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Abstract Conference designs are n × k matrices, k ≤
n, with orthogonal columns, one zero in each column, at

most one zero in each row, and −1 and +1 entries else-
where. Conference designs with k = n are called con-

ference matrices. Definitive screening designs (DSDs)

are constructed by folding over a conference design and

adding a row vector of zeros. We propose methodol-

ogy for the systematic enumeration of conference de-

signs with a specified number of rows and columns, and

thereby for the systematic enumeration of the corre-
sponding DSDs. We demonstrate its potential by enu-
merating all conference designs with up to 24 rows and

columns, and thus all DSDs with up to 49 runs. A

large fraction of these DSDs cannot be obtained from

conference matrices and is therefore new to the litera-

ture. We identify DSDs that minimize the correlation

among contrast vectors of second-order effects and pro-

vide them in supplementary files.

Keywords Conference Matrix · Generalized Aberra-

tion · Isomorphism Class · Sequential Enumeration

1 Introduction

A key step in optimizing processes or developing new
products is to identify, from a list of candidate factors,
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those that really affect the process or product prop-

erties. This step is called factor screening, and a vast

body of statistical design literature is devoted to the

construction of efficient plans to approach factor screen-

ing experimentally. Within this vast body of literature,

two-level screening designs have received most of the

attention. The experimental results from a two-level

screening design usually permit identification of sub-

stantial linear effects and, depending on the design, a
few two-factor interactions; see Schoen et al. (2017) and
Mee et al. (2017) for recent reviews.

When all the factors are quantitative, it is of practi-

cal interest to check for quadratic effects as well. With

this purpose in mind, Jones and Nachtsheim (2011)

developed definitive screening designs (DSDs) for ex-

periments involving quantitative factors. These designs

study all factors at three equidistant levels to estimate
quadratic effects in addition to linear effects and two-
factor interaction effects. Since their introduction in the
literature, both papers on further developments of the

DSDs and on applications of these designs have ap-

peared. Papers of the former kind include Xiao et al.

(2012), Jones and Nachtsheim (2013), Georgiou et al.

(2014), Nguyen and Pham (2016), Jones and Nacht-
sheim (2017), Nachtsheim et al. (2017), Schoen et al.
(2019) and Vazquez et al. (2020). Papers of the latter

kind include Olsen et al. (2014), Renzi et al. (2014), Lib-

brecht et al. (2015), Tai et al. (2015), Dougherty et al.

(2015), Fidaleo et al. (2016), Maestroni et al. (2018),

and Jones and Lanzerath (2021).

Following Xiao et al. (2012), the DSDs studied in the

current literature are all based on conference matrices;

see also Nguyen and Stylianou (2013) and Phoa and

Lin (2015). A conference matrix C of order n is an

n × n matrix with elements cij ∈ {−1, 0, 1} such that

CTC = (n−1)In, where In is the n×n identity matrix.
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The definition implies that every row and column of a

conference matrix has one zero entry. A standard DSD

is constructed by folding over a conference matrix C

and adding a row vector of zeros. So, the structure of

a standard DSD is given by [CT ,−CT ,0n]
T , where 0n

is an n-dimensional column vector of zeros. A standard
DSD therefore involves N = 2n+1 runs and n factors.

As the columns of a conference matrix are orthogonal,
a standard DSD has contrast vectors for linear effects
that are orthogonal to each other. Due to the folding

over, the contrast vectors for the linear effects are also

orthogonal to those of the second-order effects.

Conference matrices do not exist when n is odd, and

when n is 22, 34 or 58 (Colbourn and Dinitz, 2006).

Therefore, one cannot construct standard DSDs with

N = 2n + 1 runs for odd values of n or when n ∈
{22, 34, 58}. To deal with this problem, Xiao et al. (2012)
recommended dropping columns from standard DSDs

with 1–3 columns more than the required number. The

best sets of columns to drop from standard DSDs with

up to 24 factors are presented by Vazquez et al. (2020).

The DSDs which are available in statistical software

and studied in the literature are all based on the con-
ference matrices given by Xiao et al. (2012). However,
for orders n ≥ 20, there are several conference matrices

to construct a DSD from (Greig et al., 2006). In addi-
tion, there may be DSDs that cannot be obtained from
a conference matrix. Therefore, it would be useful to
collect alternative DSDs and evaluate them according

to appropriate statistical criteria. Of particular inter-
est are criteria based on correlations among two-factor
interaction contrast vectors, as it is known that DSDs

with the same run size may differ in these correlations

(Schoen et al., 2019).

Our approach to construct DSDs builds on the no-

tion of conference designs. A conference design is similar

to a conference matrix, but it can have fewer columns.

So, a conference design X is an n× k matrix, with ele-

ments xij ∈ {−1, 0, 1}, columns x1, . . . , xk, k ≤ n, one

0 in every column and at most one 0 in each row, such

that XTX = (n − 1)Ik. A conference matrix is thus a

conference design for which k = n. We use the name
DSD for any design constructed from an n × k confer-

ence design X by folding it over and adding a zero row.

So, the DSDs we discuss have the form [XT ,−XT ,0k]
T

and include orthogonal contrast vectors for the linear

effects. We refer to n as the row size of the conference
design, to N = 2n + 1 as the run size of a DSD and

to k as the column size of the conference design or the

number of factors of the corresponding DSD. Due to

the folding-over construction, the first-order effects of

the factors in a DSD are orthogonal to the second-order

effects.

The goal of this paper is to present methodology

for the systematic enumeration of conference designs

and their corresponding DSDs, and to investigate the

existence of DSDs that cannot be constructed from con-

ference matrices. To this end, we introduce a novel enu-

meration algorithm, called the minimum complete set

(MCS) algorithm. Two features of this algorithm are

particularly attractive. First, it is computationally in-

expensive, so that it can generate complete catalogs of
DSDs for most practical applications. For instance, it
can generate DSDs with up to 20 factors and 41 runs in

a matter of seconds. Second, since all DSDs of a specific

run size are produced, the algorithm guarantees that

the best DSD is obtained in terms of any criterion.
The rest of this paper is organized as follows. In

Section 2, we define equivalence of conference designs

and the corresponding definitive screening designs, and

describe a way of ordering the designs in a given equiv-

alence class. We show that it suffices to retain only one

design of each equivalence class, and propose a conve-

nient form of such a design. Building on these notions,

Section 3 presents our MCS algorithm. In Section 4,
we demonstrate the potential of the algorithm by enu-
merating minimum complete sets of all conference de-
signs with up to 24 rows and identifying the enumerated

DSDs that minimize two design criteria based on the

correlation among two-factor interaction contrast vec-

tors. Finally, we discuss the strengths and weaknesses

of our approach in Section 5. Files with designs that
minimize the correlation-based criteria are available in
the supplementary materials to this paper.

2 Isomorphism of conference designs and

definitive screening designs

For a given row size n and column size k, there can

be many conference designs. Two conference designs

are isomorphic if one can be obtained from the other

by permuting rows or columns, or using sign switches

within one or more columns. The set of isomorphic con-
ference designs is called an isomorphism class (Schoen
et al., 2019). The designs in such a class result in iso-

morphic DSDs. In these DSDs, the absolute correlations

between any two contrast vectors modeling main effects

or second-order effects are the same. As a result, for

any model with an intercept, some linear effects and

some second-order effects collected in model matrices
K, isomorphic DSDs have the same information matri-

ces KTK up to the signs of cross-products involving

sign-switched columns. As almost all current evalua-
tion criteria for screening designs are based on absolute
correlations among contrast vectors or the information

matrix, these criteria are the same for the DSDs from
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a given isomorphism class. These criteria include com-

binatorial criteria such as β-aberration (Cheng and Ye,
2004) or G-aberration (Schoen et al., 2019), which sum-

marize correlations among contrast vectors, and model-

based criteria such as D- or A-optimality (Atkinson

et al., 2007), which account for the determinant of the

information matrix and the trace of its inverse, respec-

tively.
From a statistical point of view, it is interesting

to identify conference designs that do not belong to

the same isomorphism class, because the corresponding

DSDs may differ in the values of one or more evaluation

criteria. This is why we need an algorithm to enumerate

one representative from each isomorphism class.

Unlike in the case of orthogonal arrays (Schoen et al.,

2010), we consider sign switches of rows in conference

designs to be isomorphism operations, because a DSD

constructed from a conference design includes the orig-

inal conference design and its mirror image. A sign

switch in any row of a design results in a mirror im-

age of that row that is equal to the original. The net

result is that the same DSD is obtained regardless of

whether the original row is included in the conference

design or its mirror image. So, because of our focus on

DSDs, we need to consider only one version of each row

when enumerating conference designs. To the best of

our knowledge, this is the first time that a sign switch

in rows is considered to be an isomorphism operation
for statistical designs.

For the enumeration methodology for conference de-

signs that we develop in Section 3, we define a repre-

sentative form of each isomorphism class that is easy to

check. We call this form the lexicographically maximal

with zero, or LM0, representative. For its definition,

we introduce the L0 ordering, a lexicographic ordering
of the elements of a column, entire columns and entire
conference designs, with a special role for the zeros.

Definition 1 The L0 order of the factor levels 1 and

−1 is 1 ≻ −1, where ≻ denotes ‘is greater than’.

Columns where the zero appears in an earlier position

are defined to be larger than those where the zero ap-

pears in a later position. The L0 ordering of columns

is defined by both the position of the zero and the L0

ordering of the other elements:

Definition 2 A column a is larger than a column b in

the L0 ordering, which is denoted by a ≻ b, if either of

the following conditions hold:

1. The zero in column a appears in an earlier position

than the zero in column b.

2. The zero in column a appears in the same position
as the zero in column b, and the first element in

which the columns differ is 1 in a and −1 in b.

Table 1 Isomorphic conference designs with 8 rows and 3
columns

Design 1 Design 2 Design 3

0 1 1 0 1 1 0 1 1
1 0 −1 1 0 1 1 0 1

1 1 0 1 1 1 1 1 1
1 1 1 1 1 −1 1 1 −1
1 1 −1 1 1 −1 1 1 −1
1 −1 1 1 −1 0 1 −1 0

1 −1 1 1 −1 1 1 −1 −1
1 −1 −1 1 −1 −1 1 −1 1

The ordering of entire conference designs is derived

from the ordering of the columns:

Definition 3 Conference design A is larger than con-

ference design B in the L0 ordering, which is denoted

by A ≻ B, if the first column where the designs differ

is larger in A than in B.

Finally, based on the L0 ordering, we define the LM0
representative of an isomorphism class as follows:

Definition 4 The LM0 representative of an isomor-

phism class of conference designs with n rows and k

columns is the largest design within its isomorphism

class under the L0 ordering.

To illustrate these four definitions, consider the three
conference designs in Table 1. The designs only differ in

their third columns. Therefore, by Definition 3, the L0

ordering of the three designs is completely determined

by these columns. Design 1 is the largest design of the

three, because the zero in its third column appears in

an earlier position than the zeros in the third columns

of the other two designs (see Definition 2). Designs 2
and 3 have the zero in the same position in their last
column, and the first row in which the designs’ last
columns differ is the seventh. The symbol in that po-

sition is a 1 for design 2 and a −1 for design 3. As,

by Definition 1, 1 ≻ −1 in the L0 ordering, the third
column of design 2 is larger than the third column of

design 3 (see Definition 2). Therefore, design 2 is larger
than design 3 according to the L0 ordering.

All three designs in Table 1 are isomorphic. Design 2

can be converted into design 1 by swapping the second
and third columns, sorting the rows so that the zeros
are on the diagonal, and sorting the remaining rows
to maximize the design according to the L0 ordering.

Design 3 can be turned into design 2 by swapping the
seventh and eighth rows. Finally, to illustrate Definition
4, design 1 is in fact the largest design within its iso-

morphism class, and therefore the LM0 representative

of its class.
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Table 2 Some 16-row conference designs with k columns.
Columns x1, x2, x3: LM0 design for k = 3; columns x1, x2,
x3∗: alternative design for k = 3; columns x1, x2, x3 with
one of the columns x4a − x4d: four different LM0 designs for
k = 4.

Row x1 x2 x3 x3∗ x4a x4b x4c x4d

1 0 1 1 1 1 1 1 1
2 1 0 −1 1 −1 −1 1 1

3 1 1 0 1 −1 −1 −1 −1
4 1 1 1 1 0 0 1 1
5 1 1 1 1 1 1 1 1

6 1 1 1 −1 1 −1 1 −1
7 1 1 −1 −1 1 1 −1 1

8 1 1 −1 −1 −1 1 −1 −1
9 1 1 −1 −1 −1 −1 −1 −1

10 1 −1 1 0 1 1 0 0
11 1 −1 1 1 −1 1 −1 1

12 1 −1 1 1 −1 −1 −1 −1
13 1 −1 1 1 −1 −1 −1 −1
14 1 −1 −1 −1 1 1 1 1

15 1 −1 −1 −1 1 1 1 1

16 1 −1 −1 −1 1 −1 1 −1

3 Enumeration methodology

In this section, we present a systematic way to enumer-

ate conference designs. For this purpose, we developed
a suite of algorithms. The main algorithm is called the
minimum complete set (MCS) algorithm. Its purpose

is to create a minimum complete set of conference de-

signs for a given number of rows and columns. Such

a set is minimum complete because it includes exactly

one representative of each isomorphism class. The MCS

algorithm calls two subsidiary algorithms, which are
named the extension algorithm and the reduction algo-
rithm. The extension algorithm takes each design from

a minimum complete set of conference designs with n

rows and k columns as input and returns conference

designs with n rows and k+1 columns. Together, these

extended designs form a complete set, because it in-

cludes at least one representative of each isomorphism

class. The reduction algorithm reduces that set to a

minimum complete set. We present the MCS, exten-

sion and reduction algorithms in Sections 3.1, 3.2 and

3.3, respectively. An open-source implementation of our

MCS algorithm and subsidiary algorithms is provided

by Eendebak and Vazquez (2019).

We exemplify the algorithms by constructing all LM0

conference designs with 16 rows and 4 columns from the

single 16-row 3-column LM0 conference design. Table 2

Algorithm 1: Pseudocode of the minimum

complete set (MCS) algorithm.

Input: Number of rows n

1 B ← C∗(n, 3) /* unique LM0 design with n
rows and 3 columns */

2 Determine s(B, 2) /* row permutations

preserving first two columns of B */

3 Determine G(B, 3) /* two options for

third column of B orthogonal to the

first two columns and maximal with

respect to s(B, 2) */

4 for k = 3, . . . , n− 1 do

5 C+(n, k + 1)← ∅

6 forall D ∈ C∗(n, k) do

7 s(D, k), G(D, k + 1), E+(D)←
extension(D, s(D, k − 1), G(D, k))
/* row permutations preserving

all k columns of D, orthogonal

and maximal options for column

k + 1, set of designs with k + 1

columns */

8 C+(n, k + 1)← C+(n, k + 1) ∪ E+(D)

9 C∗(n, k + 1)← reduction(C+(n, k + 1))

Output: Minimum complete sets of LM0

conference designs

C∗(n, 4), . . . , C∗(n, n)

is a reference table for these designs. The 3-column LM0

design includes the columns labeled x1, x2 and x3. An
alternative 3-column design that is not of LM0 form

includes the columns labeled x1, x2 and x3∗. The four
4-column LM0 designs include the 3-column LM0 de-

sign along with one of the columns labeled x4a, x4b, x4c

or x4d.

3.1 MCS algorithm

Pseudocode for the MCS algorithm is shown in Algo-

rithm 1. The algorithm uses the number of rows n as

input. That number also defines the maximum number

of columns of the conference designs to be generated.

The MCS algorithm produces minimum complete sets

of conference designs in LM0 form with the specified

row size n and k columns, for k ranging from 4 to n.
The sets are denoted by C∗(n, k).

Schoen et al. (2019) showed that the set C∗(n, 3) in-

cludes only one design. The MCS algorithm starts from

this design, which is designated B in line 1 of Algo-

rithm 1. The next step, shown in line 2, is to determine

the group of row permutations that preserve the first

two columns of the starting design B. We call this group
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the row symmetry group and denote it by s(B, 2). For

the 16-row LM0 design involving the columns x1, x2

and x3 in Table 2, this symmetry group consists of (7!)2

row permutations, because there are 7! row permuta-

tions that do not affect the first two columns’ elements

in rows 3–9 and 7! row permutations that do not affect

the first two columns’ elements in rows 10–16. Any row

permutation involving at least one of the first two rows
of B alters the first two columns. Therefore, no such

permutation is included in s(B, 2).

The third step of the MCS algorithm, shown in line

3, calculates all options for the third column that are
orthogonal to the first two columns and maximal with

respect to s(B, 2). In other words, the algorithm de-

termines all columns similar to the third column that
cannot be made larger in terms of the L0 ordering by

any permutation in s(B, 2). Schoen et al. (2019) showed
that there are two such columns for any given value of

n. We denote the set of options for the third column by

G(B, 3). For the 16-row LM0 design, this set consists

of the columns x3 and x3∗ in Table 2.

The set of row permutations in s(B, 2) and the set of

columns in G(B, 3) are used in the extension algorithm

to construct all possible columns that are orthogonal

to the first two columns. These columns are subjected

to further tests to determine whether they are suitable

candidates for the fourth column of the design.

After the initialization, the algorithm proceeds cycle

by cycle (see line 4). Each cycle consists of an extension
part followed by a reduction part. In the extension part,
complete sets of conference designs with one extra col-
umn are generated such that the LM0 representatives

of each isomorphism class are always included. In the

reduction part, the extended designs that are not in

LM0 form are removed.

In line 5 of Algorithm 1, the set C+(n, k+1), which
will contain the candidate extended designs for a new

cycle, is initialized. Line 6 is a loop over all designs D

with k columns that have to be extended with an extra

column.

In line 7, the extension algorithm is called. It uses

(i) the current design D, (ii) the row symmetry group

s(D, k − 1), and (iii) the options for the kth column in
G(D, k) as inputs. The extension algorithm uses these

options to calculate candidates for column k + 1. The
output of the extension algorithm consists of three sets.

First, the row symmetry group of the entire design D,

s(D, k), is calculated. That group is needed in the next

extension cycle. The second set, G(D, k + 1), involves

the options for column k + 1 that are maximal with

respect to s(D, k) and orthogonal to all columns of

D. The third set, E+(D), consists of extended designs

formed by appending each of the options in G(D, k+1)

to D.
Returning to the 16-row example, the symmetry

group s(B, 3) of the entire design B is smaller than

s(B, 2), because it involves row permutations that must

leave three columns unchanged rather than two. In par-

ticular, the group includes only (3!)3(4!) row permuta-
tions. Further, recall that G(B, 3) includes the columns

x3 and x3∗ in Table 2. Starting from G(B, 3), the ex-

tension algorithm identifies 13 candidate columns to ex-

tend B, six candidate columns based on x3 and seven

candidate columns based on x3∗. These columns are all

maximal with respect to s(B, 3) and orthogonal to the
third column of B, namely x3. We refer to the set of or-

thogonal and maximal candidate extensions as G(B, 4).
Appending these candidates to B, we obtain a set of 13

4-column conference designs, E+(B). As B is the only

design in C∗(16, 3), the set C+(16, 4) of Algorithm 1

includes only the 13 designs of E+(B).

The extended designs obtained from a given design
D are added to the set C+(n, k + 1) in line 8 of Algo-

rithm 1. In the final line of the MCS algorithm, a call

to the reduction algorithm reduces the set C+(n, k+1)

by discarding the designs that are not in LM0 form.

The end result of the first cycle in the 16-row de-

sign case is a set of four designs that form C∗(16, 4).

So, the reduction algorithm removes 9 of the 13 can-

didate designs. The four remaining designs are shown

in Table 2: they all involve the columns x1, x2 and x3,
because we seek to extend design B formed by these

columns, and one of the columns x4a − x4d. The fact

that none of the LM0 designs in C∗(16, 4) have x3∗ as

their fourth column could be interpreted as evidence

that the intermediate step in which x3∗ is created can
be skipped. However, the x4c and x4d columns of two

4-column LM0 representatives in Table 2 can only be

found by considering the three-column design with x3∗

as its third column. Creating x3∗ is thus a necessary in-

termediate step in the enumeration of all isomorphism

classes.

3.2 Extension algorithm

A brute force extension method of a design with n rows

and k columns would generate all possible columns with

one zero, n/2 elements equaling +1 and n/2−1 elements

equaling −1. We use a more efficient approach instead
by only considering columns that are smaller than and

orthogonal to the first k−1 columns. Pseudocode of the

extension algorithm is shown in Algorithm 2. The ex-

tension algorithm’s inputs are (i) an LM0 designD with

n rows and k columns, (ii) the row symmetry group

s(D, k− 1), containing row permutations that preserve
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the first k − 1 columns of D, and (iii) the set G(D, k)

that includes all options for the kth column of D or-
thogonal to the first k − 1 columns and maximal with

respect to the row symmetry group s(D, k−1). In lines

1–3 of Algorithm 2, the row symmetry group of the en-

tire design D, s(D, k), is calculated, and the output sets
G(D, k + 1) and E+(D) are initialized.

Next, all alternatives for the (k+1)st column of the
input design are generated by applying the permuta-

tions of the row symmetry group s(D, k − 1) to each

option in G(D, k). The alternatives are collected in the

set G−(D, k + 1); see line 5. All columns in the set

G−(D, k + 1) are orthogonal to the columns 1 up to

k − 1, because they differ only by a row permutation

that preserves the initial k − 1 columns.

In line 6, the alternatives in the set G−(D, k + 1)

that are not maximal with respect to the symmetry

group s(D, k) are discarded. This is because these al-

ternatives will not lead to a design that is maximal

according to the L0 ordering. All columns in the up-

dated set G−(D, k+1) are orthogonal to the columns 1
up to k − 1 but not necessarily orthogonal to the orig-

inal kth column of the input design D. Therefore, an

orthogonality test for each column in G−(D, k + 1) is

performed, and only columns that are orthogonal to the

original kth column of the input design D are retained

(line 7). The columns that pass the orthogonality test

are then added to G(D, k + 1) (see line 8). Finally, the
set of extended designs with k + 1 columns, E+(D),

is built by appending each column in G(D, k + 1) to
the input design D; see lines 10 and 11 of Algorithm 2.

Since not all designs in E+(D are in LM0 form, we need

to discard the designs that are not in that form. This

is done in the reduction part of the MCS algorithm.

Returning to the 16-row example in Table 2, every

candidate for the fourth column must both be smaller

than the first three columns and orthogonal to these

columns. Line 5 of the extension algorithm applies all

(7!)2 row permutations in s(B, 2) to each of the two

columns x3 and x3∗ in G(B, 3) and collects the results

in the set G−(B, 4). At this stage, the set G−(B, 4)

includes all columns smaller than and orthogonal to the

first two columns, including columns x3 and x3∗. The

set is complete in the sense that L0 representatives for
k = 4 must involve one of the columns in G−(B, 4).

In line 6 of the extension algorithm, only the columns
of G−(B, 4) that are maximal with respect to s(B, 3)

are retained. This results in 64 candidate columns de-

rived from x3 and 49 candidate columns derived from

x3∗. All these candidate columns are orthogonal to the

first two design columns, because they are permuta-

tions of an orthogonal third column that preserve the

elements of the first two columns. Therefore, to check

Algorithm 2: Pseudocode of the extension al-

gorithm.

Input: D, s(D, k − 1), G(D, k): k-column

conference design, row symmetry group
for first k − 1 columns, alternatives for

column k

1 s(D, k)← rowsymm(D) /* row symmetry

group of design D preserving columns

1, . . . , k */

2 G(D, k + 1)← ∅

3 E+(D)← ∅

4 forall c ∈ G(D, k) do

5 Apply s(D, k − 1) to c and collect results in

G−(D, k + 1)

6 G−(D, k + 1)←
maximal(G−(D, k + 1), s(D, k))
/* columns maximal with respect to

s(D, k) */

7 G−(D, k + 1)←
orthotest(G−(D, k + 1), lastcol(D))

/* columns orthogonal to last

column of D */

8 G(D, k + 1)← G(D, k + 1) ∪G−(D, k + 1)

9 forall u ∈ G(D, k + 1) do

10 F ← [D u] /* append column u to

design D */

11 E+(D)← E+(D) ∪ {F}
Output: Extended conference designs E+(D),

row symmetry group s(D, k),

columns G(D, k + 1)

whether the candidate columns are valid extensions of

B, the extension algorithm only needs to test their or-

thogonality to the third column of B. In the example,

six of the 64 candidate columns derived from x3 and
seven of the 49 candidate columns derived from x3∗ are

orthogonal to the third column of B. These candidate

columns form the set G(B, 4). Appending them to B

yields the set E+(B), which thus contains 13 4-column

conference designs.

The set G(B, 4) includes every candidate for the

fourth column that is smaller than the first three columns

and orthogonal to them. Therefore, the corresponding

set E+(B) is a complete set. In particular, it contains

the LM0 representatives of all isomorphism classes and

possibly additional designs that are not maximal with

respect to the L0 ordering.
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Algorithm 3: Pseudocode of the reduction al-

gorithm.

Input: Set of extended conference designs

C+(n, k + 1)
1 C∗(n, k + 1)← ∅

2 forall K ∈ C+(n, k + 1) do

3 r ← LM0check(K)

4 if r is True then

5 C∗(n, k + 1)← C∗(n, k + 1) ∪ {K}
Output: Minimum complete set of LM0

conference designs C∗(n, k + 1)

3.3 Reduction algorithm

The reduction algorithm reduces a complete set of con-
ference designs to a minimum complete set. It can be
viewed as a modification of the check on lexicographic

minimality for orthogonal arrays in Schoen et al. (2010).

Pseudocode of the algorithm is shown in Algorithm 3.

For each input design, Algorithm 3 calls the LM0 check

function to test whether the design is in LM0 form. The

function performs sign switches of rows and columns,

column permutations and row permutations to find a

larger design than the one being tested. As soon as it

finds such a design, it returns a False and the design

is discarded. If the function returns a True, the design

is retained. Details of the LM0 check function are given

in the Appendix.

To finalize the 16-row example, Algorithm 3 reduces
the 13 designs in C+(16, 4) to the minimum complete

set C∗(16, 4) by removing nine designs that are not in
LM0 form and retaining the four designs that are in

LM0 form.

4 Results

In this section, we demonstrate the potential of the

MCS algorithm by enumerating all conference designs

with up to 24 rows, and thereby all DSDs with up to 49

runs. To the best of our knowledge, this is the largest

catalog of DSDs to date. We report the numbers of

isomorphism classes in Section 4.1. In Section 4.2, we

show the computing times required by the open-source

implementation and address some of its limitations. As

an aid for practitioners, we identify the best DSDs in

terms of the correlations among second-order effects in

Section 4.3.

4.1 Numbers of isomorphism classes

We enumerated all LM0 conference designs with n rows
and 4 ≤ k ≤ n columns, where n ranges from 4 to 24.

Table 3 shows the numbers of conference designs in the
minimum complete sets C∗(n, k). These numbers, de-

noted by tot, equal the numbers of isomorphism classes

of DSDs with N = 2n + 1 runs and k factors, which

we denote by D∗(N, k). For row sizes n ≤ 22, Table 3
also shows the numbers of LM0 conference designs, nd,

that cannot be extended to a conference matrix. The
number of such designs increases substantially with the
row size.

To a large extent, the results in Table 3 are new to

the literature. There are only three exceptions. First,
Schoen et al. (2019) proved that n/4 isomorphism classes

exist for n-row 4-column conference designs when n is

a multiple of 4, and that (n− 4)/2 isomorphism classes

exist for n-row 4-column conference designs when n is

an odd multiple of 2. Our results for k = 4 agree with

those of Schoen et al. (2019), as shown by the first
row of Table 3. Second, our numbers of isomorphism
classes for conference matrices match those given by

Greig et al. (2006), and appear on the diagonal in Ta-

ble 3. Finally, Núñez Ares and Goos (2020) enumerated

orthogonal minimally aliased response surface designs

with N rows, k ≤ 7 columns, a specified number of ze-

ros in each column and a specified number of zeros in
each two-factor interaction column of the model matrix.
Their designs have no repeat runs and no center points.

Those with two zeros in each column and four zeros

in each two-factor interaction column correspond with

DSDs without a center point. Appendix C of their pa-

per shows that they found two isomorphism classes for

5-factor DSDs in 20 unique runs. This number matches

our number of conference designs with n = 10 rows and

k = 5 columns.

For each row size n up to 20, Table 3 shows a con-

tiguous set of column sizes k up to column size n for

which nd = 0. This means that all designs for these

column sizes can be extended to a conference matrix.

Equivalently, the conference designs for these cases can

be obtained by dropping columns from conference ma-
trices of order n. By dropping different columns, dif-

ferent designs might be obtained. However, if a case

includes just one isomorphism class, it is immaterial

which columns are dropped from the conference ma-

trix. In particular, for conferences designs with 6, 8, 10,

12, 14, 16 an 18 rows, the designs with at least 4, 5,

7, 9, 11, 15 and 15 columns, respectively, can be ob-

tained by arbitrarily dropping columns from the corre-

sponding conference matrices. This matches the results

of Vazquez et al. (2020) on the best columns to drop
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Table 3 Numbers of isomorphism classes of conference designs with 4 ≤ n ≤ 24 rows and 4 ≤ k ≤ n columns. For n ≤ 22,
each entry has the form nd/tot; nd: number of isomorphism classes that cannot be derived from a conference matrix; tot: total
number of isomorphism classes. For n = 24, only the total number tot is given. Superscripts refer to earlier results: SSchoen
et al. (2019); NNúñez Ares and Goos (2020); GGreig et al. (2006).

k n

4 6 8 10 12 14 16 18 20 22 24

4 0/1S,G 0/1S 0/2S 1/3S 1/3S 2/5S 0/4S 4/7S 1/5S 9/9S 6S

5 0/1 0/1 0/2N 0/2 2/5 0/7 9/13 0/15 28/28 30

6 0/1G 0/1 0/2 1/5 7/12 7/30 82/92 55/219 637/637 1588
7 0/1 0/1 0/2 2/7 13/48 191/201 1171/1781 10962/10962 87929

8 0/1G 0/1 0/2 2/7 21/77 234/251 4172/5292 70859/70859 1839474

9 0/1 0/1 0/3 3/42 30/47 2184/3640 78966/78966 8259167

10 0/1G 0/1 0/3 1/37 9/26 698/2342 16865/16865 8667156

11 0/1 0/1 0/17 0/10 132/1589 101/101 4124471

12 0/1G 0/1 0/13 0/10 42/1172 21/21 2397144
13 0/1 0/3 0/4 5/689 0/0 1806230

14 0/1G 0/3 0/3 2/366 0/0 1353790

15 0/1 0/1 0/142 0/0 888475

16 0/1G 0/1 0/57 0/0 499614

17 0/1 0/13 0/0 234006
18 0/1G 0/5 0/0 91773

19 0/2 0/0 28730

20 0/2G 0/0 7417

21 0/0 1377

22 0/0G 232

23 19

24 9G

from a DSD obtained by folding over a conference ma-
trix.

For row sizes n up to 20, the number of conference

designs that cannot be obtained from a conference ma-
trix increases substantially with the row size. For 24-
row conference designs, it was even computationally

infeasible to check for each design whether it can be

extended to a conference matrix. We conjecture that

the number of designs for which this is not the case

continues to increase with the row size.

Given that conference matrices of order 22 do not

exist, a major contribution from our MCS algorithm

is the enumeration of conference designs with 22 rows

and up to 12 columns. The set C∗(22, 12) even includes
21 isomorphism classes. For lack of order-22 conference

matrices, the DSD construction of Xiao et al. (2012)

does not allow the construction of 45-run DSDs. Our

bottom-up enumeration remedies this problem: using

the newly enumerated 22-row conference designs, it is

now possible to build 45-run DSDs with up to 12 fac-

tors.

4.2 Computing times

In Table 4, we show the computing times of the mini-
mum complete sets of conference designs with 4 ≤ n ≤
24 rows. The sets with n ≤ 22 were obtained using a

laptop with Windows 10 as operating system, and an
Intel(R) Core(TM) i7-8550U central processor unit. We
used Python 3.7.4 in conjunction with the oapackage

version 2.6.7 (Eendebak and Vazquez, 2019).

Table 4 shows that the sets with n ≤ 20 rows can
be enumerated in a matter of seconds, while the 22-

row sets can be enumerated in a matter of minutes. In

addition, it took 65 seconds to enumerate the 24-row

conference designs with up to 7 columns. After extend-

ing a few 7-column designs, we predicted that the total

number of 8-column designs would exceed one million.
This made it clear to us that a computer cluster would
be required to complete the enumeration of 24-row con-

ference designs. Table 4 reports the approximate com-

puting time for the enumeration of the n = 24 sets

on the computer cluster of the University of Antwerp,

because the enumeration had to be split over multiple

small computer jobs.
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Table 4 Computing times (in seconds) for all conference designs with 4 ≤ n ≤ 24 rows and 4 ≤ k ≤ n columns.

n 4 6 8 10 12 14 16 18 20 22 24

time < 0.01 < 0.01 < 0.01 < 0.01 0.03 0.06 0.4 1 35 223 (6 days)

Tests involving conference designs with n > 24 rows
all point to an exponential increase in the number of de-

signs. These tests and the approximate computing time

for the 24-row series suggest that series with n > 24

can only be enumerated if we impose extra restrictions

such as an upper bound on the correlation between two-

factor interaction contrast vectors. A similar approach
allowed Schoen et al. (2017) to enumerate strength-2
orthogonal arrays with 32 runs.

4.3 Definitive screening designs that minimize the

correlation among contrast vectors for second-order

effects

In their studies of DSDs, Jones and Nachtsheim (2011)

and Vazquez et al. (2020) point out that the contrast

vectors for linear effects (LEs) are uncorrelated with

those of quadratic effects (QEs) and two-factor interac-
tions (TFIs). Therefore, first-order effects are not aliased
with second-order effects. However, contrast vectors of

QEs and TFIs can be correlated. A large absolute corre-

lation implies that two second-order effects are aliased

to a large extent, which affects the potential of any DSD

to fit a model that includes some QEs and TFIs. In

this section, we present DSDs for 5–12 factors, obtained
from the enumerated conference designs, that minimize
the correlation among contrast vectors of second-order

effects in some sense. In particular, we identify the best

designs according to the G-aberration criterion (Schoen

et al., 2019) and the β-aberration criterion (Cheng and

Ye, 2004).

Vazquez et al. (2020) showed that, for a given run

size N , the only features of the information matrix of
a DSD that are not completely determined by the run

size are its off-diagonal elements corresponding to in-

ner products of contrast vectors of two TFIs involving

four different factors. The absolute values of these inner

products are called J4 characteristics. For any subset

of four factors, there is one J4 characteristic. Schoen
et al. (2019) showed that it is of the form 2n − 8q,

q = 1, . . . , ⌊n/4⌋, where ⌊x⌋ is the integer part of x and

n is the row size of the corresponding conference de-

sign. When considering a four-factor DSD to perform

an experiment, it is best to pick one that minimizes

the single J4 characteristic. This is because the abso-

lute correlation between contrast vectors of TFIs that

involve all four factors equals J4/(2n− 4). Small corre-

lations between such contrast vectors result in smaller
correlations for the ordinary least squares estimators in

any model involving more than one TFI and a smaller

bias in any model involving only one of the two-factor

interactions.

For cases with more than four factors, Schoen et al.
(2019) proposed to count the J4 characteristics of 2n−
8q, q = 1, . . . , ⌊n/4⌋, summarize the counts in a fre-
quency vector F4 and order alternative DSDs based on

that vector. The first frequency in the F4 vector corre-

sponds to q = 1, and therefore to the largest possible

J4 characteristic (and thus to the most severe absolute

correlation between contrast vectors of TFIs). The last

of its frequencies corresponds to q = ⌊n/4⌋, and there-

fore to the smallest possible J4 characteristic (and thus
to the least severe correlation). Schoen et al. (2019)

proposed to rank DSDs in ascending order of the F4

vector’s first entry. Designs with the same first entry

are sorted in ascending order of the second entry. This

process continues until a unique order has been estab-

lished or all entries of the F4 vector have been consid-

ered. The G-aberration of a DSD is its rank after the
sorting procedure. A design with rank 1 has a minimum

G-aberration. Note that there may be more than one

minimum G-aberration design.

The G-aberration criterion for DSDs prioritizes the

minimization of the worst absolute correlations between

contrast vectors of TFIs involving four factors. As an

alternative, one could minimize a measure for the total

correlation among all contrast vectors involving second-

order effects. A suitable criterion for this purpose is

the first nonzero entry of the β word length pattern

(Cheng and Ye, 2004), which we denote by β4,tot. Fur-

ther terms in the β word length pattern quantify corre-
lations involving higher-order effects. Since DSDs are

used in practice to study first- and second-order ef-

fects, we focus on a correlation-based criterion related

to these kinds of effects and ignore entries in the β word

length pattern involving higher-order effects. However,

the completeness of our catalogs permits any researcher

to find the best DSDs according to criteria quantifying
these higher-order effects.

To calculate β4,tot for a k-factor DSD, we normalize

the k LE and k QE contrast vectors to have a mean of

zero and a length of
√
N . The scalar β4,tot is the sum

of three components. The first component, which we
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denote by β4,llll, is calculated by taking the element-

wise products of all
(

k
4

)

sets of four normalized LE
contrast vectors. The elements of the resulting vectors

are summed, the sums are squared and the squares are

added and divided by N2. As the element-wise product

of two LE contrast vectors is a contrast vector of a TFI,
the β4,llll value is proportional to the sum of squared

correlations among TFI contrast vectors that involve
four different factors.

The second component of β4,tot, which we denote by
β4,qq, is calculated by taking the inner products of all

pairs of normalized QE contrast vectors, squaring each

inner product, adding the results and dividing by N2.

The β4,qq value is thus the sum of squared correlations

among QE contrast vectors.

The third component, which we denote by β4,llq, is

calculated by taking the element-wise products of one

normalized QE contrast vector and two normalized LE

contrast vectors. The elements of the resulting vectors

are summed, and the squared sums are added and di-

vided by N2. The β4,llq value is thus proportional to
the sum of squared correlations between a QE contrast

vector and a TFI contrast vector.

Table 5 shows key characteristics of minimum G-

aberration and minimum β-aberration DSDs with 5 ≤
k ≤ 12 factors and N ≤ 49 runs. The table therefore

covers most of the run sizes and numbers of factors that

are likely to be used in practice. For each design, the

table shows the maximum correlation among TFI con-

trast vectors involving four different factors, ρmax, along
with the frequency f of the corresponding J4 character-

istics. It can be shown that these J4 characteristics con-

tribute an amount of β4,ρmax
= fρ2max(N−5)2N2/(N−

3)4 to β4,tot. The table shows β4,ρmax
along with β4,llll

and β4,tot.

To illustrate how the table can be used to assess

DSDs, we use the minimum G-aberration DSD with

N = 2n + 1 = 17 runs and five factors as an exam-

ple. This DSD has a maximum correlation among TFI

contrast vectors of 0.667. The corresponding J4 char-

acteristic, which we denote by Jmax
4 , is calculated as

Jmax
4 = (2n − 4)ρmax = 8. The five-factor design has

two such J4 characteristics, which give rise to a total of

six pairs of correlated TFI contrast vectors that involve

four different factors. Three J4 characteristics equal 0

and give rise to a total of nine pairs of uncorrelated TFI

contrast vectors involving four different factors. There-

fore, β4,llll = β4,ρmax
. In total, the contribution of TFI

contrast vectors that involve four different factors to

β4,tot equals 0.96.

For the 17-run five-factor DSD in Table 5, there are

a total of 30 pairs of TFI contrast vectors with a com-

mon factor. The correlation within such pairs equals

±2/(2n− 4) = ±0.167 (Vazquez et al., 2020). This cor-

relation is not accounted for in the G-aberration crite-

rion, because it is the same for all designs with the same

run size. However, it does contribute to the component

β4,llq of β4,tot, because the correlation among two TFI

contrast vectors with a common factor is proportional

to the correlation between the QE contrast vector cor-

responding to the common factor and the TFI contrast

vector involving the remaining two factors and thus to

the component β4,llq of β4,tot. The β4,tot value of 5.54

for the 17-run 5-factor DSD indicates that the aliasing

among TFIs involving four different factors represent
only a small part of the overall aliasing among second-
order effects. In general, the values of β4,llll/β4,tot in

Table 5 range from 0 to 0.5.

The table shows 15 cases for which the minimum G-

aberration and β4-aberration designs differ. The mini-
mum G-aberration DSDs for these cases have ‘-1’ ap-

pended to the number of factors k, while the DSDs with
the smallest β4,tot value have ‘-2’ appended to k. How-

ever, the differences in the β4,tot value are minor for

these cases, while the difference in maximum correla-

tions or the frequencies of the corresponding J4 charac-

teristics are more substantial. For this reason, we prefer
the minimum G-aberration DSDs to the minimum β-

aberration DSDs.

5 Discussion

In this paper, we presented methodology to obtain min-
imum complete sets of conference designs with given
numbers of rows n and columns k, and thereby DSDs

with k factors and a run sizeN = 2n+1. The innovative

featurs of our methodology are (1) the enumeration of
conference designs with k+1 columns from a minimum
complete set of conference designs with k columns, (2)

a clearly defined representative of an isomorphism class
and (3) a fast rejection test to discard conference de-
signs that differ from that representative.

Our methodology is implemented in an open source

suite of Python procedures. We demonstrated its effec-
tiveness by producing all non-isomorphic conference de-

signs with up to 24 rows. Only 0.06% of these designs

have row sizes smaller than or equal to 20, 0.59% of

them have row size n = 22, and the remaining 99.35%

have row size 24. Based on these findings, we conjec-

ture that there are many more 26-row conference de-

signs than 24-row conference designs. In addition, tests

with conference designs with more than 24 rows sug-

gest an exponential increase in the number of isomor-

phism classes and the running time. Therefore, a com-

plete enumeration of conference designs with more than

24 rows will be infeasible using our algorithms.
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Table 5 Key characteristics of minimum G-aberration and minimum β-aberration DSDs with 5 ≤ k ≤ 12 factors and N ≤ 49
runs. ρmax): maximum correlation among two-factor interaction contrast vectors; f : number of corresponding J4 characteristics;
β4,ρmax

: contribution of maximum correlations among two-factor interaction contrast vectors involving 4 different factors to
β4,tot; β4,llll: contribution of all correlations among two-factor interaction contrast vectors involving 4 different factors to
β4,tot; β4,tot: first non-zero entry of β word length pattern.

N k ρmax f β4,ρmax
β4,llll β4,tot N k ρmax f β4,ρmax

β4,llll β4,tot

17 5 0.667 2 0.96 0.96 5.54 37 5 0.125 5 0.08 0.08 2.23

6 0.667 6 2.89 2.89 11.86 6 0.125 15 0.25 0.25 4.16
7 0.667 14 6.74 6.74 22.25 7 0.375 9 1.33 2.02 8.47

8 0.667 28 13.48 13.48 38.09 8 0.375 23 3.39 4.43 14.34
21 5 0.25 5 0.34 0.34 3.85 9 0.375 45 6.64 9.41 23.82

6 0.75 2 1.21 2.08 8.87 10-1 0.375 79 11.65 13.8 33.91

7 0.75 5 3.02 5.04 16.66 10-2 0.625 4 1.64 13.67 33.78

8 0.75 10 6.05 10.08 28.4 11 0.375 128 18.88 22.19 49.33
9 0.75 18 10.89 18.15 45.33 12 0.375 192 28.32 33.29 68.92

10 0.75 30 18.15 30.25 68.77 41 5 0.222 3 0.15 0.15 2.17

25 5 0.4 3 0.51 0.51 3.45 6 0.222 9 0.46 0.46 4.1

6 0.4 9 1.54 1.54 7.11 7 0.222 25 1.29 1.5 7.44
7 0.4 23 3.93 3.93 13.38 8 0.444 4 0.83 3.77 12.83
8 0.4 46 7.85 7.85 22.65 9 0.444 12 2.48 7.02 20.15

9 0.4 84 14.34 14.34 36.18 10 0.444 20 4.13 12.18 30.43
10 0.4 140 23.91 23.91 54.72 11-1 0.444 36 7.43 19.61 44.16

11 0.4 220 37.57 37.57 79.54 11-2 0.667 3 1.39 19.4 43.95

12 0.4 330 56.35 56.35 111.88 12-1 0.444 56 11.56 29.62 61.78

29 5 0.167 5 0.15 0.15 2.72 12-2 0.667 6 2.79 29.25 61.41

6 0.5 3 0.8 1.15 5.96 45 5 0.1 5 0.05 0.05 1.96

7 0.5 7 1.86 2.68 10.76 6 0.1 15 0.16 0.16 3.57

8 0.5 18 4.77 6.3 18.86 7 0.3 8 0.75 1.03 6.57
9 0.5 33 8.75 11.48 29.93 8-1 0.3 25 2.34 2.81 11.22

10 0.5 57 15.11 19.61 45.54 8-2 0.5 2 0.52 2.56 10.97
11 0.5 90 23.85 30.92 66.11 9-1 0.5 2 0.52 6.48 18.6

12 0.5 135 35.78 46.38 92.82 9-2 0.5 6 1.56 5.81 17.93

33 5 0 0 0 0 2.32 10-1 0.5 6 1.56 11.68 28.48
6 0.286 6 0.52 0.52 4.81 10-2 0.5 30 7.81 9.68 26.48

7-1 0.571 4 1.38 2.41 9.55 11-1 0.5 24 6.25 17.26 39.79
7-2 0.857 2 1.55 2.07 9.21 11-2 0.7 3 1.53 17.01 39.54
8-1 0.571 10 3.44 5.33 16.36 12-1 0.5 45 11.71 27.39 56.84
8-2 0.857 1 0.77 4.82 15.84 12-2 0.7 3 1.53 25.9 55.34

9-1 0.857 1 0.77 10.33 26.44 49 5 0.182 2 0.07 0.07 1.9

9-2 0.857 6 4.65 9.29 25.4 6 0.182 6 0.21 0.21 3.44
10-1 0.857 3 2.32 16.69 39.25 7 0.364 3 0.41 0.82 6.04

10-2 0.857 6 4.65 16 38.56 8 0.364 11 1.51 2.27 10.14
11-1 0.857 7 5.42 25.99 56.52 9 0.364 27 3.71 5.01 16.32
11-2 0.857 10 7.74 25.81 56.34 10-1 0.364 49 6.73 8.79 24.41

12 0.857 12 9.29 39.24 79.42 10-2 0.545 3 0.93 8.72 24.34

11-1 0.364 84 11.53 14.83 35.73
11-2 0.545 1 0.31 14.69 35.59
12 0.364 144 19.77 22.24 49.49

One way to construct conference designs with row

sizes larger than 24 could be to adapt the enumeration

approach of Schoen et al. (2017) for 32- and 36-run or-

thogonal arrays with maximum J3 characteristic values
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of 4 to enumerate large conference designs with cer-

tain maximum J4 characteristics. However, as practical
experiments rarely include more than 24 factors and

more than 49 runs, we believe that our present cata-

log of DSDs includes all designs likely to be needed by

practitioners.

With minor modifications, our methodology can be

used to enumerate weighing designs (Georgiou et al.,

2014) as well. Denoting an n× k weighing design with

W, the defining property of such a design is thatWTW =

wIk, where w ≤ n − 1 denotes the number of ±1 ele-
ments in each column of the design. Therefore, confer-

ence designs are a special kind of weighing designs. By

folding over weighing designs, we obtain designs which

contain more zeros for every factor than DSDs in case

w < n− 1. In that case, they provide more precise esti-

mates for the quadratic effects than the DSDs. There-

fore, an interesting subject for further research is the

enumeration of weighing designs and the characteriza-

tion of folded over weighing designs.

The classification criteria we used are G-aberration
and β-aberration. Given a run size N and a number of

factors k, designs that minimize either of these aberra-

tion criteria should perform best in terms of statistical

modeling. For the case of two-level orthogonal arrays,

Cheng et al. (2002) established a link between the B3

and B4 counts of a design and the D-efficiency of a

model including all main effects and some two-factor
interactions. For fold-over orthogonal designs, whose

B3 counts equal 0, this D-efficiency is inversely related

to the B4 count, which in two-level orthogonal arrays

equals β4,tot. We expect this result for two-level designs

to hold also for DSDs. However, as DSDs also can esti-

mate quadratic effects, model building is more complex

than for two-level screening designs. For this reason,

we plan to evaluate all enumerated DSDs in terms of

efficiency-based criteria in future research. Of particular

interest will be the evaluation of D-efficiencies and av-

erage prediction variances for full second-order models

in projections of the DSDs into fewer factors. Indeed,

as the enumeration is complete, one can evaluate the

DSD series with any criterion that comes to mind.

Finally, one might consider using optimization al-

gorithms, such as coordinate- and point-exchange algo-

rithms to construct optimal designs, as a computation-

ally less intensive method to generate DSDs. However,
such algorithms cannot guarantee reaching the best so-
lution for even a single criterion and fails to find or-

thogonal designs in many cases (Cuervo et al., 2016). In

contrast, our complete enumeration of definitive screen-

ing designs with up to 49 runs gives definitive answers

about which DSD is best with respect to any criterion

for practically relevant run sizes.
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Supplemental information

– Sample code.py: python code to enumerate and out-

put conference designs.
– Table 5 designs.zip: conference designs to build all

DSDs evaluated in Table 5.

Appendix: LM0 check function

Algorithm 4: Pseudocode of the LM0 check.

Input: Design K
1 for i = 1, . . . , k + 1 do

2 A← design K with columns 1 and i

interchanged /* Select first column

*/

3 Sort the rows of design A such that a1,1 = 0
4 Apply sign switches in row 2, . . . , n such

that ai,1 = 1 for i > 1 /* Make first

column lexicographically maximal */

5 foreach sr ∈ {1,−1} do
6 T1 ← design A with row 1 multiplied by

sr /* Sign switches in first row

*/

7 Apply sign switches in column

2, . . . , k + 1 such that T1,j = 1 for j > 1
8 r ← continuation(T1, K, 2) /* Call

the continuation function in

Algorithm 5 */

9 if r is False then

10 Return False

11 Return True

Output: True if the design is in LM0 form,

False otherwise

The reduction algorithm in Section 3.3 calls the

LM0 check function given in Algorithm 4, which it-

self calls a continuation function given in Algorithm 5.
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The purpose of the LM0 check function is to deter-

mine whether or not an input design is of LM0 form.

To this end, it performs column permutations, row per-

mutations, sign switches of rows, and sign switches of

columns to check whether these operations result in

a lexicographically larger design. As soon as a lexico-

graphically larger design is found, the procedure stops

and returns a False for the input design. The sign
switches and a small portion of the permutations are

addressed in Algorithm 4. All remaining column per-

mutations are addressed in Algorithm 5.

In lines 1 and 2, Algorithm 4 considers all designs

A in which column 1 is interchanged with any of the

columns 1, . . . , (k+1), thereby including the option that
the first column stays in its original position. Next, in

lines 3 and 4, the rows are sorted and sign switches

of the rows are applied until the first column is in the

largest form possible: a zero entry in the first position

a1,1 and entries of 1 in all other positions ai,1, where

i > 1. At this point, the design can only be made lexi-

cographically larger by applying a sign switch to row 1

or to columns 2, . . . , (k + 1) so that all columns other

than the first start with a 1. These options are ex-

plored in lines 5–8 of Algorithm 4. At this point, all

sign switches that might make the current design lexi-

cographically larger are exhausted. However, there may

still be column permutations that result in a lexico-

graphically larger design. That part of the LM0 check

is performed by Algorithm 5.

Algorithm 5 carries out additional column permu-
tations as well as the actual LM0 check between the

original input design K and the design modified by the

sign switches and permutations of Algorithms 4 and 5.

The input of Algorithm 5 is the original input design

K, the modified design and the leftmost column c that

is to be permuted with columns c, c+1, . . . , k+1. In its

line 2, Algorithm 5 starts by conducting column permu-

tations involving the current column c and sorting the

rows such that earlier columns remain unchanged. This

qualification is necessary because the ‘larger than’ op-

eration works column by column. If the sorting would

change the row order of the first c − 1 columns, the

current design would not be as large as possible.

After the sorting, the current column is tested against

the corresponding column in the original designK (lines
4–9). If the current column is lexicographically larger,

then the original design is not of LM0 form. If both

columns are equal, further column permutations are

invoked by calling the algorithm recursively using a

new current column. Finally, if the current column it

is smaller than the corresponding column in K, a new

iteration of the for loop is started.

Algorithm 5: Pseudocode of the continuation

function.
Input: Design T(c−1), original design K,

current column c
1 for cx = c, . . . , k + 1 do

2 Tcx ← design T(c−1) with column c and cx
interchanged

3 Sort the rows of Tcx according to LM0

ordering of the new column c and leaving

columns 1, . . . , (c− 1) unchanged
/* Compare column c of Tcx with

column c of K using LM0 ordering

*/

4 if Tcx(c) ≻ K(c) then

5 Return False

6 if Tcx(c) = K(c) then

/* Recurse one level deeper */

7 r ← continuation(Tcx , K, c+ 1)

8 if r is False then

9 Return False

10 Return True

Output: True if ∀c, c ≤ x ≤ k + 1 : Tcx ≺ K,
False otherwise
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