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ABSTRACT

This paper proposes a sparse unmixing technique using a

convolutional neural network (SUnCNN). We reformulate

the sparse unmixing problem into an optimization over

the parameters of a convolutional network. Relying on

a spectral library, the deep network learns in an unsuper-

vised manner a mapping from a fixed input to the sparse

abundances. Moreover, SUnCNN fulfills the sum-to-one

constraint using a softmax activation layer. We compare

SUnCNN with the state-of-the-art using a simulated and a

real dataset. The experimental results show that the proposed

deep learning-based unmixing method outperforms the oth-

ers in terms of signal to reconstruction error. Additionally,

SUnCNN is visually superior to the competing techniques.

SUnCNN was implemented in Python (3.8) using PyTorch

as the platform for the deep network and is available online:

https://github.com/BehnoodRasti/SUnCNN.

Index Terms— Hyperspectral image, unmixing, convolu-

tional neural network, deep learning, deep prior, endmember

extraction

1. INTRODUCTION

Sparse unmixing techniques estimate the fractional abun-

dances of different pure materials by relying on a library of

endmembers. As the number of pure materials in the scene

is lower than the number of endmembers in the spectral li-

braries, only a few endmembers are required to reconstruct

the mixed hyperspectral pixels. This leads to a sparse abun-

dance matrix. Therefore, sparse regression techniques are

exploited to estimate the abundances without having to ex-

tract or estimate the endmembers. [1]. As the fractional

abundance is an areal percentage and no endmember can

have a negative area, yielding the abundance nonnegativ-

ity constraint (ANC). Additionally, the observed spectrum

should be entirely described by endmembers which leads to

the abundance sum-to-one constraint (ASC).

Examples of sparse unmixing methods are sparse unmix-

ing by variable splitting and augmented Lagrangian (SUn-

SAL), constrained SUnSAL (C-SUnSAL) [1] and collabo-
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rative sparse unmixing [2]. Both SUnSAL and C-SUnSAL

apply an ℓ1 penalty on the fractional abundances. SUnSAL

utilizes ℓ2 for the fidelity term while C-SUnSAL assumes a

constraint to enforce the data fidelity. Collaborative sparse

unmixing is similar to SUnSAL but applies ℓ2,1 (i.e., the sum

of ℓ2 on the abundances) to promote the sparsity on the abun-

dances. In [3], a spectral prior was added to the sparse regres-

sion problem that assumes that some materials are known in

the scene.

SUnSAL was improved in [4] by incorporating spatial

information through applying a total variation penalty on the

abundances (SUnSAL-TV). Some drawbacks of SUnSAL-

TV are that it oversmooths boundaries, blurs abundance

maps, and is computationally expensive. This was somewhat

addressed by developing a technique called local collabora-

tive sparse unmixing (LCSU) [5] and a new spectral–spatial

weighted sparse unmixing (S2WSU) framework [6]. In [7],

an efficient two-phase multiobjective sparse unmixing ap-

proach was presented to exploit the spatial-contextual in-

formation for improving the abundance estimation. The

problems of SUnSAL-TV were further tackled by introduc-

ing a fast Multiscale Sparse Unmixing Algorithm (MUA)

[8] that promotes piecewise homogeneous abundances with-

out compromising sharp discontinuities between neighboring

pixels. In (MUA) [8], first, coarse fractional abundances are

estimated by grouping pixels into perceptually meaningful re-

gions and performing sparse regression using either a binary

partition tree (BPT), MUABPT, or the simple linear iterative

clustering (SLIC), MUASLIC. Then, sparse regression is used

to estimate the abundance while the regularizer is applied to

the coarse fractional abundances.

This paper proposes a sparse unmixing method using a

convolutional neural network (SUnCNN). Relying on a spec-

tral library, SUnCNN generates the abundances using a deep

convolutional encoder-decoder. We reformulate the sparse

unmixing problem into an optimization over the deep net-

work’s parameters. SUnCNN holds the sum-to-one and non-

negativity constraints using a softmax activation layer. There-

fore, the major contributions of this article is three fold: 1) re-

formulating sparse unmixing into an optimization over a deep

network’s parameters which leads to the first deep learning-

based sparse unmixing technique called SUnCNN; 2) implic-

itly inducing a deep image prior while holding ASC; and 3)



incorporating spatial information using the convolutional fil-

ters.

2. METHODOLOGY

We use the following mixing model for the observed spectral

pixels:

Y = DX+N, (1)

where Y and N ∈ R
p×n denote the observed HSI and the

model error including noise, respectively. D ∈ R
p×m is the

spectral library containing m endmembers, and X ∈ R
m×n

contains the unknown fractional abundances (p ≪ m).

Sparse unmixing estimates the fractional abundances X using

the sparse regressions given by:

X̂ = argmin
X

1

2
||Y −DX||2F + λ

n∑

i=1

||x(i)||q

s.t.X ≥ 0,1T
mX = 1

T
n , (2)

where 0 ≤ q < 1. There is considerable debate on the se-

lection of the sparsity-enforcing penalty and the value for q.

In general, such a selection will be highly data dependent and

therefore we suggest to use a general prior:

X̂ = argmin
X

1

2
||Y −DX||2F + λR(X). (3)

The general regularizer R(X) can be implicitly applied using

a deep network [9, 10]. Therefore, we can reformulated (3)

as:

θ̂ = argmin
θ

1

2
||Y −Dfθ(Z)||

2
F s.t. X̂ = f

θ̂
(Z), (4)

where Z is the network input, which remains constant dur-

ing the training, fθ is the deep network with parameters θ.

θ are randomly initialized and updated through the learning

process. The deep network fθ learns a mapping of the input

Z to X̂ such that X̂ = f
θ̂
(Z). We use a softmax function in

the final layer of the network to enforce both ASC and ANC.

The convolutional encoder-decoder used for f
θ̂

is shown in

Fig. 1. We use 5 convolutional layers (Conv) in the main

forward path and one in the skip connection, a downsampling

block, and an upsampling block. We use batch norm (BN) to

speed up the learning process and to obtain robustness in the

hyperparameter selection. Leaky ReLU was selected as the

activation function. All the selected hyperparameters for the

network are given in Table 1.

3. EXPERIMENTAL RESULTS

In the experiments, SUnCNN is compared with SUnSAL

[11], SUnSAL-TV [4], S2WS [6], MUABPT and MUASLIC

[8]. For the competing methods, the tuning parameters are set

as default values.

Table 1: Hyperparameters used in the experiments for

SUnCNN.

Hyperparameters

Input Ch. Ouput Ch. Filter Size Stride

Conv1 p 256 3x3 2

Conv2 256 256 3x3 1

Conv3 260 256 3x3 1

Conv4 256 256 1x1 1

Conv5 256 p 1x1 1

ConvSkip p 4 1x1 1

Negative Slope

Leaky ReLU 0.1

Scale Factor Mode

Upsample 2 Bilinear

Type Learning Rate

Optimizer Adam 0.001

3.1. Simulation Experiment

The synthetic library used for the simulated experiments is

composed of 240 spectral signatures from the USGS library.

We prune the library in a way that the spectral angle between

any two endmembers is larger than 4.44°. The simulated Data

Cube (DC1) contains 75×75 pixels and was simulated using

a linear mixing model with 5 endmembers. The endmembers

were selected from the library and the abundance maps are

composed of five rows of square regions uniformly distributed

over the spatial dimension. The results are given in terms of

signal to reconstruction error (SRE) in dB:

SRE(X, X̂) = 10 log10
∥X∥F

∥X− X̂∥F
, (5)

for three levels of additive noise i.e., 20, 30, and 40 dB. Here,

the number of iterations is set to 4000, 8000, 16000, for 20

dB, 30 dB, and 40 dB, respectively. The input of SUnCNN is

set to the observed data, i.e., Z = Y,

Table 2 reports the unmixing results obtained from the dif-

ferent techniques applied to DC1. SUnCNN outperforms the

other techniques, except in the case of 20 dB noise, where it

performed second best. SUnSAL obtained the poorest result.

Unlike S2WSU, which performs better for high SNR, MUA

performs better for the low SNRs. One may attribute this to

the segmentation-based framework used in MUA which copes

with the low SNRs by oversmoothing the abundances. This

can be seen in Fig. 2, in which the estimated abundance maps

using both segmentation-based techniques are oversmoothed.

From Fig. 2, we can observe that SUnCNN successively pre-

serves the geometrical structures in the abundance maps (even

for low SNR i.e., 20 dB), which can be attributed to the in-

corporation of spatial information via the convolutional oper-

ators. On the other hand, the competing methods fail to pre-

serve such structures, particularly for lower SNRs. We should



Fig. 1: The architecture of the deep network, fθ, used in SUnCNN. The network uses a skip connection and different layers are

shown using specific colors.

note that S2WSU, MUABPT, and MUASLIC induce artifacts

into the abundance maps which is not desirable.

Table 2: The results of different sparse unmixing techniques

applied to DC1 in terms of SRE. The best performances are

shown in bold.

SNR SUnSAL SUnSAL-TV S2WSU MUABPT MUASLIC SUnCNN

20 dB 2.27 4.71 3.85 6.70 5.67 5.71

30 dB 4.46 7.22 7.74 9.13 7.87 10.25

40 dB 6.89 11.05 14.12 10.72 11.17 15.20

3.2. Real Experiment

In the real experiment, we use the Jasper Ridge dataset. This

dataset contains 100×100 hyperspectral pixels (see Fig. 3(a))

for the true-color image). Each hyperspectral pixel contains

224 reflection values in the wavelength range [380-2500] nm.

Among 224 bands, twenty-six water absorption bands (1–3,

108–112, 154–166, and 220–224) were removed. This dataset

has four endmembers i.e., Tree, Water, Soil, and Road. The

library D ∈ R
198×529 is composed of 529 spectral pixels ob-

tained from the Jasper Ridge dataset. We use 15000 iterations

for the real dataset. Here, the input of SUnCNN is set to noise,

i.e., Z = N.

The results of the sparse unmixing techniques applied to

the Jasper Ridge dataset are compared in Table 3 in terms

of SRE. SUnCNN outperforms the other techniques for the

overall abundance estimation and provides the best abundance

estimations for Tree and Water. Fig. 3 visually compares

Table 3: The results of different sparse unmixing technique

applied to the Jasper Ridge dataset in terms of SRE. The best

performances are shown in bold.

SUnSAL SUnSAL-TV S2WSU MUA BPT MUA SLIC SUnCNN

Tree 8.45 7.06 7.59 6.44 6.57 9.53

Water 6.57 7.51 6.64 6.80 6.61 8.67

Soil 7.22 6.79 6.96 5.79 5.84 6.58

Road 6.59 6.76 6.16 4.99 5.14 6.21

Overall 7.20 6.96 6.95 6.28 6.29 8.01

the abundance maps obtained by different techniques applied

on the Jasper Ridge dataset. All the techniques preserve the

geometrical structures of the dataset and perform similarly in

terms of visual comparison.

4. CONCLUSION

We proposed a sparse unmixing technique using a deep con-

volutional neural network (SUnCNN). SUnCNN utilizes a

convolutional encoder-decoder network to generate the abun-

dance maps. Inspired by deep image prior, the sparsity prior

was implicitly enforced using a deep network. The experi-

ments were carried out on a synthetic dataset and the Jasper

Ridge dataset. The experimental results show that SUnCNN

outperforms the state-of-the-art in terms of SRE. Addition-

ally, visual comparison reveals that, unlike the competing

techniques, SUnCNN provides sharp maps without artifacts,

even for low SNR values.
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