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Abstract4 Maximizing the covered area of wireless sensor

networks while keeping the connectivity between the nodes is

one of the challenging tasks in wireless sensor networks deploy-

ment.  In this paper, we propose an ant colony-based method

for the problem of sensor nodes deployment to maximize the

coverage area. We model sensor locations as a graph and use

an adapted ant colony optimization-based method to find the

best places for each sensor node. To keep the connectivity of

the sensor network, every sensor must be covered by the other

sensors;  this  is  a  hard constraint  that  is  applied  to  the  cost

function  as  a  penalty.  The  proposed  algorithm  is  evaluated

with  different  numbers  of  sensor  nodes  and  sensing  ranges.

The simulation results showed that increasing the number of it-

erations in the algorithm generates a better coverage ratio with

the same number of nodes. 

Index Terms4Wireless sensor networks, node deployment,

coverage maximization, ant colony optimization. 

I. INTRODUCTION

N RECENT years, the new generation of smart buildings,
structures, vehicles, and factories are widely dependent on

proper sensing and collecting of data from the environment.
Wireless Sensor Networks (WSNs) are one the technologies
that  can  be  used  to  collect  different  kinds  of  information
from  various  environments  including  harsh  areas  such  as
seabed, mountains, or urban areas [1].  Technically, a WSN
is a set of small, low-energy sensor devices that can connect
to the other nodes over wireless communication platforms.
These devices may have different types of hardware and soft-
ware capabilities such as processing units, sensing modules,
and memories. Recent advances in electronic and hardware
technologies allow the generation of a wide range of tiny,
low-cost, low-energy devices that support local processing,
sensing, and various communication methods. The diversity
and capabilities of these devices grow exponentially which
allows us to use them in different application areas. For ex-
ample, collecting the status of patients and health care de-
vices in hospitals, automation of activities and increasing the
quality and efficiency of products in agriculture, monitoring
the status and condition of devices in a factory, controlling
the objects in smart homes, developing efficient rescue sys-
tems, real-time monitoring systems of critical infrastructures,
and  providing  ad-hoc  or  mobile  communication  platforms
are some applications of WSNs. 

I

Maximizing the coverage area of WSNs and keeping the
connectivity between the nodes are two essential necessities
in these networks. Ideally, WSN should cover the maximum
possible area and all available devices in the network should
be able to communicate with other nodes.  Generally, these
two-requirement conflict with each other. Increasing the cov-
erage area of a WSN needs to increase the distance between
deployed nodes which weakens the connectivity. Placing the
nodes far from each other reduces the possible alternate paths

between the nodes and also weakens the strength of the wire-
less signals which may affect the connectivity between the
nodes. To increase the connectivity robustness, we need to
deploy more dense networks which allows to create alterna-
tive  communication  paths  between  the  nodes.   However,
dense networks usually cover a limited area which is not ac-
ceptable in most applications. Some studies propose prede-
fined deploying patterns that optimize both connectivity and
coverage but most of the times placing the sensor nodes in
the desired locations is not possible. Especially in harsh envi-
ronments the nodes usually are distributed randomly which
reduces the coverage area. In this paper, we propose an Ant
Colony Optimization (ACO) based method to increase the
coverage area of  WSNs and preserve the connectivity  be-
tween the nodes. 

II. RELATED WORKS

The importance of covering the maximum possible area
in the region of  interest  has caused researchers to explore
sensor deployment techniques to maximize the coverage in
WSNs.  The  problem is  considered  in  assorted  conditions;
some research projects take the communication or connectiv-
ity of the sensors into account while some do not, some pa-
pers try to find the minimum number of sensors while some
take the number of sensors as a constraint and try to maxi-
mize the coverage for these sensors on the region of interest,
some tries to cover just specified targets and some aim to
cover the whole of the region of interest [2,3,4,5,6]. Various
methods are used in this field but due to the good perfor-
mance of the evolutionary algorithms in finding a solution
for  NP-hard  optimization  problems,  these  algorithms have
been widely used to find the best deployment of nodes in or-
der to maximize the coverage. Various swarm intelligence al-
gorithms such as Genetic Algorithm and Particle Swarm Op-
timization algorithm are applied in literature [7,8,9,10,11].

Ant  Colony  Optimization  algorithm  is  another

evolutionary  algorithm  to  solve  the  node  deployment

problem.  In  [12]  an  ACO  based  algorithm  called  ACO-

Greedy  is  proposed  to  solve  the  Grid-based  Coverage

problem  with  Low-cost  and  Connectivity-guarantee

(GCLC).  The  algorithm  finds  the  minimum  number  of

sensors with dynamic sensing and communication range that

can  provide  full  coverage,  decrease  deployment  cost  and

prolong  the  lifetime  of  the  network.  [13]  model  the

deployment  problem as  a  multiple  knapsack  problem and

use  ant  colony  optimization  algorithm  to  increase  the

coverage area. Network lifetime and coverage of the area are

considered  as  objectives  of  the  algorithm,  which  use  the

circle point concept. In [14] ACO-Discreet, a modification

of Ant Colony Optimization is proposed which reduces the

sensing  cost  with  efficient  deployment  and
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enhanced connectivity. The algorithm includes two phases: at 

the first phase, the ordinary ACO is used for the grid-based 

problem coverage with low cost and connectivity-guarantee. 

At this level to focus on points far from the ant9s current 
location, a heuristic value is used. After obtaining a solution 

at the first phase, at the second phase, ACO operates on the 

solution to remove redundant sensors. 
The authors of [15] propose an algorithm called Optimized 

Strategy Coverage Control (OSCC) which aims to maximize 
the coverage of the region of interest in three steps. At the first 
step they establish a relation mapping model of the sensors 
based on geometric figure and prepare the network model, 
then uses ACO to enhance the coverage with the minimum 
number of sensors, reducing the energy spending of the whole 
network and optimizing the routing path. The algorithm 
benefits from node moving path and direction to find the 
optimal subset of iterative optimization. An improved ACO 
called EasiDesign is proposed in [16] to solve connectivity 
guaranteed point k-coverage problem. The aim is to find the 
best minimum subset of locations for sensors. For this 
purpose, every ant chooses a point from all points which 
sensors can cover the critical points, to do this, ants apply 
stochastic local decision and then the pheromone is updated 
based on the quality of the solution to help the algorithm to 
find better solutions in the next iterations. Obstacle avoidance 
and unavailable points are taken into account to increase the 
practicality of the algorithm. 

III. PROPOSED APPROACH 

Ant colony optimization algorithm is a probabilistic 
technique inspired by the behavior of real ants. The basic idea 
of this member of the swarm intelligence methods family is 
the way that ants find the best route to go from a point to a 
target point using pheromone (Fig.1). After modeling the 
search space of the problem and initializing parameters, the 
algorithm starts with a set of random solutions and improve 
them until satisfying a predetermined stopping condition. Ants 
choose their path to construct a solution based on a probability 
that depends on pheromone and heuristic. At the end of each 
iteration, when all of the ants represent a solution for the 
problem, the pheromone matrix is updated based on the 
quality of the solution, that is the corresponding cost. The best 
ant, which is the ant with the lowest cost (for minimization 
problem) among all ants is cached when an iteration ends and 
the final solution is the best of the bests. We use ACO to find 
the best locations in the region of interest to deploy the sensors 
to achieve maximum coverage.  

In order to formulate the problem, we assume the region 

of interest as a two-dimensional grid-based area. Sensors can 

locate at all points of the area. Each sensor can sense all points 

within its sensing radius and can communicate with all 

sensors within its communication radius. The purpose is to 

deploy the sensors so that they cover the maximum possible 

area in the region, considering each sensor must 

communicate with at least one other sensor. We denote the 

set of sensors with ÿ = {�1 , �2, & , �ÿ} and location of sensor 

si and point p in the region of interest A is defined as (�ÿý , �ÿþ) 

and (�ý , �þ) respectively. Euclidean distance between si and 

p is formulated as þ(�ÿ , �), shown in (1): þ(�ÿ , �) = :(�ÿý 2 �ý)2 + (�ÿþ 2 �þ)2                 (1) 

If this Euclidean distance is equal to or lower than the 

sensing range ÿ�, the point can be sensed and is covered by 

the sensor si, otherwise, the point is not covered by si. This is 

the Boolean disk coverage model which is denoted as ý(�ÿ , �) 

in (2). ý(�ÿ , �) = {1,       þ(�ÿ , �) f ÿ�  0,       ��/ÿÿ�ÿ�ÿ                          (2) 

So, the total covered points by the sensor si in area A is 

defined as (3). Considering �(�ÿ , ��) as the common points 

covered by si and sj, the coverage function of the sensor set S 

on area A is shown in (4). ÿ(�ÿ , ý) = 3 ý(�ÿ , �)"�*ý                         (3) ý�ÿÿÿÿýÿ(ÿ, ý) = 3 ÿ(�ÿ , ý)ÿÿ=1 2 3 3 �(�ÿ , ��)ÿ�=ÿ+1ÿÿ=1  (4) 

We propose an ACO-based approach in which ants 

determine the coordinates of the sensors to deploy. For a ý × ý size area and n sensors, the solution space can be 

designed as a (ý × ý) × ÿ graph in which rows demonstrate 

all the possible coordinates that sensors can be placed, and 

each column represents one of the sensors. Fig. 2. shows the 

illustrated graph. An ant traverse on the graph and the path 

determines the coordinates of n sensors. For example, if the 

node on i9th row and j9th column of the graph is one of the 

nodes on the path of the ant, it means sensor number j must 

be located on the coordinate i. So, the path that every ant 

travels, can be shown as an 1 × ÿ  array that each of its 

elements shows a location. Fig. 3. shows a sample ant path 

for 8 sensors problem in a 100 × 100 area. The first member 

2580 means that the coordinates to locate sensor number 1 is 

(25,80), that is (�1ý , �1þ) = (25,80). 

All the original steps of ACO including creating the initial 

population and pheromone matrix, computing the probability 

matrix, pheromone updating and evaporation are the same in 

the proposed approach. To define the cost function of the 

algorithm, although the problem is maximizing the coverage, 

in order to include the communication condition, we 

reformulate the objective function as a minimization 

function. To do this, we use the total area of the region of 

interest, which means the area of the region of interest which 

is shown as area(A) is divided by the predefined function 

coverage (S, A). 

Each sensor must be covered by at least one other sensor, 

this is a hard constraint. We add this hard constraint as a 

penalty to the objective function. For each sensor �ÿ  of the 

 

Fig. 1. Natural behavior of ants (Adapted from [17]) 
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sensor set S, which is not covered by any other sensor, a 

penalty equal to �(�ÿ) is considered, which is defined in (5). 

The communication range of all sensors is equivalent and is 

shown with  ÿý . Sensor �ÿ  is covered by sensor ��  if the 

Euclidean distance between these two sensors is equal or less 

than ÿý. If there is no sensor inside the communication range 

of the sensor �ÿ , it means the sensor is not covered by any 

other sensor and must suffer a penalty. In order to delete the 

impact of the number of the sensors, the normalized total 

penalty for sensor set S can be formulated as (6): �(�ÿ) = {0,           #�� * S 6  þ(�ÿ , ��) f ÿý1,           ��/ÿÿ�ÿ�ÿ                                    (5)  

ÿ(ÿ) =  3 �(�ÿ)ÿÿ=1ÿ                               (6)  

In order to intensify the effect of the penalty on the 

objective function, we use » as the coefficient of the penalty

 

which is a very large number. The final objective function of 

the proposed ACO algorithm is called F(S) and is shown in 

(7). The ant that has smaller F is the better ant and deposits 

more pheromone on the path. ý(ÿ) = ( ÿÿÿÿ(ý)ý�ÿÿÿÿýÿ(ÿ,ý)) + (ý × ÿ(ÿ))                (7) 

All the ants travel based on the pheromone matrix and 

construct new paths and solutions. The algorithm continues 

until the stopping condition is satisfied, which is iteration in 

our case. At the end, the ant with the least cost that is 

maximum coverage and penalty equal to zero is the best ant 

which gives the best coordinates for n sensor on area A to be 

placed and have the most covered area. 

IV. PERFORMANCE EVALUATION 

To evaluate the performance of the algorithm, first we 

conduct experiments using various parameters in order to 

determine the optimum configuration of parameters for 

ACO-based deployment. We focus on the impact of ACO 

standard parameters as well as problem specialized 

parameters. The ACO parameters include the number of 

iterations, initial population size of ants, pheromone 

exponential weight, evaporation rate and parameters of the 

problem include sensing radius, number of sensors and 

penalty coefficient. The algorithm is implemented using 

MATLAB software with different values for the above 

parameters in a 100×100 grid-based sensing region, 

considering the maximum number of iterations as the 

stopping condition. Combinations of 50, 100, 200, 400, 500 

and 1000 iterations with 20, 30, 40, 100, 200 population size, 

10, 20, 50, 100 for penalty coefficient and 0.3, 0.5 

evaporation rate are tested and the determined optimal 

parameters which have caused better results are listed in 

Table 1. 

After the creation of a random population of ants at the 

first iteration, in which each member demonstrates a random 

deployment of the sensors, the algorithm proceeds to improve 

the solution and find the optimal deployment. At every 

iteration, based on the information of the past iterations is 

reflected on the pheromone matrix, the algorithm finds a 

better solution. That is, we get better cost as we progress. This 

can obviously be seen in Fig. 4. which shows that the 

coverage rate improves in each iteration for the deployment 

problem of 32 sensors with a sensing radius set to 10. It 

should be mentioned that considering the communication 

between sensors as a hard constraint and injecting it to the 

cost with a high impact, leads ants to focus on finding 

solutions with the least penalty. The implementation results 

show that the algorithm finds solutions with penalty equal to 

zero at even early steps. As consequence the outcome of the 

algorithm is a deployment with high coverage rate and zero 

penalty, which means all sensors are in communication with 

at least one other sensor.  

 

 

To evaluate the impact of the sensing range on coverage 

rate, we simulated the algorithm with three different sensing 

ranges: 5, 10 and 15 meters. We assume that all the sensors 

have the same sensing range and the communication range of 

the sensors is twice the sensing range. The algorithm tries to 

 

Fig. 2. Graph model of the proposed approach 

S1 S2 S3 S4 S5 S6 S7 S8 

2580 0265 1152 9804 7204 3288 1425 6206 

 Fig. 3. A sample ant path 

TABLE I.    OPTIMAL PARAMETERS 

Parameter Value 

Number of Iterations 200 

Population Size 100 

Evaporation Rate 0.05 

Penalty Coefficient 10 

 

 

Fig. 4. Iterative process of the algorithm optimization 
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find the best coordinates to locate the sensors with the 

predetermined sensing range, such that they cover the 

maximum area, ensuring that every sensor is in the 

communication range of at least one other sensor.  

One another determinative parameter in coverage rate is 

the number of sensors. As the region of interest gets larger 

more sensors are needed for full coverage of the area but not 

all time full coverage is the aim. Determining the number of 

sensors can be considered as the result of a trade-off between 

the cost of supply and maintenance and desired coverage rate.  

To evaluate the impact of the number of sensors we 

simulated the algorithm with 18 different numbers in the 

range of [20 600]. In order to present the combinational effect 

of sensing range and number of sensors, we illustrated how 

coverage rate changes for different sensing ranges and 

number of sensors in Fig. 5. It can be seen that the coverage 

rate increases when the number of sensors becomes more. 

The sensing range has similar and even more effect, the larger 

 
Fig. 5. Iterative process of the algorithm optimization 
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Fig. 6. Sensor Deployment of ÿ = 14 , ÿ� = 15 before(top) and 

after(bottom) optimization 

 
Fig. 7. Sensor Deployment of ÿ = 32 , ÿ� = 10 before(top) and 

after(bottom) optimization 

158 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



range the more coverage rate. And obviously larger sensing 

range results in more coverage with fewer sensors compared 

to sensors with smaller range. 

The algorithm processes on a random deployment and 

improves it to an approximate optimal solution. To compare 

the first situation of the sensors with the situation of the 

sensors which are located in the coordinates determined by 

the proposed algorithm, Fig. 6, Fig.7 and Fig. 8 show the 

region of interest covered by sensors before and after 

optimization for the number of sensors which have about 

100% maximum possible coverage rate. The coverage rate of 

14 sensors with a sensing range 15 m is 76.1% for 32 sensors 

with ÿ� = 10  m the rate is 72.6% and 128 sensors with a 

range of 5 m cover 67.3%, of the region of interest. As shown 

in the figures, all the deployments resulted from the algorithm 

ensuring the communication condition and all of the sensors 

are in communication with at least one other sensor. 

CONCLUSION 

In this work, we consider the problem of sensor nodes 
deployment to maximize the coverage area. We model sensor 
locations as a graph and use ACO to find the best places. 
Every sensor must be covered by other sensors; this is a hard 
constraint that is applied to the cost function as a penalty. The 
algorithm is evaluated with different numbers of sensors and 
sensing ranges. Better locations are found and the coverage 

rate increases as the algorithm iterates. Simulation results 
showed that our proposed sensor deployment approach 
improves the coverage rate of a set of sensors that are 
deployed randomly by finding new places to deploy. The 
simulation results showed that the prosed algorithm can 
increase the coverage ratio of the network to 76.1% with 14 
sensor nodes where the sensing range of each node is 15 m. 
As future work, the proposed algorithm will be evaluated in a 
real testbed environment. 
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Fig. 8. Sensor Deployment of ÿ = 128 , ÿ� = 5 before(top) and 

after(bottom) optimization 
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