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Abstract

Chronic pain is known to alter the brain’s netwahmamics. These dynamics are often
demonstrated by identifying alterations in the raetwork topology. A common approach
used for this purpose is graph theory. To datie i known on how these potentially altered
networks in chronic pain relate to the symptoms riggloby these patients. Here, we applied a
graph theoretical approach to identify network demin patients suffering from chronic
neck pain, a group that is often neglected in dierpain research. Participants with chronic
traumatic and non-traumatic neck pain were comp#avedealthy pain-free controls. They
showed higher levels of self-reported symptomseuisgization, higher levels of disability
and impaired sensorimotor control. The brain suftefrom chronic neck pain furthermore
showed altered network properties in the postaniogulate cortex, amygdala and pallidum
compared to the healthy pain-free brain. Theseresghave been identified as brain hubs (i.e.
regions that are responsible for orchestrating cameoation between other brain regions) and
are therefore known to be more vulnerable in bdssorders including chronic pain. We were
furthermore able to uncover associations betweesetlaltered brain network properties and
the symptoms reported by patients. Our findingscaie that chronic neck pain patients
reflect brain network alterations and that targgtihe brain in patients might be of utmost

importance.

Keywords: Whiplash; chronic neck pain; idiopathickeain; Graph Theory; Hub Disruption

Index (HDI); Network topology; Connectomics

Chronic neck pain has been nominated as thée&ding cause of disability among
people world-wide [90]. Chronic neck pain can beébdvided in traumatic (whiplash

associated disorders; WAD) and non-specific noarraic neck pain (idiopathic neck pain;

1



INP) [35]. Both are associated with pain, and imgghimotor control, but as WAD originates
from a trauma, they are characterized by more sewapairments compared to INP

[25,56,63,68,71]. Patients with WAD suffer for exalenfrom general hypersensitivity of the
central nervous system [56,67], a symptom attribute altered brain dynamics [18].

Consequently, during the further unraveling of gahophysiological processes underlying
these pain disorders, the brain has been nomiregea primary target. Unfortunately, the
representation of pain in the brain tends to bepternand dynamic by nature [23,27,51,52],

which makes inference on this matter challenging.

Previous studies in chronic musculoskeletal paiwvehaarticularly focused on
functional connectivity within the pain neuromajraset of regions known to be involved in
the sensation of pain [30,91]. These initial stadiesolved narrow region of interest (ROI)-
based approaches [16,49], although many of thegsen®also participate in functions beyond
pain processing [27,87]. Recent advances have éhdismtified the involvement of regions
outside the pain matrix-in numerous pain disord@}sfurther necessitating the examination
of the brain as a whole [27]. To this end, the mrean be conceptualized as a network
constituted of densely connected regions (ofteledahetwork nodes) with reciprocal
information flow between these nodes [27,36,52laph theory provides a theoretical
framework to examine these complex networks, aigihimeveal information about the local
and global organization of functional networks RIB76]. A handful of studies have tried to
explore these functional brain networks in chromgsculoskeletal pain [7,17,58,59,97], of
which none in chronic neck pain. Furthermore, amlgninority has assessed the association
between topological alterations and self-reportgd@oms of pain [17,59,97], although there
are reasons to assume a relationship between tieatsaclinical presentation, including pain

and sensorimotor symptoms, and the topology op#tient’s brain network [41,42].



Although, local network alterations were identifiagl essential indicators embodying
chronic musculoskeletal pain in the brain, thes@suees are unfortunately inherently data-
rich and complex, which might hinder the identifioa of robust network changes [57]. The
hub disruption index (HDI) was therefore introducetently as a reliable and sensitive

global graph measure that reflects nodal differsnaéhin a graph [2,86].

Here, using a GT approach, our goals were to (&htfy difference in global network
measures between INP, WAD and healthy pain-fredraisn(HC), using the novel HDI
metric, and (2) assess the associations betweamtmitnetwork disruptions and clinical
symptoms including motor impairment and self-repdrisymptoms of pain. Based on
previous findings of changes in brain network orgation in chronic musculoskeletal pain
[58,59], we hypothesized that (1) local topologiakérations are present on a global scale in
patients with INP and WAD, and that (2) the degrethese alterations is associated with the

degree of motor impairment and self-reported pain.

METHODS

L Participants

This study involves participants that have takert paa previously published study
on brain morphology [69]. In total, 35 HC, 39 patewith INP and 37 patients with WAD
were included in the present study. All particigafm = 110) were female, Dutch native
speakers aged between 18 and 65 years, who wetatedcvia internet, flyers and posters.
Inclusion criteria for patients with WAD and INP reepersistent neck pain (> 3 months) with
an average pain intensity of more than 3/10 onMtbsal Numeric Rating Scale (VNRS),
mild/moderate to severe pain-related disabilityl(0/50 on the Neck Disability Index (NDI))

[89], and stability of pain medication for at ledsiveeks prior to study participation. Patients



with CWAD were only included if they were classiila as WAD Il A, B or C according to
the modified Quebec Task Force Scale [81,84], andhey did not report loss of
consciousness during or after the trauma to exchamisible mild traumatic brain injury.
Healthy pain-free women (HC) were included if thegt the following inclusion criteria: (i)
pain-free on the test day (VNRS < 2/10), had neohysof neck-shoulder-arm pain for more
than 8 consecutive days during the last year (geeVdNRS> 2/10), a score of less than 8 out
of 50 on the NDI, no medical consultation for neticulder-arm pain during the last year and

no history of a whiplash trauma.

General exclusion criteria for all participants weusychiatric iliness, neurologic,
metabolic, cardiovascular disorders, inflammatoopditions, fiboromyalgia, chronic fatigue
syndrome, and a history of neck or shoulder gisilegery. Furthermore, pregnant women
and women 1 year postnatal were excluded. All pigeints were asked to stop intake of non-
opioid analgesics 48 hours prior to study particgra In addition, participants were asked
not to undertake heavy physical exertion, and fi@ire from consuming alcohol, caffeine and
nicotine on the day of testing. Ethical clearancas weceived from the Ghent University
Hospital ethical committee under registration numBg/2013/1053. Written informed

consent was obtained from each participant prigratticipation.

II. Clinical assessment

Salf-reported pain, sensitization, and disability measures

Participants scored their neck pain intensity &MN\RS, a usable and valid pain rating
scale [40], with scores ranging from 0 to 10, witheflecting ‘no pain’ and 10 reflecting ‘the
worst pain imaginable’. Self-reported disability svassessed with the Dutch version of the

NDI [89], which has demonstrated high reliabilitydavalidity [4,46]. The scale includes 10



items: pain intensity, personal care, lifting, neag headache, concentration, work, driving,
sleeping, and recreation, whereby each of item6h@&sponse categories ranging from 0 to 5
(with 0 “no disability” and 5 “excessive disabili}y resulting in a total score ranging up to
50. Higher scores indicate increased self-repodeshbility [89]. Finally, participants
completed the Dutch version of the Central Seratibn Inventory (CSI), a reliable self-
report screening instrument to measure clinical@gms of central sensitization in chronic
pain populations [50,61]. Higher CSI scores dersoteigher degree of central sensitization

symptoms.

Motor control

Maximal strength (Newton, N) was measured using and=held dynamometer
(MicroFET 2, Hoggan Health Industries Inc., Bionedty The Netherlands), an apparatus with
good reliability [85]. The subject was seated wille thorax stabilized. The hand-held
dynamometer was placed on the forehead (frontal)bdime occiput, and just above the left
and right ear (parietal bone) for respectively ibex extension, and left and right side
bending. The maximum of three consecutive trialhva 10 seconds rest-interval was

retained.

Postural control was assessed with an AMTI ACGalulet forceplate (50 cm x 50 cm)
(Advanced Medical Technology, Inc., Watertown, MRarticipants were standing on a firm
surface, feet placed at hip width, and eyes cldsetheasure postural control under high
sensory load. CoP-data was acquired via three catige measurements of 90 seconds using
a sampling frequency of 100 Hz in order to obtahable results [78]. Using MATLAB
R2015a (Mathworks, Inc), the raw data were filteresing a 4th order low pass digital
Butterworth filter with a cut-off frequency of 5 HZhanges in displacement of the Center of

Pressure (CoP) were recorded and the following gaBmeters were computed: mean sway



velocity (cm/s), and sway area as the 95% confidailipse area (cm?). An increased sway

area reflects worse postural control.

Neuromuscular control, which reflects the capaptlit contract a specific muscle, was
assessed with the craniocervical flexion test (CC&d the scapular holding test (SHT). The
CCFT has been shown to be valid [26] and relia®g method. Information on the validity
and reliability of the SHT is not yet available. tBaests consist of a form with specific
criteria on neuromuscular control, movement conaedl endurance. This results in a score
ranging from 0 to 10 with a lower score indicatiwgrse neuromuscular control (for details,
see Appendix A, available as supplemental digital ontent at

http://links.lww.com/PAIN/A918).

Based on the scores for strength and neuromuscaolarol a scaled average was
computed to provide an overall-indication of stithngnd neuromuscular control. A higher

score reflects a higher strength or a better pexdoice in neuromuscular control.

III. Neuro-imaging
MRI data acquisition

A Siemens 3T TimTrio scanner (located at Gifmi, @heniversity Hospital, Ghent,
Belgium) and a standard 32-channel head coil wasl der MRI data acquisition. High-
resolution whole-brain T1-weighted anatomical soaaese obtained with a 3D-T1 MPRAGE
sequence with following parameters, voxel size £ kXA.00 x 1.00 mm, repetition time (TR)
= 2250 ms, echo time (TE) = 4.18 ms, flip angle’=136 coronal slices, FoV-matrix = 256 x
256 mm, acquisition time (TA) = 5.14 min. High-ragobn whole-brain T2*-weighted
images (voxel size of 1.00 x 0.70 x 3.00 mm, TB& ms, TE of 18.6 ms, flip angle of 20°,

33 transversal slices, FoV of 230 x 230 x 230 mnd a TA of 3.48 min) were obtained to
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assess potential micro-haemorrhages by an expedeneuroradiologist. No participants
were identified with micro-haemorrhage and noneewtiterefore excluded from further
analyses. Finally, resting state fMRI was admimesdeusing a T2*-weighted EPI sequence
with the following instruction: “Close your eyeso dhot think about anything in particular,
and do not fall asleep”, and with the following @aeters: TR = 2000ms, TE = 29ms, flip
angle = 90°, number of slices = 40, slice thickre80 mm, FoV read = 192 mm x 192 mm,
Bandwidth BW = 2694 Hz, and 300 volumes, and TA%20min. None of the patients

reported falling asleep during the resting stat®fldcanning procedure.

Analysis of brain imaging data

High resolution T1 data preprocessing

High-resolution T1-weighted scans were processedguBreeSurfer version 5.3.0

(http://surfer.nmr.mgh.harvard.edu) T1-using théadk processing pipeline, which includes

intensity normalization, skull stripping, removal mbdn-brain tissue, brain mask generation,
cortical reconstruction, segmentation of subcortiehite matter and deep gray matter
volumetric structures, cortical tessellation of gray matter/white matter and gray matter/pial
boundary, construction of a probabilistic atlasdaasortical parcellation into 68 regions
according to gyral and sulcal structure, and segatien of deep gray matter structures into
16 subcortical regions summing to a total of 84 ®{4,28]. All FreeSurfer output was
visually inspected, and in case of surface-defaonathe subject was excluded for further
analyses. We did not perform any corrections toRreeSurfer segmentation [62]. A listed
overview of the different regions together with tneerage and standard deviation estimates
of the brain volume in the different segments canfdund in Appendix B (available as

supplemental digital content at http://links.lwwnt®AIN/A918).




Resting-state fMRI data preprocessing

Preprocessing of each subject’s functional MRI aeda performed using the FMRIB

Software Library v5.0 (FSL, https:/fsl.fmrib.ox.ak/fsl/fslwiki [95]) and AFNI [20]. In

particular, preprocessing encompassed the followsteps: skull extraction using BET,
motion correction, slice time correction, tempditéring with a band-pass frequency range
from 0.009 Hz to 0.08 Hz, and detrending of thenaigoy removal of linear and quadratic
trends. Functional images were then coregisterethaoindividual’s structural space and
normalized to the MNI standard template using theear and non-linear registration
algorithms provided by FSL (FLIRT and FNIRT [5,48,85]). Next, segmentation of the
anatomical data was performed using FAST [96] aodagates, consisting of six head
motion parameters, the white matter signal andocespinal fluid signal, were regressed out
of the fMRI signal. Of note, we did not perform sotiwng for the following reasons: (i) noise
suppression was already taken into account duhegatveraging step (see below); (ii) to
avoid a shift in ROI consistencies [48] . As anidaddal quality parameter, the framewise
displacement was calculated to evaluate the heatbmduring the scanning time [72,73].
Next, the FreeSurfer cortical parcellation obtaimedhe previous step was mapped to the
subject’s functional space. Specifically, fMRI imageere linearly registered to the subject’s
raw high-resolution T1-weighted images using the reyg function of FSL FLIRT [44,45].
Then, the inverse of this transformation matrix veagplied to transform the FreeSurfer
parcellation scheme into the subject’s functioqalce. Average BOLD signal time series for
each region were then generated by computing thgaspnean for all voxel time-series of
each region. Lastly, connectivity matrices were staucted by calculating the Fisher z-
transformed Pearson correlation coefficient betwadepairs of regions. The same procedure
was repeated for the Automated Anatomical LabeljAd\L)-atlas [88] to evaluate the

robustness of our analysis.



Graph theoretical analysis
Graph construction

Individual functional brain networks, i.e. graphsere constructed using the 84
regions of the FreeSurfer parcellation scheme asesioand region-wise functional
connectivity between each pair of nodes as edgesdeline a graph, each connectivity matrix
was thresholded to create an adjacency matrix weaech element is either 1 if the value of
the correlation is greater than a given threshald mtherwise. Since the value of this
threshold is crucial to define the graph densitye(ithe amount of edges in graphs over the
total amount of possible edges) [93], each graphtiwaesholded at different threshold. These
thresholds were particularly chosen to avoid uabglity of graph metrics and the presence of
disconnected networks when the network is too spérs30%) [86] and to avoid biological
implausible networks that are too dense (> 70%)7/47 Graph characteristics were therefore
computed for all individual brain networks at vasotetwork densities ranging from 30% to
70% with density steps of 10%. In addition to thdividual networks, 100 random graphs
were constructed with the same number of nodes eatybs to serve as a baseline for

comparison. All graphs were constructed with thaiConnectivity Toolbox (BCT) [77].
Characterization of the network: global and nodal graph measures

Based on the connectivity matrix, topological pmbies can be examined by graph
metrics provided by the framework of graph thedrliese metrics can be categorized into
measures covering segregation (i.e. the ability sipecialized processing to occur within
densely interconnected groups of regions), intemgrati.e. the capacity of the network to
rapidly combine specialized information from distried regions), and centrality (i.e. the
importance of network brain regions to the globat\Wwork functioning) [77]. In particular, we

computed clustering coefficient (a measure for agagtion), and global efficiency (a measure



for integration) to infer on the global network peopes. Small-worldness, a key common
feature of complex network structures [83,92], veaslitionally calculated as the tradeoff
between network segregation and integration [43}alue for small-worldness that is greater
than 1 is believed to reflect an optimal balancévben segregation and integration [1].
Besides global graph measures, clustering coefticidegree and betweenness centrality
(measures for centrality) were computed at the Inegtal. For more detalls on the definitions
of graph metrics, the interested reader is refetoeRubinov and Sporns (2019) [76]. All

aforementioned and hereafter presented graph ne=sasare estimated with the BCT [77].

Characterization of the network: modular organization

The modular structure of a network can be revebiedubdividing the network into
modules by maximizing the number ©f within-groupks and minimizing the number of
between-group links [31,34]. The modularity statisjuantifies the degree to which the
network may be subdivided into such clearly deliedamodules [13]. This statistic was
identified through modularity maximization acros® iferations, and as an additional check,
the stability of this modular decomposition wascoddted across 100 iterations per subject. In
particular, we calculated (per subject) how oftey 2 nodes were grouped within the same
module. Then, we computed the average stabilitgysacall nodes. Results showed relatively
high stability (average across subjects = 68 %=SI% %). Finally, based on the modularity
structure of the network, the intra-modular degme®d participation coefficient were

calculated.

Characterization of the network: hubs

Of particular interest are nodes that play a céntke in the organization of this
complex network [82]. These nodes are identified@sn hubs, and are believed to feature

high centrality measures, including betweennessraldy [38,82]. The examination of these
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nodes is of special interest as they are involveestablishing and maintaining efficient
communication, a key feature of the healthy hum@mnij12,39]. In a community-structured
network, a similar reasoning was followed for tdentification of hubs. Modular hubs can
either be provincial hubs or connector hubs. Proalrftubs provide efficient communication
within a subnetwork and are characterized by apavticipation coefficient (i.e. a relatively
low inter-module connectivity compared to its intm@dule connectivity). Connector hubs
provide connection of different modules in the matwand are characterized by a high
participation coefficient (i.e. a relatively hightér-module connectivity compared to its intra-
module connectivity) [38,82]. Of note, the partafijon coefficient, module degree, and
modularity were calculated using the same modukacodhposition. Considering these
definitions, hubs were classified into provincialbs and connector hubs based on a
participation coefficient respectively lower thamet1%' quartile or higher than the 85
guantile. To study a change in hub propertiespiban differences in betweenness centrality,
module degree and participation coefficient weldewated between each group for each hub
in the network (patients with WAD versus HC, patsewith INP versus HC, and patients
with WAD versus INP). Hubs displaying an absoluetween group difference greater than

two standard deviations were identified as disrdipiigbs.
Characterization of the network changes. Hub Disruption Index

Lastly, to overcome the shortcoming of traditiorgibbal network metrics, we
computed théub Disruption Index (HDI, k), a global index sensitive to the differences of
nodes within a graph [86]. The HDI yields an estentor the magnitude of differences
between a group of interest or an individual patard a reference (e.g. the average value in
pain-free healthy controls) for a particular nodedph measure. Specifically, the HDI of a
subject corresponds to the slope of a linear regredine between the mean local network

measure of a reference group as dependent va(iabtee healthy pain-free controls) and the
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difference between that reference group and theestigjoup under study as independent
variable. In line with other graph metrics, the Hb&s calculated for degree, clustering
coefficient, betweenness centrality, participatmefficient, and module degree at network

densities ranging from 30% to 70% [2,86].

Statistical analysis

Normality and equality of variance of all variablegthin each group was formally
assessed with Shapiro-Wilk and Levene’s testserts@ly, and visually inspected with QQ-
plots and histograms. When normality and equalftywariance could be assumed in each
group, group differences of demographic and cliniciables were estimated using an
ANCOVA model with age as a covariate, becausesobétween-group significance. In case
of non-Gaussian distributed data, data was logstemmed in an attempt to achieve normality
and equality of variance. Variables on medicatise were evaluated by a Chi-square test at
= 0.05, and reported exact P-values were calculatessd on a Monte-Carlo simulation.
Graph measures were analyzed by estimating a rainttencept model (REML) with group
as fixed variable of interest, and age as fixedabées of no interest. A random-intercept
model was applied to model the observations acnoskiple graph densities within one
subject (graph density of 30%, 40%, 50%, and 60Pkg best fitting model was selected
based on the AIC and a Likelihood Ratio Test betwmedels. Significant group effects were
evaluated by a permutation test consisting of 1p6fmutations [54]. Pairwise post-hoc
Tukey-HSD adjusted comparisons were performed se oaf a significant group effect,
supplemented with permutation-based P-values ofpHievise comparisons. were adjusted
comparisons Similarly, associatiorsetween clinical variables and graph metrics were
analyzed by building a random-intercept model veitfe and the clinical variable of interest
as fixed factors. Group-specific association wesseased by the significance of the

interaction group*variable. Interactions were okgpt in the model in case of a significant
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contribution of the interaction to the model's likeod. Lastly, the R of the model was
calculated following the Nakagawa and Schielzethragch [53,64]. All statistical analyses

were carried out with R[75] (version 3.4.3) atgnsiicance level of, = 0.05.
RESULTS
Demographics and self-reported symptoms

As showntable 1, the F-test for between group-differences wasifsogmt for age, but
only patients with WAD were on average 7.2 (x3.6ang older compared to HC. For pain
duration, no significant difference was observetivken patient-subgroups. Patients with
INP reported higher amounts of disability and syonge of central sensitization compared to
HC. Patients with WAD reported significantly highmain intensity compared to patients with
INP, and higher amounts of self-reported disabiityd self-reported symptoms of central
sensitization compared to HC and patients with IR&. pain medication intake, between-
group differences were observed for regular intakBISAIDs and paracetamol, and not for
the intake of opioid medication. However, particifs|awere asked to refrain from the intake
of non-opioid medication 48 hours prior to testifRgll demographic and clinical details can

be consulted itable 2A and 2B.
Motor performance

As can be seen itable 1, patients with INP only performed worse on neursoular
control compared to HC. Patients with WAD performedrse on neuromuscular control,
strength, sway area, and sway balance comparedCtoand showed a smaller amount of
strength compared to patients with INP. No diffeemnaevere identified between patient-
subgroups for neuromuscular control, sway areasavaly velocity, neither did we identify

differences between patients with INP and HC fogrsith, sway area and sway velocity.
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Quality assessment of rsfMRI

The average (SD) framewise displacement per gragpestimated to be 0.08 (0.042)
for HC, 0.11 (0.051) for INP and 0.10 (0.050) foA®. There were no significant between-
group differences (F = 1.795; P = 0.171), indicatimgt patients with WAD or INP did not

move significantly more or less compared to HC.

Graph measures

Characterization of the network: traditional global graph measures

As depicted irfigure 1, no significant differences were found betweerugsoin terms
of clustering coefficient, global efficiency, moduty or small-worldness across all graph
densities. Noticeably, all groups showed small-diatharacteristics with values for small-
worldness higher than 1. Global network charadiesigshus do not appear to be different

between chronic neck pain patients and healthyrotsnt

Characterization of the network changes: Hub Disruption Index

Figure 2 represents the estimates of the group-based Hdtweenness centrality,
clustering coefficient, degree, module degree, aadticipation coefficient, and their
respective 95% confidence intervals. The HDI wdsutated by taking the average value of
the respective nodal graph measures in the HC fasenee. Nodal graph measures in the
group under study are considered to be differeomfithe reference group if the HDI
significantly differs from zero (i.e. the referenloge). Patients diagnosed with INP or WAD
showed on average a significantly negative valuetli@er HDI of betweenness centrality
compared to HC across all graph densities, indigdtnat regions that have a high degree of
betweenness centrality in HCs have a low degreleeteenness centrality in patients and
vice versa. Similarly, a significantly negative walfor the HDI of module degree in patients

compared to HC across all graph densities. In estitpatients showed a higher value for the
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HDI of degree and clustering coefficient for deiesitabove 0.5 and densities between 0.4 and
0.6, respectively. Only patients who were diagnosid INP showed a positive value for the
HDI of participation coefficient. A visual examptd the HDI for all graph measures at a
density of 0.5 is given ifiigure 3. If the reference group of healthy controls is sidared
typical in the population, then a negative value &r HDI (e.g. degree) in a subject
corresponds with higher values of the HDI at tyjlyceow value nodes and a lower value at

typically high value nodes.

Table 3 shows the results of subject-specific' HDIs for reagoup for degree,
clustering coefficient, betweenness centrality,tipgation coefficient, and intra-modular
degree (i.e. the HDI was calculated for each subyeb the HC as reference group). Patients
with INP showed a significantly lower HDI of modudegree compared to HC, but not
compared to WAD. Similarly, patients with WAD shaiva significantly more negative HDI
of betweenness centrality and intra-modular degomepared to HC, but not to INP (post-hoc
Tukey HSD corrected). No difference was observedtlie HDI of betweenness centrality
between patients with INP and HC. Unlike betweesresntrality and intra-modular degree,
no significant group effects were observed forii# of participation coefficient, clustering
coefficient or degree. Interestingly, we were abladentify similar findings when using the
AAlL-atlas as a parcellation scheme to constructdifferent networks. The results regarding
the traditional global graph metrics and the HDHmigecan be consulted in Appendix C

(available as supplemental digital content at Htipks.lww.com/PAIN/A918).

Characterization of the network: hubs

Cortical areas were predominantly identified asneator hubs (e.g. bilateral superior
temporal gyrus, left superior frontal gyrus, leftsparior cingulate gyrus), and subcortical
areas as provincial hubs (e.g. bilateral Pallidamg bilateral amygdala)lable 4 displays

these connector and provincial hubs identifiedhie teference network of HC. Only regions
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that were identified consistently across all 5 dess were retained. Nodal between group
differences in betweenness centrality and modulgregewere assessed since only for these
graph metrics the HDI showed significant betweemigr differences. Hubs that showed a
consistent difference greater than 2 SD were ifledtas disrupted hubs (i.e. hubs that were
identified across 3 or more graph densities). Téfe posterior cingulate showed a lower
betweenness centrality in patients with WAD comgameHC. This indicates that in patients
with WAD fewer nodes have connections to other sottext pass via the left posterior
cingulate, i.e. the left posterior cingulate mayéa less prominent role in patients with
WAD. Contrarily, brains of patients with WAD and B\showed a higher intramodular degree
in the right Amygdala and left Pallidum comparedH€, indicating an increase in the
subnetwork importance of these regions. Lastly, right temporal pole showed only an
increase in intra-modular degree .in brain of pasiewith WAD compared to HC. No

differences were observed between patient-subgroups

Associations of the HDI with clinical parameters

As can be seen fromable 5, a negative association was found between the ¢iDI
betweenness centrality and both self-reported disadnd self-reported symptoms of central
sensitization. A more negative HDI for betweennesstrality, which reflects higher nodal
changes of the subject’'s network compared to tferemece network, coincides with higher
values of self-reported disability and symptomsenitral sensitization. A similar association
was observed between the HDI for modular degreegrevia more negative HDI for
intramodular degree coincides with higher valuesedf-reported disability and symptoms of
central sensitization, and lower performance on egrauscular control. No group-specific
associations were identified, nor did we identi§g@ciations between betweenness centrality

or intra-modular degree and other clinical variable
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DISCUSSION

We questioned if difference in brain network topgl@xist between the healthy pain-
free brain and the brain under chronic neck palreréfore, we applied the novel HDI metric
to identify brain network alterations and assodatdese changes with self-reported
symptoms and signs of motor impairment. Our keyifigd were (1) the most prominent
network topology changes are in centrality propertincluding intra-modular degree and
betweenness centrality, (2) the hubs of the btz &re mostly affected in a brain suffering
pain include the post cingulate cortex, amygdald @allidum, (3) the variability in network
topology measures for centrality properties carpely explained by self-reported systems
of central sensitization, self-perceived disabiliasnd neuromuscular control. To our
knowledge, this study is the first to demonstraidat differences of brain network topology
in patients with chronic neck pain using the nddBll metric and find associations with self-

reported symptoms and neuromuscular control.
Salf-reported symptoms and motor performance

We were able to observe similar between-group rdiffees compared to previously
published ‘research regarding self-reported symptdb&79] and motor impairment
[25,63,80] in patients with chronic neck pain. Bats with WAD show a high variability in
symptoms [84] which might be a result from the tnatic event that originates WAD [19,71].
The symptoms in WAD are furthermore similar to #hagported by patients with mild
traumatic brain injury [19,22], which has led to thgpothesis of more extreme brain
alterations in patients with WAD compared to INRwéver, previous studies were unable to
reveal micro-hemorrhages [70], nor is there stromgdence for the presence of
microstructural white matter alterations in patentvith WAD [19]. The underlying

pathophysiology remains thus partly enigmatic.
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Graph metrics

We observed no group-differences for traditionabbgl graph measures, which
suggests a similar — averaged - global networkloggoin patients with chronic neck pain
compared to HC on the level of clustering coeffitjglobal efficiency, small-worldness, and
modularity. These findings are consistent with pwasly published research in other chronic
pain disorders [7,59,97]. In the presence of clurguaiin, the pattern and the number of links
between brain regions shifts, which might indicatdocal reorganization of the network
topology inside the brain based on the observddrdiices [27]. Computing averages might
fade out the changes in local differences [57].ikénhaively calculating averages of nodal
graph metrics, the HDI is able reflect nodal togatal differences of graph measures in a
reliable fashion [86]. Based on this novel metwe, were able to demonstrate consistent local
group-based network topology differences (i.e. serall network densities) for betweenness
centrality and intra-modular- degree. These obseryedip differences are extendable to
subject-specific disruptions in the HDI of betweesmeentrality, specifically in patients with
chronic traumatic neck pain, and subject-specifgrugitions in the HDI of intra-modular
degree in all chronic neck pain patients. Intenggyi the shift in nodal network topology
seems to be mainly reflected in nodal measures ctmtrality properties, including
betweenness centrality and intra-modular degreecoimtrast, no consistent changes were
identified In nodal integration, nor nodal segrégatin the current study. Indeed, brain
topology alterations have predominantly been idiectiin the centrality properties of
different brain disorders [3,21]. Brain hubs exgrbgh levels of such central properties and
are typically more vulnerable. Therefore, they dtiche regarded as key-nodes in all brain
disorders, including chronic pain. The identificatiof these so-called brain hubs is similar to
previously described methods [7,38,82]. By analyzihese hubs, we were able to detect

differences for betweenness centrality betweentinealontrols and patients with WAD for
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the left Posterior cingulate gyrus. This might sate a less prominent role for directing
communication between different brain regions in WWAThe posterior cingulate cortex is
known to be involved in pain by being part of trefadilt mode network (DMN) [17,29], a
network that is crucial in mind wandering away frgmin [51,52]. Indeed, acute pain
sensation seems to correlate negatively with thieation pattern of the posterior cingulate
gyrus [91]. This result partly coincides with thesults from the study conducted by Baliki et
al. 2014, in which a fragmentation of the DMN w&®wn across different pain conditions
[10]. In contrast, the Amygdala and Pallidum exprdsgher levels of intra-modular degree
was found in both chronic neck pain patient-subgsouBoth regions have emerged as
important centers for the emotional-affective digien of pain and pain modulation [65,66].
They are furthermore particularly well situated neediate interactions between pain and
pleasure [14,55]. Functional alterations in the gdaja and posterior cingulate cortex have
already been reported in a similar musculosket&#tadnic pain disorder (i.e. chronic low back
pain) [9], while changes to the pallidum are noedily evident in chronic musculoskeletal
pain. Considering the complexity and dimensionatifypain, it is not surprising that some
brain alterations are disorder-specific, inducingdjstinct set of regions that might be affected
in distinct chronic pain disorders [11,27]. Intdnegly, the HDI has also been successfully
applied in conditions outside the chronic pain feavork, such as in stroke and comatose
patients [2,86], where it was correlated with aetgrof clinical measures. Therefore, the HDI
measure is not specific to chronic pain, but migatve as a general measure for brain

pathology.

Associations of the HDI with clinical parameters

Here, we identified an association between theestigjpecific HDI for betweenness
centrality and self-reported disability and selpoged symptoms of central sensitization.

More specifically, a greater shift in nodal netwadpology in comparison to the reference

19



“pain-free” network is associated with higher s@lported symptoms of central sensitization
and disability. This is consistent with earlier sasdthat assessed the association between
brain network properties and clinical variablespain [17,59,97]. Given that the HDI of
betweenness centrality only differed between patiaith WAD and HC, one can argue that
only in patients with more severe symptoms a cldiffierence in network topology is
detectable. More severe pain symptoms often retateyper-responsiveness of the central
nervous system often called central sensitizaacstate that has only been identified in WAD
and not in INP [56,67]. Unlike the HDI of betweesaeentrality, the HDI of intra-modular
degree not only showed associations with disabditg central sensitization, but also with
neuromuscular control. Topological alterationsntramodular degree furthermore occurred
in both patient-subgroups. The link between pain @egromuscular control might occur in
the brain, where altered brain - dynamics causedphyn, could induce an altered
neuromuscular control strategy [42]. These chanmy@sramodular degree were furthermore
observed more clearly in the pallidum and amygdatgions that are both (in)directly
involved in the selection-process of the most appate motor response [32,33]. Targeting
the brain in the treatment of patients with chrgoaen might not only diminish self-reported
disability and symptoms of central sensitizationt bught also improve motor control by

normalizing neuromuscular control.

Strengths and limitations

This study included a large sample of participamtd is the first to report functional
network changes in patients with chronic non-speciéck pain. The methodology used in
this paper follows the recommended guidelines ttepoby different methodological papers,
including a proper preprocessing pipeline [6], amgblying a subject-specific cortical
parcellation scheme in contrast to a general setatien scheme. Furthermore, the calculated

traditional and novel global network topology claeaistics together with their association
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with self-reported disability, symptoms of centsansitization and motor performance were
analyzed at different graph densities. Some linoitest are however inherent to this paper: we
were unable to formally prove differences in grgpbperties at the nodal level, the clinical
interpretation of the HDI remains complex, and clineaference on this network measure is
harsh. The graph theoretical approach only coveespiece of the underlying puzzle in the
brain disorder that entails chronic pain. Fututelgs might as well focus on other aspects of
network topology. Lastly, based on the current ysig] we were unable to infer on the causal
relationship between brain topology and disabilggnsitization and motor impairment.
Longitudinal studies should explore causality asdeas the predictability of chronic pain
based on brain network topology, since the crosses®l design restricts the inference on
causal relationships between the HDI and chronio.p@hoosing appropriate regions of
interest, including a large sample size, and cansan of graph at different network densities
is of utmost importance for the stability of caltedd graph measures [60]. Although the
results between the FreeSurfer- and AAL-atlas wergeneral overlapping, there are some
minor differences. Therefore, future studies shawmgpower our current findings by running
a similar analysis on a different sample of patefithese studies should as well consider
including more objective measures to evaluate phlinaddition, future research should
evaluate the network properties of different sulwoets in addition to the global network

based on a parcellation scheme that includes arlagnber of brain regions.
Conclusions

We identified local changes in network topologytbhé brain in chronic neck pain
patients. More specifically, these changes occutoogal centrality properties, indicating
differences in the functioning of so-called brairbbuThese changes furthermore correlate
with levels of self-reported central sensitizatigelf-reported disability, and neuromuscular

control. A larger difference in central network peaties is reflected by increased symptoms
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and greater impairments in neuromuscular contrakgdting the brain in the therapy of

patients with chronic neck pain might be crucialha healing-process of chronic pain.
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FIGURES

Figure 1. Between group comparisons of global graph measaoss different graph

densities (30% to 70%).

Figure 2. (a) Changes in HDI«) of patients with INP and WAD compared to painefre

individuals (reference line: y = 0) across diffdrgnaph densities (30% to 70%). The error

bars represent the 95% CI around the estimated.mMddireviations: HC: healthy controls;

INP: idiopathic neck pain; WAD: whiplash-associateéidorder;x: Hub Disruption Index

(HDI).
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Figure 3: Visual representation of the HDI of the correspagdjraph measures figure 2,
calculated as the slope of the regression line &&twhe graph measure values in the control
group (as independent variable) and the differendde graph measure values between the
reference control group and individual subjectsdegendent variable) at a graph density of
50%. Cave: These lines represent the best fitting linesadsutated in the HDI, hence not all
calculated points will fall exactly on these linébbreviations: HC: healthy controls; INP:

idiopathic neck pain; WAD: whiplash-associated disor
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Table 1: Results from ANCOVA and post-hoc pairwise comparison for demographics, self-reported symptoms and motor performance of study participants.

ANCOVA Pairwise comparison
INP - HC WAD - HC WAD - INP
P-value MD MD MD
F-value df [95% Cl] P-value [95% Cl] P-value [95% Cl] P-value
DEMOGRAPHICS
Age Group 3.472 2 0.035 6.73 7.22 0.49
[-0.67; 14.13] 0483 [0.12; 14.32] 0.045 [-6.55; 7.53] 0.985
Pain duration (months)" Group 0.116 1 0.116 0.10
NA [-0.48; 0.66] 0.734
SELF-REPORTED SYMPTOMS
Self-reported pain (VNRS) Group 26.77 1 <0.001 2.92
Age 0.18 1 0672 NA [1.79;4.05] 0001
Self-reported disability (NDI)  Group 62.626 2 <0.001 13.52 20.18 6.65
Age 3.959 1 0.050 [10.26; <0.001 [17.24; <0.001 3 56" 9.75] <0.001
16.78] 23.11] e
Self-reported  sensitization Group 136.470 2 <0.001 17.93 27.08 9.15
(csh Age 2.132 1 0.148 [11.80; <0.001 [21.27; <0.001 [3.34; <0.001
24.05] 32.89] 14.96]
MOTOR PERFORMANCE
Neuromuscular control Group 14.471 2 <0.001 -0.70 -1.05 -0.035
Age 2.224 1 0.140 [-1.19; -0.22] 0.003 [-1.52; -0.58] <0.001 [-0.81; 0.11] 0.172
Strength Group 19.793 2 <0.001 037 1.20 -0.83
Age 2.263 1 0.137 [0.86; 0.11] 0.166 [-1.68; -0.73] <0.001 [-;::], - <0.001
Sway area Group 7.996 2 <0.001 1.04 2.23 1.20
Age 4.353 1 0.043 [-0.36; 2.44] 0.186 [0.89; 3.58] <0.001 [-0.15; 2.54] 0.090
Sway velocity Group 3.492 2 0.036 0.16 0.22 0.06
Age 6.667 1 0.012 [-0.05; 0.38] 0.175 [0.02; 0.43] 0.032 [-0.15; 0.27] 0.761

Abbreviations: df: degrees of freedom; INP: idiopathic neck pain, HC: healthy controls; WAD: whiplash-associated disorders; MD: mean difference; 95%-Cl: 95% confidence
interval; VNRS: verbal numeric rating scale; NDI: neck disability index; CSI: central sensitization inventory. *Log—scaled due to non-normality.



Table 2A: Descriptive statistics of demographics, self-reported symptoms and motor performance.

HC INP WAD
Mean (SD) Median Range Mean (SD) Median Range Mean (SD) Median Range
DEMOGRAHICS
Age 30.4 (12.3) 245 18-62 37.1(12.2) 36.0 1862 37.6 (12.0) 38.0 21.059.0
Pain duration NA 85.2 (82.1) 60 4-288 88.9 (89.4) 60 3-444
(months)
SELF-REPORTED SYMPTOMS
Self-reported
ain (VNRS) NA 2.87 (2.15) 3 0-6 5.79 (2.20) 6 1-10
Self-reported
dieabiity (Noy 231 (1:49) 2 0-6 15.8 (4.87) 15.5 10-27 22.5 (6.58) 22 10-37
Self-reported
symptoms of 5 ¢ (5 aa 21 9-35 38.7 (8.84) 39 22-54 47.8 (12.3) 48 13-67
sensitization
(Csl)
MOTOR PERFORMANCE
Neuzzr:t‘::;”'ar 0.62 (0.65) 0.60 .0.38-2.24  -0.08 (0.78) 0.05 1.71-1.40  -0.43(0.77) -0.45 -1.50-1.40
Strength 0.57 (0.55) 0.61 -0.57-1.82 . 0.20(0.61) 0.22 116129 -0.63(0.95) -0.66 2.47-1.18
Sway area 1.74 (0.63) 1.74 057-2.98  2:77(1.83) 2.11 095818  3.97(2.72) 3.68 0.89-13.70
Sway velocity  0.77 (0.18) 0.81 0.39-1.03  0.93 (0.40) 0.83 0.50-2.06  0.99 (0.31) 0.95 0.55-1.73

*Log-transformed; Abbreviations: HC: healthy controls; INP: idiopathic neck pain; WAD: whiplash-associated disorders; SD: standard deviation in the population; VNRS:

verbal numeric rating scale; NDI: neck disability index; CSI: central sensitization inventory.



Table 2B: Results from Chi-square test for comparison of between-group medication use.

Absolute frequency (Relative frequency) Significance
HC INP WAD
NSAID No 30 (100 %) 30 (97 %) 29 (78 %) X2=11.216
Yes 0 (0%) 1(3 %) 8 (22 %) P =0.004
Paracetamol No 30 (100 %) 29 (94 %) 27 (73 %) X?2=12.678
Yes 0 (0%) 2 (6 %) 10 (27 %) P =0.003
Opiods No 30 (100 %) 31 (100 %) 35 (95 %) X2=3.336
Yes 0 (0%) 0 (0 %) 2 (5 %) P=0.317

Abbreviations: HC: healthy controls; INP: idiopathic neck pain; WAD: whiplash-associated disorders; NSAID: non-steroidal anti-inflammatory drugs.



Table 3: Results from LMM and post-hoc pairwise comparison for graph centrality metrics based on the HDI (across different densities).

BETWEEN GROUP COMPARISON

Random Intercept model Pairwise comparison
HC - INP HC - WAD INP - WAD
AIC Est. X2- df Permuted P- MD (+ P-value MD (+ P-value MD (+ P-value
value value S.E.) (permuted*) S.E.) (permuted*) S.E.) (permuted*)
Betweenness 5146 Group  6.662 2 0.032 0.11 (£ 0.107 0.12 (£ 0.044 0.02 (£ 0.943
centrality ' Age 12369 1 0.014 0.05) (0.038) 0.05) (0.016) 0.05) (0.752)
Clustering Group  0.364 2 0.850
coefficient 978.48 Age 9.104 1 0.004 NA
Group 0.371 2 0.820
Degree -789.98 Age 9285 1 0.007 NA
Participation Group  0.803 2 0.694
coefficient 493.93 Age 3.366 1 0.063 NA
Intra-modular 392,12 Group 14995 2 0.003 0.13 (£ 0.002 0.12 (£ 0.002 -0.01 (¢ 0.998
degree ' Age 9.065 1 0.003 0.04) (<0.001) 0.03) (<0.001) 0.03) (0.999)

Abbreviations: df: degrees of freedom; INP: idiopathic neck pain, HC: healthy controls; WAD: whiplash-associated disorders; MD: mean difference; S.E.: standard error of
the mean; Est.: estimate; AIC: Akaike information criterion.



Table 4: Identification of central brain hubs

CONNECTOR PROVINCIAL HUB
HUBS Inferior temporal gyrus (lh) Entorhinal (bil.)
identified in Middle temporal gyrus (lh) Temporal pole (bil.)
the reference Superior frontal gyrus(lh) Accumbens area (bil.)
network Lateral orbitofrontal gyrus (rh) Amygdala (bil.)
Posterior cingulate gyrus (bil.) Pallidum (bil.)
Superior temporal gyrus (bil.) Putamen (rh)
HUB ALTERATIONS
BETWEENNESS CENTRALITY MODULE DEGREE
BETWEEN HC > WAD HC < WAD HC > WAD HC <WAD
GROUP Posterior Temporal pole
DIFFERENCES Cingulate (lh) (rh)
LARGER Amygdala (rh)
THAN 2 SD Pallidum (lh)
HC > INP HC < INP
Amygdala (rh)
Pallidum (lh)

Abbreviations: SD: standard deviation; INP: idiopathic neck pain, HC: healthy controls; WAD:
whiplash-associated disorders; lh: left hemisphere; rh: right hemisphere; bil.: bilateral.



Table 5: Associations between the HDI and clinical symptoms.

ASSOCIATION BETWEEN HDI AND CLINICAL SYMPTOMS

PARAMETERS

AIC X’-value df  P-value Inter. Beta (S.E.) P-value Age (S.E.) P-value R?

BETWEENNESS CENTRALITY



Pain Duration (months) -87.230 8.461 2 0.015 0.165 -0.038 (0.025) 0.118 -0.005 (0.002) 0.040 0.06
Disability (NDI) -143.51 17.847 2 <0.001 0.133 -0.005 (0.002) 0.024 -0.005 (0.002) 0.003 0.11
Central sensitization (CSl) -134.38 8.079 2 0.004 0.194 -0.004 (0.001) 0.004 -0.004 (0.002) 0.015 0.13
Self-reported Pain (VNRS) -64.563 6.825 2 0.032 0.037 0.007 (0.011) 0.419 -0.006 (0.002) 0.017 0.06
Neuromuscular control -23.625 9.605 2 0.008 0.078 0.030 (0.030) 0.310 -0.005 (0.002) 0.010 0.08
Strength -24.544 10.524 2 0.005 0.073 0.038 (0.028) 0.163 -0.005 (0.002) 0.010 0.07
Sway area -16.984 10.725 2 0.005 0.130 -0.015(0.013) 0.246 -0.006 (0.002) 0.008 0.10
Sway velocity -15.706 9.447 2 0.009 0.128 -0.024 (0.091) 0.790 -0.006 (0.002) 0.005 0.08
INTRAMODULAR DEGREE
Pain Duration (months) -211.04 5.384 2 0.068 NA
Disability (NDI) -354.85 20.76 2 <0.001 0.086 -0.005 (0.002) 0.005 -0.004 (0.001) 0.004 0.13
Central sensitization (CSl) -353.55 9.328 2 0.002 0.137 -0.003 (0.001) 0.002 -0.003 (0.001 0.008 0.14
Self-reported Pain (VNRS) -203.55 4.436 2 0.109 NA
Neuromuscular control -331.30 24.84 2 <0.001 0.031 0.066 (0.019) <0.001 -0.004 (0.001) 0.004 0.16
Strength -323.09 16.634 2 <0.001 0.051 0.036 (0.019) 0.056 -0.004 (0.001) 0.001 0.11
Sway area -255.16 15.196 2 <0.001 0.097  -0.008 (0.008) 0.362 -0.005 (0.001)  <0.001 0.12
Sway velocity -255.65 15.686 2 <0.001 0.050  0.065 (0.0577) 0.251 -0.006 (0.001)  <0.001 0.12

Abbreviations: df: degrees of freedom; INP: idiopathic neck pain, HC: healthy controls; WAD: whiplash-associated disorders; MD: mean difference; S.E.: standard error of

the estimate; Est.: estimate; AIC: Akaike information criterion; VNRS: verbal numeric rating scale; NDI: neck disability index; CSI: central sensitization inventory; Inter.:

intercept.
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