Toward Zero-touch Test Amplification

Proefschrift voorgelegd tot het behalen van de
graad van Doctor in de Wetenschappen: Informatica
aan de Universiteit Antwerpen te verdedigen door:

Mehrdad Abdi

Promoter
prof. dr. Serge Demeyer

Faculteit Wetenschappen . o e
Departement Wiskunde-Informatica U niversiteit

Antwerpen
Antwerpen, 2022

Photo is Al-generated by DALL.E [https://openai.com/api/policies/sharing-publication/].

The author used the description A humanoid robot testing software, digital art to generate this cover photo.

https://openai.com/api/policies/sharing-publication/

Toward Zero-touch Test Amplification

Mehrdad Abdi

U' Universiteit
Antwerpen

Promoter:

prof. dr. Serge Demeyer

Proefschrift ingediend tot het behalen van de graad van
Doctor in de wetenschappen: Informatica

This dissertation has been approved by:

Promoter:
prof. dr. Serge Demeyer

Doctoral Jury:

prof. dr. Andy Zaidman Delft University of Technology, The Netherlands
prof. dr. Stéphane Ducasse Inria Lille Nord Europe, France
prof. dr. Guillermo Alberto Perez University of Antwerp, Belgium
prof. dr. Hans Vangheluwe University of Antwerp, Belgium

prof. dr. Serge Demeyer University of Antwerp, Belgium

Acknowledgments

First of all, I would like to thank my parents. Thank you for my past, and everything of which I am
proud. Then, I would like to thank my wife and son. You are my future. You are the motivation that
makes me work hard. Great thanks to my supervisor, Serge Demeyer, for giving me this valuable
chance. I'learned a lot from you. Thank you for trusting me, supporting me in the project, and giv-
ing me the freedom to make a balance between my work and personal life. More importantly, thank
you for proposing this exciting project: I really enjoyed working on it. During my Ph.D. study, I had
the honor of working with several collaborators. I start with my co-authors. Thanks to Henrique
Rocha and Alexandre Bergel for supporting me in my main publications. I also thank Ebert Schoofs,
Igor Schittekat, and Haroldas Latonas for helping me expand my research territory through their
excellent job in their master’s projects. I thank the people who supported me from the Pharo com-
munity, especially Stéphane Ducasse, Julien Delplanque, Pavel Krivanek, and Oleksandr Zaitsev.
I thank my colleagues at the University of Antwerp (in particular Hans Vangheluwe, Guillermo
Alberto Perez, Moharram Challenger, Masoud Ahookhosh, Ali Parsai, John Businge, Sten Vercam-
men, Brent van Bladel, Mercy Njima, Gustavo Carro, Fons De Mey, Onur Kilincceker, and Mehrdad
Moradi) and the SECO-ASSIST project (particularly Tom Mens, Coen De Roover, Anthony Cleve,
Eleni Constantinou, Alexandre Decan, Maxime Gobert, Mehdi Golzadeh, Camilo Velazquez Ro-
driquez, and Pol Benats) for their aids, encouragements, and invaluable feedback. I also thank all
other people who gave me time, help, and advice (in particular Benoit Baudry, Benjamin Danglout,
Oscar Luis Vera Pérez, Andy Zaidman, Nicolas Anquetil, Anne Etien). I also thank my friends in
Swash (in particular Ebrahim Khalilzadeh) and my colleagues in Nokia (in particular Erik Neel)
for their understanding and flexibility. Last but not least, I would like to thank my Ph.D. commit-
tee, anonymous reviewers in my publications, developers who participated in our experiments,
GitHub, and its sponsors for the outstanding service to the open-source community and students,

and many others I might have forgotten to mention.

Mehrdad Abdi
Antwerp, Belgium, June 2022

Abstract

Effective testing is essential in today’s digital society. Not only do effective tests enhance
quality, speed up the development process, and reduce the risk, but ultimately they re-
sult in better software. Effective testing is even more important in the context of software
ecosystems. These are networks of technical components built by a loosely coupled het-
erogeneous group of software engineers. The high degree of interdependencies between
the components, in combination with the constant evolution within the network, makes
effective testing a real challenge. In this dissertation, we investigate the use of test am-
plifiers in the context of software ecosystems. We exploit the symbiotic relationship be-
tween the test amplifier on the one hand and the network on the other hand. We conduct
this investigation from the perspective of two feedback loops: (1) The test amplifier is
fed by knowledge extracted *out* of the ecosystem, like the source code, development
history, interproject dependencies, and developers’ activities. (2) The test amplifier pro-
vides improvements *in* the available tests to reduce the impact of software defects. In
our research, we, therefore, applied test amplifiers in new ecosystems, identified points
for improvement, and proposed possible solutions. This includes preliminary results
concerning the transplantation of tests from one project to a similar project within the
ecosystem. As such, we have made important steps towards the ultimate dream: a “zero-
touch” test amplifier that strengthens the tests within a software ecosystem without any

human intervention.

Nederlandstalige Samenvatting

Het effectief testen van software is in onze digitale samenleving essentieel geworden.
Niet alleen wordt de kwaliteit verhoogd, het proces versneld en het risico verlaagd maar
uiteindelijk leidt dit alles tot betere software. Het belang van effectief testen geldt mo-
gelijk nog meer in de context van software-ecosystemen. Dat zijn netwerken van technis-
che componenten die gebouwd worden door losse samenwerkingsverbanden tussen een
heterogene groep software engineers. De hoge graad van afhankelijkheid tussen de ver-
schillende componenten in combinatie met de constante evolutie binnenin het netwerk
maakt het effectief testen daar een echte uitdaging. Dit proefschrift poneert daarom
het gebruik van een zogenaamde testversterkers (“test amplifiers”) in de context van
software-ecosystemen. Daarbij maken we gebruik van de symbiotische relatie tussen
enerzijds de testversterker en anderzijds het netwerk. We gaan daarbij uit van twee feed-
back lussen: (1) De testversterker wordt gevoed door kennis verkregen *uit* het ecosys-
teem, zoals de broncode, ontwikkelingsgeschiedenis, afhankelijkheden tussen projecten
en acties van de software engineers. (2) De testversterker doet verbeteringen *in* de
beschikbare test om zo de impact van fouten te minimaliseren. In ons onderzoek hebben
we daarom testversterkers toegepast in nieuwe ecosystemen, verbeterpunten geidenti-
ficeerd en oplossingen voorgesteld. Daarbij hebben we ook eerste resultaten geboekt
omtrent het transplanteren van tests uit één project naar een gelijkaardig project binnen
hetzelfde ecosysteem. Zo hebben we enkele belangrijke stappen gezet richting de ultieme
droom: een robot die tests in software ecosystemen versterkt zonder enige menselijke
tussenkomst.

Publications

Papers included in this thesis:

1. Mehrdad Abdi, Henrique Rocha, Serge Demeyer, and Alexandre Bergel. Small-
Amp: Test amplification in a dynamically typed language. In The International
Journal of Empirical Software Engineering (EMSE). Jul, 2022.

URL: https://doi.org/10.1007 /s10664-022-10169-8.

2. Ebert Schoofs, Mehrdad Abdi, and Serge Demeyer. AmPyfier: Test Amplification
in Python. In Journal of Software: Evolution and Process. Special Issue: Automatic
Software Testing from the Trenches (JSEP). June, 2022.

URL: https://doi.org/10.1002/smr.2490.

3. Mehrdad Abdi, Henrique Rocha, Serge Demeyer, and Alexandre Bergel. Steps To-
wards Zero-touch Test Amplification. (Is submitted to) International Conference on
Software Testing, Verification and Validation (ICST 2023). NA, 2023.

URL:.
This paper was submitted to ASE 2022, but it was rejected. The authors incorporated the
comments and submitted the new version to the ICST conference.

4. Igor Schittekat, Mehrdad Abdi, and Serge Demeyer. Can We Increase the Test-
coverage in Libraries using Dependent Projects’ Test-suites?. In Proceedings of
the 26th International Conference on Evaluation and Assessment in Software Engineering
2022 (Vision and Emerging Results Track) (EASE 2022). June, 2022.

URL: https://doi.org/10.1145/3530019.35353009.

5. Mehrdad Abdi and Serge Demeyer. Steps Towards Zero-touch Mutation Testing
in Pharo. In The 21st Belgium-Netherlands Software Evolution Workshop (BENEVOL
2022).,2022.

URL: https://www.researchgate.net/publication /362868185.

6. Mehrdad Abdi and Serge Demeyer. Test Transplantation through Dynamic Test
Slicing. In The 22nd IEEE International Working Conference on Source Code Analysis

https://doi.org/10.1007/s10664-022-10169-8
https://doi.org/10.1002/smr.2490
https://doi.org/10.1145/3530019.3535309
https://www.researchgate.net/publication/362868185

and Manipulation - New Ideas and Emerging Results (SCAM 2022)., 2022.
URL: https://www.researchgate.net/publication /362868454.

Papers not included in this thesis:

7. Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. Test Amplification in the

10.

11.

Pharo Smalltalk Ecosystem. In The International Workshop on Smalltalk Technology
(IWST 2019). August, 2019.
URL: https://www.researchgate.net/publication/334884478.

Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. Adopting Program Synthe-
sis for Test Amplification. In The 18th Belgium-Netherlands Software Evolution Work-
shop (BENEVOL19 2019). November, 2019.

URL: http://ceur-ws.org/Vol-2605/11.pdf.

Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. Reproducible Crashes: Fuzzing

Pharo by Mutating the Test Methods. In International Workshop on Smalltalk Tech-
nology (IWST 2020). September, 2020.
URL: https://www.researchgate.net/publication/354117682.

Serge Demeyer, Mehrdad Abdi and Ebert Schoofs. Type Profiling to the Rescue:
Test Amplification in Python and Smalltalk. In The 5th Workshop on Validation,
Analysis and Evolution of Software Tests (VST 2022). March, 2022.

URL: https://ieeexplore.ieee.org/document,/9825899.

Serge Demeyer, Ali Parsai, Sten Vercammen, Brent van Bladel, and Mehrdad Abdi.
Formal verification of developer tests: a research agenda inspired by mutation
testing. In Leveraging Applications of Formal Methods, Verification and Validation: En-
gineering Principles: 9th International Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part II. Springer
Nature (ISoLA 2020)., 2020.

URL: https://doi.org/10.1007/978-3-030-61470-6 2.

https://www.researchgate.net/publication/362868454
https://www.researchgate.net/publication/334884478
http://ceur-ws.org/Vol-2605/11.pdf
https://www.researchgate.net/publication/354117682
https://ieeexplore.ieee.org/document/9825899
https://doi.org/10.1007/978-3-030-61470-6_2

Contents

Acknowledgments iii
Publications ix
1 Introduction 1
1.1 Background 1
1.2 Objectives of thisThesis 6
1.3 ResearchMethod 7
1.4 Summary of Contributions 8
1.5 Structure of this Dissertation 9
I Test Amplification in Dynamically-typed Object-oriented Lan-
guages 11
2 Small-Amp: Test Amplification in a Dynamically Typed Language 13
2.1 Introduction i e e e e e e e 14
2.2 Background e e e 16
2.3 Small-Amp Design e e e e 23
2.4 Small-Amp Extras comparedto DSpot 29
2.5 Evaluation e e e 34
2.6 ThreatstoValidity 61
2.7 Related Work e 62
2.8 Future Work e 64
2.9 Conclusion e 67
3 AmPyfier: Test Amplification in Python 69
3.1 IntroducCtion v v v v e e e e e e e e e e e e e e 70
3.2 Background and relatedwork o oo L 72
3.3 AmPyfier. e e e e e 77
3.4 Evaluation e 87
3.5 Conclusion 97

3.6 Evaluated projects v i e e e e e 98

3.7 EvaluationResults i 99
II Toward Zero-touch Test Amplification 101
4 Steps Towards Zero-touch Test Amplification 103
4.1 IntroducCtion ot it e e e e e e e 104
4.2 Test Amplification 106
4.3 Zero-touch Proof-of-Concept 108
4.4 Evaluation i i i e e e 117
4.5 Threatstovalidity 122
4.6 Related Work 123
4.7 Conclusion e 124
5 Toward Zero-touch Mutation Testing in Pharo 125
5.1 Introduction e 125
5.2 Expanding Mutation Operators in MuTalk 127
5.3 Detecting Infinite Loops e 128
5.4 Zero-touchMuTalk 129
5.5 Conclusion and Futurework 134
6 Test Amplification DevBot 135
6.1 IntroducCtion v v v v v e e e e e e e e e 135
6.2 Comment Generation v v v v v v et e e e e 136
6.3 Small-Amp DevBot e 136
6.4 Vision: Test Amplification Ecosystem 137
6.5 Conclusion e 138
III A Path to Test Transplantation 141
7 Can We Increase the Test-coverage in Libraries using Dependent Projects’
Test-suites? 143
7.1 Introduction o i i e e e e e e e e e e 144
7.2 Motivating Example e 144
7.3 Evaluation e 146
7.4 Relatedwork e 151
7.5 Conclusions and Futureworks 151

8 Test Transplantation through Dynamic Test Slicing 153

8.1 Introduction i i i i e e e 154

8.2 Background e 155
8.3 Dynamic Test Slicing e 155
8.4 Proof-of-concept 161
8.5 Related Work e 162
8.6 Conclusion e e e 162
IV Conclusion 165
9 Conclusion 167
9.1 FinalWords e e 168

Bibliography 189

List of Figures

1.1 Self-* properties hierarchy 3
1.2 The symbiotic relationship between a test amplifier and the software ecosystem 6

2.1 Improvements on an existing test method submitted to SEASIDE 40
2.2 A new test method submitted to PoLyYMaTtH 41
2.3 A new test method sent in a pull-request to the project Pharo-Launcher . . 41
2.4 A new test method sent in a pull-request to the project DataFrame 42
2.5 A new assertion suggested in a pull-request to the project Bloc 43
2.6 A new test method suggested in a pull-request to the project GraphQL . . 43
2.7 A new test method suggested in a pull-request to the project Zinc 44
2.8 A new test method suggested in a pull-request to the project DiscordSt . . 45
2.9 Test methods sent in a pull-request to the project MaterialDesignLite . .. 45
2.10 A test method sent in a pull-request to the project PetitParser2 46
2.11 Changes on an existing test method - OpenPonk 46
2.12 A test method suggested in a pull-request to the project Telescope 47
2.13 The distributions of the number of killed mutants 55
2.14 The distributions of the increase kills 55
2.15 The distribution of absolute execution time (in seconds) 60
2.16 The relative distributions of the time-cost (percentage) 60

3.1 a) Coverage vs Mutation score in Original and Amplified Test Class & b)
Methods Added vs Newly Killed Mutants 89

4.1 Activity diagram for a self-aware test amplification in a live system 115

5.1 Hierarchical zero-touch mutation testing or MutationTestingOps for Pharo 130

5.2 A mutant view and its generated issue 133
6.1 An example of the generated comment 136
6.2 An example of the sentpull request 138

6.3 Test amplification ecosystem with humaninloop 139

8.1 A model for object representation
8.2 An example of versions graph . .

List of Tables

2.1
2.2

2.3
2.4

2.5
2.6

3.1
3.2
3.3

3.4
3.5
3.6

4.1
4.2
4.3
4.4

7.1
7.2

Transformations in literal amplification 26
Descriptive Statistics for the Dataset Composed of 13 Pharo Projects and

the selected testclasses o v v i i i 36
Pull requests submitted on GitHub 38
The result of test amplification by SMALL-AMP on the 52 test classes. (Tests

with high coverage), 49
The result of running SMALL-AMP on 10 test class for 10 times 56
Summary of results in SMALL-AMP and DSPOT 58
Results after observing the testDeposit test method 82
Results after dynamic type profiling the SmallFundTest testclass 83
Comparison of the time-cost using multi-metric selection compared to test

selection based on full mutationscore 90
Projects Amplified with AmPyfier 98
Classes Amplified with AmPyfier. 99
The result of running AmPyfier on 54 testclasses 100
Dataset composed of 5 Pharo projects from GitHub 118
Descriptive statistics for the test classes. 118
The result of the quantitative analysis. 119

Comparison of the number of newly killed mutants when prioritization is
enabled anddisabled o o oo 121

Descriptive Statistics for the Selected Base Packages and Dependent Projects147
Coverageresults 149

CHAPTER

Introduction

The world heavily depends on software nowadays, and its failures are costly. Software
projects often evolve after release by adding new features or patching some newly dis-
covered faults. Regression testing, consisting of a self-sufficient test suite covering the
project and verifying its behaviors as intended, helps developers evolve programs easily.
So, testing is indispensable because it enhances software quality and the development
process and reduces the cost of failures, which leads to increased customer satisfaction.

Modern software projects do not usually live in isolation, and they interact with each
other and form a larger socio-technical unit called software ecosystems. Similar to natural
ecosystems, in a software ecosystem, a set of computing agents work concurrently on top
of common software and hardware platforms. A reward mechanism, either commercial

or non-commercial, makes the system stable.

While software ecosystems are gaining more importance gradually, this dissertation
steps toward strengthening software tests in the context of software ecosystems.

1.1 BACKGROUND

1.1.1 Software Ecosystems

Manikas and Hansen [1] analyzed different software ecosystems definitions from the
previous works and combined them as the interaction of a set of actors on top of a common
technological platform that results in a number of software solutions or services. The symbiotic
relation in these ecosystems incentivizes actors to participate: they gain some benefits
from this participation, either commercial or non-commercial. As an example of software
ecosystems, we can mention the Google Android ecosystem, or package dependency net-

CHAPTER 1. INTRODUCTION

works like npm for JavaScript projects.

Based on Mens et. al. [2], in order to carry out empirical studies, we need an ecosys-
tem with a sufficient number of projects, an acceptable number of active contributors,
and long-lived based on years of activity. It is also important that other researchers be
able to reproduce and replicate these studies. Therefore, these requirements lead us to
open-source ecosystems. Based on a systematic mapping study accomplished in 2017,
the most studied open-source software ecosystems in past papers (before 2016) were the
Eclipse and GNOME ecosystems [3].

Testing in software ecosystems. Modern software projects contain a considerable
amount of hand-written tests which assure that the code does not regress when the sys-
tem under test evolves. Indeed, several researchers reported that the test code is some-
times larger than the production code under test [4, 5, 6]. More recently, during a large-
scale attempt to assess the quality of test code, Athanasiou et al. reported six systems
where test code takes more than 50% of the complete codebase [7]. In these tests, devel-
opers try to cover the important cases and use test oracles to verify the intended program

behaviors.

Existing tests in the projects are a valuable source of knowledge to improve testing in
software ecosystems [8]. For example, these tests can be mutated to generate new test
variants covering corner cases [9] or can be transferred between projects (Test transplan-

tation) similar to Software transplantation [10].
1.1.2 Test Amplification

In their survey paper [8], Danglot et al. define test amplification as follows:

Test amplification consists of exploiting the knowledge of a large number of test cases,
in which developers embed meaningful input data and expected properties in the form
of oracles, in order to enhance these manually written tests with respect to an en-
gineering goal (e.g., improve coverage of changes or increase the accuracy of fault

localization).

Test amplification based on unit test synthesis. This test amplification is not a replace-
ment for other test generation techniques and is considered a complementary solution.
The main difference between test generation and test amplification is using the existing
test suite. Traditional test generators take the program-under-test or formal specifications
as the main input and ignore the original test suite, which an expert has written.

A typical test amplification tool is based on two complementary steps.

1.1. BACKGROUND

Self-Managing

General Level

Self-Governing
Self-Maintenance
Self-Adaptiveness

Self-Eval) uaringsey__ Or;:gil?m o

Self-Configuring Self-repairing
. Self-adjusting Self-Healing
Major Level Self-Optimizing Self-diagnosing
Self-tuning Self-Protecting

Self-monitoring

Primitive Level Self-Awareness Context-Awareness

Self-situated

Figure 1.1: Self-* properties hierarchy

(i) Input amplification. The existing test code is altered in order to force previously
untested paths. This involves changing the set-up of the object under test, providing
parameters that represent boundary conditions. Additional calls to state-changing
methods of the public interface are injected as well.

(ii) Assertion amplification. Extra assert statements are added to verify the expected out-
put of the previously untested path. The system under test is then used as an oracle:
while executing the test the algorithm inspects the state of the object under test and

asserts the corresponding values.

The input amplification step is typically governed by a series of amplification operators.
These operators represent syntactical changes to the test code that are likely to force new
paths in the system under test. To verify that this is indeed the case, the amplification

tool compares the (mutation) coverage before and after the amplification operator.
1.1.3 Zero-Touch Testing

Self-adaptive systems and self-* properties. A self-adaptive software monitors the changes
in itself and its context and decides how to respond to these changes in order to reduce
human supervision. The properties required to achieve such a system are called self-*
properties. Salehie and Tahvildari introduce a hierarchical model view to classify these
properties into three categories [11]. Figure 1.1 illustrates these categories and the re-
lated properties. The details about each of these properties are beyond the scope of this
thesis.

CHAPTER 1. INTRODUCTION

Test automation model (TAIM). Eldh [12] introduces a test automation model in 6
levels. Level 0 in this model is manual testing, and the highest level (level 5) is called au-
tonomous or Zero-touch testing. In a zero-touch testing tool, most of the self-* properties

are implemented, and the human intervention is minimal or zero.
114 Pharo

Pharo [pharo.org] is a pure object oriented language based on Smalltalk [13, 14]. It
is dynamically typed; i.e. there are no type declarations for variables, parameters, nor re-
turn values statically, but dynamically, the environment enforces that all objects to have a
type and only respond to messages part of the interface. It includes a run-time engine and
an integrated development environment with code browsers and live debugging. Pharo
users work in a live environment called Pharo image where writing code and executing it

is tied seamlessly together.

Invoking a method in Pharo is called message sending. As a pure language, every action
in Pharo is achieved by sending messages to objects. There are no predefined operators,
like + or -, nor control structures like 1 f or while. Instead, a Pharo program sends
the message #+ or #- to a number object, a #1fTrue:ifFalse: message to a boolean
object, or the message #whileTrue: to a boolean returning block object. Any message
can be sent to any object. In case the message is not part of the object interface, instead of
a compile-time syntax error, the system raises a MessageNotUnderstood exception in

runtime.

Like Java, all ordinary classes inherit from the class Object and every class can add
instance variables and methods. Unlike Java, all instance variables are private and all
methods are public. Pharo encourages programmers to write short methods with inten-
tion revealing names so that the code becomes self explanatory.

Pharo is a live programming environment [15], and offers the notion of liveness [16]
which greatly impacts how developers work: The system always offers an accessible eval-
uation of a source code instead of the classical edit-compile-run cycle, and as a conse-
quence, the live programming environment allows for nearly instantaneous feedback to

developers instead of forcing them to wait for the program to recompile [17].
1.1.5 Python

Python, one of the most popular (dynamically typed) languages today according to
IEEE! and on Github?, is a dynamically typed interpreted language, which supports mul-

tiple programming paradigms. Python does not force developers to write their code in an

lhttps://spectrum.ieee.org/top-programming-languages/ (accessed on 15/1/22)
2https://madnight.github.io/githut (accessed on 15/1/22)

https://www.pharo.org/
https://spectrum.ieee.org/top-programming-languages/
https://madnight.github.io/githut

1.2. OBJECTIVES OF THIS THESIS

object-oriented manner, allowing developers to write code following multiple program-
ming paradigms. In the background, however, everything in Python is an object, even
the current stack frame.

While everything is an object according to the inner workings of Python, Python has
no notion of encapsulation. Private or protected attributes can not be enforced. Every
attribute is public and can be accessed from everywhere. It is up to the developer to
follow the coding conventions where an attribute should be considered protected if it
is prefixed with one underscore (e.g. _protected_attribute), and private if it is
prefixed with two underscores (e.g. __private_attribute).

1.1.6 Program Synthesis

Program Synthesis is the task of automatically creating programs from the under-
lying programming language that satisfy user intent [18]. This user intent is typically
expressed in constraints like input-output examples, demonstrations, natural language,
partial programs, and assertions. As we mentioned in Section 1.1.2, one of the typical
approaches in test amplification is synthesizing new test methods and adding them to
the existing test methods. We can see similar goals between test amplification and pro-
gram synthesis: users define their intention in a higher-level language, and computers

synthesize code snippets that satisfy these intentions.

This section introduces two research areas in program synthesis that can be useful in

future works.

Program sketching. In sketching, programmers provide their high-level insights using
partial programs, and the synthesizer implements the low-level details. This low-level im-
plementation is generated using counterexample-guided inductiove synthesis (CEGIS).
The cegis algorithm relies on an important empirical hypothesis; for most sketches, only
a small set of inputs is needed to fully constrain the solution [19].

BigCode. In recent years, academics and practitioners have seen arising the valuable
resource of Big code. Big code is the vast amount of code available on the web from open
source projects mainly hosted in publicly shared repositories like Github. These projects
contain not only source code, but also the history of development, issues, reported bugs
and review processes. The availability of big code suggests a new, data-driven approach
to developing software [20].

CHAPTER 1. INTRODUCTION

The knowledge from existing projects

+
Feedback from developers |

Test Amplifier

Software
Ecosystem

A
Recommendations

to strengthen the testing practices

Figure 1.2: The symbiotic relationship between a test amplifier and the software ecosystem

1.2 OBJECTIVES OF THIS THESIS

Thesis: A symbiotic relationship exists between test amplifiers and software ecosys-
tems. This symbiotic relationship is based on two feedback loops: (1) The test am-
plifier is fed by knowledge extracted *out* of the ecosystem, like the source code,
development history, interproject dependencies, and developers’ activities. (2) The
test amplifier provides improvements *in* the available tests within the ecosystem

J

to reduce the impact of software defects.

This relationship is illustrated in Figure 1.2. As we mentioned in Section 1.1.1, modern
software repositories contain a considerable amount of test code, and this valuable source
of knowledge can be exploited to amplify testing practices. This observation leads us to
the notion of test amplification.

= Goal 1: We aim to expand the state-of-the-art in test amplification by extending it to new
ecosystems. During our exploration, we will identify points for improvement and propose
possible solutions.

Human and Al-based development tools can collaborate in software evolution based
on programmer intent [21]. The idea of employing intelligent programs to assist devel-
opers is not a new idea. We can find the early attempts in the 80s such as the project of
programmer’s apprentice [22,23]; and we see this trend is still active nowadays [18, 24]. We
need test amplifiers to be available in the ecosystem as recommender systems. Automat-
ing all unnecessary developers’ involvement is also important to make it more practical.
Ideally, a test amplifier should be a full member of the team and serve as a virtual de-
veloper, and humans intervene only in identifying engineering goals to be achieved or

revising and approving the final results. So, we must identify obstacles that hinder these

1.3. RESEARCH METHOD

tools from being fully autonomous (zero-touch) tools within ecosystems. The vision of
employing test amplification tools as bots is also mentioned by Danglot [25] as a long-
term perspective.

= Goal 2: We intend to make steps toward a zero-touch test amplifier that strengthens the
tests within a software ecosystem without any human intervention.

Software projects evolve together within a software ecosystem. Based on this coevolu-
tion, the efforts in a project may be reused in a similar project. For example, a project that
depends on another project tests some parts of it indirectly. So we can reuse the testing
inputs/patterns extracted from a project in another related project. We also aim to show
the feasibility of test transplantation within a software ecosystem.

= Goal 3: We aim to demonstrate how tests may be transplanted from one project into a
similar project within the ecosystem.

1.3 RESEARCH METHOD

We started this journey with a replication study. The state-of-the-art test amplification
approach introduced by DSPOT [9, 26] had been evaluated only in the statically typed
language of Java. By replicating the approach in new ecosystems (1) we acknowledge
the validity of the originally conducted research, (2) we gain a deeper understanding of
the challenges in test amplification which will lead us to more effective contributions and

clearer visions.

We selected two dynamically typed languages of Pharo, and Python as the replication
target ecosystems. Pharo is fully object-oriented with a simpler language model com-
pared to Python. Pharo provides a live programming experience by allowing our tool to
modify the language when it runs which makes it a suitable environment for program
synthesis tasks. It also benefits from an active and friendly community, which is help-
ful in the qualitative evaluation of the recommendations. However, its community is
small and contains a smaller number of mature projects compared to Java and Python.
Therefore we repeated the replication in Python, a more commonly used language and
a larger ecosystem. The replication in Pharo —SMALL-AMP— is evaluated by replicat-
ing the quantitative and qualitative studies from DSPOT. The replication in Python —
AwmPyriER— is evaluated by a quantitative study.

Then, we created a proof-of-concept zero-touch test amplification solution for Pharo
by integrating SMALL-AMP with GitHus-AcTtions. We extended the mutation testing tool
in Pharo to make it a zero-touch mutation testing solution. We also created a GitHub bot

for providing the amplified tests and interacting with developers.

Finally, we study the feasibility of dependency-based test transplantation and intro-

CHAPTER 1. INTRODUCTION

duce a test-slicing algorithm in two emerging result track papers.

1.4 SUMMARY OF CONTRIBUTIONS

Contributions. This dissertation makes the following contributions:

* SMALL-AMP, a test amplification algorithm and tool, implemented in Pharo Smalltalk.
To the best of our knowledge, this is the first test amplification tool for a dynamically
typed language. (See Chapter 2)

* Demonstrating the use of dynamic type profiling as a substitute for type declarations
within a system under test. (See Chapter 2)

* Introducing an approach for oracle reduction to remove the unnecessary generated
assertion statements. (See Chapter 2)

* Introducing an approach for test input reduction to solve the test input explosion
problem. (See Chapter 2)

* AMPYFIER, a test amplification tool for Python. To the best of our knowledge, this is
the first test amplification tool for Python. (See Chapter 3)

* Introducing a multimetric selection approach to speed up the selection process based
on mutation testing. (See Chapter 3)

* Introducing an approach for test method prioritization to increase the performance in
the limited time budget. (See Chapter 4)

* Introducing fest class sharding that enables test amplifiers to amplify large test classes.
(See Chapter 4)

* Introducing an approach for crash-recovery that makes test amplifiers crash resilient.
(See Chapter 4)

* MUTALKCI as a proof-of-concept solution for zero-touch mutation testing. (See Chap-
ter 5)

* SMALL-AMP as a DevBot, an attempt to provide an ideal DevBot for test amplifica-
tion. (See Chapter 6)

* We introduce using the graph of histories for slicing tests dynamically and generating
fine-grained tests from examples and system-level tests. (See Chapter 8)

* We introduce dependency-based test transplanting to exploit the testing knowledge in
the dependent projects. To this aim, we propose dynamically slicing the tests in
dependent projects and then transplanting them to the base project. (See Chapter 7
and Chapter 8)

* SMALL-MINCE, a test slicing algorithm and tool, implemented in Pharo Smalltalk.
(See Chapter 8)

1.5 STRUCTURE OF THIS DISSERTATION

This dissertation is organized into three parts corresponding to our main three goals.
In part I, we explain the details about replicating DSPOT in two dynamically typed lan-
guages, Pharo and Python. In part II, we explain steps toward the zero-touch test ampli-
fication and test amplification ecosystem. In part III, we explore the test transplantation,

and finally, we conclude the dissertation in part IV.

10

Part 1

Test Amplification in
Dynamically-typed
Object-oriented Languages

CHAPTER

Small-Amp: Test Amplification in a

Dynamically Typed Language

This chapter is a revised version of an originally published paper in the The International
Journal of Empirical Software Engineering (EMSE):

ni Small-Amp: Test amplification in a dynamically typed lan-
Adobe guage
Mehrdad Abdi, Henrique Rocha, Serge Demeyer, and Alexandre Bergel

In The International Journal of Empirical Software Engineering (EMSE). Jul, 2022.
URL: https://doi.org/10.1007/s10664-022-10169-8.

ABSTRACT

Some test amplification tools extend a manually created test suite with additional test cases to
increase the code coverage. The technique is effective, in the sense that it suggests strong and
understandable test cases, generally adopted by software engineers. Unfortunately, the current
state-of-the-art for test amplification heavily relies on program analysis techniques which benefit
a lot from explicit type declarations present in statically typed languages. In dynamically typed
languages, such type declarations are not available and as a consequence test amplification has yet
to find its way to programming languages like Smalltalk, Python, Ruby and Javascript. We propose
to exploit profiling information —readily obtainable by executing the associated test suite— to infer
the necessary type information creating special test inputs with corresponding assertions. We
evaluated this approach on 52 selected test classes from 13 mature projects in the Pharo ecosystem
containing approximately 400 test methods. We show the improvement in killing new mutants
and mutation coverage at least in 28 out of 52 test classes (=<53%). Moreover, these generated

https://doi.org/10.1007/s10664-022-10169-8

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

tests are understandable by humans: 8 out of 11 pull-requests submitted were merged into the
main code base (=72%). These results are comparable to the state-of-the-art, hence we conclude
that test amplification is feasible for dynamically typed languages.

21 INTRODUCTION

Modern software projects contain a considerable amount of hand-written tests which
assure that the code does not regress when the system under test evolves. Indeed, several
researchers reported that test code is sometimes larger than the production code under
test [4, 5, 6]. More recently, during a large scale attempt to assess the quality of test
code, Athanasiou et al. reported six systems where test code takes more than 50% of the
complete codebase [7]. Moreover, Stack Overflow posts mention that test to code ratios

between 3:1 and 2:1 are quite common [27, 28].

Test amplification is a field of research which exploits the presence of these manually
written tests to strengthen existing test suites [8]. The main motivation of test amplica-
tion is based on the observation that manually written test cases mainly exercise the de-
fault scenarios and seldom cover corner cases. Nevertheless, experience has shown that
strong test suites must cover those corner cases in order to effectively reveal failures [29].
Test amplification therefore automatically transforms test-cases in order to exercise the
boundary conditions of the system under test.

Danglot et al. conducted a literature survey on test amplification, identifying a range
of papers that take an existing test suite as the seed value for generating additional tests [30,
31, 32]. This culminated in a tool named DSpot which represents the state-of-the-art in
the field [9, 26]. In these papers, the authors demonstrate that DSPOT is effective, in the
sense that the tool is able to automatically improve 26 test classes (out of 40) by trigger-
ing new behaviors and adding valuable assertions. Moreover, test cases generated with
DSport are well perceived by practitioners — 13 (out of 19) pull requests with amplified
test have been incorporated in the main brach of existing open source projects [9].

Unfortunately, the current state-of-the-art for test amplification heavily relies on pro-
gram analysis techniques which benefit a lot from explicit type declarations present in
statically typed languages. Not surprisingly, previous research has been confined to stat-
ically typed programming languages including Java, C, C++, C#, Eiffel [8]. In dynami-
cally typed languages, performing static analysis is difficult since source code does not
embed type annotation when defining variable. As a consequence test amplification has
yet to find its way to dynamically-typed programming languages including Smalltalk,
Python, Ruby, Javascript, etc.

In this chapter, we demonstrate that test amplification is feasible for dynamically
typed languages by exploiting profiling information readily available from executing the

14

2.1. INTRODUCTION

test suite. Asa proof of concept, we present SMALL- AMP which amplifies test cases for the
dynamically typed language Pharo [13, 14]; a variant of Smalltalk [33]. We argue that
Pharo is a good vehicle for such a feasibility study, because it is purely object-oriented
and it comes with a powerful program analysis infrastructure based on metalinks [34].
Pharo uses a minimal computation model, based on object and message passing, thus re-
ducing possibilities to experiences biases due to some particular and singular language
constructions. Moreover, Pharo has a growing and active community with several open
source projects welcoming pull requests from outsiders. Consequently, we replicate the
experimental set-up of DSpPOT [9] by including a quantitative and qualitative analysis of
the improved test suite.

This work is an extension of a previous paper presenting the proof-of-concept to the
Pharo community [35]. As such, we make the following contributions:

* Small-Amp, a test amplification algorithm and tool, implemented in Pharo Smalltalk.
To the best of our knowledge this is the first test amplification tool for a dynamically
typed language.

* Demonstrating the use of dynamic type profiling as a substitute for type declarations
within a system under test.

* Quantitative evaluation of our test amplification for the Pharo dynamic program-
ming language on 13 mature projects with good testing and maintenance practices.
We repeated the experiment three times. For 28 out of 52 test classes we see an
improvement in killing new mutants and consequently the mutation score. Our
evaluation shows that generated test methods are focused (i.e. they do not over-
whelm the developer) and all amplification steps are necessary to obtain strong
and understandable tests.

* Qualitative evaluation of our approach by submitting pull requests containing ampli-
fied tests on 11 active projects. 8 of them (~72%) were accepted and successfully
merged into the main branch.

* We contribute to open science by releasing our tool as an open-source package un-
der the MIT license (https://github.com/mabdi/small-amp). The experi-
mental data is publicly available as a replication package (https://github.com/

mabdi/SmallAmp-evaluations).

The remainder of this chapter is organised as follows. Section 2.2, provides the neces-
sary background information on test amplification and the Pharo ecosystem. Section 2.3
and Section 2.4 explain the inner workings of SMALL-AMP, including the use of dynamic
profiling as a substitute for static type information. Section 2.5 discusses the quantitative
and qualitative evaluation performed on 13 mature open source projects; a replication
of what is reported by Danglot et. al. [8]. Section 2.6 enumerates the threats to validity

15

https://github.com/mabdi/small-amp
https://github.com/mabdi/SmallAmp-evaluations
https://github.com/mabdi/SmallAmp-evaluations

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

while Section 2.7 discusses related work and Section 2.8 lists limitations and future work.
Section 2.9 summarizes our contributions and concludes our chapter.

2.2 BACKGROUND

2.2.1 Test Amplification

In their survey paper, Danglot et al. define test amplification as follows:

Test amplification consists of exploiting the knowledge of a large number of test cases,
in which developers embed meaningful input data and expected properties in the form
of oracles, in order to enhance these manually written tests with respect to an en-
gineering goal (e.g., improve coverage of changes or increase the accuracy of fault
localization). [8]

Test amplification is a not replacement for other test generation techniques and should
be considered as a complementary solution. The main difference between test generation
and test amplification is the use of an existing test suite. Most work on test generation
accept only the program under test or formal specifications and ignore the original test
suite which is written by an expert.

A typical test amplification tool is based on two complementary steps.

(i) Input amplification. The existing test code is altered in order to force previously
untested paths. This involves changing the set-up of the object under test, providing
parameters that represent boundary conditions. Additional calls to state-changing
methods of the public interface are injected as well.

(ii) Assertion amplification. Extra assert statements are added to verify the expected out-
put of the previously untested path. The system under test is then used as an oracle:
while executing the test the algorithm inspects the state of the object under test and
asserts the corresponding values.

The input amplification step is typically governed by a series of amplification operators.
These operators represent syntactical changes to the test code that are likely to force new
paths in the system under test. To verify that this is indeed the case, the amplification
tool compares the (mutation) coverage before and after the amplification operator. It is
beyond the scope of this chapter to explain the details of mutation coverage; we refer the
interested reader to the survey by [36].

We illustrate the input and assertion amplification steps via an example based on
SmallBank!anditstestclass SmallBankTest in Listing2.1. In thisexample testWithdraw

1Available at: https://github.com/mabdi/smalltalk-SmallBank

16

https://github.com/mabdi/smalltalk-SmallBank

10

11

12

13

14

15

2.2. BACKGROUND

is the original test method while testWithdrawAll and testWithdrawOnZero are
two new test methods derived from it. In the testWithdrawAll, the input amplifica-
tion has changed the literal value of 100 with 30 (line 19), and the assertion-amplification
step regenerated the assertions on the balance (line 20) and added a missing assertion
on the status of the operation (line 22). The testWithdrawAll test method thus veri-
fies the boundary condition of withdrawing by an amount equal to the balance. In the
testWithdrawOnZero, on the other hand, an input amplifier has removed the call to
the deposit : method in line 11. This test method now verifies the boundary condition
that calling a withdraw: with an amount more than zero when the balance is zero is

not allowed. This is illustrated by the extra assertions in line 29 and 30.

Code Excerpt 2.1: testWithdraw amplified into testWithdrawOnAll and
testWithdrawOnZero

16 SmallBankTest >> testWithdrawAll
SmallBank >> withdraw: amount

17 | b success |
balance >= amount 18 b := SmallBank new.
ifTrue: [19 b deposit: 30.
balance := balance — amount. 20 self assert: (b balance = 30).
" true]. 21 success := b withdraw: 30.
~ false 2 self assert: success.
23 self assert: (b balance = 0).
SmallBankTest >> testWithdraw 2
b 25 SmallBankTest >> testWithdrawOnZero
b := SmallBank new. 26 | b success |
b deposit: 100. 27 b := SmallBank new.
self assert: (b balance = 100). 2 success ‘= b withdraw: 30.
b withdraw: 30. 29 self deny: success.
self assert: (b balance = 70). 30 self assert: (b balance = 0).

2.2.2 Pharo

Pharo [pharo.org] is a pure object oriented language based on Smalltalk [13, 14]. It
is dynamically typed; i.e. there are no type declarations for variables, parameters, nor re-
turn values statically, but dynamically, the environment enforces that all objects to have a
type and only respond to messages part of the interface. It includes a run-time engine and
an integrated development environment with code browsers and live debugging. Pharo
users work in a live environment called Pharo image where writing code and executing it

is tied seamlessly together.

Invoking a method in Pharo is called message sending. As a pure language, every action
in Pharo is achieved by sending messages to objects. There are no predefined operators,
like + or —, nor control structures like i f or while. Instead, a Pharo program sends

17

http://www.pharo.org/

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

the message #+ or #- to a number object, a #1fTrue:ifFalse: message to a boolean
object, or the message #whileTrue: to a boolean returning block object. Any message
can be sent to any object. In case the message is not part of the object interface, instead of
a compile-time syntax error, the system raises a MessageNotUnderstood exception in
runtime. Thus, when transforming test code, a test amplification tool should be attentive

to not create faulty test codes.

Like Java, all ordinary classes inherit from the class Object and every class can add
instance variables and methods. Unlike Java, all instance variables are private and all
methods are public. Pharo encourages programmers to write short methods with inten-

tion revealing names so that the code becomes self explanatory.

Protocols. Pharo, and Smalltalk in general, features protocols to organize the methods
defined in classes. The notion of protocol is a tag of a method and it acts like a metadata
provided by the integrated development environment. As such, classifying a method
under a particular protocol has no impact on the behavior.

Since all instance variables are private in Pharo, in order to make them accessible by
the external world, accessor methods should be provided which are typically grouped
into the protocol accessing. In a similar vein, all methods used to set the content of
an object upon initialization are grouped into the protocol instance creation. Long
lived classes that evolve over time, use the deprecated protocol, signalling that these
methods will be removed from the public interface in the near future. And while all
methods are public, Pharo uses the protocol private to mark methods which are not
expected to be used from the outside. However, as we mentioned earlier, protocols are a

tag and Pharo does not block an access to a private method.

The most similar concepts to protocols in other languages are naming conventions,
annotations and also access modifiers. For instance, a Java equivalent for methods in
accessing protocol is following a naming convention like setVvar () and getvVar (). Ina
similar vein, Java uses @Deprecated annotation to identify the deprecated methods. An
equivalent for methods in private protocol in Python is the naming convention of using
underscore before the name of private methods, but Java uses access modifiers for this

purpose.
2.2.3 Coding Conventions in Dynamically Typed Languages

In this section, we describe typical coding conventions that are used by programmers
to compensate for the lack of type declarations. When we transform code (like we do
when amplifying tests), special care must be taken to adhere to such coding conventions
otherwise the code will look artificial and will decrease chances to be adopted by test

18

1

2

3

2.2. BACKGROUND

engineers. Our perspective comes from Pharo / Smalltalk (as documented in [37]), but
similar coding conventions must be adhered to when amplifying tests in Python, Ruby
or Javascript.

Parameters with unknown types. In dynamically typed languages, when defining a
method which accepts a parameter, the type of the parameter is not specified. However,
it is a convention to name the parameter after the class one expects or the role it takes.
This is illustrated by the code snippet in Listing 2.2. Line 1 specifies that this is a method
drawOn: defined on the class Morph which expects one parameter. The parameter itself
is represented by an unknown type variable aCanvas however the name of the variable
suggests that the method expects an instance of the class Canvas, or one of its subclasses.
Line 7 on the other hand specifies that the method withdraw: expects one parameter
and its role is to be an amount. There is no clue on the type of the parameter (integer,
longinteger, float, ...); all we can infer from looking at the code is that we should be
allowed to pass it as an argument when invoking the messages >= (line 8) and - (line
10) on balance.

Code Excerpt 2.2: Examples of naming conventions for parameters.

7 SmallBank >> withdraw: amount
1 Morph >> drawOn: aCanvas

8 balance >= amount
2 aCanvas fillRectangle: self bounds 0 ifTrue: [
3 fillStyle: self fillStyle 10 balance := balance — amount.
4 borderstyle: self BorderStyle. 1 ~ true .
s 12 ~ false

= When passing a parameter to a method, a test amplification tool has no guaranteed way of
knowing the expected type. The name of the parameter only hints at the expected type, hence
during input assertion special care must be taken.

No return types. In dynamically typed languages, there is no explicit declaration of
the return type of a method. In Pharo, all computation is expressed with objects sending
messages and a message sends always returns an object. By default a method returns
the receiving object, which is the equivalent of the void return type in Java. However a
program can explicitly return another value using ” followed by an expression.

Code Excerpt 2.3: Example of a void method (left) or function method (right)

4 aStream nextPutAll:

Object >> printOn: aStream . (title first isVowel
| title | 6 ifTrue: ['an ']
title := self class name. ; ifFalse: ['a "]);

19

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

nextPutAll: title 13 (String new: 16).
14 self printOn: aStream.
Object>>printString 15 ~aStream contents
| aStream |

aStream := WriteStream on:

This is illustrated in Listing 2.3, showing the methods printoOn: (displays the re-
ceiver on a given stream) and printString (which returns a string representation of
the receiver). printOn: is the equivalent of a void call thus returns the receiving ob-
ject; however the method is declared on Object so the receiver object can be anything.
printString on the other hand returns the result of sending the message contents
to astream. The exact type of what is returned is difficult to infer via static code analy-
sis. Smalltalk programmers would assume that the return type is a St ring because of
the intention revealing name of the method. However, there is no guarantee that this is
indeed the case. Thus, when a test amplification tool manipulates the result of a method,

it cannot easily infer the type of what is returned.

= Thelack of explicit return types makes it hard to manipulate the result of a method call while
ensuring that no MessageNotUnderstood exceptions will be thrown.

Different return types. In addition to the lack of return type declarations, it is also
possible to write a method that can return different types of values. For example, in List-
ing 2.4 the method someMethod: can return an instance of the classes Integer, Boolean

or Object (the default return value is self).

As a result, removing the return operator (a common mutation operator) will not
cause a syntax error yet may cause a change in the return type of a methods. For example,
in Listing 2.4 the method width (lines 5 and 6), if the return operator is removed in the

mutation testing, the type of the return value will be converted from a number to a Shape

object.
Code Excerpt 2.4: Examples of a changing the return type.
4
1 Example >> someMethod: anint s Shape >> width
2 anint = 1 ifTrue: [~ 1] . ~ width
3 anlnt = 0 ifTrue: [~ false]

= Methods in dynamically typed languages can return various types. Test amplification tools
must be aware that a small change in the code may lead to changes in the returned type.
Consequently, assertions verifying the result of a method call must be adapted.

20

2.2. BACKGROUND

Accessor methods. In Pharo, all instance variables are private and only accessible by
the object itself. If one wants to manipulate the internal state of an object one should
implement a method for it, as illustrated in Listing 2.5 which shows the setter method x:
and the getter method x. In Pharo, such accessor methods are typically collected in the
protocol accessing and are a convenient way for programmers to look for ways to read

or write the internal state of an object.

Code Excerpt 2.5: Example of a getter (left) and a setter method (right).

3 Point >> x: aninteger
1 Point >> x

2 X

4 x := anlnteger

Such accessor methods are especially relevant for all test generation algorithms [38].
For test amplification in particular, the setter methods are necessary in the input ampli-
fication step to force the object into a state corresponding to a boundary condition. The
getter methods are necessary in the assertion amplification step to verify whether the ob-
ject is in the appropriate state. However, there is no explicit declaration for the type of the
parameter passed to the setter method x: nor for the type to be returned by the getter

method x.

= When manipulating the state of an object one cannot rely on type declarations to infer which
parameter to pass to a setter method and which result to expect from a getter method.

Pass-by-reference. In dynamiclanguages including Pharo, when sending messages, all
arguments are passed by reference. This may imply that sometimes the state is changed
and sometimes it is not. This is illustrated by the method r in Listing 2.6, which re-
turns the radius in polar coordinates. This involves some calculation (the invocation
of dotProduct:) which passes the receiver object as a reference. There is no “pass-
by-value” type declaration for dotProduct :, so one cannot know whether the internal
state is changed or not. If dotProduct : does not alter the internal state it may be used
as a pure accessor method during assertion amplification anywhere in the test. However,
if the accessor method does change the internal state the order in which the accessor

methods are called has an effect on the outcome of the test.

Code Excerpt 2.6: Is r a pure accessor method that does not alter the internal state?

1 Point >>r
2 ~(self dotProduct: self) sqrt

= The pass-by-reference parameter passing makes it difficult to distinguish pure accessor meth-
ods. Pure accessor methods can be inserted anywhere during assertion amplification, for

21

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

accessor methods changing the internal state one must take into account the calling order.

Cascading. Listing 2.7 shows the archetypical Hello World example. Line 1 speci-
fies that this is a method hellowWorld defined on a class HelloWorld. Line 2 and 4
each sends the message cr (a message without any parameters) to the global variable
Transcript which emits a carriage return on the console. Line 3 sends the message
show: with as parameter the string *hello world’ tothe global variable Transcript

which writes out the expected message.

However, a Pharo programmer would never write this piece of code like that. When a
series of messages is being sent to the same receiver, this can be expressed more succinctly
as a cascade. The receiver is specified just once, and the sequence of messages is separated

by semi-colons as illustrated on lines 7—10.

Code Excerpt 2.7: A sequence of messages sent to the same receiver object (left) is written
as a cascade (right)

6 HelloWorld >> helloWorldCascading
1 HelloWorld >> helloWorld

7 Transcript
2 Transcript cr. s cr:
3 Transcript show: 'hello world'. 0 show: "hello world':
4 Transcript cr.

10 Cr.

Instance creation. Cascading is frequently used when creating instances of a class as il-
lustrated by the createBorder example in the left of Listing 2.8. In line 2 it creates a new
SimpleBorder object and then initialises the object with color blue (line 3) and width
2 (line 4). During input amplification we need to change the internal state of the object
under test, hence it is tempting to inject extra calls in such a cascade. However, because
we cannot distinguish between state-changing and state-accessing methods, we risk in-
jecting errors. The code snippet to the right illustrates that injecting an extra i sComplex
call (a call to a state-accessing method) at the end of the cascade erroneously returns a
boolean instead of an instance of SimpleBorder. This will eventually result in a run-time
type error via a messageNotUndersood exception when the program tries to use the

result of createBorderErroneous.

Code Excerpt 2.8: Injecting extra statements may result in type errors.

6 TestBorder >> createBorderErroneous
1 TestBorder >> createBorder

7 ~ SimpleBorder new
2 * SimpleBorder new 8 color: Color blue;
3 color: Color blue; 0 width: 2:
4 width: 2. "returns self" 10 isComplex. "returns a boolean"

22

2.3. SMALL-AMP DESIGN

= When injecting additional calls during instance creation, one runs the risk of returning an

inappropriate value.

Like most dynamically typed languages, Pharo has a lot of coding conventions.
When transforming code (for instance, when amplifying tests) we must adhere to
these conventions. However, the lack of explicit type information hinders static
analysis, needed to identify relevant code constructs.

23 SMALL-AMP DESIGN

In this section, we explain the design of the SMALL-AMP which is an adaption and
extension of DSPOT [9, 26] for the Pharo ecosystem. DSPOT is an opensource? test am-
plification tool to amplify tests for Java programs. Our SMALL-AMP implementation is

also publicly available® on GitHub.
2.3.1 Main Algorithm

The main amplification algorithm is presented in Algorithm 1 and represents a search-
based test amplification algorithm. The algorithm accepts a class under test (CUT) and its
related test class (TC) and returns the set of amplified test methods (ATM). In addition,
the algorithm needs a set of input amplification operators (AMPS) and is governed by a

series of hyperparameters:

* Niteration — This parameter specifies the number of iterations and shows the maxi-
mum number of transformations on a test input. The default value for this param-
eter is 3.

* Nmaxinputs — This parameter specifies the maximum number of generated test inputs
that the algorithm keeps. It discards other test inputs. The default value for this

parameter is 10.

Initially, the code of CUT and TC is instrumented to allow for dynamic profiling. The
test class is executed, all required information is collected and then the instrumentation
is removed again. This extra information including the type information allows us to
perform input amplification more efficiently and circumvent the lack of type information
in the source code (line 2). We discuss about the profiling in Section 2.4.1.

The main loop of the algorithm amplifies all test methods one by one (line 3). V is
the set of test inputs, thus test methods without assertion statements. In the beginning,
V has only one element which is obtained from removing assertion statements in the

2https://github.com/STAMP-project/DSpot
Shttps://github.com/mabdi/small-amp

23

https://github.com/STAMP-project/DSpot
https://github.com/mabdi/small-amp

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

Algorithm 1: SmMALL-AMP amplification algorithm

input :CUT: class-under-test
input :TC: original test class
input :AMPS: a set of input amplification operators
input :hyperparameters {Niteration, Nmaxlnputs}
output: ATM: set of amplified test methods

1 ATM + {};

2 extralnfo < profileCollect (CUT, TC);

3 foreacht € TC do

4 V + {removeAssertions (t) };

5 U <+ amplifyAssertions (V);

6 ATM < ATM U {z € U| x improves mutation score};

7 for i < 0 to Niteration dO

8 TMP +{};

9 for each amp € AMPS do

10 | TMP < TMP UamplifyInputs (amp,V, extralnfo);
11 V <« reduce (TMP, Npaxnputs)

12 U < amplifyAssertions (V);

13 ATM < ATM U {z € U| x improves mutation score};

14 ATM <+ improveReadability (ATM);
15 return ATM

original test method (line 4). U is the set of generated test methods which are generated
by adding new assertion statements to the elements in V (lines 5). Then the coverage is
calculated using the generated test methods accumulated in U and the tests increasing
the coverage are added to the final result. SMALL- AMP uses mutation score as a coverage
criteria (line 6)

In the inner loop of the algorithm (lines 7 to 13), SMALL-AMP generates additional
tests by repeating the following steps Niteration times:

1. SMALL-AMP applies different input amplification operators on V (the current test
inputs) to create new variants of test methods accumulated in the variable TMP
(line 10). We discuss input amplification in Section 2.3.2.

2. SMALL-AMP reduces TMP by keeping only Npaxinputs of current inputs and discard-
ing the rest (line 11). We discuss input reduction in Section 2.4.2.

3. SMALL-AMP injects assertions on the remaining test inputs in V and stores the result
in U (line 12). We discuss assertion amplification in Section 2.3.3.

4. SMALL-AMP selects all test methods in U that increase mutation score and adds
them to the final result ATM (line 13). We discuss about test selection in Sec-
tion 2.3.4.

After both loops have terminated, SMALL-AMP applies a set of post-processing steps to

24

2.3. SMALL-AMP DESIGN

increase the readability of the generated tests (line 14). We discuss these steps in Sec-
tion 2.4.3.

Algorithm 1 is heavily inspired by DSPOT, but not entirely the same. In other words,
we have added a pre-process step (line 2) to collect the necessary information about CUT
and TC before entering the main loop. We also have added a post-processing step (line
14) to make the output more readable. We discuss about extras to DSpOT algorithm in
Section 2.4.

2.3.2 Input Amplification

During input amplification, the existing test code is altered to force previously untested
states. Input amplification involves changing the set-up of the object under test, pass-
ing arguments which represent boundary conditions. Additional calls to state-changing
methods of the public interface are injected as well. Such changes are bound to fail the
original assertions of TC, therefore SMALL-AMP removes all assertions from a test ¢ in TC.

The test code itself is transformed via a series of Input Amplification Operators. These
change the code in such a way that they are likely to force untested paths and cover
boundary conditions. Input amplification operators are based on the genetic operators
introduced in Evolutionary Test Classes [39]. Below we explain the Input Amplification
Operators adopted from DSPOT.

Amplifying literals. This input amplifier scans the test input source code to find lit-
eral tokens (numbers, booleans, strings). Then it transforms the literal to a new literal
based on its type according to Table 2.1. For example, test input shown in Listing 2.9
is transformed into testVectorGreater_L by manipulating the second element from

the literal array.

Code Excerpt 2.9: Example Literals Amplification Operator (line 3 vs. line 7)

5 testVectorGreater L
1 testVectorGreater

6 [uw |
2 [uw | 7 u:= #(—11 1) asPMVector.
3 u:= #(—1 0 1) asPMVector. s wi=u>0

4 w:=u > 0.

Amplifying method calls. This input amplifier scans the test input source code to find
the method invocations on an object. Then it transforms the source code by duplicating
or removing the method invocations. It also adds new method invocations on the objects.

If the method requires new values as arguments, the amplifier creates new objects. For

25

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

Type Transformation
Numbers 0,
increased and decreased values (41 and —1),
doubled and halved values (x2 and +2),
negated value (x — 1)
replacing with an existing number from the test body
Booleans negate via not
Strings add a new random character to a random position
remove a character randomly
change a character randomly
replace by a random string in the same size

Table 2.1: Transformations in literal amplification

primitive parameters, a random value is chosen from the profiled values. For object pa-
rameters, the default constructor is used, i.e., it creates a new instance by sending #new
message to the class. SMALL-AMP ignores private and deprecated methods (regarding to
their protocol) when it adds a new method call. The type information required do safely
apply these transformations is obtained in the profiling step explained in Section 2.4.1 —
p- 29.

2.3.3 Assertion Amplification

During the assertion amplification step, we inject assertion statements which verify
the state of the object under test. The object under test is then used as an oracle: while
executing the test the algorithm inspects the state of the object under test and asserts the
corresponding values. The assertion amplification step is based on Regression Oracle
Checking [40].

Note that assertion amplification is applied twice during the amplification algorithm
(Algorithm 1, in lines 5 and 12). There are two reasons for this seemingly redundant
design. (1) We assure that the original test method is assertion amplified as well. Since
the test inputs are reduced in line 11, there is a possibility that the original test method is
discarded and never reaches the assertion amplification in line 12. (2) We can run only
assertion amplification by setting the value of Njterqtion = 0. This way no new tests will
be generated, but existing tests may become stronger because they check more conditions.

Observing state changes via object serialisation. SMALL-AMP manipulates the test
code and surrounds each statement with a series of what we call “observer meta-statements”
(see Listing 2.10). Such meta-statements include a surrounding block to capture possible
exceptions (lines 19-20 and 24-25) and calls to observer methods to capture the state of

26

2.3. SMALL-AMP DESIGN

the receiver (line 17 and line 18) and the return value (line 18 and line 23). When neces-
sary, temporary variables are added to capture intermediate return values (tmp1 on line
21 and line 23).

Code Excerpt 2.10: Injection of observer meta-statements

14 testDeposit instrumented
1 testDeposit

15 | b tmpl |
2 |b] 16 [b := SmallBank for: 'JDoe’.
3 b := SmallBank for: "JDoe’. 17 self observe: SmallBank.
4 b deposit: 100. 18 self observeRetVal: b.
> 19] on: Error do: [:ex |
6 20 self observeException: ex].
7 21 [tmpl:= b deposit: 100.
8 22 self observe: b.
i 23 self observeRetVal: tmpl.
10 24] on: Error do: [:ex |
1 25 self observeException: ex]

After manipulating the test method, SMALL-AMP runs the test to capture the values by
the observer methods. SMALL- AMP serializes objects by capturing the values from its ac-
cessor methods. If the return value of an accessor method is another object, it recursively
repeats the object serialization up t0 Neerialization times. Nierialization 1S @ configurable value
(default value is 3). The output of this step of assertion amplification is a set of trace logs
which reflect the object states.

Identifying accessor methods. SMALL-AMP relies on the Pharo/Smalltalk coding con-
ventions and therefore selects methods if they belong to protocols #accessingor #testing
or when their name is identical to one of the instance variables. From the selected meth-
ods, all methods lacking an explicit return statement and all methods in the protocols

#private or #deprecated are rejected and the remaining are considered as accessors.

Preventing flaky tests via trace logs. A flaky testis a test that may occasionally succeed
(green) or fail (red). This may happen if the test is asserting a non-deterministic value.
SMALL-AMP tries to detect non-deterministic values before making assertions on them.
The assertion amplification module, repeats collecting the trace logs for N,kiness (default
value is 10 [41]) times. Then it compares the observed values. If a value is not identical
between all collected logs, SMALL-AMP marks it as non-deterministic.

Recursive assertion generation. Based on the type of the observed value, zero, one

or more assert statements are generated. If the type is a variant of collection or an object,

27

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

which include other internal values, the assertion generator uses a recursive method to
build valid assertion statements. For non-deterministic values, the value is not asserted
and only its type is asserted. The output of the assertion amplification step is a passing

(green) test with extra assertions.

Intended values versus actual values. During assertion amplification, the assertion
statements should assert expected values.In SMALL-AMP, we assume that the current
implementation of the program is correct, and therefore we deduce the oracle from the
current state of the object under test. However, when there is a defect in the method
under test, the generated assertions would verify against an incorrect oracle. This is an
inherent limitation for both DSPOT and SMALL-AMP, inherited from Regression Oracle
Checking [40].

Example. Listing 2.11 shows an example of a trace log collected by line 22 from List-
ing 2.10 (left) and its recursive assertion statements (right). In this example, we point out
that the method t imestamp is an accessor method in Smal1Bank class which returns a
timestamp value. Since this value differs in different executions, it has been marked as a

flaky value (line 8) hence only its type is asserted (line 24).

Code Excerpt 2.11: An example of a trace log and its assertion statements

17 testDeposit _withAssertions
2 type — SmallBank,

18 | b tmpl |
3 accessors: 19 b := SmallBank for: 'JDoe’.
4 balance: 20 now
5 flaky — false, 21 tmpl := b deposit: 100.
6 value — 100 2 self assert: b class equals: SmallBank.
7 timestamp: 23 self assert: b balance equals: 100.
8 flaky — true, 2 self assert: b timestamp class equals: Integer.
9 value — 1624 "flaky"
10 user: 25 self assert: b user class equals:
1 type — SmallBankUser, SmallBankUser.
12 accessors: 26 self assert: b user name equals: 'JDoe’.
13 name: . non
14 flaky — false,
15 value — "JDoe’

2.3.4 Test Selection -- Prefer Focussed Tests

During each iteration of the inner loop (lines 7 to 13 in Algorithm 1 - p. 24) SMALL-
AMP generates Niaxinputs New tests with their corresponding assertions. In the test selec-

28

2.4, SMALL-AMP EXTRAS COMPARED TO DSPOT

tion step (lines 6 and 13) the algorithm selects those tests which kill mutants not killed
by other tests.

First of all, SMALL-AMP performs a mutation testing analysis on CUT and TC and
creates a list of live and uncovered mutants. Then SMALL- AMP selects those test methods
from U (the set of amplified test methods) which increase the mutation score, thus killing
a previously live or uncovered mutant. If multiple tests are killing the same mutant, the
shortest test is chosen. If there are multiple short tests, the test with the least changes is
chosen. In the DSPOT paper, a similar heuristic is chosen, which the authors refer to as
Focused Test Cases Selecting.

24 SMALL-AMP EXTRAS COMPARED TO DSPOT

While the design of SMALL-AMP was inspired by DSPoOT, the lack of explicit type
information forced us to make major changes but also permitted us to make improve-
ments. This section describes additional and diverging aspects of SMALL-AMP compared
to DSproT.

2.4.1 Dynamic Profiling to Collect Type Information

At the very beginning of the main algorithm (Algorithm 1 line 2), dynamic type pro-
filing is done only once by executing the original test methods and observing the actual
type information of variables.

In dynamically typed languages like Pharo, type annotations are not provided in the
source code. So, performing static analysis which depend on types are challenging. In
the context of SMALL-AMP, the most important step that relies on static code analysis is
input amplification. The other steps are either based on dynamic analysis like assertion
amplification, or depend on a third-party library such as selection based on mutation-
testing.

In input-amplification, we can group operators into two classes as:

1. Type sensitive operators. These operators heavily depend on the type information and
without type information they are ineffective or impossible. An important type sen-
sitive input amplifier in SMALL-AMP is method call addition. The types of variables
defined in a test method must be inferred when adding a valid method call. In ad-
dition, it needs the type information of parameters in the newly called method.

2. Type insensitive operators. These are all operators that are still applicable without the
type information. An example is the operators amplifying literals. These operators

are easy to adapt to a dynamic language because literals are distinguishable from a

29

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

token representation of the source code.

To obtain accurate type information we rely on the presence of manually written tests,
which should be representative for the normal behaviour of the program under test. We
exploit profiling tools (commonly available in modern program environments) to extract
accurate type information from the variables present in the program. The profiler is con-
figured to attach hooks to the relevant elements in the code. When these important code
elements are executed, the hooks are triggered, the profiler reads the information from
the program state and logs it.

In SMALL-AMP, we rely on two distinct profilers:

— A Method-proxy profiler, which collects the type of parameters in Class-Under-Test
methods.

— A Metalink based profiler which collects the type of variables in the test methods

To apply test amplification to other dynamically typed languages one needs compara-
ble profiling technology. Some languages provide reflexive facilities that can be exploited.
Python metaclasses for example allow one to transparently hook into the code proxy ob-
jects similar to the method-proxies adopted in SMALL-AMP. If such reflexive facilities
are not available, one can resort to the debugger APIs to inspect values of variables at
run-time.

Profiling by Method-proxies. For gathering the type of parameters in methods, SMALL-
AMP uses method proxies [42, 43]. Proxies are methods wrapping the methods in the
class under test and trigger instead of the original methods. They first log the arguments
and then pass the control to the original method (Listing 2.12).

Code Excerpt 2.12: Wrapper method to log the types of the parameters

1 ProfilingProxy >> run: aSelector with: anArray in: aReceiver

2 self logCalled: aSelector withArguments: anArray inType: aReceiver.

3 aReceiver withArgs: anArray executeMethod: method.

The main drawback of the Method-proxy profiler is that when a method is not covered
by the test class, it will not be profiled. SMALL-AMP reports the list of such uncovered
methods as one of its outputs. Using this report, a developer can decide to add new tests
for uncovered methods, make them private (using an adequate protocol / method tag),
or remove them.

Profiling by Metalinks. Pharo provides Metalinks as a fine-grained behavioral reflec-
tion solution [34, 44]. For collecting the type of variables in the test method, SMALL-AMP

30

2.4, SMALL-AMP EXTRAS COMPARED TO DSPOT

uses Metalinks.

A metalink contains an action to perform which is defined by providing a meta-object,
a selector, and also a control. Metalinks can be installed on one or more nodes in the ab-
stract syntax tree. Listing 2.13 shows how metalink is defined and installed on all variable

nodes in the test method.
Code Excerpt 2.13: Defining a metalink to log the variable node type after execution

1 link := Metalink new 7 nodes := testMethod ast allChildren
? metaObject: self; 8 select: #isVariable.

3 control: #after; 9 nodes do: [:node |

4 selector: #'logNode:context:object:’; " node link: link]

5 arguments: #(node context object).

Line 1 to 5 shows how Metalink is initialized. It says that after execution the AST node
containing this link, the method logNode:context:object: will be called with the

following arguments:

— node: The static representation of the AST node. It is used to get information such as
name and the position in the code.

— context: The context of execution including dynamic values of the variables and

stack. It is used to access to the values of temporary variables.

— object: The state of the object on which the metalink is installed (in this case the test

class). It is used to access to the values of instance variables.

In lines 7 to 10, all variable nodes in the test method are selected and then the link
is installed on them. After installing the metalinks, the test method is executed. When
the execution passes each variable node, the metalink is triggered and the logger method
is called. The logger method extracts the type information from the context, logs them
and returns. Then, the execution on the test method continues until the end or another

metalink is triggered.

How the collected data is used. The collected data from each profiler is stored as a
dictionary object mapping the identifier of the profiled data to its type and a list of sample
values (only for primitive types). In SMALL-AMP, there are two dictionaries, for the type
of method parameters and the type of variable nodes. During the input amplification,

when type information is needed, the corresponding dictionary is consulted.

31

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

24.2 Test Input Reduction

The input amplification step quickly produces a large number of new test inputs with
the inner loop of Algorithm 1 —p. 24 —lines 7 to 13. For instance, if the number of inputs
in the first iteration is |v|, this number in the second iteration grows to |v| x |v|, and in
iteration i reaches |v|'. We refer to this problem as test-input explosion. Since the number of
test inputs grows exponentially, either the number of transformations (N;terqtion) Needs
to be chosen as small values for being feasible to try all generated test input, or we need
to reduce the number of inputs by using a heuristic to select a limited number of them.

SMALL-AMP uses a random selection heuristic which maximises diversity in order
to select a maximum number (Nmaxnputs) Of test inputs. This selection is different from
selection by mutation score (Section 2.3.4); we name it reduction.

SMALL-AMP reduction considers two techniques:

— a competitive selection. a portion of test inputs (by default half of Nmaxinputs) are selected
completely randomly from the output of all input amplifiers.

— a balanced selection in the remaining portion, SMALL-AMP assures that all input am-
plifiers are contributed by selecting from their outputs regarding an assigned weight.
In SmMALL-AMP, all input amplifiers are assigned a weight (it is 1 by default for all
amplifiers). This maintains a diversity in the selected test inputs.

Why diversity is important? Each input-amplifier algorithm performs transformations
based on different considerations. As a result, the number of generated tests is different
for input amplifiers. If the test inputs are selected purely random, the result will be dom-
inated by generated tests from amplifiers generating more outputs. Therefore, we need
to have a balance between the outputs from each amplifier.

As an example, we compare the number of new test inputs from a statement-removal
amplifier and a statement-addition amplifier. The former has a O(S) complexity where S is
the number of statements in the test method. It means that if the number of lines in the
test is increased, the number of new test inputs generated by this input-amplifier shows a
linear increase. However, the latter has a O (S« M) complexity where M is the number of
methods in the class under test. It means that the increase in the outputs depends on not
only the numbers of statements in the test, but also the number of methods in the class-
under-test. Now, if we select a number of generated test methods randomly, the outputs
from the latter operator are more likely to be selected; so the result will be dominated by
the result from the second input-amplifier.

32

2.5. EVALUATION

2.4.3 Improving Readability Via Post-Processing

In order to make the generated tests more readable, SMALL-AMP adds a few steps
after finishing the main loop of the algorithm (line 14 in Algorithm 1 — p. 24). These
steps do not have any effect on the mutation score of the amplified test suite; they only
make the test cases more readable for SMALL-AMP users.

Assertion reduction. As described in Section 2.3.3, SMALL- AMP generates all possible
assertions for all observation points. Consequently, the generated test methods easily
include hundreds of new assertions most of which appear redundant. The assertion re-
ducer is a post-processing step that discards all assertions that do not affect the mutation

score.

Each amplified test method encompasses the identifier of all newly killed mutants.
SMALL-AMP surrounds all assertion statements by exception handling blocks to catch
exceptions, especially AssertionFailure raised from the assertion statements. Then,
the mutation testing framework is run using the newly killed mutants only. When an
AssertionFailure is caught, the identifier of the assertion is logged as important. Fi-
nally, SMALL-AMP keeps only important assertions and remove all other assertion state-
ments.

In some cases, an assertion may call an impure accessor methods, i.e., an accessor
method that alters the internal state of the object. When such assertions are removed,
some of the next assertions may fail. SMALL-AMP runs each test method after remov-
ing unnecessary assertions, to confirm that they remain green and the mutants are still
killed by the test. If the confirmation failed, the assertion reduction is not successful and
all removed assertions are reinserted.

Comply with coding conventions. Before processing a test method, SMALL-AMP breaks

complex statements (chains of method invocations and cascades) into an explicit sequence
of message sends to permit observing state changes (see Listing 2.10 — p. 27). This is nec-
essary to observe state changes during assertion amplification. In this post-process step,
SMALL-AMP cleans up all unused temporary variables, and chooses a better name for the

remaining variables based on the type of the variable. If possible, it reconstructs message

chains and cascades to make the source code more readable and conform to Pharo coding

conventions.

33

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

25 EVALUATION

To evaluate SMALL-AMP, we replicated the experimental protocol introduced for DSpoT
[9]. We adopted a qualitative experiment by sending pull-requests in GitHub for evalu-
ating whether the generated tests are relevant to the developers or not (RQ1). Next, we
use a quantitative experiment to evaluate the effectiveness of SMALL-AMP (RQ2, RQ3
and RQ4). The order of RQ1 to RQ4 is exactly the same order in [9] to facilitate the com-
paring and it does not reflect the importance of the research questions. In RQ5, we make
a detailed comparison of our results versus the ones in the original experiment. Finally,
in RQ6, we report the time cost of the running SMALL- AMP, with special attention to the
performance penalty induced by the additional steps (profiling and oracle reduction).

RQ1: Pull Requests. Would developers be ready to permanently accept amplified test cases
into the test repository? We create pull-request on mature and active open-source
projects in the Pharo ecosystem. We propose the improvement as a pull request on
GitHub, comprising improvements on an existing test (typically due to assertion
amplification) or new tests (typically the result of input plus assertion amplifica-
tion). We interpret the statements where extra mutants are killed to provide a
manual motivation on why this pull request is an improvement. The main con-
tributors then review, discuss and decide to merge, reject or ignore the pull re-
quest. The ratio of accepted pull requests gives an indication of whether develop-
ers would permanently accept amplified test cases into the test repository. More
importantly, the discussions raised during the review of the pull request provides

qualitative evidence on the perceived value of the amplified tests.

RQ2: Focus. To what extent are improved test methods considered as focused? We assess
whether the amplified tests do not overwhelm developers, by assessing how many
extra mutants the amplified tests kill. Ideally, the amplified test method kills only
a few extra mutants as then we consider the test focussed (cfr. Section 2.3.4 —p. 28).
We present and discuss the proportion of focused tests out of all proposed ampli-
fied tests. An amplified test case is considered focused if, compared to the original,
at least 50% of the newly killed mutants are located in a single method.

RQ3: Mutation Coverage. To what extent do the amplified test classes kill more mutants than
developer-written test classes? We assess whether the amplified tests cover corner
cases by using a proxy — the improvement in mutation score via the mutation
testing tool MUTALK [45]. We first run MUTALK on the original class under test
(CUT) as tested by the test class (TC) to compute the original mutation score. We
distinguish between strong tests and weaker tests, by splitting the set of test classes
in half after sorting according to the mutation score. Next, we amplify the test

34

2.5. EVALUATION

class and compute the new mutation score. We report the relative improvement

(in percentage).

RQ4: Amplification Steps. What is the contribution of input amplification and assertion am-
plification (the main steps in the test amplification algorithm) to the effectiveness of the
generated tests? Here as well we use mutation score as a proxy for the added value
of both the input and assertion amplification step and here as well we distinguish
between strong and weak test classes. Therefore, we compare the relative improve-
ment (in percentage) of assertion amplification against the relative improvement
of input and assertion amplification combined. We report separately which am-
plification operators have the most impact, paying special attention to the ones
which are sensitive to type information.

RQ5: Comparison. How does Small-Amp compare against DSpot? To analyse the differ-
ences in result between SMALL-AMP and DSPOT, we compare the qualitative and
quantitative results reported in the DSPOT paper against the results we obtained
for RQ1 to RQ4.

RQ6: Time Costs. What is the time cost of running Small-Amp, including its steps? To study
the applicability of SMALL-AMP, we analyse the time cost of all runs in the quan-
titative analysis. We compare the relative time cost of each step, paying special
attention to the extra overhead of profiling and oracle reduction.

2.5.1 Dataset and Metrics

Selecting a dataset. Firstly, we collected candidate projects under test from different
sources: (1) We looked at the projects used in a recent paper focusing on testing in Pharo
[46]. (2) We looked at the projects introduced in the "Innovation Technology Awards"
section of the ESUG conference from the year 2014. (3) We used GitHub API to find the
Pharo projects hosted on GitHub with more than 10 forks and 20 stars.

Then we applied a set of inclusion and exclusion criteria. Our projects need to be
hosted in GitHub and written in Pharo. They should include a test suite written in sUnit,
and can run in Pharo 8 (stable version). For not being overwhelmed with resolving
dependencies, they need to support installation with Metacello and not depend on
system-level packages like databases or a special installation service. We discarded all

libraries that are part of the Pharo system such as collections, or compiler.

Based on the mentioned criteria, we randomly selected 20 projects. Then, we rejected
projects having less than 4 green test classes with known class under test and mutation
coverage less than 100, and ended up with 13 projects (Table 2.2).

Similar to the experimental protocol in DSpPOT [9], we select randomly 4 test classes, 2
high mutation coverage and 2 low, for each project. If a project lacks at least 2 test classes

35

SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

CHAPTER 2.

Table 2.2: Descriptive Statistics for the Dataset Composed of 13 Pharo Projects and the selected test classes

Project commit #test #test Description Test classes
1d classes methods (Based on Gihub page) in the experiment
Bloc f69c94b 6 44 Ul infrastructure & framework BlLayoutExactResizerTest’, BlShortcutTest?,
for Pharo BlInsetsTest!, BlCompulsoryCombinationTest!
DataFrame 7b222e2 6 497 Tabular data structures for data DataFrameCsvReaderTest",
analysis DataFrameJsonWriterTest”,
DataFrameTypeDetectorTest”,
DataFrameJsonReaderTest”
DiscordSt 44be9b7 43 532 An API wrapper for Discord DSUserTest”, DSDetectChannelCommandTest”,
DSEmbedTest!, DSSendUserTextMessageltemTest!
GraphQL 3e57ca8 9 409 A Smalltalk GraphQL Implemen- GQLSchemaGrammarTest”,
tation GQLSingleAnonimousQueryEvaluatorTest”,
GQLRequestGrammarTest”, GQLArgumentsTest!
MaterialDesignLite 45f2f4d 77 484 Binds the google’s Material De- MDLPanelSwitcherButtonTest",
sign Lite project to Seaside and MDLPaginationComponentTest”,
build widgets on top of Material MDLNestedListTest!, MDLDialogTest
Design
openponk bfcb84b 19 128 Modeling platform OPRTElementsConstraintTest",
OPNullSerializerTest", OPProjectTest,
OPNavigatorAdaptersTest!
petitparser2 86243ea 47 535 A high-performance top-down WebGrammarTest", PP2BufferStreamTest",
parser PP2ParsingGuardTest!, PP2BenchmarkTest!
pharo-launcher flce748 38 216 Manager for pharo images PhLAboutCommandTest",
PhLCopyIlmageCommandTest”,
PhLDirectoryBasedImageRepositoryTest!,
PhLLocalTemplateTest!
PolyMath 205dcfc 57 605 Scientific Computing with Pharo PMBinomialGeneratorTest”,
PMBernoulliGeneratorTest”, PMFixpointTest!,
PMExponentialDistributionTest!
Roassal3 69b5645 18 152 Visualization Engine RSLabelGeneratorTest”, RSUMLClassBuilderTest”,
RSDraggableCanvasTest!, RSAthensRendererTest!
Seaside 3038b49 55 919 Framework for developing so- WAKeyGeneratorTest”, WACookieTest",
phisticated web applications WAXmlCanvasTest!, WAErrorHandlerTest'
Telescope a4el28a 11 75 Engine for efficiently creating TLExpandCollapseNodesActionTest",
meaningful visualizations TLHideActionTest", TLDistributionMapTest!,
TLLegendTest!
zinc ee0d071 27 292 HTTP Components to deal with ZnEasyTest", ZnMessageBenchmarkTest",

the HTTP networking protocol

ZnStatusLineTest!, ZnBivalentWriteStreamTest!

36

2.5. EVALUATION

having high (or low) mutation score, we select from lower (higher) covered classes in-
stead. As result, we have 52 test classes, 27 of them considered strong (high mutation
score) and 25 considered weaker (lower mutation score).

Table 2.2 shows the descriptive statistics of the selected projects with a short descrip-
tion, area of usage, number of test classes and test methods and their version based on git
commit id, and selected test classes (a superscript " is used to indicate a test class with
high mutation coverage, and ! is used to indicate low mutation coverage).

Detecting the class under test. SMALL-AMP needs a test class and its class-under-test as
inputs. Finding a mapping between a test and a class can be challenging. As the default
mapping heuristic, we rely on the pattern used by Pharo IDE to detect a test method
for a class. The Pharo code browser finds a unit test for a class as follows: it adds the
postfix "Test" to the name of the class. If there is such class loaded in the system that
is a subclass of TestCase it is considered as the unit test class. If this heuristic is not
followed in a project, one can explicitly define the class-under-test by overriding a hook
method in test classes.

Metrics. We adopt the same metrics used in the experimental protocol in [9]:

* All killed mutants (#Mutants.killed): The absolute number of mutants killed by
a test class in a given class under test.

* Mutation score (%M .Score): The ratio (in percentage) of killed mutants over the
number of all mutants injected in the class under test.

#Mutants.killed
#Mutants.All

%M.Score = 100 x

* Newly killed mutants (#M utants.killed,c,): The number of all new mutants that
are killed in an amplified version of the test class.

#Mutants.killedye, = #FMutants.killedgmpiifiea — #FMutants.killedoriginal

* Increase killed (%Inc.killed): The ratio (in percentage) of all newly killed mutants
over the number of all killed mutants.

#Mutants.killed,,eq

Ine.killed = 100
Rlnc.kille * ¥ Mutants killedorigina

37

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

Project Status Pull request url

PolyMath Merged https://github.com/PolyMathOrg/PolyMath/pull/178
Pharo-Launcher Merged https://github.com/pharo-project/pharo-launcher/pull/500
DataFrame Merged https://github.com/PolyMathOrg/DataFrame/pull/132

Bloc Merged https://github.com/feenkcom/Bloc/pull/7

GraphQL Merged https://github.com/OBJECTSEMANTICS/GraphQL/pull/12
Zinc Merged https://github.com/svenvc/zinc/pull/58

DiscordSt Merged https://github.com/JurajKubelka/DiscordSt/pull/75
MaterialDesignLite Merged https://github.com/DuneSt/MaterialDesignLite/pull/308
PetitParser2 Open https://github.com/kursjan/petitparser2/pull/64
OpenPonk Open https://github.com/OpenPonk/openponk/pull/35

Telescope Open https://github.com/TelescopeSt/Telescope/pull/162

Table 2.3: Pull requests submitted on GitHub

2,52 RQ1 --- Pull Requests

In this experiment, we choose an amplified test method for each project and send a
pull-request in GitHub. Before the experiment, we sent a pilot pull-request to learn how
developers deal with external contributions. Firstly, we explain the pilot pull-request and
then all pull-requests are described one by one. Table 2.3 demonstrates the status as well
as the url of each pull-request per project.

Pull-requests preparation

Each pull-request contains a single amplified test method®. In order to attract the
developers’ interest, we try to select a test method testing an important class/method. We
select the class under test by scanning their name and relating the names to the context
of the project. For example, we know the project Zinc is a HITP component, so the
class ZnRequest should be a core class. We run the tool on the selected test class, and
then scan the generated test methods to select one of them. In selecting an amplified test
method, we still consider the vocabularies in the name of the original test method. We
also prioritize the tests with more mutants killed.

In addition, we need to explain why a test is valuable in each pull-request. Since some
developers may not be familiar with the concept of mutation testing, we need to under-
stand the test in advance and explain it in simpler words. We inspect at the selected
test method and try to understand the effect of the killed mutant and come up with an
easy to understand explanation. Examples of explanations are: increasing branch cover-
age (PolyMath), raising an exception (pharo-project, DataFrame), covering new
state revealing methods (Bloc, Zinc), reducing technical debt (GraphQL).

After selecting an amplified test method, we perform small corrections on the gen-

“4Exception for the project MaterialDesignLite where we 2 very similar test methods in a single pull
request

38

https://github.com/PolyMathOrg/PolyMath/pull/178
https://github.com/pharo-project/pharo-launcher/pull/500
https://github.com/PolyMathOrg/DataFrame/pull/132
https://github.com/feenkcom/Bloc/pull/7
https://github.com/OBJECTSEMANTICS/GraphQL/pull/12
https://github.com/svenvc/zinc/pull/58
https://github.com/JurajKubelka/DiscordSt/pull/75
https://github.com/DuneSt/MaterialDesignLite/pull/308
https://github.com/kursjan/petitparser2/pull/64
https://github.com/OpenPonk/openponk/pull/35
https://github.com/TelescopeSt/Telescope/pull/162

2.5. EVALUATION

erated code, as a normal Pharo developer would do when see an auto-generated code.
These corrections include choosing more meaningful names for the test method, vari-
ables and string constants, or deleting the superfluous lines, and adding comments for
small hints.

All preparation steps are performed by the first author and are reviewed by the second
and third authors. In the time of experiment, the familiarity of the first author about the
projects was only studying parts of provided readme description in GitHub. So, he was
totally unfamiliar with the projects, he had not contributed to any of the projects, and had
never reviewed their code. In fact this shows although there might be more interesting
tests for experts, a normal Pharo developer with limited knowledge about the projects
is able to review the output and detect some useful test methods that are merged to the
projects. The preparation of the tests was quite straightforward and normally did not
take more than one hour for each project.

Pilot pull-request

Initially, we sent a pull-request® to Seaside project containing the suggestion for
adding a set of new lines into an existing test method. The main goal of this pull-request
was to learn more about how developers deal with pull-requests from strangers.

We consider the fact that Seaside project is a framework for web application de-
velopment and we scanned the name of classes and selected WARequestTest because
we expected this test class is related to a core class-under-test which interacts with Http
requests. Then, we amplified the test class and selected the test method with the most
mutants killed.

The selected new test method was able to kill 6 new mutants and was the result of a
cooperation between assertion amplification (Section 2.3.2) and input amplification (sec-
tion 2.3.3). We merged the parts of amplified test into the original test method (#testPostFields
The test is shown in Figure 2.1. Lines 5 to 10 are produced by assertion amplification on
the original test method (#testPostFields). Line 15 is added by the method-call-adder
input-amplifier.

We wrote a description for the pull-request trying to explain why this test is useful.
We also expressed that the test method is the output of a tool, because it is important to

inform developers in advance that they are participating in an experiment.

After a few days the test was merged by one of the project’s developers. Moreover,
the developer left a valuable comment containing the following points:

* The suggestions do not fit this test method: The developer said “I expected the test-

Shttps://github.com/SeasideSt/Seaside/pull/1215

39

https://github.com/SeasideSt/Seaside/pull/1215

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

testPostFields

| request headers |

request := WARequest method: 'POST' uri: '/foo?bar=1'.

self
deny: request isXmlHttpRequest;
assert: request headers class equals: WAHeaderFields;
assert: request remoteAddress isNil;
assert: request isPost;

+ o+ o+ o+ o+ o+

assert: request sslSessionId isNil.
headers := Dictionary new.
headers at: 'content-type' put: WAMimeType formUrlencoded greaseString.
request setHeaders: headers.
request setBody: 'baz=2&bar=3"'.
+ self should: [request bodyDecoded] raise: WAIllegalStateException.
request setPostFields: (WARequestFields new at: 'baz' put: '2'; at: 'bar'
put: '3'; yourself).

Figure 2.1: Improvements on an existing test method submitted to SEASIDE

Postfields unit test method to focus on testing the postFields”. We agree with his remark.
If the suggested changes do not have a semantic relation to the original test method,
it should be moved to another test or a new one. We considered this advice in the
subsequent pull-requests.

* Usefulness of the result to refactoring the tests: The developer also stated “the
result of the test amplification makes me evaluate the existing unit tests and refactor them to
improve the test coverage and test factorization”. This shows that even if the immediate

results of test amplification are not tidy enough, they still help refactor existing tests.
Pull-request details

In the following parts we describe the details on the pull-requests on each project.

PolyMath. We sent a pull-request® to this project containing the suggestion for adding
anew test method in the test class PMVectorTest. The suggested test method is shown
in Figure 2.2.

This test method is testing the call of the method #householder on two different

vectors. Before this test, the method #householder was not covered in this test class.

The method-call-adder input amplifier adds calls to an existing method in the public
interface of a class to the test to force the object under test in a new state. We merged

Shttps://github.com/PolyMathOrg/PolyMath/pull/178

40

https://github.com/PolyMathOrg/PolyMath/pull/178

2.5. EVALUATION

+ PMVectorTest >> testHouseholder [

+ | uw |

+ u := #(-1 @ 1) asPMVector. "“x <= @' when x = -1"

+ w := u householder.

+ self

+ assert: (w at: 1) equals: 1.7071067811865475;

+ assert: (w at: 2) asArray equals: #(1.0 -0.0 -0.4142135623730951)
+ u := #(1.00001 2.00007) asPMVector. "'x <= @ when x = 1.00001"

+ w := u householder.

+ self

+ assert: (w at: 1) equals: 0.5527953485259909;

+ assert: (w at: 2) asArray equals: #(1.0 -1.6180158992689828).
+ 1

Figure 2.2: A new test method submitted to POLYMATH

two of them in a new test method that execute two different branches in the test method
(based on the condition x < 0). The former vector (line 75 in Figure 2.2) forces the
ifTrue branch and the latter vector (line 80 in Figure 2.2) forces ifFalse branch. Note that

the comment text (line 75) is added manually to increase the readability of the test.

The original test method included two assertions to confirm the type of the returned
value of the method (self assert: w class equals: Array). The developers
asked us to omit these assertion statements. We changed the pull request accordingly and

it was merged immediately.

Pharo-Launcher. We sent a pull-request’ to this project containing the suggestion for
adding a new test method in the test class PhLImport ImageCommandTest. The sug-

gested test method is shown in Figure 2.3.

PhLImportImageCommandTest >> testImportNonExistingImage [
| command |
command := PhLImportImageCommand new.

presenter := presenter

+
+

+

+ command context: presenter.

+

+ requestAnswer: presenter fileSystem / 'tmp' /
.

does_not_exists.image'

+

self should: [command execute] raise: FileDoesNotExistException
+ 1

Figure 2.3: A new test method sent in a pull-request to the project Pharo-Launcher

This test is produced from the original test method of testCanImportAnImage

"https://github.com/pharo-project/pharo-launcher/pull/500

41

https://github.com/pharo-project/pharo-launcher/pull/500

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

which verifies an image can be imported using a valid filename. SMALL-AMP applies a
literal mutation on the file name (*foo.image’ changed to *fo.image’) that results
an invalid filename and consequently raising a FileDoesNotExistException error.
While preparing the test for the pull-request, we modified the name of the test method
and the file to be more meaningfull.

The pull-request was merged in the same day with this comment: “Indeed, the test you
are adding has a value. Good job SmallAmp”.

DataFrame. We senta pull-request® to this project containing the suggestion for adding
anew test method in the test class Dat aFrameTest. The suggested test method is shown
in Figure 2.4.

+ DataFrameTest >> testRangeError [
+ self should: [df range] raise: MessageNotUnderstood "Instance of
Character did not understand #Barcelona"

+ 1

Figure 2.4: A new test method sent in a pull-request to the project DataFrame

The variable df is an instance variable that has been initialized in the # set Up method.
It includes a tabular data mixed from numbers and texts. The initial amplified test method
was generated by adding the method #range as the first statement in one of the original
test methods. We recognized the remaining statements as superfluous lines and removed
all of them. We also added a comment including the exception description.

This test method makes it explicit that calling the method #range on a DataFrame
object containing non-numerical columns throws an exception. With this new test it be-

comes an explicit part of the contract for DataFrame.

The pull-request was merged after a few weeks. A developer of the project com-
mented: “Small-amp seems to be a very valuable tool!”

Bloc. We sent a pull-request’ to this project containing the suggestion for adding a new
assertion in an existing test method in the test class BlLKeyboardProcessorTest. The

suggested test method is shown in Figure 2.5.

By calling the state revealing method #keystrokesAllowed, the assertion verifies
the correctness of the object state after an #processKeyDown: event. This test is the re-
sult of combining assertion-amplification with oracle-reduction. Normally, the assertions-

amplification step generates lots of assertions, and the oracle-reduction module removes

8https://github.com/PolyMathOrg/DataFrame/pull/132
9nttps://github.com/feenkcom/Bloc/pull/7

42

https://github.com/PolyMathOrg/DataFrame/pull/132
https://github.com/feenkcom/Bloc/pull/7

2.5. EVALUATION

BlKeyboardProcessorTest >> testProcessKeyDown [
| eventA |

eventA := BlKeyDownEvent new.
eventA key: BlKeyboardKey a.

processor processKeyDown: eventA.
+ self assert: processor keystrokesAllowed.
self assert: (processor buffer hasEvent: BlKeyboardKey a)

Figure 2.5: A new assertion suggested in a pull-request to the project Bloc

all assertion statements that do not kill any mutant. So, the test code did not need any
special preparation and we only need to provide a comment to explain the test method.

The pull-request was also merged after a few weeks with a positive comment.

GraphQL. We sent a pull-request!? to this project containing the suggestion for adding
a new test method in the test class GOLSSchemaNodeTest. The suggested test method
is shown in Figure 2.6.

values: [Int !]

+ GQLSSchemaNodeTest >> testDirectives [

+ schema := self

+ parseSchema:

+ "type A {

+ id: InternalCount
+ isB: BooleanType
+ size: Int

+ idA: ID_A

+

+

params (name: StringName, prom:
FloatingPoint, key: String): [Int]
105

self assert: schema directives class equals: Array.
self assert: schema directives size equals: 2.
self
assert: (schema directives at: 1) class
equals: GQLSDirectiveNode.

+ o+ o+ o+ o+ o+ 4+ o+

self assert: (schema directives at: 1) name equals: 'include’.

a e . . ' . o . an 0 B B

Figure 2.6: A new test method suggested in a pull-request to the project GraphQL

This test method verifies the return value of direct ivesinan schema object. There-

Ohttps://github.com/OBJECTSEMANTICS/GraphQL/pull/12

43

https://github.com/OBJECTSEMANTICS/GraphQL/pull/12

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

turned value is generated in the method GQL.SSchemaNode >> initializeDefaultDirectives
and contains technical debt. This test method guards against future evolutions which
may break assumptions made by clients. We selected a meaningful name for the test and
wrote a comment text. We also added back some of the assertions removed by oracle-

reduction step. The pull-request was merged after a few days.

Zinc. Wesenta pull-request!! to this project containing the suggestion for adding a new
test method in the test class ZnRequestTest. The suggested test method is shown in
Figure 2.7.

+ tests
+ testAcceptsEncodingGzip

+ | request |

+ request := ZnRequest new.

+ request setAcceptEncodingGzip.

+ self assert: request acceptsEncodingGzip ©

Figure 2.7: A new test method suggested in a pull-request to the project Zinc

This test method calls the method #setAcceptEncodingGzip on an request ob-
ject. Then calls another method #acceptsEncodingGzip to verify the change. Both of

these methods were not covered in this test class before this test method.

This method is built by the cooperation of different modules of SMALL-AMP: First,
method-call-adder input amplifier adds a new method call. Then assertion amplification in-
serts a set of new assertions after the added method call. And finally, after the main
amplification loop is finished, the oracle-reduction step rejects all superfluous assertion
statements. This test method did not need much preparation and we only selected a

meaningful name for it. The pull-request was merged in the same day.

DiscordSt. We sent a pull-request!? to this project containing the suggestion for adding
a new test method in the test class DSEmbedImageTest. The suggested test method is

shown in Figure 2.8.

The method covers the method #extent which was not covered in the test class be-
fore. This test method did not need much preparation and we only selected a meaningful

name for it. The pull-request was merged after a few days.

MaterialDesignLite. We sent a pull-request'® to this project containing the suggestion
for adding two new test methods in the test class MDLCalendarTest. The suggested

Upttps://github.com/svenve/zinc/pull/58
Zhttps://github.com/JurajKubelka/Discordst/pull/75
Bhttps://github.com/DuneSt/MaterialDesignLite/pull/308

a4

https://github.com/svenvc/zinc/pull/58
https://github.com/JurajKubelka/DiscordSt/pull/75
https://github.com/DuneSt/MaterialDesignLite/pull/308

2.5. EVALUATION

+ tests

+ testExtent

+ object := self newObjectToTest.

object width: 41.

object height: 42.

self assert: object extent equals: 41 @ 42

+ o+ o+

Figure 2.8: A new test method suggested in a pull-request to the project DiscordSt

test methods are shown in figure 2.9.

Both of test methods are similar and are created by adding a new method call to
the test input. The tests are created for the Calendar widget and verify correctness of
#selectPreviousYears and #selectNextYears methods. In these test methods,
the oracle-reduction step removed most of the assertions and it only preserved the first
assertion killing the mutant: self assert: calendar yearsInterval fourth
equals: 2006. Wereplaced the assertions with more human readable assertions (as-
serting first and last of the interval). The pull-request was merged the day after.

MDLCalendarTest >> testSelectNextYears [
calendar currentDate: (Date year: 2016 month: 4 day: 10).
calendar selectNextYears.
self assert: calendar yearsInterval first equals: 2021.
self assert: calendar yearsInterval last equals: 2029

1

MDLCalendarTest >> testSelectPreviousYears [
calendar currentDate: (Date year: 2016 month: 4 day: 10).
calendar selectPreviousYears.
self assert: calendar yearsInterval first equals: 2003.

+
+
+
+
o
+
+
+
+
+
+ self assert: calendar yearsInterval last equals: 2011
+

1

Figure 2.9: Test methods sent in a pull-request to the project MaterialDesignLite

PetitParser2. We senta pull-request'* to this project containing the suggestion for adding
a new test method in the test class PP2NoopVisitorTest. The suggested test method
is shown in Figure 2.10.

The test method tests the value of currentContext in result object. This test
method resulted from assertion amplification combined with oracle-reduction. The test
had two assertions: self deny: visitor isRootandself assert: visitor
currentContext class equals: PP2NoopContext. We added back some of re-

moved assertions relating to currentContext and alsoremoved the se1f deny: visitor

Mnttps://github.com/kursjan/petitparser?

45

https://github.com/kursjan/petitparser2

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

isRoot to make the test more focused. The pull-request is not merged up to the date of
writing (November 21, 2022).

o
"
"
"
"
"
"
"

]

self assert:
self assert:
self assert:
self assert:

PP2NoopVisitorTest >> testCurrentContext [
parser := $a asPParser.
result := visitor visit: parser.

result currentContext class equals: PP2NoopContext.

result currentContext properties isNil.

result currentContext node isNil.

result currentContext propertiesCopy isNil

Figure 2.10: A test method sent in a pull-request to the project PetitParser2

OpenPonk. We senta pull-request!® to this project containing the suggestion for adding

a set of new lines in an existing test method in the test class OPDiagramTest. The sug-

gested test method is shown in Figure 2.11.

OPDiagramTest >> testModel [

| model project |

model := OPTestContainerModel new.
+ view := OPDiagram new.
+ self assert: view modelType equals: 'UndefinedObject’.
+ self assert: view model isNil.
+ self assert: view modelName equals: 'UndefinedObject’.
+ view model: model.
+ self assert: view modelType equals: 'OPTestContainerModel'.
+ self assert: view model class equals: OPTestContainerModel.
+ self assert: view model name equals: 'container'.
+ self assert: view modelName equals: 'container'.
self assert: view model equals: model

Figure 2.11: Changes on an existing test method - OpenPonk

The original test method is presented in Listing 2.14.

1 OPDiagramTest >> testModel |

2 | model project |

3 model := OPTestContainerModel new.
4 view := OPDiagram new model: model.
5 self assert: view model equals: model

Code Excerpt 2.14: Original test method - OpenPonk

Bhttps://github.com/OpenPonk/openponk

46

https://github.com/OpenPonk/openponk

2.5. EVALUATION

SMALL-AMP has broken the statement at line 4 in Listing 2.14 (the result is visible in
lines 104 and 108 in Figure 2.11) and then added a series of assertions. Since this test is
dedicated to test mode 1, we kept all assertions reflecting the state of mode 1 and removed
other assertions. So, the assertions in lines 104 to 107 verify the state of a freshly initialized
OPDiagramobject (Where modelis nil), and the assertions in lines 109 to 112 verify the
public API through the accessor methods. The pull-request is not merged up to the date
of writing this chapter.

Telescope. We sent a pull-request!® to this project containing the suggestion for adding
a new test method in the test class TLNodeCreationStrategyTest. The suggested
test method is shown in Figure 2.12.

TLNodeCreationStrategyTest >> testCopyAsSimpleStrategy [
| aTLNodeCreationStrategy |
aTLNodeCreationStrategy := strategy copyAsSimpleStrategy.
self
assert: aTLNodeCreationStrategy class
equals: TLNodeCreationStrategy.

self assert: aTLNodeCreationStrategy compositeProperty isNil.
self assert: aTLNodeCreationStrategy childrenSortingStrategy isNil.
self assert: aTLNodeCreationStrategy compositeChildrenLayout isNil.

+
+

+

+

+

+

+ self assert: aTLNodeCreationStrategy childrenStrategy isNil.
+

+

+

+ self assert: aTLNodeCreationStrategy nodeStyle isNil

+

1

Figure 2.12: A test method suggested in a pull-request to the project Telescope

The test method verifies the state of the returned object from calling copyAsSimpleStrategy.
This method is never covered in the test class. It also contain technical debt. The call to
copyAsSimpleStrategy is added by method-call-addition amplifier and the state of
the returned value is asserted via assertion-amplification. We kept all assertions related
to the returned value, and removed all other superfluous lines to make the test more

readable. The pull-request is not merged up to the date of writing this chapter.

Answer to RQ1: We submitted 11 pull requests through GitHub to propose
amplified test methods to developers. In 8 cases, our request was accepted by the
developers and the test has been merged to the code base. In the three remaining
cases our pull request was ignored. Moreover, we received qualitative feedback from

developers acknowledging the relevance of amplified test methods.
N J

https://github.com/TelescopeSt/Telescope

a7

https://github.com/TelescopeSt/Telescope

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

2.5.3 RQ2--- Focus

We use the results in Table 2.4 for answering the next research questions. These tables

present the result of test amplification on all selected classes selected in our dataset. In

Table 2.4, the first 104 rows represent test amplification for test classes with high muta-

tion coverage, while the remaining rows show the test classes with poor mutation cover-

age. SMALL-AMP algorithm (Algorithm 1) has a stochastic nature, especially test input

reduction (Section 2.4.2), which heavily depends on randomness. Therefore, we ran the

algorithm three times on each test class to observe the effect of randomness on the results.

In addition, we ran the algorithm another time by disabling the profiling and the type

sensitive operator for investigating the effectiveness of type profiler (denoted by o o o).

The columns in this table indicate:

48

Id: Used as a reference for the row in the table.

Class: The name of the test class to be amplified.

Test methods original: The number of test method in the test class before test ampli-
fication.

loc CUT: The number of lines in the class under test.

% Mut. score: The mutation score (percentage) of the test class before test amplifi-
cation.

New test methods: The absolute number of newly generated test methods after test
amplification.

Focused methods: The absolute number of focused methods in the generated test
methods.

Killed mutants original: The absolute number of killed mutants by the test class
before test amplification.

Newly killed amplified: The absolute number of newly killed mutants by the test
class after test amplification.

% Increase killed amplified: The increase (in percentage) of killed mutants by the test
class after test amplification.

Newly mutant A-amp: The absolute number of newly killed mutants only by Asser-
tion amplification (Njteration = 0 in Algorithm 1).

% Increase killed only A-amp: The relative increase (in percentage) of killed mutants
only by assertion amplification.

Newly killed type aided: The absolute number of newly killed mutants by type sen-
sitive input amplifiers.

% Increase killed type aided: The relative increase (in percentage) of increase killed
mutants by type sensitive input amplifiers.

Time: The duration of test amplification process in the hours-minutes-seconds (h:m:s)

EVALUATION

2.5.

49

[€:00:0 000 0 0 0 000 0 8z 0 0 coo b
9€:00-0 000 0 0 0 000 0 8L 0 0 34
S€:00:0 00°0 0 0 0 000 0 8L 0 0 [44
+€:00:0 000 0 0 0 000 0 8L 0 0 L8'€8 88T 91 IsajueangIayngedd It
0rL:9I:0 000 0 0 0 000 0 8I 0 0 coo 0Ob
[gad] Uit 14 0 0 it 4 81 [4 4 6¢
12:€4:0 jalAs 4 0 0 it 4 81 4 [4 8¢
15:9%:0 11t 4 0 0 IT1L 4 8T 4 4 06 8¢ 48 ISOLIPWWEIDGIM LE
I0°1I°0 000 0 0 0 000 0 96 0 0 ©ooco 9¢
20-veT ST9 9 0 0 6T°L L 96 L L S€
§S°CTT ST9 9 0 0 6T'L L 96 L L e
ST:9T:C ST'9 9 0 0 6T L L 96 L L €6 oy LS ISALIPWWERIDLWIPSTOD €€
20:90:0 000 0 0 0 s€Y I (14 I I coo 7€
S1:50:0 00°0 0 0 0 0L'8 4 €T 4 4 1€
9¢:50:0 000 0 0 0 0L'8 4 €T 4 [4 0€
12:50:0 000 0 0 0 0L'8 4 €C 4 4 4T°CS 9s (44 ** nYsnowuouydBuISTOD 6T
0rL#0:0 000 0 0 0 000 0 99 0 0 ©coco 8T
20:%0:0 000 0 0 0 000 0 9s 0 0 LT
60:%0:0 000 0 0 0 000 0 9s 0 0 9T
L0:+0:0 000 0 0 0 000 0 9s 0 0 §596 (474} 6T IS9LIBWWEIDISANDIYTIOD ST
91820 000 0 0 0 000 0 or 0 0 ©o0o ¢
S€:9%:0 000 0 0 0 000 0 ot 0 0 €T
0Z:¥¥:0 000 0 0 0 000 0 ot 0 0 [44
§T-9v:0 000 0 0 0 000 0 [0) 0 0 £999 S9 [0) IsaLAsequz 1T
$0°10°0 000 0 0 0 000 0 14 0 0 ©°oo 0T
+¢:10:0 000 0 0 0 000 0 14 0 0 61
12:10:0 000 0 0 0 000 0 T 0 0 8T
€2°10:0 00°0 0 0 0 000 0 44 0 0 08 L81 4 ISADBWPUIGITLSSINUZ LT
8+°10-0 000 0 0 0 000 0 +9 0 0 cco 9L
90:20°0 000 0 0 0 000 0 9 0 0 ST
90:20:0 000 0 0 0 000 0 9 0 0 149
20:20:0 000 0 0 0 000 0 9 0 0 CL¥6 64T ST s3L10a19adAaweriereq €1
¥1:50:0 000 0 59 I 00's¢ 4 9L c c coo ¢l
11:60:0 000 0 ST9 T 00'sT 14 91 4 4 as
L5°80-0 000 0 ST9 T 00°5¢ 14 91 4 4 ot
£€¥°80:0 000 0 ST9 1 00°ST 4 91 4 4 €L7CL 08 6 s3] JopeayuosfoWeLeRq 6
£0:00:0 000 0 0 0 000 0 LI 0 0 coo g
£0:00:0 000 0 0 0 000 0 LT 0 0 L
£0:00:0 00°0 0 0 0 000 0 LT 0 0 9
80:00:0 00°0 0 0 0 000 0 L1 0 0 S8 29 4 ISALIopeayAsDIWRIfeIeq §
60:00-0 000 0 4991 I geee z 9 I I coo ¥
11:00:0 000 0 £991 T £€e°ee 14 9 T T €
11:00:0 000 0 L9°91 T fatogatos 4 9 T T [4
11:00:0 000 0 L9991 1 €€°EE 4 9 1 1 0S 18 4 ISALIIMUOS(PWRIeIe] |
papre papre dure-y dure-y pagridure payndwe Teurduo spoyaw Teurduo

(sury) 2dfypoqm °dAypoqm Auo paqp JueInw PR PaIM sjueInW spoyow 1591 91008 10D spoyduwd

QWL 9SBADUI 9y AMON # 9SBIDUI 9p A[MON # 9SBIIUI 95 AMON # POl # POSNOOI# MIN# CWMNY O0[# ISAL # sse[D PI

(8e19A00 Y31 IIM SIS9T) "SISSBID 1591 7§ 91 U0 ANy -TIVING Aq uonesyrjdure 1531 Jo INsai YL, 47 9[qEL

TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

SMALL-AMP

CHAPTER 2.

Table 2.4 (cont.): The result of test amplification by SMALL-AMP on the 52 test classes. (Tests with high coverage)

Id Class # Test #loc %Mut. # New # Focused # Killed # Newly % Increase # Newly % Increase # Newly % Increase Time
methods CUT score test methods mutants killed killed mutant killed only killed type killed type (h:m:s)
original methods original amplified amplified A-amp A-amp aided aided

45 MDLPanelSwitcherBut. .. 6 100 53.85 0 0 7 0 0.00 0 0 0 0.00 0:00:46

46 0 0 7 0 0.00 0 0 0 0.00 0:00:46

47 0 0 7 0 0.00 0 0 0 0.00 0:00:47

48 ocoo 0 0 7 0 0.00 0 0 0 0.00 0:00:47

49 MDLPaginationCompo... 11 199 71.19 0 0 42 0 0.00 0 0 0 0.00 0:00:27

50 0 0 42 0 0.00 0 0 0 0.00 0:00:27

51 0 0 42 0 0.00 0 0 0 0.00 0:00:26

52 ooo 0 0 42 0 0.00 0 0 0 0.00 0:00:27

53 RSUMLClassBuilderTest 2 23 50 1 1 1 1 100.00 1 100 0 0.00 0:05:00

54 1 1 1 1 100.00 1 100 0 0.00 0:05:34

55 1 1 1 1 100.00 1 100 0 0.00 0:05:23

56 ooo 1 1 1 1 100.00 1 100 0 0.00 0:03:30

57 RSLabelGeneratorTest 2 353 82.38 0 0 173 0 0.00 0 0 0 0.00 0:11:19

58 0 0 173 0 0.00 0 0 0 0.00 0:11:07

59 0 0 173 0 0.00 0 0 0 0.00 0:12:21

60 ooo 0 0 173 0 0.00 0 0 0 0.00 0:12:55

61 OPNullSerializerTest 3 251 50 0 0 1 0 0.00 0 0 0 0.00 0:00:00

62 0 0 1 0 0.00 0 0 0 0.00 0:00:00

63 0 0 1 0 0.00 0 0 0 0.00 0:00:00

64 ooo 0 0 1 0 0.00 0 0 0 0.00 0:00:00

65 OPRTElementsConstra. .. 2 42 50 1 1 1 1 100.00 1 100 0 0.00 0:00:03

66 1 1 1 1 100.00 1 100 0 0.00 0:00:03

67 1 1 1 1 100.00 1 100 0 0.00 0:00:03

68 ooo 1 1 1 1 100.00 1 100 0 0.00 0:00:03

69 PMBernoulliGenerator ... 4 113 76.47 2 2 13 3 23.08 0 0 0 0.00 0:00:06

70 3 3 13 2 15.38 0 0 0 0.00 0:00:07

71 2 2 13 2 15.38 0 0 0 0.00 0:00:06

72 ooo 3 3 13 3 23.08 0 0 0 0.00 0:00:05

73 PMBinomialGenerator-... 3 164 83.33 1 1 10 1 10.00 1 10 0 0.00 0:01:01

74 1 1 10 1 10.00 1 10 0 0.00 0:01:14

75 1 1 10 1 10.00 1 10 0 0.00 0:01:18

76 ocoo 1 1 10 1 10.00 1 10 0 0.00 0:01:31

77 TLHideActionTest 3 468 55.56 2 2 5 0 0.00 0 0 0 0.00 0:00:30

78 3 3 5 3 60.00 0 0 1 20.00 0:00:33

79 1 1 5 2 40.00 0 0 0 0.00 0:00:26

80 ooo 1 1 5 2 40.00 0 0 0 0.00 0:00:14

81 TLExpandCollapseNod... 3 8 66.67 2 2 14 2 14.29 1 7.14 0 0.00 0:01:28

82 2 2 14 2 14.29 0 0 0 0.00 0:00:58

83 2 2 14 2 14.29 0 0 0 0.00 0:01:16

84 ooo 1 1 14 1 7.14 0 0 0 0.00 0:00:31

85 DSDetectChannelCom... 5 51 50 0 0 3 0 0.00 0 0 0 0.00 0:00:40

86 0 0 3 0 0.00 0 0 0 0.00 0:00:41

87 0 0 3 0 0.00 0 0 0 0.00 0:00:39

88 ooo 0 0 3 0 0.00 0 0 0 0.00 0:00:30

50

EVALUATION

2.5.

000 0 0 0 000 0 9r 0 0 coo 8TI
ST9 T 0 0 ST9 1 91 1 1 421
S29 T 0 0 SsT9 T 91 T T 9ct
SC9 T 0 0 SC9 L 91 T T LS'8T 0ce L ISALPUITSIIeISUZ STT
000 0 0 0 000 0 8 0 0 coo $TI
000 0 0 0 000 0 8 0 0 €Tl
000 0 0 0 000 0 8 0 0 (449
000 0 0 0 000 0 8 0 0 jadiad 6¢ 14 1S3 WEANSALIMIUS[RAIJUZ [T
000 0 cre z EI'8L 0s +9 61 61 coo 0zl
ST9 14 cre 14 €1'8L 0S 9 81 81 611
6T°LT 11 cre 4 88'1L 9% 9 4 81 8TL
69t € cre 14 959 6% 9 (48 i1 jd%44 0€ (018 IsarsIesurld ATT
000 0 £€°€1 4 £eel 14 SI 4 4 c°oco 9Tl
€eel 14 £99 T 00°0T € ST € € STT
€eer [4 L99 T 00°0¢ € ST € € 48!
€EET 14 £9°9 T 0002 € ST € € S0 9¢€ 8 IS9LIOZISIYIBXYINOALTId ETT
000 [0 0 000 0 4 0 0 coo ZIT
00°St T 0 0 00°0S 4 14 T T 111
00'ST T 0 0 00°0S 4 14 T T o1t
00°ST T 0 0 00°0S C 4 1 1 9411 14T 4 ‘neurquopAtosindwopg 601
000 [0s I 00°00C 14 14 I I coo 80T
000 0 0S T 00002 ¥ 4 1 1 £01T
000 0 0s T 00°00T 14 T T T 90T
000 0 0S T 00002 4 4 T T 0¢ €Il L ISAMINDUOYS[T SOT
000 0 £0 I zIer I3 3 i i coo 0T
€0°¢ T €0'€ T cretn 14 €€ [4 [4 €01
€0°€ T €0'€ T crer ¥ €€ 4 4 {408
000 0 €0'€ T cret 4 €€ T T 0s Ve 91 IS9LPR00DVM 10T
000 0 0 0 000 0 4 0 0 ©oo 00T
000 0 0 0 000 0 14 0 0 66
000 0 0 0 000 0 14 0 0 86
000 0 0 0 000 0 v 0 0 £9°99 S¢ T - puewrnwopagewriAddopTyd L6
000 0 0 [000 0 € 0 0 coo 96
000 0 0 0 000 0 € 0 0 S6
000 0 0 0 000 0 € 0 0 6
000 0 0 0 000 0 € 0 0 SL I1T T IS9LpUBWWODINOQYTYd €6
000 0 69 I LL°08 4 €I L L oo Z6
000 0 69°L T LL70€ ¥ €1 T T 16
000 0 69°L T LL0OE 14 €1 T T 06
000 0 69°L T LL°0€ 4 €1 T 1 TS9s 29 48 ISALSNSA 68
papre papre dure-y dure-y pagidwe pagndwe [euiduo spoyiauwt Teut8tio
(sswry) odAy poqy odAy paqy Afuo paqy{ jueInw PaImY oIy sjueINW SpoyIewW 1591 21008 1ND spoyleur
ouny, 9SEaDUI 0, AIMON # 9SBIIdU[9 AIMON # OSBADU[05 A[MON # PO[[DI # POSNOOL # MIN # WMN% 0] # ISAL # SSe[D PI

(93BI9A00 MO[1IM 51531 I (T I91Je ‘93eIA0D YIIY YIIM SIs3] 21k {0 01 dn smoy)
*SISSB[D 1591 ¢S 9y U0 ANV -TTVING AQ uoneoyijdure 1591 Jo I[nsal oYL, :(*3U0d) 4°Z 9[qBL

51

TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

SMALL-AMP

CHAPTER 2.

Table 2.4 (cont.): The result of test amplification by SMALL-AMP on the 52 test classes. (Tests with low coverage)

Id Class # Test #loc %Mut. #New # Focused # Killed # Newly % Increase # Newly % Increase # Newly % Increase Time
methods CUT score test methods mutants killed killed mutant killed only killed type killed type (h:m:s)
original methods original amplified amplified A-amp A-amp aided aided

129 GQLArgumentsTest 16 83 47.06 0 0 8 0 0.00 0 0 0 0.00 0:31:10

130 0 0 8 0 0.00 0 0 0 0.00 0:30:56

131 0 0 8 0 0.00 0 0 0 0.00 0:32:28

132 ooo 0 0 8 0 0.00 0 0 0 0.00 0:27:17

133 PP2ParsingGuardTest 3 29 47.06 1 1 8 2 25.00 1 12.5 0 0.00 0:00:08

134 1 1 8 2 25.00 1 12.5 0 0.00 0:00:07

135 1 1 8 2 25.00 1 12.5 0 0.00 0:00:07

136 ocoo 1 1 8 2 25.00 1 12.5 0 0.00 0:00:07

137 PP2BenchmarkTest 3 24 15.91 1 1 7 6 85.71 1 14.29 0 0.00 0:09:15

138 1 1 7 6 85.71 1 14.29 0 0.00 0:08:48

139 1 1 7 6 85.71 1 14.29 0 0.00 0:08:31

140 ooo 1 1 7 6 85.71 1 14.29 0 0.00 0:08:51

141 MDLDialogTest 4 103 14.29 0 0 1 0 0.00 0 0 0 0.00 0:00:00

142 0 0 1 0 0.00 0 0 0 0.00 0:00:00

143 0 0 1 0 0.00 0 0 0 0.00 0:00:00

144 ocoo 0 0 1 0 0.00 0 0 0 0.00 0:00:00

145 MDLNestedListTest 11 558 41.04 1 1 55 8 14.55 1 1.82 0 0.00 0:00:14

146 1 1 55 8 14.55 1 1.82 0 0.00 0:00:15

147 1 1 55 8 14.55 1 1.82 0 0.00 0:00:15

148 ocoo 1 1 55 8 14.55 1 1.82 0 0.00 0:00:14

149 RSAthensRendererTest 1 19 9.88 1 1 48 1 2.08 1 2.08 0 0.00 0:01:08

150 1 1 48 1 2.08 1 2.08 0 0.00 0:01:10

151 1 1 48 1 2.08 1 2.08 0 0.00 0:01:15

152 ooo 1 1 48 1 2.08 1 2.08 0 0.00 0:01:04

153 RSDraggableCanvasTest 6 84 35.71 0 0 10 0 0.00 0 0 0 0.00 0:00:34

154 0 0 10 0 0.00 0 0 0 0.00 0:00:35

155 0 0 10 0 0.00 0 0 0 0.00 0:00:36

156 ocoo 0 0 10 0 0.00 0 0 0 0.00 0:00:32

157 OPNavigatorAdaptersTest 3 161 24 0 0 6 0 0.00 0 0 0 0.00 0:00:26

158 0 0 6 0 0.00 0 0 0 0.00 0:00:24

159 0 0 6 0 0.00 0 0 0 0.00 0:00:23

160 ooo 0 0 6 0 0.00 0 0 0 0.00 0:00:26

161 OPProjectTest 2 40 28 0 0 7 0 0.00 0 0 0 0.00 0:00:03

162 0 0 7 0 0.00 0 0 0 0.00 0:00:03

163 0 0 7 0 0.00 0 0 0 0.00 0:00:03

164 ooo 0 0 7 0 0.00 0 0 0 0.00 0:00:04

165 PMExponentialDistrib... 1 25 17.07 3 3 7 3 42.86 0 0 2 28.57 0:00:23

166 2 2 7 2 28.57 0 0 1 14.29 0:00:15

167 3 3 7 3 42.86 0 0 2 28.57 0:00:11

168 ooo 1 1 7 1 14.29 0 0 0 0.00 0:00:05

169 PMFixpointTest 6 18 39.47 5 5 30 12 40.00 3 10 0 0.00 0:03:01

170 4 4 30 9 30.00 3 10 0 0.00 0:03:03

171 5 5 30 12 40.00 3 10 0 0.00 0:04:35

172 ooo 7 7 30 8 26.67 3 10 0 0.00 0:02:11

52

EVALUATION

2.5.

6I°10:0 000 0 0 0 000 0 s 0 0 ©oo 80T
LT:T0:0 000 0 0 0 000 0 S 0 0 £0T
€1:10°0 000 0 0 0 000 0 S 0 0 90T
S1:10:0 000 0 0 0 000 0 S 0 0 9v'8€ 281 It ISILIS[PUBHIOIIAVM SOT
L0:00°0 000 0 0 0 000 0 I 0 0 ooo 0T
10:00:0 000 0 0 0 000 0 T 0 0 €0C
00:00:0 000 0 0 0 000 0 T 0 0 20C
00:00:0 00°0 0 0 0 000 0 1 0 0 €EEE THI 1 ISALSBAUBDIWXVM 10T
0I:00-0 000 0 0 0 000 0 4 0 0 ©oo 00T
60:00-0 000 0 0 0 000 0 1 0 0 661
60:00:0 000 0 0 0 000 0 1 0 0 861
¢1:00:0 000 0 0 0 000 0 T 0 0 €€°EE 1S T IS3LI0IBIGUDDADMNVM L6T
0€°100 000 0 9s°c I 69°Z £ 6€ L I coo 961
61:10:0 000 0 98¢ T 69°L € 6€ T T S61
LT:T0:0 000 0 98T T 69°L € 6¢ T T Y61
12:10:0 000 0 98¢ T 69°L € 6€ T T 8'6€ 9S1 Y1 ** - wippasegAIonaNqTYd €61
6€:00:0 000 0 £€°€E I £999 4 € I I ooo T6T
€€:00:0 000 0 €e'ee 1 £9'99 14 € T T 161
T€:00:0 000 0 €€€E I £9'99 4 € L 1 061
£€:00:0 000 0 EE'EE 1 £9'99 4 € 1 1 49 18 it Isarore[dua[e20TTYd 681
SI'I0:0 000 0 4991 4 00001 cr 43 4 z ©ooo 88T
91:20:0 00°0S 9 €€'8 T £9'991 0c (4 8 8 L81
20:20-0 00°0S 9 €e'8 T £9'991 0¢ (48 L L 981
8G:10:0 00°0S 9 €€'8 T £9'991 0¢ (49 L L L9°61 €¢ 1T ISoLpaqurgsd S81
Iz:00°0 000 0 0s 14 00°SZ £ 4 14 4 ooo $8T
+€:00:0 000 0 ST T 00°SZ € 14 14 14 €81
9€:00:0 000 0 ST T 00°SZ € 14 14 14 281
+€:00:0 000 0 14 1 00°SZ € 4 14 C €E°EE 29 S "' " SSOAIXQLIOSOPUISSA 181
20:00-0 - 0 - 0 - 0 0 0 0 ©oo 08T
20-:00:0 - 0 - 0 - 0 0 0 0 6L1
20:00:0 - 0 - 0 - 0 0 0 0 8L1
20:00:0 - 0 - 0 - 0 0 0 0 0 96 14 ISALPUIBITLL LLT
¥1:00:0 000 0 or I 00°0c 14 or L I 000 9/T
82:00:0 00’0t T ot T 00°0€ € ot [4 14 SLT
92:00:0 00°0¢C 4 0T T 00°0% 14 0T € € YL
92:00:0 00°0¢C 4 0T T 000 4 0T € € v0'LE 891 T 3591 deNUONNQINSIATL €41
papre papre dure-y dure-y paygrdure pagrdwe [eurSuo spoyowr Teursuo
(sury) adf&ypaqpy odAy poqp Afuo poqip| jueINW P PINIY SiuBINW SpoyIow 1591 9100s IND spoylw
owl 9seamuj o, A[MON # 9SBADU[0y A[MON # 9SBIIdUI Oy AIMIN # PO[[DI # PISNI0g # MIN # MY 0] # ISIL # sse[D Pl

(93eI19A00 MO[IIM SIS) "SISSBID 1591 ¢G 93 U0 ANV -TIVING Aq uoneoyrjdure 1s91 Jo 3[nsai oy, :("1U0d) {°Z S[qeL,

53

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

format.
RQ2: To what extent are improved test methods considered as focused?

For answering this research question, we use values in the column # Focused methods.
We use the same definition for focused methods as DSPOT:

Focus is defined as where at least 50% of the newly killed mutants are located in a
single method. [9]

Generating focused tests is important because analysing a focused test is easier (most
mutants reside in the same method under test) hence should take less review time from
developers. For calculating this value, we use generated annotations by SMALL-AMP on
the newly generated test methods which show the details of the killed mutants by the
method.

We see that almost all amplified tests are focused. We see only in two cases (B1InsetsTest,
#117 and #118) that some generated methods are not focused.

Answer to RQ2: We see at least one focused test method in all amplified cases.

2.54 RQ3 --- Mutation Coverage

RQ3: To what extent do the amplified test classes kill more mutants than developer-

written test classes?

In 86/156 cases (55.12%), SMALL-AMP successfully amplified an existing test class.
The distribution of the number of killed mutants, and increase kill are presented in Fig-
ure 2.13 and Figure 2.14 for all test classes, highly covered as well as poorly covered ones.
The number of newly killed mutants in these classes (column # Newly killed amplified)
varies from 1 up to 50 mutants (case #119). In the executions amplifying test classes hav-
ing high coverage, SMALL-AMP is able to amplify 38 out of 78 (48.7%), and for the test
classes having poor coverage this number is 48 out of 78 (61.5%). Therefore, we see more
amplification in the classes with poor coverage. The relative increase in mutation score
(column % Increase killed amplified) varies from 2.08% (cases 149-151) up to 200% (cases
105-107). It is also observable regarding to these metrics that amplification on classes

with poor coverage is more successful.

Surprisingly, despite running MUTALK with its all mutation operators, the mutation
testing framework did not manage to create any mutant for the class TLLegendTest
(cases 177-179). MUTALK mutation operators work statically and only a limited set of

well-known transformations are provided in the tool.

54

2.5. EVALUATION

Figure 2.13: The distributions of the number of killed mutants

All test classes [[—ee e ® o oo

Poor coverage [[H—m =] = Em

High coverage D—{ o | | | |
0 10 20 30 40 50

All test classes [[|F———®e @ ° °
Poor coverage 7T B [[

High coverage [F—He e = o ! \ ! !

-20 0 20 40 60 80 100 120 140 160 180 200 220

The effect of randomness. In this section we report the effect of randomness on the
results. Based on the Algorithm 1, the main randomness happens during the input-
amplification (Line 10) and oracle reduction (Line 11) steps. Therefore, we expect to
see the minimum difference in the results generated by assertion amplification (Line 5).
The column 11 (# Newly mutant A-amp) shows the absolute number of killed mutants only
by assertion amplification. These values are identical in executions for all classes except
the case 81 (TLExpandCollapseNodesActionTest). The reason for this exception is
that a specific mutant may be killed by input amplification in a test method, and if it is
not killed, it will be killed by assertion amplification in the next test method. Based on
the information presented in Table 2.4, regardless of time, the same result are achieved

from different executions in 43 out of 52 test classes.

For a deeper investigation, we randomly select 5 test classes from the cases that are
affected by randomness, and 5 test classes from the cases without an observable change.
Then, we run SMALL-AMP on these classes 10 times (10 class x 10 times = 100 runs).
Table 2.5 shows the results of this experiment. In the column with title X10, we report
the number of newly killed mutants for each run in order, which is the most important
metric for amplification. In the column X3, we also echo the values from column # Newly
killed amplified in Table 2.4 to make the comparison easier. The next two columns compare
the Median and Average values in these two columns. The first 5 rows in this table are the

cases affected by randomness, and the next 5 rows are cases without an observable effect.

When we compare the values in columns X10 with X3, we still do not see any visible
effect from randomness in the rows 6 to 10. In the first 5 rows, we see the median values
and average values in both experiments are similar. In three cases (rows 2, 3 and 4), the
values of X3 did not achieve the maximum number of killed mutants seen in X10. In one

case (row 1), we see some runs lacking any improvements in X10 while all of its runs

55

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

Table 2.5: The result of running SMALL-AMP on 10 test class for 10 times

Test class X10 X3 Median Average
(X10, X3) (X10, X3)
1 PMBernoulliGeneratorTest 3,3,0,0,2, 3,2,2 2.0,2.0 2.0, 2.33
2,2,3,2,3
2 TLHideActionTest 0,4,1,2,2, 0,3,2 2.0,2.0 2.0, 1.67
4,2,1,2,2
3 TLExpandCollapseNodes... 2,2,2,2,2, 2,2,2 20,20 2.1, 2.0
2,3,2,2,2
4 PMExponentialDistributi... 3,2,1,4,3, 3,2,3 2.5,3.0 2.5, 2.67
2,2,3,3,2
5 TLDistributionMapTest 3,4,3,4,4, 4,43 4.0,40 3.6, 3.67
4,4,3,3,4
6 PMBinomialGeneratorTest 1,1,1,1,1, 1,1,1 1.0,1.0 1.0, 1.0
1,1,1,1,1
7 DSSendUserTextMessage... 3,3,3,3,3, 3,3,3 3.0,3.0 3.0, 3.0
3,3,3,3,3
8 GQLSchemaGrammarTest 7,7,7,7,7, 7,7,7 7.0,7.0 7.0,7.0
7,7,7,7,7
9 BlCompulsoryCombinati... 2,2,2,2,2, 2,2,2 20,2.0 2.0, 2.0
2,2,2,2, 2
10 ZnMessageBenchmarkTest 0,0,0,0,0, 0,0,0 0.0,0.0 0.0, 0.0
0,0,0,0,0

in X3 shows a successful amplification. To sum up, we see that the randomness has an

effect on the result, but the impact is minimal and does not invalidate the findings. In

addition, repeating the analysis 3 times is justifiable since running 10 times adds little

extra information for a large increase in processing time.

2.5.5

Answerto RQ3: Small-Amp successfully amplified 86 test classes out of 156 cases
(55.12%). Even for highly covered test classes, Small-Amp improved the mutation
coverage in 38 out of 78 cases. In test classes with poor coverage, test amplification
becomes even more effective: Small-Amp increased the mutation coverage in 48 out

of 78 cases and the absolute and relative increase in mutation score was higher.

N

J

RQ4 --- Amplification Steps

RQ4: What is the contribution of input amplification and assertion amplification

(the main steps in the test amplification algorithm) to the effectiveness of the gener-

ated

tests?

Aswereported in Section 2.5.4, in 86/156 cases (55.12%), the improvements are achieved

from input-amplification and assertion-amplification cooperation. In this research ques-

tion, we study the results generated only by assertion-amplification, and also generated

by the type sensitive operators.

56

2.5. EVALUATION

Contribution of the assertion-amplification step. In this section, we filter all amplified
test methods that are generated only by assertion amplification. In other words, we only
account the improvements from all amplified test methods that are selected from the first
assertion amplification (Line 5 in Algorithm 1). The column 11 (# Newly mutant A-amp)
shows the absolute number of killed mutants only by assertion amplification; column
12 (% Increase killed only A-amp) also shows the relative increase. The reported results
in Table 2.4 shows that in 61/156 cases (39.1%) at least 1 mutant is killed only by the
assertion amplification step. Improvements in four classes (cases 53-55; 65-67; 73-75; 149-
151) achieved only by adding new assertions.

Contribution of the type sensitive input amplifiers. Here, we filter all amplified test
methods that in at least one of its transformations, a type sensitive input amplifier (in our
case method-call-adder) is used. While type-sensitive operators benefit the information
provided by dynamic profiler step (Section 2.4.1), the contribution of these operators is

important because it can show the effectiveness of dynamic profiling.

Column 13 (# Newly killed type aided) shows the absolute number of newly killed mu-
tants by the type sensitive input amplifiers. Column 14 (% Increase killed type aided) also
shows the relative increase. We see that in 30/156 cases (19.2%) the type sensitive in-
put amplifiers contribute to the result. Especially for 2 test classes (WebGrammarTest
rows 37-39, and ZnStatusLineTest rows 125-127), SMALL-AMP was able to amplify

the tests only by the type sensitive input operators.

To assess the impact of type profiling, we quantified the effect of the steps that rely
on type profiling. We therefore extended the analysis with an additional evaluation step
where we disabled the type profiler in the algorithm, as well as the type sensitive input
amplifier (method addition amplifier) and ran the tool on all test classes. The results for
this experiment are mentioned in the forth row for each test class in Table 2.4 (denoted by
oo00). We focus on cases in which type-sensitive input amplifiers improved the coverage
in at least two of three runs (10 test classes, cases starting with 33, 37, 101, 109, 113, 117,
125,165,173,185). In 8 cases we see that disabling the profiling and also the type sensitive
operators decrease the improvements and only in two cases we see no difference (case
101) or a slight improvements (case 117).

Answer to RQ4: Our study demonstrates that amplifying the tests only using
assertion amplification is less efficient than in combination with input amplification.
Moreover, the extra information generated by dynamic type profiling helps input
amplification in killing more mutants.

57

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

2.5.6 RQ5 --- Comparison

RQ5: How does Small-Amp compare against DSpot?

We summarize our results from quantitative and qualitative studies and the corre-
sponding results from DSPOT reported in [9] in Table 2.6. An exact comparison is impos-
sible because these studies have been conducted in two completely different ecosystems.

Id | Metric Small-Amp DSpot
#1 #2 #3

1 | Projects 13 13 13 10
2 | Test classes 52 52 52 40

3 | Test methods 403 403 403 220
4* | New generated test methods 71 76 75 471
5 | # Amplified test classes 28 29 29 26
6 | % Amplified test classes 53% 55% 55% 65%
7* | # Total killed mutants by original | 1102 1102 1102 7980
8* | # Total newly killed mutants 156 151 157 1617
9 | % Total increase killed 14.15% 13.70% 14.24% | 20.26%

Table 2.6: Summary of results in SMALL-AMP and DSpOT

SMALL-AMP is validated against 52 test classes. It has successfully amplified 28, 29
and 29 of them (~55%), while DSPOT has been validated against 40 test classes of which
26 cases were improved (65%). The most notable differences between the results from
SMALL-AMP and DSPOT are the number of mutants in two ecosystems and consequently
the number of newly generated test methods (denoted by * in the Table 2.6). These dif-
ferences can be attributed to the use of two different mutation testing frameworks in two
different languages. SMALL-AMP uses MUTALK which has notably fewer mutation oper-
ators than the DSPOT counterpart PITEST. To reduce the effect of the mutation testing
framework, we calculate the relative increase in killed mutants within the two ecosystem
as follows:

#Total. Mutants.killed,eq
#Total. Mutants.killedoriginal

%Total. Inc.killed = 100 x

This value is shown in the row number 12 in the Table 2.6 for two experiments. It is
14.03% in total for SMALL-AMP, and 20.26% for DSPOT.

We have also submitted 11 pull-requests by using SMALL-AMP outputs and 8 of them
were merged by developers (~72%), while Danglot et al. submitted 19 pull requests
derived from DSPOT output and 13 of them merged successfully (68%).

Finally, it is worth mentioning that SMALL-AMP is configured as Npqzrnput = 10
which means the reduce step (Algorithm 1, line 11) select 10 test-input in each iteration.

58

2.5. EVALUATION

This value for DSPOT is not reported in their paper. Increasing this hyperparameter may
improve the result, but it also may increase the execution time significantly.

Answer to RQ5: The results from Small-Amp and DSpot in two different ecosys-
tems are similar. Small-Amp and DSpot have been successful in amplifying respec-
tively 55% and 65% of their input test classes. We also see ~=72%and 68% merged
pull requests in the tests derived from Small-Amp and DSpot outputs.

2.5.7 RQ6 --- Time Costs

RQ6: What is the time cost of running Small-Amp, including its steps?

The time cost is important when studying test amplification tools” practicality. Based
on Algorithm 1 - p. 24, we know that the complexity of this algorithm is:

Ot xixaxlyxmxl)

Where

— t is the number of test methods to be amplified
— i is the number of iterations in the main loop

— a is the number of input amplification operators
— Iy is the number of lines in the test methods

— m is the number of mutation testing operators

— . is the number of lines in the program under test

Not surprisingly, in some cases, we see that the amplification process takes consider-
able time. In this research question, we report and compare the execution time of SMALL-

AMP and the relative cost of each step.

Figure 2.15 and Figure 2.16 illustrate a series of box-plots derived from the recorded ex-
ecution time during the experiments in Table 2.4. In these figures, Init . refers to all ini-
tializing steps, includes the dynamic profiling to collect type information (Section 2.4.1).
Here we also calculate an initial mutation score for the original test suite. IAmp refers to
the input amplification step. This step loops over all input amplification operators (Sec-
tion 2.3.2) and afterwards reduces to Nmaxinputs Of current inputs and discarding the rest
(Section 2.4.2). AAmp represents the assertion amplification step (Section 2.3.3), while
Sel. selects all test methods that increase the mutation score (Section 2.3.4). Read.

concerns the post-processing steps to increase the readability of the generated tests, in

59

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

Figure 2.15: The distribution of absolute execution time (in seconds)

Tot. | bomm oo A 136.7 --- cuse e® @

Read. - 0203'500 .
Sel. |- =- 94%*% ok
38.8
IAmp - }—{ ‘4,8 [
Init. [— o098 2 o

10~2 101 109 10! 102 103 104

Figure 2.16: The relative distributions of the time-cost (percentage)

8%
Read.| [[[3.4%] WL .
66.8%
Sel.| F— [24.5% | | PPo
95%
AAmp | [38.8%]
37.7%
IAmp |- _ 0% - L] =
33.8%
mit.| {[3.3%] " -

|
0 10 20 30 40 50 60 70 80 90 100

particular the oracle reduction (Section 2.4.3). Finally, Tot . shows the entire execution
time for a class.

Figure 2.15 shows how the execution time is distributed for total execution time and
also for each step in seconds. The horizontal axis presents the number of seconds in
logarithmic scale. The diagram includes also the values for the median and the upper
whisker.

Regarding total execution time (Tot .), half of the executions finished in less than
36.7 seconds (the median value). Furthermore, the diagram shows that the majority of
amplification (upper whisker) finished in less than 334.4 seconds (5 minutes and 34 sec-
onds). However, we see 25 outliers that refer to the instances that finished in more than
335 seconds. If we set a fixed time budget, for instance a 10 minutes budget for each class,
the test amplification process for these classes will not terminate properly. This show the
importance of considering time budget management in test amplification tools.

The median value for other steps are: initializing 1 second, input amplification 4.8
seconds, assertion amplification 13.7 seconds, selection by mutation testing 10.1 seconds

60

2.6. THREATS TO VALIDITY

and post-processing steps 0.7 seconds.

Figure 2.16 illustrates the relative proportion of time test amplification dedicates to
each step. So, the execution time for each step is divided to the total amplification time

to compare the steps relatively.

The profiling step and the oracle reductions steps are the fastest steps. The median
value for each of these steps are respectively 3.2% and 3.4%. Therefore, we can say pro-
filing and oracle reduction steps do not add much time overhead to the overall process.
Next, the input amplification step takes about 11.3%. A considerable portion of execu-
tion time is spent during assertion amplification (median 38.8%, upper whisker 95%).
The median execution time related to selection step, in which mutation testing is ran, is
24.5%. We suspect the execution time for mutation testing would be more if MUTALK

would generate more mutants.

Answer to RQ6: The majority of classes in our dataset has been amplified in less
than 5 minutes and 34 seconds. However, in some cases the execution takes longer
with a maximum of 2 hours and 34 minutes. Therefore, a time budget management
mechanism is needed in the test amplification tools. In the execution time for each
steps, we see that the profiling and oracle reductions steps (the extra steps compared

to the original DSpot algorithm) do not add much overhead to the overall process.

N

26 THREATS TO VALIDITY

As in any empirical research, we identify factors that may jeopardise the validity of
our results and the actions we took to reduce or alleviate the risk. Consistent with the
guidelines provided by [47], we organise them into four categories.

Construct validity. Do we measure what was intended? For RQ1 (Pull Requests), we
manually selected test methods which we considered valuable additions to the project.
And we provided a motivation for the pull request based on a human interpretation of
the extra mutants killed. Thus, the percentage of accepted pull requests is a flattered
result. If we would have submitted all amplified test methods the results would be far
lower. We consider this risk as minimal, because SMALL-AMP at the current stage should
never be seen as a fully automated code synthesizer tool but rather as a recommender

system supporting the human-in-the-loop.

For RQ2 to RQ4 we heavily rely on mutation coverage as a proxy for the corner cases
the amplified tests are supposed to cover. There is an ongoing debate in the mutation

testing community of whether mutation operators can serve as proxies for actual faults.

61

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

Today, there is no alternative so we settled with mutation coverage. But if ever another

measure for test effectiveness comes along we need to revise the results.

Internal validity. Are there unknown factors which might affect the outcome of the
analyses? For RQ1 (Pull Requests), we don't have any knowledge about the policy the
projects had concerning pull requests submitted by outsiders. In the Pharo community,
most developers know one another and are likely to trust contributions. However, for our
study it was the first author who submitted the pull-requests and at that point in time he
was a newcomer in the community. For the three pull requests which were ignored, we
don’t know whether this newcomer submission played a role.

External validity. To what extent is it possible to generalise the findings? We demon-
strated that test amplification is feasible, even for dynamically typed language. We have
constructed a proof-by-construction for the Pharo/Smalltalk ecosystem. However, we
cannot make any claims regarding other dynamically typed languages (Python, Ruby,
Javascript, ...). We are quite confident that type profiling is the key to make test amplifi-
cation successful in such a context. However, coding conventions are equally important

and this may jeopardise the kind of input amplification operators that work.

Reliability (a.k.a. Conclusion Validity). Is the result dependent on the tools? As men-
tioned earlier, we heavily rely on mutation coverage as calculated by MUTALK. MUTALK
lacks several mutation operators compared to the PITEST tool used in the DSPOT paper.
This implies that SMALL-AMP will generate fewer test cases and that the newly killed
mutants will also be generally lower. We mitigated this threat by always reporting the
absolute number combined with the relative increase (in percentage).

The other threat to conclusion validity is the impact of randomness. SMALL-AMP
works based on applying random transformations on the tests. Most importantly, the
actual amplified tests surviving the Input Reduction step (see Section 2.4.2 — p. 32) may
vary from one run to another. We applied the tool on different classes in different projects
from various domains, and achieved amplified tests in all circumstances. In addition to
the variety in the projects, we ran the tool three times on each test class. Thus, the impact
of randomness should be small at best.

2.7 RELATED WORK

Test amplification systems can vary based on the engineering goal. In addition to the
amplification of the code coverage [32, 48] or mutation score [49, 50], researchers have

used test amplification for other goals like fault detection [51, 52], oracle improvement

62

2.7. RELATED WORK

[40, 53], fault localization [54, 55], and incompatible environments detection [56].

A test amplification system may use search based techniques [31, 32, 49, 57] or sym-
bolic and concolic execution techniques [48, 58, 59]. The results of the amplification can
be added to existing test suite [32, 49] or just modifying the current tests [40]. They also
may consider only new changes [57, 58] rather than working on the snapshot of the entire
project.

Our work is pretty close to DSPOT [9, 26] where SMALL- AMP is an adaption of DSPOT
into a dynamic language. This work, same as DSPOT, also can be categorised under
genetic improvement [60] where it takes advantage of existing test suite as well as an
automated search algorithm in order to find an improved version of test code.

Brandt and Zaidman [61] use a lighter version of DSPOT to increase the instruction
coverage. They also provide an IDE plugin to make the developers interplay with the
test amplification tool possible. Nijkamp et al. [62] and Oosterbroek et. al [63] address
the readability of the amplified tests by choosing proper names and removing redundant

statements.

Dynamically-typed languages. Aswe argued earlier, test case generation is well studied
in statically typed languages [64, 65, 66] but there are only a few academic works that
target dynamically typed languages. We list the ones we were aware of below.

Lukasczyk et al. [67] introduce automated unit test generation for Python, and the
tool PYNGUIN which works based on techniques used in statically typed languages more
specifically EVOSUITE [65] and RANDOOP [64]. PYNGUIN circumvents the lack of type
information by assuming that the system under test contains type information added by
developers in terms of type annotations.

Mirshokraie et al. [68] created a tool names JSEFT, which generate unit tests for
javascript functions and events by a record and replay technique. JSEFT relies on web
crawling to collect traces from javascript executions. They create test methods by replay-
ing the executions and adding new oracles using a mutation-based process [69].

Wibowo et al. [70] use a genetic algorithm to generate unit test code for the Lua script-
ing language. The algorithm starts from a random initialized population and then evolve
by crossover and mutation operators. The tool only generates assertions for primitive
data type values. SMALL-AMP on the other hand used recursive assertion generation to
deal with non-primitive types.

Mairhofer et al. [71] introduce RUTEG, a test generation for Ruby based on genetic
algorithms. For each method under test, RUTEG statically processes the parse tree and
collects arguments and the list of methods invoked on each argument. Then they use
predefined and customized data generators to generate a part of code that is valid based

63

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

on data collected from the parse tree. RUTEG does not improve an existing test suite, but
rather generates the whole test suite itself.

Mutation testing. Using mutation testing as an actionable target for strengthening an
existing test suite is used at large scale at Google [72, 73] and Facebook [74]. These papers
are close in spirit to DSPOT and SMALL-AMP as both create new test casess to increase
mutation coverage. However, these works use professional developers to generate new
tests (manual test amplification) while DSPOT and SMALL-AMP illustrate that a recom-
mender system is feasible.

2.8 FUTURE WORK

In this section, we present some open problems and the ways how SMALL-AMP and

test amplification tools can be improved in the future.

Test amplification ecosystem. In the current implementation of SMALL-AMP, we run
the tool on the whole project. This way of using the tool has some drawbacks: since
developers should run it manually, they need a knowledge about the concept, the process
and also the tool interface; it may take a long time to amplify all classes in the project; the
tool will reamplify some parts of the project on each execution, which will increase the
execution time; and finally, developers need to deal with the output manually, they need
to understand it, polish the interesting tests, and merge them manually in the code base.
Imposing such extra work on developers is likely to make them loose their interest in
using the tool often.

In the future, we will integrate the SMALL-AMP with a build system, for instance
GitHub Actions. The build systems will run the tool automatically on the specified events
such as on each push, or pull-request or periodically. Additionally, SMALL-AMP will am-
plify only the recent changes on each run. It means that only the mutants in the changed
parts will be generated which will reduce the cost of amplification significantly. In this
case, the amplification will be run in the project level instead of running class-by-class.
So, finding an exact relation between the production classes and the test classes will also
lost its importance: all test methods covering a changed part can be included in the am-

plification.

Furthermore, we will build a web-based test editor dashboard to visualize the test
amplification outputs, and also a GitHub-Bot to synchronize the Build system output,
code base and the dashboard. The developer can use this dashboard to assess the outputs,
and also customize the amplified test. The tests after the polishment will be reevaluated

automatically, and if it is green, it can be pushed to the code base. So, developers don’t

64

2.8. FUTURE WORK

need to overwhelm themselves with tedious tasks and can benefit from test amplification

in an ecosystem automated by bots.

Extended use-cases for dynamic profiling. Dynamic profiling is more than merely a
type inference solution. It can be generalized to collect various information about unit-
under-test based on dynamically running existing test suite. In some cases, statically
typed languages also can benefit the profiling mechanism. We enumerate two of these

use-cases:

— Pure methods detection: An impure method is a method that looks like an accessor
but calling it causes a change in the state of the object [75]. In the scope of SMALL-AMP,
identifying pure/impure methods is important during oracle reduction. A new pro-
filer can be implemented using the method proxies to serialize the object state before
and after method invocations. If the state is changed, we can infer that the method is

impure.

— Providing information for advanced input amplifiers: In this work, we proposed a
basic algorithm for test-input reduction (Section 2.4.2). By addressing the test-input
explosion problem, test amplification tools can benefit from wider range of input am-
plifiers. Advanced input-amplifiers can exploit the profiling step to collect useful in-
formation dynamically and increase their knowledge about the program under test.
For example, a profiler can collect all literal values from the covered methods and use
them in literal values amplification operator. Another example can be object trans-
plantation between test methods. A profiler can collect patterns of how objects are

created and manipulated and this information can be used in an input-amplifier.

Test method models, best practices and structured strings. Unit tests in object-
oriented languages ideally are structured as a sequence of statements that instantiate
an object, manipulates its state, and asserts expected values. However, not every test
fits this model in real projects. Developers use helper methods, customized assertions,
structured strings, some optimizations like grouping the tests or parallelizing them. For
instance, a developer may write tests in XML files and load each file in a test method, so

these tests heavily depend on parsing structured strings.

If a test does not fit with the ideal test model, the current algorithm of test amplifica-
tion still can be used, but it may be less successful in producing strong results. We leave
identifying and adopting best practices of test methods as an open problem. Additionally,
mutating a structured string by understanding its syntax can also be interesting future
work.

65

CHAPTER 2. SMALL-AMP: TEST AMPLIFICATION IN A DYNAMICALLY TYPED LANGUAGE

Using patterns to guide test amplification. As an important future work, we suggest
using heuristics to guide the amplification algorithm. Large scale manual test amplifica-
tion histories like the work at Google [72, 73] can be analyzed to answer questions like:
How often do developers write new test methods? Are new test methods similar to an
existing test? If they update an existing test method, what is the relation of the updated
test method and the mutant to be killed? What transformations are applied to the test?

Answering these questions leads us to find some patterns in how real developers kill
mutants. These patterns can help the tool to prioritize some test methods and input ampli-
fiers for killing a particular mutant. Recent advances in deep learning or other program
synthesis techniques are promising and can be helpful in making test amplification tools
more intelligent [76].

Reducing the mutation testing burden. Test amplification generates tests to optimize
mutation coverage, however calculating the mutation score is a time-consuming process.
During test amplification, this mutation score is calculated multiple times for each test
method: in lines 6, and 14 of Algorithm 1 — p. 24. However, for a test to kill a mutant,
it first must reach the statement, then infect the program state, propagate to the output
where it must be revealed by an assertion [77, 78].

We can optimize the calculation of the mutation score by using a hierarchical coverage
measurement. For example, we can first run a code coverage tool, then we can run an

extreme transformation [79], afterwards we only mutate the covered parts.

Another technique for reducing the mutation testing burden is to use mutation oper-
ators that are learned from known common bugs like MUTATIONMONKEY [74].

Using multiple type-inference mechanisms. The main drawback of using an existing
test suite for dynamic profiling is if a method is not covered in the test, we can not collect
its type information, hence can not add calls to such methods during input amplification.
Static type inference [80] or live typing [81] techniques can be helpful to empower SMALL-
AMP to generate method calls to such uncovered methods.

Involving readability metrics. Based on a previous study [82], the most important
aspects for developers in assessing the quality of a test suite are readability and maintain-
ability. Although the code coverage metrics are necessary for identifying the poor test
suites, they are limited in distinguishing high-quality tests based on how practitioners
perceive the test quality. Since the goal of test amplification is to recommend new test
cases ready to be merged into the code base, considering readability and maintainability

metrics in the test amplification appears to be a critical next step.

66

29 CONCLUSION

In this chapter, we introduce SMALL-AMP, an approach for test amplification in the
dynamically typed language Pharo/Smalltalk. The main algorithm of SMALL-AMP is
adapted from DSPOT, a test amplification technique designed for Java programs. In or-
der to mitigate the lack of type information, we exploit profiling information, readily
available by running the test suite. We demonstrate that test amplification is feasible for
dynamically typed languages, by replicating the experimental set-up of DSPOT, includ-
ing a qualitative and quantitative analysis of the improved test suite.

In our qualitative analysis, we submitted pull-requests of an amplified test by SMALL-
AMP to the GitHub repositories of the projects in our dataset. From 11 pull-requests we
submitted, 8 were merged (x72%). The developers’ comments on the pull-requests illus-
trate how valuable they perceive the new tests created by SMALL-AMP. The results from
our quantitative study show that SMALL- AMP succeeds to amplify 28 test classes out of
52, approximately 53% of target classes, in 13 projects from our dataset. The majority
of the generated tests are focused, and all test amplification steps (including type profil-
ing step) play a critical role. The results from SMALL-AMP and the results from DSpoOT
are comparable. We see ~72% merged pull-requests and 53% successfully amplified test
classes in SMALL-AMP, while for DSPOT these values are 68% and 65%. We also see that
the value of total increase killed between two tools in two different ecosystems are similar
(14% in SMALL-AMP and 20% in DSpOT).

In conclusion, the results of experiments show that by using a profiling step and col-
lecting type information, we can successfully adopt a test amplification approach in a
dynamically typed language.

67

68

CHAPTER

AmPyfier: Test Amplification in Python

This chapter is a revised version of an originally published paper in the Journal of Software:
Evolution and Process. Special Issue: Automatic Software Testing from the Trenches (JSEP):

"1\ AmPyfier: Test Amplification in Python

Ebert Schoofs, Mehrdad Abdi, and Serge Demeyer

In Journal of Software: Evolution and Process. Special Issue: Automatic Software Testing from the
Trenches (JSEP). June, 2022.

URL: https://doi.org/10.1002/smr.2490.

ABSTRACT

Test amplification aims to automatically improve a test suite. One technique generates new test
methods through transformations of the original tests. These test amplification tools heavily rely on
analysis techniques which benefit a lot from type declarations present in the source code of projects
written with statically typed languages. In dynamically typed languages, such type declarations
are not available, and therefor, research regarding test amplification for those languages is sparse.
Recent work has brought test amplification to the dynamically typed language Pharo Smalltalk by
introducing the concept of dynamic type profiling. The technique is dependent on Pharo-specific
frameworks and has not yet been generalised to other languages. Another significant downside in
test amplification tools based on the mutation score of a test suite is their high time-cost. In this
chapter, we present AmPyfier, a tool that brings test amplification and type profiling to the dynam-
ically typed language Python. AmPyfier introduces multi-metric selection in order to increase
the time efficiency of test amplification. We evaluated AmPyfier on 11 open-source projects and
found that AmPyfier could strengthen 37 out of 54 test classes. Multi-metric selection decreased
the time-cost by 17% to 98% as opposed to selection based on full mutation score.

https://doi.org/10.1002/smr.2490

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

3.1 INTRODUCTION

As proven over and over again, faults are often more expensive to fix than to prevent.
In order to prevent regression and detect bugs, an adequate test suite is necessary. To
determine the program-based adequacy of a test suite, multiple criteria exist such as, but
not limited to, code coverage (method /brach/statement) [83] or the mutation score [36].
The threshold to decide when a test-suite is adequate enough poses a difficult question.
As such, striving for a test suite as adequate as possible is necessary, in order to make the
test suite as robust. Manually writing a completely adequate test suite is a labour and
time-consuming task. This is where research concerning fest amplification and generation
proves to be useful [77, 84].

Test amplification tries to harden a test suite against a given adequacy criterion, cri-
teria, or engineering goal based on the already existing test suite for the project under
test [8]. One category of test amplification is closely related to test generation, they both
try to automatically improve a test suite, or generate one based on given criteria. Their
goals are similar, but the difference between amplification and generation is in the main
input it takes. While test generation focuses only on the program under test, test amplifi-
cation generates tests based on modification or extension of the existing handwritten test

suite.

In order to automatically improve the mutation coverage of unit tests, Baudry et al.
created DSpot, a test amplification tool for the statically-typed language Java [85]. Dan-
glot et al. demonstrated the effectiveness of DSpot, by running it on 10 mature open-
source projects. In their experiments, DSpot successfully improved 26 out of the 40
(~65%) test classes under study [86]. DSpot is able to leverage the fact that Java is a
statically-typed language and typing information can be deduced through static analysis
of the source and test code.

For dynamically-typed languages, test amplification techniques cannot solely rely on
static analysis. Dynamic techniques are needed to deduce the type of variables and val-
ues that are to be asserted and to support type-sensitive input amplifiers. Abdi et al. have
made a tool, Small-Amp with which they showed that test amplification is also possible
for the dynamically-typed language Pharo Smalltalk [35, 87]. They adopted the concept
of dynamic type profiling, with which they were able to overcome the lack of type in-
formation in the source code. However, their proposed solution is heavily dependent
on Metalinks and Pharo’s internal design, primarily its live programming environment,
and the generality of their approach has not been confirmed on other dynamically-typed
languages.

DSpot and Small-Amp both rely on mutation score as the adequacy criterion to im-
prove the test suite against. To determine the mutation score, the code of the project

70

3.2. BACKGROUND AND RELATED WORK

under test is mutated, and the test suite is executed against the mutated project. If the
test suite fails, it is able to detect or kill the mutation and thus is able to prevent a possi-
ble regression. Mutation testing, however, is a time-consuming task: the test suite has to
be executed the same number of times as there are mutants. When using the mutation
score as an adequacy criterion for test amplification, this time cost will multiply with the

number of amplified tests.

As dynamically-typed languages, such as Python, become increasingly popular, ad-
equate test suites are needed. In contrast to the popularity of Python, research into au-
tomatically improving a test suite for a Python project is still sparse[67, 88], and non-
existent in regard to test amplification. Indeed, the popularity of Python is still on the
rise[89], due to its ease of learning, its huge amount of external libraries, and the further
rise of data-mining and Al research. Python is a dynamically typed interpreted language.
Despite Python being an object-oriented programming language, it supports multiple
programming paradigms. Python allows a developer to disregard the object-oriented
design and write code following the procedural and functional paradigms.[90]

With this chapter, we extend the concept of test amplification to Python, one of the
most popular (dynamically typed) languages today according to IEEE! and on Github?,
and present AmPyfier®. With AmPyfier, we generalize the concept of dynamic type pro-
filing using the Python debugging tools. Furthermore, we introduce multi-metric selection
in order to increase the efficiency of the mutation score as a selection criterion. We demon-
strate that it is not only feasible but also effective for existing open-source projects. In our
evaluation on 11 open-source projects including 54 test classes, AmPyfier successfully
amplified 37 test classes. Furthermore, multi-metric selection decreased the time cost
ranging from 17% to 98% as opposed to selection based on the full mutation score. The
experimental data is publicly available in our GitHub repository* where the generated

reports and the amplified test suites can be found.

In the following section, we provide some background, what exactly test amplification
is and how it is implemented in DSpot, and Small-Amp. Furthermore, we give some
more background about Python, unit-testing in Python, and related work in regard to
test generation for Python. In Section 3.3, we explain the main algorithms of AmPyfier
itself with the help of a running example, how the implementation for Python differs from
Small-Amp and DSpot and introduce multi-metric selection. We evaluated AmPyfier on
11 open-source projects, the results are discussed in Section 3.4, as well as the lessons
learnt from these experiments, and the threats to validity. In the last section, we conclude

and discuss further work that needs to be done.

lhttps://spectrum.ieee.org/top-programming-languages/ (accessed on 15/1/22)
2https://madnight.github.io/githut (accessed on 15/1/22)
Shttps://ansymore.uantwerpen.be/artefacts/ampyfier
“https://github.com/SchoofsEbert/AmPyfier_evaluation

71

https://spectrum.ieee.org/top-programming-languages/
https://madnight.github.io/githut
https://ansymore.uantwerpen.be/artefacts/ampyfier
https://github.com/SchoofsEbert/AmPyfier_evaluation

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

3.2 BACKGROUND AND RELATED WORK

3.21 Test Amplification

Test amplification[8] aims at improving a test suite against a given criterion. With test
amplification the already existing test suite is taken as the main input. The knowledge
gained from the test suite is than exploited to enhance it. Unit testing has become a
widely used practice in most software projects. Projects or organizations make use of
practices such as minimum requirements for an adequacy criterion (e.g. code coverage)
before code is accepted and merged into the project. Others adopt methods such as test-
driven development (TDD). In either case, developers write test code during or before
the writing of production code. Consequently, the majority of modern software projects
include a considerable amount of test code. These test suites often contain meaningful
information about the project under test, and what should be tested. Although these test
suites may cover most of the main scenarios in the code, some of the corner cases may
still be missed and remain untested. In their snowballing literature study, Danglot et

al. [8] categorise the research in test amplification as below:

1. Amplification by adding new tests as variants of existing ones (AMP,44).

2. Amplification by synthesizing new tests with respect to changes (AMP gge) -
3. Amplification by modifying test execution at runtime (AMP,y.).

4. Amplification by modifying existing test code (AMP,04).

Tools belonging to AMP,;; will generate new test cases based on the original handwrit-
ten test cases. The newly generated test cases try to improve the test suite based on met-
rics such as mutation score (e.g. DSpot and Small-Amp)[86, 87], code coverage [31, 32,
61], and reproduction of crashes (e.g. MuCrash) [55, 91]. A special case of AMP,, is
AMP gange, these tools and techniques only focus on the changed parts of the project un-
der test compared to its previous version (e.g. DCI)[92, 93]. Instead of modification
of the existing test suite, AMP,, will modify the test suites dependencies like the OS
file system, libraries, databases, remote services, or access APIs to GPS or Bluetooth (e.g.
CAMP) [94, 95]. AMP,,,, techniques will try to make the test suite more precise by in-
creasing the input exploration (e.g. TAUTOKO) [96] or regenerating the oracles (e.g.
Orstra) [97].

3.2.2 Related Work: DSpot and Small-Amp

AmPyfier is the adoption of the algorithms introduced in DSpot and Small-Amp into
the Python ecosystem. DSpot and Small-Amp exploit the hand written test classes of a

project, to generate new test methods with additional assertions (assertion amplification)

72

3.2. BACKGROUND AND RELATED WORK

and new test input (input amplification) in order to increase the mutation score of the test.
Whereas DSpot is developed for the statically typed language Java, Small-Amp performs
test amplification for the dynamically typed language Pharo Smalltalk.

Components in DSpot and Small-Amp

DSpot and Small-Amp consist of respectively three and four main components. While
both DSpot and Small-Amp have assertion amplification, input amplification, and test
selection, Small-Amp introduced the dynamic type profiler in order to support dynam-
ically typed languages. In the next paragraphs, we provide short descriptions for each

component.

Assertion Amplification. This module is responsible for generating assertions for ob-
jects or functions under test. One assertion amplification technique proposed by Xie [97]
works based on a dynamic analysis that runs the test to be amplified and captures the
object states during the execution. In this technique, the value of getter-methods of an

object, or the return values of function calls are captured then extra assertion statements
are added.

Input Amplification. Test input are all statements in a test method except the assertion
statements. With input amplification, new versions of test input are generated based
on the existing test input. The amplified test input may take a different execution path
or bring the objects under test into new states. In other words, the input amplification
component empowers a test amplification tool to explore the search space of all possible
tests.

DSpot uses an input amplification technique inspired by Tonella [39] (ETOC). In this
technique, the abstract syntax tree of the test input is modified by a set of input amplifi-
cation operators, and new versions of the test input are generated. Input amplification
operators are divided into two categories. Type-insensitive operators, which range from
changing the literal values by simple arithmetic operations on integers and modifications
of strings to duplication, or removal of method and function calls. The other category is
type-sensitive operators, such as the addition of new method and function calls. Indeed,
when passing an argument or when manipulating the return value, we must ensure that
we pass a value of the appropriate type. Multiple such amplifiers are applied after each
other to combine the different ways in which a test is modified.

Selection. The goal of test amplification is to improve the test suite in regard to a quan-

tifiable engineering goal, expressed as a metric. Possible metrics are: coverage or mu-

73

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

tation score improvement, fault detection capability improvement, oracle improvement,
and debugging effectiveness improvement [8]. In both DSpot and Small-Amp this met-
ric is the adequacy criterion mutation score. Both tools generate lots of new test methods
derived from the existing test suite. The mutation score is calculated for each newly gen-
erated test method. If it is able to improve it, the generated test method is selected as an
amplified test method otherwise it is discarded.

Type Profiling. In order to support type-sensitive input amplification operators, type-
information needs to be deduced from the tests and the project under test. Performing
static analysis in dynamically typed languages like Python yields less information than
in statically typed languages because the source code in dynamic languages does not
include type information. To generate new arguments for new method and function calls,
it is typically needed to know which input type to pass to the call. For statical typed
languages, such as Java, the types of the input can be derived through a static analysis
of the project under test, but for languages such as Python, the types need to be derived
dynamically. Since the existing test suite is one of the main inputs in test amplification
tools, performing dynamic type profiling by running the existing test suite is possible.
The concept, introduced by Small-Amp, is to run the existing test suite and capture (1)
the type of arguments in the methods under test (2) the type of variables in the original
test methods.

Implementation

The main amplification algorithms used in DSpot and Small-Amp, and now AmPy-
fier are quite similar. They repeat the input amplification, assertion amplification, and
selection steps iteratively for all existing test methods. Mutation Coverage is proposed as
a selection criterion in DSpot, and is taken over by Small-Amp.

To know the values to be asserted in the assertion amplification step, DSpot and Small-
Amp both use the same technique. First, the statements of interest are encapsulated in
observation statements, and the test is executed. The results are collected and, based on

the observations, the assertion statements are constructed.

For gathering the type information, Small-Amp introduces a dynamic type profiling
step before the main loop of the algorithm. To extract this information Small-Amp adds
Metalinks on all variables in a test method. Metalink[34] is a fine-grained reflection mech-
anism, that allows to install AST node level proxies. Subsequently, Small-Amp runs the
test. The Metalinks are fired when the variables are used to capture the type-information
in the run-time. This type information is used to support type-sensitive input amplifica-
tion operators, e.g. generation of random parameter for a newly added method call.

74

3.2. BACKGROUND AND RELATED WORK

3.23 Python

Python is a dynamically typed interpreted language, which supports multiple pro-
gramming paradigms. Python doesn't force developers to write their code in an object-
oriented manner and encapsulate all functionality in classes, allowing developers to write
code following multiple programming paradigms. In the background, however, every-
thing in Python is an object, even the current stack frame. This fact is leveraged by the
Python Tracer, which allows to dynamically obtain all necessary information about what
is happening in the project under test during execution.

While everything is an object according to the inner workings of Python, Python has
no notion of encapsulation. Private or protected attributes can not be enforced. Every
attribute is public, and can be accessed from everywhere. It is up to the developer to
follow the coding conventions where an attribute should be considered protected if it
is prefixed with one underscore (e.g. _protected_attribute), and private if it is
prefixed with two underscores (e.g. __private_attribute).

It is possible in Python to pass a custom traceback function to the Python interpreter
with the sys.settrace () function. Those custom trace functions make it possible to
investigate the execution of a Python project, and collect runtime information before cer-
tain events occur, such as a new line, a function call, or the occurrence of an exception.
The current stack frame, as well as the event type and a possible argument, are passed
to the custom trace function and can be inspected. From this stack frame, for example,
it is possible to access the variables currently in scope. The inspect module , part of
the Python Standard Library, elevates this further and provides several useful functions
to help get information about live objects such as modules, classes, methods, functions,
tracebacks, frame objects, and code objects [98]. For example, it allows to get all members
of an object with the getMembers () function, or the name of a module some function
was defined in using getModule (). The inspect module can even return the specific
source code of an object or method definition with get source ().

Python is an idiomatic language [99], for doing a specific task, there is only one typ-
ical, well-known and optimal way. Other ways are not preferred even if they are gram-
matically correct. Since following the idioms makes the code more readable and easier
to maintain, it is important for tools like AmPyfier, which synthesize code portions, to
support such guidelines.

Unit Testing in Python

Unit testing in Python has no straightforward conventions. Since Python projects
don’t have to follow object-oriented design, a unit can be seen as both a module or a class.

75

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

Additionally, Python has multiple unit test frameworks, which can function completely
differently. Two of the most popular are the default unittest framework included in
the Python Standard Library, and Pytest®.

Unittest is inspired by the unit testing framework for Java, JUnit. All test methods
should be contained in a class derived from the unittest.TestCase. A single test file
can consist of multiple such test classes. A test suite can be considered as a sing]le test file,
or a collection of test files. In this chapter, we refer to a test suite as one test file, possibly

containing multiple test classes.
Test Generation in Python and Related Work

In regard to test amplification, no tools have been developed for Python to the best of
our knowledge. However, there is relevant work on test generation, which inspired the

design of AmPyfier.

In 2020 Lukasczyk et al. introduced Pyncuin [67]. A tool that can automatically gener-
ate unit tests for Python. However, Pyncuin implements the test generation techniques of
whole-suite generation[84] and feedback-directed random generation[100], established
for statically typed languages and uses them on Python. Therefore, PynGuiN is most ef-
fective under the assumption that the system under test contains type information with
Python’s type annotations. It thus does not completely addresses Python’s dynamic na-

ture.

Another tool that automatically generates unit tests for Python is Auger [88], intro-
duced in 2016. Auger leverages the Python tracer and tracks function calls encapsulated
with the Auger context manager. If a function is called that is defined in the module
under test, Auger keeps track of both the values of the arguments as well as the return
values. Based on those values, assertions can be generated. Auger thus does not need
to rely on type annotations, and only generates tests for the explicitly called execution of
the project under test (no input amplification). Auger needs to be called from a python
module with a context manager in order to generate tests for the called functions. If a
function is not called, it won’t be tested. Furthermore, Auger only supports very trivial

projects written in Python 2 without exception handling or decorators.

While both Pyncuin and Auger could be used as a good starting point to develop a test
suite, they both have their limitations. PynGuIN relies on type annotations, whilst Auger
does not alter the execution, can only handle trivial projects and, is in an abandoned

state®.

Shttps://pytest.org(accessedonl5/1/22)
6The last public commit was in february 2019.

76

https://pytest.org (accessed on 15/1/22)

3.3. AMPYFIER

3.3 AMPYFIER

In this section, we present AmPyfier. In Section 3.3.1 we present the running exam-
ple, used to explain the working of AmPyfier in the subsequent subsections. A broad
overview of the main algorithm is given in Section 3.3.2. In Sections 3.3.3 and 3.3.5, the
main differences in assertion and input amplification for Python are set out. Lastly, the
selection of tests is described in Section 3.3.6

3.3.1 Running Example

To explain the workings of AmPyfier, we use a running example, namely a simple
fund implementation: SmallFund. See listing 3.1 for the source code of SmallFund. The
SmallFund class in our running example has five public methods; get _balance, deposit,
is_empty, get_transactions and get_self. Furthermore, it has two protected at-
tributes (_balance and _transactions) and one public attribute (owner).

1 class SmallFund:

2 def __init__(self, owner):

3 self._balance = 0

4 self. transactions = []

5 self.owner = owner

6

7 def get_balance(self):

8 return self. balance

9

10 def deposit(self, amount):

11 if amount >= 0:

12 self. balance += amount
13 self. transactions.append(amount)
14 else:

15 raise Exception("Can_not_deposit_negative_amounts", amount)
16

17 def is_empty(self):

18 return self. balance ==

19

20 def get transactions(self):

21 return self. transactions
22

23 def get _self(self):

24 return self

Code Excerpt 3.1: The SmallFund class

The manually created test suite for SmallFund is presented in listing 3.2. This test
suite covers the main scenario of depositing positive amounts. However, it does not cover
corner cases like depositing an amount less than zero.

77

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

import unittest
from SmallFund import SmallFund

1

2

3

4 class SmallFundTest(unittest.TestCase):
5 def setUp(self):

6 self.b = SmallFund ("Iwena_Kroka")
7
8

def testDeposit(self):

9 self .b.deposit(10)

10 self.assertEqual(self.b.get_balance(), 10)

11 self.assertlsInstance (self.b. get self (), SmallFund)
12 self .b.deposit(100)

13 self .b.deposit(100)

14 self.assertEqual (self.b. get _balance(), 210)

Code Excerpt 3.2: Original test suite

3.3.2 Logic

The logic of AmPyfier is shown in Algorithm 2. The main algorithm is inspired by
the work of DSpot, with the addition of dynamic type profiling inspired by Small-Amp
and multi-metric selection (See Section 3.3.6). The default input is a single Python test
file, the Test Suite (TS), the list of amplifiers/mutators (A), the number of subsequent
amplifier runs (n) and the module under test (mut).

AmPyfier scores the current test class against the module under test using the multi-
level coverage calculator. The variable score contains a tuple of absolute coverages. We
explain it in more details in Section 3.3.6. Afterwards the test class is passed to the dy-
namic type profiler in order to dynamically obtain information about the various types
used in the method or function calls in the test methods.

The inner loop (lines 6 to 16) loops over each test method in the test class, and asser-
tion amplifies it. If the assertion amplified test (a_test) improves the current score, it is
added to the Amplified Test Class (ATC).

The amplified test, the amplifiers to use, the number of input amplification iterations
and also the profiled type information are passed to the input amplifier. The input am-
plifier will return a set of input amplified test methods (ITT). These input amplified test
methods are then assertion amplified and sorted based on their modification count.

Finally, the amplified tests are scored, and the current score is updated (line 15). The
amplified tests that improved the current score (IIT) are appended to the amplified test
class. Once each test method is amplified, the amplified test class is added to the ampli-
fied test suite (ATS). At the end, each amplified test class is added to the amplified test
suite, which is returned after each test class is amplified.

AmPyfier currently only supports the unittest framework. Thereasonwhy unittest

78

3.3. AMPYFIER

Algorithm 2: AmPyfier logic

O N U AW N

-
- O

12
13
14
15
16

17

input :Test Suite TS
input :List of amplifiers A
input :Number of Input Amplifier runs n
input :Module Under Test mut
output : Amplified Test Suite ATS
ATS « (;
for TC in TS do
ATC + TG;
score < Selection(ATC, mut);
tp < TypeProfile (TC);
for test in TC do
a_test < AssertionAmplify (test, mut);
a_score < Selection(ATC U {a_test}, mut);
if a_score > score then
ATC < ATC U {a_test};
L score < a_score;

IT + InputAmplify (test, A n,tp);
AT < AssertionAmplify (IT);

AT < Sort (AT);

score, IIT + Selection(AT, mut);
ATC + ATC U IIT;

ATS + ATS U ATC;

79

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

is supported first is: (1) it is the standard testing library proposed by the language, (2) it
complies with xUnit testing practices similar to JUnit in Java and sUnit in Smalltalk. How-
ever, the tool is developed in an extensive way such that support for other frameworks,
such as Pytest, can be added.

3.3.3 Assertion Amplification

Algorithm 3 shows how assertion amplification is implemented in AmPyfier. It con-
sists of four steps: (1) Firstly, the assertions are stripped from the test. (2) Secondly, the
test without assertions is executed and observations are constructed. (3) Then, execution
and collection of the observations are repeated F times. These observations are compared
and all non-deterministic observations are discarded. (4) Finally, (new) assertions are
constructed based on those observations.

Algorithm 3: Assertion Amplification

input :Test Method test
input :Unit under Test unit
output: Assertion Amplified Test Method amplified
amplified < RemoveAssertions (test);
observations < Observe (amplified, unit) ;
for F' times do
observations2 « Observe (amplified, unit) ;
if observations # observations2 then
observations < RemoveNonDeterministic (observations,
L observations2) ;

o U AW N =

7 amplified +- AddAssertions (amplified, observations) ;

The first step is to remove the original assertions. The test source is scanned statically
and all method calls that are known as an asserting statement are replaced with their

asserted expression.

The second step is observing the test method. The test method is dynamically exe-
cuted and the values of the variables and the state of the objects are captured. For observ-
ing the values, DSpot and Small-Amp manipulate the source code to inject observation
statements. Python, however, is an interpreted language and lots of information is acces-
sible during runtime. AmPyfier uses Python’s sys.settrace () function along with a
set of custom trace functions to hook in different points during the execution and observe
the objects’ states and collect the return values of function calls.

The observations of the state of objects are also made possible thanks to the inter-
preted nature of Python. Python has a built-in module inspect enabling the possi-

bility to derive all information about live objects during runtime, such as their state,

80

3.3. AMPYFIER

the module and file it was defined in, the name, etc. AmPyfier uses a custom method
based on inspect.getmembers () to get all the public attributes and methods of an
object, and stores them in the observation. This custom method is exactly the same as
inspect.getmembers (), exceptitadds the possibility to also capture members or vari-
ables that cause exceptions instead of simply raising them. This proves its usefulness after
input amplification, where AmPyfier may have pushed an object in an erroneous state.
If an attribute or the return value of a getter call is itself a complex object, AmPyfier will
also observe its attributes and getter methods until a configurable AE levels deep. The
default value for AE is three.

If AmPyfier extracted an assertRaises statement, the extracted statement will raise
an exception during observation. Exceptions can also occur when the test input is mu-
tated by the input amplification module. As such, it is crucial for AmPyfier to be able to
handle the exceptions correctly during observation of the test method. When the observa-
tion process is interrupted by an exception, AmPyfier finds the line causing the exception.
Then, it wraps this line in a Try-Catch block and restarts the observation process. This
allows AmPyfier to assert raised exceptions on a per-line basis, and still assert the other
statements in a test. Furthermore, AmPyfier generates an object observation for the ex-
ception, so it can be asserted that the correct exception is raised.

The results after one observation run of the testDeposit test method are shown
in table 3.1. Note that method calls with no return value are not stored. Observations
of complex objects do not include their protected or private attributes and methods, nor
generate new object observations for self-references (e.g., do not generate a new object
observation for the get_self method call). If a getter call follows after a line with an
object observation for the same object, the getter call will be removed from the observa-
tion in order to reduce duplicate assertions. This is the case for both get_balance calls
followed rightly after the deposit calls.

To prevent generating flaky tests, AmPyfier excludes all non-deterministic values from
the observations. AmPyfier uses a configurable constant F, by default equal to 3, and re-
peats the observing process F times. Afterwards, the observation results are compared,

and the non-deterministic observations are removed.

After the test has been observed and the values to be asserted collected, the final step
is to construct the assertion statements. AmPyfier loops on a line per line basis over the
method-body, and constructs the assertions based on the observations originating from
that line.

Listing 3.3 shows our running example test method testDeposit after assertion
amplification.

81

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

Line | Observations

9 [{Name: self.b, Type: SmallFund, Object: smallfund.SmallFund ob-
ject at 0x7f50cOfce400, Members: [(owner:Iwena Kroka)], Methods:
[(get_transactions:[10]), (is_empty:False)]}]

10 [{FuncName: get balance, Value: 10}]

11 [{FuncName: get_self, Type: smallfund.SmallFund}]

12 [{Name: self.b, Type: SmallFund, Object: smallfund.SmallFund ob-
ject at 0x7f50cOfce400, Members: [(owner:Iwena Kroka)], Methods:
[(get_balance:110), (get_transactions:[10, 100]), (is_empty:False)]}]

13 [{Name: self.b, Type: SmallFund, Object: smallfund.SmallFund ob-
ject at 0x7f50cOfce400, Members: [(owner:Iwena Kroka)], Methods:
[(get_transactions:[10, 100, 100]), (is_empty:False)]]}]

14 [{FuncName: get balance, Value: 210}]

Table 3.1: Results after observing the testDeposit test method

1 def testDeposit_amp(self):

2 self .b.deposit(10)

3 self.assertEqual (self.b.get_transactions (), [10])
4 self.assertFalse (self.b.is_empty())

5 self.assertEqual(self.b.owner, ’'Iwena_Kroka’)

6 self.assertEqual (self.b.get balance(), 10)

7 self.assertIsInstance(self.b.get_self (), SmallFund)
8 self.b.deposit(100)

9 self.assertEqual(self.b.get _balance(), 110)

10 self.assertEqual (self.b.get_transactions (), [10, 100])

11 self.assertFalse(self.b.is_empty())

12 self.assertEqual(self.b.owner, ’'Iwena_Kroka’)

13 self.b.deposit(100)

14 self.assertEqual(self.b. get transactions(), [10, 100, 100])
15 self.assertFalse (self.b.is_empty())

16 self.assertEqual(self.b.owner, ’'Iwena_Kroka’)

17 self.assertEqual (self.b.get _balance (), 210)

Code Excerpt 3.3: Assertion Amplified test method

3.34 Type Profiler

Since input amplification is only performed statically in AmPyfier, some type-sensitive
input amplifiers, such as the addition of a new method call, need type information in ad-

vance.

Python is a dynamically typed language and does not force developers to add type
information to the source code. Python supports type annotations since Python 3, but
there is no guarantee that developers annotate types during development. In addition,
annotations defined for functions and variables are not enforced by the python runtime
and they are only used by third-party tools like IDEs and linters, so there is no guarantee
that they are defined correctly [101]. As a consequence, AmPyfier does not rely on the

82

3.3. AMPYFIER

annotated types in the source code and uses a dynamic type profiling step to collect type

information.

Dynamic type profiling is introduced by Small-Amp for test amplification in the dy-
namically typed language Pharo Smalltalk (Chapter 2). With AmPyfier we generalized
this concept away from Smalltalk specific Metalinks. In simple words, the type profiler
exploits the fact that it is possible to extract type information dynamically by executing
the existing test suite. As is mentioned in section 3.2.1, the existing test suite is the main
input in the algorithm and lots of useful information about the project under test are
embedded inside.

The test suite as well as the test class to be amplified are executed in order to detect
the type of arguments in the methods and functions under test. This type profiler works
similar to the observation step in assertion amplification, and leverages the ability to pass
custom tracing functions to the Python interpreter through the sys.settrace () func-
tion. Allowing AmPyfier to monitor calls executed in the test methods, and discover the
possible types used as input for different method and function calls. Getter methods
without arguments will not be recorded, as they will be generated during the assertion
amplification. For our example test class, the result of the dynamic type profiling can be
seen in table 3.2. With this information, new method, or function calls can be generated

as well as their random inputs.

function | test line | caller | caller type | arguments | argument types
deposit testDeposit | 9 self.b | SmallFund | (10) (int)
deposit testDeposit | 12 selfb | SmallFund | (100) (int)
deposit testDeposit | 13 self.b | SmallFund | (100) (int)

Table 3.2: Results after dynamic type profiling the Smal1FundTest test class

3.3.5 Input Amplification

The algorithm for input amplification in AmPyfier is presented in listing 4. Input
amplification starts similar to assertion amplification, namely, stripping the tests of its as-
sertions again. Then we loop over all the amplifiers n times in order to combine different
amplifiers. This loop generates loads of new tests, so each time a loop over the amplifiers
is completed, only 7' randomly selected tests are kept. Those T tests are added to the
results, and also passed on to the next iteration. Once the n iterations are completed, the

selected tests are returned.

In order to input amplify the test, we need to strip the test from any assertions. The
statements inside these assertions are extracted, so that the test execution is not changed

upon removal of the assertions. If the assertion statements were to be removed com-

83

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

Algorithm 4: Input Amplification
input :Test method test
input :Number of iterations n
input :List of amplifiers AMPS
input :Typing information tp
output : Input Amplified Tests AT

1 temp < { RemoveAssertions (test) } ;

2 results < 0;

3 for n times do

4 amplified < 0 ;

5

6

for amp in AMPS do

L amplified < amplified U amp.apply(temp, tp);
7 if Size (amplified) > T then

8 L amplified + SelectRandom (amplified, T')

9 results < results U ampli fied,
10 temp < amplified,

pletely, the method or functions inside them would not be called. Furthermore, through
extraction of the statements, the assertions the original developer deemed important can
be restored during assertion amplification. If the assertions were kept in the test, the test
would fail on the amplified inputs. We want to construct new assertions based on the
amplified inputs.

Once stripped from assertions, AmPyfier loops over the list of selected amplifiers n
times. Each time the loop over the amplifiers is completed, new tests are generated, in-
creasing the number of tests exponentially for each loop. To counter this, after each loop,
only a configurable amount of tests (1") is randomly selected and passed on to the next
loop. The default value of T is 200.

The amplifiers used in input amplification are based on the ones used in DSpot and
Small-Amp:

* Literal Mutation:
— Numerical Values: 0, +1,—1, %2, /2
- Strings: add random char on empty string, double the string, random sub-
string of half the size, replace with empty string
- Booleans: negation
— Unification of literals
- Replace with None
* Mutation of Method Calls:
— Removal

- Duplication

84

3.3. AMPYFIER

Code Excerpt 3.4: An example of transformations applied during input amplification

1 def testDeposit_stripped(self): 2 # removed statement

2 self .b.deposit(10) 3 self.b.deposit(—45485) # new
3 statement

4 self.b.get balance () 4 self.b.get balance()

5 self.b.get_self() 5 self.b.get_self ()

6 self.b.deposit(100) 6 self.b.deposit(100)

7 self.b.deposit(100) 7 # removed statement

8 self.b.get balance() 8 self.b.get balance()

1 def testDeposit_i_amplified (self):

— Addition of a new method call

In listing 3.4, the test method in listing 3.2 is shown during stages of input amplifica-
tion. The listing on the left, is the method after stripping the assertions, and the listing on
the right is the method after three transformations: 1) One method call has been removed
atline 2, 2) at line 3, a new call to a random method is added with a random input value
of the correct type, 3) and another call is removed at line 7. Note that, the unit under
test used in this example has only three methods, of which two are getters. So, the only

interesting method which can thus be added, deposit () is generated.

After the input amplifier loop is finished, all newly generated tests are assertion am-

plified, and sorted depending on the number of modifications:

Nmodifications — 1Vall_assertions + Ntransformations - Nm’iginal_assertions

Adding a new assertion statement counts as one modification, the same for any mod-
ification made through input amplification. Regenerating the original assertions is not
counted as a modification. The input and assertion amplified test (listing 3.5), in our ex-
ample, has a modification count of 7: it has 3 transformations, 4 new assertions are added

and 3 assertions are regenerated.

Sorting helps AmPyfier to prefer methods that differ the least from the original test
method, i.e. those tests that have the lowest number of transformations. So, if two dif-
ferent amplified tests kill the same mutant, the test with the lowest modification count is
selected.

3.3.6 Multi-Metric Selection

Input amplification yields large amounts of new test methods, and most of them do
not increase upon the adequacy criterion, thus a method to decide on which tests to add

85

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

1 def testDeposit_amplified (self):

2 with self.assertRaises (Exception) as excep_info:

3 self .b.deposit(—45485)

4 self.assertEqual (excep_info.exception.args, (’Can_not_deposit_negative_
amounts’, —45485))

5 self.assertEqual (self.b.get _balance(), 0)

6 self.assertIsInstance(self.b.get_self (), SmallFund)

7 self.b.deposit(100)

8 self.assertEqual(self.b. get_transactions (), [100])

9 self.assertFalse (self.b.is_empty())

10 self.assertEqual (self.b.owner, ’Iwena_Kroka’)

11 self.assertEqual(self.b.get balance (), 100)

Code Excerpt 3.5: Assertions & Input Amplified test method

to the amplified test class is needed. This method scores the amplified test methods based
on a given adequacy criterion. AmPyfier mainly uses the same criterion as suggested by
DSpot: the number of mutants a test suite is capable to kill and extends this with code

coverage and dynamic generation of new mutants.

One of the main downsides of mutation testing is that, naively, a test has to be executed
the same number of times as there are mutants. For test amplification, this means that a
test has to be executed as many times as the number of mutants multiplied by the number
of amplified tests. It comes as no surprise that reducing the number of mutants to test
against can drastically decrease the runtime.

AmPyfier reduces the number of mutants based on the Reachability, Infection, Prop-
agation (and reveal) model (RIP) [102, 103, 104]. To kill a mutant: (R) the mutated part
needs to be reached by the test (I) for a change in the program state to be visible com-
pared to the original program, (P) the change needs to be propagated to the test, and
finally, (reveal) the change needs to be asserted by an assertion statement. Simply said, if
a mutant is not covered by a test method, it definitely will not be killed. AmPyfier gener-
ates mutants only in the covered lines of code. However, this practice has as a result that
amplified tests that reach previously non-covered code will not selected, because they do
not kill any mutant. Therefore, AmPyfier introduces multi-metrics selection: the usage
of code coverage along with mutation testing and dynamic generation of new mutants

for newly covered code.

First, the test is scored against code coverage, if it increases upon the code coverage,
the test is added to the amplified test suite. After the tests have been scored against code
coverage, new mutants are generated for the newly covered lines. Subsequently, the tests
are scored against the alive mutants. If a test kills an alive mutant, it is added to the
amplified test suite. A test is thus selected if it increases the code coverage or it kills new

mutants.

86

3.4. EVALUATION

Python has many capable mutation testing frameworks, but the one used by AmPyfier
ismutaTest’. This framework is chosen because of the extensive API that allows for the
introduction of caching. AmPyfier thus does not need to retest for every mutant that is
already killed and can throw away mutants that result in time-outs, drastically decreasing
the runtime of AmPyfier. To derive the coverage score of a test, AmPyfier makes use of

the Coverage.py framework®.

The return value score is a tuple of the absolute number of covered elements. The
first element of this tuple shows the number of all covered lines and the second element
shows the number of killed mutants. This variable is used in the main algorithm (Algo-

rithm 2) to detect any improvements in the coverage.

34 EVALUATION

To evaluate AmPyfier, we ran it using the default configuration on multiple test files
from multiple small open-source projects found on GitHub. In total, AmPyfier has been
evaluated on 54 test classes belonging to 11 projects. The projects and their characteristics
and the evaluated test classes can be seen in Tables 3.4 and 3.5 in the appendix®. For our
evaluation, all test suites had to have been developed using Python’s standard unittest
framework. We have randomly selected 11 projects with recent commits from varying
popularity, size, and coverage and mutation score. The projects range from small one-
person projects with no stars and 22 forks to more popular, medium-sized, projects with
more than a hundred contributors, a thousand forks, and four thousand stars. This range
allowed us to evaluate AmPyfier on both small hobby projects as well as libraries actively
used in a multitude of other Python projects. The goal is to test to which extent AmPyfier
is still able to increase the mutation and coverage score, even for those test suites with
already high adequacy criteria. The results of our evaluation are publicly available in

our GitHub repository.

The default configuration of AmPyfier is a) the usage of the cache to minimize run-
time, b) automatic discovery of the module under test c) 3 observation runs to counter
flaky tests d) 200 tests can be collected during each loop inside the input amplification
part, e) there are 3 of these loops, and f) all amplifiers discussed in Section 3.3.5 are used.

In our evaluation, AmPyfier detects the module under test for each individual test
class. This reduces the need for developers to manually specify which module a specific
test class tests. The module under test is then used by AmPyfier to detect and observe in-
teresting method and function calls, objects under test, etc. Furthermore, it allows AmPy-

"https://github.com/EvanKepner/mutatest (accessed on 15/1/22)

8https://github.com/nedbat/coveragepy (accessed on 15/1/22)

9All repositories accessed on 15/1/2022
Onttps://github.com/SchoofsEbert /AmPyfier_evaluation

87

https://github.com/EvanKepner/mutatest
https://github.com/nedbat/coveragepy
https://github.com/SchoofsEbert/AmPyfier_evaluation

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

fier to compute the coverage score for the test class, and keep track of covered mutants to
test against. AmPyfier tackles this problem using the following technique:

* First, an inspection of the imports of the test class is performed and imported mod-
ules belonging to the project under test are stored.

* Subsequently, all function calls and constructors are observed. The module that is
used the most in the test class is considered the module under test.

The results of this experiment are presented in Table 3.6 under Appendix 3.7. The
second column (T) expresses the execution time it took to amplify the test class. The
third column (L.OC) are the lines of code in the module under test whereas the fourth and
fifth columns (MO and MA) are the number of test methods originally in the test class and
the number of amplified test methods added. The other columns are the coverage score
(Cs.) and mutation score(Ms.) of the original test class (. .0) and after amplification
(. .2) and the relative increase in scores after amplification (R. . I), all expressed in %.

The relative increase in coverage score is computed as below:

#lines_covered ampii fied — Flines_coveredoriginal

%RCST = 100 x

#lines_coveredoriginal

and the relative increase in mutation score in a similar matter:

GRMSI — 100 x #mutants_killed amplifica — Fmutants_killedoriginal
0 —

#mutants_killedor;ginal

The test classes for which AmPyfier was able to increase a score, the name of the test class,
as well as the increased scores are bolded.

Due to space constraints, not all results are represented such as the absolute number
of mutants killed, and alive after amplification. For the full results of our experiment, as
well as the amplified test suites, we refer to our GitHub repository with the results of the

experiment.

AmPyfier is able to increase the coverage score for 28 out of the 46 test classes where
coverage improvement was possible (61%). Furthermore, it improves the mutation score
for 32 out of the 53 test classes where mutation improvement was possible (60%). In total
AmPyfier is able to improve one or both of the adequacy criteria in 37 out of the 53 test
classes where improvement in one ore both criteria was possible (70%). Regarding the
execution time, amplifying with AmPyfier only took more than 1 hour in 10 out of the 54

test classes thanks to multi-metric selection.

88

3.4. EVALUATION

100 4
! Ay ’/7 P |
oy

60

S
—_—

Mutation Score (%)
~

40 4

Newly Killed Mutants

20 30 40 50 60 70 80 90 100 0 5 10 15 20 25
Coverage Score (%) Methods Added

Figure 3.1: a) Coverage vs Mutation score in Original and Amplified Test Class & b)
Methods Added vs Newly Killed Mutants

In Figure 1 a) the adequacy criteria improvements are plotted as lines in a line di-
agram. The starting point of the line is the code coverage and mutation score for the
original test class (CSO, MSO), the end point is the same values for the amplified test
class (Csa, MSA). If a line goes diagonal, this means AmPyfier was able to improve both
the coverage and mutation score. A horizontal line means only the coverage score was
improved whereas a vertical line means only the mutation score was improved. The dia-
gram shows that for most test classes where AmPyfier improved one adequacy criterion,
the other was also improved. Furthermore, the most improvement can be seen for test
classes where the original coverage score is higher than 40%. (Note: multiple test classes
are hidden together for CSO 100%, this can be seen in the table with the results.)

Figure 1 b) shows the number of methods added versus the number of newly killed
mutants (mutants killed by the amplified test class, but not the original test class) and the
trend line. The diagram shows that the addition of a single amplified method enables the
test class to kill multiple new mutants. The linear trend shows that on average one am-
plified method kills 5 new mutants. The real number for methods needed to kill the new
mutants is even lower, because amplified test methods that only increase code coverage

are also counted.

Influence of dynamic type profiling on amplified test methods. In our evaluation, 5
test classes were improved thanks to 6 methods generated by a type-sensitive input ampli-
fier, and thus type profiling. testSerializers and TestTOC saw their code coverage
increase, whereas Test StringMethods, TestSmarty and TestMetaData saw an in-
crease in both adequacy criteria thanks to the addition of a new method call. Although
only a small subset of the evaluated test classes were improved thanks to call addition,
it shows that type-sensitive input amplifiers are able to increase the coverage and/or the

mutation score and that type profiling works outside of Pharo Smalltalk. The reason for

89

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

the small subset is for a part implementation-dependent. Amplified test methods with
the same number of modifications generated by other input amplifiers are scored (and
thus selected) before those generated by type-sensitive input amplifiers.

Influence of Multi-Metric Selection on Time-Efficiency. In order to investigate the
influence of multi-metric selection on the runtime of AmPyfier, we have run our evalu-
ation again on 10 test classes with differing original coverage scores, this time selecting
the amplified test using classic mutation score (i.e. scoring them against all mutants in
the module under test). In our original evaluation, 5 of those test classes saw no im-
provement in regard to their mutation score, while AmPyfier was able to increase the
mutation score for the other 5. As shown in table 3.3, we see that the time AmPyfier took
to amplify the test class is drastically reduced thanks to multi-metric selection while the
number of newly killed mutants is similar. The reduction in time-cost varies from 17%
in RatioTest t098% in TestConfigParsing. The differences in the number of killed
mutants are due to the effect of randomness during input amplification as also explained
in Section 3.4.2.

TestClass Runtime Runtime | Newly Killed | Newly Killed
TestClass Multi-Metric Classic Mutants Mutants Classic
ProcessTest 0:41:2 1:37:20 123 92
RatioTest 0:44:09 0:53:23 57 55
TestSerializers 0:56:59 11:58:03 26 26
TestBlockParser 0:13:27 2:39:08 17 21
TestConfigParsing 0:07:55 8:12:59 3 2
TestAstRender 0:00:34 0:02:29 0 0
PdfReaderTestCase 1:53:08 8:05:18 0 6
TestAdmonition 0:06:02 3:20:19 0 0
RegistryTests 0:53:20 56:36:50 0 1
TestBlockParserState 0:11:52 8:56:47 0 1

Table 3.3: Comparison of the time-cost using multi-metric selection compared to test
selection based on full mutation score

3.4.1 Lessons Learnt

After we collected the results of our evaluation, we took a critical look at the amplified
test classes AmPyfier generated. We looked at the test classes where we saw improve-
ment, and more importantly, those with no or minimal improvement. In the following
paragraphs, we share what we learned from this investigation and what improvements
would be possible.

90

3.4. EVALUATION

Amplification of pickles is challenging. Python has the ability to (de-)serialize the
structure and states of objects, whereby the object is converted into a bitstream or vice-
versa. This makes it possible to read and write objects to files or send them across a
network. The process is called Pickling and makes use of the pickle module. It is very
important when trying to pickle and unpickle an object that it is imported the same way.

Since AmPyfier works based on mutation testing and the unit under test may be mu-
tated, pickling can cause exceptions during the execution of the test method, either dur-

ing observation or selection.

In our experiments, we encountered this problem in one test class: ChildDictTests
of the project Addict. However pickling is only tested in one of the 63 methods, so in-

crease in mutation score was still possible for both classes.

If AmPyfier encounters this problem, the following exception will be thrown:
_pickle.PicklingError: Can’t pickle <class ’'CLASSNAME’>: it’s not
the same object as CLASSNAME. In the case of ChildDictTests the error thus
looks as follows:

_pickle.PicklingError: Can’t pickle <class ’'test_addict.CHILD_CLASS’>:
it’s not the same object as test_addict.CHILD_CLASS.

Amplification of file-based tests is not effective. Another situation where test amplifi-
cation is challenging is when the test works based on file inputs. In such a test method, a
file is opened and the object under test is initialized based on its content. In these cases,
current input amplification operators are not efficient, because they only consider the test
source code and generate new inputs by mutating it. They can not manipulate the content
of the files to force the test to new states.

For example, in the test class PdfReaderTestCases, one of the test methods opens
a PDF file and initializes a PdfFileReader object from the content of the file. Then
it uses the initialized object to assert some values. Literal input amplification operators
in this test have low effectiveness because they mutate the string of the file path. Such
mutations only generate an incorrect file path, which causes the raising of an exception,
and does not permit AmPyfier to explore the search space of possible test inputs.

In our experiments, four test classes were suffering from this problem: the above-
mentioned PdfReaderTestCases and AddJsTestCase of the PyPDF2 project, TestMPQArchi-
of MPyQ and TestPluginDirective of Mistune. In only one of those four classes we

were able to increase both adequacy criteria: TestPluginDirective.

In TestPluginDirective we were able to increase both adequacy criteria thanks
to a flipped boolean in our amplified test. test_html_include (listing 3.6) creates a
markdown file which does not escape special characters and then tries to include other

91

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

Code Excerpt 3.6: The test_html include method before amplification, and after amplfica-
tion

1 def test_html_include (self): test_html_include_bool_inv_0_none_4
2 md = create_markdown (escape (self):
=False, plugins=[2 md = create_markdown (escape
Directivelnclude ()]) =True, plugins=[
3 html = md.read (os.path.join Directivelnclude () 1)
(ROOT, ’include/text.md 3 html = md.read (os.path.join
) (ROOT, ’include/text.md
4 "))
4
1 def

markdown files. Afterwards, it asserts that some of the lines that should have been in-
cluded are indeed in the generated html.

Thanks to the flipped boolean, the Markdown object has its property _escape set to
True which causes, among other lines, the following line to be newly covered: return
"<p>’ + escape (html) + ’</p>\n’.Themutation framework will mutate the arith-
metic operators, and cause exceptions if the amplified test method is executed. In the orig-
inal test method, however, the above line was never reached, so those mutations would
have never been caught.

Assertion generation for complex objects is not efficient. In assertion amplifica-
tion, AmPyfier needs to convert the observed object/value into a Python AST node rep-
resenting the original object. This process is fairly simple for asserting literals, or lists/-
dictionaries consisting of literals. However, for complex objects, this is more challenging.
To overcome this, AmPyfier records the values from getters and public attributes of each
object. If the value is also another object, it repeats the process for it up to a defined depth.
However, this technique easily clutters the test with a large number of extra assertions,
rendering the test unreadable. A possible way to solve this is to implement assertion
pruning. During assertion pruning, only those assertions that improve upon the given
adequacy criterion are kept in the test method. However, naively removing assertions
and/or statements to declutter the test method, could alter its execution and lead to a
failing test. Assertion pruning is currently a work in progress for AmPyfier and is not yet
considered in this work.

An example of this can be seen in listing 3.7. The left column shows the the test_create
method of the TestMIDIFile in the python-twelve-tone project. After assertion ampli-
fication, 85 new assertions are generated for the complex MIDIFile object; 39 after ini-

tialization and 46 after the create (notes) method call. Upon investigation, only one

92

3.4. EVALUATION

Code Excerpt 3.7: The test_create method before amplification, and the assertion pruned
version

1 def test_create(self): 1 def test_create(self):
2 notes = [1, 2, 3, 4, 5, 6, 2 notes = [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11] 7, 8, 9, 10, 11]
3 path = ’'tmp’ 3 path = ’'tmp’
4 os.makedirs (path, exist_ok= 4 os.makedirs (path, exist_ok=
True) True)
5 os.chdir(path) 5 os.chdir (path)
6 m = MIDIFile (filename="test 6 m = MIDIFile (filename="test
.mid’) .mid’)
7 m. create (notes) 7 m. create (notes)
8 self.assertTrue (os.path. 8 self.assertEqual (m. pattern.
exists (os.path.join (os. tracks, [[[0, 60, 200,
getewd (), ’test.mid’))) 1], [1, 61, 200,
9 os.chdir (os. pardir) 9 1], [2, 62, 200, 1],
10 shutil . rmtree (’'tmp’, [3, 63, 200, 117,
ignore_errors=True) [4, 64, 200, 1],
[5, 65,
10 200, 1], [6, 66, 200,
11, [7, 67, 200,
11, [8, 68, 200,
11, [9,
11 69, 200, 11, [10, 70,
200, 111D)

12 self.assertTrue (os.path.
exists (os.path.join (os.
getewd (), ’test.mid’)))

13 os.chdir (os.pardir)

14 shutil . rmtree(’'tmp’,

ignore_errors=True)

assertion generated after the create (notes) method call alone kills the 13 mutants
needed to reach 100% mutation score. The test should, after assertion pruning, look like
the right-hand side of listing 3.7.

Additionally, some developers define customized assertions or helper methods that
contain a set of assertions for specific types. The test generator should be consistent with
such a coding style, which it currently doesn’t do. A possible solution is using the pro-
filing module to profile how an object is asserted in the existing test suite. Using this
mechanism, the assertion amplification module would learn from developers how to as-
sert objects and would produce similar code.

Helper methods needs to be considered. Developers frequently use helper methods
in their tests. A helper method is another method defined in the test suite, but it is not

a test method. It can be defined for different reasons like grouping a set of assertions to

93

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

reuse them in different test methods, or setting up an object and bringing it to a particular

state.

If a helper method includes assertion statements, it is necessary to consider stripping
them before input amplification. In our experiments, for example the class AddJsTestCase
uses such helper method. As a result, the amplification of this class has not been success-
ful, because the majority of input amplified tests were failing. Helper methods that are
defined for altering inputs also need to be considered in input amplification for increasing

space exploration.

In our experiments’ dataset, helper methods were only used in the above mentioned
AddJsTestCase.

The presence of a helper method is one of the main differences between a test gener-
ation and a test amplification tool. In test generation, the tool starts to generate the tests
from scratch and the structure of a test is defined by the tool. However, in test amplifica-
tion, the tool needs to adopt the style of the existing test suite and consider its elements.

Idiomatic Python code. Test amplification is a program synthesis task which gener-
ates new test methods based on existing ones. The generated test methods needs to be
merged into the code base to make the effect of improved tests permanent. Therefore,
it is important that the generated code is readable and adheres to the idiomatic coding

conventions [99].

In the current implementation of AmPyfier, the test method are changed via input
amplification operators which make subtle changes to the original test code. So, if the
original test code follows Python coding idioms, the transformed code is likely to follow
the same idioms. Additionally, when generating new method calls and asserting values,
AmPyfier respects the Python conventions in accessing private and protected members.
If we decide to extend AmPyfier with more complex input amplifiers, then the idiomatic
nature of the code transformation should be taken into account.

Nevertheless, AmPyfier currently does not choose meaningful names for the gener-
ated test methods, as for instance done by Nijkamp et. al. [62]. The tool also adds plenty
of assertions, some of which are irrelevant, which has a negative effect on the readability
of the generated code. So, the produced test code is not immediately ready to be merged

to the code base and it need a revision by a developer.

Continuous test amplification may help. Lastly, as already briefly touched upon, the
main downside to AmPyfier, and test amplification in general, is its complexity. It is a
time-, and resource-consuming task. At worst, each test has to be executed the amount
of mutants times the amount of amplified test generated times, to score them all. Further-

94

3.4. EVALUATION

more, multiple runs of the test are needed during assertion amplification to evade flaky
tests, or to observe tests after an exception occurred. This makes it difficult to introduce

test amplification into realistic development environments.

Therefore, we suggest employing AmPyfier in the Continuous Integration pipeline to
be triggered periodically or in each code push to amplify the recent changes. In this case,
the mutants would be generated only for the changed portions of code, and consequently
the amplified tests should cover the changes. This can significantly reduce the load of
execution. The amplified tests and other reports can be exported as artifacts, or they can
be automatically sent as pull requests to be reviewed by the developers.

Time-based flaky tests can render faulty test methods. AmPyfier counters the gen-
eration of flaky tests through observing the test method F times as explained in subsec-
tion 3.3.3 and removing the non-deterministic results. However, sometimes a function
returns the same results for a certain amount of time and then changes its return value
(e.g. an API call to a server to ask when it was last updated). If this update does not hap-
pen during the F observations, AmPyfier will generate assertions based on the value of
when it observed the test method. On a later execution of the test method, either during
the mutation testing stage of AmPyfier, or once the test has been added to the amplified
test class, the test will fail. AmPyfier tries to reduce this threat through the removal of
faulty test methods before the selection process, however, the test method could still be

valid at this time.

Impure getter functions or attributes during observation. When building object
observations improper getter, or getattr and __getattribute methods could alter
the state of the observed objects and thus cause unexpected (for the developer) results in
the generated assertions. While unexpected for the developer, the amplified test methods
would not fail, as the assertions are generated in the same order as the observations. The
improper functions or methods would have the same effect in a handwritten test method.
This can be seen as related to the “main pain point” for test amplification/generation.
The techniques expect a properly implemented project. Still, the amplified tests could
prove useful, because a developer, upon inspection of the amplified tests, could notice

the unexpected behavior.
3.4.2 Threats to Validity

As with all empirical research, we identify those factors that may jeopardise the va-
lidity of our results and the actions we took to reduce or alleviate the risk. Consistent

with the guidelines for case studies research (see [105, 106]), we organise them into four

95

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON
categories.

Construct validity: do we measure what was intended? We measure the improve-
ment of an amplified test class based on the increase in code coverage and mutation score.
While there is debate around the effectiveness of these metrics, both are often used as ad-
equacy criteria for unit test suites. These metrics provide quantitative evidence for the
quality of the amplified tests, hence are sufficient at this stage of the research. Yet to truly
measure whether the amplified tests add value, we should collect qualitative evidence

from actual developers maintaining these projects.

Internal validity: are there unknown factors which might affect the outcome of
the analyses? To evaluate the performance of the multi-metric selection, we use the
execution time of the tool. However, the execution time may depend on different factors
such as the number of CPU cores and the available RAM on the system. To reduce these
factors, we ran our experiments in the same system (An AWS server with 2 CPUs and 8
GB RAM) with different configurations.

Another aspect influencing the results is the automatic selection of the module under
test. As explained in Section 3.4, AmPyfier will score the test class against the project
module most used in the test class. AmPyfier however has no way to ensure that this
is indeed the intended module under test. This implies that during test selection, the
coverage and mutation scores might be computed against the wrong module. In a re-
alistic setting, this risk can be addressed by configuring AmPyfier with the appropriate
traceability links.

External validity: to what extent is it possible to generalise the findings? We have
demonstrated that test amplification is feasible for Python thanks to the generalisation
of dynamic type profiling. AmPyfier has been evaluated on 54 test classes belonging
to 11 projects with sufficient diversity in project characteristics (see Tables 3.4 and 3.5).
However, these projects are mainly libraries and components and the tests were typical
unit tests thereof. Whether these results hold for other projects (with a database, with

heavy math, ...) remains to be seen.

AmPyfier has shown that the runtime efficiency of test amplification can be increased
thanks to the introduction of multi-metric selection. While this is only tested for Python,

similar results are expected for other languages and mutation frameworks.

Reliability: is the result dependent on the tools? To compute the coverage, and

mutation score AmPyfier is dependent on specific tools. For mutation testing tools, the

96

3.5. CONCLUSION

mutation operators they support can differ greatly. Furthermore, not all tools are able
to only create mutations for covered code, thus minimizing the effect of multi-metric
selection on the time efficiency.

AmPyfier further makes use of randomness multiple times during input amplifica-
tion. Some input amplifiers depend on randomness, such as the add-call-amplifier.
It will randomly generate the parameters for a newly added method or function call.
When it needs to generate a number as parameter, for example, this could be a large
or small, positive or negative number. Dependent on that number, a new mutant could
be killed or missed. Furthermore, if during a round of input amplification, more than
N test methods are generated, as explained in subsection 3.3.5, a random subsection of
those test methods is selected. Those tests are then passed to the next input amplifica-
tion round and are scored at the end. As such, the possibility exists that interesting test
methods are disregarded before scoring.

It could thus be that if we rerun the evaluation (Table 3.6), a slightly higher, or smaller,
number of test classes will see improvements in regard to their coverage or mutation
score. However, the goal of the evaluation was to show that test amplification, thanks
to the generalisation of dynamic type profiling, is feasible for Python, and as such the
randomness does not deny our results.

In our experiment regarding multi-metric selection, as shown in Table 3.3, we see the
influence of randomness between both runs, but the amount of newly killed mutants is
similar in both runs, sometimes in favour of one run, other times in favour of the other.
The experiment shows that multi-metric selection drastically reduces the time-cost, and
upon investigation, the differences in newly killed mutants can all be traced back to ran-
domness. As such, our conclusion still holds. Multi-metric selection reduces the time-
cost without affecting the effectiveness.

3.5 CONCLUSION

In this chapter, we introduced AmPyfier, a test amplification tool for Python, a dy-
namically typed and interpreted language. To build the tool we heavily relied on the
design of DSpot, a test amplification tool for the statically typed language Java. Yet, to
overcome the shortcomings of a dynamically typed language, we incorporated type pro-
filing as used by Small-Amp for the dynamically typed language Smalltalk. However,
type profiling in Small-Amp heavily relied on Pharo specific Metalinks, with AmPyfier
we have generalised this concept. For Python specifically, we leveraged the fact that it is
an interpreted language, where lots of information is available at runtime. Furthermore,
we have introduced multi-metric selection in order to increase the time efficiency of test

amplification. With multi-metric selection, mutants are only generated for covered code

97

CHAPTER 3. AMPYFIER: TEST AMPLIFICATION IN PYTHON

in the project under test and amplified test methods are scored against both code cover-
age and mutation score. If an amplified test method covers new code, new mutants will

be dynamically generated.

We evaluated AmPyfier on 11 open-source projects, and found that the tool could
successfully strengthen 37 out of 53 test classes in regard to code coverage and mutation
score. Furthermore, multi-metric selection decreased the time-cost by 17% to 98% as
opposed to selection based on full mutation score. We collected qualitative evidence from
the cases where AmPyfier failed to strengthen the test suite, deriving lessons learned and
sketching areas for further improvement. Despite these shortcomings, we conclude that
test amplification is feasible for one of the most popular programming languages in use
today.

3.6 EVALUATED PROJECTS

Project (GitHub) Age | Stars | Forks | Contributors | LOC | Test LOC
(year)

mewwts/addict 8 2.2k 133 27 142 443
Python-Markdown/markdown 12 2.8k 713 134 3855 2308
lepture/mistune 8 2k 210 36 1366 308
eagleflo/mpyq 12 87 28 6 289 43
appditto/pippin_nano_wallet 3 52 17 8 2107 47
eatonphil/pj 4 71 11 2 167 25
dhagrow/profig 8 22 0 1 814 498
mstamy2/PyPDF2 10 4k 1k 68 3643 52
accraze/python-twelve-tone 6 68 5 8 101 60
seatgeek/thefuzz 1 431 31 1 357 325
richardpenman/whois 3 172 99 30 1273 255

98

Table 3.4: Projects Amplified with AmPyfier

https://github.com/mewwts/addict
https://github.com/Python-Markdown/markdown
https://github.com/lepture/mistune
https://github.com/eagleflo/mpyq
https://github.com/appditto/pippin_nano_wallet
https://github.com/eatonphil/pj
https://github.com/dhagrow/profig
https://github.com/mstamy2/PyPDF2
https://github.com/accraze/python-twelve-tone
https://github.com/seatgeek/thefuzz
https://github.com/richardpenman/whois

3.7. EVALUATION RESULTS

Project Test Classes

Addict DictTests, ChildDictTests

markdown RegistryTests, TestAbbr, TestAdmonition,
TestAncestorExclusion, testAtomicString,
TestBlockAppend, TestBlockParser,
TestBlockParserState, TestCaseWithAssertStartsWilth,
TestCliOptionParsing, TestConfigParsing,
TestConvertFile, testElementTailTests,
TestErrors, TestEscapeAppend, testETreeComments,
TestExtensionClass, TestGeneralDeprecations,
TestHtmlStash, TestMarkdownBasics, TestMetaData,
testSerializers, TestSmarty, TestTOC, TestVersion,
TestWikiLinks

mistune TestAstRenderer, TestMiscCases,
TestPluginAdmonition, TestPluginDirective

MPyQ TestMPQArchive

Pippin Nano Wallet | TestAESCrypt, TestNanoUtil, TestRandomUtil,
TestValidators, TestWalletUtil

PJ TestStringMethods

profig TestBasic, TestStrictMode

PyPDF2 PdfReaderTestCases, AddJsTestCase

Python Twelve Tone | TestMatrix, TestMIDIFile

TheFuzz ProcessTest, RatioTest, StringProcessingTest,
TestCodeFormat, UtilsTest, ValidatorTest

Whois TestExtractDomain, TestParser, TestNICClient

Table 3.5: Classes Amplified with AmPyfier

3.7 EVALUATION RESULTS

Legend: T = Execution time of AmPyfier; MO = Number of methods originally in the test class; MA = Number of amplified
methods added to the amplified test class; LOC = Number of lines of code; CSO = Coverage score of the original test class; CSA

= Coverage score of the amplified test class; RCSI = Relative increase in coverage score after amplification; MSO = Mutation
score of the original test class; MSA = Mutation score of the amplified test class; RMSI = Relative increase in coverage score

after amplification

TestClass T MO MA LOC CSO CSA RCSI MSO MSA RMSI
TestRandomUtil 00:00:00 1 0 7 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%
TestVersion 00:01:50 2 1 13 100.00% 100.00% 0.00% 91.53% 93.22% 1.85%
TestValidators 00:02:14 2 3 39 100.00% 100.00% 0.00% 86.57% 91.04% 5.17%
ChildDictTests 01:10:04 63 2 130 100.00% 100.00% 0.00% 80.52% 83.12% 3.23%
DictTests 00:53:11 63 2 130 100.00% 100.00% 0.00% 80.52% 83.12% 3.23%
TestCliOptio ... 00:10:01 16 2 41 100.00% 100.00% 0.00% 75.44% 80.70% 6.89%
StringProcess... 00:00:21 2 0 15 100.00% 100.00% 0.00% 57.14% 57.14% 0.00%
TestMIDIFile 00:00:13 2 1 18 100.00% 100.00% 0.00% 27.78% 100.00% 260.00%
TestAESCrypt 00:00:31 1 4 29 96.55% 100.00% 3.57% 93.06% 98.61% 5.96%
TestNanoUtil 00:00:00 1 0 40 87.50% 87.50% 0.00% 29.27% 29.27% 0.00%
TestMatrix 00:03:58 5 1 55 83.64% 83.64% 0.00% 90.32% 91.94% 1.79%
ProcessTest 00:41:28 14 22 329 76.60% 78.72% 2.78% 54.25% 82.53% 52.12%

99

TestClass T MO MA LOC CSO CSA RCSI MSO MSA RMSI
TestStringM..... 00:08:26 10 6 152 75.00% 78.95% 5.26% 87.56% 89.78% 2.54%
TestMPQArc... 00:10:04 5 2 262 65.27% 65.65% 0.58% 81.92% 83.38% 1.78%
TestMiscCases 00:17:15 9 3 679 62.74% 66.27% 5.63% 85.13% 92.48% 8.64%
TestTOC 02:29:50 15 18 1,672 61.30% 67.17% 9.56% 79.88% 92.93% 16.39%
RatioTest 00:44:09 26 24 329 60.49% 62.92% 4.02% 56.53% 73.86% 30.65%
TestPluginD ... 00:05:22 3 6 679 59.50% 62.74% 5.45% 95.96% 98.07% 2.20%
TestStrictMode 00:13:26 4 8 737 58.62% 61.19% 4.40% 35.11% 38.42% 9.42%
TestPluginA ... 00:07:57 8 5 679 56.85% 58.32% 2.59% 97.27% 97.27% 0.00%
TestAncestor-... 00:22:42 2 6 1,713 56.74% 59.19% 4.32% 89.77% 95.02% 5.84%
TestAbbr 00:08:15 2 6 1,672 55.92% 57.83% 3.42% 96.18% 99.31% 3.26%
TestWikiLinks 00:33:50 6 7 1,672 53.41% 54.55% 2.13% 92.32% 96.38% 4.40%
TestParser 01:08:56 10 11 762 53.15% 53.87% 8.89% 47.70% 60.94% 28.37%
testSerializers 00:56:59 12 3 1,713 50.38% 50.96% 1.16% 93.08% 96.18% 3.33%
TestSmarty 00:12:41 1 5 1,672 50.24% 50.54% 0.60% 78.48% 79.40% 1.17%
TestBasic 01:14:35 18 10 737 49.39% 50.34% 1.92% 50.36% 54.68% 8.57%
TestMetaData 01:27:13 5 9 1,672 47.85% 54.07% 13.00% 76.23% 87.18% 14.36%
TestConvertFile 00:14:46 3 1 1,783 46.12% 46.18% 0.13% 94.42% 94.42% 0.00%
TestMarkdo ... 00:19:34 6 4 1,713 45.94% 46.53% 1.27% 89.73% 94.50% 5.32%
testAtomicSt... 00:18:17 3 7 1,713 43.49% 44.25% 1.74% 91.83% 94.86% 3.29%
TestNICClient 00:08:28 1 7 263 43.35% 44.87% 3.51% 54.74% 81.47% 48.82%
TestBlockParser | 00:13:27 2 4 1,713 37.89% 38.70% 2.16% 90.71% 93.81% 3.41%
TestExtractD ... 01:12:52 7 2 1,107 37.49% 37.58% 0.24% 43.88% 48.98% 11.63%
TestAstRenderer | 00:00:34 13 0 679 34.61% 34.61% 0.00% 99.30% 99.30% 0.00%
PdfReaderTe... 01:53:08 2 0 3,102 34.46% 34.46% 0.00% 89.27% 89.27% 0.00%
testETreeCo... 00:04:44 4 0 1,713 33.57% 33.57% 0.00% 92.37% 92.37% 0.00%
TestErrors 00:06:40 6 1 1,713 33.33% 33.80% 1.40% 93.21% 93.21% 0.00%
TestAdmonition 00:06:02 1 0 1,672 33.25% 33.25% 0.00% 90.16% 90.16% 0.00%
testElement... 00:04:40 1 1 1,713 32.69% 32.75% 0.18% 91.41% 91.41% 0.00%
AddJsTestCase 03:19:31 2 1 3,102 32.14% 32.17% 0.10% 86.44% 86.44% 0.00%
TestEscapeA ... 00:05:13 1 0 1,713 31.93% 31.93% 0.00% 91.62% 91.62% 0.00%
TestBlockAp... 00:05:17 1 0 1,713 31.39% 31.39% 0.00% 91.62% 91.62% 0.00%
UtilsTest 00:01:26 4 0 329 29.79% 29.79% 0.00% 19.23% 19.23% 0.00%
ValidatorTest 00:03:30 2 0 329 28.27% 28.27% 0.00% 34.65% 34.65% 0.00%
RegistryTests 00:53:20 12 0 1,713 27.32% 27.32% 0.00% 92.44% 92.44% 0.00%
TestCodeFormat | 00:09:34 1 0 329 26.44% 26.44% 0.00% 8.45% 8.45% 0.00%
TestConfigPa ... 00:07:55 3 3 1,713 25.80% 25.80% 0.00% 92.18% 93.20% 1.11%
TestHtm1Stash 00:06:07 3 1 1,713 25.74% 25.74% 0.00% 91.36% 91.76% 0.41%
TestBlockPar-... 00:11:52 4 0 1,713 25.39% 25.39% 0.00% 91.82% 91.82% 0.00%
TestGeneralD... 00:04:25 1 0 1,713 25.10% 25.10% 0.00% 91.47% 91.47% 0.00%
TestCaseWit... 00:01:25 1 0 1,672 25.06% 25.06% 0.00% 91.09% 91.09% 0.00%
TestExtensio... 00:14:21 7 2 1,672 25.06% 25.54% 1.91% 81.23% 88.45% 8.89%
TestWalletUtil 00:18:44 3 0 187 23.53% 23.53% 0.00% 12.90% 12.90% 0.00%

100

Table 3.6: The result of running AmPyfier on 54 test classes

Part 11

Toward Zero-touch Test
Amplification

CHAPTER

Steps Towards Zero-touch Test Amplification

Steps Towards Zero-touch Test Amplification
Mehrdad Abdi, Henrique Rocha, Serge Demeyer, and Alexandre Bergel

This chapter is submitted to: International Conference on Software Testing, Verification and Validation (ICST 2023).

ABSTRACT

Test amplification exploits the knowledge embedded in an existing test suite to strengthen it. A
typical test amplification technique transforms the initial tests into additional test methods that in-
crease the mutation coverage. Although past research demonstrated the benefits, additional steps
need to be taken to incorporate test amplifiers in the everyday workflow of developers. This chap-
ter explains how we integrate Small-Amp with GitTHuB-ActioNs to introduce zero-touch test
amplification: a test amplifier that decides for itself which tests to amplify and does so within a
limited time budget. To attain zero-touch test amplification, we incorporate three special-purpose
features: (i) prioritization (to fit the process within a given time budget), (ii) sharding (to split
lengthy tests into smaller chunks), and (iii) sandboxing (to make the amplifier crash resilient).
We evaluated our approach by installing a zero-touch extension of Small-Amp on five open-source
Pharo projects deployed on GitHub. Our results show that zero-touch test amplification is feasi-
ble at a project level by integrating it into the build system. Moreover, we quantify the impact
of prioritization, sharding and sandboxing so that other test amplifiers may benefit from these

special-purpose features.

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

41 INTRODUCTION

Unit testing is writing small pieces of executable code to exercise the program’s units
and ensure they work as intended. Even though writing these unit tests is initially a te-
dious process, it prevents the system under test from regressing in the long term. A com-
mon way to evaluate the strength of a test suite is to measure code coverage or mutation
coverage [36]. Since manually covering all corner cases of a program is a challenging task,
automated test generation [64, 84, 107] and test amplification 35, 78, 85, 91, 108, 109, 110]
tools were investigated to create stronger test suites. These tools analyze the program un-
der test and produce new test methods that permanently increase coverage if merged into

the codebase.

SMALL-AMP (introduced in Chapter 2) is the state-of-the-art test amplification tool in
the Pharo language. It extends DSpoT [85] by bringing test amplification to dynamically
typed languages. Both tools work as a recommender system that synthesize new test
methods and presents them to developers, which then decide whether these tests are
worthwhile to be merged into the codebase. Qualitative studies on DSPOT and SMALL-
AMP illustrate that developers value the generated tests and accept the corresponding
pull requests [87, 108].

Although the results of test amplification tools are promising, their practical appli-
cation is still questionable. Past research shows that test amplification tools are cumber-
some [111]; not only are they complex and hard to configure, but their execution time
is unpredictable and sometimes even unacceptable. For instance, considering test ampli-
fiers employing mutation testing, the amplification of some test classes require 5+ hours
in DSpoT [108], 5+ hours in DCI [109], 2+ hours in SMALL-AMP [87], and 3+ hours in
AwmPyrrer [110].

= Although test amplification tools emerged to support developers, the complexity and long
execution times hinder their adoption.

Brandt and Zaidman [61] employ a lighter version of DSPOT in an IDE and introduce
developer-centric test amplification. Because of the time cost consideration, they restrict
test amplification to increase the instruction coverage and skip amplifying the mutation
coverage. This confirms that developers” workstations are unsuitable for comprehensive
mutation-based test generation: it is impossible to provide instantaneous feedback.

= Executing mutation-based test amplifiers on a developer workstation is seldom feasible due

to the computational overhead.

In contrast, the work by Campos et al. [112] and Danglot et al. [109] employ continu-
ous integration servers to exploit automated tests. The former integrates EvoSuite [84] (a
test generation tool for Java) within a continuous integration setting to optimize the test

104

4.1. INTRODUCTION

generation. The latter runs a variation of DSPOT (named DCI) to detect the behavioral

changes on each commit in continuous integration.

= Continuous integration servers, running on powerful servers configured in build farms,
open up possibilities for improved test synthesis.

A long term possibility is to allow for fully autonomous —“zero-touch”— testing, as
envisioned in Level 5 of the Test Automation Improvement Model [12]. In this vision,
a test amplifier will decide for itself which tests to amplify, incorporate the synthesized
tests in a separate branch, execute the strengthened test suite and —if all steps pass—
push the strengthened test suite onto the main branch. All without any intervention of a
software engineer.

= Zero-touch test amplification, where amplified tests are automatically added, is the ultimate
vision for fully autonomous test synthesis.

One issue preventing fully autonomous test synthesis is that mutations in the code
may result in system crashes [91]. Especially in live systems such as Pharo, system
crashes corrupt the system image beyond repair. If a crash happens, the system must
revert back to a state where the system is known to be pure.

= A crash resilient test synthesis process is a necessary prerequisite for zero-touch test ampli-
fication.

In this chapter, we explore the feasibility of zero-touch test amplification. We present a
proof-of-concept tool that integrates SMALL-AMP with GitTHus-AcTions to fully automat-
ically strengthen the existing test suite within a limited time budget. To this end, our
proof-of-concept incorporates three special-purpose features: (i) prioritization (to fit the
process within a given time budget), (ii) sharding (to split lengthy tests into smaller
chunks), (iii) and sandboxing (to make the amplifier crash resilient).

We evaluated our approach by installing a zero-touch extension of SMALL-AMP on
five open-source Pharo projects deployed on GitHub. Our results show that zero-touch
test amplification is feasible at a project level by integrating it into the build system. More-
over, we quantify the impact of sharding, prioritization, and sandboxing so that other test
amplifiers may benefit from these special-purpose features. Our experiments show that
prioritization has better performance (up to a 34% increase), crashes occurred in about
17% of the cases, and are restored successfully by sandboxing mechanism, and sharding
allowed for large classes to fit into our time budget but came at a cost of 30% more dupli-
cated mutants. Additionally, our new time budget-aware process was able to finish the
amplification in an acceptable period of 30 to 90 minutes.

The remainder of the chapter is organized as follows. Section 4.2 provides the nec-

essary background to understand the challenges of zero-touch test amplification. Sec-

105

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

tion 4.3 explains how we integrate SMALL-AMP with GitHus-Actions, and details the
sharding, prioritization, and crash recovery features. Section 4.4 presents the quantitative
results of the evaluation on five projects. Section 4.5 enumerates the threats to validity.
Section 4.6 provides an overview of the related work which inspired this proof-of-concept.
Finally, we summarise the main conclusions in Section 4.7.

42 TEST AMPLIFICATION

Modern software repositories contain a considerable amount of tests. These tests are
written mostly by developers who have deep knowledge and understanding of the pro-
gram. The main idea in test amplification [8] is exploiting this valuable resource of knowl-
edge to improve the test suite.

In SMALL-AMP (Chapter 2), the state-of-the-art test amplifier in the Pharo ecosystem,
this improvement is achieved by synthesizing new test methods which will permanently
increase the mutation coverage when merged into the codebase. SMALL-AMP is a repli-
cation of DSpOT [108] in the dynamic language of Pharo [113, 114].

421 Amplification Algorithm

SMALL-AMP (as well as DSPOT) iterates over all test methods in a test class and ap-
plies the following operations.

Input amplification transforms the original test method using a set of input amplifiers
and generates new versions of the test method. Usually, some of these versions of the test
method bring the program under test to an untested state or take a different execution
path from the original test method, leading to killing the live mutants. However, the
original test method usually contains some assertion statements to verify the intended
state. Since these assertion statements are no longer valid in the transformed versions,
SMALL-AMP removes the original statements before the transformation.

Assertion amplification regenerates appropriate assertions to verify the actual state of
the program by manipulating the generated test method and inserting observing state-
ments. In this step, the test method is executed, and SMALL-AMP logs the actual state
of the program using the object inspection. SMALL-AMP generates new assertion state-
ments using these logs and adds them in place of observer statements. The new assertions
should all pass for the version of the code they were generated for.

Selection by mutation score. Up to this step, we have new versions of the original test
method that were transformed by input amplifier and equipped with new assertion state-
ments by assertion amplifier. In this step, mutation testing is run on the program under

test using these generated test methods. Test methods that increase the mutation cov-

106

4.2. TEST AMPLIFICATION

erage by killing new mutants are kept, and the remaining test methods are discarded.
SMALL-AMP relies on Mutalk [45], a test amplification platform for Pharo.

4.2.2 Challenges For Test Amplification

In this section, we identify the main challenges faced by test amplification tools, SMALL-
AMP in particular, to be more practical and incorporate them into the daily workflow of
developers.

Using test amplification tools is cumbersome. In addition to writing code and tests, devel-
opers are usually busy with other activities like meetings, bug fixing, emails, networking,
learning, documentation, helping others, administration tasks, and others [115, 116, 117].
Test amplification tools are complicated and hard to configure, and using them needs
deep knowledge about different topics like mutation testing [111]. If we expect devel-
opers to run the tool on their workstations, each developer will need to deal with some
extra tedious tasks.

Current test amplification tools do not support time budget management. Test amplification
execution time varies from test class to test class, and estimating it in advance is difficult;
amplification tools usually have long execution times and need considerable processing
resources. It is inconvenient for developers to employ these tools in their workstations,
dedicating the entirety of their resources to test amplification and waiting hours or days
for a test amplification run to completion. Setting a time limit is necessary for such a
long process. On the other hand, the current test amplification tools lack a mechanism to
prioritize their tasks for gaining the maximum benefit when running on a time budget.

Test amplification in live systems is more challenging. SMALL-AMP amplifies programs
written in Pharo, and Pharo is a live programming environment [15]. Pharo offers the
notion of liveness [16] which greatly impacts how developers work: system always offers
an accessible evaluation of a source code instead of the classical edit-compile-run cycle,
and as a consequence, the live programming environment allows for nearly instantaneous
feedback to developers instead of forcing them to wait for the program to recompile [17].

Ducasse et al. [118] identify the challenges of supporting automated testing tools in
Pharo, and they mention executing destructive methods in random testing as a challenge
and emphasize the need for sandboxing. During the amplification process, SMALL-AMP
works with two different kinds of mutations: the mutation on the production code (muta-
tion testing), and the mutation on test methods (input amplification); and each mutation
applies a random change to the code. Executing such random code in a live system intro-
duces two major challenges:

* Random code easily leads to infinite loops/recursions and deadlocks. Worse, it is

possible to call critical methods (terminating the virtual machine and unloading

107

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

class), leaving the live system in an unsafe state. Consequently, an image crash or
freeze is more prone to happen during amplification [91]. In a live system, a crash
means we no longer have the amplification state in which the previously amplified
results were stored.

* Random code may pollute the internal state of a system, resulting in flaky tests [119,
120]. For example, suppose an object is cached in a class side variable (static vari-
able). Developers expect this cached value to be immutable, but it may be altered
unexpectedly during mutation testing. As a result, all tests depending on this
cached value will fail after the mutation testing while passing before. This pollution
will remain in the live system forever and may cause side effects on the generated

tests.

(= Zero-touch Test Amplification may alleviate these challenges. h

Instead of asking developers to run a completely configured tool on a
desktop computer, we can embed the tool in a fully autonomous pro-
cess on the continuous integration servers. Instead of running the tool
until completion, no matter how long it takes, we can change the base
algorithm to run in a given time-budget and optimize accordingly. In-
stead of restarting the process after a crash in a fresh unpolluted state,

we can run the tool in a sandbox environment to be able to circumvent

|(even reproduce) the crash.)

43 ZERO-TOUCH PROOF-OF-CONCEPT

In this chapter, we explore the feasibility of zero-touch test amplification. We present
a proof-of-concept tool that integrates SMALL-AMP with GitHus-Actions to fully auto-
matically strengthen the existing test suite within a limited time budget.

4.3.1 SmallAmp and Pharo

Why Small-Amp? In principle, we could have chosen any test amplification tool for our
proof-of-concept. We decided to focus on tools used in dynamic languages given the
popularity of such languages among practitioners. For instance, JavaScript was the most
popular language on StackOverflow.! At the time of the research, we were not aware of
any test amplification tool for JavaScript. Therefore, we chose SmallAmp [87] because it
was a recent tool for the dynamic language Pharo Smalltalk. Moreover, Pharo presented
more challenges due to its live programming environment that we deemed interesting to

investigate.

1https ://survey.stackoverflow.co/2022/#technology-most-popular-technologies

108

https://survey.stackoverflow.co/2022/#technology-most-popular-technologies

4.3. ZERO-TOUCH PROOF-OF-CONCEPT

What is interesting about Pharo? Pharo is a Smalltalk-based object-oriented dynamic-
typed language. Pharo also includes a programming environment, integrated with de-
velopment tools, a run-time virtual machine, and live debugging features. Pharo is not
"file-based" as programmers work directly in an Image which is a live environment that
stores the code, the states manipulated by the code, and the current execution [114].

As a simple analogy, we can think of the Pharo image as an Operating System and IDE
rolled into one container that becomes a live programming environment. This liveness of-
fers more challenges for test amplification (as we previously explained in Section 4.2.2)
which we consider interesting to explore in this research. Moreover, if our proof of con-
cept works for a more challenging scenario, it will be possible to adapt it to simpler situ-

ations.
43.2 Integration with GitHub-Actions

Why GITHUB-ACTIONS? We adopted the GitHus-Actions build system as a suitable
platform to build a proof of concept automated test amplification tool for several reasons.
(1) A build system can be configured once and used by all contributors in a project or
even multiple projects. (2) A build system can trigger the test amplification based on rel-
evant events like each pull request, scheduled like running per week, or manually when
needed. (3) A build system executes on the Continuous Integration Servers, freeing de-
velopers’ machines from the computation. (4) GiTHus-Actions defines a language for
defining workflows and which allows for parallelization. (5) Build system has become
more popular in recent years [121, 122, 123]. (6) Most well-known open-source Pharo
projects are hosted on GitHub, and GitHus-AcrtioNs is freely available for open-source
projects [124].

How does GITHUB-ACTIONS work? GrrtHus-Acrtions is based on workflows, and each
workflow contains one or more jobs that can be run in parallel or sequential. Each job
starts a new operating system instance in a virtual machine or container and performs
some steps. Each step may run a terminal command or use a private or public custom
action [125]. Workflows can be triggered by predefined events like when a new code is
pushed, merged, or based on a schedule. By default, the return value from a workflow
run is only the state of success or failure. However, GiTHus-ActioNs supports creating
artifacts to persist additional data [126]. GitTHus-AcrtioNs also allows defining reusable

workflows [127], which facilitate the workflow maintenance on the users’ side.

109

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

Small-Amp integration to GITHUB-ACTIONS For integrating SMALL- AMP, we define a
reusable workflow?, and also a GiTHuB-AcTions custom action® to setup a Pharo instance
and run SMALL-AMP in it. Developers in the user projects need to define a workflow that
calls the reusable workflow and pass some main configuration parameters. Some of the
essential parameters required to be configured by the users are the number of parallel
jobs and the project loading parameters. If the workflow is triggered by a push or pull
request, the test amplification tool will consider all changes in the commit; but if triggered
manually or by schedule, it amplifies the entire project or the specified classes.

The workflow contains three sequential phases. Each phase is composed of a job or a
set of similar jobs that run in parallel. Since each job starts on a clean operating system,
Pharo is installed first, and then SMALL-AMP and the project-under-test are loaded in
Pharo.

The first phase is prescreening, which consist of a single job with the following steps:

1. SMALL-AMP scans all defined test classes in the project and attempts to detect the
class under test by its default heuristic. (Details are in Chapter 2).

2. If a class contains too many test methods, the test optimization will perform poorly.
SMALL-AMP therefore shuffles its test methods and breaks it into smaller temporary
test classes (i.e. sharding Section 4.3.4).

3. SMALL-AMP assigns test classes different job identifiers to be distributed over jobs

in the next phase.

The second phase is amplification, which consists of multiple parallel jobs. Each job
iterates over its assigned test classes and performs the following steps:

1. It creates a sandbox for each test class. The amplification tool is executed within a
sandbox to make it crash resilient (see Section 4.3.5).

2. It enforces a maximum time budget for each test class (like 15 minutes) to ensure
that the amplification terminates in a predictable time (see Section 4.3.3).

The final phase is merging, in which a single job collects all output files from the ampli-
fication jobs, merges them, and exports the tool’s outputs as artifacts. Developers should
collect these artifacts after the workflow is finished and incorporate the amplified test
methods. Since we validate our approach on popular Pharo projects, we explicitly opted
to exclude this step from the fully automatic workflow, although it is straightforward to
do so. In that sense, the proof-of-concept is not truly “zero-touch”: we still need a human
in the loop to accept the synthesized test.

2github.com/mabdi/small-amp/blob/master/.github/workflows/SmallAmpCI.yml
3github.com/mabdi/smallampfaction

110

github.com/mabdi/small-amp/blob/master/.github/workflows/SmallAmpCI.yml
github.com/mabdi/smallamp-action

4.3. ZERO-TOUCH PROOF-OF-CONCEPT

4.3.3 Test-Method Prioritization

Since the execution time of the test amplification tool varies from test class to test
class, we set a time limit on each amplification process to make it more practical. The test
amplification algorithm introduced in DSPOT and SMALL-AMP does not provide time
budget management. In this section, we extend the SMALL-AMP algorithm by proposing
a test-method prioritization heuristic to increase the algorithm'’s efficiency when executed

within a limited time budget.

This heuristic is based on the intuition that a test method covering more live mutants
has a better chance of killing them. Therefore, we count the number of live mutants in
all covered methods by a test and compute a mutant coverage score for each test method.
We also prefer to emphasize the immediate mutants because they are directly covered
by the test, and auditing them is easier for developers. In object-oriented unit testing, a
test method normally initializes an instance of class-under-test and invokes some of its
methods. So, killing shallower mutants can be interesting because they are more likely

to be in method-under-test or other important methods.

Finally, based on these scores, we calculate a weight for each test method and select
one of them using the roulette wheel method [128]. We select an individual randomly in
a roulette wheel selection, but the probability of this selection corresponds to its weight.
The benefit of using this selection mechanism is to increase diversity in the selected meth-
ods by giving a chance to less-favored test methods of being selected.

Setting scores and weights We suppose that we have a function p that returns the
number of live mutants in each method under test:

w=q{my = ay,ma > ag, ..My — Ay}

In addition, we have a directed graph G = (V, E) for the method invocations. The
vertices correspond to all test methods (7") and methods under test (M). There is also a
directed edge from the node v to node v’ if v invokes v'.

V=TuM

E ={v—='|v,v" € V A0 is invoked from v}

We define the coverage set of the test method ¢ as the set of all methods under test
covered by t:
Co={mmeMAIp=({t—..—m)ePG)}

111

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

In this relation, P(G) is the set of all paths in the graph G, and p is a path starting from ¢
and ending in m. Similarly, we define the immediate coverage set (path length is 1) as:

L={mmeMAIp=(t—m)ePG)}

Now, the scoring function s is:

sty=a+BY pm)+y Y, pulm)

mel; meCy—1I;

The first part of this equation is the scoring offset. If o = 0, all test methods not
covering any mutant will be excluded from the amplification process. The second part
of the equation is the immediate coverage score. As a result, we expect the mutants in
these methods to be killed faster than deeper mutants. The third part of the equation
is the coverage score. In this part, we consider all remaining mutants in other covered
methods.

The variables «, 5 and v are tuning parameters: For a default value, we choose o = 1
to prevent excluding the test methods with no mutant coverage because these tests may
be able to kill new mutants after some transformations. Since we prefer to prioritize the

mutants in instantly covered methods, so we choose § = 3,7 = 1.

After calculating the score for each test methods, we set a weight for each test method
as:

w(t) = i;) ; where S = Zs(t)

teT

We use these weights to select a method to be amplified using a selection method
called roulette wheel [128]. The scores and weights need to be updated in each cycle
because the number of live mutants in the methods changes after each test amplification
loop. Recalculating the weights does not have much overhead because the coverage graph
does not need to be regenerated each time. We only need to update the ;1 function, and
recalculate s(t) and w(t) for all remaining tests.

Changes in the Algorithm First of all, we update the input amplification and assertion
amplification steps in SMALL- AMP to make them time budget observant: If the time limit is
due, new test inputs will not be input/assertion amplified, and all the currently amplified
instances will be returned. We also added a test method selection based on the weight
assignment heuristic, and the roulette wheel method described earlier in this section. We
present the updated time budget observant algorithm in Algorithm 5.

112

4.3. ZERO-TOUCH PROOF-OF-CONCEPT

Algorithm 5: Updates in amplification algorithm to support time budget manage-
ment
input :class-under-test CUT
input :set of test methods T
input :hyperparameters {Njteration
output : set of amplified test methods ATM
ALV < mutationTesting(CUT,T);
U < amplifyAssertions (T);
ATM <+ {z € U| x improves mutation score};
ALV « ALV — {x € ALV|xis killed in ATM};
t + rouletteWheel(CUT,T, ALV);
while ¢ # null do
vV ={th
for ¢ < 0 to Niteration dO
V < amplifyInputs(V);
U < amplifyAssertions (V);
ATM + ATM U {z € U| x improves mutation score};
ALV + ALV — {x € ALV| x is killed in ATM};

T« T —{t};
t + rouletteWheel(CUT,T, ALV);

return ATM

© ® N U AW N

- e
N = O

_- e
S W

—
32}

In the new algorithm, initially, we run mutation testing to calculate the live mutants
(ALV). Then, we execute assertion amplification on all test methods to kill those mutants
that can be killed only by expanding the assertion statements. Since a single assertion
amplification is faster than the combination of input amplification and assertion amplifi-
cation, this step does not need any selection based on the scores. We remove the newly
killed mutants from ALV and select a random test to be amplified using the roulette
wheel method (line 5). The main amplification loop runs on the selected test method ¢
(lines 8 to 12). Then, the method is removed from the list of all test methods to be ampli-
fied T' (line 13), and the weights will be recalculated based on the current live mutants.
Then, a random test from the remaining unamplified tests will be selected considering
their weight (line 14). If all test methods are visited or the time budget is due, the roulette
wheel will return a null value, and then the final amplified test methods (AT M) will be

returned.
434 Sharding

While experimenting on real projects with the time budgets, we witnessed that the
number of test methods skipped in some classes is unacceptable because they include
tens/hundreds of test methods. Using a variable time budget based on the test method
numbers does not solve the problem thoroughly because amplifying some of these large
classes may need more time than the jobs” allowed time (6h in GitHus-Actions). There-

fore, we split long test classes into smaller temporary test classes. We call this action

113

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

Sharding.

We use a threshold (default 15 test methods) as a sharding factor. If a class contains
more test methods than the defined threshold, SMALL-AMP shuffles its test methods and
distributes them into smaller temporary test classes. In parallel jobs, all jobs must pro-
duce the same shards, so a shared randomization seed is required. We derive this seed
from the workflow run id in our proof-of-concept.

Predicting the number of jobs The following formula estimates the minimum number

of parallel jobs required for a successful test amplification:

b x ZCETC [%W

Jmin - [M —I

where J,,;5, is the minimum number of jobs required, b is the time budget per class, M is
the maximum allowed execution time for each job by platform, t. is the number of tests in
the class ¢, S is the sharding factor, and finally, T'C is the set of test classes to be amplified.

Therefore, the expression) ... [%] shows the number of classes after sharding. We
expect that all shards finish in the defined budget (), so the fraction’s numerator calcu-
lates the minimum time needed to amplify all tests in a single job. However, we suppose
that the build system defines an execution limit on each job (M). Dividing the time
needed to amplify all classes by the maximum job execution achieves the minimum num-
ber of required jobs.

4.3.5 Crash Resilience

SMALL-AMP is designed to run within a Pharo image, representing the complete state
of the live system. Besides the system under test, the tool and its necessary components
(the compiler, test runner, mutation testing framework, ...) run in the same Pharo image
and therefore the same memory space. This architecture introduces a serious risk: if a
crash happens, the whole Pharo process is lost, including the crashed component as well
as the SMALL-AMP core.

A reliable test amplification tool running in a live environment, like Pharo, should be
able to recover from these crashes without losing the entire state of the amplification pro-
cess. Without a crash recovery mechanism, integration into build systems is impossible
because any crash in SMALL-AMP will fail the entire workflow.

We enumerate some common reasons for an unexpected termination:
* Killed by the operating system. The Operating System may kill the Pharo process with

an Out of memory error. This issue commonly happens in the mutation testing step

114

4.3. ZERO-TOUCH PROOF-OF-CONCEPT

S
crash=False crash

Start Pharo,

Y
Trpe
(Yos—> st —» | Snapshot image j—» Check _ coise» | Amplify the test J

Any test ; 4
Run SmallAmp method? | T Bl :
No A : Expart results
i " finish=True
O State foe-eeemee el - i
file
il |
Finished L r
b N ‘Yes
Walt & watch | _ Crashed or Set Collect logs as 00 mueh,_
heartbeat signal No heanbeat_’[crash=True }[evidence]’ N
|
Working

.

Figure 4.1: Activity diagram for a self-aware test amplification in a live system

when the process creates infinite recursion because of the injected fault.

* Pharo process crashes. The Pharo process is terminated unexpectedly with errors
like Segmentation fault or Assertion failed. For example, in one case (github.com/
ObjectProfile/Roassal3/issues/142)1 the Pharo process crashes because one
of its native libraries has aborted.

Pharo process freezes or waits forever. Pharo freezes because it executes a mutated test
method that enters a deadlock and waits forever (github.com/pharo-project/
pharo/issues/67542,github.com/feenkcom/gtoolkit/issues/1454)3. Note that
similar problems also happen in other tools such as DSPOT (github.com/STAMP-

project/dspot/issues/994)4.

Unwanted process termination. A mutated test calls a critical method in the system

API. For example in one case (github.com/pharofproject /pharo-launcher/issues/

454)5, during input amplification, a method call is added that snapshots the image
and exits with return code 0.

Consistent with previous studies [54, 55, 91], these crashes are interesting from a reli-
ability perspective, and the pieces of code that broke Pharo can be used to reproduce the
crash. So, besides recovering from the crashes, we collect sufficient information to allow
developers to reproduce them.

How to recover from crashes? We use application heartbeats [129] to make test ampli-
fication self-aware [130] by detecting crashes and recovering from them. To this aim, we
use a separate process (called the runner script) that initiates the amplification process in
Pharo and watches its status. Figure 4.1 shows the activity diagram for describing how
these two processes interact to detect the crashes and recover from them. The compo-

115

github.com/ObjectProfile/Roassal3/issues/142
github.com/ObjectProfile/Roassal3/issues/142
github.com/pharo-project/pharo/issues/6754
github.com/pharo-project/pharo/issues/6754
github.com/feenkcom/gtoolkit/issues/1454
github.com/STAMP-project/dspot/issues/994
github.com/STAMP-project/dspot/issues/994
github.com/pharo-project/pharo-launcher/issues/454
github.com/pharo-project/pharo-launcher/issues/454

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

nents on top, which are colored in yellow and have a light border, are steps executed in
the Pharo image by SMALL-AMP. The components on the bottom, which are colored in
green and have a bold border, are steps executed in the runner script.

The runner script runs a Pharo process (child process) and initiates SMALL-AMP.
SMALL-AMP regularly creates heartbeat signals by updating the content of a heartbeat
file to notify that it is still functioning. The runner script also periodically watches the up-
date time of the heartbeat file to make sure that the child is alive and works as expected.

Before starting to amplify a test method, SMALL-AMP sets a flag crash to False in a
shared file (state file) and snapshots the current state of the Pharo image. Then, it loads
the state file and checks the value of the crash flag. If it is the same stored value (False),
it starts to amplify the test method.

If a crash happens while amplifying a test method, the Pharo image will be terminated
unexpectedly or cease to produce heartbeat signals. In this case, the runner will notify
that there is a problem in the child process. It will kill the child process if it is still running,
then will update the state file by setting the crash flag value to True. Then it will collect
the available logs, including the last generated test method causing the crash. Finally, it
will resume the Pharo image and watch its status again.

Pharo is a live system; when we snapshot its state, the next time we start the image,
it will continue from the snapshot point. In our case, it will resume from the decision
activity labeled Check crash (Figure 4.1), not from the beginning of the SMALL- AMP algo-
rithm. After recovering from a crash, SMALL-AMP will load the state file and check the
value of the crash flag. Since the runner has flipped its value, it will conclude that a crash
may happen if it continues to amplify the current test method. Therefore, it skips this test

method and continues to amplify other methods.

The runner also keeps track of the number of recovered crashes. If it is more than a
fair number MAX_CRASH (defaultis 10), it will understand that there is a severe problem
in amplifying this class, so it will stop trying.

If all test methods are amplified in the Pharo process, it will finalize and export the
results. Then it will update a flag finish in the state file and exit the process. The runner
will realize that the child process has exited with a SUCCESS return code. It will check
the finish flag; if it is set correctly, it will stop watching and finish the process; otherwise, it
will consider this termination as a crash. As explained earlier, we do not trust the return

value because the exit API can be called indirectly during test amplification.

116

4.4. EVALUATION

44 EVALUATION

To evaluate whether zero-touch test amplification is indeed feasible and to quantify
the impact of prioritization, sharding, and sandboxing, we formulate the following re-

search questions.

RQ1 - Isitpossible to fully automatically amplify a test suite using GitHub-Actions?
This is the primary research question for this feasibility study. To evaluate whether zero-
touch test amplification is feasible, we install the proof-of-concept extension of SMALL-
AMP on five open-source Pharo projects deployed on GitHub. We collect quantitative
evidence on the execution times when ran on the GitHub platform.

RQ2 - How does the prioritization heuristic affect the test amplification perfor-
mance? To quantify the impact of the test prioritization, we compare the number of killed
mutants with or without test prioritization and the execution time with and without the

time budget.

RQ3 - How many duplicated mutants are created after sharding? The sharding
step splits large test classes (more than 15 test methods) to avoid that the optimization
step is forced to ignore relevant test methods. However, the same mutant may then be
killed by more than one of the shards, thus results in duplicated mutants. Duplicated
mutants designate wasted computations in the test amplification algorithm, hence should

be minimized.

RQ4 - Does sandboxing circumvent crashes? To illustrate the necessity of sandbox-
ing, we count how often the sandbox recovered from (a) a system freeze, (b) a system

crash, and (c) a polluted image.
4.4.1 Dataset

We used the GitHub search API to sort the Pharo projects based on the number of stars.
Then we discarded the system projects and projects without a smalltalkCI configuration
file (. smalltalk.ston). smalltalkCl is a framework to integrate the Pharo projects with
continuous integration platforms. We prefer the projects to include .smalltalk.ston
file because it contains all project-wise configurations, as well as it shows that the project
is CI friendly. After filtering, we selected the five projects with the most stars. We had
to limit the evaluation to five projects because running SMALL-AMP at the project level
takes considerable time, and we had to repeat the evaluation multiple times. The final

selected projects and their number of stars and a short description are shown in Table 4.1.

Table 4.2 shows the descriptive statistics for the test classes in these projects. In this

evaluation, we exclude the test classes without any passing (green) test method or test

117

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

Table 4.1: Dataset composed of 5 Pharo projects from GitHub

Project Stars Description

Seaside @ 389 Web-application Framework
PolyMath@' 148 Scientific Computing for Pharo
NovaStelo@ 113 Block-style programming environ-

ment

Moose & 103 Platform for software and data anal-
ysis

Zinc @& 69 HTTP networking protocol frame-
work

Table 4.2: Descriptive statistics for the test classes.

R g
se"”c"‘%o\“ $°@Sﬂ\°°sis“°
before sharding 82 68 50 8 35
Large test classes 0 3 7 0 2
after sharding 99 87 82 8 40
with 100% coverage 29 3 16 0 2
without any green test 0 0 3 0 0
Classes to be amplified | 70 84 63 8 38

classes with 100% mutation coverage. We also consider test classes with more than 15

test classes as large test classes and break them down into shards.
4.42 Evaluation

We forked all projects in our dataset in GitHub and set up the test amplification
GrtHus-Actions workflow. In setting the default values for the workflow we exploited
the content of . smalltalk. ston forloading the project, and the default values defined
in Chapter 2 for running SMALL-AMP (Npazinput = 10, Niteration = 3). Since they re-
port that the majority of executions are finished in less than 6 minutes, we set the time
budget to 12 minutes to have some leeway. We consider a crash if the heartbeat file is not
updated for 4 minutes. We used eight parallel jobs for each workflow, plus one initial and
one finalizing job, totaling ten jobs for each workflow run. Since GirHus-AcTions offers
up to 20 jobs to run simultaneously for free accounts and open source projects at the time
of writing this chapter, this number of jobs is acceptable for open source projects. GitHub
also allows each job to run for a maximum of 6 hours [124].

Then we manually ran the workflow six times. We enabled the test method prioritiza-
tion mechanism in the first three runs and disabled it in the subsequent three runs. We

collected the generated artifacts and analyzed them to answer our research questions. To

118

4.4. EVALUATION

Table 4.3: The result of the quantitative analysis.

Prioritization Enabled No Prioritization
#1 #2 #3 #1 #2 #3
1 | # All test classes executions 263 263 263 263 263 263
2 | # Finished executions 221 216 217 213 209 216
3 | # Image pollution 14 18 17 16 23 18
4 | # Unfinished 28 29 29 34 31 29
5 | # Recovered freezings/crashes 37 37 37 43 44 37
(16.7%) (17.2%) (17.0%) (20.1%) (21.0%) (17.1%)
6 | # Executions having improvement 105 98 97 92 96 102
7 | % Executions having improvement 47.51% 45.37% 44.70% 43.19% 45.93% 47.22%
8 | # Test methods 1805 1766 1757 1703 1677 1762
9 | # Generated tests 223 213 194 165 166 199
10| # All mutants in finished cases 9758 9670 9713 9094 9029 8761
11| # Mutants live original 3984 3957 3972 3814 3315 3292
12| # Mutants killed original 5774 5713 5741 5280 5779 5469
13| # Newly killed mutants 561 561 533 483 499 538
14| % Increased kills 9.71% 9.81% 9.28% 9.14% 8.63% 9.83%
15| # Mutants killed in Large test classes | 198 176 167 115 144 157
16| # Duplicated killed mutants in Large | 56 56 48 34 51 58
classes
17| % Duplicated killed in Large classes | 28.28% 31.82% 28.74% 29.57% 35.42% 36.94%
18| # Time budget finished 18 18 18 17 19 21
19| # Test methods skipped 148 133 123 118 116 119
20| Workflow duration: All 4:33:41 4:42:09 4:35:45 5:00:54 4:19:13 4:37:20
21 Seaside 1:28:14 1:32:34 1:24:47 1:31:14 1:28:06 1:25:23
22 PolyMath 1:04:57 1:07:08 1:06:43 1:12:21 1:10:11 1:07:19
23 NovaStelo 1:00:58 1:01:08 1:04:21 1:12:24 0:41:16 1:03:53
24 Moose 0:26:45 0:27:37 0:27:52 0:27:18 0:27:59 0:26:29
25 Zinc 0:32:47 0:33:42 0:32:02 0:37:37 0:31:41 0:34:16

conclude, we manually ran 30 workflows in total (6 for each of the five projects), resulting
in 300 jobs on GitHub servers.

Table 4.3 shows the results from this analysis. In each run, 263 test classes are executed
(row 1) in which between 209 to 221 cases are finished (row 2), and 28 to 34 cases are
unfinished (row 4).* In 92 to 105 cases, SMALL-AMP is able to successfully amplify the
test class (row 6) and generate 165 to 223 new test methods (row 9). In 17 to 21 cases,
the time budget was in effect (row 10), so 116 to 148 test methods are skipped during
amplification (row 11). The execution for each run, the sum of all projects, takes between
4:19 to 5 hours (row 12). We have included the artifacts and workflow run logs in the
replication package.®

4.4.3 RQ1: Is It Possible to Fully Automatically Amplify A Test Suite Using GitHub-
Actions?

Table 4.3 shows that for the 263 test classes, the test amplification finished successfully
in 209 — 221 cases. The maximum execution time for an entire project was about 90 min-
utes for Seaside, while the minimum time was around 27 minutes for Moose. Since each

4The cases finished without results were due to a timeout in the post-processing step, which was a bug in the
implementation only discovered during the analysis
Sgithub.com/mabdi/SmallAmp-evaluations

119

github.com/mabdi/SmallAmp-evaluations

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

workflow can run up to 6 hours in GirHus-Acrtions, these values show that there is room
for optimizing the configurations. This may be done by reducing the number of paral-
lel jobs from 8 to a lower value; by increasing the SMALL-AMP parameters (NpazInput,
Niteration); Dy increasing the time budget. This illustrates that fine-tuning the configu-
ration will be needed when zero-touch testing is adopted for a given project but there is

sufficient room to do so.

In addition, if we consider the execution time per project in all 6 runs, we see that
the results are similar and do not vary a lot. This similarity confirms that setting a time
budget makes the execution time of test amplification indeed more predictable.

Answerto RQ1: Our proof-of-concept demonstrates that integrating a test ampli-
fication tool within a continuous integration server allows for a fully autonomous
process. Moreover, the time budget allows for doing so in an acceptable period of 30
to 90 minutes in our analysis.

444 RQ2: How Does the Prioritization Heuristic Affect the Test Amplification Per-

formance?

By design, if the test amplification hits the time limit, it will kill fewer mutants. How-
ever, the test prioritization should dampen this effect. We expect more killed mutants
with test prioritization than without. On the other hand, when the time limit is not
reached, the impact of test prioritization should be negligible. We, therefore, compare
the value of the increased kill based on their timeout status in two configurations (pri-
oritization enabled in the first three runs and disabled in the next three). The value of

increased kills is calculated as follows:

#killed mutants with prioritization
#killed mutants without prioritization

100 x

Table 4.4 compares the number of newly killed mutants for these test classes and their

increase.

As expected, we see the cases with prioritization have better performance (34.09%)
when they run out of time. For the classes that finished within time, the increase in the
killed mutants is negligible (0.70%).

Answer to RQ2: Test prioritization is an effective way to impose a predictable
time budget on the test amplification. In those cases where the time limit is reached,
test prioritization kills more mutants. When the time limit is not reached, test pri-

oritization has negligible impact.

120

4.4. EVALUATION

Table 4.4: Comparison of the number of newly killed mutants when prioritization is
enabled and disabled

Timeout In time
Number of classes 7 156
Disabled (killed mutants) 44 1267
Enabled (killed mutants) 59 1276
Increase 34.09% 0.70%

4.4.5 RQ3: How Many Duplicated Mutants Are Created After Sharding?

To quantify how much waste is induced by the sharding step, we calculate the number
of duplicated mutants killed due to splitting overly large (more than 15 test methods)
classes.

First of all, Table 4.2 illustrates that such large test classes actually exist, although it
depends a lot on the project. The Seaside project has 10 large classes; hence the sharding
increased the number of test classes from 82 to 99. The Moose project, on the other hand,

had no large test classes.

For those cases with large test classes, we found 198, 176, 167, 115, 144, and 157 killed
mutants (Table 4.3, row 15). Consequently, the number of duplicated mutants in the
shards is 56, 56, 48, 34, 51, and 58 (Table 4.3, row 16). Therefore, about 28% to 37% of the
killed mutants are duplicated when we employ sharding, which is considerable. Further
research is warranted to see whether we can decrease these duplicates, for instance, by
clustering the shards based on their coverage. Finding a balance between the sharding
factor and the time budget (in our analysis, we used 15 and 12 minutes) may also decrease

the number of duplications.

Answer to RQ3: Sharding allows to run the test amplification in a given time
budget, even with overly long test classes. However, it comes at a cost: in our anal-
ysis, we see around 30% duplication in the killed mutants when large test classes
get split into distinct shards.

44.6 RQ4: Does Sandboxing Circumvent Crashes?

To assess the effectiveness of sandboxing mechanism, we process the job logs in all
six runs to collect quantitative evidence of crashes, freezes, and polluted images. In the
finished execution, we see 37 to 44 classes recovered from a crash (Table 4.3, row 5). Over-
all, the crash-recovery mechanism recovered the amplification process 235 times in all six

runs. After investigating the reasons for these crashes, we found that most cases (about

121

CHAPTER 4. STEPS TOWARDS ZERO-TOUCH TEST AMPLIFICATION

95%) are recovering from a system freeze. In one case, the crash is because of a Segmen-

tation fault error.

Table 4.3 row 3 shows in 14 to 23 cases of classes, image-state pollution occurs; note
that the numbers vary because of sharding. However, this only occurred in one of the
projects (NovaStelo), where 12 test classes are green before mutation testing and become
red after.

We conclude that image crashes, freezing, and state pollution frequently happen when
running the test amplification in Pharo. When these are not appropriately handled, test
amplification integration in continuous integration will fail. Nevertheless, the proposed
crash-recovery mechanism allows SMALL-AMP to overcome the problems and skip the

failing cases.

Answer to RQ4: Image crashes, freezing, and state pollution frequently happen
when running the test amplification in Pharo. The results of the evaluation show

that the proposed sandboxing mechanism is effective in overcoming these problems.

45 THREATS TO VALIDITY

Did we measure what was intended? (construct validity) We use quantitative met-
rics (the number of newly killed mutants, the number of recovered crashes, and execu-
tion time) to quantify the impact of zero-touch test amplification. However, a qualitative
study will be needed to evaluate whether the recommended tests add value. This quali-
tative study is considered future work and is beyond the scope of this chapter.

Are there unknown factors that might affect the outcome of the analyses? (inter-
nal validity) The test amplification tool, the prioritization mechanism, and the GitHus-
Acrtions workflow include various parameters. For configuring SMALL-AMP, we used
the parameters from Chapter 2, in which the authors have not claimed that values are
optimal. Similarly, the prioritization mechanism parameters («, 5 and v in Section 4.3.3)
are also configured by preliminary values based on authors’ insights. We see this risk as

a minimum because optimizing the parameters should not invalidating the findings.

For identifying a pollution (Section 4.2.2), we run the test class after the early mutation
testing (Algorithm 5 line 1). If the test is green, we assume the state is not polluted and
continue the algorithm. However, there might be some pollution undetected by the tests.
Since we use a fresh Pharo image for amplifying each test class, it stops propagating the

possible pollution to the following process.

122

4.6. RELATED WORK

To what extent is it possible to generalize the findings? (external validity) We
expect the overall finding, like the applicability of project-level test amplification (RQ1),
the impact of test method prioritization (RQ2) and sharding (RQ3), and the relevance
of the sandbox mechanism (RQ4) to be valid in other tools. However, we cannot claim
that the numbers and other details are valid for other ecosystems, and separate studies
should be conducted in other ecosystems.

Is the result dependent on the tools? (conclusion validity) Our work depends on
SMALL-AMP as the test amplification tool. In RQ2, we compare the results from SMALL-
AMP in two different configurations to assess the impact of prioritization. So, we expect
the differences in the results are mainly because of the configuration, not the tool itself.
Another critical factor is randomness, which we tried to diminish by repeating the ex-
periment three times for each configuration on five different mature projects with a high
number of test classes.

4.6 RELATED WORK

This work extends SMALL-AMP (Chapter 2), test amplification in Pharo by integrating
it into GitHus-AcTions, providing a prioritization heuristic, sharding, and sandboxing.
Test amplification for crash reproduction has also been reported in other papers [54, 55,
91]. To the best of our knowledge, sharding (i.e. splitting test cases to fit in a time bud-
get) is a novel concept in test amplification. However, some works in parallel test case
prioritization also split a test suite to fit a time budget (running different portions of the
test suite in different machines) [131].

There are several works in the Pharo community related to our sandboxing solution:
Polito et al. study the bootstrapping problem in Smalltalk and provide the Hazelnut
model for bootstrapping reflective systems [132]. The work by Béra et al. introduces
Sista, a fast snapshotting and restoring solution to increase the warmup time of Pharo
images [133]. Epicea [134] records the changes in the code and some IDE events in logs,
which can be used to recover the lost state.

We consider our extension of SMALL-AMP as a proof of concept for “zero-touch” test
amplification. Chapter 5 introduces a zero-touch mutation testing framework for Pharo to
alleviate the extra efforts from the developers’ side in mutation testing analyses. Relevant
related work for true zero-touch test amplification will be techniques for increasing the
readability of the generated tests, i.e. intention revealing names [62] and removing the
redundant statements [63].

Repairnator [135], on the other hand, is a complementary attempt at zero-touch test

automation, this time for automated program repair. Other complementary work on

123

zero-touch test automation is the work by Campos et al. [112]. They introduce Continu-
ous Test Generation (CTG) by incorporating EvoSuite in a continuous integration setting.
In a similar vein, Danglot et al. [109] investigated ways to exploit test amplification in a
continuous integration setting.

47 CONCLUSION

In this chapter, we argued that “zero-touch” test amplification may alleviate the chal-
lenges that prevent widespread adoption of test amplification tools. In this vision, a test
amplifier will decide for itself which tests to amplify, incorporate the synthesized tests in
a separate branch, execute the strengthened test suite and —if all steps pass— push the
strengthened test suite onto the main branch. All without any intervention of a software
engineer. To demonstrate the feasibility of this vision, we present a proof-of-concept tool
that integrates SMALL-AMP with GitHus-Acrtions to automatically strengthen the exist-
ing test suite within a limited time budget.

We validated the proof-of-concept tool on five popular open-source Pharo projects.
The results show that integrating a test amplification tool within a continuous integration
server indeed allows for a fully autonomous process. Moreover, the time budget allows to
do so in an acceptable time span; 30 to 90 minutes in our analysis. Test prioritization was
able to improve the performance of the tool when the time budget was exceeded by up to
34%. Test sharding was needed to run the test amplification in a given time budget, even
with overly long test classes. However, it comes at a cost: in our analysis, we see around
30% duplication in the killed mutants when large test classes get split into distinct shards.
Last but not least, we demonstrated that sandboxing is an effective way to make the test

amplification crash resilient.

Even though a zero-touch approach will facilitate the adoption of test amplification,
more qualitative research is needed to make the results acceptable. This ranges from
improving the readability of the generated test cases (intention revealing names, mean-
ingful comments, ...) to usability studies assessing the added value of the amplified
tests.

47 REPLICATION PACKAGE

Our supplementary resources are available in our replication package® which is anony-
mous. The reviewers may access them without breaking the double-blind process.

®https://zenodo.org/record/6482867#.Y1Cx1luzMIxi

124

https://zenodo.org/record/6482867#.Y1CxluzMJxi

CHAPTER

Toward Zero-touch Mutation Testing in Pharo

This chapter is a revised version of an originally published paper in the The 21st Belgium-
Netherlands Software Evolution Workshop (BENEVOL 2022):

n;\ Steps Towards Zero-touch Mutation Testing in Pharo

Adobe

Mehrdad Abdi and Serge Demeyer
In The 21st Belgium-Netherlands Software Evolution Workshop (BENEVOL 2022). , 2022.
URL: https://www.researchgate.net/publication/362868185.

ABSTRACT

Mutation testing is injecting artificial faults into the code to assess the written test methods. Not
surprisingly, this process is time-consuming and may take hours and days to complete. On the
other hand, developers, who are busy with different tasks, may find it cumbersome to run muta-
tion testing in their workstations. In this paper, we propose some steps to develop a zero-touch
mutation testing framework and facilitate employing mutation testing by developers. We extend
MuTalk, the mutation testing framework in the live programming environment of Pharo, by (1)
adding hierarchical mutation operators, (2) integrating it to GitHuB-AcrtIoNs, (3) visualizing
the result in a web-based mutants explorer.

51 INTRODUCTION

Software is everywhere, and its failures are costly. Unit testing is writing small test
code snippets that exercise the unit under test and asserts the intended values. In muta-
tion testing [136], some artificial bugs (mutations) are injected into the program under
test to evaluate the test suite’s strength. We say the test suite kills a mutant when at least

https://www.researchgate.net/publication/362868185

CHAPTER 5. TOWARD ZERO-TOUCH MUTATION TESTING IN PHARO

one of the tests fails in the mutated program. Alive mutants show that the test suite needs

improvements because it is indifferent to the injected faults.

Pharo [14, 113] is a dynamically typed language with a live programming environ-
ment focusing on simplicity and immediate feedback. The observations from the experi-
ments in our past work in Pharo motivated us for this work. We developed a test amplifi-
cation tool, SMALL-AMP [87], that analyzes the program under test and its test suite and
suggests new test methods to kill some of the mutants. During the experiment, we no-
ticed that MUTALK, the mutation testing in Pharo, generates too few mutants compared
to the mutation testing framework in Java from another work [9]. Mutation testing in
Pharo generated 1102 mutants for 52 classes (/=21 mutants per class), while there were
7980 mutants in 40 classes in Java (=200 mutants per class). To the extent that in one
of the cases (TLLegendTest), it failed to generate any mutant despite the class under
test having 96 lines of code. This observation led us to expand the mutation operator in
MUTALK of which the details come in Section 5.2.

After adding new mutation operators, we witnessed that the number of times Pharo
has recovered from freezing has increased, and the main reason was entering an infinite
loop. Section 5.3 explains this problem with an example and how we overcome this prob-

lem.

In the next step, we created MUTALKCI as a zero-touch mutation testing for the live pro-
gramming environment of Pharo. By default, developers are expected to use MUTALK
manually by loading it in their Pharo image, running it over their project, and waiting
a considerable time to finish. We created a workflow in GitHus-Actions that loads the
project under test and runs a hierarchical mutation testing on it. We call it zero-touch be-
cause the burdensome parts of the process are automated, and the developers’ attention
is needed when the result is ready to be audited. We also call it MutationlestingOps be-
cause of its similarities to DevOps in running continuous mutation analysis. MUTALKCI
is explained in Section 5.4.

The framework also includes a web-based mutant explorer to stash the mutation cov-
erage status over the development time (similar to coveralls.io but for mutation testing).
Using this mutant explorer, developers can assess the alive mutants and decide which
to kill. We also equip the mutant explorer with a coverage indicator based on the RIPR
model [78, 102, 103, 104, 137] which helps developers in their assessment. This web in-
terface is bidirectional and allows the developer to mark the mutants as fo be killed, which
creates an issue in the repository on GitHub. The interactive mutant explorer comes in
Section 5.4.1.

126

https://coveralls.io

5.2. EXPANDING MUTATION OPERATORS IN MUTALK

52 EXPANDING MUTATION OPERATORS IN MUTALK

5.2.1 Pharo and MuTalk

Pharo is a pure object-oriented, dynamically typed language based on Smalltalk. It
offers a simple language model: every action in the language is accomplished by sending
messages to objects. In the context of Pharo, the term message sending is used instead of
method invocation. As an example, there is no predefined if statement in the language:
itis implemented as sending the message i fTrue: with ablock argument to boolean ob-
jects. Another significant differences between Pharo and other programming languages
are Phaor’s live programming environment and its snapshot base nature. Unlike most
programming languages, Pharo provides a live programming environment. In Pharo,
developers snapshot the state of their image when they exit the environment, and reload
the snapshot when they reenter. This nature of Pharo makes it vulnerable to unrecover-
able changes in the system by a mutation testing tool unintentionally.

MUTALK! is a mutation testing framework for programs written in Smalltalk. The
original mutation operators in MUTALK includes some known patterns related toBoolean
messages,Magnitude messages,Collection messages,Number messagesand
Flow control messages [45]. Most of the original operators interchange a known
messages with other know messages. For example, one of operators replaces ifTrue:
messages with 1fFalse:. Other operators may remove the function return operator,
remove exception handling blocks, replace a block with an empty block, or replace the
ifTrue: receiver object with true/false objects.

5.2.2 Mutation Operators

Learned from previous works and other mutation testing frameworks?, we added the
following new mutation operators to MUTALK?. The list is sorted from the most coarse-
grained to the finer operators:

— Extreme transformation. We adopted an extreme transformation operator [138, 139]
that stips the whole body of the test method. In Pharo, these stipped methods always
return their object (* self). We use this operator as the most coarse-grained mu-
tation that verifies whether the tests are sensitive to removing all statements from a
covered method or not.

— Disabling invocations. As we explained earlier, every action in Pharo is achieved

Ihttps://github.com/pavel-krivanek/mutalk
2PIT: https://pitest.org/quickstart/mutators/
Shttps://github.com/mabdi/mutalk

127

https://github.com/pavel-krivanek/mutalk
https://pitest.org/quickstart/mutators/
https://github.com/mabdi/mutalk

CHAPTER 5. TOWARD ZERO-TOUCH MUTATION TESTING IN PHARO

by sending messages. The message #yourself is a special message that returns the
object itself. We implemented a mutation operator that replaces the sent message
with #yourself to disable an invocation. We use this operator as the second coarse
mutation that verifies whether the tests are sensitive to disabling a statement from a
covered method or not.

Nullifying the arguments. In this mutation operator, we replace an argument in a
message send node with nil. This operator also verifies whether the tests are sensi-
tive to disabling an argument in one of the statements.

Mutating the literals. In this mutation operator, we mutate the literal values. We use
a negation for the Boolean constants, an increase/decrease or zero for the numerical
constants, and replacing with an empty string or a specific predefined string for the
string values.

53 DETECTING INFINITE LOOPS

After adding the new operators, we witnessed the number of times Pharo freezes has

increased so that scarcely an execution finishes. The main freezing reason was entering an

infinite loop. Here we explain it using an example. The first code in the Listing 5.1 shows

a method in which the factorial of an integer number is calculated recursively. The next

code snippets are mutated versions of this method. In these mutants, when MUTALK

runs the test to verify mutation detection, an infinite loop happens because the mutation

operator disables the conditional statement. Sometimes, the operating system kills the

process by an Out of memory error.

1

2

10
11
12
13
14
15
16

17

128

factorial: anint
anlnt == 1 ifTrue: [~ 1].

anlnt * (self factorial: anInt —1)

"Mutant 1: disabled the conditional statement by replacing the message"
factorial: anint

(anInt == 1) yourself.

~ anlnt * (self factorial: anInt —1)

"Mutant 2: replaced the condition with always false"
factorial: anint
false ifTrue: [~ 1].

anlnt * (self factorial: anInt —1)

"Mutant 3: removed return operator"
factorial: anint

anint == 1 ifTrue: [1].

~ anlnt * (self factorial: anInt —1)

5.4. ZERO-TOUCH MUTALK

Code Excerpt 5.1: Examples of an infinate loop after mutation testing.

In a language like Java, the mutation testing framework and the test runner run in two
different processes. As a result, the test runner process fails with a StackOverFlow error
in a similar mutation and is detected effortlessly by mutation testing. However, the story
is different in Pharo because it is a live programming environment. The mutation testing
framework and the test runner run in a shared process called Pharo image. So, an infinite
loop for the test runner means the whole process losses its availability. We explained this
problem in [91].

To solve this problem, we need a mechanism similar to StackOverflow error in Pharo.
We added an auxiliary statement at the beginning of the mutated method that counts
the number of its executions and throws an exception that fails the test if it reaches the
defined threshold. We exploited the technique used in the class Halt in Pharo internals
for its implementation. Although this technique significantly decreased the number of
freezings, the process still may crash or freeze for other reasons. We leave recovering

from other crashes as future work.

Code Excerpt 5.2: Auxiliary exception for avading infinate loops.

1 factorial: anint

2 RecursionError onCount: 1024. "l will go off if executed 1024 times"
3 (anInt == 1) yourself.
4 ~ anlnt * (self factorial: anlnt —1)

54 ZERO-TOUCH MUTALK

For using MUTALK, developers should perform some tedious tasks, including in-
stalling the tool on their Pharo image, initializing it, running it over their programs, and
waiting a considerable time to obtain the results. These burdensome steps may hinder
MUTALK from being used regularly. In this part, we propose a zero-touch mutation test-
ing solution to automate the unnecessary involvement of developers.

Recently, mutation testing has been employed at scale in Google by integrating it into
the build system and using a diff-based probabilistic approach to reduce the number of
mutants [140]. Then in the code-review process, alive mutants are shown to developers,
and they decide to kill or ignore them. In this part, we try to setup a similar process for

Pharo’s open-source projects.

Figure 5.1 illustrates the proposed hierarchical approach for running MUTALK in the

CI/CD build servers. This framework is also comparable to DevOps [141] frameworks.

129

CHAPTER 5. TOWARD ZERO-TOUCH MUTATION TESTING IN PHARO

Version confrol CI/CD flow ===emccmssecemssnnnnnnnssssnmssmmsessmssmmmesemmmoo oo oo m oo oo - Mutant explerer
Code \ (1) uncovered methaods Reports 12,3.4
7 / ceverage
history
(2) undetected
—t7 ex. transformations
/ measurements N /
Ilm_ﬁn\\\ﬁ e .,.:..Jr (3) al based on RIPR User's Visualize
| Wi model decisions i
! mutants 8 in UL
(4) Reachability ignare
+ propagation status
m Method Mutation Testing Mutation Testing

Issue tracker

0

Coverage (Shallow) (in-depth)

Create/Update a related issue

Fixit Developer

Figure 5.1: Hierarchical zero-touch mutation testing or MutationTestingOps for Pharo

130

5.4. ZERO-TOUCH MUTALK

DevOps provides agility in continuous software delivery by an iterative approach based
on automation and collaboration. Similarly, we can define Mutation testing Ops (Mu-
tOps) as a continuous mutation analysis based on automation and collaboration.

Mutation testing is a time-consuming process. For a mutation testing analysis in a
reasonable time, we reduce the mutation testing surface by (1) employing a diff-based
mutation testing works [140, 142] that only considers the changed part in the repository
and (2) using a hierarchical analysis to exclude some part of code before a full feature
mutation testing.

The continuous mutation testing workflow is triggered when a new code is pushed
to the repository. It runs a hierarchical analysis on the selected portion:

1. Firstly, it runs a code coverage tool to find the uncovered parts (report number 1:
uncovered methods). If a method is not covered, all its mutants will survive, so we
do not need to run mutation testing on it. So, we exclude all uncovered parts from
the following analysis.

2. Then, a light mutation testing is executed (report number 2: undetected extreme
transformations). In our implementation, we only use the extreme transformation
operator. Similarly, if an extreme mutation on a method is not detected, we exclude
it from the next analysis.

3. In the third step, a more detailed mutation testing, including all remained opera-
tors, is executed on the parts detected by the previous step, and report number 3 is
formed.

Based on the RIPR model [78, 102, 103, 104, 137], a test method can kill a mutant if
it reaches the mutant (reachability); the program state is different from the state in the
original version at that point (infection); the infected change is propagated to the state of
the test (propagation); finally, the change is revealed by an assertion statement (reveal).

To help developers to kill the mutant manually, we provide two types of coverage
status for alive mutants: the list of tests covering each alive mutant and the list of tests
having a propagated change (report number 4). The tests covering a mutant are starting
points for manual investigations on how to kill a mutant. A method with a propagated
change is also interesting for developers because it says that they can kill the mutant only
by adding an oracle statement to assert the state change caused by the mutation.

We developed a GritHus-Actions workflow* that runs MUTALK, and exports the re-

ports as json outputs. The outputs are sent to the mutants explorer API (See Section 5.4.1)

4nttps://github.com/mabdi/smalltalk-SmallBank/blob/master/.github/workflows/
mutalkCI.yml

131

https://github.com/mabdi/smalltalk-SmallBank/blob/master/.github/workflows/mutalkCI.yml
https://github.com/mabdi/smalltalk-SmallBank/blob/master/.github/workflows/mutalkCI.yml

CHAPTER 5. TOWARD ZERO-TOUCH MUTATION TESTING IN PHARO

using GitHub’s authenticated account token. We use GiTHus-AcrioNs because most of
Pharo’s projects currently are hosted on GitHub, and it is freely available for all open-

source projects.
54.1 Mutants Explorer

Since interpreting the reports generated in Section 5.4 may be cumbersome, we de-
signed a web-based mutant explorer®. The explorer keeps the history of all builds (sim-
ilar to coveralls) and visualizes mutants and their coverage status. Furthermore, it is
interactive and allows developers to assess the mutants and decide whether they should
be killed or ignored. If they decide a mutant to be killed, the explorer adds an item to a
GitHub issue related to this build in the repository.

Figure 5.2 shows an example issue to remind the developer how to kill the mutant
manually. The left figure is a mutant shown to the developer in which the mutated part
is displayed as a diff view on top. Then test methods covering this method are listed with

an RIPR indicator. This indicator has three levels:

— [0 If none of the levels are active, it means that the test does not reach the mutant.
The tests with this degree of coverage do not help developer in killing the mutant

manually, so they are excluded from the user interface.
— WO If only the first level is activated, it shows that the test method reaches the mutant.

— W If there are two active levels, the test reaches the mutants and the change in the
program state is propagated to the test state.

— mmm If all of levels are activated, it means that the test is killed by this test method.
The mutant explorer hides the killed mutants by default.

It is noteworthy that we have three levels in our proof-of-concept because we skip

infection level for simplicity.

In this example, we see that testWithdraw not only covers the method (the first
green block), but the state change from this mutant is propagated to its context (second
green block). Using this report, developers understand that they can add an assertion
statement to this test method to verify the method’s return value withdraw: and kill
the mutant. They can click the FIX button to add an issue (right figure) to the GitHub
repository. Using GitHub’s REST APIs and the user’s token obtained with oAuth, the
web interface creates an issue per build and appends all items to fix. Developers can
refer to this issue later and amplify their tests manually by adding new test methods or

updating their existing tests.

Shttps://github.com/harolato/mutation-testing-coverage

132

https://coveralls.io
https://github.com/harolato/mutation-testing-coverage

CONCLUSION AND FUTURE WORK

5.5.

ONSSI @wum.ﬁwﬁww SII puke MalAJuBINW Y 7S w.:—wwm

[onJ} +
M ELE - JUONDI | 4E
*junowe - adueljeq =: adueleq
] anudT
junowe =< adue)eq
] Junowe :MEJPYITM << >ueg))ews
{ Butssaddeg : AJoboredg }

:SpPoylaN 1s91 payljdwy

@ =! 9duejeq
] 9ZT1BTITUT << jueg))eus] Melpylipissl
{ uotiezT)eTatuT# : AJobojeoy }

[:Ag palano) einy

junowe + sdueeq =: aduejeq

99 ST'LZ+ ST'LZ- W
3S°S5e712 "yuegd)) BWS/HURE] 1 BUS /OIS +++
1S°S5e12 "Mued)) BWS /YUBgE] 1 BUS/OJS ———

*[anJy LE oy oy
[6€ 6€
9994££9 Ul £E Ul

1s'ssejomjueg|jewsHueg|ews/oisHueg|jews-yeljjews 95184 + 8E 8¢

‘[enaa +1€
. d [endy = LE
IMEJPYITM#<<UBE]1BUS UT J031elado uinial anowsy ‘Junoue — aueteq =: adueleq o oc
|001 JBSI[eNSIA Ul Juenjy uado] enJL4T G GE
jJunowe =< adue)eq vE bE
MEJPYITMISS] Ul SN|BA UIN]SI B} 1ASSY] 3unowe :MeJpyiTM << YuegllBWS €€ €€

{ Butssadoes : Auobaredy } z¢ €

120Z 290 0| UO pajuswiwod ojejoley au

133

55 CONCLUSION AND FUTURE WORK

In this paper, we propose an approach for creating a zero-touch mutation testing (or
MutationTestingOps) framework with: (1) adding new mutation testing operators to
MUTALK and use an approach to identify the infinite loops and evade freezings; (2) de-
veloping a zero-touch mutation testing to automate burdensome tasks by implementing
a GitHus-Actions workflow that loads the project under test and MUTALK, and runs a
mutation testing process; (3) the outputs are sent to a mutant explorer in which the his-
tory of mutations is recorded and allows developers to assess mutants and mark them as
to be fixed. The assessments are collected in a GitHub issue that developers can refer to
in the future to amplify the tests manually.

In future work, the system will be run in practice, and a user study will be conducted
to evaluate it.

134

CHAPTER

Test Amplification DevBot

ABSTRACT

This chapter explains the extension of the work described in Chapter 4. We employed GitHub bots
to process the workflow output and push the results into the repository. This part of the work
is not included in any of the publications.

6.1 INTRODUCTION

As we mentioned in Section 4.7, it can still be cumbersome for developers to process
the GitHus-Actions workflow artifacts manually. We employed GitHub bots (or GitHub
Apps [143]) for smoothing this process. GitHub apps are first-class GitHub actors: they
have their identity and act on their behalf.

Our goal in this project is to offer the newly generated tests by test amplification tools
to software engineers by pull requests. Software engineers can assess the pull requests
and accept (a part of) them to be merged into the repository code. Therefore, it is im-
portant that the offered tests encompass a readable comment explaining a reason why
SMALL-AMP has offered it.

In this chapter, first, we explain the comment generation step, which is a new SMALL-
AMP post-process (post-processing is explained in Section 2.4.3). Then, the details about
employing the pre-authenticated GitHus-Actions bot and providing the result as a pull
request are illustrated by examples. Finally, we talk about the future direction of a test
amplification ecosystem.

CHAPTER 6. TEST AMPLIFICATION DEVBOT

74 + DataFrameJsonReaderTest >> testAmplified_5_1 [

75

76+ "SmallAmp has derived this test from
‘DataFrameJsonReaderTest>>#testReadFromJsonOrient™ by applying some transformations
and regenerating its assertions.

77 + This test can:

78 + * It detects the injection of an artificial fault (Replace #ifTrue:
receiver with true) in ‘DataFramelsonReader>> #read:":

79 + original code snippet: ‘orient = 'auto' ifTrue: [self
inferOrientFromJson: json 1°

80 + Mutated code snippet: “true ifTrue: [self inferOrientFromJson:
json 1°

81 + Dynamic state: {#orient->'Sm':%'}

82 + "

83 +

84 + <madeBySmallAmp: 'Amplified_5_1'>

85 + | output |

86 + self

87 + should: [

88 + output := DataFrame

89 + readFromJson: directory / 'split.json'

92 + orient: 'Sm':%']

91 + raise: KeyNotFound

92 +]

Figure 6.1: An example of the generated comment

6.2 COMMENT GENERATION

Recent works in employing mutation testing in industry [73, 74] show that the ma-
jority of the practitioners have limited knowledge about mutation testing. So, we added
some extra human-readable explanations about the mutation process including the mu-
tated part of the code, the code after mutation, and also the dynamic state of the program
in that position after the mutation is executed. Figure 6.1 shows an example of the gener-
ated comments.

6.3 SMALL-AMP DEVBOT

6.3.1 Bots For Supporting Software Development

The idea of employing intelligent programs to assist developers is not a new idea. We
can find the early attempts in the 80s such as the project of programmer’s apprentice [22,23];
and we see this trend is still active nowadays [18, 24].

Erlenhov et. al. [144, 145] coined terms DevBots for referring to bots for software de-
velopment. They also define ideal DevBots for referring to artificial software developers

136

6.4. VISION: TEST AMPLIFICATION ECOSYSTEM

which are autonomous, adaptive, and hold technical and social competence. These bots
are self-sufficient, monitoring continuously and deciding when to act. They learn from
previous experiences and the feedback from other entities, so they adapt themselves to
reduce their mistakes or increase their accuracy. They focus on solving a specific prob-
lem, preferably using different techniques. Finally, since some entities in the ecosystem
may distrust bots, ideal DevBots need to have social abilities such as human-like commu-
nications to reduce such side effects.

6.3.2 Small-Amp DevBot

We extended the job in the merging phase (See Section 4.3.2) of our zero-touch test
amplification process. In this extension, the project-under-test is cloned in the running
machine in GrtTHus-AcTions job and the amplified methods are committed in it in a new
branch (amplificaion branch). Then the new branch is pushed into the repository, and a
new pull request from it to the main branch is sent. In order to facilitate test methods
exclusion from the pull request (cherry picking), each commit only includes a single test
method. We use the checkout! action that provides a pre-authenticated git instance by the
github-actions bot identity. However, for more advanced use cases (see Section 6.4), the
approach can be extended by devising a standalone GitHub bot.

We still expect the tests need some polishments such as removing redundant lines
and renaming the tests so normally developer will not accept the pull request without
some corrections. Developers can load the offered code in the amplification branch into
their favorite IDE and use debuggers and polish the tests. They can also use GitHub’s
web interface for some quick corrections.

6.4 VISION: TEST AMPLIFICATION ECOSYSTEM

In this section, we introduce the test amplification ecosystem. In this ecosystem, hu-
man involvement is reduced as possible and they are involved only in important tasks
such as auditing the amplified tests.

Figure 6.3 illustrates the test amplification ecosystem. The left part is only controlled
by a human, and all other works (the right side) will be handled by a devbot. The first
flow shows the developers’ traditional duty of writing code which they stash their code
in a version control such as GitHub. Number 2 refers to the zero-touch running of the test
amplification tool on the original test suite. Number 3 also refers to exporting the result
as artifacts. We have covered flows number 2 and 3 in Chapter 4. Section 6.3 explained
how we can employ GitHub bots to provide the output as pull requests (number 4.1).

lhttps://github.com/actions/checkout

137

https://github.com/actions/checkout

CHAPTER 6. TEST AMPLIFICATION DEVBOT

<> Code 17 Pullrequests 48 (® Actions [Projects [0 wiki (@ Security |~ Insights 83 Settings
[SmallAmp] amplified tests for action number 92 #51
github-actions wants to merge 45 commits into master from SmallAmp-92 LD
) Conversation 0 - Commits 45 [l Checks o Files changed 6

@ github-actions ' bot commented 2 days ago @ -

| submit this pull request to suggest new tests based on the output of SmallAmp tool.

E+ mabdiadded 30 commits 2 days ago

o g A new test method is added: DataFramelsonWriterTest>>#testAmplified_6_1 .- 9542¢67
o @ A new test method is added: DataFrameTypeDetectorTest>>#testAmplified.. - 6a0b121
o ‘E A new test method is added: DataFrameTypeDetectorTest>>#testAmplified.. - 4abff57
e g A new test method is added: DataFrameInternalTest>>#testAmplified_2_3 - 888991
o g A new test method is added: DataFrameInternalTest>>#testAmplified_2 5 - 575bbc7

Figure 6.2: An example of the sent pull request

However, some developers may prefer not to mess up their projects with a tool output. As
an alternative, we can employ a web-based test explorer (similar to Section 5.4.1) to index
the result and visualize it for developers (Flow 4.2). An IDE plugin can be employed on
the developer side to fetch the latest result in IDE and help the developer in auditing
them (Flows 5, and 6.1). This part is similar to TestCube [61], but the IDE plugin in
this solution is much lighter because it does not include any test amplification tool inside.
Additionally, in this architecture, the developers are allowed to exploit a web-based test
editor and fulfill their revisions (Number 6.2). The revised version of the tests is returned
to the test explorer (Number 7), but they are not ready for being merged into the code
yet. The DevBot will start the amplification tool again to verify the edited tests (Numbers
8 and 9). If the tests are not green or they do not cover the intended parts, the bot will
warn developers about their revision. If there is no problem, or the developer forces the
changes, it will push the changes to the code base (Number 10).

6.5 CONCLUSION

In this chapter, we extended our recent work on zero-touch test amplification by using
GitHub bots to submit automated pull-request from the GiTHus-Actions workflow arti-
facts. DevBot includes the amplified test methods in separated commits in the submitted
pull requests to make it easier to be cherry-picked by developers during the assessment.
Each amplified test method encompasses a human-readable comment that explains the
intention of the recommended tests.

138

O

T Amplification
%’ Code base (Version workflow
E P Control) | (Cuco)
Developer ; E
(Human) ' /
o - Validation
I workflow
. (cI/CD)
<: G
i 2) o :> @ — ﬂ a -
[Test Explorer -
Human in charge The Devbot in charge

Figure 6.3: Test amplification ecosystem with human in loop

We drew a sketch of a test amplification ecosystem in which humans are kept in the
loop and all trivial tasks are done by DevBots. Evaluating the usability of the system by
conducting a user study is the future work.

139

140

Part 111

A Path to Test Transplantation

CHAPTER

Can We Increase the Test-coverage in Libraries

using Dependent Projects’ Test-suites?

This chapter is a revised version of an originally published paper in the Proceedings of the 26th
International Conference on Evaluation and Assessment in Software Engineering 2022 (Vision and
Emerging Results Track) (EASE 2022):
. Can We Increase the Test-coverage in Libraries using Depen-
w dent Projects’ Test-suites?

Igor Schittekat, Mehrdad Abdi, and Serge Demeyer

In Proceedings of the 26th International Conference on Evaluation and Assessment in Software En-
gineering 2022 (Vision and Emerging Results Track) (EASE 2022). June, 2022.

URL: https://doi.org/10.1145/3530019.3535309.

ABSTRACT

Modern software systems increasingly depend on packages released on code sharing platforms
such as GitHub, Bitbucket, and GitLab. To minimize the risk of lurking defects in such packages,
strong test suites covering the normal as well as the exceptional paths are needed. In this chapter,
we explore the potential of using tests from dependent projects to increase the code coverage of
base packages. We extracted 4 popular Python packages from GitHub together with 14 dependent
projects and analyzed the code coverage of the available tests. We observed that adopting the tests of
the dependent projects in the test suite of the base library, would increase the line coverage in 9 out
of 14 (64%) of the cases and the mutation coverage in all of them (100%). Our results suggest
that a tool which would generate tests for the base package based on the tests in the dependent
projects, would help to strengthen the test suite.

https://doi.org/10.1145/3530019.3535309

CHAPTER 7. CAN WE INCREASE THE TEST-COVERAGE IN LIBRARIES USING DEPENDENT
PROJECTS’ TEST-SUITES?

7.1 INTRODUCTION

Software testing is an important part of software development. If the software is
tested poorly, defects will go unnoticed and slip into production. Code coverage is the
commonly adopted way of quantifying the strength of a test suite [146]. Higher cover-
age implies that more of the code under test is executed by the test suite, raising the con-
fidence in its fault detection capacity. However, code coverage tells only half of the story.
To verify whether a test suite is actually capable of detecting defects mutation coverage is
widely acknowledged as the state-of-the-art [147].

With the advent of code sharing platforms such as GitHub, Bitbucket, and GitLab,
software ecosystems are gaining more and more importance [1]. As an example, in 2017 the
npm ecosystem for building Javascript based web applications was reportedly containing
over 300,000 interdependent software packages [148].

From a testing perspective, the scale of these ecosystems is both a blessing and a curse.
On the one hand, it illustrates the importance of a strong test suite, as a lurking defect
in one package may impact all dependent packages. Unfortunately, many projects in the
Python ecosystem exhibit poor coverage [149]. On the other hand, the sum may be more
than the parts: tests exercising a given package will also cover the packages it depends

upon.

In this chapter, we will assess to which extent the coverage of a given package can be
increased by not only looking at the tests from the package itself, but also from the tests
of dependent projects. We distinguish between the base package (the package where more
coverage would be desirable) and the dependent projects (where we copy additional tests).
We will focus on projects written in Python. A survey conducted in 2021 reported that
Python is one of the fastest growing communities [150]. At the time of writing (March
2022), the Python Package Index (PyPI) has more than 36000 packages which are actively

maintained and evolve continuously.

In Section 7.2 we will start with an example to show the potential of our research.
Next, in Section 7.3 we evaluate the idea on realistic sample of actual Python packages,
illustrating the potential increase in line coverage as well as mutation coverage. In Section
7.4 we discuss related work, and in Section 7.5 we conclude the chapter and discuss some
future work.

72 MOTIVATING EXAMPLE

We start with an illustrative example of how tests from dependent projects can in-
crease the coverage of the base package. Suppose you have a package Collections
which implements a basic Stack, implementing push, pop, getTop and isEmpty. The

144

7.2. MOTIVATING EXAMPLE

test suite of Collections implements a test for the stack, but only for the push and
getTop functions. The pop and i sEmpty are not tested within the test suite of Collections
(Listing 7.1).

1 from Collections import Stack
2 def test_push():

3 s = Stack()

4 s.push (1)

5 assert s.getTop() == 1

6 s.push(2)

7 assert s.getTop() == 2

8 s.push(3)

9 assert s.getTop() == 3

Code Excerpt 7.1: StackTest

Now suppose a project, Calculator, uses the Stack from the Collections package
to check if parenthesis match. (Listing 7.2)

from Collections import Stack
def match(string):
s = Stack()
for char in string:
if char == "(’:
s.push(char)
if char == ") ":
if s.getTop() == "(:
s.pop ()

else:

O 0O NN O U1 AWN R

_ =
= O

return False

—_
N

return s.isEmpty ()

Code Excerpt 7.2: Calculator

In this example we can see that the functions pop and isEmpty are used as well. If this
function is tested using the test suite of the Calculator project, it will indirectly test
the Stack from the Collections package. Listing 7.3 shows the tests for the match
function, and is located within the test suite of the Calculator project.

1 from Calculator import match

2 def test_match():

3 assert match(’(14+2)%3+(3-1)")

4 assert not match(’(14+2)%3+)3-1)")
5 assert not match(’(14+2)%3+(3—-1")

Code Excerpt 7.3: MatchTest

When combining the test from the Calculator package with the test from the Collections

145

CHAPTER 7. CAN WE INCREASE THE TEST-COVERAGE IN LIBRARIES USING DEPENDENT
PROJECTS’ TEST-SUITES?

package, the functions pop and isEmpty are tested as well, increasing the overall code

coverage in the base package.

7.3 EVALUATION

In this section we evaluate quantitatively the impact tests from dependent projects

would have on the coverage of the base project.
7.3.1 Project Selection

For our study, we use projects that we selected from libraries.io, a website with a
wide variety of packages. We specified some prior criteria for the search of the packages.
First of all, the projects are Python packages, so we looked for projects available in PyPL
Dependency of packages is shown by libraries.io, so we could select the dependent projects
based on that data. Secondly, the source code of all base packages and dependent projects
had to be on Github. Next, the base package needed to include a test suite. We exclude
packages with full coverage because fully covered libraries can not increase any further.
For this we relied on the information we got from the package maintainers. If no such
information was present, we ran the testing framework ourselves. Next, we processed
dependent projects which needed to include a test suite which covered parts of the code
executing the base package.

With these criteria in mind, we selected 4 base packages and a total of 14 dependent

projects. Table 7.1 shows the descriptive statistics for selected projects.

Failing and erroring tests were ignored in the evaluation, as all tests needed to succeed
for mutation testing to run. The mutation score and number of mutants on the dependent

projects were not computed as they do not affect the study.

An interesting remark is that the tests of pdf-redactor do not test the project itself, but
it tests the imported packages. That’s why the line coverage is 0%.

7.3.2 Impact On Line Coverage

RQ1: To what extent can the line coverage of a base package increase by incorporating tests from
dependent projects?.

Line coverage was calculated using the python package coverage. Coverage is a
convenient tool that measures the coverage from any python source code, independent of
the location of the code on the file system. This implies that tests from one project could
be run while only looking at the coverage of the code from another project. It also allows

combining results of different runs. For our evaluation this implies that the combined

146

https://libraries.io

7.3. EVALUATION

Table 7.1: Descriptive Statistics for the Selected Base Packages and Dependent Projects

BP/DP Source #ST LoCP LoCT LC MS #M
flair https://github.com/flairNLP/flair 89 34942 2185 33% 0,077 % 22825
textattack https://github.com/QData/TextAttack 35 20038 650 35%
nlp-gym https://github.com/rajescw/nlp-gym 6 1905 146 50%
pydata-wrangler | https://github.com/ContextLab/data-wrangler 23 1783 446 75%
textwiser https://github.com/fidelity/textwiser 43 1994 785 82%
seqal https://github.com/tech-sketch/SeqAL 8 590 194 77%
pdfrw https://github.com/pmaupin/pdfrw 29 3686 799 41% 18% 2207
pdf-annotate https://github.com/plangrid/pdf-annotate 120 3098 1795 95%
dungeon-sheets | https://github.com/canismarko/dungeon-sheets 105 61875 2029 94 %
PyPDFForm https://github.com/chinapandaman/PyPDFForm 132 1956 4063 100 %
pdfconduit https://github.com/sfneal/pdfconduit 28 1984 668 65 %
pdf-redactor https://github.com/vitalbeats/pdf-redactor 29 854 813 0%
sacred https://github.com/IDSIA/sacred 618 9527 8018 66% 31,7% 4568
imitation https://github.com/HumanCompatibleAl/imitation 260 10526 2514 48 %
seml https://github.com/TUM-DAML/seml 23 4257 407 29 %
scikit-datasets https://github.com/daviddiazvico/scikit-datasets 37 2375 608 82%
casanova https://github.com/medialab/casanova 51 1532 1026 88% 58% 678
minet https://github.com/medialab/minet 40 16255 1567 19 %

BP/DP : Base packages and their de- Source : The Github address for the ~ #ST : The number of successful tests.

pendent projects. project.

LoCP : The lines of code in the project. ~ LoCT : The lines of code in the test LC : The line coverage on the project.
suite.

MS : The initial mutation score of the ~ #M : The number of mutants on the

base package. base package.

results are the union of the covered lines in the different runs.

First, the line coverage was measured for each of the base packages. Next, the coverage
was measured using the tests of the dependent projects. By combining the coverage results
of those runs, we obtain the increase in coverage. Combining all coverage results from
the different dependent projects resulted in the final coverage result.

7.3.3 Impact On Mutation Coverage

RQ2: To which extent can the mutation coverage of a base package increase by incorporating tests
from dependent projects?.

Mutation coverage was calculated using the python package mutmut. This package
provides a feature to select specific code to mutate, meaning it is possible to only mutate
code from the base package, while running the tests from a dependent project. Another
convenient feature is the option to include a coverage file. For this we used the coverage
file provided by the package coverage, as we already had access to it from the first
analysis (Section 7.3.2). This coverage file is used by mutmut to mutate only covered parts
of the code. Mutants in parts of the code that are not covered by any test will never be
killed, so even before running mutation coverage we can already predict which mutants
will definitely survive. This means we didn’t have to run the tests with those mutants,
sparing a lot of computation time.

mutmut provided a file storing the results of each run. Using this file we could com-

147

CHAPTER 7. CAN WE INCREASE THE TEST-COVERAGE IN LIBRARIES USING DEPENDENT
PROJECTS’ TEST-SUITES?

bine the results of different runs. The combined killed mutants is measured as the union

of the killed mutants over the different runs.
7.3.4 Results

Table 7.2 shows the results of the evaluation. The table columns are interpreted as

follows.

— BP/DP : All base packages and their dependent projects. In each group, the base
package is listed in bold.

— LC: The line coverage on the base package. Here we don’t combine the tests with the

test suite of the base package.

— ILC : The increase in line coverage on the base package. Here we combined the tests
with the test suite of the base package. The increase shown in the base package is the
result of combining the results of all dependent projects.

— TLC : The time for running line coverage.

— #KM : The number of newly killed mutants on the base package. In the rows of the
base packages this indicates the newly killed mutants when combining the results of
all their dependent projects.

— IMS : The increase in mutation score on the base package. As before, the rows with
base packages list the increase when combining the results all their dependent projects.

— TMC: The time for running mutation coverage.

We included the resulting data of our evaluation on Figshare!. This data can be used

to replicate our findings.

Answering RQ1. In 9 out of the 14 dependent projects we can see an increase in line
coverage. The increase shown in the rows of the base packages is the increase we get
when we combine the coverage results of all dependent projects. Here we see that 2 out
of 4 base packages get an increase.

Answering RQ2. For mutation testing we can see that every project is awarded with
an increase in mutation score. Even those projects were we did no see an increase in line

coverage.

lnttps://figshare.com/s/304e0£741c3879b6e068

148

https://figshare.com/s/304e0f741c3879b6e068

7.3. EVALUATION

Table 7.2: Coverage results
BP/DP LC ILC TLC | #KM IMS TMC
flair 33% + 4% S bm | 467 +0,022% S 2w
textattack 19% +2% 2 20m | 265 +0,012% 6d
nlp-gym 17% +0% 30s | 81 +0,003% ~ 12h
pydata-wrangler | 19% +1% ~ 30s | 101 +0,004% ~ 2d
textwiser 17% +2% 5m | 87 +0,004% ~ 12h
seqal 2% +3% 2 1m | 363 +0,016% 1w
pdfrw 41% +28% ' 2s 674 +30% 1h
pdf-annotate 52% +15% ~ 20s | 371 +17% ' 30m
dungeon-sheets | 50% +13% 1m | 41 +2% /4 30m
PyPDFForm 60% +24% ~ 1m | 572 + 26 % 2 1h
pdfconduit 56% +21% ~ 10s | 440 + 20 % /4 45m
pdf-redactor 46% +10% &~ 2s 50 +2% ' 15m
sacred 66% +0% 30s | 987 +21,6% ' 2w
imitation 25% +0% 5m 18 + 0,4 % S 1d
seml 25% +0% 1s 22 + 0,5% S 1d
scikit-datasets 47% +0% 5m | 987 +21,6% ' 2w
casanova 8% +0% 1s 31 +4% 1m
minet 34% +0% 6s 31 +4% / 1m

BP/DP : Base packages and their de-

pendent projects.

TLC : Time for running line coverage.

TMC: Time for running mutation cov-

erage.

LC : Line coverage on the base pack-

age.

#KM : Newly killed mutants on the

base package.

ILC : Increase in line coverage on the

base package.

IMS : Increase in mutation score on

the base package.

149

CHAPTER 7. CAN WE INCREASE THE TEST-COVERAGE IN LIBRARIES USING DEPENDENT
PROJECTS’ TEST-SUITES?

7.3.5 Discussion

The results of our evaluation show that using test suites from dependent projects can
significantly increase the coverage on the base package. In this section, we explain how
to make these improvements permanent, and look deeper into the execution time of the

evaluation.

How to make these improvements permanent? Now that we have shown there is
a possibility to improve the code coverage by looking at tests of the dependent projects,
an important question still needs to be answered: How to make this increase permanent?
Dependency based test transplantation is a solution: We can generate new tests to be included
in the base package’s test suite by exploiting the source of knowledge gained from the
dependent projects. Therefore, test suites in the dependent projects are not required to
be run every time.

To automate this, a tool needs to be created. First, it needs to filter out relevant tests
within the test suite of the dependent projects. Not all tests in these test suites will cover
parts of the base package, and only tests that cover those parts can be used to generate
relevant tests.

Next, a technique similar to capture and replay [151, 152, 153] can be used to generate
isolated new tests. An isolated test only depends on the code from the base package and
does not require the units in the dependent project. Tracers should be installed on the
public APIs in the packages, then the tests in the dependent projects should be executed
to capture the execution traces. By looking at execution traces of the tests, new tests can
be generated for the base package.

Creating a tool that holds up to our expectations is still future work, but in this chapter,
we have shown that it can help software developers to test their packages even better.

Execution time. One drawback at this point is the execution time. For mutation testing,
we had runs taking over a week; despite the optimisation of only mutating the covered
parts of the code. One solution would be to only consider tests that indirectly execute
the base package, instead of all tests in the dependent projects. This would require some
static or dynamic source code analysis to filter out these tests.

7.3.6 Threats to Validity

Generalization. We performed our experiment on four base packages and a total of
fourteen dependent projects, to prove the potential. The increase in coverage for both

line coverage and mutation coverage can change depending on the selection of packages.

150

In our experiments, we saw an increase in mutation coverage for 100% of the packages.
However, we can not guarantee the rate of 100% for all other projects upfront, but we still

expect a considerable rate.

Exclusion of failing tests. The package used for mutation testing, mutmut, only works
on successful tests. For consistency, failing tests were excluded for both line coverage and
mutation coverage. We see this effect on our experiment as minimal because our goal is
to show the positive impact instead of the precise numbers. We expect similar results

when failing tests would be included.

74 RELATED WORK

The main inspiration for our work is a paper by Kfikava et al. [153]. This paper de-
scribes unit test generation in R, based on executing examples in the base package and
dependent projects. We extend their work by incorporating mutation coverage and ap-

plying it to the Python programming language.

Another inspiration came from a paper by Hejderup et al. [154]. These authors stud-
ied the impact of version changes within base packages of Java projects and which effect
they can have on the dependent projects. The first research question in particular was
relevant: Do test suites cover the use of third-party libraries in projects? Their findings show
that only 13% of tests have less than 10% of dependency coverage. This suggests that the

majority of projects have some tests exercising at least one dependency use.

The last source of inspiration stems from the work on fest amplification [8]. Test amplifi-
cation takes existing manually created unit tests, adding extra inputs and extra assertions
with the goal to increase the coverage. Chapter 3 demonstrated the feasibility of test am-
plification for Python with a tool named AmPyfier.

7.5 CONCLUSIONS AND FUTURE WORKS

In this chapter, we assessed the potential of extending the test suite of a base package
by looking at tests of dependent projects. We quantified the impact of these extra tests
by calculating the increase in both line coverage and mutation coverage. We observed an
improvement in line coverage for 64% of the projects; mutation coverage improved in all
(100%) of the projects. We conclude that copying tests from dependent projects indeed
strengthens test suites for base packages. This indicates that a tool which would create
tests based on tests of dependent projects is a viable option. In future works the issue
with execution time needs to be addressed. Selecting up front the tests of the dependent

projects that indirectly access parts of the base package can have a major impact on this.

151

152

CHAPTER

Test Transplantation through Dynamic Test

Slicing

This chapter is a revised version of an originally published paper in the The 22nd IEEE
International Working Conference on Source Code Analysis and Manipulation - New Ideas and
Emerging Results (SCAM 2022):

n; Test Transplantation through Dynamic Test Slicing

Adobe

Mehrdad Abdi and Serge Demeyer

In The 22nd IEEE International Working Conference on Source Code Analysis and Manipulation -
New Ideas and Emerging Results (SCAM 2022). ,2022.

URL: https://www.researchgate.net/publication/362868454.

ABSTRACT

It is proven that the test coverage of libraries can be expanded by using the existing test inputs
from their dependent projects. In this chapter, we propose an approach for test slicing that allows
us to extract these test inputs, isolate them, and transplant them into the test suite in libraries. We
dynamically execute the tests in the dependent project and create its graph of histories. Then, we
traverse back from the interesting object state and collect the taken edges. Finally, we reverse the
collected edges and create a sequence of method calls to reconstruct the same object state. We are
still implementing a proof-of-concept in Pharo, but we mention some of the lessons learned so far.

https://www.researchgate.net/publication/362868454

CHAPTER 8. TEST TRANSPLANTATION THROUGH DYNAMIC TEST SLICING

8.1 INTRODUCTION

Modern software repositories contain a test suite covering some of its code. In a soft-
ware ecosystem, projects usually import modules from other libraries and invoke their
public interfaces to fulfill their tasks. Our recent study (Chapter 7) illustrated that the
tests in the user projects (source) indirectly cover some new parts in libraries (destina-
tion). This shows the opportunity of exploiting these test suites to amplify libraries’ test

coverage.

One easy solution to generate new unit tests is taking snapshots of the interesting ob-
ject states during test execution and restoring them in test methods. However, these tests
may not comply with the unit testing pattern in object-oriented programming languages
and be less readable. In object-oriented programming languages, a unit test typically is
initializing an instance of the class-under-test, updating it to the desired state, and finally,
asserting the expected states. In addition to readability, the snapshots may depend on
some classes from the source project that do not exist in the target project.

This chapter introduces a method to synthesize valid sequences of method calls to
reconstruct the state of the object-under-test and other necessary objects based on tests
in the source project. The method-call sequence will be installed as a unit test in the des-
tination project. We call this process dependency-base test transplantation. In this chapter,
we adopt the terminology from the original paper positioning the idea of code transplan-
tation [10]. Hence, we refer to the dependent project (source) as donor project, the library
(destination) as host project, and the object state to be transplanted as organ. We also refer
to the test method containing the organ in the donor project as donor test.

We propose an algorithm to slice the donor test dynamically. First, we execute it and
collect execution traces, including method calls. We form a graph of histories using these
traces. Then, we spot the interesting object state (organ) in the graph and extract a sub-
graph. In extracting this subgraph, we traverse the graph backward, starting from the
organ, and collect the list of edges. Finally, we reverse the collected edges and synthesize
a sliced test method. In this process, we isolate the slices by mocking those classes not
belonging to the host project. Once we obtain a precise slice containing the organ, we can
transplant the test into the host project.

To conclude, we reduce the test transplantation problem into a test slicing problem
and consequently a test slicing problem into a graph traversal problem. We also write
about our learned lessons from implementing (work in progress) this approach in a
proof-of-concept tool called SMALL-MINCE in Section 8.4.

154

8.2. BACKGROUND

8.2 BACKGROUND

Test amplification. Software repositories contain a considerable amount of test code
written by developers to prevent regression in software evolution. Exploiting this source
of knowledge to improve software testing is called test amplification [8]. SMALL-AMP (Chap-
ter 2) is a test amplifier in Pharo that synthesizes new unit tests that increase the mutation
coverage. SMALL-AMP is based on four main components: (1) a profiler which captures
variables’ type information, (2) an input amplifier which transforms existing test methods
and generates new test inputs, (3) an assertion amplifier which regenerates the assertion
statements, and (4) a selecfor that runs mutation testing and identifies the tests introduc-

ing new coverage.

Program slicing. Program slicing is finding a smaller set of statements from a program
based on a slicing criteria [155]. A slicing criterion is defined as a target statement and a
variable. So, the goal is to find a program slice in which the value of the target variable
in the specified statement is identical to the same variable value in the same statement in
the original program. The slicing algorithm uses the statements dependency graph and
computes a slice by a backward graph traversing.

Static slicing of the program considers all possible inputs in a program and may pro-
duce slices with unnecessary statements. Dynamic program slicing [156] uses a specific
input and performs the slicing based on the executed statements. As a result, it produces
more precise slices, which help debug the program based on specified inputs.

Pharo. Pharo! is a pure object-oriented, dynamically typed language. In Pharo, all ac-
tions are done by sending messages to objects which is the equivalent to method invoca-
tion in other languages. The instance variables are private and can only be updated by
the methods. The Pharo environment offers several facilities for dynamically inspecting
the internal state of execution, making it well suited for dynamic program analysis.

8.3 DYNAMIC TEST SLICING

The traditional program slicing technique models the program as a set of statements
and their relations. In this chapter, we model a program as a set of object states and their
relations and create a graph of histories. The result of the slicing is a sequence of method
calls that produces the same state of objects in the defined location. In this section, we
introduce the object representation and the graph representation methods inspired by
related work on the subject [40, 152, 157].

https://pharo.org/

155

https://pharo.org/

CHAPTER 8. TEST TRANSPLANTATION THROUGH DYNAMIC TEST SLICING

state := primitive | history | self | special
primitive := int | str | null |
history := wid, eventx
event := <message,

state:= version,

state’ := version,

args:= statex,

args':= statex,

returns:= state>
version := Asetof var_name — state pairs
special := wid, predefined representations (lists, streams,...)

Figure 8.1: A model for object representation

8.3.1 Model

Language Model. We use an object-oriented language model, similar to what Pharo
provides: Everything in the language are objects, all objects have a default constructor
(new), and the instance variables in it are private and can be updated only by its methods.

All objects are passed by their reference as arguments.

Object representation. Values in this language are either primitive values (integers,
strings, ...) or objects. Each object is initiated by its constructor (new), and its state is
updated by sending different messages. We refer to sending messages as events that create
a new version of the receiver object. The set of all object’s versions is its history. We adopt
two representations for object values: (1) as a history which is a unique identifier uid and
a list of events (2) as versions which are concrete state of objects: it includes a mapping
of instance variables to their values; if the value is not a primitive, we represent it as an

object history (Figure 8.1).

An event shows that the message with the args has been sent to the receiver object
(identified by wid in history) when it had the internal state of state. This call has led it to
the internal state state’, produced the return value of returns, and the states of arguments

are changed to args” after the method call.
8.3.2 The Graph of Histories

Each event on an object creates a new version. We create an acyclic graph using the ver-
sions of all objects asnodes, and their relations as edges (G =<V, Ecvents, Eargs, Erets; Eargrets >)-
For simplicity, we skip showing the primitive values in the graph. The nodes are con-

nected with four types of edges in this graph:

156

8.3. DYNAMIC TEST SLICING

. Event edges: The messages sent to the object which have updated its version. We

use solid arrows to represent these edges and annotate them with the message name

in Figure 8.2.

. Argument edges: Shows that an object version is used as an argument in an event.

Figure 8.2 uses hollow arrows to represent these edges.

. Return edges: Shows that an object version is returned from a method call. We use

dashed arrows to represent these edges in Figure 8.2. We also use the node after the
method call as the source of these edges. For example, the event md1 on the object
d version 1 leads it to its version 2 and meanwhile returns the object o version 2. We
draw a dashed edge from d version 2 to o version 2.

. Argument return edges: Shows the state of arguments after a method call. We use

dotted arrows to represent these edges. We also omit these edges when the state of
the argument is not updated within an event. Similar to return edges, we use the

node after the method call as the source of these edges.

Code Excerpt 8.1: Example code for dynamic test slicing

18

DriverTest >> testl 19 ClassO >> molA: aObj X: xObj
d := Driver new. 20 xObj mx1.
0 := d mdl: #ClassO. 21 y := ClassY new.
0 mo2. 2 xObj mx2Y: y.
o mo3. 23
d md2. 24 ClassO >> mo2
d md3: o 25 r := ClassR new.
26 r mrl.

Driver >> md1l: aSymbol o ~

aSymbol = #ClassO ifTrue: [

28

29 ClassX >> mx2Y: yObj

retVal := ClassO new. 30 z := ClassZ.
a := ClassA new. 31 z mz1.

x := ClassX new. 32 yObj mylZ: z.
retVal molA: a X: x a3 ~1

~ retVal]

Figure 8.2 shows the graph related to the code in Listing 8.1. As an example, we

focus on the history of the object o: We see it at line 3, but looking deeper, this object is

initialized at line 12 as the variable name retV al. Both variables o (line 3) and retVal (line

12) refer to the same object in execution time. The message #molA:X: is sent to it using

the arguments a version 1 and x version 1 (lines 15). This message brings this object to

its second version. From the outcoming dotted edge (argument return), we understand

157

CHAPTER 8. TEST TRANSPLANTATION THROUGH DYNAMIC TEST SLICING

\

TN TN N TN N
(0 —rnew—>» 1 —mdi—>»{ 2 *——md2——>{ 3 —md3—>{ 4)
1 _/ N4 5 __/ N4

------------ ’ = — N
- a0\
- % 7~ AN
00 ——new—> 1 —molAX—¥ 2 —mo: 03— 4)
\"/ \ '/ Y { >/
Slice2] . 7

2 u/;\y—”ew—!/;) =

e

TN N ™

L o) (o)
- (0 —new— 1 —mri» 2)
A\ \& e ™2)

_ To be exclu_qu Expected object

7N\ 77N N N\
X f\ﬂ —new—»{ 1 —mx1-» 2 —mxey»| 3)

TN Van P
y\'\ 0 Fnew>(1 —my1Z» 2)

TN TN Yo
z [0 rnew» 1 —mzi»{ 2)
_/ _/ _/

Figure 8.2: An example of versions graph

that the state of the object « is updated from version 1 to 3 inside #mo1A:X: (lines 19 to
22). The incoming dashed edge shows that version 2 of the object o is returned when the
message #mdl : is sent to the object d (line 3). The event edge of #mo2 is the transition to
version 3 for object o (line 4). The outgoing dashed edge shows that an object version
2 is returned from this event (line 27). The object o is updated to version 4 by accepting
#mo3 (line 5). We also understand that the version 4 of o is used in calling #md3 on the
object d.

8.3.3 Slicing Tests

A unit test in an object-oriented language typically consists of initializing an instance
of class-under-test, updating it to the desired state, and finally, asserting the expected
states. In other words, a unit test is the history of the object-under-test. For example, the
method #test1 in Listing 8.1 is the history of the object d (the assertion statements are
removed for simplicity).

If we recognize that a version of an object is interesting from the testing point of view,
we can synthesize a unit test to regenerate the same state based on the graph of histories.
We start from the target node, traverse the graph backward, and collect all events in order
to reconstruct the same order.

In this method, we use a mapping V' to store the list of objects to be traversed and
their latest visited version. We also use the list of S including visited edges. Because of
the space considerations, we only use an example to describe the algorithm. Our example
graph considers version 3 of the object o as the slicing criteria. We start traversing from
thisnode (V ={o~— 3},S =)):

158

8.3. DYNAMIC TEST SLICING

There is only one node to be traversed in V. We pick it and see that it has only one
incoming event edge and does not have any other incoming or outgoing edges to other
visited objects, so it is safe to visit (There is an outgoing dashed edge to r version 2, but
r is not in the list of nodes to be traversed: ¢ V). We update the version of o in V" and
also add the visited edge to S: V = {0 — 2}, S = [call 0.mo2].

Again, we have one node in V. We see that it has two incoming edges: an event edge
and a return edge. A version of the object can be obtained either by sending a message to
its previous version or being returned from another event as a return value or argument.
So we can take either of them. We explore both scenarios, which will create two different

slices.

— We take the return edge. It says that the current state is the return value from calling
#md1 on the object d version 1. We discard o from V and add d: V = {d — 1}, S =
[call 0.m02, return of d.md1]. Traversing the remander of this path is straightforward
(V ={d+~ 0}, S = [call 0.mo2, return of d.md1, call d.new]). When all objects in V'
have reached their version 0, the algorithm finishes.

— We consider the event edge (calling #mol1A:X:). This edge will require two other
objects @ and = with version 1 as arguments. We check V' to check if these objects are in
the list of nodes to be traversed. If we found them in V, we check that their version is 1.
If they exist in V and have a version higher than 1, we postpone traversing the current
edge (#molA:X:) and continue traversing argument objects to bring their version to 1.
Finally, if they do not exist in V', we add them to the list. In our case, we take the event
edge and add a version 1 and z version1to V: V = {o— 1,a — 1,2 + 1}, S = [call
0.mo2, call 0.mol1A:X:].

In the next step, we select one of the nodes from V. Let us take a and traverse its edge:
V={or~1a~ 0,z — 1},S = [call 0.mo2, call 0.molA:X:, call a.new]|. Traversing
nodes z and o is also straightforward: V = {0 — 0,a — 0,z — 0}, S = [call 0.mo2,
call 0.molA:X:, call a.new, call o.new, call x.new]).

We synthesize a test by reversing the traversed edges and synthesizing each event. List-
ing 8.2 shows the two sliced tests from this example.

Code Excerpt 8.2: Example of sliced tests

8 testSlice2
1 testSlicel 9 x := ClassX new.
2 d := Driver new. 10 o := ClassO new.
3 o :=d mdl: #ClassO. 11 a := ClassA new.
4 0 mo2. 12 o molA: a X: x.
5 13 o0 mo2.

159

CHAPTER 8. TEST TRANSPLANTATION THROUGH DYNAMIC TEST SLICING

Method call sequence minimizing. In real traces, the number of events on the objects
is considerable, and synthesizing all events may result in a lengthy unreadable test. We
can analyze the state changes in objects to reduce some extra events.

As an example, consider state preserving methods (getter) are called inside a loop.
In the generated test slice, we will see plenty of unnecessary calls to these getter methods.
We can minimize the slice length by detecting and removing these invocations. They can
be detected by evaluating the difference between the state after the event and the state
before each event: state’ — state == @.

Assert generation. Generating the assertion statements to assert the primitive types is
straightforward because the actual value of the primitive can be found in the event traces.
However, there are opportunities for generating advanced assertions, such as asserting
the expected objects. In the example graph in Figure 8.2, the object r is returned from
sending mo2 to o. Listing 8.3 shows a sliced test that reconstructs the expected object
r_expected and asserts it is equal to the returned value.

Code Excerpt 8.3: Asserting expected objects

1 testSlice2 withAsserts

2 o := ClassO new.

3 x := ClassX new.

4 a := ClassA new.

5 o molA: a X: x.

6 r _expected := ClassR new.

7 r_expected mrl.

8 r_actual := o mo2.

9 self assert: r _actual equalsTo: r _expected

8.3.4 Test Isolation

In test isolation, our goal is to exclude some classes from the sliced tests. We replace
the excluded classes with mock objects.

In our example in Listing 8.1, we deduce that the class ClassX needs to be excluded.
This exclusion will invalidate the sliced test test S1ice2 because it depends on ClassX.
We can see from the graph that the object x, which is an instance of this class, is passed
as an argument to the method mo1A:X:. We also see that two other messages mx1 and
mx2 are sent to when it was being processed in the method mo1A:X: (the version of
x is updated from 1 to 3 when it is returned). We create the mock object 2 M ocked that

simulates the required behaviors. Listing 8.4 illustrates a test method with the mocked

160

8.4. PROOF-OF-CONCEPT
ClassX based on Mocket ry mocking library?.

Code Excerpt 8.4: Isolated sliced test

-

testSlice2 mocked

2 o := ClassO new.

3 xMocked := Mock new.

4 xMocked stub mx1 willReturn: nil.

5 (xMocked stub messageWith: (Instance of: ClassY)) willReturn: 1.
6 a := ClassA new.

7 o molA: a X: xMocked.

8 o mo2

84 PROOF-OF-CONCEPT

We implemented our algorithm in a proof-of-concept tool called SMALL-MINCE? in
the Pharo language (work still in progress). The tool consists of three main components:
(1) tracer, (2) slicer, and (3) synthesizer.

The tracer component manipulates the classes in the project to enable them to log the
details of message invocations. We employed method proxies to capture the receiver and
arguments state before and after an invocation. We use an integer instance variable as the
object’s version (increases by each event), and also a stack to reject the internal method
invocations. After the manipulation, the donor test is executed, and traces are collected.

The slicer component creates the graph and extracts some subgraphs based on the
identified target organ (as the program input). The graph does not need to be entirely
loaded in the memory at this stage, and we can mine the logs to traverse it. After travers-
ing the graph and obtaining the list of events, we minimize it by skipping the state-
preserving events.

The synthesizer module converts the traversed paths to test methods, installs them in
the system, and verifies that they are runnable. At the current proof-of-concept, we do
not generate assertion statements, and we will use the assertion-amplification component
from another project (SMALL-AMP) in the host project after transplantation.

The main lessons we have learned so far from this proof-of-concept are:

— Tracer needs to manipulate the classes in advance. However, it is difficult to find a list
of classes to be manipulated. We use all defined classes in the project as default.

— Manipulating the system classes like Array, Stream and Dictoriary is challeng-

ing. Itis why we skip manipulating these classes and use some predefined representa-

2https://github.com/dionisiydk/Mocketry
Shttps://github.com/mabdi/small-mince

161

https://github.com/dionisiydk/Mocketry
https://github.com/mabdi/small-mince

CHAPTER 8. TEST TRANSPLANTATION THROUGH DYNAMIC TEST SLICING

tion for them. However, the number of system classes is considerable, and language-

specific knowledge bases are required beforehand.

— When all methods in a project are proxied, the program’s execution gets dramatically
slow. This shows that it is important to keep the instructions in the method proxies as

minimized as possible.

85 RELATED WORK

The works by Artzi et al. [158], and Zhang et al. [152] use a similar graph representa-
tion to extract a model from the class-under-test and guide a random-based test generator.
However, we use this graph to reconstruct a call sequence as a test slice. Staff et al. [151]
use a capture and replay technique to replace the environment part of the program with

mocks and create unit tests from slower system tests.

GENTHAT is a unit test extraction tool for R language [153]. It analyses execution
traces from running in example code and reverse-dependency projects and synthesizes

new unit tests. However, they only work with primitive data types.

Messaoudi et al. introduce DS3, an approach to slice system level test by a static anal-
ysis enhanced with log analysis [159]. In their work, it is considered that the system test
is huge, and the dynamic slicing is not possible, so they use the software-under-test as a
black-box and do not analyze it. They only consider the code in the test method and the
log produced in the execution. Therefore, they only generate smaller tests with the same
statements from the original test method.

Generating differential unit tests by carving [160, 161] represents related work that
captures the state of the program before and after of execution of the unit. When the unit
evolves, the recorded (carved) pre-state is loaded to memory and the unit is executed,
and the state after is compared to the carved post-state. Tiwari et al. [162] also introduce
PANKTI which observes the program execution in production and generates a set of dif-
ferential tests that expands the test coverage. It manipulates the methods under test and
serializes the state of receiving object, arguments, and the return value. Then it generates
a test method by deserializing the states from trace files and reconstructing the execution
state. We see our proposed approach as a complement to these two works, whereas we
can use objects’ history to create a sequence of method calls to reconstruct the same state
instead of deserializing the states from files.

8.6 CONCLUSION

This chapter addressed the problem of test transplantation from a dependent project
to the imported libraries. We choose a test in the dependent project that amplifies the cov-

162

erage in the library, then we slice it, isolate it if necessary, and move it to the library’s test
suite. We reduced the test slicing problem to a subgraph finding and backward travers-
ing problem. We illustrated the proposed traversing algorithm using an example and
also mentioned our learned lessons from the implementation of a proof-of-concept.

In the future, we will evaluate the algorithm for the test transplantation problem on
real projects. In addition, we will explore different use-cases for test slicing: (1) Slicing
amplified tests can improve their readability by removing unnecessary statements. (2)
Amplifying sliced tests can increase the input amplification surface and, consequently,
the test amplification performance. (3) By slicing tests in code clones, similarity-based

test transplantation can be possible where we can cover untested clones.

163

164

Part IV

Conclusion

CHAPTER

Conclusion

Modern software projects do not usually live in isolation, interacting with each other and
forming a larger socio-technical unit called software ecosystems. While software ecosys-
tems are gaining more importance gradually, we attempted to address the problem of
strengthening software tests in the context of software ecosystems. In this dissertation,
we pursued three main goals:

Expanding the state-of-the-art in test amplification. In test amplification, the valuable
source of knowledge in the existing test suite is exploited to enhance testing based on
an engineering goal. We adapted DSPOT, the state-of-the-art test amplifier in Java, to
dynamically typed languages of Pharo and Python by exploiting dynamic type profiling.
In this exploration, we also addressed the problems of unnecessary oracles, test input
explosion, and slow mutation testing.

Making steps toward zero-touch test amplification. A test amplifier should be au-
tonomous and act as a virtual developer in the team. Developers’ involvement should be
reduced as possible, and their attention is needed only for approving the result. We pro-
posed the zero-touch test amplification proof-of-concept solution by integrating SMALL-
AMP with GitHus-Acrtions. In this proof-of-concept, we introduced a test method pri-
oritizing heuristic, sharding, and crash recovery mechanisms. We also introduced zero-
touch mutation testing in the Pharo ecosystem and also introduced a test amplification
DevBot which submits pull requests derived from the output of the test amplification.

Demonstrating test transplantation. Test amplification based on DSPOT is not the only

solution for getting advantages of the knowledge source in the software ecosystems. We

CHAPTER 9. CONCLUSION

focused on the dependency relationship between projects and introduced the notion of
dependency-based test transplantation and a method for dynamically slicing test methods.

These three goals are derived from our thesis: there is a symbiotic relationship be-
tween test amplifiers and software ecosystems, and we investigated this relationship based
on two feedback loops: (1) The test amplifier is fed by knowledge extracted *out* of the
ecosystem, like the source code and interproject dependencies. (2) The test amplifier
provides improvements *in* the available tests to reduce the impact of software defects.

Our observations during these studies show the presence of great opportunities in
the synergy between software evolution in the context of ecosystems and software test-
ing. The existing code in projects and their relations are two knowledge sources we ex-
ploited in our studies. However, more knowledge sources can be exploited in developing
intelligent tools in future works. Zero-touch test amplifiers can have a significant role in
the team. However, we observed that there is still room for improvement. One of the
missing aspects is defining a model for a good test. Current engineering goals, such as
code coverage and mutation analysis, identify bad tests and show where they need to im-
prove. However, when a tool suggests a new test, it should meet different requirements
like: Is the code readable and maintainable? Are the chosen names for the test understandable?
Is a human-understandable comment provided when it is needed? Does it conform to the testing
style of the team? Should this test be merged into an existing test or be a new test? Should this
test be split into smaller tests? and so forth. A model for an acceptable test still needs to
be defined by considering these requirements. In Chapter 2, we manually translated a
generated test based on mutation coverage into developer-understandable tests.

9.1 FINAL WORDS

Around 80 years ago, the first programmable general-purpose computers were cre-
ated. The early computers were limited in speed and memory, and machine code was
used to program them. However, within a few years, software engineers realized that
coding in low-level machine language is cumbersome and needs a lot of effort, and even-
tually, higher-level programming languages were created. Programmers now write pro-
grams in a high level code which gets compiled into machine-understandable code. Yet,
we are in an era where the chips on $15 smart lamps have enough computing power to
load and run a classic PC gamel. However, in essence we are still stuck with the same
development paradigm: loading instructions in some high-level language into our com-
puters to tell them exactly what we want them to do.

Fortunately, humans are taking another step. We have realized that current program-

lhttps://uk.pcmag.com/games/133930/you-can-run-doom-on-a-chip-from-a-15-ikea—
smart-lamp

168

https://uk.pcmag.com/games/133930/you-can-run-doom-on-a-chip-from-a-15-ikea-smart-lamp
https://uk.pcmag.com/games/133930/you-can-run-doom-on-a-chip-from-a-15-ikea-smart-lamp

ming tasks like writing i f and for statements, creating methods and classes, or writing
unit tests, are too low-level. Similar to the cover photo —which is generated by Artificial
Intelligence from a textual description— people should just sketch what they need, ask an
intelligent agent to materialize their intentions. People should only respond with what
is good and what is bad, and computers should satisfy these intentions. Although we
are still far from that vision, the software engineering community made some promising
steps in that direction. Human developers have developed a vast number of projects in
open source software ecosystems, and their knowledge is accessible through the existing
big code repositories. These repositories are mined continuously to extract software
development models fed into intelligent agents which are the basis for a “zero-touch”
approach towards software development.

The future of software engineering looks bright. With this dissertation, we have made
s small yet crucial step towards that future.

169

170

[1]

[4]

Bibliography

Konstantinos Manikas and Klaus Hansen. Software ecosystems — a systematic
literature review. Journal of Systems and Software, 86:1294-1306, 05 2013. doi:
10.1016/j.js5.2012.12.026. (Cited on pages 1 and 144).

Tom Mens, Madlick Claes, Philippe Grosjean, and Alexander Serebrenik. Study-
ing Evolving Software Ecosystems based on Ecological Models, pages 297-326. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN 978-3-642-45398-4. doi: 10.1007/
978-3-642-45398-4_10. URL https://doi.org/10.1007/978-3-642~
45398-4_10. (Cited on page 2).

Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. Open
source software ecosystems: A systematic mapping. Information and Software
Technology, 91:160-185, 2017. ISSN 0950-5849. doi: https://doi.org/10.1016/
j.infsof.2017.07.007. URL https://www.sciencedirect.com/science/
article/pii/s0950584917304512. (Cited on page 2).

Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. Reassert: Sug-
gesting repairs for broken unit tests. In Proceedings ASE 2009 (International Con-
ference on Automated Software Engineering), pages 433—444. IEEE CS, 2009. doi:
10.1109/ASE.2009.17. (Cited on pages 2 and 14).

N. Tillmann and W. Schulte. Unit tests reloaded: Parameterized unit testing with
symbolic execution. IEEE Software, 23(4), 2006. doi: 10.1109/MS.2006.117. (Cited
on pages 2 and 14).

Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. Study-
ing the co-evolution of production and test code in open source and industrial
developer test processes through repository mining. International Journal on Empir-
ical Software Engineering, 16(3):325-364, 2011. doi: 10.1007/s10664-010-9143-7.
(Cited on pages 2 and 14).

https://doi.org/10.1007/978-3-642-45398-4_10
https://doi.org/10.1007/978-3-642-45398-4_10
https://www.sciencedirect.com/science/article/pii/S0950584917304512
https://www.sciencedirect.com/science/article/pii/S0950584917304512

BIBLIOGRAPHY

[7]

8]

[10]

[11]

[12]

[13]

[14]

D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman. Test code quality and its re-
lation to issue handling performance. IEEE Transactions on Software Engineering, 40
(11):1100-1125, 2014. doi: 10.1109/TSE.2014.2342227. (Cited on pages 2 and 14).

Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin Mon-
perrus, and Benoit Baudry. A snowballing literature study on test amplification.
Journal of Systems and Software, 157:110398, 2019. ISSN 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2019.110398. URL http://www.sciencedirect.com/
science/article/pii/S0164121219301736. (Cited on pages 2, 14, 15, 16,
70,72,74,106, 151, and 155).

Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
Automatic test improvement with dspot: a study with ten mature open-source
projects. Empirical Software Engineering, Springer Verlag, 2019. (Cited on pages 2, 7,
14,15, 23, 34, 35, 37, 54, 58, 63, and 126).

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke. Au-
tomated software transplantation. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA 2015, page 257-269, New York, NY, USA,
2015. Association for Computing Machinery. ISBN 9781450336208. doi: 10.1145/
2771783.2771796. URL https://doi.org/10.1145/2771783.2771796.
(Cited on pages 2 and 154).

Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM transactions on autonomous and adaptive systems (TAAS),
4(2):1-42,2009. (Cited on page 3).

Sigrid Eldh. Test automation improvement model - taim 2.0. In ICSTW-NEXTA
2020 (IEEE International Conference on Software Testing, Verification and Validation
Workshops — NEXTA), pages 334-337,2020. doi: 10.1109/ICSTW50294.2020.00060.
(Cited on pages 4 and 105).

Andrew P Black, Oscar Nierstrasz, Stéphane Ducasse, and Damien Pollet. Pharo
by example. Lulu. com, 2010. (Cited on pages 4, 15, and 17).

Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and Jannik Laval. Deep Into
Pharo. Square Bracket Associates, 2013. ISBN 978-3-9523341-6-4. URL http://
books.pharo.org/deep-into-pharo/. (Cited on pages 4, 15, 17, and 126).

[15] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. Live programming and soft-

172

ware evolution: Questions during a programming change task. In 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC), pages 30-41, 2019.
(Cited on pages 4 and 107).

http://www.sciencedirect.com/science/article/pii/S0164121219301736
http://www.sciencedirect.com/science/article/pii/S0164121219301736
https://doi.org/10.1145/2771783.2771796
http://books.pharo.org/deep-into-pharo/
http://books.pharo.org/deep-into-pharo/

[16]

[19]

[20]

[23]

[24]

BIBLIOGRAPHY

Steven L. Tanimoto. A Perspective on the Evolution of Live Programming. In Pro-
ceedings of the 1st International Workshop on Live Programming, LIVE "13, pages 31—
34, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-6265-8. URL http:
//dl.acmorg/citation.cfm?id=2662726.2662735. (Cited on pages 4
and 107).

Christopher Parnin. A History of Live Programming, 01 2013. URL http:
//liveprogramming.github.io/liveblog/2013/01/a-history—-of-
live-programming/. (Cited on pages 4 and 107).

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foun-
dations and TrendsA® in Programming Languages, 4(1-2):1-119,2017. ISSN 2325-1107.
doi: 10.1561/2500000010. URL http://dx.doi.org/10.1561/2500000010.
(Cited on pages 5, 6, and 136).

Armando Solar-Lezama. Program sketching. International Journal on Software Tools

for Technology Transfer, 15(5-6):475-495, 2013. (Cited on page 5).

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A
survey of machine learning for big code and naturalness. ACM Computing Surveys,
51(4):1-37, Jul 2018. ISSN 0360-0300. doi: 10.1145/3212695. URL http://
dx.doi.org/10.1145/3212695. (Cited on page 5).

Anita D Carleton, Erin Harper, John E Robert, Mark H Klein, Dionisio De Niz,
Edward Desautels, John B Goodenough, Charles Holland, Ipek Ozkaya, Douglas
Schmidlt, et al. Architecting the future of software engineering: A national agenda

for software engineering research and development. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA, 2021. (Cited on page 6).

Richard C. Waters. The programmer’s apprentice: A session with kbemacs. IEEE
Transactions on Software Engineering, (11):1296-1320, 1985. (Cited on pages 6
and 136).

Charles Rich and Richard C. Waters. The programmer’s apprentice: A research
overview. Computer, 21(11):10-25, 1988. (Cited on pages 6 and 136).

Geert Heyman, Rafael Huysegems, Pascal Justen, and Tom Van Cutsem. Natural
language-guided programming. In Proceedings of the 2021 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2021, page 39-55, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450391108. doi: 10.1145/3486607.3486749.
URL https://doi.org/10.1145/3486607.3486749. (Cited on pages 6
and 136).

173

http://dl.acm.org/citation.cfm?id=2662726.2662735
http://dl.acm.org/citation.cfm?id=2662726.2662735
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1145/3212695
https://doi.org/10.1145/3486607.3486749

BIBLIOGRAPHY

[25]

[26]

[27]

[28]

[31]

[32]

174

Benjamin Danglot. Automatic unit test amplification for DevOps. PhD thesis, Univer-
sité de Lille, 2019. (Cited on page 7).

Benoit Baudry, Simon Allier, Marcelino Rodriguez-Cancio, and Martin Monper-
rus. Dspot: Test amplification for automatic assessment of computational diver-
sity. CoRR: a computing research repository, abs/1503.05807, 2015. URL http:
//arxiv.org/abs/1503.05807. (Cited on pages 7, 14, 23, and 63).

K. Beck. Test-driven Development: By Example. Addison-Wesley signature series.
Addison-Wesley, 2003. ISBN 9780321146533. URL https://books.google.be/
books?id=gFgnde_vwMAC. (Cited on page 14).

Andrey Agibalov. What is a normal “functional lines
of code” to “test lines of code” ratio?, 2015. [on line]
https:/ /softwareengineering.stackexchange.com/questions/156883/ — last

accessed In April 2021. (Cited on page 14).

Nan Li and Jeff Offutt. Test oracle strategies for model-based testing. IEEE Transac-
tions on Software Engineering, 43(4):372-395,2016. doi: 10.1109/TSE.2016.2597136.
(Cited on page 14).

G. Fraser and A. Arcuri. The seed is strong: Seeding strategies in search-based
software testing. In 2012 IEEE Fifth International Conference on Software Testing, Veri-
fication and Validation, pages 121-130, 2012. doi: 10.1109/ICST.2012.92. (Cited on

page 14).

José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. Seeding strategies in
search-based unit test generation. Software Testing, Verification and Reliability,
26(5):366—401, 2016. doi: https://doi.org/10.1002/stvr.1601. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1601. (Cited on
pages 14, 63, and 72).

S. Yoo and M. Harman. Test data regeneration: generating new test data from ex-
isting test data. Software Testing, Verification and Reliability, 22(3):171-201, 2012. doi:
https://doi.org/10.1002/stvr.435. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/stvr.435. (Cited on pages 14, 62, 63, and 72).

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementa-
tion. Addison-Wesley Longman Publishing Co., Inc., USA, 1983. ISBN 0201113716.
(Cited on page 15).

Steven Costiou, Vincent Aranega, and Marcus Denker. Sub-method, partial behav-
ioral reflection with reflectivity: Looking back on 10 years of use. The Art, Science,
and Engineering of Programming, 4(3), 2020. (Cited on pages 15, 30, and 74).

http://arxiv.org/abs/1503.05807
http://arxiv.org/abs/1503.05807
https://books.google.be/books?id=gFgnde_vwMAC
https://books.google.be/books?id=gFgnde_vwMAC
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1601
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1601
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.435
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.435

[35]

[36]

[40]

[41]

[42]

[43]

[44]

BIBLIOGRAPHY

Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. Test amplification in the
pharo smalltalk ecosystem. In Proceedings of the 14th Edition of the International
Workshop on Smalltalk Technologies, INST, volume 19, pages 1-7, 2019. (Cited on
pages 15, 70, and 104).

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. Mutation testing advances: An analysis and survey. Ad-
vances in Computers, 112:275-378, 2019. ISSN 0065-2458. doi: 10.1016/
bs.adcom.2018.03.015. URL http://www.sciencedirect.com/science/
article/pii/S0065245818300305. (Cited on pages 16,70, and 104).

Stéphane Ducasse. Pharo with Style. Square Bracket Associates, 2019. (Cited on
page 19).

Stefan Fischer, Evelyn Nicole Haslinger, Markus Zimmermann, and Hannes
Thaller. An empirical evaluation for object initialization of member variables in
unit testing. In Proceedings VST 2020 (IEEE Workshop on Validation, Analysis and Evo-
lution of Software Tests), pages 8-11, 2020. doi: 10.1109/VST50071.2020.9051634.
(Cited on page 21).

Paolo Tonella. Evolutionary testing of classes. Proceedings of the 2004 ACM
SIGSOFT international symposium on Software testing and analysis - ISSTA 04,
2004. doi: 10.1145/1007512.1007528. URL http://dx.doi.org/10.1145/
1007512.1007528. (Cited on pages 25 and 73).

Tao Xie. Augmenting automatically generated unit-test suites with regression
oracle checking. Lecture Notes in Computer Science, pages 380-403, 2006. ISSN
1611-3349. doi: 10.1007/11785477_23. URL http://dx.doi.org/10.1007/
11785477_23. (Cited on pages 26, 28, 63, and 155).

F. Palomba. Flaky tests: Problems, solutions, and challenges. In BENEVOL, 2019.
(Cited on page 27).

Stéphane Ducasse. Evaluating message passing control techniques in smalltalk.
Journal of Object Oriented Programming, 12:39-50, 1999. (Cited on page 30).

Mariano Martinez Peck, Noury Bouraqadi, Luc Fabresse, Marcus Denker, and
Camille Teruel. Ghost: A uniform and general-purpose proxy implementation.
Science of Computer Programming, 98:339-359, 2015. (Cited on page 30).

Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe Marschall. Sub-
method reflection. Journal of Object Technology, 6:275-295, 10 2007. doi: 10.5381/
jot.2007.6.9.a14. URL http://www.jot.fm/contents/issue_2007_10/
paperl4.html. (Cited on page 30).

175

http://www.sciencedirect.com/science/article/pii/S0065245818300305
http://www.sciencedirect.com/science/article/pii/S0065245818300305
http://dx.doi.org/10.1145/1007512.1007528
http://dx.doi.org/10.1145/1007512.1007528
http://dx.doi.org/10.1007/11785477_23
http://dx.doi.org/10.1007/11785477_23
http://www.jot.fm/contents/issue_2007_10/paper14.html
http://www.jot.fm/contents/issue_2007_10/paper14.html

BIBLIOGRAPHY

[45]

[46]

[48]

[52]

[53]

[54]

176

Hernan Wilkinson, Nicolds Chillo, and Gabriel Brunstein. Mutation testing,
Sep 2009. European Smalltalk User Group (ESUG 09). Brest, France. http: //
www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf. (Cited
on pages 34, 107, and 127).

Julien Delplanque, Stéphane Ducasse, Guillermo Polito, Andrew P Black, and
Anne Etien. Rotten green tests. In 41th International Conference on Software Engi-
neering, ICSE "19, pages 500-511. IEEE, May 2019. ISBN 978-1-7281-0869-8. URL
https://hal.inria.fr/hal-02002346. (Cited on page 35).

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. Kluwer Academic Pub-
lishers, 2000. ISBN 978-0792386827. doi: 10.1007/978-3-642-29044-2. (Cited on

page 61).

Suresh Thummalapenta, Madhuri R Marri, Tao Xie, Nikolai Tillmann, and
Jonathan De Halleux. Retrofitting unit tests for parameterized unit testing. In
International Conference on Fundamental Approaches to Software Engineering, pages
294-309. Springer, 2011. (Cited on pages 62 and 63).

Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. From ge-
netic to bacteriological algorithms for mutation-based testing. Software Testing, Ver-
ification and Reliability, 15(2):73-96, 2005. (Cited on pages 62 and 63).

Matthew Patrick and Yue Jia. Kd-art: Should we intensify or diversify tests to kill
mutants? Information and Software Technology, 81:36-51, 2017. (Cited on page 62).

Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. Leveraging existing
tests in automated test generation for web applications. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering, pages 67-78,
2014. (Cited on page 62).

Mauro Pezze, Konstantin Rubinov, and Jochen Wuttke. Generating effective inte-
gration test cases from unit ones. In 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation, pages 11-20. IEEE, 2013. (Cited on page 62).

Gordon Fraser and Andreas Zeller. Generating parameterized unit tests. In Pro-
ceedings of the 2011 International Symposium on Software Testing and Analysis, pages
364-374, 2011. (Cited on page 63).

Jeremias RoSler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. Isolating
failure causes through test case generation. In Proceedings of the 2012 international
symposium on software testing and analysis, pages 309-319, 2012. (Cited on pages 63,
115, and 123).

http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
https://hal.inria.fr/hal-02002346

[55]

[57]

[60]

[63]

BIBLIOGRAPHY

Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. Crash reproduction via
test case mutation: Let existing test cases help. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, page
910-913, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450336758. doi: 10.1145/2786805.2803206. URL https://doi.org/
10.1145/2786805.2803206. (Cited on pages 63,72, 115, and 123).

Franck Chauvel, Brice Morin, and Enrique Garcia-Ceja. Amplifying integration
tests with camp. In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE), pages 283-291,2019. doi: 10.1109/ISSRE.2019.00036. (Cited
on page 63).

Zhihong Xu, Myra B Cohen, and Gregg Rothermel. Factors affecting the use of
genetic algorithms in test suite augmentation. In Proceedings of the 12th annual con-
ference on Genetic and evolutionary computation, pages 1365-1372, 2010. (Cited on
page 63).

Zhihong Xu and Gregg Rothermel. Directed test suite augmentation. In 2009 16th
Asia-Pacific Software Engineering Conference, pages 406—413. IEEE, 2009. (Cited on
page 63).

Hiroaki Yoshida, Susumu Tokumoto, Mukul R Prasad, Indradeep Ghosh, and
Tadahiro Uehara. Fsx: fine-grained incremental unit test generation for c/c++
programs. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, pages 106117, 2016. (Cited on page 63).

J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and J. R.
Woodward. Genetic improvement of software: A comprehensive survey. IEEE
Transactions on Evolutionary Computation, 22(3):415-432, 2018. doi: 10.1109/
TEVC.2017.2693219. (Cited on page 63).

Carolin Brandt and Andy Zaidman. Developer-centric test amplification. Empirical
Software Engineering, 27(4):96, May 2022. ISSN 1573-7616. doi: 10.1007/s10664-
021-10094-2. URL https://doi.org/10.1007/s10664-021-10094-2.
(Cited on pages 63, 72, 104, and 138).

Nienke Nijkamp, Carolin Brandt, and Andy Zaidman. Naming amplified tests
based on improved coverage. In 2021 IEEE 21st International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 237-241. IEEE, 2021. (Cited
on pages 63, 94, and 123).

Wessel Oosterbroek, Carolin Brandt, and Andy Zaidman. Removing redundant
statements in amplified test cases. In 2021 IEEE 21st International Working Confer-

177

https://doi.org/10.1145/2786805.2803206
https://doi.org/10.1145/2786805.2803206
https://doi.org/10.1007/s10664-021-10094-2

BIBLIOGRAPHY

[67]

[70]

[71]

178

ence on Source Code Analysis and Manipulation (SCAM), pages 242-246. IEEE, 2021.
(Cited on pages 63 and 123).

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test
generation. In 29th International Conference on Software Engineering (ICSE’07), pages
75-84,2007. doi: 10.1109/ICSE.2007.37. (Cited on pages 63 and 104).

G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on Software
Engineering, 39(2):276-291, 2013. doi: 10.1109/TSE.2012.14. (Cited on page 63).

A. Panichella, F. M. Kifetew, and P. Tonella. Automated test case generation
as a many-objective optimisation problem with dynamic selection of the targets.
IEEE Transactions on Software Engineering, 44(2):122-158, 2018. doi: 10.1109/
TSE.2017.2663435. (Cited on page 63).

Stephan Lukasczyk, Florian Kroif3, and Gordon Fraser. Automated unit test gener-
ation for python. In Aldeida Aleti and Annibale Panichella, editors, Search-Based
Software Engineering, pages 9-24, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-59762-7. (Cited on pages 63, 71, and 76).

S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Jseft: Automated javascript unit
test generation. In 2015 IEEE 8th International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 1-10, 2015. doi: 10.1109/ICST.2015.7102595.
(Cited on page 63).

G. Fraser and A. Zeller. Mutation-driven generation of unit tests and oracles.
IEEE Transactions on Software Engineering, 38(2):278-292, 2012. doi: 10.1109/
TSE.2011.93. (Cited on page 63).

J. T. P. Wibowo, B. Hendradjaya, and Y. Widyani. Unit test code generator for lua
programming language. In 2015 International Conference on Data and Software En-
gineering (ICoDSE), pages 241-245, 2015. doi: 10.1109/ICODSE.2015.7437005.
(Cited on page 63).

Stefan Mairhofer, Robert Feldt, and Richard Torkar. Search-based software testing
and test data generation for a dynamic programming language. In Proceedings
of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 11,
page 1859-1866, New York, NY, USA, 2011. Association for Computing Machinery.
ISBN 9781450305570. doi: 10.1145/2001576.2001826. URL https://doi.org/
10.1145/2001576.2001826. (Cited on page 63).

Goran Petrovic, Marko Ivankovic, Gordon Fraser, and Rene Just. Practical mutation
testing at scale: A view from google. IEEE Transactions on Software Engineering,
pages 1-1, 2021. doi: 10.1109/TSE.2021.3107634. (Cited on pages 64 and 66).

https://doi.org/10.1145/2001576.2001826
https://doi.org/10.1145/2001576.2001826

[73]

[78]

[79]

[80]

BIBLIOGRAPHY

Goran Petrovi¢ and Marko Ivankovi¢. State of mutation testing at google. In Pro-
ceedings of the 40th International Conference on Software Engineering: Software Engineer-
ing in Practice, ICSE-SEIP "18, page 163-171, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450356596. doi: 10.1145/3183519.3183521.
URL https://doi.org/10.1145/3183519.3183521. (Cited on pages 64, 66,
and 136).

Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. What it would take to use mutation testing in
industry—a study at facebook. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 268-277,
2021. doi: 10.1109/ICSE-SEIP52600.2021.00036. (Cited on pages 64, 66, and 136).

Alexandru Salcianu and Martin Rinard. Purity and side effect analysis for java
programs. In International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 199-215. Springer, 2005. (Cited on page 65).

Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. Adopting program synthe-
sis for test amplification. In Proceedings of the 18th Belgium-Netherlands Software
Evolution Workshop, Brussels, Belgium. published at http://ceur-ws.org, 2019. URL
http://ceur-ws.org/Vol-2605/11.pdf. (Cited on page 66).

Zhong Xi Lu, Sten Vercammen, and Serge Demeyer. Semi-automatic test case ex-
pansion for mutation testing. In 2020 IEEE Workshop on Validation, Analysis and
Evolution of Software Tests (VST), pages 1-7. IEEE, 2020. (Cited on pages 66 and 70).

Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus, and Benoit Baudry.
Suggestions on test suite improvements with automatic infection and propaga-
tion analysis. arXiv preprint arXiv:1909.04770, 2019. (Cited on pages 66, 104, 126,
and 131).

Oscar Luis Vera-Pérez, Martin Monperrus, and Benoit Baudry. Descartes: A
pitest engine to detect pseudo-tested methods: Tool demonstration. In 2018 33rd
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
908-911, 2018. doi: 10.1145/3238147.3240474. (Cited on page 66).

Frédéric Pluquet, Antoine Marot, and Roel Wuyts. Fast type reconstruction for
dynamically typed programming languages. In James Noble, editor, Proceedings
of the 5th Symposium on Dynamic Languages, DLS 2009, October 26, 2010, Orlando,
Florida, USA, pages 69-78. ACM, 2009. doi: 10.1145/1640134.1640145. URL
https://doi.org/10.1145/1640134.1640145. (Cited on page 66).

179

https://doi.org/10.1145/3183519.3183521
http://ceur-ws.org/Vol-2605/11.pdf
https://doi.org/10.1145/1640134.1640145

BIBLIOGRAPHY

[81]

[87]

[88]

[89]

[90]

180

Hernan Wilkinson. Vm support for live typing: Automatic type annotation for
dynamically typed languages. In Proceedings of the Conference Companion of the
3rd International Conference on Art, Science, and Engineering of Programming, Pro-
gramming 19, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362573. doi: 10.1145/3328433.3328443. URL https://doi.org/
10.1145/3328433.3328443. (Cited on page 66).

G. Grano, C. De Iaco, F. Palomba, and H. C. Gall. Pizza versus pinsa: On the
perception and measurability of unit test code quality. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 336-347,2020. doi:
10.1109/ICSME46990.2020.00040. (Cited on page 66).

Hong Zhu, Patrick AV Hall, and John HR May. Software unit test coverage and
adequacy. Acm computing surveys (csur), 29(4):366-427,1997. (Cited on page 70).

Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, pages 416-419,
2011. (Cited on pages 70, 76, and 104).

Benoit Baudry, Simon Allier, Marcelino Rodriguez-Cancio, and Martin Monper-
rus. Dspot: Test amplification for automatic assessment of computational diversity.
arXiv preprint arXiv:1503.05807, 2015. (Cited on pages 70 and 104).

Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
Automatic test improvement with dspot: a study with ten mature open-source
projects. Empirical Software Engineering, 24(4):2603-2635, 2019. (Cited on pages 70
and 72).

Mehrdad Abdi, Henrique Rocha, Serge Demeyer, and Alexandre Bergel. Small-
amp: Test amplification in a dynamically typed language. Empirical Software Engi-
neering, 27(6):1-55, 2022. (Cited on pages 70, 72, 104, 108, and 126).

Chris Laffra. Auger: Automated unittest generation for python. https://
github.com/laffra/auger, 2016. URL https://github.com/laffra/
auger. [Online; accessed 14-September-2021]. (Cited on pages 71 and 76).

KR Srinath. Python-the fastest growing programming language. International
Research Journal of Engineering and Technology, 4(12):354-357, 2017. (Cited on

page 71).

Guido Van Rossum et al. Python programming language. In USENIX annual tech-
nical conference, volume 41, page 36, 2007. (Cited on page 71).

https://doi.org/10.1145/3328433.3328443
https://doi.org/10.1145/3328433.3328443
https://github.com/laffra/auger
https://github.com/laffra/auger
https://github.com/laffra/auger
https://github.com/laffra/auger

[91]

[94]

BIBLIOGRAPHY

Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. Reproducible crashes:
Fuzzing pharo by mutating the test methods. In International Workshop on Smalltalk
Technologies, IWST, 2020. (Cited on pages 72, 104, 105, 108, 115, 123, and 129).

Benjamin Danglot, Martin Monperrus, Walter Rudametkin, and Benoit Baudry. An
approach and benchmark to detect behavioral changes of commits in continuous
integration. Empirical Software Engineering, 25(4):2379-2415, Jul 2020. ISSN 1573-
7616. doi: 10.1007/510664-019-09794-7. URL https://doi.org/10.1007/
s10664-019-09794-7. (Cited on page 72).

Zhihong Xu, Yunho Kim, Moonzoo Kim, Myra B. Cohen, and Gregg Rothermel.
Directed test suite augmentation: an empirical investigation. Software Testing, Ver-
ification and Reliability, 25(2):77-114, 2015. doi: https://doi.org/10.1002/stvr.1562.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1562.
(Cited on page 72).

Pingyu Zhang and Sebastian Elbaum. Amplifying tests to validate exception han-
dling code: An extended study in the mobile application domain. ACM Trans.
Softw. Eng. Methodol., 23(4), sep 2014. ISSN 1049-331X. doi: 10.1145/2652483.
URL https://doi.org/10.1145/2652483. (Cited on page 72).

Franck Chauvel, Brice Morin, and Enrique Garcia-Ceja. Amplifying integration
tests with camp. In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE), pages 283-291, 2019. doi: 10.1109/ISSRE.2019.00036. (Cited
on page 72).

Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and An-
dreas Zeller. Generating test cases for specification mining. In Proceedings of
the 19th International Symposium on Software Testing and Analysis, ISSTA "10, page
85-96, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781605588230. doi: 10.1145/1831708.1831719. URL https://doi.org/
10.1145/1831708.1831719. (Cited on page 72).

Tao Xie. Augmenting automatically generated unit-test suites with regression ora-
cle checking. In European Conference on Object-Oriented Programming, pages 380-403.
Springer, 2006. (Cited on pages 72 and 73).

inspect — inspect live objects — python 3.9.7 documentation. https :
/ / docs.python.org/ 3/ library / inspect.html, 2021. (Accessed on
09/13/2021). (Cited on page 75).

[99] Jeft Knupp. Writing Idiomatic Python 3. Jeff Knupp; 1st edition (November 30,2013),

2013. (Cited on pages 75 and 94).

181

https://doi.org/10.1007/s10664-019-09794-7
https://doi.org/10.1007/s10664-019-09794-7
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1562
https://doi.org/10.1145/2652483
https://doi.org/10.1145/1831708.1831719
https://doi.org/10.1145/1831708.1831719
https://docs.python.org/3/library/inspect.html
https://docs.python.org/3/library/inspect.html

BIBLIOGRAPHY

[100] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. Feedback-
directed random test generation. In 29th International Conference on Software Engi-
neering (ICSE’07), pages 75-84. IEEE, 2007. (Cited on page 76).

[101] Python Software Foundation. typing - support for type hints - python 3.9.7 doc-
umentation. https://docs.python.org/3/library/typing.html, 2021.
URL https://docs.python.org/3/library/typing.html. [Online; ac-
cessed 14-September-2021]. (Cited on page 82).

[102] Larry J. Morell. A theory of fault-based testing. IEEE Transactions on Software Engi-
neering, 16(8):844-857, 1990. (Cited on pages 86, 126, and 131).

[103] Richard A DeMillo, A Jefferson Offutt, et al. Constraint-based automatic test data
generation. IEEE Transactions on Software Engineering, 17(9):900-910, 1991. (Cited
on pages 86, 126, and 131).

[104] Jeffrey M. Voas. Pie: A dynamic failure-based technique. IEEE Transactions on
software Engineering, 18(8):717, 1992. (Cited on pages 86, 126, and 131).

[105] Per Runeson and Martin Host. Guidelines for conducting and reporting case study
research in software engineering. Empirical Softw. Engineering, 14(2):131-164, 2009.
(Cited on page 95).

[106] Robert K. Yin. Case Study Research: Design and Methods, 3 edition. Sage Publications,
—,2002. (Cited on page 95).

[107

—_

Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation for. net.
In International conference on tests and proofs, pages 134-153. Springer, 2008. (Cited
on page 104).

[108

—_

Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
Automatic test improvement with dspot: a study with ten mature open-source
projects. Empirical Software Engineering, 24(4):2603-2635, Aug 2019. doi: 10.1007/
510664-019-09692-y. URL https://doi.org/10.1007/s10664-019-09692~
y. (Cited on pages 104 and 106).

[109

[a—

Benjamin Danglot, Martin Monperrus, Walter Rudametkin, and Benoit Baudry.
An approach and benchmark to detect behavioral changes of commits in contin-
uous integration. Empirical Software Engineering, 25(4):2379-2415, 2020. (Cited on
pages 104 and 124).

[110

[}

Ebert Schoofs, Mehrdad Abdi, and Serge Demeyer. Ampyfier: Test amplification
in python. Journal of Software: Evolution and Process, n/a(n/a):e2490, 2022. doi:
10.1002/smr.2490. (Cited on page 104).

182

https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html
https://doi.org/10.1007/s10664-019-09692-y
https://doi.org/10.1007/s10664-019-09692-y

BIBLIOGRAPHY

[111] STAMP project. Use cases validation report v3, 2019. [on line] https://
github.com/STAMPproject/docs—-forum/blob/master/docs/ — last ac-
cessed In February 2022. (Cited on pages 104 and 107).

[112] José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. Continuous test
generation: Enhancing continuous integration with automated test generation. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software En-
gineering, ASE 14, page 55-66, New York, NY, USA, 2014. Association for Com-
puting Machinery. ISBN 9781450330138. doi: 10.1145/2642937.2643002. URL
https://doi.org/10.1145/2642937.2643002. (Cited on pages 104 and 124).

[113] Oscar Nierstrasz, Stéphane Ducasse, and Damien Pollet. Pharo by Example. Square
Bracket Associates, ¢/o Oscar Nierstrasz, 2010. (Cited on pages 106 and 126).

[114] Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and Jannik Laval. Deep Into
Pharo. Lulu. com, 2013. (Cited on pages 106 and 109).

[115] André N. Meyer, Earl T. Barr, Christian Bird, and Thomas Zimmermann. Today
was a good day: The daily life of software developers. IEEE Transactions on Software
Engineering, 47(5):863-880, 2021. doi: 10.1109/TSE.2019.2904957. (Cited on
page 107).

[116] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. A study of visual
studio usage in practice. In 2016 IEEE 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), volume 1, pages 124-134, 2016. doi:
10.1109/SANER.2016.39. (Cited on page 107).

[117] Roberto Minelli, Andrea Mocci, and Michele Lanza. I know what you did last
summer - an investigation of how developers spend their time. In 2015 IEEE 23rd
International Conference on Program Comprehension, pages 25-35, 2015. doi: 10.1109/
ICPC.2015.12. (Cited on page 107).

[118] Stéphane Ducasse, Manuel Oriol, and Alexandre Bergel. Challenges to support
automated random testing for dynamically typed languages. In Proceedings of the
International Workshop on Smalltalk Technologies, INST "11, pages 9:1-9:6, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-1050-5. doi: 10.1145/2166929.2166938.
URL http://doi.acm.org/10.1145/2166929.2166938. (Cited on page 107).

[119] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empir-
ical analysis of flaky tests. In 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, page 643-653, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450330565. doi: 10.1145/

183

https://github.com/STAMPproject/docs-forum/blob/master/docs/
https://github.com/STAMPproject/docs-forum/blob/master/docs/
https://doi.org/10.1145/2642937.2643002
http://doi.acm.org/10.1145/2166929.2166938

BIBLIOGRAPHY

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

184

2635868.2635920. URL https://doi.org/10.1145/2635868.2635920.
(Cited on page 108).

August Shi, Jonathan Bell, and Darko Marinov. Mitigating the effects of flaky
tests on mutation testing. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2019, page 112-122,
New York, NY, USA, 2019. Association for Computing Machinery. = ISBN
9781450362245. doi: 10.1145/3293882.3330568. URL https://doi.org/
10.1145/3293882.3330568. (Cited on page 108).

Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Us-
age, costs, and benefits of continuous integration in open-source projects. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2016, page 426-437, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450338455. doi: 10.1145/2970276.2970358. URL
https://doi.org/10.1145/2970276.2970358. (Cited on page 109).

Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, and Andy Zaidman. Continuous delivery prac-
tices in a large financial organization. In 2016 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 519-528. IEEE, 2016. (Cited on
page 109).

Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik,
and Mark GJ van den Brand. Continuous integration in a social-coding world:
Empirical evidence from github. In 2014 IEEE international conference on software
maintenance and evolution, pages 401-405. IEEE, 2014. (Cited on page 109).

GitHub. Github actions usage limits, billing, and administration, 2022. [on
line] https://docs.github.com/en/actions/learn—-github—-actions/
usage—limits-billing-and-administration—Ilastaccessed In February
2022. (Cited on pages 109 and 118).

GitHub. About custom actions, 2022. [on line] https://docs.github.com/en/
actions/creating—actions/about-custom—actions — last accessed In

May 2022. (Cited on page 109).

GitHub. Storing workflow data as artifacts, 2022. [on line] https: //
docs.github.com/en/actions/using-workflows/storing-workflow-

data-as-artifacts —last accessed In May 2022. (Cited on page 109).

GitHub. Reusing workflows, 2022. [on line] https://docs.github.com/en/
actions/using-workflows/reusing-workflows — last accessed In May
2022. (Cited on page 109).

https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/3293882.3330568
https://doi.org/10.1145/3293882.3330568
https://doi.org/10.1145/2970276.2970358
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/creating-actions/about-custom-actions
https://docs.github.com/en/actions/creating-actions/about-custom-actions
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://docs.github.com/en/actions/using-workflows/reusing-workflows

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

BIBLIOGRAPHY

Wikipedia. Fitness proportionate selection, 2020. [on line] https: //
en.wikipedia.org/wiki/Fitness_proportionate_selection — last ac-
cessed In February 2022. (Cited on pages 111 and 112).

Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller,
and Anant Agarwal. Application heartbeats for software performance and
health. SIGPLAN Not., 45(5):347-348, jan 2010. ISSN 0362-1340. doi: 10.1145/
1837853.1693507. URL https://doi.org/10.1145/1837853.1693507.
(Cited on page 115).

Samuel Kounev, Peter Lewis, Kirstie L Bellman, Nelly Bencomo, Javier Camara,
Ada Diaconescu, Lukas Esterle, Kurt Geihs, Holger Giese, Sebastian Gotz, et al.
The notion of self-aware computing. In Self-Aware Computing Systems, pages 3—16.
Springer, 2017. (Cited on page 115).

Jianyi Zhou, Junjie Chen, and Dan Hao. Parallel test prioritization. ACM Trans.
Softw. Eng. Methodol., 31(1), sep 2021. ISSN 1049-331X. doi: 10.1145/3471906.
URL https://doi.org/10.1145/3471906. (Cited on page 123).

G. Polito, S. Ducasse, L. Fabresse, N. Bouraqgadi, and B. van Ryseghem. Boot-
strapping reflective systems: The case of pharo. Science of Computer Program-
ming, 96:141-155, 2014. ISSN 0167-6423. doi: https://doi.org/10.1016/
j.s€ico.2013.10.008. URL https://www.sciencedirect.com/science/
article/pii/S0167642313002797. Special issue on Advances in Smalltalk
based Systems. (Cited on page 123).

Clément Béra, Eliot Miranda, Tim Felgentreff, Marcus Denker, and Stéphane
Ducasse. Sista: Saving optimized code in snapshots for fast start-up. In Pro-
ceedings of the 14th International Conference on Managed Languages and Runtimes,
ManLang 2017, page 1-11, New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450353403. doi: 10.1145/3132190.3132201. URL
https://doi.org/10.1145/3132190.3132201. (Cited on page 123).

Martin Dias, Damien Cassou, and Stéphane Ducasse. Representing code history
with development environment events. In IWST-2013-5th International Workshop on
Smalltalk Technologies, 2013. (Cited on page 123).

Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. How to
design a program repair bot? insights from the repairnator project. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Software Engineer-
ing in Practice Track (ICSE-SEIP), pages 95-104, 2018. (Cited on page 123).

185

https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://doi.org/10.1145/1837853.1693507
https://doi.org/10.1145/3471906
https://www.sciencedirect.com/science/article/pii/S0167642313002797
https://www.sciencedirect.com/science/article/pii/S0167642313002797
https://doi.org/10.1145/3132190.3132201

BIBLIOGRAPHY

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

186

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Har-
man. Chapter six - mutation testing advances: An analysis and survey. volume
112 of Advances in Computers, pages 275-378. Elsevier, 2019. doi: https://doi.org/
10.1016/bs.adcom.2018.03.015. URL https://www.sciencedirect.com/
science/article/pii/s0065245818300305. (Cited on page 125).

Nan Li and Jeff Offutt. Test oracle strategies for model-based testing. IEEE Transac-
tions on Software Engineering, 43(4):372-395,2017. doi: 10.1109/TSE.2016.2597136.
(Cited on pages 126 and 131).

Rainer Niedermayr, Elmar Juergens, and Stefan Wagner. Will my tests tell me if i
break this code? In 2016 IEEE/ACM International Workshop on Continuous Software
Evolution and Delivery (CSED), pages 23-29. IEEE, 2016. (Cited on page 127).

Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus, and Benoit Baudry.
A comprehensive study of pseudo-tested methods. Empirical Software Engineering,
24(3):1195-1225, Jun 2019. ISSN 1573-7616. doi: 10.1007/s10664-018-9653-2.
URL https://doi.org/10.1007/s10664-018-9653-2. (Cited on page 127).

Goran Petrovi¢ and Marko Ivankovi¢. State of mutation testing at google. In Pro-
ceedings of the 40th International Conference on Software Engineering: Software Engineer-
ing in Practice, ICSE-SEIP "18, page 163-171, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450356596. doi: 10.1145/3183519.3183521.
URL https://doi.org/10.1145/3183519.3183521. (Cited on pages 129
and 131).

Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. A
survey of devops concepts and challenges. ACM Computing Surveys (CSUR), 52
(6):1-35, 2019. (Cited on page 129).

Wei Ma, Thomas Laurent, Milo§ Ojdani¢, Thierry Titcheu Chekam, Anthony Ven-
tresque, and Mike Papadakis. Commit-aware mutation testing. In 2020 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), pages 394-405.
IEEE, 2020. (Cited on page 131).

GitHub. Github docs: About apps, 2022. [on line] https://docs.github.com/
en /developers /apps/getting-started-with - apps / about — apps.
(Cited on page 135).

Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. An em-
pirical study of bots in software development: Characteristics and challenges from
a practitioner’s perspective. In Proceedings of the 28th ACM Joint Meeting on Euro-

pean Software Engineering Conference and Symposium on the Foundations of Software

https://www.sciencedirect.com/science/article/pii/S0065245818300305
https://www.sciencedirect.com/science/article/pii/S0065245818300305
https://doi.org/10.1007/s10664-018-9653-2
https://doi.org/10.1145/3183519.3183521
https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps
https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

BIBLIOGRAPHY

Engineering, ESEC/FSE 2020, page 445-455, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450370431. doi: 10.1145/3368089.3409680.
URL https://doi.org/10.1145/3368089.3409680. (Cited on page 136).

Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and
Philipp Leitner. Current and future bots in software development. In 2019
IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE), pages
7-11,2019. doi: 10.1109/BotSE.2019.00009. (Cited on page 136).

Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Ad-
dissonWesley, 2000. (Cited on page 144).

Yue Jia and Mark Harman. An analysis and survey of the development of muta-
tion testing. IEEE Transactions on Software Engineering, 37(5):649-678, 2011. doi:
10.1109/TSE.2010.62. (Cited on page 144).

Alexandre Decan, Tom Mens, and Maélick Claes. An empirical comparison of
dependency issues in oss packaging ecosystems. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages 2 — 12,
2017. doi: 10.1109/SANER.2017.7884604. (Cited on page 144).

Hongyu Zhai, Casey Casalnuovo, and Prem Devanbu. Test coverage in python pro-
grams. In 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR), pages 116-120, 2019. doi: 10.1109/MSR.2019.00027. (Cited on
page 144).

Jetbrains. The State of Developer Ecosystem 2021, 2021. URL https://
www.jetbrains.com/lp/devecosystem—-2021/. Last accessed: March 2022.
(Cited on page 144).

David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst. Automatic test
factoring for java. In Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, ASE '05, page 114-123, New York, NY, USA,
2005. Association for Computing Machinery. ISBN 1581139934. doi: 10.1145/
1101908.1101927. URL https://doi.org/10.1145/1101908.1101927.
(Cited on pages 150 and 162).

Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. Combined static and
dynamic automated test generation. In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis, ISSTA "11, page 353-363, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450305624. doi: 10.1145/
2001420.2001463. URL https://doi.org/10.1145/2001420.2001463.
(Cited on pages 150, 155, and 162).

187

https://doi.org/10.1145/3368089.3409680
https://www.jetbrains.com/lp/devecosystem-2021/
https://www.jetbrains.com/lp/devecosystem-2021/
https://doi.org/10.1145/1101908.1101927
https://doi.org/10.1145/2001420.2001463

BIBLIOGRAPHY

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

188

Filip K¥ikava and Jan Vitek. Tests from traces: Automated unit test extraction for r.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, page 232-241, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450356992. doi: 10.1145/3213846.3213863.
URLhttps://doi.org/10.1145/3213846.3213863. (Cited on pages 150, 151,
and 162).

Joseph Hejderup and Georgios Gousios. Can we trust tests to automate de-
pendency updates? a case study of java projects. Journal of Systems and Soft-
ware, 183:111097, 2022. ISSN 0164-1212. doi: https://doi.org/10.1016/
j-Jjss.2021.111097. URL https://www.sciencedirect.com/ science/
article/pii/s0164121221001941. (Cited on page 151).

Mark Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):
446-452, jul 1982. ISSN 0001-0782. doi: 10.1145/358557.358577. URL https:
//doi.org/10.1145/358557.358577. (Cited on page 155).

Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Process-
ing Letters, 29(3):155-163, 1988. ISSN 0020-0190. doi: https://doi.org/10.1016/
0020-0190(88)90054-3. URL https://www.sciencedirect.com/science/
article/pii/0020019088900543. (Cited on page 155).

Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical
language models. In Acm Sigplan Notices, volume 49, pages 419-428. ACM, 2014.
(Cited on page 155).

Shay Artzi, Michael D Ernst, Adam Kie Zun, Carlos Pacheco Jeff, and H Perkinsmit
Csail. Finding the needles in the haystack: Generating legal test inputs for object-
oriented programs. In In 1st Workshop on Model-Based Testing and Object-Oriented
Systems (M-TOOS). Citeseer, 2006. (Cited on page 162).

Salma Messaoudi, Donghwan Shin, Annibale Panichella, Domenico Bianculli, and
Lionel C Briand. Log-based slicing for system-level test cases. In Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
517-528, 2021. (Cited on page 162).

Alexander Kampmann and Andreas Zeller. Carving parameterized unit tests.
In Proceedings of the 41st International Conference on Software Engineering: Com-
panion Proceedings, ICSE "19, page 248-249. IEEE Press, 2019. doi: 10.1109/
ICSE - Companion.2019.00098. URL https://doi.org/10.1109/ ICSE -
Companion.2019.00098. (Cited on page 162).

https://doi.org/10.1145/3213846.3213863
https://www.sciencedirect.com/science/article/pii/S0164121221001941
https://www.sciencedirect.com/science/article/pii/S0164121221001941
https://doi.org/10.1145/358557.358577
https://doi.org/10.1145/358557.358577
https://www.sciencedirect.com/science/article/pii/0020019088900543
https://www.sciencedirect.com/science/article/pii/0020019088900543
https://doi.org/10.1109/ICSE-Companion.2019.00098
https://doi.org/10.1109/ICSE-Companion.2019.00098

BIBLIOGRAPHY

[161] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Matthew Jorde. Carving
and replaying differential unit test cases from system test cases. IEEE Transactions
on Software Engineering, 35(1):29-45, 2009. doi: 10.1109/TSE.2008.103. (Cited on
page 162).

[162] Deepika Tiwari, Long Zhang, Martin Monperrus, and Benoit Baudry. Production
monitoring to improve test suites. IEEE Transactions on Reliability, pages 1-17, 2021.
doi: 10.1109/TR.2021.3101318. (Cited on page 162).

189

	Acknowledgments
	Publications
	1 Introduction
	1.1 Background
	1.2 Objectives of this Thesis
	1.3 Research Method
	1.4 Summary of Contributions
	1.5 Structure of this Dissertation

	I Test Amplification in Dynamically-typed Object-oriented Languages
	2 Small-Amp: Test Amplification in a Dynamically Typed Language
	2.1 Introduction
	2.2 Background
	2.3 Small-Amp Design
	2.4 Small-Amp Extras compared to DSpot
	2.5 Evaluation
	2.6 Threats to Validity
	2.7 Related Work
	2.8 Future Work
	2.9 Conclusion

	3 AmPyfier: Test Amplification in Python
	3.1 Introduction
	3.2 Background and related work
	3.3 AmPyfier
	3.4 Evaluation
	3.5 Conclusion
	3.6 Evaluated projects
	3.7 Evaluation Results

	II Toward Zero-touch Test Amplification
	4 Steps Towards Zero-touch Test Amplification
	4.1 Introduction
	4.2 Test Amplification
	4.3 Zero-touch Proof-of-Concept
	4.4 Evaluation
	4.5 Threats to validity
	4.6 Related Work
	4.7 Conclusion

	5 Toward Zero-touch Mutation Testing in Pharo
	5.1 Introduction
	5.2 Expanding Mutation Operators in MuTalk
	5.3 Detecting Infinite Loops
	5.4 Zero-touch MuTalk
	5.5 Conclusion and Future work

	6 Test Amplification DevBot
	6.1 Introduction
	6.2 Comment Generation
	6.3 Small-Amp DevBot
	6.4 Vision: Test Amplification Ecosystem
	6.5 Conclusion

	III A Path to Test Transplantation
	7 Can We Increase the Test-coverage in Libraries using Dependent Projects' Test-suites?
	7.1 Introduction
	7.2 Motivating Example
	7.3 Evaluation
	7.4 Related work
	7.5 Conclusions and Future works

	8 Test Transplantation through Dynamic Test Slicing
	8.1 Introduction
	8.2 Background
	8.3 Dynamic Test Slicing
	8.4 Proof-of-concept
	8.5 Related Work
	8.6 Conclusion

	IV Conclusion
	9 Conclusion
	9.1 Final Words

	Bibliography

