by its own gives rise to a monad.

There is a functor Φ: D → C T , sending an object Y of D to the T -algebra A = UY , with
a : TA = UFUY → UY = A equal to UεY . The functor Φ is called the Eilenberg-Moore
comparison functor.

An adjunction (1.5.1) is called monadic if the functor Φ: D → C T is an equivalence.

There is a criterion when an adjunction is monadic, called the Beck monadicity theorem.
We recall its statement below.

Recall that a split coequalizer in a category is a diagram

A
f //
g
// B

h //

s

��
C

t

��

such that

(1) f ◦ s = idB ,

(2) g ◦ s = t ◦ h,

(3) h ◦ t = idC ,

(4) h ◦ f = h ◦ g.

Recall the following lemma:

Lemma 1.5.1. A split coequalizer is a coequalizer, and is an absolute coequalizer (that
is, is preserved by any functor).

It is enough to prove the first statement, because a split equalizer remains a split equalizer
after application of any functor. See e.g. [[R2], Lemma 5.4.6] for detail.

Given a pair

A
f

⇒
g
B

in a category D , and a functor U : D → C , we say that this pair is U -split if the pair

U(A)
f

⇒
g
U(B)

in C can be extended to a split coequalizer.

Theorem 1.5.2. Let F : C ⇄ D : U be a pair of adjoint functors, and let T = UF be the
corresponding monad. Consider the Eilenberg-Mac Lane comparison functor Φ: D → C T .
Then:



1.5. REMINDER ON MONADS 25

(1) if D has coequalizers of all U -split pairs, the functor Φ has a left adjoint Ψ: C T →
D ,

(2) if, furthermore, U preserves coequalizers of all U -split pairs, the unit IdCT ⇒ ΦΨ
is an isomorphism,

(3) if, furthermore, U reflects isomorphisms (that is, U(f) an isomorphism implies f
an isomorphism), the counit ΨΦ ⇒ IdD is also an isomorphism.

Therefore, if (1)-(3) hold, (U,F ) is monadic. Conversely, if (U,F ) is monadic, conditions
(1)-(3) hold.

The reader is referred to [ML2] or [R2] for a proof.

There is another monadicity theorem, which gives sufficient but not necessary conditions
for Φ: D → C T to be monadic. It uses reflexive pairs in D instead of U -split pairs.

A pair of morphisms f, g : A→ B in D is called reflexive if there is a morphism h : B → A
which splits both f and g: f ◦ h = idB = g ◦ h.

We refer the reader to [[MLM], Ch.IV.4, Th.2] for a proof of the following result, also
known as the crude monadicity Theorem:

Theorem 1.5.3. Let F : C ⇄ D : U be a pair of adjoint functors, and let T = UF be the
corresponding monad. Consider the Eilenberg-Mac Lane comparison functor Φ: D → C T .
Then:

(1) if D has coequalizers of all reflexive pairs, the functor Φ admits a left adjoint
Ψ: C T → D ,

(2) if, furthermore, U preserves these coequalizers, the unit of the adjunction IdCT →
Φ ◦Ψ is an isomorphism,

(3) if, furthermore, U reflects isomorphisms, the counit of the adjunction Ψ ◦Φ → IdD
is also an isomorphism.

Therefore, if (1)-(3) hold, (U,F ) is monadic.

Note that, unlike for Theorem 1.5.2, the converse statement is not true. That is, the
conditions for monadicity, given in Theorem 1.5.3, are sufficient but not necessary.

The following construction is of fundamental importance for both monadicity theorems.

In the notations as above, let A ∈ D . Consider two morphisms

FUFUA
f

⇒
g
FUA (1.5.2)

where f = FUεA and g = εFUA. (Similarly, one defines such two maps for A ∈ C T ).

One has two different extensions of this pair of arrows, which form a U -split coequalizer
and a reflexive pair, correspondingly.
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For the first case, consider

UFUFUA
Uf //
Ug

// UFUA
h //

s1

||
UA

t

��
(1.5.3)

with s1 = ηUFUA, t = ηUA, h = UεA.

For the second case, consider

FUFUA
f //
g
// FUA

s2

}}
(1.5.4)

with s2 = FηUA.

The following lemma is proven by a direct check:

Lemma 1.5.4. For any A ∈ D (or A ∈ C T ), (1.5.3) is a split coequalizer in C , whence
(1.5.4) is a reflexive pair in D (respectively, in C T ).

Note that s1 is not a U -image of a morphism in D , though Uf and Ug are. On the other
hand, s2 is a morphism in D (respectively, in C T ).

1.6 Monoidal categories

In this brief section we give the basic notions of monoidal categories and monoidal func-
tors, in order to fix the notation for later use.

Definition 1.6.1. A monoidal category is a sextuple (C,⊗, α, 1, λ, ρ) given by a category
C together with:

(1) a bifunctor ⊗ : C× C → C, called the tensor product,

(2) a unit object 1 ∈ Ob(C),

(3) a natural isomorphism α : (−)⊗ ((−)⊗ (−))
≃−→ ((−)⊗ (−))⊗ (−) with components

of the form
αX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z

called the associator,

(4) a natural isomorphism λ : (1⊗ (−))
≃−→ (−) with components of the form

λX : 1⊗X → X

called the left unitor, and

(5) a natural isomorphism ρ : (−)⊗ 1
≃−→ (−) with components of the form

ρX : X ⊗ 1 → X

called the right unitor,
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satisfying the following two axioms:

(i) the triangle axiom: the diagram

X ⊗ (1⊗ Y ) (X ⊗ 1)⊗ Y

X ⊗ Y

idX ⊗λY ρX ⊗ idY

αX,1,Y

(1.6.1)

is commutative for all X,Y ∈ Ob(C);

(ii) the pentagon axiom: the diagram

(X ⊗ Y )⊗ (Z ⊗ T )

X ⊗ (Y ⊗ (Z ⊗ T ))

X ⊗ ((Y ⊗ Z)⊗ T ) (X ⊗ (Y ⊗ Z))⊗ T

((X ⊗ Y )⊗ Z)⊗ T

αX⊗Y,Z,TαX,Y,Z⊗T

αX,Y ⊗Z,T

idX ⊗αY,Z,T αX,Y,Z⊗idT

(1.6.2)

is commutative for all X,Y, Z, T ∈ Ob(C).

Definition 1.6.2. A monoidal category is said to be strict if the associator, left unitor
and right unitor are all identity morphisms, i.e. if for allX,Y, Z inOb(C) one has equalities
X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z and X ⊗ 1 = X = 1⊗X.
In this case the pentagon axiom and the triangle axiom hold automatically.
Moreover we define a tensor category to be a k-linear (or dg- over k) monoidal category
C. Similarly we can define a strict tensor category.

Definition 1.6.3. Let (C,⊗C, αC, 1C, λC, ρC) and (D,⊗D, αD, 1D, λD, ρD) be two monoidal
categories. A colax monoidal functor between them is

(1) a functor F : C → D,

(2) a morphism ϵ : F (1C) → 1D,

(3) a natural transformation JX,Y : F (X⊗CY ) → F (X)⊗DF (Y ) called the monoidal
structure

satisfying the following conditions:
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(i) the associativity axiom: the diagram

F (X ⊗C (Y ⊗C Z))
F (αC) //

J
X,Y ⊗CZ

��

F ((X ⊗ Y )⊗ Z)

J
X⊗CY,Z

��
F (X)⊗D F (Y ⊗C Z)

idF (X) ⊗DJY,Z

��

F (X ⊗C Y )⊗D F (Z)

JX,Y ⊗DidF (Z)

��
F (X)⊗D (F (Y )⊗D F (Z))

αD

// (F (X)⊗D F (Y ))⊗D F (Z)

(1.6.3)

commutes for all X,Y, Z ∈ Ob(C);

(ii) the unitality axiom: the diagrams

F (X ⊗C 1C)
J
X,1C//

F (ρCX)

��

F (X)⊗D F (1C)

idF (X) ⊗Dϵ

��
F (X) F (X)⊗D 1D

ρCX

oo

and

F (1C ⊗C X)
J
1C,X//

F (λC
X)

��

F (1C)⊗D F (X)

ϵ⊗DidF (X)

��
F (X) 1D ⊗D F (X)

λC
X

oo

commute for all X ∈ Ob(C).

Definition 1.6.4. A monoidal functor (F, ϵ, J) is strong if ϵ and J are isomorphisms,
and strict if ϵ and J are identities.
Moreover we define a tensor functor (F, ϵ, J) to be a k-linear (or dg- over k) monoidal
functor F such that J is a natural isomorphism and ϵ is an isomorphism. A strict tensor
functor is a tensor functor (F, ϵ, J) such that J and ϵ are identities.

For sake of completeness, we state the great theorem by Mac Lane [ML2]:

Theorem 1.6.5. Let X1, . . . , Xn ∈ Ob(C). Let P1, P2 be any two parenthesized products
of X1, . . . , Xn (in this order) with arbitrary insertions of the unit object 1. Let f, g : P1 →
P2 be two isomorphisms, obtained by composing associativity and unit isomorphisms and
their inverses possibly tensored with identity morphisms. Then f = g.
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The model category structure of
weakly unital dg-categories Cdgwu(k)

Il mio sogno è nutrito d’abbandono,
di rimpianto. Non amo che le rose
che non colsi. Non amo che le cose
che potevano essere e non sono
state.... Vedo la casa, ecco le rose
del bel giardino di vent’anni or sono!

G. Gozzano,
Cocotte

2.1 Definition of Cdgwu(k)

Let us start by defining what a Kontsevich-Soibelman weakly unital dg-category is.

Let A be a non unital dg-category. Denote by A ⊕ kA the strictly unital dg-category
where Ob(A⊕ kA) = Ob(A) and

HomA⊕kA(X,Y ) =

{
A(X,Y ) if X ̸= Y

A(X,X)⊕ k1X if X = Y.

One has a natural embedding i : A → A⊕ kA, sending X to X, and f ∈ A(X,X) to the
pair (f, 0) ∈ (A⊕ kA)(X,X). We denote by 1X the generator of kX .

Definition 2.1.1. A weakly unital dg-category A over k is a non-unital dg-category A

over k with a distinguished closed element idX ∈ A0(X,X) for any object X in A, such
that there exists an A∞-functor p : A⊕kA → A which is the identity on the objects, such
that p ◦ i = idA, p1(1X) = idX , for any X ∈ Ob(A), and pn(f1, . . . , fn) = 0 for n ≥ 2 if
fi are morphisms in the image i(A).

Note that this definition gives rise to the sequence of relations on the Taylor coefficients
pn, n ≥ 1, of the A∞-functor p. The first non-trivial relations read:

dp2(f, 1X) + p2(df, 1X) = f − f ◦ idX , dp2(1X , f) + p2(1X , df) = f − idX ◦f (2.1.1)

29
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and for n = 3:

dp3(f, g, 1X)− (−1)|g|p3(df, g, 1X)− p3(f, dg, 1X) = f ◦ p2(g, 1X)− p2(f ◦ g, 1X)

dp3(f, 1X , g)− (−1)|g|p3(df, 1X , g)− p3(f, 1X , dg) = −(−1)|g|p2(f, 1X) ◦ g + f ◦ p2(1X , g)
dp3(1X , f, g)− (−1)|g|p3(1X , df, g)− p3(1X , f, dg) = −(−1)|g|p2(1X , f) ◦ g + p2(1X , f ◦ g)
dp3(1X , 1X , f)− p3(1X , 1X , df) = idX ◦p2(1X , f)− (−1)|f |p2(1X , 1X) ◦ f
dp3(1X , f, 1X)− p3(1X , df, 1X) = idX ◦p2(f, 1X)− p2(1X , f) ◦ idX −p2(f, 1X) + p2(1X , f)

dp3(f, 1X , 1X)− p3(df, 1X , 1X) = f ◦ p2(1X , 1X)− p2(f, 1X) ◦ idX
dp3(1X , 1X , 1X) = idX ◦p2(1X , 1X)− p2(1X , 1X) ◦ idX

(2.1.2)

Definition 2.1.2. Let A, C be two weakly unital dg-categories, with the structure maps
pA : A ⊕ kA → A and pC : C ⊕ kC → C. A weakly unital dg-functor F : A → C is a non
unital dg-functor F : A → C such that the following diagram commutes:

A⊕ kA C⊕ kC

A C

pA

F⊕kF

pC

F

(2.1.3)

In this way, we define the category Cdgwu(k). Its full subcategory, for which idX ◦ idX =
idX for any object X, is denoted by C0

dgwu(k).

It follows from the definition that:

F (idX) = idF (X) for each X ∈ Ob(A)

F (pAn (f1, . . . , fn)) = pCn(F (f1), . . . , F (fn)) fi ∈ A⊕ kA, i = 1 . . . n
(2.1.4)

Example 2.1.3. Let A be a strictly unital dg-category. Define p : A ⊕ kA → A as
p1|A(X,Y ) = id, p(1X) = idX , pn = 0 for n ≥ 2. Then p is a dg-functor, and p ◦ i = id. It
makes a strictly unital dg-category a weakly unital dg-category and in this way we get a
fully-faithful embedding i : Cdg(k) → Cdgwu(k).

For a weakly unital dg-category A, define H0(A) as an (a priori non-unital) k-linear cat-
egory, having the same objects, and having morphisms (H0(A))(X,Y ) = H0(A(X,Y )).

Lemma 2.1.4. Let A be a weakly unital dg-category. Then the homotopy category H0(A)
is a strictly unital k-linear category.

Proof. The map [p1] : H
0(A)⊕ kH0(A) → H0(A), induced by the first Taylor component

p1 of the A∞-functor p, is a dg-functor. One has [p1](1X) = idX and [p1] ◦ [i] = id. It
follows from (2.1.1) that idX ◦f = f ◦ idX = f , for any f ∈ H0(A)(X,X).

Lemma 2.1.5. Let F : C → D be a weakly unital dg-functor between weakly unital dg-
categories. Then it defines a k-linear functor H0(F ) : H0(C) → H0(D) of unital k-linear
categories.

Proof. It is clear.
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Example 2.1.6. Let A be an associative dg-algebra over k, with a strict unit 1A. Con-
sider C = Cobar+(Bar+(A)) where Bar+(A) is the bar-complex of A, which is non-
counital dg-coalgebra (thus, Bar+(A) = T (A[1])/k as a graded space), and Cobar+(B)
is the non-unital dg-algebra (as a graded space, Cobar+(B) = T (B[−1])/k). It is well-
known that the natural projection Cobar+(Bar+(A)) → A is a quasi-isomorphism of
non-unital dg-algebras. We claim that Cobar+(Bar+(A)) is weakly unital, whose weak
unit is 1A ∈ Cobar+(Bar+(A)). We use notations ω = a1 ⊗ · · · ⊗ aℓ ∈ Bar+(A) for mono-
mial bar-chains, and c = ω1 ⊠ω2 ⊠ · · ·⊠ωκ for monomial elements in Cobar+(Bar+(A)).
Define pn(x1, . . . , xn), where each xi is either 1 or a monomial c ∈ Cobar+(Bar+(A)), as
follows:

(1): We set pn(x1, . . . , xn) to be 0 if for some 1 ≤ i ≤ n− 1 both xi, xi+1 are elements in
Cobar+(Bar+(A)).

(2): Otherwise, let xi, . . . , xi+j+1 be a fragment of the sequence x1, . . . , xn such that
xi = ω1⊠ · · ·⊠ωa ∈ Cobar+(Bar+(A)), xi+1 = · · · = xi+j = 1A, xi+j+1 = ω′

1⊠ · · ·⊠ω′
b ∈

Cobar+(Bar+(A)). Then we replace the fragment xi, xi+1, . . . , xi+j+1 by the following
element γ in Cobar+(Bar+(A)):

γ = ω1 ⊠ · · ·⊠ ωa−1 ⊠ (ωa ⊗ 1A ⊗ · · · ⊗ 1A ⊗ ω′
1)⊠ · · ·⊠ ω′

b

(3): We perform such replacements successively for all suitable fragment, and finally we
get an element in Cobar+(Bar+(A)), of degree

∑
deg xi − n + 1. By definition, this

element is pn(x1, . . . , xn). By a suitable fragment we mean either the case considered
above, when a group of successive 1As is surrounded by elements of Cobar+(Bar+(A))
from both sides, or one of the two extreme case: if x1 = 1A, the leftmost 1A, 1A, . . . , 1A, xi
is a suitable fragment, and similarly if xn = 1A, the rightmost fragment xs, 1A, . . . , 1A is
also suitable. One easily checks that the constructed {pn}n≥1 defines an A∞-morphism
p : Cobar+(Bar+(A)) ⊕ k1A → Cobar+(Bar+(A)) such that p ◦ i = id. The construction
for the case of Cobar+(Bar+(C)), for C a dg-category, is similar.

Example 2.1.7. Let A be a strictly unital dg-algebra, consider the weakly unital dg-
algebra C = Cobar+(Bar+(A)) (which belongs to Cdgwu(k))), constructed in Example
2.1.6 up above. Let D be a strictly unital dg-algebra. Then the set HomCdgwu(k)(C,D)
is identified with the set of unital A∞-maps A → D. (Recall that for strictly unital
dg-algebras A,D, an A∞-morphism f : A → D map is called unital if f1(1A) = 1D, and
fn(a1, . . . , an) = 0 if n ≥ 2 and at least one argument ai = 1A). One has a similar
description for the case of dg-categories.

2.2 Small (co)completeness of Cdgwu(k)

2.2.1 The products, coproducts, and equalizers in Cdgwu(k)

Our goal is to show that the category Cdgwu(k) is small complete and small cocomplete.
One constructs directly small products and small coproducts. The equalizers are also
straightforward, as follows.

Let F,G : C → D be two morphisms. Define Eq(F,G) as the dg-category whose objects
are

Ob(Eq(F,G)) = {X ∈ Ob(C)|F (X) = G(X)}
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Let X,Y ∈ Ob(Eq(F,G)). Define

Eq(F,G)(X,Y ) = {f ∈ C(X,Y )|F (f) = G(f)}

It is clear that Eq(F,G) is a non-unital dg-category. For anyX ∈ Ob(Eq(F,G)), F (idX) =
idF (X) and G(idX) = idG(X), therefore idX ∈ Eq(F,G)(X,X).

One has to construct an A∞-functor p : Eq(F,G) ⊕ kEq(F,G) → Eq(F,G) such that
p1(1X) = idX , and p ◦ i = id. We define

pEq(F,G)
n (f1 ⊗ · · · ⊗ fn) = pCn(f1 ⊗ · · · ⊗ fn)

One has to check that p
Eq(F,G)
n (f1 ⊗ · · · ⊗ fn) is a morphism in Eq(F,G), that is,

F (pCn(f1 ⊗ · · · ⊗ fn)) = G(pCn(f1 ⊗ · · · ⊗ fn)) (2.2.1)

From (2.1.4) one gets

F (pCn(f1 ⊗ · · · ⊗ fn)) = pDn (F (f1)⊗ . . . F (fn))

and
G(pCn(f1 ⊗ · · · ⊗ fn)) = pDn (G(f1)⊗ · · · ⊗G(fn))

Now (2.2.1) follows from F (fi) = G(fi) for all fi, which holds because all fi are morphisms
in Eq(F,G). Thus, Eq(F,G) is a weakly unital dg-category.

To construct the coequalizers is a harder task. For the category E-Cat of small E-enriched
categories, the coequalizers were constructed in [Li] and [Wo], assuming E to be a sym-
metric monoidal closed and cocomplete, and were constructed in [BCSW] and [KL] in
weaker assumptions on E. All these proofs rely on the theory of monads. We associate a
monad which governs the weakly unital dg-categories in Section 2.2.2.

We adapt the approach of [Wo] for a proof of existence of the coequalizers in Cdgwu(k).
We also prove the corresponding monadicity theorem.

2.2.2 The dg-operad O′ and the monad of weakly unital dg-categories

Definition 2.2.1. A dg-quiver Γ over k is an oriented graph, given by a set VΓ of
vertices, and a complex Γ(x, y) ∈ Ch(k) for any ordered pair x, y ∈ VΓ. A morphism
F : Γ1 → Γ2 is given by a map of sets FV : VΓ1

→ VΓ2
, and by a map of complexes

FE : Γ1(x, y) → Γ2(FV (x), FV (y)), for any x, y ∈ VΓ1
. We denote by Gdg(k) the category

of dg-quivers over k.

Definition 2.2.2. A unital dg-quiver Γ over k is an dg-quiver over k such that there is
an element idx ∈ Γ(x, x), closed of degree 0, for any x ∈ VΓ. A map of unital dg-quivers
is a map F of the underlying dg-graphs such that F (idx) = idF (x), for any x ∈ VΓ. We
denote by Gdgu(k) the category of unital dg-quivers over k.

There is a natural forgetful functor U : Cdgwu(k) → Gdgu(k), where U(C) is a quiver Γ
with VΓ = Ob(C), and Γ(x, y) = C(x, y).
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This functor admits a left adjoint F : Gdgu(k) → Cdgwu(k). It is constructed via a dg-
operad O′, see (2.2.6).

Define the non-Σ dg-operad O′ as the quotient-operad of the free operad generated by
the composition operations:

(a) the composition operation m ∈ O′(2)0

(b) pn;i1, ...,ik ∈ O′(n− k)−n+1, 0 ≤ k ≤ n, 1 ≤ i1 < i2 < · · · < ik ≤ n, with the follow-
ing meaning: for a weakly unital dg-category C, the operation pn;i1,...,ik(f1, . . . , fn−k)
is defined as

pn
(
f1, . . . , fi1−1, 1X1

i1

, fi1 , . . . , fi2−2, 1X2

i2

, fi2−1, . . . , 1Xk

ik

, fik−k+1, . . . , fn−k
)

(2.2.2)

where by 1Xi
s are denoted the morphisms 1Xi

∈ kC for the corresponding objects
Xi ∈ C.

by the following relations:

(i) the associativity of m, and dm = 0

(ii) pn;i1,...,ik = 0 if k = 0

(iii) p1;− = id

(iv) the A∞-morphism relation for dpn;i1,...,ik see (2.2.4) below

(2.2.3)

We use the notation j = p1,1, the degree zero 0-ary operation generating the weak unit.
It follows from (iv) that dj = 0. Note that relation (iv) expresses the relations like (2.1.1)
and its higher analogues (2.1.2) in the operadic terms, using (2.2.2).

It remains to specify relation (iv):

dpn;i1,...,ik =
∑

1≤ℓ≤n−1

±m ◦ (pℓ;i1,...,is(ℓ) , pn−ℓ;is(ℓ)+1,...,ik)+

n−1∑
r=1

±pn−1;j1,...,jq(r) ◦ (id, . . . , id,m(a(r), a(r + 1))
r

, id, . . . , id)

(2.2.4)

with the notations explained below:

s(ℓ) = max
s=1,...,k

{s|is ≤ ℓ}

a(r) =

{
id if r ̸∈ {i1, . . . , ik}
j otherwise.

q(r) =


k if neither r, r + 1 are in {i1, . . . , ik}. Then js = is for is ≤ r and js = is − 1 for is > r

k − 1 if either r or r + 1 are in {i1, . . . , ik}. Then js = is for is < r, and js = is+1 − 1 for is+1 > r

k − 2 if both r, r + 1 are in {i1, . . . , ik}. Then js = is for is < r, and js = is+2 − 1 for is+2 > r + 1.

Morally, the dg-operad O′ comprises all universal operations one can define on a weakly
unital dg-category.

Denote by Assoc+ the operad of unital associative k-algebras. In Section 2.8 we prove
the following theorem:
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Theorem 2.2.3. The natural map of dg-operads O′ → Assoc+, sending all pn;i1,...,ik ,
n ≥ 2, to 0, sending j = p1;1 to the 0-ary unit generating operation, and sending m to m,
is a quasi-isomorphism.

The proof is a rather long and tricky computation with several spectral sequences.

The left adjoint functor F : Gdgu(k) → Cdgwu(k) is defined in two steps, as follows. Given
a unital dg-quiver Γ, consider the free O′-algebra TO′(Γ), generated by Γ. It is defined as
follows:

We define a chain of length n in Γ as an ordered set X0, X1, . . . , Xn. Denote by Γn the
set of all chains of length n in Γ. For c ∈ Γn, set

Γ(c) := Γ(X0, X1)+ ⊗ Γ(X1, X2)+ ⊗ · · · ⊗ Γ(Xn−1, Xn)+

and
Γ(n)(X,Y ) :=

∑
c∈Γn

X0(c)=X,Xn(c)=Y

Γ(c)

(for n = 0 we set Γ(0)(X,X) = k idX and Γ(0)(X,Y ) = 0 for X ̸= Y ). Set

ΓO′(X,Y ) :=
∑
n≥0

O′(n)⊗ Γ(n)(X,Y ) (2.2.5)

It is a weakly unital dg-category with objects VΓ. The 0-ary operation j generates an
element jX ∈ TO′(X,X), for any X ∈ VΓ.

After that, define F (Γ) as the quotient dg-category

F (Γ) = TO′(Γ)/(jX − idX , X ∈ VΓ) (2.2.6)

In this way, we identify idX ∈ Γ(X,X) with the “weak unit” jX generated by O′.

One has:

Proposition 2.2.4. There is an adjunction:

Cdgwu(F (Γ), C) ≃ Gdgu(Γ, U(C)) (2.2.7)

Note that for Γ a non-unital dg-quiver, one defines a unital dg-quiver Γ+, formally adding
kX to Γ(X,X), for any x ∈ VΓ. Then

F (Γ+) ≃ TO′(Γ)

2.2.3 The coequalizers in Gdgu(k)

It is standard that coequalizers, and, therefore, all small colimits exist in Gdgu(k).

Recall the construction: let

Γ1

f

⇒
g
Γ2 (2.2.8)
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be a pair of morphisms in Gdgu(k).

Define its coequalizer Γf,g as a small quiver in Gdgu(k) whose set of objects is the co-
equalizer of the corresponding maps of the sets of objects

Ob(Γ1)
f

⇒
g
Ob(Γ2)

It is the quotient set of Ob(Γ2) by the equivalence relation generated by the binary relation
f(X)Rg(X), X ∈ Ob(Γ1).

Let [X] and [Y ] be two equivalence classes. Define a complex Γf,g([X], [Y ]) as the co-
equalizer in Vectdg(k) of ⊕

w,z∈Ob(Γ1)
[f(w)]=[g(w)]=[x]
[f(z)]=[g(z)]=[y]

Γ1(w, z)
f∗
⇒
g∗

⊕
a,b∈Ob(Γ2)

[a]=[x],[b]=[y]

Γ2(a, b) (2.2.9)

where f∗ maps ϕ ∈ Γ1(w, z) to f(ϕ), and g∗ maps it to g(ϕ). If at least one class of [x], [y]
is not in the image of f (which is the same that the image of g), we define source complex
in (2.2.9) as 0.

It is easy to check that the constructed dg-quiver Γf,g is a coequalizer of (2.2.8).

2.2.4 The coequalizers in Cdgwu(k)

Consider a pair of maps of weakly unital dg-categories

A
F

⇒
G

B (2.2.10)

It is not straightforward to find (or to prove existence of) its coequalizer.

However, one always can find the coequalizer of the maps of graphs

U(A)
U(F )

⇒
U(G)

U(B)
ℓ−→ Coeq(U(F ), U(G)) (2.2.11)

as in Subsection 2.2.3. For some special diagrams (2.2.10), the functor U creates coequal-
izers, see below. Afterwards, we reduce the general coequalizers (2.2.10) to these special
ones.

Definition 2.2.5. We say that the diagram (2.2.10) is good if Ob(A) = Ob(B), and both
F and G are identity maps on the sets objects.

Assume that (2.2.10) is good. Then the quiver Coeq(U(F ), U(G)), which is a particular
case of general coequalizers (2.2.8) in Gdgu(k), is especially simple. It has the set of
vertices equal to Ob(A) = Ob(B), and its morphisms are the quotient-complexes

Coeq(U(F ), U(G))(X,Y ) = B(X,Y )/(F (f)−G(f))f∈A(X,Y )
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Lemma 2.2.6. Suppose we are given a diagram (2.2.10) which is good. Then a weakly
unital dg-category structure Q and a map of weakly unital dg-categories L : B → Q such
that

A
F
⇒
G

B
L−→ Q

is a coequalizer, and U(Q) = Coeq(U(F ), U(G)), U(L) = ℓ, exist if and only if the
following two conditions hold:

(1) the sub-complexes (F (f)−G(f))f∈A(X,Y ), X,Y ∈ Ob(A), form a two-sided ideal in
B:

ℓ(g ◦ (F (f)−G(f)) ◦ g′) = 0 (2.2.12)

for any morphism f in A and any morphisms g, g′ in B (such that the compositions
are defined),

(2)

ℓ(pBn (g1 ⊗ . . . gk ⊗ (g ◦ (F (f)−G(f)) ◦ g′)⊗ gk+1 ⊗ · · · ⊗ gn−1)) = 0 (2.2.13)

for n ≥ 2, and any morphism f in A (some of gi are elements of kB).

In particular, the weakly unital dg-category Q, if it exists, is uniquely defined (which means
that in this case U strictly creates the coequalizer).

It is clear.

Recall that diagram (2.2.10) is called reflexive if there exists H : B → A such that FH =
GH = idB.

Proposition 2.2.7. Assume we are given a good and reflexive diagram (2.2.10). Then
conditions (1) and (2) of Lemma 2.2.6 are fulfilled. Consequently, the functor U strictly
creates the coequalizer.

Proof. Prove that (1) holds. One has:

ℓ(g ◦ (F (f)−G(f)) ◦ g′) = ℓ(g ◦ F (f) ◦ g′)− ℓ(g ◦G(f) ◦ g′) =
ℓ(FH(g) ◦ F (f) ◦ FH(g′))− ℓ(GH(g) ◦G(f) ◦GH(g′)) =

ℓ(F (H(g) ◦ f ◦H(g′))− ℓ(G(H(g) ◦ f ◦H(g′)) = 0

(2.2.14)

Prove that (2) holds. One has:

ℓ(pBn (g1 ⊗ · · · ⊗ (g ◦ (F (f)−G(f)) ◦ g′)⊗ · · · ⊗ gn−1)) =

ℓ(pBn (g1 ⊗ · · · ⊗ (g ◦ F (f) ◦ g′)⊗ · · · ⊗ gn−1))− ℓ(pBn (g1 ⊗ · · · ⊗ (g ◦G(f) ◦ g′)⊗ · · · ⊗ gn−1)) =

ℓ(pBn (FH(g1)⊗ · · · ⊗ (FH(g) ◦ F (f) ◦ FH(g′))⊗ · · · ⊗ FH(gn−1))−
ℓ(pBn (GH(g1)⊗ · · · ⊗ (GH(g) ◦G(f) ◦GH(g′))⊗ · · · ⊗GH(gn−1))) =

ℓ(pBn (FH(g1)⊗ · · · ⊗ (F (H(g) ◦ f ◦H(g′))⊗ · · · ⊗ FH(gn−1))−

ℓ(pBn (GH(g1)⊗ · · · ⊗ (G(H(g) ◦ f ◦H(g′)))⊗ · · · ⊗GH(gn−1)))
∗
=

ℓ(FpAn (H(g1)⊗ · · · ⊗ (H(g) ◦ f ◦H(g′))⊗ · · · ⊗H(gn−1)))−
ℓ(GpAn (H(g1)⊗ · · · ⊗ (H(g) ◦ f ◦H(g′))⊗ · · · ⊗H(gn−1))) = 0

(2.2.15)
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where the equality marked by * follows from the fact that F,G are functors of weakly
unital dg-categories and (2.1.4).

In order to prove the cocompleteness of Cdgwu, we closely follow the arguments in [[Wo],
Prop. 2.11]. We reproduce them here for completeness.

We make use of the following lemma, due to [[Li], pp. 77-78], and known as the 3x3-
lemma.

Lemma 2.2.8. Consider the following diagram in a category

A1

h1 //
h2

//

α1

��
α2

��

B1
h3 //

β1

��
β2

��

C1

γ1

��
γ2

��
A2

g1 //
g2
//

α3

��

B2

∗

g3 //

β3

��

C2

γ3

��
A3

f1 //
f2

// B3
f3 // C3

(2.2.16)

in which the top and the middle rows are coequalizers, the leftmost and the middle columns
are coequalizers, and all squares commute: giαi = βihi, fiα3 = β3gi, g3βi = γih3,
f3β3 = γ3g3, i = 1, 2. Then the following statements are equivalent:

(1) the bottom row is a coequalizer,

(2) the rightmost column is a coequalizer,

(3) the square in the lower right corner (marked by ∗) is a push-out.

Proposition 2.2.9. The category Cdgwu(k) has all coequalizers.

Proof. Let

A
H1 //
H2

// B (2.2.17)

be two arrows in Cdgwu(k) coequalizer of which we’d like to compute. Embed it to the
following solid arrow diagram, where (F,U) is the adjoint pair of functors from Proposition
2.2.4.

FUFUA
FUFU(H1) //
FUFU(H2)

//

ϵFUA

��

FUϵA

��

FUFUB
F (L′) //

ϵFUB

��

FUϵB

��

FE′

α1

��

α2

��
FUA

FU(H1) //
FU(H2)

//

ϵA

��

FUB
F (L) //

ϵB

��

FE

p

��
A

H1 //
H2

// B
q // X

(2.2.18)
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The upper and the middle rows are obtained from (2.2.17) by application of FUFU
and FU , correspondingly. Denote by E the coequalizer of (UH1, UH2) in Gdgu(k), and
by E′ the coequalizer of (UFUH1, UFUH2) in Gdgu(k). As F is left adjoint, FE and
FE′ are the coequalizers of (FUH1, FUH2) and (FUFUH1, FUFUH2) in Cdgwu(k),
correspondingly. Therefore, the upper and the middle rows of (2.2.18) are coequalizers.

The leftmost and the middle columns fulfill the assumptions of Proposition 2.2.7. Indeed,
the upper pairs of arrows are reflexive, by the second case of Lemma 1.5.4, see (1.5.4).
Therefore, these columns are coequalizers, by Proposition 2.2.7.

The dotted arrows α1, α2 are constructed as follows. For α1, consider the map

F (L) ◦ ϵFUB : FUFUB → FE

The two compositions

FUFUA
FUFUH1

⇒
FUFUH2

FUFUB
F (L)◦ϵFUB−−−−−−−→ FE

are equal, which gives rise to a unique map α1 : FE
′ → FE.

Similarly, taking FUϵB instead of ϵFUB , one gets a unique map α2 : FE
′ → FE, which

coequalizes the corresponding two arrows.

We claim that the pair (α1, α2) is reflexive. We construct κE : FE → FE′ such that
α1 ◦ κE = α2 ◦ κE = idFE .

Recall κA : FUA → FUFUA and κB : FUB → FUFUB given as in (1.5.4):

κA = FηUA, κB = FηUB

These maps are sections of the corresponding pairs of maps, which make them reflexive
pairs, see Lemma 1.5.4. Consider

F (L′) ◦ κB : FUB → FE′

The two maps

FUA⇒ FUB
F (L′)◦κB−−−−−−→ FE′

are equal, which gives rise to a unique map

κE : FE → FE′

A simple diagram chasing shows that α1 ◦ κE = α2 ◦ κE = idFE .

One has Ob(FE) = Ob(FE′), and Proposition 2.2.9 is applied. We get an arrow p : FE →
X which is a coequalizer of (α1, α2).

Finally, we have to construct an arrow q : B → X making the square in the lower right
corner commutative. To this end, consider p ◦ F (L) : FUB → X. The two compositions

FUFUB⇒ FUB
p◦F (L)−−−−−→ X

are equal, which gives a unique map q : B → X. One checks that the lower right square
commutes.

One makes use of Lemma 2.2.8 to conclude that the bottom row is a coequalizer.
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We have already seen in Subsection 2.2.1 that the products, the coproducts, and the
equalizers in Cdgwu(k) are constructed straightforwardly. Then Proposition 2.2.9, and
the classic result [[R2], Th. 3.4.11] give:

Theorem 2.2.10. The category Cdgwu(k) is small complete and small cocomplete.

2.2.5 The monadicity

Although we will not be using the following result in this work, it may have an independent
interest. The argument is close to [[Wo], Th. 2.13].

Theorem 2.2.11. The adjunction

F : Gdgu(k)⇄ Cdgwu(k) : U

is monadic.

Proof. We deduce the statement from the Beck Monadicity Theorem 1.5.2, for which we
have to prove that the assumptions in (1)-(3) in Theorem 1.5.2 hold.

(1) has been proven in Proposition 2.2.9, by which Cdgwu(k) has all coequalizers, and (3)
is clear. One has to prove (2), that is, that the functor U : Cdgwu(k) → Gdgu(k) preserves
all U -split coequalizers. We make use of Lemma 2.2.8, once again.

Let a pair of arrows in Cdgwu(k)

A
H1

⇒
H2

B (2.2.19)

be U -split. Then

UA
UH1

⇒
UH2

UB
L−→ E (2.2.20)

is a split coequalizer, for some L and E. The upper and the middle rows in (2.2.18) are
defined now as the result of application of FUF and F , correspondingly, to (2.2.20). (In
particular, now E′ = UF (E), L′ = UF (L)). Therefore, the upper and the middle rows
are split, and, therefore, absolute coequalizers, by Lemma 1.5.1.

Then we get the dotted arrows in (2.2.18), and construct X, as in the proof of Proposition
2.2.9. In particular, we get a coequalizer

A
H1

⇒
H2

B
q−→ X (2.2.21)

at the bottom row of (2.2.18). One has to prove that UX ≃ E.

In the obtained diagram all columns and two upper rows are split coequalizers, but the
bottom row is also a coequalizer but possibly not split. Now apply the functor U to the
whole diagram. As split coequalizers are absolute, by Lemma 1.5.1, the upper two rows
and all three columns remain coequalizers. Therefore, by Lemma 2.2.8, the bottom row
also remains a coequalizer, after application of the functor U .
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2.3 The pretriangulated hull of a weakly unital dg-
category

Recall that the pretriangulated hull of a dg-category C was introduced by Bondal-Kapranov
[BK] (see also [[Dr], Remark 2.4]). A dg-category C is pretriangulated if H0(C) is trian-

gulated. Explicitly, it means that the functors Z → Hom(C(Z,X)
f−→ C(Z, Y )) and

Z → C(Z,X)[n] defined for any closed morphism f : X → Y in C and for any object
X ∈ C, n ∈ Z, correspondingly, are representable. In this case, the representing objects
are Cone(f) and X[n].

The pretriangulated hull Cpretr of a dg-category C is a pretriangulated dg-category with
a dg-functor C → Cpretr, which is universal for dg-functors from C to pretriangulated
dg-categories [BK].

Explicitly, it is constructed as follows. An object of Cpretr is a “one-sided twisted com-
plexes”, which are formal finite sums (⊕ni=1Xi[ri]), q) where q has components qij ∈
Cri−rj+1(Xi, Xj), which are zero for i ≥ j, such that dq + q2 = 0. Let X = (⊕Xi[ri], q),
X ′ = (⊕X ′

i[r
′
i], q

′) be two objects of Cpretr, a morphism ϕ ∈ Cpretr(X,X ′) of degree k is
defined as the collection ϕij : Xi[ri] → X ′

j [r
′
j ] of degree d (in general, non-zero for any

i, j), and dϕ = dCϕ+q
′◦ϕ−(−1)kϕ◦q. The composition is defined as the matrix product.

The dg-functor C → Cpretr is defined on objects as X 7→ (X[0], q = 0), and on morphisms
accordingly. We recall that, given f : X → Y a closed morphism in C, Cone(f) ∈ Cpretr

is defined as Cone(f) = (X ⊕ Y [−1], q = f) (that is, q12 = f , q11 = q22 = q21 = 0).

We want to define the pretriangulated hull of a weakly unital dg-category, which is a
weakly unital dg-category as well. If we just repeated the definition given above, we
would experience the following problem. Let f ∈ C(X,Y ) be a closed morphism, we do
not assume that f ◦ idX = f or idY ◦f = f . Defining Cone(f) = (X ⊕ Y [−1], f), there
should be a weak identity morphism idCone(f), which is a closed morphism of degree 0.
A natural candidate is given by idX : X → X, idY : Y → Y . But then d(idCone(f)) =
f ◦ idX − idY ◦f ̸= 0.

We remedy this problem as follows: for a closed morphism f in C, define Cone(f) =
(X ⊕ Y [−1], f)) as above, but re-define idCone(f). Namely, define idCone(f) as having 3
non-zero components:

idCone(f) = (idX , idY , ε ∈ C0(X,Y [−1]))

where ε = p2(f, 1X)− p2(1Y , f)
(2.3.1)

where p2 is the second Taylor component of the A∞-morphism p : C ⊕ kC → C, see
Definition 2.1.1.

Then one has:
d(idCone(f)) = f ◦ idX − idY ◦f + dε = 0 (2.3.2)

(Recall that dp2(f, 1x)) = p1(f)− f ◦ idX = f − f ◦ idX , and similarly for dp2(1y, f)).

Thus, at the first step we define, inspired by this example, the identity morphism idX , for
X = (⊕Xi[ri], qij), and check that d(idX) = 0. After that, we construct an A∞-functor
P : Cpretr ⊕ kCpretr → Cpretr, making Cpretr a weakly unital dg-category.
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(We denote by p the structure A∞-functor for C, and by P the structure A∞-functor for
Cpretr).

Definition 2.3.1 (Pretriangulated hull of a weakly unital dg-category, I). Let C be a
weakly unital dg-category. We define the underlying non-unital dg-category of pretrian-
gulated hull of C as in the strictly unital case:

(a) objects are formal expressions (
⊕n

i=1Xi[ri], qij), where Xi ∈ C, ri ∈ Z, qij ∈
C1+rj−ri(Xi, Xj) = C1(Xi[ri], Xj [rj ]) such that qij = 0 if i ≥ j and dq + q ◦ q = 0,

(b) the space of degree k morphisms Cpretr(X,X ′), forX = (Xi[ri], qij), X
′ = (X ′[r′i], q

′
ij),

is defined as the space of matrices ϕ = (ϕij : C
k(Xi[ri] → X ′

j [r
′
j ])), the composition

is matrix multiplication and the differential is dϕ := dCϕ+ q′ ◦ ϕ− (−1)kϕ ◦ q.

Now we define, for any object X ∈ Cpretr, an “identity” morphism idX (which is required
to be a closed morphism of degree 0), and construct an A∞-morphism P : Cpretr⊕kCpretr →
Cpretr, making it a weakly unital dg-category. In fact, we start with A∞-morphism P ,
then idX := P1(1X).

Let X0, . . . , Xn be objects of Cpretr, and let ϕi : Xi−1 → Xi be either a morphism in
Cpretr or 1Xi−1 (in which case Xi = Xi−1).

We are going to define Pn(ϕ
n, . . . , ϕ1). Let us introduce some notations. We visualize the

string

X0 ϕ1

−→ X1 ϕ2

−→ X2 → . . .
ϕn

−−→ Xn

as a planar diagram whose horizontal arrows are qikℓ, where X
i = (⊕Xi

k[r
i
k], q

i
kℓ), and

whose other arrows are the components of ϕi, i = 1, . . . , n, see (2.3.3).

We refer to the arrows qikℓ as horizontal, and the other arrows, called essential, are either
components of ϕis or morphisms 1X for some X ∈ C.

Now we associate to any couple (X0
a , X

n
b ) of starting and ending objects, a set Pathsab

of all the possible paths from X0
a to Xn

b , see (2.3.3), (2.3.4).

By definition, a path κ ∈ Pathsab is a sequence of arrows κ = (κ1, . . . , κℓ), either hor-
izontal or essential, such that (a) for any 1 ≤ s ≤ n there is exactly 1 essential arrow
which is a components of ϕs, and these n essential arrows stand respecting the order,
(b) the arrows between two successive essential arrows, which are components of ϕs and
ϕs+1 (here ϕs = 1X is allowed), are horizontal arrows in Xs, which form a composable
chain (there are allowed more than 1 arrows in this chain), (c) the first arrow starts at
X0
a , and the last one ends at Xn

b . It follows in particular that a path is represented by a
composable chain of arrows.

If some ϕi = 1Xi−1 , the corresponding arrow in ϕikℓ : X
i−1
k → Xi−1

ℓ is defined as 1Xi−1
k

for k = ℓ, and 0 otherwise.

For example, in (2.3.3) the sequence (qiℓ, qℓm, ϕmℓ, q
′

ℓm, ϕ
′

mm, q
′′

mj) is a path, and in (2.3.4)

the sequence (ϕii, q
′

iℓ, q
′

ℓk, ϕ
′

ki, q
′′

ij) is a path (here for both diagrams n = 2).
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. . . X0
i X0

l X0
m X0

h . . .

. . . X1
i X1

l X1
m X1

k . . .

. . . X2
i X2

l X2
m X2

j . . .

qiℓ qℓm

ϕml

q
′
ℓm

ϕ
′
mm

q
′′
mj

(2.3.3)

. . . X0
i X0

l X0
m X0

h . . .

. . . X1
i X1

l X1
m X1

k . . .

. . . X2
i X2

l X2
m X2

j . . .

ϕii

q
′
iℓ

q
′
ℓk

ϕ
′
ki

q
′′
ij

(2.3.4)

Below we assume for n ≥ 2 that at least one of morphisms ϕi : Xi−1 → Xi is 1Xi−1 ;
otherwise, (2.3.5) below gives 0.

Define
P ijn (ϕn, . . . , ϕ1) :=

∑
κ∈Pathsij

(−1)|κ|pl(κl, . . . , κ1) (2.3.5)

(Recall that p denotes the structure A∞-morphism for C).

To define the integer |κ|, we introduce some notations. Let κ = (κ1, . . . , κℓ), and let the n
arrows κd1 , . . . , κdn be essential. Assume that κds is an arrow in C(Xs−1

as [rs], Xs
bs
[rs+1]).

Define ts = rs+1 − rs (we set ts = 0 if κds = 1X).

The integer |κ| is given by

|κ| =
n∑
s=1

(deg ϕs + ts + 1)Ns (2.3.6)

where Ns is the number of the horizontal arrows standing leftwards to the s-th essential
arrow κds in the sequence (κ1, . . . , κℓ).

Lemma 2.3.2. The maps P ijn (ϕn, . . . , ϕ1) are homogeneous of degree
∑

deg ϕi − n +
1. Thus, they are the components of a morphism Pn(ϕn, . . . , ϕ1) : X

0 → Xn of degree∑
deg ϕi − n+ 1 in the category Cpretr.

Proof. Let κ = (κ1, . . . , κℓ) ∈ Pathsij , we have to compute the degree of pℓ(κn, . . . , κ1).
One has:

deg pℓ(κℓ, . . . , κ1) =

ℓ∑
r=1

deg κr − ℓ+ 1
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Among κ1, . . . , κℓ exactly n arrows are ϕists, the remaining ℓ− n are qist and have degree
1 in Cpretr. On the other hand, deg ϕist = deg ϕi and does not depend on s, t. Therefore,

deg pℓ(κℓ, . . . , κ1) =
∑

κr ̸=qjst

deg κr − n+ 1 =

n∑
r=1

deg ϕr − n+ 1

Proposition 2.3.3. Let C be a weakly unital dg-category, Cpretr the non-unital dg-category
from Definition 2.3.1. Taken for all n ≥ 1 and all ϕ1, . . . , ϕn, the morphisms Pn(ϕn, . . . , ϕ1)
are the Taylor components of an A∞-morphism P : Cpretr⊕kCpretr → Cpretr, making Cpretr

a weakly unital dg-category, with idX := P1(1X).

We prove this Proposition in Section 2.7.

Definition 2.3.4 (Pretriangulated hull of a weakly unital dg-category, II). The pretri-
angulated hull Cpretr of a weakly unital dg-category C is the non-unital dg-category Cpretr

(see Definition 2.3.1) with the weakly unital structure given in Proposition 2.3.3.

It is instructive to unwind the definition idX = P1(1X) and get an explicit formula idX ,
X ∈ Cpretr.

Let X = (⊕Xi[ri], qij) ∈ Cpretr. We want to find the (ij)-component (idX)ij . Let i ≤ j.
Define

(idX)ij =∑
i=ℓ0<ℓ1<···<ℓk=j

k∑
r=0

(−1)rpk(qℓk−1j , qℓk−2ℓk−1
, . . . , qℓrℓr+1

, 1Xir
, qℓr−1ℓr , qℓr−2ℓr−1

, . . . , qiℓ1)

(2.3.7)
Then

(idX)ij =

{
the rhs of (2.3.7) i ≤ j

0 i > j
(2.3.8)

The reader easily checks that for the case idCone(f) (2.3.7) gives (2.3.1).

2.4 A Closed Model Structure on Cdgwu(k)

In this Section we provide a cofibrantly generated Quillen model structure on Cdgwu(k).
Recall the results from Section 1.2 for a brief and general introduction to (cofibrantly
generated) closed model categories.

Define quasi-equivalences W in Cdgwu(k) as the weakly unital dg-functors F : C → D such
that the following two conditions hold:

(W1) for any two objects x, y ∈ C, the map of complexes C(x, y) → D(Fx, Fy) is a
quasi-isomorphism of complexes,

(W2) the functor H0(F ) : H0(C) → H0(D) is an equivalence of k-linear categories.



44
CHAPTER 2. THE MODEL CATEGORY STRUCTURE OF WEAKLY UNITAL

DG-CATEGORIES CDGWU (k)

Remark that for a weakly unital dg-category C, the category H0(C) is strictly unital and
the functor H0(F ) is well-defined.

Define fibrations Fib in Cdgwu(k) as the weakly unital dg-functors F : C → D such that
the following two conditions hold:

(F1) for any two objects X,Y ∈ C, the map of complexes C(X,Y ) → D(FX,FY ) is
component-wise surjective,

(F2) for any X ∈ C and a closed degree 0 arrow g : FX 7→ Z in D (Z not necessarily in
the image of F ), such that g becomes an isomorphism in H0(D), there is an object
Y ∈ C and a closed degree 0 arrow f : X 7→ Y inducing an isomorphism in H0(C)
and such that F (f) = g.

We define also a class Surj of maps in Cdgwu(k) as follows: a weakly unital dg-functor
F : C → D belongs to Surj if F is surjective on objects and if (F1) holds.

Lemma 2.4.1. A weakly unital dg-functor F : C → D belongs to Fib ∩W if and only if
it belongs to Surj ∩ (W1).

Proof. It is clear that Surj∩(W1) implies Fib∩W. Conversely, assume F obeys Fib∩W.
One has to prove that F is surjective on objects. From (W2) we know that H0(F ) is
essentially surjective, that is, for any object Z in D there is a homotopy equivalence
g : FX → Z. By (F2), there is a homotopy equivalence f : X → Y such that F (f) = g.
In particular, F (Y ) = Z.

Lemma 2.4.2. Let C be a weakly unital dg-category, X ∈ C an object. Suppose there
are two degree −1 maps h1, h2 ∈ C−1(X,X) such that dhi = idX , i = 1, 2. Then there is
t ∈ C−2(X,X) such that dt = h1 − h2.

Proof. Consider t′ = h1h2. We find (using (2.1.1)):

dt′ = idX ◦h2 − h1 ◦ idX
= − dp2(1, h2) + h2 − p2(1, idX) + dp2(h1, 1)− h1 + p2(idX , 1)

(2.4.1)

If we manage to prove that p2(id, 1)− p2(1, id) is a boundary, we are done. Consider

H := p2(p2(id, 1), 1) + p2(1, p2(1, id))− p3(1, id, 1) + p3(id, id, 1) + p3(1, id, id)− p3(1, 1, id)

− p3(id, 1, 1) + p3(1, 1, 1)
(2.4.2)

We compute dH using (2.1.1) and (2.1.2), the differential of each particular summand in
(2.4.2) is displayed as [. . . ]:

dH :=
[
p2(id, 1) ◦ id. . . . . . . . . . . . .

+ p2(id ◦ id, 1)
]
+
[
id ◦p2(1, id)− p2(1, id ◦ id)

::::::::::

]
+
[
p2(id, 1)− p2(1, id)

− id ◦p2(id, 1) +((((((p2(1, id) ◦ id
]
+
[
− p2(id ◦ id, 1) + id ◦p2(id, 1)

]
+[

p2(1, id ◦ id)
::::::::::

−((((((p2(1, id) ◦ id
]
+
[XXXXXXp2(1, 1) ◦ id− id ◦p2(1, id)

]
+[

− id ◦p2(1, 1)
:::::::::

+ p2(id, 1) ◦ id. . . . . . . . . . . . .

]
+
[
id ◦p2(1, 1)
:::::::::

−XXXXXXp2(1, 1) ◦ id
]
=

p2(id, 1)− p2(1, id).
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Therefore t := −t′ − p2(1, h2) + p2(h1, 1) +H ∈ C−2(X,X) is such that dt = h1 − h2.

2.4.1 The weakly unital dg-category K′

The weakly unital dg-category K′ introduced below is a weakly unital counterpart of
the dg-category K, due to Kontsevich in [[Ko1], Lecture 6], and subsequently used by
Tabuada in his closed model structure on Cdg(k) [Tab]. Let us recall here the definition.

The dg-category K is the strictly unital dg-category with two objects 0 and 1, and freely
generated by f ∈ K0(0, 1), g ∈ K0(1, 0), h0 ∈ K−1(0, 0), h1 ∈ K−1(1, 1), r ∈ K−2(0, 1),
whose differentials are

df = dg = 0, dh0 = g ◦ f − id0, dh1 = f ◦ g − id1, dr = h1 ◦ f − f ◦ h0 (2.4.3)

Denote by I2 the k-linear envelope of the ordinary category with two objects 0 and 1, and
with a unique morphism (including the identity one) between any ordered pair of objects.
There is a dg-functor pK : K → I2, which is the identity map on the objects, and sends
h1, h2, r to 0.

The following well-known result says that K is a semi-free resolution of I2 and the proof
can be found in [[Dr], 3.7]:

Lemma 2.4.3. The dg-functor pK : K → I2 is a quasi-equivalence.

Definition 2.4.4. Denote by K′ the weakly unital dg-category with two objects 0 and
1, whose morphisms are freely generated by the following morphisms:

• a morphism f ∈ (K′)0(0, 1),

• a morphism g ∈ (K′)0(1, 0),

• a morphism h0 ∈ (K′)−1(0, 0),

• a morphism h1 ∈ (K′)−1(1, 1),

• a degree -2 morphism r ∈ (K′)−2(0, 1)

whose differentials are given as

df = dg = 0

dh0 = g ◦ f − id0, dh1 = f ◦ g − id1

dr = h1 ◦ f − f ◦ h0 + p2(1, f)− p2(f, 1)

(2.4.4)

A version of a lemma in [[Ko1], Lecture 6] holds as well in the setting of weakly unital
dg-categories:

Lemma 2.4.5. Let C be a weakly unital dg-category, and ξ ∈ C0(X,Y ) be a closed degree
0 morphism, such that [ξ] ∈ H0(C) is a homotopy equivalence. Then there is a weakly
unital dg-functor F : K′ → C, such that F (f) = ξ.
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Proof. By definition of being a homotopy equivalence, there exist η ∈ C0(Y,X), hX ∈
C−1(X,X) and hY ∈ C−1(Y, Y ) such that:

dhX = η ◦ ξ − idX

dhY = ξ ◦ η − idY
(2.4.5)

Now we are looking for a morphism r ∈ C−2(x, y) such that dr = hY ◦ ξ − ξ ◦ hX +
p2(1, ξ)− p2(ξ, 1).
We define:

A := hY ◦ ξ − ξ ◦ hX + p2(1, ξ)− p2(ξ, 1).

Clearly dA = 0. Then we take h′Y := hY − A ◦ η and r := A ◦ hX − p2(A, 1), so that we
easily get:

dh′Y = dhY − dAη +Adη = ξη − idY . (2.4.6)

and also
dr =dA ◦ hX −A ◦ dhX −A ◦ idX +A− p2(dA, 1)

=−A ◦ (ηξ − idX)−A ◦ idX +A

=−A ◦ η ◦ ξ + hY ◦ ξ − ξ ◦ hX + p2(1, ξ)− p2(ξ, 1)

=(hY −A ◦ η) ◦ ξ − ξ ◦ hX + p2(1, ξ)− p2(ξ, 1)

=h′y ◦ ξ − ξ ◦ hX + p2(1, ξ)− p2(ξ, 1).

(2.4.7)

We are done.

We prove a lemma which we will be used later in the proof of Theorem 2.4.7 and (implic-
itly) in Theorem 2.4.14:

Lemma 2.4.6. Let C be a weakly unital dg-category. There is a bijection between the set
of weakly unital dg-functors from K′ to C and the set of pairs (ξ, h), where ξ ∈ C0(x, y)
is a closed morphism and h is a contraction of Cone(ξ) in Cpretr.

Proof. A weakly unital dg-functor F : K′ → C amounts to the following morphisms in C:
ξ = F (f), η = F (g), h11 = F (h0), h22 = F (h1), h12 = F (r) such that:

d(ξ) = 0, dη = 0, dh11 = η ◦ ξ − idx, dh22 = ξ ◦ η − idy,

dh12 = h22 ◦ ξ − ξ ◦ h11 + p2(1, ξ)− p2(ξ, 1)
(2.4.8)

A contraction to idCone(ξ) (see (2.3.1)) is the datum of a morphismH : Cone(ξ) → Cone(ξ)
of degree -1 such that

dH = IdCone(ξ), (2.4.9)

Then

H = (h11 ∈ C−1(X,X), h22 ∈ C−1(Y, Y ), h12 ∈ C−2(X,Y ), h21 ∈ C0(Y,X))

as in the diagram below

X
ξ //

h11

��

h12

&&

Y

h22

��h21xx
X

ξ
// Y

(2.4.10)

We see by a direct calculation that 2.4.8 is equivalent to 2.4.9.
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Proposition 2.4.7. The weakly unital dg-category K′ has the same homotopy type as
the Kontsevich dg-category K. More precisely, regarding K as an object in Cdgwu(k), the
natural projection p : K′ → K, sending all pn(−), n ≥ 2, to 0, is a quasi-equivalence.

Proof. Consider ascending filtrations {Φi(a, b)}i≥0 of K
′(a, b) and {Fi(a, b)}i≥0 of K(a, b),

a, b ∈ {0, 1}, such that p(Φi(a, b)) ⊂ Fi(a, b), i ≥ 0. We prove that the corresponding
spectral sequences converge, and that the map p induces an isomorphism in the E1 sheets.
The result will follow from the latter statement.

Define Fi(a, b) as the dg-vector space generated by all monomials with ≤ i factors r.
Define Φi(a, b) similarly, but we count all occurrences of r in expressions pj(. . . , r, . . . ) as
a “factor r”. It is clear that d(Fi(a, b)) ⊂ Fi(a, b) and d(Φi(a, b)) ⊂ Φi(a, b), and that
p(Φi(a, b)) ⊂ Fi(a, b).

Also, it is clear that both spectral sequences converge, by dimensional reasons (the spectral
sequences live in the quadrant “x ≤ 0, y ≤ 0”).

We have:

Lemma 2.4.8. The map p induces an isomorphism in the E1 sheets.

Proof. For both cases, the differential in E0 is the same as it would be if dr = 0. Therefore,
to compute E1 we assume that dr = 0 for both cases.

Denote by K̃′ (respectively, K̃) the semi-free weakly unital dg-category (respectively,
the semi-free unital dg-category) with two objects {0, 1}, the generators f, g, h0, h1, r, as
in (2.4.3), (2.4.4), and in which the differential of the generators is given by the same
formulas:

df = dg = 0

dh0 = g ◦ f − id0, dh1 = f ◦ g − id1

dr = 0

(2.4.11)

Now the statement follows from the fact that the projection of dg-operads O′ → O is a
quasi-isomorphism in any arity, where the dg operad O is the quotient-operad of O′ by
the dg operadic ideal I generated by pn(1, . . . , 1), n ≥ 2, see [[PS1], Section 4].

Remark 2.4.9. The argument employed in the proof of Lemma 2.4.8 can not be used
directly for p : K′ → K (without any spectral sequence argument), because dr is given
by different formulas in (2.4.3) and (2.4.4). More precisely, the equation for dr for K′ is
a deformation of that for K. Consequently, it does not follow directly from the quasi-
isomorphism O′ → O that p : K′(a, b) → K(a, b) is a quasi-isomorphism.

Now we are ready to state the following result, whose proof is trivial:

Corollary 2.4.10. The natural projection K′ → I2, equal to the composition K′ p−→ K
pK−−→

I2, is a weak equivalence.
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2.4.2 The sets I and J

Denote by D(n) the complex 0 → k[n] id−→ k[n − 1] → 0, it is D(n) = Cone(id : k[n] →
k[n]).

Denote S(n − 1) = k[n − 1]. Consider the natural embedding i : S(n − 1) → D(n) of
complexes.

Denote by A the weakly unital dg-category with a single object 0 and generated (over
the dg-operad O′) by id0. Denote by κ the weakly unital dg-functor

κ : A → K′,

sending 0 to 0. It follows from Corollary 2.4.10 that κ is a quasi-equivalence.

Denote by B the weakly unital dg-category with two objects 0 and 1 and generated over
O′ by morphisms id0 and id1.

Let P (n) be the dg-quiver with two objects 0 and 1, and with morphisms P (n)(0, 1) =
D(n), P (n)(0, 0) = 0, P (n)(1, 1) = 0, P (n)(1, 0) = 0. Denote by P(n) the weakly unital
dg-category generated by P (n): P(n) := F (P (n)).

Denote by α(n) the weakly unital dg-functor

α(n) : B → P(n),

sending 0 to 0 and 1 to 1.

Let C(n) be the dg-quiver with two objects 0 and 1, and with morphisms C(n)(0, 1) =
S(n − 1), C(n)(0, 0) = 0, C(n)(1, 1) = 0, C(n)(1, 0) = 0. Denote by C(n) the weakly
unital dg-category generated by C(n): C(n) := F (C(n)).

Let b(n) : C(n) → P (n) be a map of dg-quivers sending 0 to 0, 1 to 1, and such that

S(n − 1) = C(n)(0, 1)
i−→ P (n)(0, 1) = D(n) is the embedding i. Denote by β(n) the

weakly unital dg-functor

β(n) := F (b(n)) : C(n)
i−→ P(n).

Denote by Q the natural weakly unital dg-functor

Q : ∅ → A.

Let I be a set of morphisms in Cdgwu(k) which comprises the weakly unital dg-functors
Q and β(n), n ∈ Z.

Let J be a set of morphisms in Cdgwu(k) which comprises κ and α(n), n ∈ Z.

The set I and J are referred to as the sets of generating cofibrations and of generating
acyclic cofibrations, correspondingly.

Lemma 2.4.11. A weakly unital dg-functor F : C → D has RLP with respect to all
α(n), n ∈ Z if and only if F obeys (F1). A weakly unital dg-functor F : C → D has RLP
with respect to all β(n), n ∈ Z if and only if F obeys (F1) ∩ (W1).
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Proof. Let us prove the “only if” parts of both statements, the proofs of the “if” parts
are standard and are left to the reader.

Assume a weakly unital dg-functor F : C → D has RLP with respect to all α(n), n ∈ Z: for
the functor F it means that any morphism in D(FX,FY ) is F (q), for some q ∈ C(X,Y ).
That is, F is surjective on morphisms.

Assume that a weakly unital dg-functor F : C → D has RLP with respect to all β(n),
n ∈ Z: one deduces from this property that for any X,Y ∈ C, the map of complexes
C(X,Y ) → D(FX,FY ) is component-wise surjective, and is a quasi-isomorphism.

Let us recall the standard terminology (conventional for the theory of closed model cat-
egories): a dg-functor F : C → D belongs to I-inj (respectively, to J-inj) if it has the
RLP with respect to all morphisms in I (respectively, in J).

Proposition 2.4.12. One has

I-inj = Surj ∩ (W1) = J-inj ∩W

Proof. Thanks to Lemma 2.4.11, the first equality follows from the fact that a dg-functor
F : C → D has the RLP for Q if and only if it is surjective on objects, which is straight-
forward.

The second equality is far more sophisticated, and its proof is based on the following
lemma1:

Lemma 2.4.13. One has Fib = J-inj.

Proof. The inclusion J-inj ⊆ Fib follows from Lemma 2.4.5.

In order to prove the inclusion Fib ⊆ J-inj consider ϕ : C → D in Fib. Axiom (F1) is
equivalent to the RLP with respect to α(n), n ∈ Z, thence we only need to prove the
RLP with respect to κ for ϕ.

We are given a weakly unital dg-functor F : K′ → D. We can apply (F2) to ξ = F (f) ∈
D0(ϕ(x), z), and so we get a morphism η ∈ C0(x, y) which is a homotopy equivalence and
ϕ(η) = ξ, ϕ(y) = z. (Recall that f, g, h0, h1, r are generators for K′, see (2.4.4)).

We should construct a weakly unital dg-functor F̂ : K′ → C such that ϕ ◦ F̂ = F and
F̂ (f) = η. By Lemma 2.4.6 having a weakly unital dg-functor F : K′ → D, F (f) = ξ is
equivalent to having a contraction of Cone(ξ) in Dpretr, i.e. we have a degree -1 morphism
h ∈ Dpretr(Cone(ξ),Cone(ξ)) such that dh = idCone(ξ).

By (F2) we know that Cone(η) is also contractible, so we also have a morphism h̃1 ∈
Cpretr(Cone(η),Cone(η)), such that dh̃1 = idCone(η). Even though we do not know

whether ϕpretr(h̃1) = h, we still have dϕpretr(h̃1) = idCone(ξ).

1Lemma 2.4.13 is one of the most subtle places in our constructions; in particular, the theory of weakly
unital pretriangulated hull developed in Section 2.3, and Lemma 2.4.2, were designed especially for its
proof.
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By Lemma 2.4.2, one has ϕpretr(h̃1) − h = dt. By (F1), we find a lift t̃ of t, and set
h̃ := h̃1 − dt̃. One clearly has dh̃ = idCone(η) and ϕ(h̃) = h. This gives the desired lift

F̂ : K′ → C such that ϕ ◦ F̂ = F , by Lemma 2.4.6.

Now we have J-inj ∩W = Fib ∩W = Surj ∩ (W1), and we are done.

The following theorem is one of our main results:

Theorem 2.4.14. The category Cdgwu(k) admits a cofibrantly generated closed model
structure whose weak equivalences are the quasi-equivalences, the fibrations are as above,
and whose sets of generating cofibrations and generating acyclic cofibrations are I and J .

2.4.3 Proof of Theorem 2.4.14

Recall from Section 1.2 the notations I-cell, J-cell, I-cof, J-cof and recall that I-cell ⊂
I-cof and J-cell ⊂ J-cof .

Recall this result [[Ho], Th. 2.1.19] which the proof is based on:

Theorem 2.4.15. Let C be a small complete and cocomplete category. Suppose that W
is a subcategory of C, and I and J are sets of maps. Assume that the following conditions
hold:

1. the subcategory W has 2-out of-3 property and is closed under retracts,

2. the domains of I are small relative to I-cell,

3. the domains of J are small relative to J-cell,

4. J-cell ⊂ W ∩ I-cof ,

5. I-inj = W ∩ J-inj.

Then there is a cofibrantly generated closed model structure on C, for which the morphisms
W of W are weak equivalences, I are generating cofibrations, J are generating acyclic
cofibrations. Its fibrations are defined as J-inj.

Proof of Theorem 2.4.14. The category Cdgwu(k) is small complete and small cocomplete
by Theorem 2.2.10. The conditions (1)− (3) are clear. Condition (5) has been proved in
Proposition 2.4.12. It follows from (5) that I-inj ⊂ J-inj, and so J-cof ⊂ I-cof . It only
remains to prove that J-cell ⊆ W.

Proof of J-cell ⊆W . We have to prove that the push-out of a morphism in J is a quasi-
equivalence. We consider two cases: when the morphism in J is α(n), n ∈ Z, and when it
is κ.
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First case.
The first case we need to consider is shown in the push-out diagram:

B X

P(n) Y

α(n)

G

F (2.4.12)

where G is an arbitrary map. We need to prove that F is a quasi-equivalence.

Clearly Ob(X) = Ob(Y), and F acts by the identity maps on the objects. We are left
to show that, for any objects A,B ∈ Ob(X), the map of complexes F (A,B) : X(A,B) →
Y(A,B) is a quasi-isomorphism. For objects 0, 1 in Ob(B), let denote by U = G(0) and
V = G(1). By Proposition 2.4.16, one has the following description for the hom-complexes
of Y:

Y(A,B) := X(A,B)
⊕

O′(3)⊗ X(V,B)⊗D(n)⊗ X(A,U)⊕
O′(5)⊗ X(V,B)⊗D(n)⊗ X(V,U)⊗D(n)⊗ X(A,U)

⊕
· · ·

(2.4.13)
The map F (A,B) sends X(A,B) to the first summand. The other summands have trivial
cohomology by the Künneth formula, since the acyclicity of D(n).

Second case.
As the second case we consider the following push-out diagram:

A X

K′ Y

κ

H

F (2.4.14)

where H is an arbitrary map.

One has Ob(Y) = Ob(X)⊔ 1K′ . It is clear that H0(F ) is essentially surjective. One has to
prove that the F is locally a quasi-isomorphism: F (A,B) : X(A,B) → Y(A,B), for any
A,B ̸= 1K′ . Denote H(0A) = U .

By Theorem 2.4.7, we know that K′ is a resolution of the k-linear envelope of the ordinary
category with two objects 0, 1 and with only one morphism between any pair of objects.
In particular, K′(0, 0) is quasi-isomorphic to k[0]. Therefore

K̄′ := K′(0, 0)/k[0] (2.4.15)

is a complex acyclic in all degrees.

By Proposition 2.4.16, we have:

Y(A,B) := X(A,B)
⊕

O(3)⊗ X(U,B)⊗ K̄′ ⊗ X(A,U)⊕
O(5)⊗ X(U,B)⊗ K̄′ ⊗ X(U,U)⊗ K̄′ ⊗ X(A,U)

⊕
. . .

(2.4.16)

It is a direct sum of complexes, among which all but the first one are acyclic, due to the
acyclicity of K̄′. It completes the proof that F is a quasi-equivalence.

Theorem 2.4.14 is proven.
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2.4.4 Push-outs in the category Cdgwu(k)

For sake of completeness, we describe explicitly the push-out diagrams in Cdgwu(k). Con-
sider the following:

C C1

C2

i2

i1

(2.4.17)

where ia : C ↪→ Ca, a = 1, 2 are embeddings of weakly unital dg-categories. We provide
an explicit formula for the push-out E. This formula is essentially used in the proof of
Theorem 2.4.14.

Note that this colimit E is equivalently the colimit of the following coequalizer diagram:

C C1 ⊕ C2
(2.4.18)

where the maps are (i1, 0) and (0, i2). The category structure on C1 ⊕ C2 is defined as

Ob(C1 ⊕ C2) := Ob(C1) ⊔Ob(C2)

HomC1⊕C2(x, y) =

{
Ca(x, y) if x, y ∈ Ob(Ca)

0 otherwise.

In Proposition 2.2.9 we considered the general coequalizers in the category Cdgwu(k). Here
we provide the corresponding description for the case of the coequalizer (2.4.18). Here
we essentially use that i1, i2 are fully-faithful functors. The derivation of this description
from the cited proposition is straightforward.

We use notation ā which is defined as 1̄ = 2, 2̄ = 1.

Proposition 2.4.16. Assume i1, i2 in (2.4.17) are fully faithful. Then the push-out
weakly unital dg-category D has the following description.

The objects of D are given by the coequalizer of sets:

Ob(D) = Ob(C1) ⊔Ob(C2)/ ∼

where ∼ is the equivalence relation generated by: i1(X) ∼ i2(X), for any X ∈ Ob(C).

Consider X,Y ∈ Ob(Ca), a = 1, 2. Then:

D(X,Y ) =Ca(X,Y )
⊕ ⊕

U,V ∈C

O′(3)⊗ Ca(V, Y )⊗ Cā(U, V )⊗ Ca(X,U)
⊕

⊕
U,V,U1,V1∈C

O′(5)⊗ Ca(V1, Y )⊗ Cā(U1, V1)⊗ Ca(U, V1)⊗ Cā(V,U)⊗ Ca(X,V )
⊕

. . .

(2.4.19)
where we identify an object U ∈ C with its images ia(U) ∈ Ca, and
Ca(U, V ) := Ca(U, V )/ia(C(X,Y )).
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For X ∈ Ob(C1) \Ob(C), Y ∈ Ob(C2) \Ob(C), one has:

D(X,Y ) :=
⊕
U∈C

O′(2)⊗ C2(U, Y )⊗ C1(X,U)
⊕

⊕
U,V,W∈C

O′(4)⊗ C2(W,Y )⊗ C1(V,W )⊗ C2(U, V )⊗ C1(X,U)
⊕

. . .

(2.4.20)

2.5 A Quillen equivalence between Cdgwu(k) and Cdg(k)

Let C and D be two model categories. Recall that a Quillen pair of functors L : C⇆ D : R
is an adjoint pair of functors such that L preserves cofibrations and acyclic cofibrations,
or equivalently, R preserves fibrations and acyclic fibrations, [[Ho], Sec. 1.3], [[Hi], Sec.
8.5]. These two conditions are sufficient to show that the Quillen pair of functors descends
to a pair of adjoint functors

L : Ho(C)⇆ Ho(D) : R (2.5.1)

between the homotopy categories.

When C is cofibrantly generated, there is a manageable criterion for an adjoint pair of
functors to be a Quillen pair [[Ho], Lemma 2.1.20]:

Proposition 2.5.1. Let C, D be closed model categories, with C cofibrantly generated
with generating cofibrations I and generating acyclic cofibrations J . Let L : C⇆ D : R be
an adjoint pair of functors. Assume that L(f) is a cofibration for all f ∈ I and L(f) is
a trivial cofibration for all f ∈ J . Then (L,R) is a Quillen pair.

Let C ∈ Cdgwu(k). Define
L(C) := C/I,

where I is the dg-category ideal generated by all pn(. . . ), n ≥ 2. Clearly L(C) ∈ Cdg(k).
This assignment C 7→ L(C) gives rise to a functor L : Cdgwu(k) → Cdg(k).

Let D ∈ Cdg(k). Define R : Cdg(k) → Cdgwu(k) as the fully-faithful embedding from
Example 2.1.3.

Proposition 2.5.2. The following statements are true:

(1) there is an adjunction

HomCdg(k)(L(C),D) ∼= HomCdgwu(k)(C, R(D))

(2) the functors
L : Cdgwu(k)⇆ Cdg(k) : R

form a Quillen pair of functors.

Proof. (1) : any morphism F : C → R(D) sends pn(. . . ), n ≥ 2 to 0, since D ∈ Cdg(k),
and therefore this morphism is the same as a morphism L(C) 7→ D.
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(2) : the dg-functors {L(β(n)), L(Q)} form exactly the set I of generating cofibrations
for the Tabuada closed model structure on Cdg(k), and the dg-categories {L(α(n)), L(κ)}
form the set of generating acyclic cofibrations for this model structure. The statement
follows then by Proposition 2.5.1.

Recall that a Quillen pair L : C ⇆ D : R is called a Quillen equivalence if it satisfies the
following condition:

For a cofibrant X ∈ C and a fibrant Y ∈ D, a morphism f : LX → Y is a weak equiva-
lence in D if and only if its adjoint morphism X → RY also is, [[Ho], 1.3.3], [[Hi], 8.5].
This condition implies the corresponding adjoint pair of functors between the homotopy
categories 2.5.1 is an adjoint equivalence of categories.

Theorem 2.5.3. The Quillen pair of functors

L : Cdgwu(k)⇆ Cdg(k) : R

is a Quillen equivalence.

Proof. Let C ∈ Cdgwu(k) be cofibrant and D ∈ Cdg(k) fibrant. We have to prove that
F : LC → D is a weak equivalence in Cdg(k) if and only if the adjoint morphism F ∗ : C →
RD is a weak equivalence in Cdgwu(k).

It is enough to prove the statement for the case when C is an I-cell. Indeed, by the
small object argument, for any C there exist an I-cell C′ such that p : C′ → C is an acyclic
fibration. The Quillen left adjoint L maps the weak equivalences between cofibrant object
to weak equivalences, by [[Hi], Prop. 8.5.7]. Therefore, L(p) : L(C′) → L(C) is a weak
equivalence. There is a map i : C → C′ such that p ◦ i = id, given by the RLP. By 2-of-3
axiom, i is a weak equivalence, and L(i) is too.

Assume that C is an I-cell and denote by V the dg-quiver of generators of C.
We need to prove that for any objects X,X ′ ∈ C, the cone M := Cone(F : LC(X,X ′) →
D(FX,FX ′)) is acyclic if and only if the coneN := Cone(F ∗ : C(X,X ′) → RD(F ∗X,F ∗X ′))
is acyclic. Denote by Õ := Ker(P : O′ → Assoc+), where P is the dg-operad map sending
all pn(. . . ), n ≥ 2 to 0.

There is a canonical map ω : N →M , and Cone(ω) is quasi-isomorphic to FÕ(V )(X,X ′),

where FÕ(V ) is the free algebra over Õ generated by V , with an extra differential coming
from the differential in the I-cell C. Since the dg-operad O′ is quasi-isomorphic to Assoc+,
Õ is acyclic. Therefore FÕ(V ) is acyclic by the Künneth formula, and so M is quasi-
isomorphic to N , by the acyclicity of Cone(ω). We conclude that M is acyclic if and only
if N is.

2.6 A cofibrant resolution of a unital dg-algebra

Here we provide a canonical unital cofibrant dg-algebra, quasi-isomorphic to a unital dg-
algebra A over a field k. (We consider only the case of a dg-algebra for simplicity, the
construction is directly generalised for the case of a small dg-category).
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The classical Bar-Cobar resolution of A fails to be unital, it is only weakly unital dg-
algebra. A well-known explicit unital construction comes from the curved version of Bar-
Cobar duality, due to Positselski [Po] (see also [Ly3]). A drawback of this construction is
that it is not canonical.

We have not seen this construction in the literature, thus we include it as an appendix of
this chapter for two reasons: in primis, it “replaces” the Bar-Cobar resolution, which fails
to be strictly unital, which was one of our starting points; in secundis, it can be easily
generalised to a cofibrant resolution of i(C) in Cdgwu(k), for C ∈ Cdg(k).

Let A be a unital dg-algebra over k. Consider the dg-algebra A+ = A⊕k[1]. It is a unital
dg-algebra with unit 1A, and the product of A with k[1], as well as of k[1] with itself, is
defined as 0.

Consider the Bar-complex

Bar(A+) =
⊕
n≥1

A+[1]
⊗n

which is a dg-coalgebra. We use the notation ξ for a generator of k[1]. Then a general
monomial element of Bar(A+) is denoted as

a1 ⊗ · · · ⊗ ai1 ⊗ ξ ⊗ ai1+1 ⊗ · · · ⊗ ai2 ⊗ ξ ⊗ ai2+1 ⊗ . . .

Now consider the unital dg-algebra

C0(A) = Cobar+(Bar(A+))

where, for a dg-coalgebra B,

Cobar+(B) = k⊕
⊕
n≥1

B[−1]⊗n

with the Cobar-differential. It is a unital dg-algebra. Denote by 1k the unit of k. It is
the unit of C0(A). We denote the product in Cobar+(B) by ⊠.

Consider a derivation dξ of degree +1 of C0(A) whose only non-zero Taylor coefficient is
linear, and is defined as

dξ|A = 0, dξ(ξ) = 1k − 1A

dξ(x1 ⊗ · · · ⊗ xn) =

k∑
ℓ=1

±x1 ⊗ · · · ⊗ xiℓ−1 ⊗ 1A ⊗ xiℓ+1 ⊗ · · · ⊗ xn

where xi1 = · · · = xik = ξ and other xi ∈ A

(2.6.1)

One has

Lemma 2.6.1. The differential dξ squares to 0, and dξ commutes with dBar + dCobar.
Consequently, dtot := dBar + dCobar + dξ squares to 0.

It is a direct computation.

We denote
C(A) = (C0(A), dBar + dCobar + dξ)

It is a unital dg-algebra.
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Proposition 2.6.2. There is a unital dg-algebra map p : C(A) → A which is a quasi-
isomorphism.

Proof. We start with computing the cohomology of (C(A), dtot). The differential dBar +
dCobar preserves the total number of ξ-factors in a (homogeneous in ξ) element of C(A).
It makes C(A) a bicomplex. Define

degBar(x1 ⊗ · · · ⊗ xn) = −n+
∑
i

deg0 xi

where deg0(a) = degA(a) and deg0(ξ) = 0. Next, define

deg1(ω1 ⊠ · · ·⊠ ωk) = k +
∑
i

degBar(ωi)

degCobar(ω1 ⊠ · · ·⊠ ωk) = k

degBar(ω1 ⊠ · · ·⊠ ωk) =
∑
i

degBar(ωi)

where ωi ∈ Bar(A+). Finally, define

degξ(α) = −(♯(ξ) in α), α ∈ C(A)

degtot(α) = deg1(α) + degξ(α)

where degtot is the degree of α in C(A).

Thus C(A) becomes a bicomplex, with C(A)a,b defined as the spaces of elements α ∈ C(A)
with deg1 α = a, degξ(α) = b.

We compute the cohomology of C(A) by using a spectral sequence, which computes the
cohomology of dBar + dCobar at first. The bicomplex lives in the II and III quarters,
so the spectral sequence converges. The term Ea,b1 of the spectral sequence is equal to
Ha(C(A)

q,b, dBar + dCobar). Thus, we have to compute the cohomology of the complex
(C(A)

q,b, dBar + dCobar). Denote this complex by C
q
b . The complex C

q
b (for b fixed) is by

its own a bicomplex, with differentials dBar and dCobar. Thus C
m,n
b consist of all elements

α ∈ C
q
b with degBar(α) = m and degCobar(α) = n (in this case, degtot(α) = m+n+b). The

spectral sequence, whose first differential is dCobar, converges (the other possible spectral
sequence, whose first differential is dBar, generally diverges). We denote by E(b)m,nk the
k-th term of this spectral sequence. We have

E(b)m,n1 = Hm(E(b)
q,n
1 , dCobar)

Lemma 2.6.3. One has:

E(b)m,n1 =



0, m ̸= 0, 1 or m = 0, n ̸= 0

k, b = 0,m = 0, n = 0

k[1], b = −1,m = 1, n = −1

An, b = 0,m = 1

0, b ̸= 0,−1

(2.6.2)

where (−)n stands for degree n elements.
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Proof. The argument is standard and comes from the following observation. Let V be
a (graded) vector space, consider the cofree non-unital coalgebra T∨

≥1(V ) = ⊕n≥1V
⊗n.

Then Cobar(T∨
≥1(V )) is quasi-isomorphic to V [−1]. This statement is proven using Koszul

duality.

It follows that the spectral sequence E q collapses at the E1 term. Now turn back to the
spectral sequence E q.
Lemma 2.6.4. One has

Ea,b1 =


k[1], a = 0, b = −1

(k⊕A)a, b = 0

0, otherwise

(2.6.3)

The differential d1 is induced by dξ. It looks like

k[1] d1−→ k⊕A, d1 : 1 7→ 1k − 1A

Its cohomology is isomorphic to A. The spectral sequence E q collapses at the E2 term.
It completes the computation of cohomology of C(A). Now define a map of dg-algebras
p : C(A) → A on generators

p|(k[1]⊕A)⊗n = 0, n ≥ 2

p(ξ) = 0

p|A = id

p(1k) = 1A

(2.6.4)

and extend it to C(A) as a map of algebras. It follows from the previous computation
that p is a quasi-isomorphism.

2.7 A proof of Proposition 2.2.3

Here we prove Proposition 2.3.3.
Recall the maps Pn, n ≥ 1 defined in (2.3.5):

P ijn (ϕn, . . . , ϕ1) :=
∑

κ∈Pathsij

(−1)|κ|pl(κl, . . . , κ1)

Recall that by Lemma 2.3.2 one has

deg(Pn(ϕ1, . . . , ϕn))ij = |ϕ1|+· · ·+|ϕn|−n+1 = deg(pl(κ1, . . . , κl)), for any κ ∈ Pathsij

Proposition 2.3.3 reads:

Proposition 2.7.1. The maps {Pn}, n ≥ 1 are Taylor components of an A∞-functor

P : Cpretr ⊕ kCpretr → Cpretr
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Proof. Proving the statement amounts to showing the following identities for all n ≥ 1
(see (1.1.1) for the sign convention):

dPn(ϕn, . . . , ϕ1) +
∑

a+b=n

(−1)(a−1)(
∑b

i=1 |ϕi|)+b−1Pa(ϕn, . . . , ϕb+1)Pb(ϕb, . . . , ϕ1) =

n−1∑
k=1

(−1)k−1Pn−1(ϕn, . . . , ϕk+1 ◦ ϕk, . . . , ϕ1) +
n∑
k=1

(−1)n−1+
∑k−1

i=1 |ϕi|Pn(ϕn, . . . , dϕk, . . . , ϕ1),

(2.7.1)
where

dPn(ϕn, . . . , ϕ1) = dnaivePn(ϕn, . . . , ϕ1)+ q′ ◦Pn(ϕn, . . . , ϕ1)− (−1)n−1Pn(ϕn, . . . , ϕ1) ◦ q
(2.7.2)

Writing down explicitly the first line of equation 2.7.1 (and dropping the signs to ± for
simplicity), we get

dPn(ϕn, . . . , ϕ1) = dnaivePn(. . . ) + q′ ◦ Pn(. . . ) + (−1)n−1Pn(. . . ) ◦ q =

dnaive

( ∑
κ∈Paths

±pm(κm, . . . , κ1)
)
+ q′ ◦

∑
κ∈Paths

±pm′(κm′ , . . . , κ1) + (−1)n−1
∑

κ∈Paths

pm′′(κm′′ , . . . , κ1) ◦ q =

∑
κ∈Paths

( ∑
a+b=m

±pa(. . . ) ◦ pb(. . . ) +
n−1∑
i=1

±pm−1(. . . ,m(κi+1, κi), . . . ) +
m∑
i=1

±pn(. . . , dκi, . . . )
)
+

q′ ◦
∑

κ∈Paths

±pm′(κm′ , . . . , κ1) + (−1)n−1
∑

κ∈Paths

±pm′′(κm′′ , . . . , κ1) ◦ q

(2.7.3)

We stress that inside the terms
∑
κ∈Paths

(∑n−1
i=1 (−1)spm−1(. . . ,m(κi+1, κi), . . . )

)
the

composition term might be of following three types:

qjl ◦ qkj , q ◦ ϕ or ϕ ◦ q, ϕi ◦ ϕi+1

Similarly inside the terms
∑
κ∈Paths (

∑m
i=1(−1)tpn(. . . , dκi, . . . )) the term which is dif-

ferentiated might be of the following two types:

dϕ, dqkl

We also write down the possible terms of
∑
κ∈Paths

(∑
a+b=m±pa(. . . )pb(. . . )

)
:

pa(. . . )pb(. . . ), q ◦ pm(. . . ) or pl(. . . ) ◦ q
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Thence we can write for the r.h.s. of (2.7.3)

(r.h.s. of (2.7.3)) =∑
κ∈Paths

±
(∑

i

±pn(. . . , dϕ, . . . )±
∑
i

±pn(. . . , dqkl, . . . )±
∑
i

±pn(. . . , qjl ◦ qkj , . . . )
)
+

∑
κ∈Paths

±
(
±
∑
i

±pn(. . . , q ◦ ϕ, . . . )±
∑
i

±pn(. . . , ϕ ◦ q, . . . )±
∑
i

±pn(. . . , ϕi+1 ◦ ϕi, . . . )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

)
+

∑
κ∈Paths

±
(
±q′ ◦ pm(. . . )
:::::::::::

±±pl(. . . ) ◦ q ±
∑
a

±pa(. . . ) ◦ pb(. . . )
)
+

q′ ◦
∑

κ∈Paths

±pm′(κ1, . . . , κm′)

::::::::::::::::::::::::::

+
∑

κ∈Paths

±pm′′(κ1, . . . , κm′′) ◦ q ?
=

∑
a+b=n

±Pa(. . . ) ◦ Pb(. . . ) +
∑
i

±Pn−1(. . . ,m(ϕi+1, ϕi), . . . )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
∑
i

±Pn(. . . , dϕ, . . . )

(2.7.4)
We have to prove the equation marked by question sign. The dashed underlined terms gets
cancelled by the Maurer-Cartan condition on the qij : indeed if there exists κ ∈ Pathsij
which contains qkl, there will also exist a path κ′ ∈ Pathsij containing all the terms
qjl ◦ qkj , since they have got same domain and codomain as qkl and in Pathsij we were
considering all the possible paths.

Therefore we are left with the following expressions:

±
∑
i

∑
κ∈Paths

pn(. . . ,m(ϕi+1, ϕi), . . . )±
∑

a+b=n

∑
κ∈Paths

±pa(. . . ) ◦ pb(. . . )+∑
i

∑
κ∈Paths

±
(
pn(. . . , dϕi, . . . ) + pn(. . . , q

′ ◦ ϕi, . . . ) + pn(. . . , ϕi ◦ q, . . . ))
)
=∑

a+b=n

±Pa(. . . ) ◦ Pb(. . . ) +
∑
i

±Pn−1(. . . ,m(ϕi+1, ϕi), . . . ) +
∑
i

±Pn(. . . , dϕ, . . . ),

which shows the desired equation, up to signs. The correctness of signs (which were
explicitly defined in (2.3.5) and (2.7.1)) is checked by a long but routine computation.

2.8 Cohomology of the dg-operad O′

Here we prove Theorem 2.2.3.

Proof. Let ω ∈ O′. Then ω is a linear combination of labelled “trees”, where each vertex
(excluding the leaves) is labelled either by pn;n1,...,nk

or by m. We say that pn;n1,...,nk

has n − k operadic arguments (the remaining k arguments are 1’s). We use notation
♯(pn;n1,...,nk

) = n − k. Given a tree T in which a vertex v is labelled by pn;n1,...,nk
, we

write ♯(v) = n− k. We extend ♯(−) to all vertices of T , by setting ♯(v) = 0 if v is labelled
by m. Denote by VT the set of all vertices of T excluding the leaves.
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For a given tree T , denote

♯(T ) =
∑
v∈VT

♯(v)

We also denote by ♯p(T ) the total number of vertices with p..., excluding p1(1), p2(1, 1), . . . .

Define a descending filtration F q on O′, as follows. Its (−ℓ)-th term F−ℓ is formed by
linear combinations of labelled trees T for which

♯(T )− ♯p(T ) ≤ ℓ

Note that for any tree T one has ♯(T )− ♯p(T ) ≥ 0.

One has:
· · · ⊃ F−3 ⊃ F−2 ⊃ F−1 ⊃ F0 ⊃ 0

Note that dF−ℓ ⊂ F−ℓ, and any component of the differential on O′ either preserves
♯(T )− ♯p(T ) or decreases it by 1.

We get a similar filtration F q on the component O′(N) of the arity N operations.

We compute cohomology of O′(N) using the spectral sequence associated with filtration
F q on O′(N). The spectral sequence lives in the quadrant {x ≤ 0, y ≤ 0}, the differential
d0 is horizontal. One easily sees that the spectral sequence converges. In fact, we show
the spectral sequence collapses at the term E1.

Lemma 2.8.1. Consider the filtration F q on O′(N). One has:

E−ℓ,m
1 =

{
Assoc+(N) ℓ = 0,m = 0

0 otherwise

In particular, the spectral sequence collapses at the term E1.

Proof. We write pn;n1,...,nk
as pn(f1, f2, . . . , 1, . . . , fn−k) where f1, . . . , fn−k are operadic

arguments, and 1s stand on the places n1, n2, . . . , nk. In these notations, describe the
differential in E−ℓ, q

0 = F−ℓ/F−ℓ+1.

It has components of the following three types, which we refer to as Type I, Type II and
Type III components.

Type I components: a component of Type I acts on a group of consecutive 1s, surrounded
by operadic arguments from both sides, such as

pn(. . . , fs, 1, 1, . . . , 1︸ ︷︷ ︸
a group of i consecutive 1s

, fs+1, . . . ).

For such a group, the component of d0 is a sum of expressions, each summand of which
corresponds to either a product 1 · 1 of two consecutive 1s, or to extreme products fs ·
1 or 1 · fs+1, taken with alternated signs. It is clear that totally the component dS0
corresponding to such a group S is equal to

dS0 (pn(. . . , fs, 1, . . . , 1︸ ︷︷ ︸
i of 1s in the group S

, fs+1, . . . )) =


±pn(. . . , fs, 1, 1, . . . , 1︸ ︷︷ ︸

i− 1 of 1s

, fs+1, . . . ) if i is even

0 if i is odd
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Type II components: a component of Type II acts on the groups of leftmost (respectively,
rightmost) 1s, such as pn(1, 1, . . . , 1, f1, . . . ) or pn(. . . , fn−k, 1, 1, . . . , 1), surrounded by an
operadic argument from one side. There should be ≥ 1 of 1s in the group for a non-zero
result, and by assumption pn(. . . ) contains at least one operadic argument.

The corresponding component dS0 of the differential is a sum of two sub-components:

dS0 = dS,10 + dS,20 .

The first sub-component dS,10 = dS,1,−0 ± dS,1,+0 , where

dS,1,−0 (pn(1, . . . , 1︸ ︷︷ ︸
i of 1s

, f1, . . . )) =

pn(1 · 1, 1, . . . , 1, f1, . . . )− pn(1, 1 · 1, . . . , f1, . . . ) + · · ·+ (−1)i−1pn(1, . . . , 1, 1 · f1, . . . )

and similarly for dS,1,+0 for the group of rightmost 1s.

One has

dS,1,−0 (pn(1, . . . , 1︸ ︷︷ ︸
i of 1s

, f1, . . . )) =


pn( 1, . . . , 1︸ ︷︷ ︸

i− 1 of 1s

, f1, . . . ) if i is odd

0 if i is even

and similarly for dS,1,+0 .

The second sub-component dS,20 = dS,2,−0 ± dS,2,+0 , where

dS,2,−0 (pn(1, . . . , 1︸ ︷︷ ︸
i of 1s

, f1, . . . )) =

p1(1) · pn−1(1, . . . , 1
i−1

, f1, . . . )− p2(1, 1) · pn−2(1, . . . , 1
i−2

, f1, . . . ) + · · ·+

(−1)i−1pi(1, 1, . . . , 1) · pn−i(f1, . . . )

and similarly for dS,2,+0 for the rightmost group of 1s.

One checks that all other components of the differential d on O′ decrease ♯(T )− ♯p(T ) by
1.

Type III components: Here we have d0 acting on pn(1, 1, . . . , 1
n of 1s

).

One has:

d0(pn(1, 1, . . . , 1)) =

pn−1(1 · 1, 1, . . . , 1)− pn−1(1, 1 · 1, 1, . . . , 1) + · · ·+ (−1)i−1pn−1(1, 1, . . . , 1 · 1)+

±
∑

1≤i≤n−1

(−1)i−1pi(1, 1, . . . , 1) · pn−i(1, 1, . . . , 1)+

(2.8.1)

Denote the first summand by dS,10 and the second summand by dS,20 One sees that

dS,10 (pn(1, 1, . . . , 1)) =

{
pn−1(1, 1, . . . , 1) if n is even

0 if n is odd
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The computation of cohomology of the complex (E−ℓ, q
0 , d0) is reduced to the computation

of the cohomology of a tensor product of complexes (the factors are labelled by combi-
natorial data of the labelled tree T ), corresponding to different components S as listed
above:

E−ℓ, q
0 =

⊗
S,T

K
q
S (2.8.2)

The complexes KS corresponding to Type I components are isomorphic to

K
q
= {. . . 0−→ k

i=4

id−→ k
i=3

0−→ k
i=2

id−→ k
i=1

deg=−1

→ 0} (2.8.3)

The complex K
q
is acyclic in all degrees. It implies that the complex (E−ℓ, q

0 , d0) is
quasi-isomorphic to its sub-complex which is formed by the trees in which any p is of
the type pn(1, 1, . . . , 1, f1, . . . , fn−k, 1, . . . , 1), where all n − k operadic arguments stand
successively, without 1s between them.

It remains to treat the Type II and Type III cases.

The complexes whose cohomology we need to compute are of two types. They are formed
either by linear combinations of

pn1(1, 1, . . . , 1) · pn2(1, 1, . . . , 1) . . . pnk
(1, 1, . . . , 1) · pn(1, 1, . . . , 1, f1, . . . )

or by all linear combinations of

pn1
(1, 1, . . . , 1) · pn2

(1, 1, . . . , 1). . .pnk
(1, 1, . . . , 1).

Denote them by K
q
1 and K

q
2 .

Their cohomology are computed similarly, we consider the case of K
q
2 , leaving the case of

K
q
1 to the reader.

Denote pℓ = pℓ(1, 1, . . . , 1) and by Pℓ the 1-dimensional vector space kpℓ(1, 1, . . . , 1) = kpℓ,
ℓ ≥ 1.

One has:
K−n

2 =
⊕

k≥1, n1+···+nk−k=n

Pn1
⊗ Pn2

⊗ · · · ⊗ Pnk

We denote the differential d0 on K
q
2 , see (2.8.1), by d.

Lemma 2.8.2. The complex (K
q
2 , d) is quasi-isomorphic to P1[0].

Proof. Consider on K
q
2 the following descending filtration Φ q, where
Φ−ℓ =

⊕
n1+n2+···+nk≤ℓ

Pn1
⊗ Pn2

⊗ · · · ⊗ Pnk

One has
· · · ⊃ Φ−3 ⊃ Φ−2 ⊃ Φ−1 ⊃ Φ0 = 0

dΦ−ℓ ⊂ Φ−ℓ
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Denote by d0,Φ the differential in E−ℓ, q
0,Φ = Φ−ℓ/Φ−ℓ+1. It is given by

d0,Φ(pn1
⊗pn2

⊗· · ·⊗pnk
) =

k∑
i=1

(−1)n1+···+ni−1−i+1pn1
⊗· · ·⊗d0,Φ(pni

)⊗· · ·⊗pnk
(2.8.4)

where
d0(pn) =

∑
1≤i≤n−1

(−1)i−1pi ⊗ pn−i (2.8.5)

It is well-known that the complex E−ℓ, q
0,Φ is acyclic when ℓ ≥ 2, and is quasi-isomorphic

to P1[0] when ℓ = 1. We can identify Pn ≃ (k[1])⊗n, then ⊕n≥1k[1]⊗n = P becomes the
(non-unital) cofree coalgebra cogenerated by k[1]. The complex (2.8.4), (2.8.5) is identified
with the Cobar-complex of the cofree coalgebra P . It is standard that its cohomology
is equal to k[1][−1] ≃ k. Therefore, the spectral sequence collapses at the term E1 by
dimensional reasons.

It completes the proof of Lemma 2.8.2.

Similarly we prove thatK
q
1 is acyclic in all degrees. In this way we see that any cohomology

class in E−ℓ, q
0 can be represented by a linear combination of trees which do not contain

pns with n ≥ 2.

It follows that any cohomology class can be represented by a linear combination of trees
containing only m and p(1), and all such trees have cohomological degree 0. It completes
the proof.

Theorem 2.2.3 follows from Lemma 2.8.1.
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Deformation theory of k-linear
monoidal categories

Les soleils couchants
Revêtent les champs,
Les canaux, la ville entière,
D’hyacinthe et d’or;
Le monde s’endort
Dans une chaude lumière.
Là, tout n’est qu’ordre et beauté,
Luxe, calme et volupté.

C. Baudelaire,
L’invitation au voyage

3.1 Deformation theory

Deformation theory of associative algebras was initiated by the pioneering works of Ger-
stenhaber.

Let k be a field of characteristic 0, kJtK the unital ring of formal power series with
coefficients in k. Denote by ϵ : kJtK → k the augmentation map, defined as

ϵ

(∑
i∈N

ait
i

)
:= a0.

Clearly Ker(ϵ) = tkJtK is the augmentation ideal of kJtK.

Given a kJtK-algebra B, we can consider its reduction B̄ := k⊗kJtK B, where k is acting
in the obvious way.

Given a k[t]-algebra (respectively, k[t]/(tn)-algebra) B, we can analogously consider its
reduction B̄ := k⊗k[t]B (respectively, B̄ := k⊗k[t]/(tn)B), recalling that the augmentation
maps of k[t] and of k[t]/(tn)) are defined as: ϵ(f) = f(0) ∈ k.

Definition 3.1.1. Let A be an associative k-algebra. A formal deformation of A is
an associative kJtK-algebra B together with a k-algebra isomorphism α : B̄ → A.

65
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It can be shown that:

Theorem 3.1.2. A formal deformation of an algebra A is given by a family

{mi : A⊗A→ A|i ≥ 0}

such that m0(a, b) = ab (the multiplication in A) and

(Dk)
∑
i+j=k
i,j≥0

mi(mj(a, b), c) =
∑
i+j=k
i,j≥0

mi(a,mj(b, c))

for all a, b, c ∈ A for each k ≥ 1.

We will also need the following definitions:

Definition 3.1.3. An infinitesimal deformation of an algebra A is an associative
k[t]/(t2)-algebra B together with a k-algebra isomorphism α : B̄ → A.

and analogously:

Definition 3.1.4. An n-deformation of an algebra A is an associative k[t]/(tn)-algebra
B together with a k-algebra isomorphism α : B̄ → A.

for which the theorem above holds in a refined way:

Theorem 3.1.5. An n-deformation of A is given by a family

{mi : A⊗A→ A|1 ≤ i ≤ n}

of k-linear maps satisfying (Dk) of Theorem 3.1.2 for 1 ≤ k ≤ n.

We conclude this introduction with a definition we will need afterwards:

Definition 3.1.6. An (n + 1)-deformation of A given by {m1, . . . ,mn+1} is called an
extension of the n-deformation given by {m1, . . . ,mn}.

3.1.1 Hochschild cohomology

The main tool in studying deformation theory of an associative algebra A is the Hochschild
cochain complex

0 → CH0(A,A) → · · · → CHn(A,A) → CHn+1(A,A) → . . . ,

where CHn(A,A) := Homk(A
⊗n, A) is the space of Hochschild n-cochains, i.e., the n-times

k-linear maps f(−, . . . ,−) : A⊗n → A. We can define the differential dn : CH
n(A,A) →

CHn+1(A,A) (of degree +1) as:

(dnf)(a1, . . . , an+1) := a1f(a2, . . . , an+1)

+

n∑
i=1

(−1)if(a1, . . . , ai−1, aiai+1, ai+2, . . . , an+1)

−(−1)nf(a1, . . . , an)an+1,

(3.1.1)
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for f ∈ CHn(A,A), a1, . . . , an+1 ∈ A. The Hochschild cohomology is defined as the
cohomology of this cochain complex:

HHn(A,A) := Zn(A,A)/Bn(A,A),

where Zn(A,A) is the space of Hochschild n-cocycles and Bn(A,A) is the space of
Hochschild n-coboundaries.
The following spaces are worth to mention:

Z0(A,A) = HH0(A,A) is the center Z(A) of the algebra A, and thus (HH0(A,A), ·), is a
commutative algebra, where · is the product of A.

Z1(A,A) is the space Der(A) of derivations of A, i.e. of k-linear functions f : A → A
satisfying the Leibniz rule

f(ab) = f(a)b+ af(b)

for all a, b ∈ A (this is equivalent to d1f = 0). It is well known that (Der(A), [−,−]) is a
Lie algebra, where [−,−] is the commutator:

[f, g] := f ◦ g − g ◦ f,

which satisfies the Jacobi identity and is anti-symmetric. Thence it follows naturally that
(Z1(A,A), [−,−]) is a Lie algebra.

It is well-known that we can lift the commutative algebra structure of HH0(A,A) to
an associative algebra structure on HH∗(A,A) :=

⊕
n≥0 HHn(A,A), given by the cup

product:
− ∪− : HHn(A,A)×HHm(A,A) → HHn+m(A,A), (3.1.2)

which is defined as:

f ∪ g (a1, . . . , an+m) := f(a1, . . . , an) · g(an+1, . . . , an+m)

for all ai ∈ A. It is clear that ∪ restricts to · on HH0(A,A) = Z0(A,A) and that the
associativity of ∪ follows from the associativity of (A, ·). However, Gerstenhaber showed
in [Ge1] and [Ge2] that (HH∗(A,A),−∪−) is also a graded-commutative algebra, i.e. for
all f ∈ HHn(A,A), g ∈ HHm(A,A):

f ∪ g = (−1)nmg ∪ f

In loc. cit. the author managed to lift the Lie algebra on Z1(A,A) to the space
Z
q
(A,A) :=

⊕
n≥0 Z

n(A,A), constructing it as the commutator of a brace operation:
he first defined the operations

◦i : Zn(A,A)× Zm(A,A) → Zn+m−1(A,A), (3.1.3)

with 1 ≤ i ≤ n, as:

f ◦i g (a1, . . . , an+m−1) := f(a1, . . . , ai−1, g(ai, . . . , ai+m−1), ai+m, . . . , an+m−1)

These operations ◦i led to the definition of the brace operation:

− {−} : Zn(A,A)× Zm(A,A) → Zn+m−1(A,A), (3.1.4)
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defined on the objects as:

f{g}(a1, . . . , an+m−1) :=

n∑
i=1

(−1)ϵf ◦i g(a1, . . . , an+m−1).

It is easy to show that the graded-commutativity of − ∪ − comes from the following
equation:

f ∪ g − (−1)nmg ∪ f = [d, f{g}],

The Gerstenhaber bracket is defined as:

[−,−] : Zn(A,A)× Zm(A,A) → Zn+m−1(A,A), (3.1.5)

simply by taking the commutator:

[f, g] := f{g} − (−1)ϵg{f}

It is worth noticing that if we restrict ourselves to Z1(A,A), we have:

[f, g](a) = f(g(a))− g(f(a)),

which is precisely the bracket of Der(A).

Moreover, this operation [−,−] satisfies the graded Jacobi identity, and the graded al-
ternating property, thus (Z

q
(A,A), [−,−]) is a graded Lie algebra, (with Lie bracket of

degree -1).

On top of that, Gerstenhaber showed that the graded Lie algebra structure descends
to the cohomology HH∗(A,A) and that it satisfies the Poisson identity, i.e. for all f ∈
HHn(A,A), g ∈ HHm(A,A), h ∈ HHp(A,A):

[f, g ∪ h] = [f, g] ∪ h+ (−1)m(p−1)g ∪ [f, h]

Algebraic structures like this one on the Hochschild cohomology HH∗(A,A) were given
the name of Gerstenhaber algebras (or Poisson 2-algebras).

As we recalled in Section 1.3, Fred Cohen proved in [Co] that the operad e2 of Poisson
2-algebras is the homology operad of the little discs operad E2, when char(k) = 0: e2 =
H q(E2,k). Thus the situation looks as follows: the cohomology operad of the little discs
operad acts on the cohomology of the Hochschild complex. This motivated Deligne to
claim that the chain operad of little discs Ch q(E2,k) acts on the Hochschild complex
CH∗(A,A), for any associative algebra A.

Going back to deformation theory of associative algebras, Gerstenhaber proved in [Ge1]
that:

Theorem 3.1.7. There is a one-to-one correspondence between the space of equiva-
lence classes of infinitesimal deformations of A and the second Hochschild cohomology
HH2(A,A).

from which it follows:

Corollary 3.1.8. Let A be an associative algebra such that HH2(A,A) = 0. Then all
formal deformations of A are equivalent to the trivial deformation AJtK.
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Moreover, he noticed that the equation (Dn+1) can be rearranged as:

−amn+1(b, c) +mn+1(ab, c)−mn+1(a, bc) +mn+1(a, b)c =

=
∑

i+j=n+1
i,j≥0

(mi(mj(a, b), c)−mi(a,mj(b, c))) (3.1.6)

Let us denote the r.h.s. of this equation by Dn. This is an element of CH3(A,A), and
actually the equation (Dn+1) can be succinctly written as:

d2(mn+1) = Dn

Now we can show:

Theorem 3.1.9. For any n-deformation of an associative algebra A, the Hochschild
cochain Dn ∈ CH3(A,A) defined in 3.1.6 is a cocycle. Moreover, [Dn] = 0 in HH3(A,A)
if and only if the n-deformation {m1, . . . ,mn} extends into some (n+ 1)-deformation.

From this theorem it follows:

Corollary 3.1.10. If HH3(A,A) = 0, then all obstructions vanish and every infinitesimal
deformation m1 in Z2(A,A) is integrable to a formal deformation.

3.1.2 Davydov-Yetter cohomology

Motivated by problems in quantum algebra and quantum field theory, Davydov [Da] and
independently Crane and Yetter [CY], [Ye1], [Ye2] introduced and studied a complex
CDY

∗(IdC), now known as the Davydov-Yetter complex, whose cohomology governs the
deformations of the monoidal structure of a k-linear monoidal functor or the associator
of a k-linear monoidal category, without changing the underlying categories and functors,
but extending the scalars from k to kJtK as above. This deformation theory is the first
step to the classification problem of monoidal structures.

Let us describe this complex CDY
∗(F ). Let C, D be k-linear monoidal categories and let

F : C → D be a tensor functor, i.e. a k-linear monoidal functor. Define its n-th tensor
power by

F⊗n : C⊗ · · · ⊗ C → D, F⊗n(X1, . . . , Xn) = F (X1 ⊗ (X2 ⊗ (. . . (Xn−1 ⊗Xn) . . . ))

Set CDY
n(F ) := End(F⊗n) the endomorphism algebra of natural transformations from

F⊗n to itself, and C0
DY (F ) := End(I), where I is the unit object of the tensor category

D. We can also describe CDY
n(F ) as a sub-algebra of the following algebra:∏

Xi∈Ob(C)

D(F (X1 ⊗D (· · · ⊗D Xn), F (X1 ⊗D (· · · ⊗D Xn)).

It is easy to check that CDY
n(F ) are monoids with respect to composition, and in particu-

lar in [BD] the authors endow this collection C
q
DY (F ) with the structure of a cosimplicial

monoid, with coface maps ∂in : CDY
n(F ) → Cn+1

DY (F ) defined on an endomorphism a as:

∂in(a)X1,...,Xn+1
:=


idFX1 ⊗aX2,...,Xn+1 if i = 0;

aX1,...,Xi⊗Xi+1,...,Xn+1
if 1 ≤ i ≤ n;

aX1,...,Xn
⊗ idFXn+1

if i = n+ 1.

(3.1.7)
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where we omit the clear associativity and tensor constraints.

The codegeneracy maps σin : CDY
n(F ) → Cn−1

DY (F ) are defined on an endomorphism a as:

σin(a)X1,...,Xn−1 = aX1,...,Xi,I,Xi+1,...,Xn−1 , with 0 ≤ i ≤ n− 1. (3.1.8)

Definition 3.1.11. The total cochain complex (CDY
∗(F ), ∂) = Tot(CDY

q
(F )) is called

the Davydov-Yetter complex of the tensor functor F . Its cohomology HDY
∗(F ) is the

Davydov-Yetter cohomology of the tensor functor F .

By the Yoneda lemma it follows that CDY
∗(F ) is a cochain complex with differential

dn : CDY
n(F ) → Cn+1

DY (F ) induced by the sum (with alternated signs) of the coface maps:

dn(a) :=
n+1∑
i=0

(−1)i∂in(a)

How does this relate to the deformations of the monoidal structure of F?

By definition of F being a tensor functor, there exists a natural isomorphism
JX,Y : F (X ⊗ Y )

∼−→ F (X)⊗ F (Y ) such that the diagram:

F (A⊗B ⊗ C) F (A⊗B)⊗ F (C)

F (A)⊗ F (B ⊗ C) F (A)⊗ F (B)⊗ F (C)

JA⊗B,C

JA,B⊗C JA,B⊗idF (C)

idF (A) ⊗JB,C

(3.1.9)

is commutative (this is the version of diagram (1.6.3), with αC = αD = id). The functorial
isomorphism J is called the monoidal structure of F .

The quest in Davydov–Yetter theory are formal deformations (in the same sense as above)
of J , i.e. expansions over kJtK of the form Jt = J +

∑
n≥1 J

ntn, where the Jn’s are natu-
ral transformations (Jn)X,Y : F (X ⊗ Y ) → F (X)⊗ F (Y ), such that the diagram (3.1.9)
remains commutative with Jt instead of J . Without loss of generality, we can assume
that F is strict: J = id [[JS], Theorem 1.7].
In order to see the link between the Davydov-Yetter complex CDY

∗(F ) and this defor-
mation problem, let us consider infinitesimal deformations Jt = id+Jt, with t2 = 0. By
definition, J ∈ End(F⊗2) and the condition (3.1.9) on Jt implies that J : F ⊗F → F ⊗F
satisfies

idF (X1) ⊗JX2,X3
− JX1⊗X2,X3

+ JX1,X2⊗X3
− JX1,X2

⊗ idF (X3) = 0,

which is equivalent to ask that d2(J) = 0, i.e. J is a 2-cocycle of the Davydov-Yetter
complex.

In analogy with Gerstenhaber’s results for deformation of associative algebras, Yetter
proved the following results:

Theorem 3.1.12. There is a natural 1-to-1 correspondence between the infinitesimal
proper deformations of a monoidal functor F and the 2-cocycles of the proper deformation
complex of F . Moreover, the monoidal natural isomorphism classes of infinitesimal proper
deformations of F are in natural 1-to-1 correspondence with H2

DY (F ).
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and

Proposition 3.1.13. For any proper n-deformation of a monoidal functor F , the ob-
struction to extension to an n+ 1-deformation is a 3-cocycle.

By this last result it follows:

Corollary 3.1.14. If H3
DY (F ) = 0, then any infinitesimal proper deformation can be

extended to a formal deformation.

The case of the identity functor F = IdC deserves a special attention, since HDY
3(IdC)

classifies the infinitesimal deformations of the (trivial) associator of C. Such a deformation
is an expansion at = id+αt over k[t]/(t2) which satisfies the pentagon equation, where
α ∈ End(Id⊗3). The obstructions are contained in HDY

4(IdC), at least for the extension
of an infinitesimal deformation to the order 2 (this was shown in [[BD], Prop. 3.21]).

In order to show that the Davydov-Yetter complex CDY
∗(F ) is a Ch q(E2,k)-algebra,

Batanin and Davydov in [BD] constructed a family of operads M(0) → · · · → M(n) →
· · · → M (see definitions and properties in Sect. 1.3.3), and proved:

Theorem 3.1.15. The cosimplicial monoid CDY
∗(F ) is a M(1)-algebra.

The cosimplicial monoid CDY
∗(IdC) is a M(2)-algebra.

Proof. As for the first statement, the authors show that it is enough to prove that the
images CDY(τn,m)(a), CDY(πn,m)(b) commute for any a ∈ CDY

n(F ) and b ∈ CmDY (F ),
where τm,n : [n] → [m + n] and πm,n : [m] → [m + n] are defined as τm,n(i) = i and
πm,n(j) = n+ j. Since

CDY(τn,m)(a) = ∂n+mn+m−1 . . . ∂
n+2
n+1∂

n+1
n (a) = a⊗ 1m

and
CDY(πn,m)(b) = ∂n−1

m+n−1 . . . ∂
1
m+1∂

0
m(b) = 1n ⊗ b,

it follows that (1n ⊗ b) ∗ (a⊗ 1m) = (a⊗ 1m) ∗ (1n ⊗ b).

As for the second statement, the authors show that it is enough to prove that the images
CDY(τ)(a), CDY(π)(b) commute for any maps τ = τ im,n and π = πim,n and any a ∈
CDY

n(C) and b ∈ CmDY (C), where τ
i
m,n : [n] → [n+m− 1] and πim,n : [m] → [n+m− 1]

are defined as:

τ im,n(ℓ) :=

{
ℓ if ℓ ≤ i

ℓ+m− 1 if ℓ > i,
πim,n(j) := i+ j. (3.1.10)

Since
CDY(τ

i
m,n)(a) = ∂i+m−1

n+m−2 . . . ∂
i+2
n+1∂

i+1
n (a)

and

CDY(π
i
n,m)(b) = ∂n+m−1

n+m−2 . . . ∂
i+m+2
n+i−1 ∂

i+m+1
n+i ∂i−1

n+i−1 . . . ∂
1
n+1∂

0
n(b) = 1i ⊗ b⊗ 1n−i−2

By naturality of a, the evaluation

CDY(τ
i
m,n)(a)X1,...,Xm+n−1 = aX1,...,Xi,Xi+1⊗···⊗Xi+m,Xi+m+1,...,Xm+n−1
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commutes with the evaluation

CDY(π
i
n,m)(b)X1,...,Xm+n−1

= 1X1
⊗ · · · ⊗ 1Xi

⊗ bXi+1,...,Xi+m
⊗ 1Xi+m+1

⊗ · · · ⊗ 1Xm+n−1

Remark 3.1.16. We underlined and italicized the word naturality in the proof, as this
is the key feature missing in our deformation complex of a monoidal category C (that we
define in Section 3.2). The serious drawback to this is that we do not have a 2-commutative
cosimplicial monoid, but rather a “homotopy 2-commutative” monoid. This will be better
explained in Remark 3.4.8.

In addition to that, they related the lattice paths operad L to the paths operad M:

Theorem 3.1.17. There are morphisms of operads p(n) : L(n) → M(n−1), compatible
with the operad filtrations.

This result, together with Theorem 1.3.36 and Corollary 1.3.37, implies the following
([BD], Theorem 2.45, Corollary 2.46):

Theorem 3.1.18. Let X q be an n-commutative cosimplicial monoid in Ch(k). Then
there is an action of an operad homotopy equivalent to Ch q(En+1,k) on the totalization
Tot(X q) ∈ Ch(k).

In [BD], some explicit formulas for the degree -n Lie bracket are provided, see [[BD],
Sections 2.9, 2.10].

From the results above it follows ([BD], Corollaries 3.5, 3.9):

Corollary 3.1.19. The deformation complex CDY
∗(F ) of a tensor functor F is an

Ch q(E2,k)-algebra.
The deformation complex CDY

∗(C) of a tensor category C is an Ch q(E3,k)-algebra.

Our motivation for introducing a new deformation complex, obtained as the totalization
of a functor A(F, F ) : Θ2 → Vect(k) is twofold.

The first intention was to pack the Hochschild cochains (vertically) and the Davydov-
Yetter cochains (horizontally) in a single deformation complex. The explicit definition of
the functor A(F, F ) will be given in the following Section 3.2, though we can still give
the heuristic process. At first we looked for a functor H : ∆ × ∆ → Vect(k), but soon
we realized it did not work as expected. Once we defined the desired functor A(F, F ), in
the case F = IdC we found out that not only we could control the deformations of the
composition of morphisms and of the associator of C, but also the monoidal product of
morphisms.

The second intention was to relate this problem to the generalized Deligne conjecture,
stated by Kontsevich in [[Ko3], Sec. 2.5]. Indeed, following the idea of Tamarkin in
[Tam2], one can define our functor A(F, F ) : Θ2 → Vect(k) for any k-linear pseudo functor
F : C → D, where C and D are k-linear bicategories (i.e. categories weakly enriched in
C(k)) rather then monoidal k-linear categories. However, one can do better: namely, for
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any choice of k-linear pseudo functors F,G : C → D, and any choice of k-linear pseudo
natural transformations η, θ : F ⇒ G, one can construct a functor

A(F,G)(η, θ) : Θ2 → Vect(k).

The totalization of this functor is defined as the complex of derived modifications between
η and θ. Thus we are left with a pre-3-category, where objects are k-linear bicategories,
1-morphisms are k-linear pseudo functors, 2-morphisms are k-linear pseudo natural trans-
formations and the complexes of 3-morphisms are the derived modifications. If one con-
structed a contractible 3-operad acting over this 3-pre-category, one would get that the
deformation complex TotΘ2

(A(IdC, IdC)) is a Ch q(E3,k)-algebra.

3.2 A 2-cocellular vector space A(F, F ) associated to a
monoidal functor F : C → D

3.2.1 Elementary face and degeneracy maps of Θ2

In order to make things more understandable, we will translate the definitions of face and
degeneracy maps (given in Subsection 1.4.5) to the wreath product definition of Θ2. For
T = ([k]; [n1], . . . , [nk]) ∈ Θ2, define dimension of T as

|T | = k +

k∑
i=1

ni (3.2.1)

It was proven in [[Be1], Lemma 2.4(a)] that Θ2 is a Reedy category, in which the de-
gree is equal to the dimension 3.2.1, and there are two classes of morphisms, face maps
and degeneracy maps, which raise (respectively, lower) the degree. Below we list the
codim = 1 face and degeneracy maps in the wreath product model of Θ2. Recall that an
object of Θ2 is given by a tuple ([k]; [n1], . . . , [nk]), a morphism ϕ : ([n]; [ℓ1], . . . , [ℓn]) →
([m]; [k1], . . . , [km]) is (ϕ;ϕ1, . . . , ϕn), where ϕ : [n] → [m] is a morphism in ∆, and

ϕi = (ϕ
ϕ(i−1)+1
i , . . . , ϕ

ϕ(i)
i ), ϕsi : [ℓi] → [ks] is a tuple of morphisms in ∆. We denote

by ∂j the j-th face maps ∂j : [n] → [n+ 1] in ∆, for 0 ≤ j ≤ n+ 1.

Inner face maps of codimension 1:

(F1) n = m, ℓ = k for i ̸= p, kp = ℓp + 1, all ϕsi = id except for ϕ
ϕ(p)
p equal to the j-th

face map ∂j : [ℓp] → [ℓp+1], j ̸= 0, ℓp+1 (that is, ∂j is an inner coface map in ∆).
We denote this face map by ∂jp,

(F2) m = n+ 1, the morphism ϕ : [m] = [n] → [n+ 1] is ∂j , j ̸= 0, n+ 1. Next, ks = ℓs
for s < j, ks = ℓs+1 for s > j+1 and for s = j, j+1, kj+kj+1 = ℓj , and all ϕs = id
except for s = j. Let σ be a (kj , kj+1)-shuffle permutation in Σℓj . The permutation
σ defines two maps p : [kj − 1] → [ℓj − 1] and q : [kj+1 − 1] → [ℓj − 1] in ∆. They
define the Joyal dual maps p∗ : [ℓj ] → [kj ] and q

∗ : [ℓj ] → [kj+1] in ∆ preserving the
end-points. Then (p∗, q∗) : [ℓj ] → [kj ]× [kj+1], extended by the identity maps of the
ordinals [ℓi], i ̸= j, defines a map in Θ2. It is the codim = 1 face map associated
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with a shuffle permutation σ.
We denote this face map by Dj,σ.

Let us define p∗, q∗ explicitly, unwinding the definition. We think of the sets
{1, . . . , kj}, {1, . . . , kj+1}, {1, . . . , ℓj} as the elementary arrows in the interval cat-
egories Ikj , Ikj+1 , and Iℓj , correspondingly. Then p∗ and q∗ are defined as follows.

Both p∗ and q∗ preserve the end-points. If σ−1(
−−−−→
i, i+ 1) =

−−−−−→
a, a+ 1 ∈ Ikj , then

p∗(i) = a, p∗(i + 1) = a + 1, q∗(i) = q∗(i + 1). If σ−1(
−−−−→
i, i+ 1) =

−−−−→
b, b+ 1 ∈ Ikj+1 ,

then q∗(i) = b, q∗(i+ 1) = b+ 1, p∗(i) = p∗(i+ 1).

Outer face maps of codimension 1:

(F3) n = m, l = k for i ̸= p, kp = ℓp + 1, all ϕsi = id except for ϕ
ϕ(p)
p equal to the j-th

face map ∂j : [ℓp] → [ℓp+1], j = 0, ℓp+1(that is, ∂j is an outer face map in ∆). We
denote this face map by ∂jp,

(F4) the two remaining codimension 1 face maps are Dmin and Dmax. In both cases,
m = n+ 1. For the case of Dmin, ϕ = ∂0, and k1 = 0, ks = ℓs−1 for s ≥ 1,the maps
ϕi = (ϕi+1

i ) = (id). For the case of Dmax, km+1 = 0, ϕ = ∂n+1, ϕi = (ϕii) = (id).

More generally, given a map Φ = (ϕ;ϕ1, . . . , ϕn) : ([n]; [ℓ1], . . . , [ℓn]) → ([m]; [k1], . . . , [km]),
we call Φ a face map if ϕ : [n] → [m] is injective, and each ϕi : [ℓi] → [kϕ(i−1)+1]×· · ·×[kϕ(i)]
is a (jointly) injective map (the latter means that for any a, b ∈ [ℓi], a ̸= b, for at least
one ϕsi , ϕ(i− 1) + 1 ≤ s ≤ ϕ(i), one has ϕsi (a) ̸= ϕsi (b)).

Here is the list of elementary degeneracy maps in Θ2:

(D1) n = m, ℓ = k for i ̸= p, kp = ℓp − 1, all ϕsi = id except for ϕ
ϕ(p)
p equal to the j-th

degenerate map εj : [ℓp] → [ℓp − 1]. We denote this degeneracy map ϵjp,

(D2) n− 1 = m, the first component p(ϕ) is εp : [n] → [n− 1]. For any [ℓp+1], it extends
uniquely to a morphism

ϕ : ([n]; [ℓ1], . . . , [ℓp], [ℓp+1], [ℓp+2], . . . , [ℓn]) → ([n− 1]; [ℓ1], . . . , [ℓp], [ℓp+2], . . . , [ℓn])

for which ϕ1, . . . , ϕp, ϕp+2, . . . , ϕn are identity maps. We denote this operator Υpℓp+1
.

Note that the morphism Υpℓp+1
is of codimension 1 iff ℓp+1 = 0. We define Υpℓ = 0

if ℓ ̸= ℓp+1.

We describe in Section 3.6 the relations among all the generating degeneracy and face
maps.

3.2.2 The totalization of a 2-cocellular complex of vector spaces

The realization of a functor Θopn → E for the case E = T op was studied in [J], [[Be1],
Prop. 2.2, Lemma 2.4, Prop. 2.6] and [[Be2], Prop. 3.9, Cor. 3.11]. Here we use the dual
concept of totalization of a functor Θ2 → E, which we briefly recall. We restrict ourselves
with the case n = 2, and consider the case E = Ch(k), the category of complexes of vector
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spaces over k. Let X q : Θ2 → Ch(k) be a 2-cocellular complex. First of all, we define its
(non-normalized) totalization explicitly, as the complex whose degree ℓ component is:

TotΘ2
(X q)ℓ := ⊕

T∈Θ2
dimT=ℓ

XT (3.2.2)

and the differential of degree +1 is equal to the sum of (taken with appropriate signs) all
codimension 1 coface maps:

d|XT
=

∑
coface maps ∂i

p

(F1),(F3)

(−1)k1+···+kp−1+p−1+i−1∂ip +
∑

coface maps
Dp,σ(F2)

(−1)k1+···+kp−1+p−1+♯(σ)Dp,σ+

Dmin + (−1)k1+···+kn+nDmax

(3.2.3)

where T = ([n]; [k1], . . . , [kn]).

Lemma 3.2.1. One has d2 = 0.

Proof. It follows from relations (3.6.1)-(3.6.7) that the summands in d2 come in pairs, in
which the two operators are equal one to another. One checks by hand that for each pair
the two terms have opposite signs, which makes them mutually cancelled.

3.2.3 Definition of the 2-cocellular vector space A(F, F )

Let C, D be monoidal k-linear categories, F : C → D a monoidal k-linear functor. Here
we define a functor of 2-cocellular cochains A(F, F ) : Θ2 → Vect(k).

For objects X,Y ∈ C, n ≥ 0, denote by Morn(X,Y ) the k-vector space

Morn(X,Y ) =
⊕

Z1,...,Zn−1∈Ob(C)

C(Zn−1, Y )⊗ C(Zn−2, Zn−1)⊗ · · · ⊗ C(X,Z1)

We denote such a string by θ ∈ Morn(X,Y ). We use notations θ(0) = X, θ(n) = Y ,
θ(i) = Zi, 1 ≤ i ≤ n− 1.

Define

Â(F, F )T =∏
Xi∈C
Yi∈C

Homk

(
Morn0

(X0, Y0)⊗k · · · ⊗k Mornk
(Xk, Yk), D(FX0 ⊗D · · · ⊗D FXk, FY0 ⊗D · · · ⊗D FYk)

)
(3.2.4)

For T = ([0]; ∅) the final object, define

Â(F, F )(T ) = D(e, e) (3.2.5)

where e is the unit object in D.

The (dg-)vector space A(F, F )T , which we are mostly interested in, is a (dg-)subspace of
Â(F, F )T , and is defined as follows.
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This sub-complex is formed by the cochains for which, for any j, 1 ≤ j ≤ k, the following
condition holds.

We use notation

Ψ(θ1 ⊗ · · · ⊗ θn) ∈ D(FX0 ⊗D · · · ⊗D FXk, FY0 ⊗D · · · ⊗D FYk)

where Ψ is a cochain as in (3.2.4) and θi ∈ Morni(Xi, Yi), 1 ≤ i ≤ k.

If f1, . . . , fnj
are the composable morphisms in the string θj , we write θj(f1, . . . , fnj

).

Our conditions read: for any 1 ≤ j ≤ k

Ψ(θ1 ⊗ · · · ⊗ θj−1 ⊗ θj(f1, . . . , α ◦ fℓ, fℓ+1, . . . )⊗ · · · ⊗ θn) =

Ψ(θ1 ⊗ . . . θj−1 ⊗ θj(f1, . . . , fℓ, fℓ+1 ◦ α, . . . )⊗ · · · ⊗ θn), for 1 ≤ ℓ ≤ nj − 1
(3.2.6)

Ψ(θ1 ⊗ · · · ⊗ θj(f1 ◦ α, f2, . . . , fnj )⊗ . . . ) = Ψ(θ1 ⊗ · · · ⊗ θj(f1, . . . , fnj ) ◦ αj (3.2.7)

Ψ(θ1 ⊗ · · · ⊗ θj(f1, . . . , α ◦ fnj
)⊗ . . . ) = αj ◦Ψ(θ1 ⊗ · · · ⊗ θj(f1, . . . , fnj

)⊗ . . . ) (3.2.8)

Here αj denotes a map equal to the product of the identity maps on all facts except for
the j-th one, where it is equal to α as in Section 1.6.

For the case when θj has height 0, in which case it is reduced to an object Xj ∈ C, the
corresponding relations reads:

αj ◦Ψ(θ1 ⊗ · · · ⊗Xj ⊗ . . . ) = Ψ(θ1 ⊗ · · · ⊗Xj ⊗ . . . ) ◦ αj (3.2.9)

As well, we impose similar conditions for α−1 and the left and right unit maps, as well as
for its inverse.

Remark 3.2.2. The relations (3.2.6)-(3.2.9) assume that the objects in the l.h.s., to
which α is applied, are of the form X ⊗ (Y ⊗ Z) or (X ⊗ Y ) ⊗ Z, correspondingly.
Similarly for the unit maps.

Definition 3.2.3. We define A(F, F )T ⊂ Â(F, F )T as the cochains for which (3.2.6)-
(3.2.9), as well as their analogues for α−1 and the unit maps (as well as their inverse)
hold.

Example 3.2.4. In this example, we clarify the role of the relations above and their
necessity. To this end, consider the “non-natural Davydov-Yetter situation”, that is the
case given in the introduction, i.e. when T = ([k]; [0], [0], . . . , [0]), k ≥ 0. Then

ÂT (F, F ) =
∏

X1,...,Xk∈Ob(C)

D(FX1 ⊗ · · · ⊗ FXk, FX1 ⊗ · · · ⊗ FXk)

For the monomials in the rhs we choose left to the right parenthesizing, so that FX1 ⊗
FX2 ⊗ FX3 ⊗ · · · ⊗ FXk is understood as FX1 ⊗ (FX2 ⊗ (FX3 ⊗ (· · · ⊗ FXk) . . . )).
Note that if we imposed the naturality in all arguments, it would be exactly the terms of
the Davydov-Yetter complex given in Subsection 3.1.2. We drop the naturality, and we
liked to make the assignment T ⇝ ÂT (F, F ) a cosimplicial complex, when the elementary
coface and codegeneracy maps were defined exactly as for the Davydov-Yetter case. Let
us recall this definition, with notations for simplicial face and degeneracy maps from
the beginning of Subsection 1.4.4. Let Ψ ∈ Â[k−1](F, F ). The elementary face maps
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∂i : [k − 1] → [k], 1 ≤ i ≤ k − 1, act by plugging Xi ⊗Xi+1 in place of the i-th argument
Xi of Ψ, followed by the application of the colax-map F (Xi⊗Xi+1) → F (Xi)⊗F (Xi+1)
and rearranging the parentheses (note that by the Mac Lane coherence theorem one
needn’t specify the way by which the parentheses are rearranged, as any two such maps
are equal). The extreme face map ∂0 act by Ψ 7→ idF (X1) ⊗Ψ(X2 ⊗ · · · ⊗ Xk) (for

this map no rearrangements are necessary), and the other extreme face map ∂k acts by
Ψ 7→ Ψ(X1 ⊗ · · · ⊗ Xk−1) ⊗ idF (Xk), followed by the necessary reparenthesizing (it is
unique, by Mac Lane theorem). The degeneracy map ϵi acts on k-cochain Ψ by plugging
the monoidal unit e to the i-th position of Ψ, followed by the necessary rearrangements.
The reader is referred to [BD] for more detailed description.

Now the question is: does this construction give rise to a cosimplicial object in Ch(k)
(when the polynaturality condition of Davydov-Yetter is dropped)? The answer is nega-
tive, because the relations in ∆ are not respected by this action. Denote this action by O.
Then, for instance, the actions of O(∂i+1)◦O(∂i) differs from O(∂i)◦O(∂i) only by the i-th
argument, which is (Xi⊗Xi+1)⊗Xi+2 for the first composition, and Xi⊗ (Xi+1⊗Xi+2)
for the second one. These two expressions are mapped one to another by the associator
α. Therefore, in order the relation ∂i+1∂i = ∂i∂i to be respected under the action O,
one has to require the naturality with respect to α on the i-th factor. It is clear from this
reasoning that the naturality under all monoidal maps (that is, compositions of products
the associator, the unit maps, and its inverse, with the identity maps on some factors) is
the minimal naturality one has to require to get a cosimplicial object in Ch(k).

Remark 3.2.5. We do not fix any specific parenthesising in the monomials FX0 ⊗D

· · · ⊗D FXk and FY0 ⊗D · · · ⊗D FYk. It assumes that we choose any of them, say from
the left to the right, or vice versa. We call such parenthesising regular. If an operator from
Θ2 (defined below in this Section) gives rise to another parenthesising P , we define the
corresponding cochain by conjugating with the suitable composition of the associator and
the unit maps, as well as its inverse, relating the regular parenthesising with P . By the
Mac Lane coherence theorem such map is unique. (Recall that the Mac Lane coherence
theorem, which holds for monoidal categories, says that any two morphisms X ⇒ Y , each
of which is a composition of product of identity morphisms with the associator and the
unit map, as well as their inverse, coincide).

Our immediate goal is to show that the assignment T ⇝ A(F, F )T gives rise to a functor
Θ2 → Vect(k). (Note that by Example 3.2.4 it is not true that the assignment T ⇝
Â(F, F )T gives rise to a functor from Θ2).
It requires some preparation.

3.2.4 Definition of Mor

Let C be a dg-category over k, and let ϕ : [m] → [n] be a morphism in ∆. We associate
to ϕ a map of vector spaces

Morϕ : Morn(X0, Xn) → C(Xϕ(m), Xn)⊗k Morm(Xϕ(0), Xϕ(m))⊗k C(X0, Xϕ(0)) (3.2.10)

as follows. The reader may consider this construction as a k-linear version of the nerve
functor, where there does not exist any projection

C(Xϕ(m), Xn)⊗Morm(Xϕ(0), Xϕ(m))⊗ C(X0, Xϕ(m)) → Morm(Xϕ(0), Xϕ(m))
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(as the tensor product of vector spaces is not a cartesian product). We will elaborate
more in Subsection 3.3.1.

We use notation fn ⊗ · · · ⊗ f1 for an element in Morn(X0, Xn) (a general element in
Morn(X0, Xn) is a linear combination of such monomial ones).

The first and the third factors in Morϕ(fn ⊗ · · · ⊗ f1) are defined as

fn ◦ · · · ◦ fϕ(m)+1 and fϕ(0) ◦ · · · ◦ f1

correspondingly, if ϕ(0) > 0 and ϕ(m) < n, otherwise define for ϕ(0) = 0 the third factor
as idX0

∈ C(X0, X0), and similarly for ϕ(m) = n.

The second factor is defined as follows:

Mϕ(fϕ(m) ⊗ · · · ⊗ fϕ(0)+1) = gm ⊗ · · · ⊗ g1 ∈ Morm(Xϕ(0), Xϕ(m))

where

ga = ga(ϕ) =

{
fc−1 ◦ · · · ◦ fb : Xb → Xc if ϕ(a− 1) = b, ϕ(a) = c, c > b

idXb
if ϕ(a− 1) = ϕ(a) = b

(3.2.11)

Define

Morϕ(fn ⊗ · · · ⊗ f1) =
(
fn ◦ · · · ◦ fϕ(m)+1

)
⊗Mϕ(fϕ(m) ⊗ · · · ⊗ fϕ(0)+1)⊗

(
fϕ(0) ◦ · · · ◦ f1

)
(3.2.12)

Denote
AL(ϕ) = fn ◦ · · · ◦ fϕ(m)+1 : Xϕ(m) → Xn

AR(ϕ) = fϕ(0) ◦ · · · ◦ f1 : X0 → Xϕ(0)

So we can imagine the outcome as

X0

AR(ϕ)
99K Xϕ(0) → Xϕ(1) → Xϕ(2) → · · · → Xϕ(m)

AL(ϕ)
99K Xn (3.2.13)

where the left (respectively, right) dashed arrow is AR(ϕ) (respectively, AL(ϕ)), and the
string between them isMϕ. Moreover, one imagines the string (3.2.13) as placed vertically,
with arrows are directed from the bottom to the top.

Assume now that C is a monoidal dg-category over k. Assume we are given morphisms
ϕ1 : [m] → [n1], . . . , ϕk : [m] → [nk]. Assume we are given k strings, for 1 ≤ i ≤ k this
string is

Xi0
fi1−−→ Xi1

fi2−−→ Xi2
fi3−−→ . . .

fini−−→ Xini

Denote
X⊗0 = X10 ⊗C · · · ⊗C Xk0, X⊗n = X1n1 ⊗C · · · ⊗C Xknk

and
X⊗ϕ(s) = X1ϕ1(s) ⊗C · · · ⊗C Xkϕk(s), 0 ≤ s ≤ m

We define a map

Morϕ1,...,ϕk
: Morn1

(X10, X1n1
)⊗k · · · ⊗k Mornk

(Xk0, Xknk
) →

C(X⊗(ϕ(m)), X⊗n)⊗k Morm(X⊗(ϕ(0)), X⊗ϕ(m))⊗k C(X⊗0, X⊗ϕ(0))
(3.2.14)
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Morally, we take the strings (3.2.13) for each ϕi, 1 ≤ i ≤ k (they all have m regular
arrows and two extreme, or dashed, ones), and take the term-wise monoidal product in
C of these k strings. The output is the r.h.s. of (3.2.14).

More precisely, define the three factors in Morϕ1,...,ϕk
({fiℓ}) = AL(ϕ1, . . . , ϕk)⊗B(ϕ1, . . . , ϕk)⊗

AR(ϕ1, . . . , ϕk) as

AL(ϕ1, . . . , ϕk) = AL(ϕ1)⊗ · · · ⊗AL(ϕk) : X⊗ϕ(m) → X⊗n

B(ϕ1, . . . , ϕk) =Mϕ1 ⊗ · · · ⊗Mϕk
∈ Morm(X⊗ϕ(0), X⊗ϕ(m))

AR(ϕ1, . . . , ϕk) = AR(ϕ1)⊗ · · · ⊗AR(ϕk) : X⊗0 → X⊗ϕ(0)

(3.2.15)

For the case of B, the corresponding element in Morm(X⊗ϕ(0), X⊗ϕ(m)) is given by the
following string

X⊗ϕ(0)
T1−→ X⊗ϕ(1)

T2−→ X⊗ϕ(2) . . .
Tm−−→ X⊗ϕ(m)

where
Ts = gs(ϕ1)⊗ gs(ϕ2)⊗ · · · ⊗ gs(ϕk) (3.2.16)

(see (3.2.11)).

The outcome can be imagined likewise (3.2.13):

X⊗0
AR
99K X⊗ϕ(0) → X⊗ϕ(1) → X⊗ϕ(2) → · · · → X⊗ϕ(m)

AL
99K X⊗n (3.2.17)

3.2.5 Functoriality of A(F, F )

Recall our assignment T ⇝ A(F, F )T , see Subsection 3.2.3. We show that this assignment
gives rise to a functor Θ2 → Vect(k). Recall the definition of a morphism in Θ2, see
Definition 1.4.2.
Let T = ([k]; [n1], . . . , [nk]), S = ([k′]; [n′1], . . . , [n

′
k′ ]).

Let Φ = (ϕ; {ϕℓi}) : T → S be a morphism in Θ2, where ϕ : [k] → [k′] is the level 1
component of the morphism Φ, and ϕℓi : [ni] → [n′ℓ] are the level 2 components, 1 ≤ i ≤ k,
ϕ(i− 1) + 1 ≤ ℓ ≤ ϕ(i) (for the case ϕ(i− 1) = ϕ(i) the corresponding set is empty).

Given such Φ: T → S, we define A(F, F )(Φ): A(F, F )T → A(F, F )S . For any diagram
Xij of shape S in C

X10 → X11 → · · · → X1n′
1

. . .

Xk′0 → Xk′1 → · · · → Xk′n′
k

(3.2.18)

and any ψ ∈ A(F, F )T , we give a formula for the value A(F, F )(Φ)(ψ).

To make our exposition more transparent, consider firstly the case when T = ([1]; [n]),
and S = ([k′]; [n′1], . . . , [n

′
k′ ]) general. Let Φ: T → S be a map in Θ2. Denote min = ϕ(0),

max = ϕ(1) and assume firstly that min ̸= max.

For each min+1 ≤ ℓ ≤ max, one has a map ϕℓ : [n] → [n′ℓ], with the same source ordinal.
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By Subsection 3.2.4, it gives a map

Morϕmin+1,...,ϕmax : Morn′
min+1

(Xmin+1,0, Xmin+1,n′
min+1

)⊗k · · · ⊗k Morn′
max

(Xmax,0, Xmax,n′
max

) →

C(Xϕ⊗(n), X⊗n′︸ ︷︷ ︸)
=A⊗

L

⊗k Morn(Xϕ⊗(0)), Xϕ⊗(n))︸ ︷︷ ︸
=B⊗

⊗k C(X⊗0, Xϕ⊗(0))︸ ︷︷ ︸
=A⊗

R

(3.2.19)
where, as above,

X⊗0 = Xmin+1,0 ⊗C · · · ⊗C Xmax,0

X⊗n′ = Xmin+1,n′
min+1

⊗C · · · ⊗C Xmax,n′
max

Xϕ⊗(i) = Xmin+1,ϕmin+1(i) ⊗C · · · ⊗C Xmax,ϕmax(i)

(3.2.20)

Next, for a string Xj0 → Xj1 → · · · → Xjn′
j
, 1 ≤ j ≤ k′, denote by fj,tot : Xj0 → Xj,n′

j

the composition of all morphisms in the string.

Define
f⊗min = f0,tot ⊗C f1,tot ⊗C · · · ⊗C fmin,tot

and
f⊗(max+1) = f(max+1),tot ⊗C · · · ⊗C fk′−1,tot ⊗C fk′,tot

In the case when min = max, we set B⊗ = e
id−→ e

id−→ . . .
id−→ e, A⊗

L = id ∈ C(e, e),
A⊗
R = id ∈ C(e, e).

Let ψ ∈ A(F, F )([1];[n]).

We set:

A(F, F )(Φ)(ψ) = F (f⊗(max+1))⊗D

(
F (A⊗

L ) ◦ ψ(B
⊗) ◦ F (A⊗

R)
)
⊗D F (f⊗min) (3.2.21)

In particular, Ared(F, F )(Φ)(ψ) = 0 for any ψ, if min = max.

Now consider the case of general T = ([k]; [n1], . . . , [nk]), S = ([k′]; [n′1], . . . , [n
′
k′ ]). Let

Φ = (ϕ; {ϕi,ℓ}), where ϕi,ℓ : [ni] → [n′ℓ], 0 ≤ i ≤ k − 1, ϕ(i) + 1 ≤ ℓ ≤ ϕ(i + 1). For each
i, the construction of Subsection 3.2.5 gives an analogue of the map (3.2.19):

Morϕi,ϕ(i)+1,...,ϕi,ϕ(i+1) : Morn′
ϕ(i)+1

(Xϕ(i)+1,0, Xϕ(i)+1,n′
ϕ(i)+1

)⊗k · · · ⊗k Morn′
ϕ(i+1)

(Xϕ(i+1),0, Xϕ(i+1),n′
ϕ(i+1)

) →

C(Xϕi⊗(ni) , X⊗in′)︸ ︷︷ ︸
A⊗i

L

⊗k Morni(Xϕi⊗(0) , Xϕi⊗(ni))︸ ︷︷ ︸
B⊗i

⊗k C(X⊗i0, Xϕi⊗(0))︸ ︷︷ ︸
A⊗i

R

(3.2.22)
where

X⊗i0 = Xϕ(i)+1,0 ⊗C · · · ⊗C Xϕ(i+1),0

X⊗in′ = Xϕ(i)+1,n′
ϕ(i)+1

⊗C · · · ⊗C Xϕ(i+1),n′
ϕ(i+1)

Xϕi⊗(j) = Xϕ(i)+1,ϕi,ϕ(i)+1(j) ⊗C · · · ⊗C Xϕ(i+1),ϕi,ϕ(i+1)(j), 0 ≤ j ≤ ni

(3.2.23)

When ϕ(i) = ϕ(i+ 1), denote by Ai⊗L , Bi⊗, Ai⊗R the (strings of the) identity maps of the
monoidal unit, as in the case k = 1 above.
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Finally, denote
F⊗A⊗

L := F (A⊗1
L )⊗D F (A⊗2

L )⊗D · · · ⊗D F (A⊗k
L )

and
F⊗A⊗

R := F (A⊗1
R )⊗D F (A⊗2

R )⊗D · · · ⊗D F (A⊗k
R )

Let min = ϕ(0), max = ϕ(k). We use notation fℓ,tot, f⊗min, f⊗(max+1) as above.

Let ψ ∈ A(F, F )T . The formula for A(F, F )(Φ)(ψ) reads:

A(F, F )(Φ)(ψ) =

F (f⊗(max+1))⊗D

(
F⊗A⊗

L ◦ ψ(B⊗1 ⊗k · · · ⊗k B
⊗k) ◦ F⊗A⊗

R

)
⊗D F (f⊗min)

(3.2.24)

Proposition 3.2.6. The assignment T 7→ A(F, F )T gives rise, via (3.2.24), to a functor
A(F, F ) : Θ2 → Vect(k).

Proof. One can check that the action on A(F, F ) by the generators of Θ2 (listed in the
following Subsection 3.2.6) satisfy all the relations described in Section 3.6.
We also give a more conceptual proof of the functoriality in Subsection 3.3.2.

Remark 3.2.7. (1) The construction of A(F, F ) can be easily generalised to the case of
dg-bicategories C, D and F a dg-pseudo-functor. (Recall that a monoidal category
is a bicategory with a single object). The reason is that there is a direct analogue
of the Mac Lane coherence theorem for bicategories, proven by Bénabou [Ben]. The
conditions (3.2.6)-(3.2.9) should be replaced accordingly, by the naturality with
respect to the associativity maps for the composition of 1-morphisms, the unit
morphisms, and their inverses.

(2) One can not define a functor A(F,G) : Θ2 → Vect(k), for two distinct monoidal
(or pseudo) dg-functors F,G : C → D, if we wanted to have D(FX0 ⊗D · · · ⊗D

FXk, GY0 ⊗D · · · ⊗D GYk) in the r.h.s. of (2.7). The matter is that an action of
morphisms in Θ2 for which min = ϕ(0) > 0 or max = ϕ(k) < k′ are ill-defined.
However, for given two natural transformations η, θ : F ⇒ G (in the classical sense),
one can define the corresponding 2-cocellular complex A(F,G)(η, θ), playing the
role of derived 3-arrows (or derived modifications). It gives rise to the question
“What do dg-bicategories form?”, as a 3-dimensional generalisation of the problem
studied in [Tam2].

3.2.6 The action of Θ2 on A(F, F )

Here we list the actions on A(F, F ) of all the generators of Θ2 (see Subsection 3.2.1). We
use notation Xs for a chain of morphisms in C:

Xs,0
fs,1−−→ Xs,1

fs,2−−→ . . .
fs,ms−−−→ Xs,ms

(F1) Let T = ([n]; [ℓ1], . . . , [ℓn]), T
′ = ([n]; [ℓ1], . . . , [ℓp−1], [ℓp + 1], [ℓp+1] . . . , [ℓn]). Then

∂jp : T → T ′, with 0 < j < ℓp, and for a cochain Ψ ∈ A(F, F ), one has:

(∂jpΨ)T ′(X1, . . . , Xn) = ΨT (X1, . . . , Xp−1, Y p, Xp+1, . . . , Xn) (3.2.25)
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where Y p is the chain:

Xp,0
g1−→ . . . . . .

gℓp−−→ Xp,ℓp+1

and

gi =


fp,i if i < j

fp,j+1 ◦ fp,j if i = j

fp,i+1 if i > j

(3.2.26)

(F2) Let σ ∈ Σℓj be an (mj ,mj+1)-shuffle, ℓj = mj + mj+1. Let p∗ : [ℓj ] → [mj ]
and q∗ : [ℓj ] → [mj+1] be the two maps Joyal dual to the natural embeddings [mj −
1] → [ℓj − 1] and [mj+1 − 1] → [ℓj − 1]. Let T = ([n]; [ℓ1], . . . , [ℓn]), T

′ = ([n +
1]; [ℓ1], . . . , [ℓj−1], [mj ], [mj+1], . . . , [ℓn+1]). Then Dj,σ : T → T ′, and for a cochain Ψ ∈
A(F, F ), one has:

(Dj,σΨ)T ′(X1, . . . , Xn+1) = ΨT (X1, . . . , Xj−1, Y j , Xj+2, . . . , Xn+1) (3.2.27)

where Y j is the chain:

Xj0 ⊗Xj+1,0
g1−→ . . . . . .

gmj+mj+1−−−−−−−→ Xj,mj ⊗Xj+1,mj+1

and

gi =

{
fj,a ⊗ id if σ−1(i) = a, 0 ≤ a ≤ mj

id⊗fj+1,b if σ−1(i) = b, mj + 1 ≤ b ≤ mj +mj+1

(3.2.28)

(F3) Let T = ([n]; [ℓ1], . . . , [ℓn]), T
′ = ([n]; [ℓ1], . . . , [ℓp−1], [ℓp + 1], [ℓp+1] . . . , [ℓn]). Then

∂0p : T → T ′, (the case for ∂
ℓp
p is totally analogous), and for a cochain Ψ ∈ A(F, F ), one

has:

(∂0pΨ)T ′(X1, . . . , Xn) = ΨT (X1, . . . , Xp−1, Y p, Xp+1, . . . , Xn) ◦ F⊗(A⊗
R) (3.2.29)

where Y p is the chain:

Xp,1
fp2−−→ . . . . . .

fpℓp+1−−−−→ Xp,ℓp+1

and
A⊗
R := idX1,0

⊗C · · · ⊗C idXp−1,0
⊗Cfp,1 ⊗C idX10

⊗C · · · ⊗C idXn,0

(F4)(1) Let T = ([n]; [ℓ1], . . . , [ℓn]), T
′ = ([n + 1]; [0], [ℓ1], . . . , [ℓn]). Then Dmin : T → T ′

(the case for Dmax is totally analogous) and for a cochain Ψ ∈ A(F, F ), one has:

(DminΨ)T ′(X1, . . . , Xn+1) = F (idX1,0
)⊗D ΨT (X2, . . . , Xn+1) (3.2.30)

(F4)(2) Let T = ([n]; [ℓ1], . . . , [ℓn]), T
′ = ([n + 1]; [ℓ1], . . . , [ℓn], [0]). Then Dmax : T → T ′

and for a cochain Ψ ∈ A(F, F ), one has:

(DmaxΨ)T ′(X1, . . . , Xn+1) = ΨT (X1, . . . , Xn)⊗D F (idXn+1,0) (3.2.31)

(D1) Let T = ([n]; [ℓ1], . . . , [ℓn]), T
′ = ([n]; [ℓ1], . . . , [ℓp−1], [ℓp − 1], [ℓp+1] . . . , [ℓn]). Then

ϵjp : T → T ′ and for a cochain Ψ ∈ A(F, F ), one has:

(ϵjpΨ)T ′(X1, . . . , Xn) = ΨT (X1, . . . , Xp−1, Y p, Xp+1, . . . , Xn) (3.2.32)
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where Y p is the chain:

Xp,0
g1−→ . . . . . .

gℓp−−→ Xp,ℓp−1

and

gi =


fp,i if i < j

idXp,j if i = j

fp,i−1 if i > j

(3.2.33)

(D2) Let T = ([n]; [ℓ1], . . . , [ℓn]), T
′ = ([n − 1]; [ℓ1], . . . , [ℓp−1], [ℓp+1], . . . , [ℓn]). Then

Υpℓp : T → T ′ and for a cochain Ψ ∈ A(F, F ), one has:

(ΥpℓpΨ)T ′(X1, . . . , Xn) = ΨT (X1, . . . , Xp−1, e,Xp, . . . , Xn) (3.2.34)

where e is the chain:

e
ide−−→ . . . . . .

ide−−→ e︸ ︷︷ ︸
ℓp+1 elements

and e is the monoidal unit.

3.2.7 The case F ̸= G: derived modifications

We consider here A(F, F )T for the case when C,D are bicategories linear over k (which
means that the 2-morphisms form k-vector spaces or complexes of k-vector spaces), and
F : C → D a k-linear pseudofunctor. As we mentioned in Remark 3.2.7, this generalisation
goes straightforwardly.

Let us write down the formula for cochains. For two objects X,Y ∈ Ob(C), and two
1-morphisms f, g ∈ C(X,Y ), denote by

Mor2n(f, g) =
⊕

h1,...,hn−1∈C(X,Y )

C(hn−1, g)⊗ C(hn−2, hn−1)⊗ · · · ⊗ C(f, g1) (3.2.35)

where the factors are the corresponding k-vector spaces of 2-morphisms.

Let T = ([k]; [n1], . . . , [nk]) ∈ Θ2. Set

Â(F, F )T =
∏

X0,...,Xk∈Ob(C)

∏
fi,gi∈C(Xi−1,Xi)

i=1,...,k

Homk

(
Mor2n1

(f1, g1)⊗k · · · ⊗k Mor2nk
(fk, gk), D(Ffk ◦ · · · ◦ Ff1, Fgk ◦ · · · ◦ Fg1)

)
(3.2.36)

Note that both Ffk ◦ · · · ◦ Ff1 and Fgk ◦ · · · ◦ Fg1 are morphisms in D(FX0, FXk).

We define the subcomplex A(F, F )T ⊂ Â(F, F )T , formed by cochains which satisfy ana-
logues of (3.2.6)-(3.2.9), where the associator is replaced by the associativity morphism
for composition of 1-morphism in the bicategory, et cetera.

Note that for the case when C is the bicategory with a single object, associated to a
monoidal category, we recover our complexes (3.2.4) and its subcomplex A(F, F )T .
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Now assume that F,G : C → D are two pseudo-functors. We ask ourselves whether one
can generalise our Â(F, F )T to Â(F,G)T , such that the latter is also a 2-cocellular space
Â(F,G) : Θ2 → Ch(k). When we just replace, in the r.h.s. of (3.2.36) D(Ffk ◦ · · · ◦
Ff1, Fgk ◦ · · · ◦Fg1) by D(Ffk ◦ · · · ◦Ff1, Ggk ◦ · · · ◦Gg1), we could not define an action
of Φ: T → S = ([k′]; [n′1], . . . , [n

′
k′ ]), Φ = (ϕ; {ϕℓi}) in Θ2, for which ϕ(0) ̸= 0 or ϕ(k) ̸= k′.

Indeed, for the case F = G, we define such operations via tensoring with id: F → F , see
the “extreme” factors F (f⊗(max+1)) and F (f⊗min) in the r.h.s. of (3.2.21). To mimic
these factors for the case F ̸= G, one needs natural transformations η, θ : F ⇒ G (one of
them is used for the extreme factors from the left, another one for the extreme factors
on the right). So we are going to define components Â(C,D)(F,G)(η, θ), or, for short,
Â(F,G)(η, θ).

The definition is as follows:

Â(F,G)(η, θ)T =
∏

X0,...,Xk∈Ob(C)

∏
fi,gi∈C(Xi−1,Xi)

i=1,...,k

Homk

(
Mor2n1

(f1, g1)⊗k · · · ⊗k Mor2nk
(fk, gk), D(η(Xk) ◦ Ffk ◦ · · · ◦ Ff1, Ggk ◦ · · · ◦Gg1 ◦ θ(X0))

)
(3.2.37)

Note that both compositions η(Xk) ◦ Ffk ◦ · · · ◦ Ff1, Ggk ◦ · · · ◦ Gg1 ◦ θ(X0) are maps
F (X0) → G(Xk) in D.

We define the action of Φ: T → S (in the notations of Subsection 3.2.3) by

Â(F,G)(η, θ)(Φ)(ψ) =

G(f⊗max)⊗D

(
G⊗A⊗

L ◦ ψ(B⊗1 ⊗k · · · ⊗k B
⊗k) ◦ F⊗A⊗

R

)
⊗D F (f⊗min)

(3.2.38)

followed by the isomorphisms

η(Xn+1) ◦ F (fn+1) → G(fn+1) ◦ η(Xn), G(f1) ◦ θ(X0) → θ(X1) ◦ F (f1)

where f1 ∈ C(X0, X1), fn+1 ∈ C(Xn, Xn+1) are morphisms in C, et cetera.

Proposition 3.2.8. For any two k-linear bicategories, two linear pseudo-functors F,G : C →
D, and two natural transformations η, θ : F ⇒ G, the assignment

T ⇝ A(C,D)(F,G)(η, θ)T

gives rise to a functor Θ2 → Ch(k).

Proof. See Subsection 3.3.2.

Recall what is a modification τ : η ⇛ θ : F ⇒ G : C → D, where C,D are bicategories,
F,G : C → D pseudofunctors, η, θ : F ⇒ G natural transformations.

A modification η → θ is a 2-arrow Ψ(X) : η(X) → θ(X), for any X ∈ Ob(C), such that
for any X,Y ∈ Ob(C) and any f ∈ C(X,Y ), the diagram below commutes:

Φθ(f) ◦v (Ψ(y) ◦h idF (f)) = (idG(f) ◦hΨ(x)) ◦v Φη(f)
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where Φη(f),Φθ(f) are the two-morphisms of the natural transformations η, θ, corre-
spondingly, ◦h (respectively, ◦v) is the horizontal (respectively, vertical) composition of
2-morphisms.

The modifications play the role of 3-morphisms in the category of bicategories, making it
a suitably relaxed 3-category.

We have:

Proposition 3.2.9. Assume C,D are k-linear or dg- over k bicategories (that is, the
2-morphisms Mor2(F,G) have a k-linear structure), such that for any F,G the k-vector
space Mor2(F,G) is concentrated in cohomological degree 0. Then 0-th cohomology of
TotΘ2

(A(C,D)(F,G)(η, θ)) is identified with the k-vector space of modifications η ⇛ θ.

Proof. The degree 0 part of the totalization is corresponded to A(C,D)(F,G)(η, θ)T ,
where T = ([0]; ), the final object of Θ2. The corresponding cochain depends on an object
X ∈ Ob(C), and to X is assigned the k-vector space D(η(X) ◦ idF (X), idG(X) ◦θ(X)).
Thus, choose a cochain

Ψ ∈
∏

X∈Ob(C)

D(η(X), θ(X))

Its boundary dΨ is a cochain in A(C,D)(F, F )(η, θ)S , where S = ([1]; [0]). It has two
summands:

(dΨ)(f) = [Ψ(Y ) ◦ idF (f)]− [idG(f) ◦Ψ(X)]

where f ∈ C(X,Y ). Here [−] stands for the reduction of the cochain, by which we mean
the following. By the convention made earlier in this Subsection, we have to replace
f 7→ Ψ(Y ) ◦ idF (f) by a cochain of the form f 7→ D(η(Y ) ◦ Ff,Gf ◦ θ(X)), whence
f 7→ Ψ(Y ) ◦ idF (f) takes values in D(η(Y ) ◦F (f), θ(Y ) ◦F (f)). That is, we have to post-
compose Ψ(Y ) ◦ idF (f) with the 2-cell Φθ(f) : θ(Y ) ◦ F (f) → G(f) ◦ θ(X) for θ, and the
result of the post-composition is denoted by [Ψ(Y ) ◦ idF (f)] = Φθ(f) ◦v (Ψ(Y ) ◦h idF (f)).
Similarly for the second summand, but here we pre-compose with the 2-cell Φη(f). Then
the condition dΨ = 0 expresses exactly the condition on the collection of 2-morphisms
{Ψ(X)}X∈Ob(C) being a modification.

3.3 An abelian category of 2-bimodules

3.3.1 The category of 2-bimodules over a bicategory

Let C be a k-linear bicategory (that is, the 2-morphisms are k-vector spaces). We define
an abelian category of 2-bimodules over C.

A 2-bimodule over C is a 2-globular set M such that the sets of vertices and 1-arrows
(along with the restriction of the globular structure on them) are the same as for C, and
the 2-arrows are k-linear vector spaces (respectively, complexes of k-linear vector spaces),
subject to the following conditions:

(1) there are left and right horizontal compositions on 2-arrows:

C(f, g)⊗M(f ′, g′) →M(f ◦ f ′, g ◦ g′), M(f, g)⊗ C(f ′, g′) →M(f ◦ f ′, g ◦ g′)
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(2) the upper and lower vertical compositions

C(f, g)⊗M(g, h) →M(f, h), M(f, g)⊗ C(g, h) →M(f, h)

(3) four (strict) Eckmann-Hilton identities. Let X,Y, Z ∈ C, f1, f2, f3 ∈ C(X,Y ),
g1, g2, g3 ∈ C(Y,Z). Assume t1 ∈ C(f1, f2), t2 ∈ C(f2, f3), m ∈ M(g1, g2), t3 ∈
C(g2, g3). Then the following identity holds:

(t3 ◦v+ m) ◦h− (t2 ◦v t1) = (t3 ◦h t2) ◦v+ (m ◦h− t1) (3.3.1)

The three other identities are corresponded to the three other possible positions of
an element of M , and are analogous.

(4) the compositions in (1) are associative up to associator 2-morphisms which are
subject to to natural compatibility, the compositions in (2) are strictly associative,

(5) there are weak units which are subject to natural compatibilities,

(6) the maps in (3) are compatible with the associativity morphisms and the unit maps.

The morphisms of 2-bimodules over C are defined in the natural way.

The 2-bimodules over a given bicategory C form a category, denoted by 2-Bimod(C). Note
that this category is abelian.

Examples.

(1) Here we provide the free rank 1 2-bimodule over a bicategory C. It is

M(f, g) =
( ⊕

Z∈Ob(C)
α−,α+∈C(X,Z)
β−,β+∈C(Z,Y )

C(β+ ◦α+, g)⊗k
(
C(β−, β+)⊗kC(α−, α+)

)
⊗kC(f, β− ◦α−)

)
/ ∼

(3.3.2)
for f, g ∈ C(X,Y ), where the quotient is taken by the relations generated by the Eckmann-
Hilton axioms (3). The operations listed in (1)-(5) above are clear. It is shown below (in
a bit more general context) that this 2-bimodule is projective.

(2) For a choice of the data η ⇛ θ : F ⇒ G : C → D, define the following 2-bimodule over
C M(C,D)(F,G)(η, θ):

M(C,D)(F,G)(η, θ)(f, g) = D(η(Y ) ◦ F (f), G(g) ◦ θ(X)) (3.3.3)

where f, g ∈ C(X,Y ).

Lemma 3.3.1. M(C,D)(F,G)(η, θ) is a 2-bimodule over C.

Proof. Let m ∈M(C,D)(F,G)(η, θ)(f, g).
For a 2-morphism α : f ′ ⇒ f , the vertical composition m ◦v− α is defined as the vertical
composition m ◦v (η(y) ◦ F (α)) in D. Seemingly, for β : g ⇒ g′, the vertical composition
β ◦v+ m is defined as the vertical composition G(β) ◦ θ(X)) ◦v m.
For f0, g0 ∈ C(W,X), α ∈ C(f0, g0), define the 2-morphism (m◦h−α)0 inD as the horizontal
composition in m ◦h F (α) in D post-composed vertically with the 2-morphism θ(X) ◦
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F (g0) ⇒ G(g0) ◦ θ(X0) (whiskered by G(g)). Define the horizontal composition m ◦h− α =

ψ ◦v (m ◦h− α)0) ◦v ϕ where ϕ is the vertical composition of 2-arrows η(Y ) ◦ F (f ◦ f0)
∼→

η(Y ) ◦ (F (f) ◦ F (f0))
∼→ (η(Y ) ◦ F (f)) ◦ F (f0), and ψ is the composition G(g) ◦ (G(g0) ◦

η(W ))
∼→ (G(g) ◦G(g0)) ◦ η(W )

∼→ G(g ◦ g0) ◦ η(W ).

F (W )

G(W )

F (X)

G(X)

F (Y )

G(Y )

⇑F (α)

⇑m

⇑θ(g0)

⇑φ

⇑ψ

θ(W ) θ(X) η(Y )

F (f0)

F (g0)

G(g0) G(g)

F (f)

F (f ◦ f0)

G(g ◦ g0)

(3.3.4)

For f1, g1 ∈ C(Y,Z), β ∈ C(f1, g1), define the 2-morphism (β◦v+m)0 in D as the horizontal
composition m◦hG(β) in D pre-composed vertically with the 2-morphism η(Z)◦F (f1) ⇒
G(f1)◦η(Y ) (whiskered by F (f)). Define the horizontal composition β ◦v+m as ψ ◦v (β ◦v+
m)0◦vϕ, where ϕ is the vertical composition of 2-arrows η(Z)◦F (f1◦f)

∼→ η(Z)◦(F (f1)◦
F (f))

∼→ (η(Z)◦F (f1))◦F (f), and ψ is the vertical composition G(g1)◦ (G(g)◦θ(X))
∼→

(G(g1) ◦G(g)) ◦ θ(X)
∼→ G(g1 ◦ g) ◦ θ(X).

The only nontrivial property one has to check is the Eckmann-Hilton axiom (3), see
(3.3.1), and its three analogues. It follows from the definitions given above, though the
computation is rather tricky. One cancels ϕ and its inverse (resp., ψ and its inverse) for
the r.h.s. of (3.3.1), and one uses the naturality of η and θ with respect to 2-morphisms
in C.

(3) The collection of the underlying spaces {C(f, g)}, for C a bicategory, f, g ∈ C(X,Y ),
X,Y ∈ Ob(C), forms a 2-bimodule over C, which we call tautological. Note that this
2-bimodule is not projective.

3.3.2 Proofs of Propositions 3.2.6 and 3.2.8

Of course, one can provide lengthy computational proofs of Propositions 3.2.6 and 3.2.8,
checking that the generators given in Subsection 3.2.6 satisfy all the relations written
down in Section 3.6. We give an alternative proof, which briefly can be explained as
follows. In the cartesian-monoidal case, one defines the nerve of a strict 2-category by
(1.4.6). It is clear that it gives rise to a 2-cellular object. For the k-linear case, we define
a 2-cellular bar-complex {Bar(C)T }T∈Ob(Θ2) and pursue its analogy with the components
of the nerve to show that the assignment

T ⇝ Bar(C)T
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gives rise to a 2-cellular object in 2-Bimod(C). Next, our complexes Â(C,D)(F,G)(η, θ)T
are equal to:

Â(C,D)(F,G)(η, θ)T = Hom2-Bimod(C)(Bar(C)T ,M(C,D)(F,G)(η, θ)) (3.3.5)

where the 2-bimodule M(C,D)(F,G)(η, θ) is defined in (3.3.3). Then the fact that the
assignment T ⇝ Bar(C)T is 2-cellular implies that the complexes Â(C,D)(F,G)(η, θ)T
form a 2-cocellular object in Ch(k).
For simplicity, we start with the case of a strict 2-category C. After that, we discuss how
to adopt the proof for the strict case to the case of (non-strict) bicategories.

Let C be a strict 2-category, T = ([k]; [n1], . . . , [nk]) ∈ Ob(Θ2), define the component
Bar(C)T , as a 2-bimodule over C.

Let ω2(T̄
∗) be the free strict 2-category generated by the globular diagram T̄ ∗ associated

to T , see Subsection 1.4.1. A functor of the underlying 1-categories t : ω2(T̄
∗)1 → C

is given by k + 1 objects X0, . . . , Xk and by column-wise ordered sets of 1-morphisms
fi,j ∈ C(Xi−1, Xi), i = 1, . . . , k. Denote

f◦min = fk,0 ◦ · · · ◦ f2,0 ◦ f1,0, f◦max = fk,nk
◦ · · · ◦ f2,n2

◦ f1,n1
(3.3.6)

For t as above, denote

t⊗ =
⊗
i=1...k

⊗
j=1...ni

C(fi,j−1, fi,j) (3.3.7)

Let f, g ∈ C(X,Y ). Define

Bar(C)T (f, g) =[ ⊕
t : ω2(T̄

∗)1→C1

α−,α+∈C(X,X0)
β−,β+∈C(Xn,Y )

C(β+ ◦ f◦max ◦ α+, g)⊗k
(
C(β−, β+)⊗k t⊗ ⊗k C(α−, α+)

)
⊗k C(f, β− ◦ f◦min ◦ α−))

]
/ ∼

(3.3.8)
where the quotient is taken by the relations generated by the Eckmann-Hilton axioms (3)
for 2-bimodules. For each T ∈ Ob(Θ2), Bar(C)T is a 2-bimodule over C.

Lemma 3.3.2. Let T ∈ Ob(Θ2), then

HomΘ2
(Bar(C)T ,M(C,D)(F,G)(η, θ)) = Â(C,D)(F,G)(η, θ)T

It is clear.

Lemma 3.3.3. Assume C is a strict k-linear 2-category. Then the assignment T ⇝
Bar(C)T gives rise to a functor Bar(C) : Θop

2 → 2-Bimod(C).

Proof. The summands of (3.3.8) with given values {fi,j} for all i, j, but varying α, β, are
given by a k-linear 2-functor t : ω2(T̄

∗) → C (not only of their 1-skeletons). There is a
clear (contravariant) functoriality with respect to dominant maps ω2(S̄

∗) → ω2(T̄
∗), by

the pre-composition. One has to show that it extends to non-dominant maps, by action
on a ∈ C(α−, α+), b ∈ C(β−, β+), κ− ∈ C(f, β− ◦ f◦min ◦α−), κ+ ∈ C(β+ ◦ f◦max ◦α+, g).
On the other hand, Lemma 3.3.2 shows then the functoriality of Â(C,D)(F,G)(η, θ)T
with respect to maps of Θ2. Note that for the case of a strict 2-category C, one has
Â(C,D)(F,G)(η, θ)T = A(C,D)(F,G)(η, θ)T , because the identities (3.2.6)-(3.2.9) hold
automatically.



3.3. AN ABELIAN CATEGORY OF 2-BIMODULES 89

This completes the proofs of Propositions 3.2.6 and 3.2.8 for the case when C,D are strict
2-categories.

Now we turn to the general case of a bicategory C.
We begin by introducing an extension Θ̂2 of the category Θ2, as follows. Consider the free
bicategory ω̂2(D) generated by a 2-globular diagram D (one can write down an explicit
formula for it, analogous to (1.4.4), weighted with coefficients O(T ) where O is the 2-
operad of bicategories). Then the analogue of Proposition 1.4.11 for ω̂2 gives rise to an
ordinary category with the same objects as Θ2, we denote it by Θ̂2. More precisely, the
objects of Θ̂2 are the same as the objects of Θ2, and the morphisms Θ̂2(S, T ) are defined
as strict functors of bicategories Bicat(ω̂2(S̄

∗), ω̂2(T̄
∗)). There is a projection Θ̂2 → Θ2.

Denote by p the dual projection p : Θ̂op
2 → Θop

2 .

When C is a bicategory, define the 2-bimodule Bar(C)T as above (one has to fix some
order in the compositions f◦min, f◦max, β− ◦ f◦min ◦ α− and β+ ◦ f◦max ◦ α+). It gives
rise to a functor from Θ̂op

2 to 2-Bimod(C). Then

Hom2-Bimod(C)(Bar(C)T ,M(C,D)(F,G)(η, θ)) = Â(C,D)(F,G)(η, θ)T

By the same argument as above, we see that the assignment T ⇝ Â(. . . )T gives rise to a
functor Θ̂2 → Ch(k).

Now denote by Bar(C)T the quotient-space of Bar(C)T by the relations (3.2.6)-(3.2.9).
Note that Bar(C)T is a C-bimodule as well. We are going to show that the assignment

T ⇝ Bar(C)T

(which is a priori a functor Θ̂op
2 → 2-Bimod(C)) descends to a functor Θop

2 → 2-Bimod(C).

To this end, we firstly detect the different elements in Θ̂2(S, T ) which lie over the same
morphism in Θ2(S, T ). The generator 2-morphisms of ω̂2(S̄

∗) are fij (in the notations
we used above for ω̂2(S̄

∗)), the associativity 2-morphisms, and the unit 2-morphisms.
For a strict k-linear 2-functor of bicategories F : ω̂2(S̄

∗) → ω̂2(T̄
∗)), the images of the

associativity and the unit 2-morphisms are uniquely defined by the restriction of F to
the 1-skeleton of the source bicategory. That is, if F on the 1-skeleton is already defined,
its extension to the source bicategory is uniquely determined by the images of fij . If we
consider two neighbour 2-morphisms fi,j−1 and fi,j , such that fi,j−1 : Xi,j−1 ⇒ Xi,j and
fi,j : Xi,j ⇒ Xi,j+1, the different parenthesizings of F (Xi,j) project to the same functor

of the strict 2-categories, under the map p : Θ̂2 → Θ2. In this way, the associativity
2-morphism may “jump” from F (fi,j−1) to F (fi,j). It gives a different strict functor of
bicategories which project to the same morphism of strict 2-categories. Similarly, one has
the analogous phenomenon for the unit maps. It is clear it provides a description of the
fiber ΥG in the bicategory functors ω̂2(S̄

∗) → ω̂2(T̄
∗) which project to a given functor of

strict 2-categories G : ω̂2(S̄
∗) → ω̂2(T̄

∗). On the other hand, the relations (3.2.6)-(3.2.9)
are designed especially to identify the application of the different elements from the fiber
ΥG over G, as it follows from the description of ΥG presented above. It follows that the
assignment T ⇝ Bar(C) gives rise to a functor Θop

2 → 2-Bimod(C). By the speculation
above, we have:

Hom2-Bimod(C)(Bar(C)T ,M(C,D)(F,G)(η, θ)) = A(C,D)(F,G)(η, θ)T (3.3.9)

and so the right-hand side gives rise to a functor Θ2 → Ch(k). It completes the proof.
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Remark 3.3.4. Alternatively, one can show that the left Kan extension Lanp(Bar(C)−)(T )
is a functor Θop

2 → Ch(k), which is the quotient of Bar(C)T by the relations analogous to
(3.2.6)-(3.2.9), so that

Hom2-Bimod(C)(Lanp(Bar(C))(T ),M(C,D)(F,G)(η, θ)) = A(C,D)(F,G)(η, θ)T (3.3.10)

and thus the r.h.s. of (3.3.10) is automatically a functor Θ2 → Ch(k).

Remark 3.3.5. One can show that the projection Θ̂2 → Θ2 is cofibration but not a
fibration, thus p is a fibration but not a cofibration. Therefore, one can not compute the
left Kan extensions along p as the colimit over the fiber-category p−1(T ) (thus only the
formula as the colimit over the comma-category p\T is applied).

3.3.3 An intrinsic definition of Â(C,D)(F,G)(η, θ)

Here we prove that Bar(C) is a projective resolution of C in the category of 2-bimodules,
for any k-linear bicategory C.

Here we assume that C,D are strict 2-categories (though a similar result holds for the
general case of bicategories, and we are going to provide details elsewhere).

We prove

Proposition 3.3.6. Let C,D be k-linear bicategories. One has:

TotΘ2
(Â(C,D)(F,G)(η, θ)) = RHom

q
2-Bimod(C)(C,M(C,D)(F,G)(η, θ))

Proof. First of all, the 2-bimodules Bar(C)T are projective. Indeed, consider more gen-
erally the following 2-bimodule MV over C, where Z0, Z1 ∈ Ob(C), f ′, g′ ∈ C(Z0, Z1),
V ⊂ C(f ′, g′). Then define

MV (f, g) =
[⊕

α−,α+∈C(X,Z0)
β−,β+∈C(Z1,Y )

C(β+ ◦ g′ ◦ α+, g)⊗k
(
C(β−, β+)⊗k V ⊗k C(α−, α+)

)
⊗k C(f, β− ◦ f ′ ◦ α−)

]
/ ∼

where f, g ∈ C(X,Y ), and the quotient is taken by the relations given by the Eckmann-
Hilton axioms of 2-bimodules (3).

Let us show that the 2-bimodule MV is projective. Indeed, for any 2-bimodule N over C
one has:

Hom2-Bimod(C)(MV , N) = Homk(V,N(f ′, g′))

(because the relations (3) hold for N), from which the projectivity of MV follows. Note
that Bar(C)T is a direct sum of 2-bimodules of the type MV , and, thus, is projective.

It remains to show that the complex TotT∈Θ2Bar(C)T is a resolution of the tautolog-
ical 2-bimodule C. We start with the case when C is a strict 2-category. Define a
homotopy operator, which sends Bar(C)T to Bar(C)T ′ , T = ([k]; [n1], . . . , [nk]), T

′ =
([k + 1]; [0], [n1], . . . , [nk]), plugging IdX0

in place of [0].
More precisely, define h : Bar(C)T (f, g) → Bar(C)T ′(f, g), which sends

κ+ ⊗k (b⊗k t
⊗ ⊗k a)⊗k κ+
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where (see (3.3.8)) a ∈ C(α−, α+), b ∈ C(β−, β+), κ− ∈ C(f, β− ◦ f◦min ◦ α−), κ+ ∈
C(β+ ◦ f◦max ◦ α+, g) to

κ̃+ ⊗k (b̃⊗k t̃⊗ ⊗k ã)⊗k κ̃− (3.3.11)

where t̃⊗ is corresponded to T ′, and is equal to t⊗⊗kα−, κ̃+ = (κ+ ◦v (Id◦h a))◦h (idIdX
),

ã = idIdX
, b̃ = b, and ã ∈ C(α̃−, α̃+), with both α̃−, α̃+ equal to Idx. So the main idea is

that we “pack” the 2-morphism a inside κ̃+, as the vertical composition with a whiskered
by the identity morphism. Indeed, the new (leftmost) column of T ′ is of height 0, so one
can not consider the (height 1) 2-morphism a as placed in this column.

This formula works for the case of strict 2-categories only, as in the bicategory case one
has to “compensate” the extensions by the identity morphisms by the compositions with
the corresponding 2-morphisms.

We check that h is indeed a homotopy, that is

dh+ hd = id (3.3.12)

where d is the differential in the realization of the functor T ⇝ (Bar(C))T . Note that the
leftmost extreme coface map of h(κ+⊗k(b⊗k⊗t⊗⊗ka)⊗kκ+) is κ+⊗k(b⊗k⊗t⊗⊗ka)⊗kκ+
again. It follows from the Eckmann-Hilton axioms (3) for 2-bimodules (in our definition
(3.3.8), the quotients by the Eckmann-Hilton relations are taken). The rest of the proof
of (3.3.12) is straightforward.

Turn back to the general case of bicategories.
First of all, we have to chose parenthesizings of β− ◦ f◦min ◦ α− and β+ ◦ f◦max ◦ α+.
We parenthesize the compositions from the left to the right, so that α− and α+ have
the highest depth (with respect to the parenthesizings). Similarly to the strict case,
define a homotopy operator, which sends Bar(C)T to Bar(C)T ′ , T = ([k]; [n1], . . . , [nk]),
T ′ = ([k + 1]; [0], [n1], . . . , [nk]), plugging IdX0 in place of [0]. The only difference is
in definitions of κ̃− and κ̃+. One has t̃ = t⊗ ⊗k α−, κ̃− = (Id ◦ ρ−1

α−
) ◦ κ−, κ+ =

κ+ ◦ (Id◦ (ρα+
◦ (a◦ Id))), ã = idIdX

, b = b. That is, we insert the unit maps ρ−1
α−

and ρα+
.

After applying the extreme boundary map, and applying the Eckmann-Hilton axiom for
2-bimodules, we obtain the following chain

κ′+ ⊗k (b
′ ⊗k t

′⊗ ⊗k a
′)⊗k κ

′
−

with a′ = ρ ◦v (a ◦h Id) ◦v ρ−1, b′ = b, t′⊗ = t⊗, κ′− = κ−, κ
′
+ = κ+.

By the following bicategory axiom

ρg ◦v (a ◦h id) = a ◦v ρf ,

that holds for any 2-morphism a : f ⇒ g, we have a′ = a. From here one deduces that
[d, h] = id.

3.4 The relative totalization (Rp∗)(X q)
There are several ways to get a cosimplicial vector space out of a 2-cocellular vector
space X q; for instance, one can firstly restrict X q to ∆ ×∆ followed by the totalization
by the “vertical” factor ∆. It appears, however, that only the “vertical” totalization
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(Rp∗)(X q) enjoys, for the case X q = A(F, F ), the property of being a 1-commutative
cosimplicial monoid, in the sense of [BD]. However, for the case X q = A(Id, Id), the
cosimplicial monoid (Rp∗)(X q) is not 2-commutative (unlike for the case of the Davydov-
Yetter complex), but is in a sense homotopy 2-commutative. We start with an explicit
description of (Rp∗)(X q).
Remark 3.4.1. The notation (Rp∗)(X q) might be misleading, but this relative totaliza-
tion is not computed via an homotopy right Kan extension, as our object A(F, F ) is not
Reedy fibrant in the Reedy model category of 2-cocellular complexes. This fact is totally
analogous to the Hochschild cosimplicial complex not being Reedy fibrant in the Reedy
model category of cosimplicial complexes.

3.4.1 An explicit description of (Rp∗)(X q)
Let X q be a 2-cocellular complex.
We construct (Rp∗)(X q) by first resolving the functor T 7→ k∆([n], p(T )) (for a given
[n] ∈ ∆) by Yoneda functors hT ′(T ) = kΘ2(T

′, T ). Below we provide an explicit resolution
R

q
[n] (which is a complex of vector spaces over k). The degree ℓ component is

Rℓ
[n] =

∑
T ′∈Θ2, p(T

′)=[n]
dim(T ′)=n−ℓ

kΘ2(T
′, T ) (3.4.1)

Thus, the complex R
q
[n] has non-zero components in degrees ≤ 0. The differential

d : Rℓ
[n] → Rℓ+1

[n] is defined as the alternated sum of the “vertical” coface operators (act-

ing on the first argument T ′), that is, of coface operators (F1) and (F3) from the list
in Subsection 3.2.1. More precisely, for T = ([q]; [t1], . . . , [tq]), T

′ = ([n]; [k1], . . . , [kn]),
Φ = (ϕ;ϕ1, . . . , ϕn) : T

′ → T , one has

d(Φ) =

n∑
s=1

ks∑
i=0

(−1)k1+···+ks−1+s−1+iΦs,i (3.4.2)

where Φs,i : T
′
s,i → T is defined as the pre-composition Φ ◦ ∂is (see Subsection 3.2.1, (F1)

and (F3)), and T ′
s,i = ([n]; [m1], . . . , [mn]), where mj = kj for j ̸= s,ms = ks − 1,

and ∂is : T
′
s,i → T ′ is the corresponding “vertical” coface operator. Note that this pre-

composition does not affect the “horizontal” map ϕ. It is clear that d2 = 0.

Lemma 3.4.2. The following statements are true:

(1) degree 0 cohomology of R
q
[n] is isomorphic to k∆([n], p(T )),

(2) the higher cohomology (in the negative degrees ≤ −1) vanish.

Proof. (1): the degree 0 componentR0
[n] is a direct sum⊕kΦ, where Φ: ([n]; [0], . . . , [0]) →

T , which is the same as Φ = (ϕ : [n] → [q];S1, . . . , Sn) where Si ∈ [tϕ(i−1)+1]× · · ·× [tϕ(i)]
an element (recall that [q] = p(D)). Degree 0 cohomology is equal to the quotient-space
by the image of ⊕kΦ′, with Φ′ : ([n]; [0], . . . , [0], [1], [0], . . . , [0]) → T . It is clear that, for
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a given ϕ : [n] → [q], all choices of Si become equal in the quotient-space H0(R
q
[n]) =

R0
[n]/d(R

−1
[n] ). It shows that H

0(R
q
[n]) ≃ k∆([n], [q]) = k∆([n], p(T )).

(2): we construct a contracting homotopy operator H of degree −1, that is an operator
such that (dH +Hd)|Rℓ

[n]
= cℓ, where cℓ is the multiplication by an integer cℓ, non-zero

for ℓ ̸= 0. This H is constructed in a standard way as the alternated sum of the “vertical”
codegeneracy operators.

Remark 3.4.3. It is clear that the complex R
q
[n] is a direct sum ⊕ϕR

q
[n],ϕ over ϕ : [n] →

p(T ), because the differential does not affect ϕ. Each complex R
q
[n],ϕ is a resolution of k

(where k denotes the complex-object k in degree 0).

It is clear that R
q
[n] is a functor Θ2 → Ch(k), where the action of Θ2 is given by the

post-composition. It commutes with the differential as the general post-composition and
pre-composition do.

3.4.2 The action of ∆

Our next task is to endow our resolution R
q
[n] with a structure of a functor ∆op → Ch(k),

when [n] varies. Note, that unlike for the cohomology k∆([n], p(T )) of R
q
[n], the “lifted”

action of ∆ on R
q
[n] does not come automatically.

We need to define the actions of the elementary face operators ∂i and the elementary
degeneracy operators εj in ∆, which we denote, in this context, by Ωi∆ and Υj∆, corre-
spondingly. Here are the definitions. Let Φ: T ′ → T be an element in R

q
[n], p(T

′) = [n].

Ωi∆(Φ) =
∑
σ

±Φ ◦Di,σ ± Φ ◦Dmin ± Φ ◦Dmax (3.4.3)

Υi∆(Φ) = ±Φ ◦Υp0 (3.4.4)

where Υp0 : ([n]; [ℓ1], . . . , [ℓp], [0], [ℓp+2], . . . , [ℓn]) → T . Note that we take only T ′ with
[ℓp+1] = [0]. (See Subsection 3.2.1 for the notations Di,σ and Υp).

Proposition 3.4.4. The following statements are true:

(1) The operators Ωi∆ and Υj∆ define maps of complexes Ωi∆ : R
q
[n] → R

q
[n−1] and

Υi∆ : R
q
[n] → R

q
[n+1], preserving the cohomological degree.

(2) The operators Ωi∆ and Υj∆ fulfill the simplicial relations, defining a simplicial object
R

q
? : ∆

op → Ch(k), functorial in T . The cohomology H
q
(R

q
[n]) with respect to the

differential (3.4.2), with its simplicial action, is isomorphic to ∆([n], p(T )) with its
natural simplicial action.

Proof. See Section 3.7.
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We get for X ∈ Ch(k)Θ2 :

Rp∗(X)[n] = Ch(k)Θ2(R
q
[n](T ), X(T )) (3.4.5)

By the Yoneda lemma, it is the following complex:

0 → Rp∗(X)[n]0
d−→ Rp∗(X)[n]1

d−→ Rp∗(X)[n]2
d−→ . . . (3.4.6)

where
Rp∗(X)[n]ℓ =

⊕
T∈Θ2, p(T )=[n]
dim(T )=n+ℓ

X(T ) (3.4.7)

and the differential d is the alternated sum of “vertical” coface operators (of type (F1)
and (F3) in Subsection 3.2.1):

d|X(T ) =

p(T )∑
i=1

Ti∑
j=0

(−1)T1+···+Ti−1+j∂ji (3.4.8)

where we write T = (p(T ); [T1], . . . , [Tp(T )]). According to Proposition 3.4.4, it is a functor
∆ → Ch(k).

3.4.3 Tot∆(Rp∗(X q)) ∼ TotΘ2(X q)
Here we prove the following

Proposition 3.4.5. Let X q : Θ2 → Ch(k) be a 2-cocellular complex. Then the ∆-
totalization Tot∆(Rp∗(X q)) of Rp∗(X q) is a quasi-isomorphic complex to the Θ2-totalization
TotΘ2

(X q).
Proof. When one applies the usual non-normalized cochain complex functor to the cosim-
plicial vector space Rp∗(X), we get exactly the formula (3.2.2) for the (non-normalized)
Θ2-totalization.

3.4.4 The totalization TotΘ2A(F, F ) is a homotopy 2-algebra

Recall a cosimplicial monoid X q (in a symmetric monoidal category E) is a cosimplicial
object in the category of monoids Mon(E). The question raised in [BD] is the following:
Which condition on X q implies that the totalization Tot(X) admits an action of an operad
(homotopy equivalent to) En?

It follows immediately that the condition that X q is a cosimplicial monoid implies that
X q is a monoid with respect to the Batanin □-product (see [[Ba1], Section 5], [[MS1],
Section 2]). It is well-known [Ba1],[MS1], that the totalization Tot(Y q) of a cosimplicial
□-monoid Y q carries an A∞-structure; thus, it follows that for a cosimplicial monoid X q,
its totalization Tot(X q) is an A∞-monoid, that is, a E1-algebra. In [[BD], Section 2.2],
the following definition is given:
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Definition 3.4.6. Let X q be a cosimplicial monoid, n ≥ 0. X q is called n-commutative
if for any τ : [p] → [m], π : [q] → [m] in ∆ with linking number (see Definition 1.3.41)
lk(τ, π) ≤ n, the diagram below commutes:

Xp ⊗Xq Xm ⊗Xm

Xq ⊗Xp Xm ⊗Xm Xm

X(τ)⊗X(π)

µ

X(π)⊗X(τ) µ

(3.4.9)

We easily prove:

Proposition 3.4.7. Let C, D be k-linear monoidal categories, F : C → D a linear
monoidal functor. Then the cosimplicial vector space Rp∗(A(F, F )) is a 1-commutative
cosimplicial monoid.

Proof. Let τm,n : [n] → [m + n] and πm,n : [m] → [m + n] be defined as τm,n(i) = i and
πm,n(j) = n+ j. It is clear that lk(τm,n, πm,n) = 1. Moreover, the general case of linking
number 1 is reduced to this particular case, due to the following simple observation ([[BD],
Lemma 2.1]): Let τ : [p] → [m], π : [q] → [m] be morphisms in ∆, and

[p] → [p′]
τ ′

−→ [m], [q] → [q′]
π′

−→ [m]

be their epi-mono factorizations. Then lk(τ, π) = lk(τ ′, π′).

We check the 1-commutativity of Rp∗(A(F, F )). Let Φ ∈ Rp∗(A(F, F ))
n, Ψ ∈ Rp∗(A(F, F ))

m

be represented by cochains Φ ∈ A(F, F )T , Ψ ∈ A(F, F )T ′ , with p(T ) = [n], p(T ′) = [m].
Assume T = ([n]; [k1], . . . , [kn]) and T ′ = ([m]; [ℓ1], . . . , [ℓm]). Then τm,n(Φ) takes a

non-zero value on the object T̂ = ([n+m]; [k1], . . . , [kn], [0], . . . , [0]), and is equal to

τm,n(Φ)(−, Xn+1, . . . , Xm+n) = Φ(−)⊗ (idF (Xn+1⊗···⊗Xn+m))

Analogously, πm,n(Ψ) takes a non-zero value on T̂ ′ = ([m + n]; [0], . . . , [0], [ℓ1], . . . , [ℓm]),
and

πm,n(Ψ)(Y1, . . . , Ym,−) = idF (Y1⊗···⊗Ym) ⊗Ψ(−)

Finally, for their product in the monoid Rp∗(A(F, F ))
m+n, one has

τm,n(Φ) ∗ πm,n(Ψ)(S1, . . . , Sm+n) =(
Φ(S1, . . . , Sn)⊗ idF (Xn+1⊗···⊗Xm+n)

)
◦
(
idF (Y1⊗···⊗Yn) ⊗Ψ(Tn+1, . . . , Tm+n

)
=

Φ(T1, . . . , Tn)⊗Ψ(Sn+1, . . . , Sm+n)

where Si is a string of morphisms of length ki for 1 ≤ i ≤ n and ℓj−n for j = n+1, . . . , n+
m, starting at Xi and ending at Yi. We clearly get the same expression when computing
πm,n(Ψ) ∗ τm,n(Φ)(S1, . . . , Sm+n), and 1-commutativity for Rp∗(A(F, F )) follows.

Remark 3.4.8. The fulfillment of the 1-commutativity condition for Rp∗(A(F, F )) is a
lucky situation, which is easily generalised from the corresponding proof for the classical
Davydov-Yetter complex in [[BD], Theorem 3.4]. Namely, (although our cochains are not
natural transformations) one does not use the naturality of cochains for general morphisms
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in this proof. One does use the naturality with respect to the identity morphisms, which
automatically holds.

The case of 2-commutativity of Rp∗(Id, Id) is not that lucky, because the corresponding
proof for the classical counterpart given in [[BD], Theorem 3.8], essentially uses the nat-
urality for non-identity morphisms. Our cochains are not natural transformations, which
results in the failure of 2-commutativity for Rp∗(A(F, F )). However, our complex enjoys
some sort of “homotopy 2-commutativity”, though this concept is hard to phrase out.
We will describe a possible procedure to do so in the next Chapter 4.

Theorem 3.4.9. Let C, D be k-linear monoidal categories, F : C → D a linear monoidal
functor. Then the 2-cocellular totalization TotΘ2(A(F, F )) has a structure of an algebra
over an operad homotopically equivalent to Ch q(E2;k).

Proof. By Proposition 3.4.5, TotΘ2
(A(F, F )) ≃ Tot∆(Rp∗(A(F, F )). By Proposition

3.4.7, Rp∗(A(F, F )) is a 1-commutative cosimplicial monoid. Then the result follows
from Theorem 3.1.18.

3.4.5 Normalized vs non-normalized chain complexes of a 2-cellular
object in Ch(k)

In Section 3.5, we use that the Θ2-cochain complex of A(C,D)(F,G)(η, θ) is quasi-
isomorphic to its normalized subcomplex Anorm(C,D)(F,G)(η, θ). The latter is, by defi-
nition, the sub-complex which consists of all cochains Ψ which are equal to 0 if some of
its arguments fi,j is the identity morphism of some object.

Recall that for a simplicial object in an abelian category A its normalized Moore complex
N(X) is defined as the quotient-complex of the ordinary Moore complex C(X) by the
subcomplex DC(X) spanned by elements of the form siy (here si stands for the simplicial
version of the degeneracy morphisms εi ∈ ∆, see Section 1.4).

Recall the following classical result, in a slightly more general version:

Proposition 3.4.10. Let X : ∆op → Ch(k) be a simplicial object in Ch(k). Then the
total sum complex Tot⊕(C(X)) of the Moore complex of X is quasi-isomorphic to the
total sum complex Tot⊕(N(X)) of the normalized Moore complex.

Proof. The proof given in [[ML1], Section VIII.6] can be easily adopted to this case.
Indeed, Mac Lane constructs a map g : C(Y )/DC(Y ) → C(Y ), for Y a simplicial ob-
ject in an abelian category, such that g is a “quasi-inverse” to the natural projection
π : C(Y ) → C(Y )/DC(Y ) in the sense that π ◦ g = id, and g ◦ π is chain homotopic to
the identity. The chain homotopy constructed in loc. cit. clearly commutes with “inner”
differentials on Xis. Consequently, if one defines π′ : Tot⊕(C(X)) → Tot⊕(N(X)) and
g′ : Tot⊕(N(X)) → Tot⊕(C(X)) one still has π′g′ = id and g′π′ chain homotopic to the
identity.

The next step is to generalise Proposition 3.4.10 to the case of 2-cellular objects in Ch(k),
that is, to the case of functors X : Θop

2 → Ch(k).
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For Y : Θop
2 → Vect(k), its chain complex is defined as the complex C(Y ), with

C−ℓ(Y ) =
⊕

T, dimT=ℓ

YT

with the differential dual to (3.2.3), and its normalized complex is defined as the quotient-
complex of C(Y ) by the subcomplex DC(Y ) generated by the elements εjp(y) of type (D1)
(see Subsection 3.2.1), y ∈ YD:

N(Y ) = C(Y )/DC(Y )

That is, we use only “vertical” degeneracy morphisms of type (D1), not “horizontal”
degeneracy morphisms of type (D2), in the definition of DC(Y ).

For the case of a functor X : Θop
2 → Ch(k) as above, C(X), DC(X), N(X) are defined

as Tot⊕(C(X)), Tot⊕(DC(X)), Tot⊕(N(X)), correspondingly.

Proposition 3.4.11. Let X : Θop
2 → Ch(k) be a 2-cellular complex. Then the natural

projection π : Tot⊕(C(X)) → Tot⊕(N(X)) is a quasi-isomorphism of complexes.

Proof. One can not follow directly the same line as in the proof of [[ML1], Theorem
VIII.6.1] by the following reason. The subspaces DiC(X), i ≥ 0 (or rather their direct
analogues) are not subcomplexes of C(X), because the components Dj,σ of type (F2) (see
Subsection 3.2.1) in the differential (3.2.3) may increase i. Indeed, these components act
as “deshuffling” of two neighbour columns, resulting in a column of a greater length, so
this operation may send εipy to εi

′

q (y
′) with i′ > i (here q = p or p− 1).

To overcome this obstacle, we employ the following spectral sequence argument.

Denote by FN ⊂ C(X) the subspace spanned by XT , T = ([n]; [ℓ1], . . . , [ℓn]) with n ≤ N .
Then FN is a subcomplex: the boundary operators of type (F1) and (F3) preserve n, and
the boundary operators of types (F2) and (F4) decrease n by 1, see Subsection 3.2.1.

We get an exhausting ascending filtration of C(X) by subcomplexes:

F0 ⊂ F1 ⊂ F2 ⊂ . . .

A similar filtration exists for N(X) as well, denote the corresponding subspaces by F ′
N .

The natural projection π : C(X) → N(X) sends FN to F ′
N , hence π induces a map of the

corresponding spectral sequences. Denote these spectral sequences by {Epqn } and {E′pq
n },

so that π induces a map π∗ : (E
pq
n , dn) → (E′pq

n , d′n).

The spectral sequences at the term E0 (resp., E′
0) are non-zero at the lower half plane

y ≤ 0, the differential d0 is horizontal. So the spectral sequences converge by dimensional
reasons.

Lemma 3.4.12. The map π∗ : (E
q,ℓ
0 , d0) → (E′ q,ℓ

0 , d′0) is a quasi-isomorphism, for any
ℓ ≤ 0. In particular, π∗ defines an isomorphism π∗ : E

pq
1 → E′pq

1 , for all p, q.

Proof. For any fixed ℓ, the complex (E
q,ℓ
0 , d0) is C

(ℓ)(X), whose degree −n component is
equal to the direct sum ⊕TXT over T = ([ℓ]; [n1], . . . , [nℓ]) with dimT = n, and with the
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differential components given only by (F1) and (F3) types, see Subsection 3.2.1. That is,
the contribution of types (F2) and (F4) components in (3.2.3) becomes 0 in the associated

graded complex C(ℓ(X) = Fℓ/Fℓ−1. The complex (E′ q,ℓ
0 , d′0) has a similar description.

It makes us possible to employ the construction of the proof of [[ML1], Theorem VIII.6.1.].
Namely we define DiC

(ℓ)(X), for any i ≥ 0, such that Di+1C
(ℓ)(X) ⊃ DiC

(ℓ)(X) and
DC(ℓ)(X) = ∪i≥0DiC

(ℓ)(X). As in loc.cit., we construct a map hi : C
(ℓ)(X) → C(ℓ)(X)

chain homotopic to id and mapping Di to Di−1. The composition of these maps is well-
defined, is chain homotopic to id, and sends DC(ℓ)(X) to 0. It gives a map g : N (ℓ)(X) →
C(ℓ)(X) such that π∗g = id and gπ∗ is chain homotopic to id, which completes the
proof.

It follows from this Lemma that π∗ defines an isomorphism at E∞ sheet, hence π is a
quasi-isomorphism.

Now we can apply this general result to our setting, with notations as in Subsection 3.2.7:

Theorem 3.4.13. The natural embedding

i : Anorm(C,D)(F,G)(η, θ) → A(C,D)(F,G)(η, θ)

is a quasi-isomorphism of complexes.

Proof. By (3.3.9) one has

Hom2-Bimod(C)(Bar(C)T ,M(C,D)(F,G)(η, θ)) = A(C,D)(F,G)(η, θ)T (3.4.10)

Similarly,

Hom2-Bimod(C)(N(Bar(C))T ,M(C,D)(F,G)(η, θ)) = Anorm(C,D)(F,G)(η, θ)T (3.4.11)

Both C(Bar(C)) and N(Bar(C)) are projective resolutions of the tautological 2-bimodule
C: it is proven for C(Bar(C)) in Proposition 3.3.6, and then it follows for N(Bar(C)) from
Proposition 3.4.11 (the projectivity of the components N(Bar)(C)T is proven analogously
to the proof for projectivity of the components C(Bar(C))T in Proposition 3.3.6). Now
the statement follows from the standard homological algebra.

3.5 The totalizations TotΘ2
(A(F, F )) and TotΘ2

(A(Id, Id))
as the deformation complexes

Let C be a k-linear monoidal category (or a monoidal dg-category over k). The deforma-
tions we consider are formal deformations, that is, Ct may not make sense unless t = 0.
The reader should keep it in mind in the discussion below. We consider deformations Ct
of C for which the set of objects, the vector spaces (complexes) Ct(x, y) of morphisms, and
the monoidal product on objects, remain undeformed. Then the data which is deformed
is:

(A1) the composition of morphisms (which is required to be associative),
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(A2) the monoidal products of morphisms idX ⊗g and f ⊗ idY (note that f ⊗ g = (f ⊗
idY ) ◦ (idX ⊗g) = (idX ⊗g) ◦ (f ⊗ idY ), therefore, the deformations of f ⊗ g are
determined by deformations of f ⊗ idY and idX ⊗g),

(A3) the associator α : X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z.

(A4) the left and right unit maps λX : e⊗X → X and ρX : X ⊗ e→ X.

It is assumed that (a) the identity morphism idX , X ∈ C, (b) the monoidal unit e, (c)
the maps λY , ρX are stable under the deformations, (d) mf,e and me,g are stable under
the deformations, and (e) mX,idY

= midX ,Y = idX⊗Y .

The following example shows that this set-up is realistic:

Example 3.5.1. Let A be a bialgebra over k and C = Mod(A) be the category of left
A-modules over the underlying algebra. It is a monoidal category in a standard way:
for two modules M,N , the tensor product of the underlying vector spaces M ⊗k N is
naturally an A ⊗ A-module, and the precomposition with ∆: A → A ⊗ A makes it an
A-module. Assume that A is a Hopf algebra. Then the monoidal product A ⊗ A of two
free modules of rank 1 is a free module again, whose underlying vector space is canonically
isomorphic to A⊗ Au, where Au is the underlying vector space of A. Indeed, define the
maps α : A⊗A→ A⊗Au and β : A⊗Au → A⊗A as

α(a⊗ b) =
∑

a1 ⊗ S(a2)b

β(a⊗ b) =
∑

a1 ⊗ a2b

where S : A → A is the antipode, and we use the Swindler notations ∆(a) =
∑
a1 ⊗ a2.

One has that α and β are maps of A-modules, and that α ◦ β = id, β ◦ α = id. It
proves the claim. Thus, if we consider a deformation At of a Hopf algebra A, the k-
linear subcategory Cfree(At) is a deformation of a monoidal k-linear category Cfree(A),
for which the conditions (A1)-(A3) are fulfilled.

The data listed in (A1)-(A3) is subject to the following axioms:

(R1) the composition mX,Y,Z in (A1) is associative,

(R2) for maps in (A2) one has (f⊗ idY )◦(idX ⊗g) = (idX ⊗g)◦(f⊗ idY ), (both sides are
equal to f⊗g : X⊗Y → X ′⊗Y ′, therefore, the deformation of f⊗g are determined
by deformations of f ⊗ idY and idX ⊗g),

(R3) for any two composable morphisms X
f−→ X ′ f ′

−→ X ′′, and any Y ∈ C, one has

mℓ
f ′,Y ◦mℓ

f,Y = mℓ
f ′◦f,Y ; similarly, for any two composable morphisms Y

g−→ Y ′ g′−→
Y ′′, and any X ∈ C, one has mr

X,g′ ◦mr
X,g = mr

X,g′◦g,

(R4) this and the next two axioms express the naturality of the associator. Let f : X →
X ′ be a morphism in C, and Y,Z objects. The following diagram commutes:

X ⊗ (Y ⊗ Z)
αX,Y,Z //

mℓ
f,Y ⊗Z

��

(X ⊗ Y )⊗ Z

mℓ

mℓ
f,Y

,Z

��
X ′ ⊗ (Y ⊗ Z)

αX′,Y,Z // (X ′ ⊗ Y )⊗ Z
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(R5) let g : Y → Y ′ be a morphism in C, X,Z objects. The following diagram commutes:

X ⊗ (Y ⊗ Z)
αX,Y,Z //

mr

X,mℓ
g,Z

��

(X ⊗ Y )⊗ Z

mℓ
mr

X,g
,Z

��
X ⊗ (Y ′ ⊗ Z)

αX,Y ′,Z // (X ⊗ Y ′)⊗ Z

(R6) let h : Z → Z ′ be a morphism in C, X,Y objects. Then the following diagram
commutes:

X ⊗ (Y ⊗ Z)
αX,Y,Z //

mr
X,mr

Y,h

��

(X ⊗ Y )⊗ Z

mr
X⊗Y,h

��
X ⊗ (Y ⊗ Z ′)

αX,Y,Z′
// (X ⊗ Y )⊗ Z ′

(R7) the pentagon equation for the associator,

(X ⊗ Y )⊗ (Z ⊗ T )

X ⊗ (Y ⊗ (Z ⊗ T ))

X ⊗ ((Y ⊗ Z)⊗ T ) (X ⊗ (Y ⊗ Z))⊗ T

((X ⊗ Y )⊗ Z)⊗ T

αX⊗Y,Z,TαX,Y,Z⊗T

αX,Y ⊗Z,T

mr
X,αY,Z,T mℓ

αX,Y,Z,T

(R8) left unit functionality: for any map f : X → X ′ the diagram

X ⊗ e
ρX //

mf,e

��

X

f

��
X ′ ⊗ e

ρX′
// X ′

commutes,

(R9) right unit functionality: for any g : Y → Y ′ the diagram

e⊗ Y
λY //

me,g

��

Y

g

��
e⊗ Y ′

λY ′
// Y ′

commutes,

(R10) left right unit compatibility: the two possible maps λe, ρe : e⊗ e→ e are equal.
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Among the deformations Ct there are ones which we consider as “trivial”. It appears
in the literature under the name “twist”, however, here we consider “upgraded” twists
acting not only on the associator, but as well on the underlying category structure and
on the action of morphisms on the monoidal product.

In deformation theory, one identifies two deformations if one is obtained from another by
a twist, and interests in the “quotient-space”.

Lemma 3.5.2. Let C be a k-linear (or dg- over k) monoidal category, denote by Cu
the underlying k-linear quiver of C. Assume that, for any X,Y ∈ C, we are given an
isomorphism φX,Y : C(X,Y ) → C(X,Y ), and an isomorphism ψX,Y ∈ C(X ⊗ Y,X ⊗ Y ).
Then these data gives rise to a monoidal equivalence functor F from C to another monoidal
k-linear (respectively, dg- over k) category on the quiver Cu, such that F is the identity
map on any object of C.

Proof. It is standard. We define F on morphisms by F (f) = φX,Y (f) if f ∈ C(X,Y ), and
define monoidal constraints F (X ⊗Y ) → F (X)⊗F (Y ) as the isomorphisms ψX,Y . Then
a monoidal category structure on Cu is uniquely determined by the requirement that F
is a monoidal functor.

For convenience of the reader, we provide explicit formulas for the new composition of
morphisms, for the action of morphisms on the tensor product, and for the associator.
We use the same notations decorated by ∼ for the corresponding data (A1)-(A3) of the
new category on Cu. We use the same notations as in (A1)-(A3). One has:

m̃X,Y,Z(f, g) = φX,Z(mX,Y,Z(φ
−1
Y,Z(g), φ

−1
X,Y (f))) (3.5.1)

m̃r
X,g ◦̃ψX,Y = ψX,Y ′ ◦̃φX⊗Y,X⊗Y ′(mr

X,φ−1

Y,Y ′ (g)
)

m̃ℓ
f,Y ◦̃ψX,Y = ψX′,Y ◦̃φX⊗Y,X′⊗Y (m

ℓ
φ−1

X,X′ (f),Y
)

(3.5.2)

Equations (3.5.2) follow from the commutative diagram:

F (X ⊗ Y ) //

f⊗g
��

F (X)⊗ F (Y )

F (f)⊗F (g)

��
F (X ′ ⊗ Y ′) // F (X ′)⊗ F (Y ′)

There is still (A3):

α̃X,Y,Z = m̃ℓ
ψX,Y ,Z ◦̃ψX⊗Y,Z ◦̃φ(αX,Y,Z)◦̃ψ−1

X,Y⊗Z ◦̃m̃
r
X,ψ−1

Y,Z

, (3.5.3)

that comes from the commutative diagram:

F (X ⊗ (Y ⊗ Z))
F (α) //

ψX,Y ⊗Z

��

F ((X ⊗ Y )⊗ Z)

ψX⊗Y,Z

��
F (X)⊗ F (Y ⊗ Z)

idX ⊗ψY,Z

��

F (X ⊗ Y )⊗ F (Z)

ψX,Y ⊗idZ

��
F (X)⊗ (F (Y )⊗ F (Z))

α̃
// (F (X)⊗ F (Y ))⊗ F (Z)
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where ◦̃ denotes the composition in C̃ and F (?) =? for any object ? ∈ Ob(C).

One can check directly that m̃X,Y,Z , m̃
r
X,g, m̃

ℓ
f,Y , α̃X,Y,Z satisfy (R1)-(R10), and thus de-

fine a monoidal category C̃, such that the functor F : C → C̃ is a monoidal equivalence.

Note that in the assumption of Lemma φX,Y and ψX,Y are arbitrary isomorphisms. Now
we switch back to formal deformation theory.

By definition, a trivial deformation depends on the following data:

(T1) a formal power series φX,Y : C(X,Y ) → C(X,Y ), for any X,Y ∈ C of the form

φX,Y = IdC(X,Y ) + t · φ1
X,Y + t2 · φ2

X,Y + . . . (3.5.4)

where φiX,Y ∈ Homk(C(X,Y ),C(X,Y )), i ≥ 1,

(T2) a formal power series ψX,Y : C(X ⊗ Y,X ⊗ Y ), for any X,Y ∈ C, of the form

ψX,Y = IdX⊗Y + t · ψ1
X,Y + t2 · ψ2

X,Y + . . . (3.5.5)

where ψiX,Y ∈ C(X ⊗ Y,X ⊗ Y ), i ≥ 1.

Out of this data, a formal deformation of C is constructed as in (3.5.1)-(3.5.3).

One defines the concepts of an infinitesimal deformation and of a trivial infinitesimal
deformation of a monoidal (k-linear or dg-) category by replacing in the previous defi-
nitions the ring of formal power series kJtK by the dual numbers k[t]/(t2). We say that
two infinitesimal deformations belong to the same equivalence class if the corresponding
monoidal categories are equivalent by an (extended) twist, as in Lemma 3.5.2 but over
k[t]/(t2).

One has:

Theorem 3.5.3. Let C be a k-linear (or a dg- over k) monoidal category. The third
cohomology H3(TotΘ2A(Id, Id)) is isomorphic to the equivalence classes of infinitesimal
deformations (in the sense specified above) of the monoidal (dg-)category C.

Proof. For simplicity, we assume that all complexes C(X,Y ) are concentrated in coho-
mological degree 0, that is, are ordinary vector spaces over k. The general case is similar
but technically more involved, and we leave it to the reader.

To improve readability, in what follows we will denote objects of Θ2 by (κ;n1, . . . , nκ)
instead of ([κ]; [n1], . . . , [nκ]).

A general element π of TotΘ2
(A(Id, Id) of degree 3 is a sum of cochains of types (1;2),

(2;1,0), (2;0,1), and (3;0,0,0). Denote them by κ, βℓ, βr, γ, correspondingly:

π = κ+ βℓ + βr + γ
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We identify them with infinitesimal deformations of mX,Y,Z for κ, of mℓ
f,Y for βℓ, of mr

X,g

for βr, and of αX,Y,Z for γ, see (A1)-(A3):

m̃X,Y,Z = mX,Y,Z + t · κX,Y,Z
m̃ℓ
f,Y = mℓ

f,Y + t · βℓf,Y
m̃r
X,g = mr

X,g + t · βrX,g
α̃X,Y,Z = αX,Y,Z + t · γX,Y,Z ◦ αX,Y,Z

(3.5.6)

Assume π is a cycle:
dπ = d(κ+ βℓ + βr + γ) = 0 (3.5.7)

This equation is a system of several equations, one equation for any diagram of dimension
4. We write schematically:

dκ = (1; 3) + (2; 0, 2) + (2; 1, 1) + (2; 2, 0)

dβℓ = (3; 0, 1, 0) + (3; 1, 0, 0) + (2; 2, 0) + (2; 1, 1)

dβr = (3; 0, 1, 0) + (3; 0, 0, 1) + (2; 0, 2) + (2; 1, 1)

dγ = (4; 0, 0, 0, 0) + (3; 0, 0, 1) + (3; 0, 1, 0) + (3; 1, 0, 0)

(3.5.8)

We see that there are many cross-terms in (3.5.7).

Now consider relations (R1)-(R10) for tilde-data (3.5.6), taking to the account t2 = 0.
We get system of linear in κ, βℓ, βr, γ equations. The claim is that these equations are
exactly the homogeneous components (for any given degree, e.g. (2;1,1)) of the equation
dπ = 0.

Note that for the cases (R4)-(R9) we have to use relations (3.2.6)-(3.2.9).

The case of (R1) is standard, the computation here is basically the same as the classical
computation with Hochschild complex.

The infinitesimal version of (R2) gives:

(mℓ
f,Y ′ + tβℓf,Y ′)◦̃(mr

X,g + tβrX,g) = (mr
X′,g + tβrX′,g)◦̃(mℓ

f,Y + tβℓf,Y ) mod t2

where ◦̃ = ◦+ t · κ, and the terms in t give the following identity:

βℓf,Y ′ ◦mr
X,g+m

ℓ
F,Y ′ ◦βrX,g+κ(mℓ

f,Y ′ ,mr
X,g) = βrX′,g◦mℓ

f,Y +mr
X′,g◦βℓf,Y +κ(mr

X′,g,m
ℓ
f,Y )

It is the vanishing of type (2; 1, 1) cross-terms in dβℓ + dβr + dκ. (The other summands
of π do not contain components of type (2;1,1) in their boundary).
For dκ these are the two possible shuffle maps.

The case (R3) comprises two sub-cases, which are analogous. We consider one of them.
It is, in the infinitesimal version

(mℓ
f ′,Y + t · βℓf ′,Y )◦̃(mℓ

f,Y + t · βℓf,Y ) = mℓ
f ′◦̃f,Y + t · βℓf ′◦̃f,Y mod t2

Its terms in t give:

βℓf ′,Y ◦mℓ
f,Y +mℓ

f ′,Y ◦ βℓf,Y + κ(mℓ
f ′,Y ,m

ℓ
f,Y ) = mℓ

κ(f ′,f),Y + βℓf ′◦f,Y
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It is the vanishing of type (2; 2, 0) cross-terms in d(βℓ+ κ). The other summands of π do
not contain (2; 2, 0) type elements in their boundary.

The cases (R4), (R5), (R6) are similar, we consider one of them, (R5). This is the first
case where we essentially use the relations (3.2.6)-(3.2.9).

The case (R5) in the infinitesimal version reads:

(mℓ
mr

X,g,Z
+ tβℓmr

X,g,Z
+ tmℓ

βr
X,g,Z

)◦̃(α+ tγ ◦ α) =

(α+ tγ ◦ α)◦̃(mr
X,mℓ

g,Z
+ tβrX,mℓ

g,Z
+ tmr

X,βℓ
g,Z

) mod t2
(3.5.9)

The terms in t give the identity, all terms are of type (3; 0, 1, 0):

mℓ
mr

X,g,Z
◦ (γ ◦ α) + κ(α,mℓ

mr
X,g,Z

) + βℓmr
X,g,Z

◦ α+mℓ
βr
X,g,Z

◦ α =

(γ ◦ α) ◦mr
X,mℓ

g,Z
+ κ(mr

X,mℓ
g,Z
, α) + α ◦ βrX,mℓ

g,Z
+ α ◦mr

X,βℓ
g,Z

(3.5.10)

Lemma 3.5.4. The following identities hold:

(1) κ(α,−) = κ(−, α) = 0, where α has any arguments such as αX⊗Y,Z,T etc.,

(2) βℓαX,Y,Z ,T
= βrX,αY,Z,T

= 0.

Proof. (1): We prove the first equation, the second one is analogous.

One has by (3.2.6): κ(α,−) = κ(id,− ◦ α) = 0, where the second equality follows from
the requirement that the identity maps are preserved under the deformation.

(2): We prove the first assertion, the second one is analogous.

By (3.2.7) we have βℓαX,Y,Z ,T
= βℓIdX⊗(Y ⊗Z),T

◦mℓ
αX,Y,Z ,T

= 0, where the second equality

follows from a more general βℓId,− = 0.

The 6 non-vanishing terms in (3.5.10) are interpreted as the degree (3;0,1,0) terms in dπ,
as follows. We rewrite (3.5.10) as:

mℓ
mr

X,g,Z
◦γ+βℓmr

X,g,Z
+mℓ

βr
X,g,Z

= γ◦(α◦mr
X,mℓ

g,Z
◦α−1)+α◦βrX,mℓ

g,Z
◦α−1+α◦mr

X,βℓ
g,Z

◦α−1

(3.5.11)
(here we made use of Lemma 3.5.4(1)).

Next, α◦mr
X,mℓ

g,Z
◦α−1 = mℓ

mr
X,g,Z

, so the first summand in the r.h.s. of (3.5.11) is equal

to γ ◦mℓ
mr

X,g,Z
.

We have:
(dγ)(3;0,1,0) = mℓ

mr
X,g,Z

◦ γ − γ ◦mℓ
mr

X,g,Z

(dβℓ)(3;0,1,0) = βℓmr
X,g,Z

− α ◦mr
X,βℓ

g,Z
◦ α−1

(dβr)(3;0,1,0) = mℓ
βr
X,g,Z

− α ◦ βrX,mℓ
g,Z

◦ α−1

(3.5.12)

The conjugation with α in the two last lines is explained in Remark 3.2.5(a).
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The infinitesimal version of (R7) is:

(αX⊗Y,Z,T + t · γX⊗Y,Z,T ◦ αX⊗Y,Z,T )◦̃(αX,Y,Z⊗T + t · γX,Y,Z⊗T ◦ αX,Y,Z⊗T ) =

(mℓ
α̃X,Y,Z ,T + t · βℓα̃X,Y,Z ,T )◦̃(αX,Y⊗Z,T + t · γX,Y⊗Z,T ◦ αX,Y⊗Z,T )

◦̃(mr
X,α̃Y,Z,T

+ t · βrX,α̃Y,Z,T
) mod t2

(3.5.13)
The terms in t give the identity:

γX⊗Y,Z,T ◦ αX⊗Y,Z,T ◦ αX,Y,Z⊗T + αX⊗Y,Z,T ◦ γX,Y,Z⊗T ◦ αX,Y,Z⊗T + κ(αX⊗Y,Z,T , αX,Y,Z⊗T ) =

mℓ
αX,Y,Z ,T ◦ αX,Y⊗Z,T ◦ βrX,αY,Z,T

+mℓ
αX,Y,Z ,T ◦ γX,Y⊗Z,T ◦ αX,Y⊗Z,T ◦mr

X,αY,Z,T
+

βℓαX,Y,Z ,T ◦ αX,Y⊗Z,T ◦mr
X,αY,Z,T

+mℓ
αX,Y,Z ,T ◦ αX,Y⊗Z,T ◦mr

X,γY,Z,T ◦αY,Z,T
+

mℓ
γX,Y,Z◦αX,Y,Z ,T ◦ αX,Y⊗Z,T ◦mr

X,αY,Z,T
+ κ(mℓ

αX,Y,Z ,T , αX,Y⊗Z,T ) ◦mr
X,αY,Z,T

+

mℓ
αX,Y,Z ,T ◦ κ(αX,Y⊗Z,T ,m

r
X,αY,Z,T

)

(3.5.14)
The terms with κ, βℓ and βr get canceled by Lemma 3.5.4, thus we are left with:

γX⊗Y,Z,T ◦ αX⊗Y,Z,T ◦ αX,Y,Z⊗T + αX⊗Y,Z,T ◦ γX,Y,Z⊗T ◦ αX,Y,Z⊗T =

mℓ
αX,Y,Z ,T ◦ γX,Y⊗Z,T ◦ αX,Y⊗Z,T ◦mr

X,αY,Z,T
+mℓ

αX,Y,Z ,T ◦ αX,Y⊗Z,T ◦mr
X,γY,Z,T ◦αY,Z,T

+

mℓ
γX,Y,Z◦αX,Y,Z ,T ◦ αX,Y⊗Z,T ◦mr

X,αY,Z,T

(3.5.15)
Now, by (3.2.7) we have mℓ

γX,Y,Z◦αX,Y,Z ,T
= mℓ

γX,Y,Z ,T
◦mℓ

αX,Y,Z ,T
and mr

X,γY,Z,T ◦αY,Z,T
=

mr
X,γY,Z,T

◦mr
X,αY,Z,T

, and we can recognize that the 5 terms of(3.5.15) are nothing but

the degree (4;0,0,0,0) terms in dπ, which amount to (dγ)(4;0,0,0,0) (the other elements of
π do not contribute to terms of this degree).

It remains to consider (R8)-(R10). The identity (R10) is fulfilled automatically for the
deformed category. The identities (R8)-(R9) are analogous, we consider (R8). Here
all morphisms in the diagram are not deformed by our assumptions, but the composition
does. So one has to prove that the terms, coming from the deformation of the composition,
vanish. These terms are ρ−1

X ◦κ(ρX , f) and κ(f, ρ−1
X )◦ρX . These terms vanish by (3.2.7)-

(3.2.8). For example, κ(ρX , f) = κ(id, f) ◦ ρX = 0. (To be precise, one derives that κ
obeys (3.2.7)-(3.2.8) from this speculation).

We have identified 3-cycles π = κ + βℓ + βr + γ in TotΘ2(A(Id, Id)) with infinitesimal
deformations of the monoidal category C. Now we show that the infinitesimal deforma-
tions of type (3.5.1)-(3.5.3) are corresponded to coboundaries π = dω, for a 2-cochain
ω ∈ TotΘ2

(A(Id, Id)).

A general 2-cochain ω is a linear combination of components of the types (1; 1) and (2; 0).
On the other hand, our infinitesimal twists φ1

X,Y and ψ1
X,Y (see (3.5.4) and (3.5.5)) are of

the same type. We identify their coboundaries with the infinitesimal versions of (3.5.1)-
(3.5.3), i.e. we have to identify the components of d(φ1 + ψ1) of degrees (1; 2), (2; 0, 1),
(2; 1, 0), (3; 0, 0, 0) with the infinitesimal versions of (3.5.1), (3.5.2)(1), (3.5.2)(2), (3.5.3)
correspondingly.

For (3.5.1), it is clear that d(φ1 + ψ1)(1;2) = d(φ1)(1;2). The computation with (3.5.1) is
standard, it is the same as for the Hochschild cochains, and we leave it to the reader.
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For (3.5.2)(1), rewrite it as

m̃r
X,g = φ(φ−1ψX,Y ′◦mr

X,φ−1

Y,Y ′g
◦φ−1ψ−1

X,Y ) (3.5.16)

Note that

φ−1ψ = (id−tφ1 + . . . )(id+tψ1 + . . . ) = id+tψ1 mod t2 (3.5.17)

because ϕ1(id) = 0, similarly for φ−1ψ−1.

Then

mr
X,g+ t ·m

r,1
X,g = (id+t ·φ1)

(
(id+t ·ψ1

X,Y ′)◦ (mr
X,g− t ·m

r,1
X,φ1g)◦ (id−t ·ψ

1
X,Y )

)
mod t2

(3.5.18)
from which

mr,1
X,g = φ1 ◦mr

X,g + ψ1
X,Y ′ ◦mr

X,g −mr
X,φ1g −mr

X,g ◦ ψ1
X,Y (3.5.19)

One easily recognises d(φ1 + ψ1)(2;0,1) in the r.h.s. of (3.5.19).

The computation for (3.5.2)(2) is similar.

The remaining case is to identify d(φ1 + ψ1)(3;0,0,0) = d(ψ1)(3;0,0,0) with (the r.h.s. of)
the infinitesimal version of (3.5.3), written in the form

α̃ = m̃ℓ
ψX,Y ,Z ◦̃ψX⊗Y,Z ◦̃φ(α)◦̃ψ−1

X,Y⊗Z ◦̃(m̃
r
X,ψY,Z

)−1 (3.5.20)

The order t term of the r.h.s. of (3.5.20) is:

(id(X⊗Y )⊗Z +t ·mℓ
ψ1

X,Y ,Z
)◦̃(id(X⊗Y )⊗Z +t · ψ1

X⊗Y,Z)◦̃((id+t · φ1) ◦ α)◦̃

◦̃(idX⊗(Y⊗Z) −t · ψ1
X,Y⊗Z)◦̃(idX⊗(Y⊗Z) −t ·mr

X,ψ1
Y,Z

) =

(id+t · φ1)
(
(id−t · φ1)(id+t ·mℓ

ψ1
X,Y ,Z

) ◦ (id+t · φ1)(id+t · ψ1
X⊗Y,Z) ◦ α◦

◦ (id−t · φ1)(id−t · ψ1
X,Y⊗Z) ◦ (id−t · φ1)(id−t ·mr

X,ψ1
Y,Z

)
)

(3.5.21)

Here we made use of m̃X,id = m̃id,Y = id, which implies mX,id = id and m1
X,id = 0, et

cetera. We compute the r.h.s. of (3.5.21) modulo t2 (using ϕ1(id) = 0):

t · γX,Y,Z ◦ α =

(id+t · φ1)
(
(id+t ·mℓ

ψ1
X,Y ,Z

) ◦ (id+t · ψ1
X⊗Y,Z) ◦ α ◦ (id−t · ψ1

X,Y⊗Z) ◦ (id−t ·mr
X,ψ1

Y,Z
)
)

(3.5.22)
Thus,

γX,Y,Z =
(
φ1(α) +mℓ

ψ1
X,Y ,Z

◦ α+ ψ1
X⊗Y,Z ◦ α− α ◦ ψ1

X,Y⊗Z − α ◦mr
X,ψ1

Y,Z

)
◦ α−1 =

φ1(α) ◦ α−1 +mℓ
ψ1

X,Y ,Z
+ ψ1

X⊗Y,Z − α ◦ ψ1
X,Y⊗Z ◦ α−1 − α ◦mr

X,ψ1
Y,Z

◦ α−1

(3.5.23)
The first summand of the r.h.s. of (3.5.23) vanishes, because

φ1(α)
(3.2.7)
= φ1(id) ◦ α = 0

One can recognize d(ψ1)(3;0,0,0) in the four remaining summands of the r.h.s. of (3.5.23).
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3.5.1 Infinitesimal deformation theory of a monoidal functor

The following Theorem is proven analogously to but easier than Theorem 3.5.3, and we
leave details to the reader.

Theorem 3.5.5. Let C, D be k-linear (or dg- over k) monoidal categories, F : C →
D a monoidal functor. The second cohomology H2(TotΘ2

A(F, F )) is isomorphic to the
equivalence classes of infinitesimal deformations of the functor F .

By Theorem 3.4.9, TotΘ2A(F, F ) is a homotopy 2-algebra. In fact, one can construct a
dg-Lie algebra on TotΘ2

A(F, F )[1] directly (without any use of loc.cit.), and to develop,
via the Maurer-Cartan equation and the deformation functor associated to dg-Lie algebra
formalism, the “global” deformation theory for F : C → D over kJtK.

3.6 Relations in Θ2

One has the following relations between the elementary face and degeneracy maps in Θ2,
which are checked straightforwardly.

Dq,σ′Dp,σ = Dp,σDq−1,σ′ if p < q − 1 (3.6.1)

Dq,σ2Dq−1,σ1 = Dq−1,η2Dq−1,η1 (3.6.2)

Here is an explanation of the notations: any (a, b)-shuffle σ1 and (a+b, c)-shuffle σ2 define
uniquely a (b, c)-shuffle η1 and an (a, b+c)-shuffle η2 such that σ2◦(σ1, idc) = η2◦(ida, η1)
(the latter is an (a, b, c)-shuffle).

∂jp∂
i
q = ∂iq∂

j
p if p ̸= q (3.6.3)

∂jp∂
i
p = ∂ip∂

j−1
p if i < j (3.6.4)

Dq,σ∂
j
p = ∂jp+1Dq,σ if p > q

Dq,σ∂
j
p = ∂jpDq,σ if p < q

(3.6.5)

Dp,σ∂
i
p =

{
∂apDp,σ̄ if σ−1(

−−−−→
i, i+ 1) =

−−−−−→
a, a+ 1 ∈ [0, kp]

∂bp+1Dp,σ̄ if σ−1(
−−−−→
i, i+ 1) =

−−−−→
b, b+ 1 ∈ [kp, kp + kp+1]

(3.6.6)

where σ̄ is the shuffle obtained from σ by collapsing σ−1(
−−−−→
i, i+ 1), and {ks} is used as in

Subsection 3.2.1, (F2).

∂ipDmin = Dmin∂
i−1
p if p ≥ 1

Dp,σDmin = DminDp−1,σ if p ≥ 1
(3.6.7)

and similarly for Dmax.
ϵjp ◦ ϵiq = ϵiq ◦ ϵjp if p ̸= q (3.6.8)

ϵjp ◦ ϵip = ϵip ◦ ϵj−1
p if i ≤ j (3.6.9)
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Υqℓ ◦ ϵ
j
p =


ϵjp−1 ◦Υ

q
ℓ if p > q + 1;

Υqℓ+1 if p = q + 1;

ϵjp ◦Υ
q
ℓ if p ≤ q.

(3.6.10)

∂ip ◦ ϵjq = ϵjq ◦ ∂ip if p ̸= q (3.6.11)

ϵjp ◦ ∂ip =


∂ip ◦ ϵj−1

p if i < j;

id if i = j, j + 1;

∂i−1
p ◦ ϵjp if i > j + 1.

(3.6.12)

Υqℓ ◦ ∂
j
p =


∂jp−1 ◦Υ

q
ℓ if p > q + 1;

Υqℓ−1 if p = q + 1;

∂jp ◦Υ
q
ℓ if p ≤ q.

(3.6.13)

Dq,σ ◦ ϵip =


ϵip+1 ◦Dq,σ if q < p

ϵip ◦Dq,σ if q > p

ϵap ◦Dq,σ′ if q = p, σ−1(
−−−−→
i, i+ 1) =

−−−−−→
a, a+ 1 ∈ [0, kp]

ϵbp ◦Dq,σ′ if q = p, σ−1(
−−−−→
i, i+ 1) =

−−−−→
b, b+ 1 ∈ [kp, kp + kp+1]

(3.6.14)

where σ′ is obtained from σ by adding a new element (blowing up) at σ−1(
−−−−→
i, i+ 1).

Υq0 ◦Dp,σ =


Dp,σ ◦Υq−1

0 if p < q

Dp−1,σ ◦Υq0 if p > q + 1

id if p = q, σ = (0, kp + kp+1)

id if p = q + 1, σ = (kp + kp+1, 0)

(3.6.15)

Dmin ◦ ϵip = ϵip+1 ◦Dmin (3.6.16)

Dmax ◦ ϵip = ϵip ◦Dmax (3.6.17)

Υq0 ◦Dmin =

{
Dmin ◦Υq−1

0 if q > 0

id if q = 0
(3.6.18)

Υq0 ◦Dmax =

{
Dmax ◦Υq0 if q < n+ 1

id if q = n+ 1
(3.6.19)

Υq0 ◦Υ
p
0 = Υp0 ◦Υ

q+1
0 if p ≤ q; (3.6.20)

3.7 A proof of Proposition 3.3.3

Here we give a proof of Proposition 3.4.4:

Proof. Let ϕ ∈ R
q
[n]. We first want to show that Υq∆(dϕ) = dΥq∆(ϕ):

Υq∆

(
n∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕs,i

)
=

(
n∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕ ◦ ∂is

)
◦Υq0 =

=

n+1∑
s=1,s̸=q+1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+i(ϕ ◦Υq0) ◦ ∂is = dΥq∆(ϕ)
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where the second equality follows from (3.6.13). The reason for excluding s = q + 1 by
the summation is due to the fact that there is no face map with codomain [0], which is
the qth interval.

Now we would like to show that Ω0
∆(dϕ) = −dΩ0

∆(ϕ):

Ω0
∆

(
n∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕs,i

)
=

(
n∑
s=2

κs∑
i=0

(−1)κ2+···+κs−1+s−1+iϕ ◦ ∂is

)
◦Dmin =

−
n∑
s=2

κs∑
i=0

(−1)κ2+···+κs−1+s−2+i(ϕ ◦Dmin) ◦ ∂is−1 =

−
n−1∑
s=1

κ′
s∑

i=0

(−1)κ
′
1+···+κ′

s−1+s−1+i(ϕ ◦Dmin) ◦ ∂is = −dΩ0
∆(ϕ)

the first equality comes from the fact that k1 = 0, so that there is no ∂i1 : · · · → [0]; the
second equality follows from (3.6.7), and we define κ′i := κi+1, for each i = 1, . . . , n− 1.

One can similarly prove that Ωn∆(dϕ) = −dΩn∆(ϕ).

Now we would like to show that Ωp∆(dϕ) = −dΩp∆(ϕ):

Ωp∆

(
n∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕs,i

)
=

=

(
n∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕ ◦ ∂is

)
◦

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)Dp,σ

)
=

(a) + (b) + (c)

where:

(a) =

(
p−1∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕ ◦ ∂is

)
◦

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)Dp,σ

)

(b) =

( ∑
s=p,p+1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕ ◦ ∂is

)
◦

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)Dp,σ

)

(c) =

(
n∑

s=p+2

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕ ◦ ∂is

)
◦

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)Dp,σ

)
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Using (3.6.5) we easily get:

(a) =

(
p−1∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕ ◦ ∂is

)
◦

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)Dp,σ

)
=

−
p−1∑
s=1

κs∑
i=0

(∑
σ

(−1)κ1+···+κs−1+s−1+i+ℓ′1+···+ℓ′p−1+p−1+♯(σ)ϕ ◦Dp,σ ◦ ∂is

)
=

−
p−1∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+i

(∑
σ

(−1)ℓ
′
1+···+ℓ′p−1+p−1+♯(σ)ϕ ◦Dp,σ

)
◦ ∂is =

−

(∑
σ

(−1)ℓ
′
1+···+ℓ′p−1+p−1+♯(σ)ϕ ◦Dp,σ

)
◦

(
p−1∑
s=1

κs∑
i=0

(−1)κ1+···+κs−1+s−1+i∂is

)
= −(a′)

where:

ℓ′j =

{
ℓj if j ̸= s

ℓs + 1 otherwise

Similarly:

(c) =

(
n∑

s=p+2

κs∑
i=0

(−1)κ1+···+κs−1+s−1+iϕ ◦ ∂is

)
◦

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)Dp,σ

)
=

−
n∑

s=p+2

κ′
s∑

i=0

(∑
σ

(−1)κ
′
1+···+κ′

s−2+s−2+i+ℓ1+···+ℓp−1+p−1+♯(σ)ϕ ◦Dp,σ ◦ ∂is−1

)
=

−
n−1∑
s=p+1

κ′
s∑

i=0

(−1)κ
′
1+···+κ′

s−1+s−1+i

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)ϕ ◦Dp,σ

)
◦ ∂is =

−

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)ϕ ◦Dp,σ

)
◦

 n−1∑
s=p+1

κ′
s∑

i=0

(−1)κ
′
1+···+κ′

s−1+s−1+i∂is

 = −(c′)

where:

κ′i =


κi if i < p;

κp + κp+1 if i = p;

κi+1 if i > p;

The last and more tricky summand is the following, which follows from (3.6.6):

(b) =

( ∑
s=p,p+1

κs∑
a=0

(−1)κ1+···+κs−1+s−1+aϕ ◦ ∂as

)
◦

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)Dp,σ

)
=

−
κ′
p∑

i=0

(∑
σ̃

(−1)κ
′
1+···+κ′

p−1+p−1+j+ℓ1+···+ℓp−1+p−1+♯(σ̃)ϕ ◦Dp,σ̃ ◦ ∂ip

)
=

−

(∑
σ

(−1)ℓ1+···+ℓp−1+p−1+♯(σ)ϕ ◦Dp,σ

)
◦

 κ′
p∑

i=0

(−1)κ
′
1+···+κ′

p−1+p−1+i∂ip

 = −(b′)
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where:

κ′i =

{
κi if i < p;

κp + κp+1 if i = p.

and σ̃ is the “extended” shuffle, which is explained in the following lemma:

Lemma 3.7.1. Let ∂ap and Dp,σ = (α, β) : [κ′p] → [κp] × [κp+1]. Let i := min{j ∈
[κ′p] | α(j) = a}. Then we set Dp,σ̃ := (α̃, β̃) : [κ′p + 1] → [κp + 1]× [κp+1], where:

α̃(j) =


α(j) if j < i;

a if j = i;

α(j − 1) + 1 if j > i.

and β̃(j) =

{
β(j) if j ≤ i;

β(j − 1) if j > i.

Then we have:

(−1)κ1+···+κp−1+p−1+a+ℓ1+···+ℓp−1+p−1+♯(σ)∂ap ◦Dp,σ =

−(−1)κ
′
1+···+κ′

p−1+p−1+j+ℓ1+···+ℓp−1+p−1+♯(σ̃)Dp,σ̃ ◦ ∂ip

and similarly for ∂bp+1 and Dp,σ.

Proof. Straightforward.

Now the desired equality: Ωp∆(dϕ) = −dΩp∆(ϕ) follows since

dΩp∆(ϕ) = (a′) + (b′) + (c′).

(2) Now we need to prove that Ωp∆ and Υq∆ satisfy the simplicial identities. The first

Ωp∆ ◦ Ωq∆ = Ωq−1
∆ ◦ Ωp∆ if p < q;

follows directly from (3.6.1) for p < q − 1; for p = q − 1, it follows from (3.6.2).

The second identity
Υp∆ ◦Υq∆ = Υq+1

∆ ◦Υp∆ if p ≤ q;

follows directly from (3.6.20).

Now the last identity:

Ωp∆ ◦Υq∆ =


Υq−1

∆ ◦ Ωp∆ if p < q;

id if p = q, q + 1;

Υq∆ ◦ Ωp−1
∆ if p > q + 1.

easily follows from (3.6.15).



112
CHAPTER 3. DEFORMATION THEORY OF k-LINEAR MONOIDAL

CATEGORIES



Chapter
4444444444444444444444444444444444444444444444444444444444444444444444444

Towards a homotopy 3-algebra
structure on TotΘ2(A(IdC, IdC))

E adess, për me maleur, l’hai mach
ëd feuje,
che ‘l vent a s-cianca, ël vent ëd la
sità;
e i podrai nen canté, s’i peuss nen
cheuje
jë spi d’òr an sle pere ‘d mia carzà.
L’hai da manca dël sol e dla frëscura:
l’hai mach un seugn ch’a rij mentre a
s’avsin-a;
pòrtme, pare, lassù ‘nt col’aria pura,
lassù mi veuj arnasse! An sla colin-a!

O. Gallina,
Mia tera

In this chapter we phrase out possible strategies in order to show that TotΘ2(A(IdC, IdC))
has a Ch q(E3,k)-algebra structure.

4.1 2-dimensional lattice paths operad

As we mentioned in Remark 3.4.8, the relative totalization Rp∗A(IdC, IdC), for IdC : C →
C, fails to be a 2-commutative cosimplicial monoid (in the sense of [BD], see Definition
3.4.6), but it enjoys the 2-commutativity only up to homotopy. Here is an attempt to
verbalize this concept.

4.1.1 A 2-categorical version of Disk2

As we saw at the beginning of Subsection 1.4.4, Joyal-duality between ordinals and inter-
vals is given by a functor:

F := Cat(−, [1]) : ∆op → I : [n] 7→ Cat([n], [1]) = ⟨n+ 1⟩.

113
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Let us consider the 2-dimensional analogue of this functor F :

F := Cat2(−, ([1]; [1])) : Θop
2 → ?

? should be a subcategory of Cat2, which we will define below.

Given T ∈ Ob(Θ2), we can explicitly describe its value. F(T ) is the 2-category:

• whose objects have a 2-disk structure (see Subsection 1.4.4);

• whose 1-morphisms are freely generated by:

– the vertical morphisms (inherited by the 1-interval structure of the fibers in
the 2-disk) of each column,

– between two adjacent columns i and i + 1, there are exactly two horizontal
1-morphisms, one with source the minimum object of i-th and target the min-
imum object of the i+ 1-th column (called the bottom horizontal morphism),
the other with source the maximum object of i-th and target the maximum
object of the i+ 1-th column (called the top horizontal morphism).

• whose 2-morphisms are freely generated by the single evident 2-morphism between
two adjacent columns, i.e. denoting by vi the composition of all the vertical mor-
phisms in the column i and by (hi)∗ (respectively, (hi)

∗) the bottom (respec-
tively, top) morphism from the i-th to i + 1-th column, we have a 2-morphism
αi : vi+1 ◦ (hi)∗ ⇒ (hi)

∗ ◦ vi.

Example 4.1.1. In order to help the visualization, let us consider a pictorial example.
If T ∈ Ob(Θ2), T = (4; 0, 3, 2, 0), then its dual F(T ) is the following 2-category:

x0

x2

x1

x7

x6

x5

x4

x3

x11

x10

x9

x8

x13

x12

x14

⇐ ⇐ ⇐ ⇐ ⇐

(h0)∗

(h0)
∗

(h1)∗

(h1)
∗

(h2)∗

(h2)
∗

(h3)∗

(h3)
∗

(h4)∗

(h4)
∗

(4.1.1)

We drew the vertical morphisms in orange and the horizontal morphisms in red and
blue, because it will help us in understanding the image of F(T ) through a 2-functor Φ.

Given Φ = (ϕ;ϕi) : S → T in Θ2, it is easy to see that F(Φ): F(T ) → F(S) is a 2-functor
whose underlying object function is a map of 2-disks.

Let us now give the target subcategory ? of the functor F:

Definition 4.1.2. Dat2 is the subcategory of Cat2:
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• whose objects are 2-categories D such that the objects of D have a “2-interval”
structure. In practice this amounts to ask that the underlying 1-category of D is
a tuple (A; {Ia}a∈Ob(A)), where A is a bipointed category, such that any object
a ∈ Ob(A) is endowed with a fiber Ia ∈ Cat∗,∗, and we require that the fiber over
the two distinguished objects are ∗, the final bipointed category. The 1-morphisms
of any Ia are the vertical morphisms. Moreover, any morphism f : a → b of A
induces unique horizontal morphisms f∗ (respectively, f∗) from the maximum
(respectively, minimum) point of Ia to the maximum (respectively, minimum) point
of Ib.

• whose 2-functors F : D → E are 2-functors preserving the 2-interval structure, i.e.
sending the horizontal (respectively, vertical) 1-morphisms to horizontal (respec-
tively, vertical) 1-morphisms.

Example 4.1.3. Given T ∈ Ob(Θ2), F(T ) is an object of Dat2, and more generally any
Joyal 2-disks B2 → B1 uniquely determines an object of Dat2: (⟨n+1⟩; {⟨ni+1⟩}), where
⟨ni + 1⟩ ∈ I ⊂ Cat∗,∗ is the 1-interval fiber over i ∈ ⟨n + 1⟩ = B1, and the 2-morphisms
are as for F(T ) above.

We will simply denote the objects of Dat2 by tuples (A; {Ia}) when it is clear from the
context what are the 2-morphisms.

As expected, we have a similar Joyal duality:

Proposition 4.1.4 (Joyal duality). For any S, T ∈ Θ2 :

Θ2(S, T ) = Dat2(F(T ),F(S)),

where the functor F(−) : Θop2 → Dat2:

S = ([n]; [ℓ1], . . . , [ℓn]) 7→ F(S) = (⟨n+ 1⟩; {⟨ℓi + 1⟩}) (4.1.2)

is defined as above.

Proof. It follows by definition.

4.1.2 Monoidal products on Dat2

We know there exist three monoidal products on Cat2: the cartesian product, the funny
tensor product and the Gray tensor product introduced by Gray in [G]. The funny tensor
product for higher categories and algebras of higher operads has been introduced by
Weber in [Web]. Though we are in a special subcategory, and we can try to construct
our own monoidal product, behaving in a nice homotopical way. Namely, we would like
to have a mixed product: Gray tensor product for the horizontal morphisms and funny
tensor product for the vertical morphisms.

Given C,D ∈ Dat2, we define the 2-category C⊗̃D in the following way:

• the objects of C⊗̃D are pairs (X,Y ), X ∈ Ob(C), Y ∈ Ob(D), i.e. Ob(C⊗̃D) :=
Ob(C)×Ob(D).
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• the 1-morphisms are equivalence classes of strings

(fn, gn) . . . (f2, g2)(f1, g1)

where, for all i either fi or gi is the identity, and the equivalence relation is given
by

(fi, id)(fi−1, id) ∼ (fi ◦ fi−1, id)

and
(id, gi)(id, gi−1) ∼ (id, gi ◦ gi−1)

• the 2-morphisms are the most subtle point of ⊗̃. First of all:

(i) for f ∈ C and g ∈ D both horizontal morphisms, there is an invertible 2-cell:

αf,g : (id, g)(f, id) ⇒ (f, id)(id, g)

(ii) for f ∈ C horizontal morphism and g ∈ D vertical morphism (or vice versa),
there is a 2-cell (not necessarily invertible)

βf,g : (id, g)(f, id) ⇒ (f, id)(id, g)

We do not construct 2-cells between composition of vertical morphisms.

We expect that ⊗̃ is functorial in both arguments, and associative, thus defining a
monoidal functor:

⊗̃ : Dat2 ×Dat2 → Dat2

where the unit object is the 2-category {∗}, with one object, only identity 1-morphism
and 2-morphism.

4.1.3 2-dimensional lattice paths operad L

Once we have a monoidal functor ⊗̃ as above, it is standard to construct a coendomor-
phism operad out of it:

Definition 4.1.5. The 2-dimensional lattice paths operad is the Θ2 coloured operad in
Set with:

L(T1, . . . , Tk;T ) := Dat2(F(T ),F(T1)⊗̃ . . . ⊗̃F(Tk)),

where the operad substitution maps are induced by tensoring and composing in (Dat2, ⊗̃).

Remark 4.1.6. By Proposition 4.1.4, the underlying category of L is Θ2:

L(S;T ) := Dat2(F(T ),F(S)) = Θ2(S, T ) (4.1.3)

and this does not depend on the choice of the monoidal functor.

Example 4.1.7. Let T = ([n]; [ℓ1], . . . , [ℓn]), Ti = ([ni]; [ℓ
i
1], . . . , [ℓ

i
ni
]), 1 ≤ i ≤ k, be

objects of Θ2. A 2-dimensional lattice path x ∈ L(T1, . . . , Tk;T ), unpacking the definition,
is given by:
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• an element of L(n1, . . . , nk;n), i.e. a functor

ϕ : ⟨n+ 1⟩ → ⟨n1 + 1⟩⊗̃ . . . ⊗̃⟨nk + 1⟩,

taking 0 to (0, . . . , 0) and n+ 1 to (n1 + 1, . . . , nk + 1);

• for each 1 ≤ i ≤ n, we have an element of L(ℓ1ϕ(i)1 , . . . , ℓ
k
ϕ(i)k

; ℓi), where ϕ(i) =

(ϕ(i)1, . . . , ϕ(i)k), i.e. a functor

ϕi : ⟨ℓi + 1⟩ → ⟨ℓ1ϕ(i)1 + 1⟩⊗̃ . . . ⊗̃⟨ℓkϕ(i)k + 1⟩

taking (0) to (0, . . . , 0) and (ℓi + 1) to (ℓ1ϕ(i)1 + 1, . . . , ℓkϕ(i)k + 1).

satisfying some constraints: for each 0 ≤ i ≤ n denote by ϕi,i+1 the image through ϕ of
the 1-morphism i→ i+ 1 in < n+ 1 >. Then we also have a 2-morphism:

αi : (ϕ
i,i+1)∗ ◦ ϕi ⇒ ϕi+1 ◦ (ϕi,i+1)∗

This 2-morphism gives us some control on the behavior of the lattice paths ϕi on the
fibers.

Thus we can represent a 2-dimensional lattice path x by a tuple of functors {ϕ;ϕi}, all of
which are elements of L, the lattice paths operad.

Now let us give another pictorial example: let T = (4; 0, 3, 2, 0) as in Example 4.1.1,
T1 = (3; 0, 3, 1) and T2 = (2; 1, 0). Then an element x of L(T1, T2;T ) can be represented
by the following picture:

ϕx0 ϕx1 ϕx2
q q q q q

ϕx3
q ϕx4

q q
q q ϕx5

q q
q q ϕx6

q ϕx7

ϕx8
q ϕx9

q q
q q ϕx10

q ϕx11

q q q q q ϕx12
q ϕx13 ϕx14

q
q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q
q

q q q q
q q q q
q q q q
q q q q
q q q q
q q q q

⇑

⇑ ⇑

⇑

⇐

⇑ ⇑

⇑ ⇑ ⇑ ⇑⇐

⇑ ⇑ ⇐ ⇑ ⇑

⇑
⇑

(4.1.4)
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Remark 4.1.8. (a) Having drawn the 1-morphisms of F(T ) with different colors in
Example 4.1.1, it makes it easier to understand their image through the func-
tor ϕ : F(T ) → F(T1)⊗̃F(T2) representing the element x above. The 2-morphisms
are sent through ϕ to the evident composition of the 2-morphisms in the picture.
The dashed rectangles are a way to pack the different “fibers” of our 2-category
F(T1)⊗̃F(T2). Knowing that ϕ respect the “2-interval” structure at the level of ob-
jects, it follows that the orange morphisms are mapped inside a single dashed rectan-
gle. Clearly we have not drawn all the 1-morphisms and 2-morphisms of the target
2-category, as this would have led to a wild and incomprehensible picture. Though
it is important to underline that the green 2-morphisms in the target 2-category
arise from the ⊗̃ tensor product, i.e. if we had taken the funny tensor product of
2-categories, we would not have been capable of mapping the 2-morphisms of the
source 2-category to any composition whatsoever.

4.1.4 Complexity of lattice paths

In [BB] the authors defined a notion of complexity for a lattice path; let us recall the
definition: for each 1 ≤ i < j ≤ k, there are canonical projection functors

pij : ⟨n1 + 1⟩□ . . .□⟨nk + 1⟩ → ⟨ni + 1⟩□⟨nj + 1⟩

These functors, together with the unique functor in Cat∗,∗(⟨1⟩, ⟨n+ 1⟩), induce maps

ϕij : L(n1, . . . , nk;n) → L(ni, nj ; 0) 1 ≤ i < j ≤ k

Definition 4.1.9. For each x ∈ L(n1, . . . , nk;n) and each 1 ≤ i < j ≤ k, let cij(x) be the
number of changes of directions (i.e. corners) in the lattice path ϕij(x). The complexity
index c(x) of x ∈ L(n1, . . . , nk;n) is defined by

c(x) = max
1≤i<j≤k

cij(x)

The m-th filtration stage L(m) of the lattice paths operad L is defined by

L(m)(n1, . . . , nk;n) = {x ∈ L(n1, . . . , nk;n)|c(x) ≤ m}

We can use this notion of complexity to consider some subsets of L. Let

L(0) := {(ϕ;ϕℓ) ∈ L|c(ϕ) = 0}

be the 2-dimensional lattice paths of complexity 0. These should be nothing but unary
maps (as in the L(0) case), i.e. L(S;T ) = Θ2(S, T ), so L(0)-algebras should be 2-cocellular
objects.

Let now
L(1) := {(ϕ;ϕℓ) ∈ L | c(ϕ) ≤ 1}

be the 2-dimensional lattice paths of complexity 1. These elements are either unary maps,
as above, otherwise are tuples {ϕ;ϕℓ} with ϕ of complexity 1 in L, which implies that
ϕℓ ∈ L(0): indeed, if ϕ is of complexity 1, this means it is a path running along the edges
of our k-dimensional grids. The fibers over these points are simpler, namely they are
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intervals, rather than ⊗̃ tensor product of intervals. Thence the functors ϕℓ are elements
of L(0). By the above inspection, L(1)-algebras should be 2-cocellular □′-monoids, where
□′ is the analogue of the Batanin □-product of cosimplicial spaces.

When we jump to complexity 2, everything gets screwed as the complexity c(ϕℓ) of a
lattice path (ϕ;ϕℓ) for c(ϕ) = 2 is not bound anymore. Thus it is natural to ask: do
higher filtrations L(n), n ≥ 2, of L exist? Do these L(n), n ≥ 2 share similar properties as
L(n)? What are L(n)-algebras, for n ≥ 2? These questions are unsolved.

Once developed a well-defined complexity index for 2-dimensional lattice paths, one could
construct a 3-operad coloured in Θ2 following the idea in [[BB], Introduction], later defined
in [[BM2], Section 6].

Remark 4.1.10. Another possible way of proving the homotopy 3-algebra structure
on TotΘ2

(A(IdC, IdC)) might be in the framework of homotopy centers, as developed
by Batanin and Marckl in [BM1] and [BM2]. In that setting, one may first define some
trioidal category T enriched over some monoidal category K and all the trioidal analogous
results of op. cit. After that, one could show that our 2-cocellular object A(IdC, IdC) is
the homotopy center of some duoid N inside a specific duoidal category D. Then the
(still conjectural) (n+1)-oidal Deligne’s conjecture would imply that there is a canonical
action of a contractible 3-operad on the homotopy center of a duoid N lifting the trioid
structure on the center of N.
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