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Abstract—Cyber-Physical Systems (CPSs) are increasingly
used in various safety-critical domains; assuring the safety of
these systems is of paramount importance. Fault Injection is
known as an effective testing method for analyzing the safety
of CPSs. However, the total number of faults to be injected in
a CPS to explore the entire fault space is normally large and
the limited budget for testing forces testers to limit the number
of faults injected by e.g., random sampling of the space. In this
paper, we propose DELFASE as an automated solution for fault
space exploration that relies on Generative Adversarial Networks
(GANs) for optimizing the identification of critical faults, and
can run in two modes: active and passive. In the active mode, an
active learning technique called ranked batch-mode sampling is
used to select faults for training the GAN model with, while in the
passive mode those faults are selected randomly. The results of
our experiments on an adaptive cruise control system show that
compared to random sampling, DELFASE is significantly more
effective in revealing system weaknesses. In fact, we observed that
compared to random sampling that resulted in a fault coverage
of around 10%, when using the active and passive modes, the
fault coverage of DELFASE could be as high as 89% and 81%,
respectively.

Index Terms—Fault injection, cyber-physical systems, genera-
tive adversarial networks, safety assessment.

I. INTRODUCTION

Cyber-physical systems (CPSs) are complex systems that in-

tegrate cyber components (i.e., computing hardware, network

hardware, and software) with mechanical components (e.g.,

sensors and actuators). CPSs have proven to be vital in a range

of safety-critical domains, including health-care, smart grids,

aerospace, energy and transportation [1]. Due to the increasing

application of CPSs, their safety has attracted a lot of attention

in the computing community. Over the last years, a variety of

testing methods have been developed for analyzing the safety

of CPSs. The safety assurance of these systems is challenging

due to reasons such as the high connectivity and heterogeneity

of these systems, the dynamicity of their environments and

several real-time constraints that they need to satisfy.

An effective testing technique that facilitates safety assess-

ment of CPSs is fault Injection (FI). With the help of FI, one

can evaluate the safety of a CPS by accelerating the occurrence

of possible faults [2]. Three attributes are typically considered

for every injected fault, namely fault type/model, location of

injection, and fault activation time [3]. Each attribute might be

supplied with one or more parameters that should be evaluated.

Typically, several values could be selected for evaluating each

of these parameters whose combination leads to an exponential

growth of the fault space size.

Traditional FI methods rely on expert knowledge and his-

torical data from system failures to decide on the type of faults

that should be injected as well as their location and timing [4].

We in this paper are, however, interested in identification of

critical faults through automatic exploration of the fault space

using Machine Learning (ML). Note that, with critical faults,

we refer to those that reveal system weaknesses leading to the

violation of safety requirements. The method we propose for

exploration of the fault space is based on supervised learning.

This method establishes a model between the injected faults

and the execution behavior of the System Under Test (SUT).

This model represents the knowledge learned automatically

through interaction with the SUT, and helps us locate more

critical faults with less effort. Note that, effective exploration

of the fault space has also been studied in the past using

other techniques such as those that are deterministic [5],

[6] or model-based [7], as well as those that are based on

evolutionary optimization [8] or reinforcement learning [9].

In this paper, we propose to apply Generative Adversarial

Networks (GANs) [10] to the problem of fault space explo-

ration. GANs have been successfully used in several appli-

cations (e.g., image generation [11], anomaly detection [12]

and performance testing [13]). However, to the best of our

knowledge, this work demonstrates the first application of

GANs in fault space exploration.

Using GANs, we take advantage of a generator model for

intelligent fault generation and a discriminator model to pre-

dict the impact of each generated fault on safety requirements,

based on the knowledge acquired through interactions with the

SUT. Following this approach, we are able to identify several

critical faults without the need to do an exhaustive search in

the fault space and examine the impact of all candidate faults

on an SUT. The proposed solution, which is named DELFASE

(a DEep Learning method for FAult Space Exploration), trains



a GAN model in an online manner with no need for a pre-

existing training dataset. DELFASE can work in two modes:

active and passive. In the active mode, ranked batch mode

sampling [14] as an Active Learning (AL) technique is utilized

to build the training dataset in an intelligent way so that

the GAN model learns more about the fault space with less

training data. In the passive mode, the faults to be included in

the training dataset are selected randomly.

To evaluate DELFASE, we consider an Adaptive Cruise

Control (ACC) with sensor fusion as the SUT. The purpose

of ACC is to keep a safe distance between two cars. We have

performed FI experiments on the MATLAb/Simulink model

of this system with the goal of measuring fault coverage (FC)

indicating the percentage of critical faults; these faults are

those that lead to an accident between the two cars. We limited

our experiment to a two-car scenario, while earlier studies have

shown that the entire traffic might be affected by a fault in a

single car [15]. The results of our experiments show that after a

few iterations, DELFASE identifies a higher number of critical

faults compared to when the fault space is randomly sampled.

Furthermore, the results confirm that when using the active

mode, DELFASE achieves a desired FC faster than when the

passive mode is used. This, however, comes with a higher

overhead of model training, which is around 0.4 seconds for

each training step (or epoch). In summary, this paper makes

the following contributions:

• Introduces DELFASE as an automated ML solution for

fault space exploration when conducting FI campaigns

(see Section V).

• Implements two modes of operation for DELFASE,

namely the active and passive modes where the former

uses ranked batch mode sampling to train the dataset [14],

while the latter includes faults in the training dataset

randomly.

• Explores the fault space using the active and passive

modes of DELFASE and conducts a comparison of the

results obtained for these modes with when the fault space

is randomly sampled with respect to fault coverage, la-

beling effort, and execution overhead (see Section VI-B).

II. BACKGROUND

A. Fault Injection

Fault Injection (FI) is a testing method suitable for observ-

ing systems’ behavior under small perturbations [2]. In this

method, engineers manipulate a real or a virtual system to

make it fail in order to test the system’s robustness or analyze

the system’s dependability attributes such as safety. In FI, there

are typically three attributes that would need to be specified

for each fault. These attributes are (1) fault type/model, (2)

fault activation time, and (3) fault location [3]. Some typical

fault models are as follows:

• Data fault: In this model, the data transmitted between

the SUT components are manipulated. For example, we

can inject data faults by manipulating sensor data. In real

world, sensor data could change due to faults in sensors or

changes in the external environment (e.g., rainy or foggy

weather).

• Hardware fault: Bit-flip and stuck-at-value are examples

of hardware faults. In the bit-flip model, one or several

bits of the value stored in a location (e.g., a CPU register)

are flipped. In the stuck-at-value model, a signal/pin is

tied to a specific value.

• Timing fault: In this model, the transmission of data

between two components of the SUT is delayed. This

delay might lead to loss or out of order delivery of data.

FI techniques can be categorized into three groups [16]:

model-implemented [17], hardware-implemented [18] and

software-implemented [19]. In this paper, we focus on model-

implemented FI where faults are injected into software/hard-

ware models as opposed to the other FI categories which target

software/hardware implementations. We inject faults into a

MATLAB/Simulink model of an SUT. Model-implemented

FI eases the process for test engineers as the evaluation is

performed in a higher abstraction level without the need to do

costly experiments on the real system. In fact, using model-

implemented FI, we can conduct thousands of FI experiments

in a short period of time. Furthermore, we can apply this

method in the early development stages when the system is

not implemented yet or is incomplete. However, the accuracy

of the experimental results would be closely connected to the

accuracy of the model.

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [10] are gener-

ative models that can learn the distribution of input data to

generate realistic data. In a typical GAN architecture (see

Figure 1), there are two models: a generator and a discrim-

inator. The generator model is trained to generate dummy

data, and the discriminator model is trained to discriminate

dummy data from real data. In other words, the generator

model and the discriminator model compete with each other in

a game during model training. In such a game, the generator

constantly learns to generate convincing examples to fool the

discriminator such that it cannot distinguish them from real

data. Simultaneously, the discriminator is trained by real and

dummy data, and constantly learns to identify real examples

from dummy ones. The ultimate goal of the game is to make

the generator so powerful that it can generate dummy data that

the discriminator cannot distinguish from real data.

C. Active Learning

Passive learning is the typical learning scenario followed

in most supervised learning applications. In this scenario, a

labeled dataset is provided in advance for an ML model to

learn from. However, in Active Learning (AL), we let the ML

model decide which data to learn from [20]. AL is suitable for

cases that data labeling is expensive. For instance, for training

deep learning models (e.g., the GAN model in this paper)

we usually need a large labeled dataset. Experimental studies

in several domains e.g., intrusion detection [21], and natural

language processing [22] confirm the effectiveness of AL in



Fig. 1: A typical GAN model

reducing the cost of data labeling. In this paper, we introduce

the first application of AL to the FI domain and demonstrate

how its integration with GANs can reduce the cost of fault

labeling. Note that, we assign a binary label to each injected

fault, which indicates whether the fault is critical (i.e., leads

to safety failure) or not.

Now, the question is how data is labeled in AL. Membership

query synthesis and pool-based sampling are examples of data-

labeling scenarios typically followed in AL [20]. In the first

scenario, the ML model generates data instances by sampling

from an underlying distribution. However, in the latter, the

learner uses a query strategy to select data instances from a

pool of observed data. Least Confidence (LC) is an example of

such query strategies [20], where instances for which the ML

model is least confident in label assignment are selected for

labeling. In this paper, we use a combination of membership

query synthesis and pool-based sampling for data labeling. In

particular, we take advantage of GANs to synthesize new faults

(or queries in AL terminology) and use ranked batch-mode

sampling [14] as a novel variant of pool-based sampling to

prioritize them for injection. Ranked batch-mode sampling has

two advantages over traditional pool-based sampling methods:

(1) it allows us to select more than one instance from the pool

in each iteration, and (2) its ranking mechanism helps us avoid

injecting redundant faults. The query strategy that we use in

the above labeling scenario is LC.

III. RELATED WORK

FaultCheck [23] is a FI tool that facilitates generation

of fault models by a property-based testing tool called

QuickCheck. By integrating these two tools, the authors of

the work show how in addition to normal circumstances, we

can validate safety requirements in circumstances that certain

faults are present in the SUT. MODIFI [16] is another FI tool

which is suitable for injecting faults into Simulink models.

This tool receives as input the fault model and can inject

a user-defined set of faults and cybersecurity attacks [24]

into the SUT both sequentially and concurrently. As another

Simulink-based tool, ErrorSim [25] allows injecting different

types of faults (e.g., hardware fault, network fault, sensor fault,

etc.) into Simulink models, specifying their occurrence and

duration, and analyzing the propagation of errors throughout

the models. In [26], the authors combine fault trees with

simulation-based FI to analyze the propagation of failures

throughout the SUT. Hereby, the faults to be injected are

automatically extracted from fault trees. Fault trees contain

expert knowledge about SUT or heuristics on systems failure.

Including this knowledge in FI would help fault injector to

analyze frequent failures faster and assure that all known

failures have been covered in the testing process.

Despite being useful, the above contributions do not address

the challenge of fault space exploration. In other words, the

set of faults to be injected is either predefined or selected

by random sampling. Sangchoolie et al. [6], [27] propose

to use prior knowledge about the outcome of bit-flip faults

to prune the fault space. In particular, they observed that

the impact of injecting faults into certain bit positions could

be identified a priori, hence no need to inject faults into

those locations. SEInjector [28] is a FI tool for analyzing

transient faults. This tool ignores the faults whose outcome

is known without the need for injection. To further accelerate

fault space exploration, SEInjector classifies faults based on

their outcomes, so that the faults with similar outcomes go to

the same equivalence class. Then, from each class only one

instance would be injected into the SUT.

In DriveFI [29] Bayesian Networks (BNs) are used to find

critical faults that may lead to safety hazards. The authors

use domain knowledge and the safety model of the SUT to

build a BN. The BN built is then analyzed to identify critical

faults. The experimental results show that using BNs, more

critical faults can be found within a shorter period of time

compared to random sampling. Both SEInjector and DriveFI

rely on domain knowledge about the SUT to prune the fault

space. Maldini et al. [8] propose an evolutionary algorithm for

optimizing the search in the fault space and use the algorithm

to attack a cryptography algorithm. The proposed algorithm

relies less on prior knowledge and is more suitable for black-

box testing scenarios. However, the algorithm supports only

discrete fault spaces. So, if we have continuous-value fault

parameters, we have to discretize them first. DELFASE can

work with both discrete and continuous fault data.

As an example of ML solutions, reinforcement learning

is used for fault space exploration [30]. The solution has a

better performance compared to random sampling. However,

as emphasized by the authors, defining an appropriate reward

function is a significant challenge when using reinforcement

learning for fault space exploration. In this paper, we propose a

supervised learning solution for fault space exploration which

takes advantage of AL to reduce the labeling cost, without the

need to manually define a suitable reward function.

IV. SYSTEM UNDER TEST

In this paper, we use an Adaptive Cruise Controller (ACC)

as the SUT. ACC is a driving assistance system that can be

used to regulate the speed of a car and maintain a safe distance

from cars ahead. This system prevents the controlled car, i.e.,

ego car, from getting too close to the car in front, i.e., lead

car. ACC is equipped with both vision and radar sensors to
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Fig. 3: The operation modes of ACC

detect the lead car, and to measure the position and velocity

of the cars accurately.

The Simulink model of ACC is shown in Figure 2. This

model is an extension of the original model [31]. The model

includes three main modules. The first module (named Adap-

tive Cruise Control System) models the ACC functionality

which is to control and generate the acceleration of the ego

car. The other two modules (named Ego Car and Lead Car)

model the car dynamics, steering wheel controller, roads and

environment actors for the ego and lead cars. The sensor data

synthesized by these modules are sent to the first module

to determine the appropriate acceleration for the ego car. As

shown in Figure 3, ACC works in two modes depending on

the relative distance between the cars. In the speed control

mode, ACC makes the ego car travel at the driver-set speed,

but it will switch to the spacing control mode whenever the

cars get too close. In this mode, ACC reduces the speed of

the ego car until there is a safe distance between the cars.

ACC is a safety-critical system, since any malfunction of

ACC can endanger environment or human life. Therefore, the

safety of this system should be analysed carefully. To this

end, a block for checking safety requirements ((Safety Check

in Figure 2)) is added to the original ACC model. In this paper,

we consider one safety requirement for the ACC as defined

by Equation 1. This requirement specifies distanceunsafe as a

lower bound for the distance between the two cars. This lower

bound is 4m (length of a car in the simulation) [32], and if

the relative distance between the two cars gets less than this

bound, the block sets a requirement violation flag and stops

the simulation immediately.

distancerelative ≥ distanceunsafe (1)

In addition to Safety Check, we have added FIBlock to

the original ACC model to inject faults into the acceleration

signal transferred between ACC and the ego car. This block is

an instance of the Fault Injection Block introduced in [7] as

a MATLAB extension. This extension supports six common

types of faults (i.e., stuck-at-value, packet-loss, bias/offset, bit-

flip, delay and noise), and has the following configuration

parameters [7]:

1) fault type: the type/model of the fault being injected

(e.g., stuck-at-value), which may be supplied with a seed

value. For example, an offset fault requires a seed value

which specifies the magnitude of the offset.

2) fault event: how the fault occurs (e.g., probabilistic) and

the corresponding seed value. For example, if the fault

event is deterministic, this value specifies the point of

time for fault injection.

3) fault effect: how long the fault will affect the SUT (e.g.,

infinite) and a seed value for specifying the duration.

For example, if the fault affects the SUT for a constant

period of time, then this value specifies the length of the

time interval the fault will persist in the SUT.

In the Simulink model shown in Figure 2, FIBlock is

configured to inject bias/offset faults at deterministic points

of time and with a constant duration. However, the magnitude

of offset and the exact time/duration of injection are the fault

parameters to be explored by DELFASE (see Section VI).

V. PROPOSED METHOD

This section presents an overview of DELFASE as an ML

method for fault space exploration. As shown in Figure 4, fault
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space exploration in DELFASE is an online learning process

which includes the following steps:

1) Fault Synthesis: Generator synthesizes a pool of un-

labeled faults. For example, considering the example

in Section IV, each synthesized fault includes three

features corresponding to the three value parameters of

FIBlock1. The seed values provided for these parameters

are numeric and can be initialized automatically e.g., by

an ML model.

2) Fault Injection: Fault Injector iteratively takes a fault

out of the pool received from Generator and injects

it into the SUT. After each injection, it waits until a

feedback is received from the SUT, and then injects the

next fault. The feedback indicates whether the fault was

critical (i.e., led to the violation of a safety requirement)

or not.

3) Fault Recording: After injection of faults and receiving

the SUT outputs for the whole fault pool, Fault Recorder

divides the injected faults into two groups according to

the injection outcomes: (1) critical faults (or real data in

GANs terminology) which led to the violation of safety

requirements (e.g., the one expressed by Equation 1

for the ACC example), and (2) non-critical faults (or

fake data in GANs terminology). Fault Recorder assigns

the labels 1 and 0 to critical and non-critical faults,

respectively, and records the critical faults in the fault

suite. This component stops the execution of DELFASE

if the size of the fault suite has reached the limit

specified by the user. Otherwise, it records the labeled

faults in the labelled dataset that will be used for training

the GAN model in step 5.

4) Fault Selection: In this step, a batch of faults are

selected by Fault Selector for training the GAN model.

In the passive mode, Fault Selector selects a random

batch of faults from the pool of faults labeled by Fault

Recorder. However, in the active mode, this component

uses ranked batch-mode sampling together with the

LC query strategy (see Section II-C for details about

active learning) to rank the labeled faults synthesized by

Generator, and then selects the superior ones for model

training. Following the ranked batch mode sampling

algorithm [14], Fault Selector takes the following steps

to rank the synthesized faults: (a) asks Discriminator to

TABLE I: Configuration of FIBlock

Parameter Type Value

fault type offset [0,7]

fault event deterministic [0,7]

fault effect constant [0,7]

predict the label of each fault, (b) uses the LC strategy

to estimate an uncertainty score for each fault based on

the label predicted by Discriminator, (c) uses Euclidean

distance to estimate the dissimilarity of each fault to

the other faults stored in the labeled dataset, and (d)

ranks the faults by evaluating a weighted sum of the

uncertainty and the lowest dissimilarity estimated for

each one. According to the ranked batch mode sampling

algorithm [14], for the initial iterations that we have

fewer labeled faults, a higher weight would be assigned

to the dissimilarity score (to increase diversity among

the labeling candidates). However, in latter iterations,

uncertainty gets a higher weight.

5) Model Training: The GAN model is trained in two

steps. First, Discriminator is trained using the faults

selected by Fault Selector. Then, the weights of Gen-

erator are updated based on the knowledge learned by

Discriminator. In particular, the parameters of Discrim-

inator will be frozen in the second step, and the whole

GAN model will be trained to update the weights of

Generator. After training the GAN model, execution of

DELFASE moves to Step 1.

VI. EVALUATION

In this Section, we provide details about the implementation

of DELFASE, and present the results of the fault injection

experiments performed. The ACC elaborated in Section IV is

used as the SUT, and the Python engine of MATLAB is used

to facilitate interactions between DELFASE and the MATLAB

script running the Simulink model of ACC.

A. Experimental Setup

We have implemented DELFASE using Python 3.8 and

TensorFlow platform [33] (the source code is available on-

line 1). We utilized Keras [34] as a practical ML library

to implement the GAN model and took advantage of the

implementation provided in modAL [35] for the AL technique

used in DELFASE (i.e., ranked batch-mode sampling).

Figure 5 shows the architectures of the GAN model in

DELFASE. In this model, Discriminator takes as input a fault

and outputs a binary value indicating whether the fault is

critical (label = 1) or non-critical (label = 0). For fea-

ture extraction, Discriminator includes two one-dimensional

convolution layers with 64 neurons, a kernel size of 4, and

LeakyReLU [36] as the activation function. The extracted

features are then used by the next three layers for classification.

The classification task is performed by the last layer which is

a fully connected (or Dense in Keras terminology) layer with

1https://github.com/alisedaghatbaf/DELFASE
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one neuron and a Sigmoid [37] activation function. However,

since that layer takes only 1-dimensional inputs, we need to

reduce the dimensionality of the feature vectors using a Flatten

layer. In particular, each feature vector is 2-dimensional where

time is one of the dimensions, and the Flatten layer removes

this dimension. Finally, the purpose of adding a Dropout

layer between the last two layers is to randomly drop out a

ratio of neurons (i.e., 0.4) during training, and thereby avoid

overfitting [38]. For training, Discriminator relies on binary

cross-entropy [39] as the loss function and RMSprop [40] as

the optimizer.

Generator on the other hand, takes as input a point in the

latent space and generates a point in the fault space. Latent

space is a 100-sphere where each of the 100 variables is

drawn from a Gaussian distribution G(0, 1). We consider latent

points as abstract representations of faults. Therefore, in the

first layer of Generator shown in Figure 5, we use a fully

connected layer to interpret the input latent points. This layer

has 3×128 neurons, where 3 is the number of fault parameters

(see Table I). In the second layer, we reshape the outputs

of the first layer to fit the dimensionality of the fault space.

Then we upsample them via two deconvolution (or transposed

convolution) layers to make each point four times the size of

a point in the fault space. For each deconvolution layer, the

kernel size is 4 and the number of neurons is 128. Finally,

we generate faults by downsampling those points using a

convolution layer, which has only one neuron and a kernel size

of 4, and uses hyperbolic tangent as the activation function.

The GAN model is formed by putting Generator on top of

Discriminator. For training Generator, the GAN model relies

on RMSprop and binary cross-entropy as the optimizer and

loss function, respectively.

B. Experimental Results

We ran our experiments on a computer with an AMD Ryzen

7 (3.8 GHz) processor. In these experiments we configured

FIBlock1 such that it would inject offset faults, in a determin-
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istic time during the simulation, and for a constant period of

time, and assumed that the seeds of those parameters would

take any floating point value between zero and seven (see

Table I). Note that, the motivation for choosing seven as the

upper bound for the fault parameters was the observation that

for the majority of the values higher than seven, the safety

requirement expressed by Equation 1 would be violated. In

particular, we injected 100 faults with at least two values

higher than seven and 87 of them were found to be critical.

We ran DELFASE for 100 iterations assuming an infinite

size for the fault suite. In each iteration, Generator was asked

to synthesize a fault pool of size 128 such that 32 of them

were selected by Fault Selector for training the GAN model

in each iteration. Figure 6 shows how many of the faults

synthesized in each iteration were found to be critical after

injection. The figure shows that DELFASE can explore the

fault space and generate many critical faults after a few

iterations. Furthermore, the figure shows that the active mode

would require fewer iterations, when compared to the passive

mode, to learn the fault space and generate a high ratio of

critical faults.

To investigate the effectiveness of DELFASE, we per-

formed a comparison with uniform random sampling. We used

random.uniform() function of Python to generate random

values between zero and seven for each fault parameter and in-

jected the generated faults to the SUT and used Fault Recorder

for labeling them. We repeated random fault generation for 100

iterations such that similar to the experiment on DELFASE,

128 faults were generated in each iteration, and we recorded

the number of critical faults generated in each iteration. The

results are summarized in Table II. The table shows that, the

FC of random sampling is around 10% irrespective of the fault

suite size. However, after 100 training iterations, the FC of

DELFASE rises up to 81% and 89% for the passive and active

modes, respectively. These results also indicate that for very

small fault suites, random sampling has a better FC compared
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Fig. 7: Labeling effort of DELFASE and random sampling

to passive DELFASE.

Figure 7 compares DELFASE with random sampling from

the labeling effort (i.e., the number of faults labeled) per-

spective. In this regard, for small fault suites with less than

300 critical faults, the labeling effort of passive DELFASE

is comparable with random sampling. However, the effort of

random sampling can be much higher for bigger fault suits. For

example, since the FC of random sampling is around 10% (see

Table II), for a fault suite of size 1000, we need to label around

10000 faults. which is a considerable effort. These results also

highlight the low labeling effort of active DELFASE compared

to both passive DELFASE and random sampling.

From the execution time (overhead) perspective, the results

presented in Table II indicate that active DELFASE results

in the least overhead. This is an interesting conclusion as

before conducting the experiments, one could expect that

DELFASE would require a higher execution time in the active

mode compared to the passive mode and random sampling,

considering the overhead of model training, and the fault

selection algorithm. To investigate this further, we measured

the average execution time of the system under test (SUT).

While for non-critical faults, each run of the SUT takes around

2.4 seconds, our investigations revealed lower execution times

for critical faults due to the fact that the Safety Check ends

the simulation as soon as the safety requirement expressed by

Equation 1 gets violated (see Section IV for more details).

Therefore, higher FC implies an overall lower execution time

of the Simulink model. Furthermore, to analyze the impact of

the time it takes to train the models on the overall overhead, we

measured the average execution time of each model training

step of DELFASE (i.e., step 5 in Section V) and found it

to be approximately 1 and 1.4 seconds for the passive and

active modes, respectively. As mentioned above, 128 faults

were labeled in each iteration of DELFASE, which means that

an approximate overhead of 2.4 × 128 = 307.2 seconds for

simulation run in each iteration could be expected (in the worst

case where none of the injected faults are found to be critical).

Therefore, it is easy to notice the low impact of model training

on the overall execution time, compared to fault injection and

simulation run.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced DELFASE as a supervised

learning solution for fault space exploration. This solution

takes advantage of Generative Adversarial Networks and an

active learning technique called ranked batch-mode sampling.

Effective identification of critical faults (faults that lead to

safety issues) with low test budget is the main challenge

addressed by this solution. Here, by test budget we mean the

number of faults that should be injected into the SUT in order

to identify critical ones.

Our experiment on the Simulink model of an adaptive cruise

control system (as a safety-critical cyber-physical system)

confirms that the proposed solution can identify more critical

faults with less test effort compared to random sampling.

Furthermore, we found that using active learning would lead

to faster learning and less execution overhead compared to

passive learning where the machine learning model does to

take part in the selection of training data. However, our

experiments were focused only on one fault model and as

part of our future work, we plan on conducting experiments

using other fault models. Furthermore, we plan on conducting

experiments on more complex traffic scenarios as well as

investigating the impact of a fault on other cars in the traffic.

TABLE II: Results of the experiments

Iterations Generated Faults
DELFASE (passive learning) DELFASE (active learning) Random Sampling

Critical Faults FC(%) Time(s) Critical Faults FC(%) Time(s) Critical Faults FC(%) Time(s)

10 1280 0 0.0 3146.3 386 30.1 3017.2 135 10.5 3088.7

20 2560 590 23 6085.5 1440 56.2 5786.3 254 9.9 6183.1

30 3840 1677 43.7 8851 2546 66.3 8558.9 389 10.1 9271.8

40 5120 2742 53.5 11624.3 3755 73.3 11285.7 524 10.2 12360.6

50 6400 3938 61.5 14351.7 5026 78.5 13990.9 671 10.5 15445.1

60 7680 5208 67.8 17053.2 6305 82.1 16693.2 772 10 18545.8

70 8960 6488 72.4 19751.2 7585 84.6 19492.2 901 10 21636.6

80 10240 7768 75.8 22449.2 8865 86.6 22097.2 1035 10.1 24725.7

90 11520 9048 78.5 25147.2 10145 88.1 24799.2 1170 10.1 27814.5

100 12800 10328 80.7 27845.2 11425 89.2 27501.2 1305 10.2 30903.2
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