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ABSTRACT 

 

Corrosion can cause major damage to steel structures and if 
not monitored and controlled in time, it can result in 
complete failure of these structures. In situ corrosion 
monitoring has been challenging as most in-situ techniques 
require direct contact to the structures, are time consuming 
and risky. Hyperspectral (HS) cameras can help detecting 
surface chemical changes by collecting reflectance 
information outside the visible part of the electromagnetic 
spectrum. In recent years, low-weight, low-cost HS cameras 
have been developed that can be mounted on drones or 
robots for in-situ inspection. The aim of this study is to 
evaluate the potential of hyperspectral data in the Short-
wave Infrared (SWIR, 1100-1700 nm) range for corrosion 
detection and characterization. For that, steel samples were 
immersed in water for different periods of time, resulting in 
the occurrence of different degrees and types of corrosion. 
The results demonstrate the potential of hyperspectral data 
in the SWIR range for the detection of different degrees and 
types of corrosion. 
 

Index Terms— Corrosion, Hyperspectral imaging, 
Non-destructive testing, Material characterization, Chemical 
analysis 
 

1. INTRODUCTION 

 
Corrosion is one of the most common damages to metal 
structures. As corrosion increases on metal, it can reduce the 
thickness of metal which can lead to fatigue cracks and 
buckling and eventually the failure of the entire metal 
structure. NACE International, the global corrosion 
authority estimates that the worldwide cost of corrosion is 
$2.5 trillion per year. A recent study of 2016 
(http://impact.nace.org) states that implementing corrosion 
prevention can lead to global savings of between 15-35% in 
damage costs. 
In recent years, imaging techniques have been introduced as 
fast, inexpensive and safe methods for in situ monitoring of 
large structures and to detect the color, morphological, 
roughness and textural changes on the surface caused by 
anomalies such as coating delamination and corrosion [1-4]. 
The main limiting factor of RGB cameras is the narrow 
spectral range. In addition, the detection of corrosion with 

RGB cameras is known to be prone to false positives and 
features like bird droppings or microbial growth are often 
misclassified as corrosion.   
Hyperspectral imaging (HSI) is an imaging technology that 
collects light reflected from a target surface in hundreds of 
very narrow and contiguous spectral bands to provide a 
near-continuous reflectance spectrum for each pixel in the 
image. The HS cameras can work in the near and short-
wave infrared (700-2500 nm) wavelength ranges, for which 
different minerals exhibit different spectral behavior. If 
explored more, HIS can distinguish between corrosion and 
other artefacts and distinguish between different types of 
corrosion.  
So far, there has not been much reported research on the use 
of HSI for corrosion monitoring. A recent report by a 
hyperspectral sensor manufacturer [5] demonstrated the 
advantage of using the SWIR spectral range for the analysis 
of different degrees of corrosion. In another report, HSI was 
identified as technologically suitable for corrosion 
inspection by drones [6]. In [7], hyperspectral SWIR data 
was applied to a cultural heritage application, i.e. the 
characterization of corrosion on bronze sculptures. In this 
study, specific absorption characteristics of in-situ 
hyperspectral measurements of a sculpture were related to 
laboratory spectral measurements of two common bronze 
corrosion products, Brochantite and Antlerite. 
Despite the potential of HSI for corrosion inspection, few 
qualitative studies have been conducted on this topic and the 
spectral behavior of different corrosion types with different 
chemical compositions has only recently been investigated 
[8]. In that study, the presence of different corrosion 
minerals on corroded steel samples (prepared in a salt spray 
corrosion accelerating chamber) was estimated using a 
Specim FX17 camera (900-1700nm). It was acknowledged 
that the presence of mixtures of different iron oxides makes 
corrosion inspection challenging and requires high quality 
spectral information beyond the visual range and robust 
analysis techniques. 
   In this study, we will compare the spectral behavior of 
different corrosions on carbon steel samples immersed in 
water for different times. Different corrosion types appear 
on both immersed and non-immersed areas of the samples. 
The samples were then scanned in a controlled laboratory 
environment with an Imec Snapscan hyperspectral camera 
in the SWIR range (1100-1650nm). The result of the 



spectral analysis was validated with ground truth chemical 
compositions of the corrosions, obtained by Scanning 
Electron Microscopy with Energy Dispersive X-Ray (SEM-
EDX). 
 

2. MATERIALS AND METHODS 

 

In this study, 5 carbon steel samples were immersed in 
water (5 wt% CaCl2) for different durations from 2 hours, to 
1, 3, 6, and 11 days. The submerged zone and atmospheric 
zone (outside water) of the samples are shown in Figure 1 
with selected regions for SEM-EDX analysis. These regions 
are selected based on their locations and appearance on the 
samples; Rec1 is selected rectangle from the submerged 
zone of the samples where a uniform corrosion layer is 
formed, Rec2 is selected on the reddish boundary line 
between the submerged and the atmospheric zones (directly 
above the submerged zone), Rec3 is selected on the greenish 
boundary  line closer to the atmospheric zone, Rec4 is 
selected in the blank steel region (without corrosion), 
Arrow1 and Arrow2 denote yellowish and dark corrosion 
spots in the atmospheric zones respectively. It should be 
noted that the SEM-EDX analysis has only been conducted 
on samples of Day 3, Day 6, and Day 11. However, 
hyperspectral images are taken from all the samples (RGB 
image of all samples are shown in Figure 2). Because there 
was a time difference between the SEM analysis and 
hyperspectral scanning (HS scanning was performed 2 
weeks after SEM analysis) more corrosions -had grown on 
the surface of the samples at the time of HS scanning 
(Day11 in Fig.1 vs. Day 11 in Fig.2).  
 

 
Figure 1. Selected regions for SEM-EDX analysis 
 
The samples were then scanned with SnapScan 
hyperspectral cameras in SWIR range(1100-1700nm) 
manufactured by Imec team. Despite conventional 
hyperspectral cameras with line-scanner sensors, SnapScan 
cameras do not require moving or translating stage. Instead, 
the sensor moves inside the camera to provide images from 
different wavelengths frame by frame. Moreover, due to 
having compact sizes and low weights these cameras can be 

mounted on drones or robots for in-situ scanning.  More 
specifications of the camera is given in Table1. The Imec 
SWIR camera used in this study is lent by Engie Laborelec 
to the University of Antwerp for research.  
 

Table 1. Specifications of the hyperspectral camera 

Spatial resolution (pixels) 1200×640 

Spectral resolution (bands) 113  

Spectral range  1100-1650 nm 

SNR  up to 600:1 

Dimensions, Weight 9×9×15 cm, 895 gr 
 
This experiment was conducted under controlled laboratory 
condition. To control the ambient light, the laboratory room 
is made dark and 4 halogens lights (20W) with diffusors 
were used as illumination source. The camera was located 
vertically on top of the samples with a distance of 
approximately 30cm. An adjustable metal rack is used to fix 
the distance of the samples to the camera. The irradiance 
raw images were calibrated and converted to reflectance 
images after scanning a white reflectance panel with 95% 
reflectance and using the camera acquisition software.  
 

Figure 2. RGB images of steel samples at the time of HS scanning 
 

3. SPECTRAL ANALYSIS AND CLASSIFICATION 

  

       After scanning the samples, the spectra of the different 
regions (determined in section 2) were averaged and plotted 
in raw reflectance mode. The averaged spectra were then 
normalized by dividing each spectrum by its norm. 
Normalizations take a vector of any length, preserving its 
direction, but changes its length to 1. This pretreatment 
minimizes the scaling effects in the spectra due to different 
illumination angles and only looks at the direction of the 
spectra. For better visualizing of the absorption features in 
the spectra, the overall concave shape of a spectrum is 
removed. This pretreatment is called ‘continuum removal’ 
or ’convex-hull’ transformation and allows comparison of 
the absorption features of the spectra [9]. After 
normalization and continuum removal pretreatment the 
spectra of different regions on the samples are compared. 
The image data from the Day11 sample (with high 
corrosion) was then used for classification. The goal here is 
to categorize all pixel spectra on the surface and assign them 
to one of the 6 regions defined in Section 2. The classifier 



we used in this study is a Support Vector Machine (SVM). 
A basic SVM separates the spectra by hyperplanes, 
positioned at the maximal margins between the spectra of 2 
classes that are closest to each other (support vectors). 
Kernelization extends the method to nonlinear decision 
boundaries [10]. 
 

4. RESULTS 

 

4.1. SEM analysis results 

 
The chemical analysis results of SEM-EDX are 

summarized in Table 2. This analysis was performed by 
experts from Engie Laborelec in Belgium. The results from 
Table 2 show that with longer immersion time, the amount 
of oxygen in corroded areas increases and conversely, the 
amount of Fe decreases. This increase in the amount of 
oxygen and decrease in Fe is also observed, going from 
Rec1 to Rec2 and Rec3, as more iron oxide is formed in the 
boundary lines of the samples compared to the part that was 
entirely submerged in water. Additionally, at the boundary 
between submerged and atmospheric areas (Rec2 and Rec3), 
some amount of Ca and Si was observed, which increases 
with longer immersion time. In Arrow1 and Arrow2, Cl 
appears. Note that Arrow 1 did not appear in sample Day6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. SEM chemical analysis of different regions 
 

4.2. Spectral comparison  

 
       The spectra of Rec1 and Rec2 increase in reflectance 
values with increasing immersion time, in the entire 
wavelength range. However, in Rec1 and Rec2, a gradual 
increase in reflectance values is observed after 1,400 nm and 
after 1,370 nm, respectively, which is more apparent in 
samples with longer immersion time (Fig.3-1a and Fig.3-2 
a). A similar pattern is observed in normalized spectra when 
samples are longer immersed in water in both Rec1 and 
Rec2 regions (Fig.3-1b and Fig.3-2b). However, the 
normalized spectra of Rec3 do not change with increasing 

immersion time (Fig.3-3b). When continuum removal (CR) 
pretreatment is applied to the spectra, two absorption 
features around 1,200 nm and 1,500 nm are observed in 
Rec1, Rec2, and Rec3 (Fig.3.1c, Fig.3.2c, Fig.3.3c). The 
size of the absorption features at 1,500 nm reduces with 
increasing immersion time, except in Rec3. 

As with corrosion in the immersed zone, the reflectance 
values of corrosions in the atmospheric zone; in Arrow1 and 
Arrow2, also increase with immersion time, except at 
Arrow2 of Day11 (Fig.3-4a and Fig.3-5a). However, this is 
merely a scaling effect because after normalization, the 
spectrum of Arrow2 in Day11 becomes closer to the spectra 
of Day3 and Day6 (Fig.3-5b). The average spectrum of 
Arrow1 in Day11 contains an absorption feature at 1470 nm 
(Fig.3-4a). This feature was not observed as clearly in the 
average spectra of other regions and it is relatively large 
when plotting the CR spectra (Fig.3-4c). 

 

 

Figure 3. Spectral behavior of different regions in the SWIR range 

In Fig. 4, the average, normalized and continuum removed 
spectra of the 6 different regions in sample Day11 are 
plotted against each other. The normalized spectra of 
different regions are distinctive, except for the spectra of 



Rec3 and Arrow2 which are very similar (Fig.4a). The CR 
spectra are also quite distinctive (Fig.4b). 
 

 
Figure 4. Spectral behavior of different regions in sample Day11 

 

 

4.3. Classification results 

 
        Each of the regions in Sample Day11 (Rec1, Rec2, 
Rec3, Rec4, Arrow1, and Arrow2) is considered as a 
different material class. A SVM classification model was 
built using one third of the pixels in each region as training 
data and keeping the other two third for testing. The model 
was then applied to the entire sample Day11 (Fig.5).  
Because full-surface ground truth was not available, the 
classification results on the sample were only assessed 
qualitatively. In the submerged zone, the different corrosion 
classes (Rec1, Rec2, Rec3) are quite well distinguishable 
(Fig.5b). The SWIR image leads to good classification 
results for Arrow 1, Arrow2 and Rec4 in the atmospheric 
zone as well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. RGB image and SVM classification map of sample 
Day11 

 

5. CONCLUSIONS 

 
In this study, different corrosion products on steel with 
different chemical compositions were studied using 
hyperspectral data in the SWIR range (1100-1650nm). The 
results showed that as Fe decreases and oxygen elements 
increase (i.e., corrosion increases), the spectral behavior of 
corrosion products changes as well. Also, the appearance of 
other chemical elements in the corrosion products changes 
their spectral behavior. Therefore, the potential of 
hyperspectral imaging technology is demonstrated not only 
for detecting corrosion, but also for characterizing different 
types of corrosion with different chemical compositions. 
The results also showed that different types of corrosion can 
be classified and segmented in a HSI. More detailed studies 
are needed to accurately distinguish different corrosion 
products with HSI data. In the next phase of this study, 
hyperspectral mineral maps will be compared with XRD 
ground truth, which is more useful for mineral and phase 
detection.   
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