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ABSTRACT

In the modeling and simulation process of systems, the verification and validation activities are necessary
to give credibility to model results. For similar types of models, the applicable validation techniques are
reusable and automatable. In this paper, we present ESS, the EMF-Based Simulation Specification. ESS
is a domain-specific language, workflow, and accompanying code generators built on top of the Eclipse
Modeling Framework. Existing approaches focus on specifying how experiments and simulations must be
executed, ESS extends that functionality with the ability to specify and reuse model validation techniques.
We provide an initial implementation of ESS that works with ordinary differential equations in Matlab and
demonstrate this implementation with the validation of an electronic filter circuit. Though this initial version
is limited to only one simulator and one validation metric, our aim is to provide support for an exhaustive
list of validation metrics in the future.

Keywords: Validation and Verification, Domain Specific Language, Model-to-Text Transformation, Eclipse
Modeling Framework.

1 INTRODUCTION

In the field of modeling and simulation (M&S), models are developed to answer questions about a system
within a specific domain of application. Various flavors of the M&S process have been detailed in literature
(Sargent 2020, Zeigler, Muzy, and Kofman 2018,Schlessingner et al. 1979). All these process models
share some common activities that we summarize as follows: first, a system is analyzed, and the intended
application domain of the model is formulated. Through this analysis, a conceptual model of the system
is modeled, which excludes/abstracts away details of the system not pertaining to the intended application
domain. Through programming, the conceptual model is transformed into a computer-executable model,
which is simulated to answer the initial questions about the system. This process additionally involves three
types of evaluation that ensure a credible model is obtained: (a) model qualification, where engineers check
the adequacy of the conceptual model in the domain of application; (b) model verification, where engineers
check that the conceptual model is correctly represented by the computer model; (c) model validation,
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Figure 1: Modeling and Simulation phases, and evaluation procedures, adapted from (Schlessingner et al.
1979).

where engineers check that the simulation adequately represents the system within the computerized model’s
domain. This process is typically represented by the diagram shown in Figure 1.

In the model qualification of the conceptual model, engineers typically use face validation. The domain
experts check the equations and their relations and ensure they are correct (Sargent 2020). In computerized
model verification, we note two main parts: ensuring the conceptual model is implemented correctly and
ensuring it executes correctly. Engineers attain the former through good coding practices, and for the latter,
they generally rely on the owner of the simulator to provide a correctly working simulation engine (e.g.
Mathworks ODE solvers, GNU Octave ODE solvers) (Sargent 2020, Oberkampf and Roy 2010). Blind
reliance is questionable, certainly in high-stakes projects, but the large companies or communities behind
those solvers allow us to trust them. Lastly, in model validation engineers compare real experiments with
in silico experiments to assess the simulation results and the adequacy of the computerized model (Sargent
2020, Oberkampf and Roy 2010). When real experiments are impossible, they can instead compare with
previously validated models. Model validation itself is commonly done with programmed code, which
should also be subjected to verification. The same techniques from model verification can be applied.
Although the techniques for model validation are generic for models of the same type, their application
tends to be more ad hoc for each specific model. Because the techniques are generic, the potential for
automation exists. This improves reuse and reduces manual effort.

In this paper, we present a domain-specific language (DSL) for specifying models and the validation of their
results. The DSL is contained in a base package, which must be extended for specific models. We provide
such an extended package for the case of Ordinary Differential Equation (ODE) models executed in Mat-
lab, which we use in a demonstration on a model of an electronics circuit. Lastly, we present a workflow
with model-to-code transformations for using the DSL in the validation of simulation models. We imple-
ment the DSL using the Eclipse Modeling Framework (EMF) (Steinberg, Budinsky, Merks, and Paternostro
2008), and utilize Eclipse Epsilon to facilitate code generation. As such, we call the DSL ESS: EMF-Based
Simulation Specification. Besides the automation and technique reuse introduced with the model-to-text
transformations, the DSL models additionally serve as a documentation store for the experiments performed
during model validation. In the remainder of this paper, we discuss some background on model validation in
Section 2, afterwards we discuss ESS in Section 3, then demonstrate it on the electronics circuit in Section 4.
Finally, Section 5 discusses the relation with the related work and Section 6 summarizes the paper.

2 BACKGROUND

2.1 Model Validation

Model validation is defined in (Schlessingner et al. 1979) as: “Substantiation that a computerized model
within its domain of applicability possesses a satisfactory range of accuracy consistent with the intended
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Figure 2: P-boxes of a variable with purely epistemic, purely aleatory, and combination of epistemic and
aleatory uncertainty.

application of the model.”. Other, similar definitions exist (Oberkampf and Roy 2010) but all approximately
describe the following elements and processes: a system has certain properties that are of interest, within
a domain of applicability. In literature these are called System Response Quantities (SRQ) (Oberkampf
and Roy 2010), Quantities of Interest (QOI) (National Research Council 2012), or model outputs (Sargent
2020). The SRQ or QOI interpretation is broader than the model output interpretation, as they may be a post-
processing of the model output. We can compare the model SRQs with experimentally obtained values of
those SRQs, either through physical experiments or by simulation of previously validated models. Doing so
enables us to quantify the accuracy of the model for the experiment domain. We can then, through extrapola-
tion or interpolation, gather model results for the intended application domain, after which we can determine
if the estimated accuracy of those results is within the specified accuracy requirements (Oberkampf and Roy
2010), also called tolerance (National Research Council 2012).

The SRQ of a system is dependent on the type of system. If we broadly categorize systems in discrete event
and continuous systems (possibly with discretized time), we note that for the discrete event systems, SRQs
are quantities like the throughput or the blocking rate of the system, whereas for continuous systems, we
may be interested in steady-state values or transient quantities like settling time (Zeigler, Muzy, and Kofman
2018). For estimating the model accuracy, one needs a metric to be calculated over the simulation and the
experimental data. This metric is called a validation metric operator (Oberkampf and Roy 2010) and is some
kind of statistical operator, e.g., the difference between the means of the experimental and simulation SRQs.
Just like the SRQs, it may depend on the type of system.

SRQs used for the calculation of the validation metric are usually not deterministic but contain uncertainty.
There are two types of uncertainty: aleatory, where the uncertainty comes from the nature of random vari-
ables, e.g., measurement errors, and epistemic, where the uncertainty stems from a lack of knowledge.
Aleatory uncertainties are represented as statistical distributions. The representation of epistemic uncertain-
ties depends on how much knowledge is lacking. On the one end, if one lacks the knowledge to be aware of
the epistemic uncertainty it can’t be represented. On the other end, if one only lacks the knowledge of the
statistical distribution, it can be represented by a bounded interval. Figure 2 illustrates three realizations of
cumulative probability distributions (CDF) for a variable with epistemic, aleatory, and combined uncertain-
ties. In the cases with epistemic uncertainty, there is a “min” and “max” CDF, for which the term probability
box or p-box is used. To further clarify with an example: an electronic component whose parameter is given
by its datasheet with a "min, max, typical” value has epistemic uncertainty, its realizations are contained in
the p-box with two vertical edges as no knowledge of the underlying distribution exists. Measuring a batch
of those components while disregarding the accuracy of the measuring device allows for the quantification
to an aleatory uncertainty. Additionally incorporating the measuring instrument’s accuracy allows for the
quantification to an aleatory and epistemic p-box.



Mertens and Denil

Validating a model requires awareness of the different uncertainties. For example, the model inputs often
cannot be measured exactly, the model may not correspond 1-to-1 to the real system, and computerized
simulation of the model execution may introduce solution errors. Various techniques exist to handle the
uncertainties: Monte-Carlo simulation can be used to propagate aleatory and epistemic inputs or parameters
through the model, obtaining a p-box of the output values of the model. Statistical Design of Experiments
(DOE) techniques search to quantify different sources of uncertainty that contribute to the final uncertainty
in the SRQ. Through thoughtful definition of the experiments, those specific sources can be isolated and
quantified. Blocking is such a technique, in which experiments are grouped per potential source of uncer-
tainty (Oberkampf and Roy 2010). Techniques used in model verification allow experimenters to quantify
or eliminate solution errors (National Research Council 2012).

The previous remark on the p-boxes as representations of the uncertainty of model outputs brings along
another complication: common validation metrics are based on classical statistical operators such as mean
and standard deviation. Therefore, they can only handle aleatory uncertainty. Ferson and Oberkampf (2009),
identify this problem and propose validation metrics that can deal with epistemic, aleatory and combined
uncertainty. Of the proposed metrics, the most generally applicable one is called the “CDF area metric”
in which the area is computed between the obtained p-boxes of the simulated SRQ and the experimentally
measured SRQ. The main drawback of the CDF area metric is that its result requires interpretation of a
domain expert to see if the value is adequate, and thus relies on human opinion. In contrast, most statistical
tests can be interpreted by a non-expert, e.g., a hypothesis test at a certain confidence level. Ferson and
Oberkampf (2009) additionally introduce a two-valued metric that is specifically applicable to epistemic
observations, as it shows the width between the experimental and simulation bounds. Oberkampf and Ferson
(2007) also present an approach called U-pooling, which allows low numbers of experimental observations
to be pooled before applying the area metric, in an attempt to obtain a general model mismatch metric, rather
than for each specific SRQ. For an overview of other validation metrics, we refer to (Liu et al. 2011).

3 ESS

We first discuss the ESS metamodel, then we discuss the workflow, and lastly, we cover the implementation.

3.1 ESS Metamodel

Figure 3 shows the metamodel of the ESS “core”. We omitted some blocks, attributes, and associa-
tions/compositions to maintain readability, however, the essence of the metamodel remains. The core of
ESS consists of 5 main classes: Model, Scenario, Experiment, SystemResponseQuantity, and ResultAnaly-
sis. Optionally encapsulating these classes is the System class (not shown in Figure 3). The core itself does
not implement all the necessary information for performing model-to-text generation, therefore most of the
classes are abstract, and need to be extended in a simulator-specific metamodel, which we cover later on. In
what follows, we discuss the metamodel elements from Figure 3, which are italicized for clarity.

The Model class is an abstract representation of a computerized model, which contains arbitrary many Ports.
A port is the abstracted class through which a model communicates, example implementations could be a
model input port, output port, or initial state. An abstract model may still be too generic and can therefore be
extended by still abstract but more specific models, shown in Figure 3 by the ODEModel. Such an extension
adds non-implementation-specific attributes, while still being part of the core.

The Scenario class describes a specific system setup and scenario. It does so by specifying various attributes
or parameters of the system and its surroundings. We call those values SystemValues.
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Figure 3: ESS “core” metamodel, with omissions for readability.

The Experiment class formulates an experiment, following a Scenario, and producing one or more Measure-

ments. There are two specializations of the Experiment, namely the PhysicalExperiment and the Simulation.
The PhysicalExperiment’s purpose is to describe an experiment that requires real-life execution. The Simu-

lation pertains to an in silico experiment, and therefore it’s associated with a Model. Through one or more
SystemValueToPortMappings, the SystemValues of the Scenario are coupled to the Ports of the Model. Al-
though a Scenario can define more SystemValues than needed for a Simulation, it’s also possible that not all
Ports of the Simulation are assigned a SystemValue, perhaps because the Scenario is lacking, but also possi-
bly because the Port may not be related to any part of the real system captured in a scenario. For example,
this can be the case if the model has tweakable parameters that are unrelated to the real system but only
serve to improve the model response. In such a case, an engineer may additionally define SystemValues in
the Simulation itself, and then map those to Ports of the Model.

The ResultAnalysis is associated with one or more Experiments and serves to define any post-processing
needed on their Measurements. For example, a simple plot of a Measurement or, the calculation of a valida-
tion metric.

Lastly, there are the SystemResponseQuantities of the system. SRQs serve a purely descriptive role and are
referenced by the other main elements to indicate that that SRQ is for example calculated in a ResultAnalysis

or is contained in the Measurement of an Experiment.

3.2 ESS-Matlab ODE Metamodel

Code generation based on the ESS metamodel is impossible, as it lacks the necessary implementation-
specific details to do so. Therefore, for each simulator, it is necessary to provide subclasses of the abstract
classes in the core metamodel that do contain those details. For our case of validating Matlab ODE models,
we extend the core metamodel with specific Matlab ODE classes. Containing the ESS model in a package
and importing it in the Matlab metamodel makes it possible to extend and use its classes. Figure 4 shows
this relation and the classes from ESS which are extended by the ESS-Matlab package. Given that the
PhysicalExperiment is not abstract, we need only extend the remaining 4 classes (some more classes are
extended, e.g. the SystemValue class, but are not shown for conciseness). Examples of the additions done
in the Matlab specific classes are the specification of a solver that yields a valid result for the model, the
specification of whether a Simulation needs reproducible random number generation, and the definition of
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Figure 5: Workflow of using ESS. The metamodel serves as input for all of the “define X” processes.

some more specific SystemValues that adhere to specific probability distributions, the option for parallel the
execution. The current limitations of the ESS-Matlab package are that models are limited to Matlab ODE
models, and the result analysis is limited to the CDF area metric, calculated in Matlab.

3.3 Model-to-Code Transformations

We require two types of model-to-code transformations: (a) a transformation from a Simulation to code, to
set up the in silico experiment and (b) a ResultAnalysis transformation to perform further post-processing
and the calculation of the validation metric. The code resulting from those transformations implements
the epistemic-aleatory simulation loop and CDF area metric from (Oberkampf and Roy 2010, Ferson and
Oberkampf 2009). Other validation metrics can be added in future work.

3.4 Overview of Workflow

Lastly, we visually summarize the workflow and the input/output artifacts of the ESS approach in the activity
diagram in Figure 5. A document is an artifact that follows from the process, manually for the definition of
models, or automatically for the generation of code.
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3.5 Implementation

ESS is built using the Eclipse Modeling Framework (EMF), EMF was conceived as a modeling framework
and code generator that unifies XML documents, UML diagrams, and Java code through a high-level rep-
resentation called the EMF model (Steinberg et al. 2008). Based on this EMF core, other frameworks are
built for purposes such as model transformations and graphical user interfaces. For ESS we utilize the EMF
core and the EMFatic language to define the metamodels of the DSL. For the model-to-text transformation,
we use Eclipse Epsilon, which is a set of scripting languages for performing model-to-X transformations,
model validation and testing, model merging and migration, and visualization on EMF models. For instan-
tiating the EMF model objects, e.g., a Simulation, we rely on the built-in Exeed model editor. Exeed is
straightforward tree-based editor.

Specifically for the model-to-text transformations, we provide some more detail: we utilize the Epsilon
Generation Language (EGL) and the EGL Coordination Language (EGX). EGL is a template-based model-
to-text transformation language, which means the EGL script has the same layout as the text that is generated
from it. EGX is an execution language that allows for the parametric execution of EGL scripts. An EGX
script defines one or more rules that are invoked on EGL templates and adds additional functionality such
as guards that prevent erroneous code generation. For our two model-to-text transformations, we create two
EGL templates, the first is to be executed on a MatlabSimulation to generate a Matlab script that runs the
simulations. The second is to be executed on a MatlabResultAnalysis that refers to a MatlabSimulation and
a PhysicalExperiment, it generates code to calculate the CDF-area validation metric.

The choice for only the EMF core with Epsilon scripts was made as we deemed it to be the most lightweight
approach to reach our goal of defining experiments, models and simulations, and accompanying transforma-
tions. In hindsight, this mostly code-based approach is not the most user-friendly for end-users. Nonetheless,
more powerful tools build on EMF exist that would enable the creation of a full-fledged DSL workbench.
Examples are Eclipse Sirius and Obeo Designer.

4 DEMONSTRATION ON AN ELECTRONICS CIRCUIT

We demonstrate the approach on an electronics circuit of an RLC notch filter. The idealized circuit of this
filter is given in Figure 6a and its frequency response in Figure 6b. As seen in this response, the filter aims
to suppress all frequencies besides those at the peak, also called its center frequency. The peak additionally
has a width, called the bandwidth of the filter. At its peak the filter also has a certain amplitude. We choose
those three parameters as SRQs for evaluating this system. This idealized model skims over various non-
ideal effects, some of which should preferably be modeled as well to achieve a representative response.
For this circuit, the most important ones are the output impedance of the function generator (R0), the DC
resistance of the coil L1 (DCR) and the leakage current of the capacitor C1 (DCL). They affect both the
amplitude and the bandwidth of the filter. R0 can be added to the circuit as a resistor in series with V1, DCR
can be added as a resistor in series with L1, and DCL can be added to the circuit as a parallel resistor to
C1. The circuit from Figure 6a was modeled as an ODE in Matlab, additionally incorporating R0 and DCR.
DCL was not modeled as the we used a film capacitor with a low leakage current in the real circuit.

For creating the necessary EMF models, we follow the workflow from Figure 5. First, we define a Mat-

labODEModel and a MatlabScenario. The scenario defines the components we select for the filter. After
analyzing the component datasheets and the capabilities of our measuring device, we determined that the 4
measurable components for the scenario all have epistemic uncertainty: R1 and C1 and the series resistance
of L1 can be measured and are therefore epistemic uncertainties within the measurement accuracy of the
measuring device. L1 cannot be measured and is therefore an epistemic uncertainty within the tolerances
provided in its datasheet. With those two models created, we define the Simulation and Experiment models.
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Figure 6: RLC notch filter demo.
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Figure 7: P-boxes for the three SRQs. Note: experiment min. and max. overlap due to only one observation.

In both the experiment and simulation, an exponential sine wave chirp signal is applied at the input of the
circuit (V1), going from 10 Hz to 22 kHz over a duration of 10 s. Doing so for the experiment required
constructing the circuit in real-life, connecting it to a function generator and measuring the sweep with an
oscilloscope. In the simulation the measured sweep is the output of a simulation run. For the simulation, we
pick several replications, in each of which the epistemic uncertainties are sampled randomly. Oberkampf
and Roy (2010) provide a rule of thumb of a3

+2 replications if a is the number of epistemic uncertainties
that are sampled according to Latin hypercube sampling. By conducting the experiment, we obtain one
real-world measurement, and running the simulation yields one measurement for each replication. Lastly,
we define a MatlabResultAnalysis for processing and comparing those simulation measurements and the
experimental measurement. In this case the analysis entails some pre-processing before the area metric can
be calculated: a conversion to the frequency domain using the Fast Fourier Transform, and the extraction of
the three SRQs from the circuit response.

By running the analysis of the results, we obtain Figure 7, which contains 3 CDFs. Because the propagated
input parameters are epistemic, the CDFs are p-boxes with vertical edges. Since the experiment, was only
a single measurement, the min and max CDFs overlap each other. The ResultAnalysis returns the follow-
ing CDF area metric values: Center Frequency = 0 Hz, Amplitude at Center Frequency = 0.0312 V and
Bandwidth = 550.20 Hz. The interpretation of those results requires domain knowledge when the area is
not 0. Therefore, from these results, we conclude that the model appropriately predicts the center frequency.
Applying our domain knowledge, we can state that the 0.0312V amplitude area could be acceptable, but
the 550.20 Hz bandwidth area is not. Therefore, if we want to use this model to predict the 3 SRQs, model
refinement is needed.
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Figure 8: Demonstration of the p-boxes for results that are both aleatory and epistemic.

4.1 Extension with Aleatory Uncertainty

The demonstration on the real filter only has epistemic uncertainties, thus, we could not demonstrate that the
implementation of the CDF calculation can handle the combination CDF of aleatory and epistemic uncer-
tainties as introduced in Figure 2. To demonstrate this capability, we generate two hypothetical simulations,
where there are additional aleatory input uncertainties present, and apply the area metric calculations to
those results. Furthermore, due to the large number of replications, we utilize the parallel execution option
of the MatlabSimulation instance to run the simulations. We made the probability distributions of the input
parameters different, such that we obtain distinct p-boxes. For each simulation, we opt for 250 aleatory
replications and 11 epistemic replications, totaling 2750 simulations that store approximately 50 GB of
data. From this data, we produce the CDFs shown in Figure 8. The calculated areas are: Center Frequency
= 207.4186 Hz, Amplitude at Center Frequency = 0.0086 V and Bandwidth = 113.6713 Hz.

5 RELATED WORK

5.1 SESSL, Validity Frames and Experimental Frames

Using model driven approaches to describe and set up simulations has been done previously in (Ewald and
Uhrmacher 2014, D’Ambrogio, Bocciarelli, Delfa, and Kisdi 2020). D’Ambrogio et al. (2020) describe how
EMF and related technologies can be used to implement a toolchain for large scale distributed simulations, as
demonstrated on an ESA (European Space Agency) project. Ewald and Uhrmacher (2014) describe SESSL,
which is an acronym for Simulation Experiment Specification via a Scala Layer. SESSL is an embedded
DSL that is implemented in the Scala programming language and is used to specify simulation experiments
(Ewald and Uhrmacher 2014). SESSL was conceived as a DSL to provide a system-independent way of
describing simulation experiments. It stems from the problems with attempting to unambiguously describe
a simulation experiment in a reproducible manner. An embedded DSL, in contrast with a regular DSL, is
implemented in or “embedded” in a general-purpose programming language and can therefore be mixed and
combined with that host language. To define an experiment in SESSL means to program that experiment,
its execution is therefore unambiguously defined.

SESSL consists of abstract core functionality, in the form of the “AbstractExperiment” class, and accom-
panying abstract traits: “BasicExperimentConfiguration”, “AbstractObservation”, “AbstractParallelExecu-
tion”, et cetera. To provide an implementation for a specific simulator, a binding needs to be written that
through inheritance implements the needed functionality of the abstract trait from the SESSL core. In this
way, the SESSL core remains generally inheritable, whilst the specific bindings need only implement the
supported functionality of that simulator. SESSL currently has bindings for the following simulators: ML-
Rules, ML3, SBMLsimulator, OMNeT++, pSSAlib, SSJ, Opt4J, SBW, and JAMES II.
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Wilsdorf et al. (2019) present an extension on SESSL that based on an experiment schema helps users define
specific experiments. Through a mapping of the schema to template fragments, the abstract experiment
definition can be mapped to an implementation in SESSL (or another simulation backend). In essence, this
is an additional layer of abstraction, which hides the SESSL experiment specification in Scala from the user
and presents them with an experiment-type specific schema and graphical user interface. Thanks to the
schema definition, validation of the user input data is also possible, notifying users of errors in their input.

The Experimental Frame (Zeigler, Muzy, and Kofman 2018) and Validity Frame (Denil et al. 2017) are
also related to ESS. Zeigler (1976) introduced the experimental frame (EF) as “... a specification of the
conditions under which the system is observed or experimented with.”. Traoré and Muzy (2006) generalize
the experimental frame to just the frame, as they identify that the wording of the EF allows for multiple
interpretations. With this generalization, they introduce multiple views to which a frame may refer. Of those
identified views, three are particularly applicable in the context of this paper, those are the views where a
frame captures “The way a real system is observed...”, “The way a model is experimented with...”, and the
“The circumstances under which a model is a valid representation of a real system...”. The experimental
frame, as defined by Zeigler, Muzy, and Kofman (2018) and Traoré and Muzy (2006) only specifies a
family of experiments, but not a specific experiment, as such Denil et al. (2017) make note of the missing
information needed to fully reproduce experiments with an EF and introduces the Experimental Setup,
which does contain this information. They encapsulate the experimental setup in the Validity Frame, a frame
that “defines the experimental context of a model in which it gives predictable results” (Denil, Klikovits,
Mosterman, Vallecillo, and Vangheluwe 2017).

5.2 Discussion

SESSL and ESS originate from different ideas with different goals. For SESSL, the goal is unambiguously
describing simulation experiments, for ESS the goal is facilitating the reuse of model validation experiments
and their accompanying validation metric calculation. To do so, both require simulation descriptions, and
as such, there is some overlap at that level, as both share a DSL with which experiments and related data
can be defined. Architecturally, there is also some similarity, as both rely on the extension of the core to add
support for simulators/types of experiments.

Without going into too much implementation detail, regarding the description of in silico experiments, we
can say that in essence that part of ESS is similar to SESSL with the schema extension, minus the use of an
intermediary simulation layer. ESS goes directly to the specific simulator, which means ESS employs one
layer of abstraction less. This does require that developers of metamodels and model-to-text transformations
are aware of the intricacies of the target simulator. In fact, the definition of the simulation experiment in
the workflow could conceptually be replaced with a SESSL description of that experiment, something that
we consider as future work. One implementation detail we do note is that for the experiment specification,
ESS decouples the scenario and experiment, and requires the developer to either assign a scenario to a
PhysicalExperiment for documentation purposes or assign and map elements of a scenario to model inputs
for a Simulation. Because SESSL only focuses on simulation experiments such an approach is not needed,
and the simulation scenario is inherent to the experiment configuration.

Regarding the calculation of validation metrics, and the processing of experimental measurements we can
state the following: SESSL supports result processing of simulation results. However, because it only
serves simulation experiments, this processing cannot perform model validation, for which a comparison
with experimental measurements is needed. ESS does support this processing, as this is precisely its goal
from the start. For performing the validation, in ESS developers have the advantage that they can write the
processing in their language of preference, only needing to map it to an EGL template for further re-use.
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On the topic of frames, Van Mierlo et al. (2020) explore Validity Frames in practice by demonstrating
the Validity Frame vision on a model of an electrical resistor. They state how the validation procedure is
an explicit activity stored within the Validity Frame and propose a validation procedure for the electrical
resistor model. Because of this, we can envision the ESS approach as an embedded part of a Validity Frame,
describing the validation activity, as well as providing the executable code to perform it. Model-to-model
transformations would be necessary to obtain an ESS model from a model’s frame without overhead.

Regarding the general use of ESS in the context of modeling and simulation, we recall that the main goal is
on the topic of model validation. With the current support of only the CDF metric, and only through Matlab,
this general applicability is limited, and as such, the main future task is to extend the supported types of
result analyses with (a) more validation metrics, (b) support beyond Matlab, (c) user guidance as to which
metrics to select. The (in silico) experiment description part is in this regard less interesting for future work,
in part due to it existing in other solutions such as SESSL. Some final thoughts are that for future work
on ESS there is a broad list of options available in the EMF ecosystem. There’s Eclipse Sirius and Obeo
designer for making graphical user interfaces, the option to use other model-to-text transformations such as
Acceleo, and model validation with Eclipse EVL in Epsilon.

6 SUMMARY

We identified that for similar types of models the model validation techniques can be reused and automated.
To this end we introduced ESS, a DSL, code generators and workflow built on top of the EMF framework.
ESS allows developers to extend the ESS core and write packages and code generation templates to support
a specific type of model and simulator, which we demonstrated for Matlab ODE models. We compared ESS
to SESSL, a DSL made for unambiguously describing simulation experiments.

Regarding technical future work, we aim to extend the capabilities of ESS with respect to the number of
validation metrics and the supported underlying languages/tools. Support for a large amount of validation
metrics is a must to attain general applicability in a modeling and simulation context. Second to this main
goal, we want to utilize the capabilities of EMF and Epsilon, to provide model validation of user models,
completely automated tasks that implement the manual workflow, and create a graphical editor in place of
the Exeed tree-based editor. A final future work is to develop a SESSL binding for Matlab ODEs, to attempt
to replicate the simulation description step in SESSL as well.

Regarding research-oriented future work, we want to look into using the result analysis defined in ESS for the
automatic detection of malfunctions or wear in real systems. We think that comparing system measurements,
e.g., from a startup or calibration phase, with expected measurements made during the validation of the
system model at design time, can help detect problems in a system.

ESS is available online: https://cosysgit.uantwerpen.be/JMertens/ess.
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