

This item is the archived peer-reviewed author-version of:

Dynamical stability indicator based on autoregressive moving-average models : critical transitions and the Atlantic meridional overturning circulation

Reference:

Rodal Marie, Krumscheid Sebastian, Madan Gaurav, LaCasce Joseph Henry, Vercauteren Nikki.- Dynamical stability indicator based on autoregressive moving-average models : critical transitions and the Atlantic meridional overturning circulation Chaos: an interdisciplinary journal of nonlinear science - ISSN 1089-7682 - 32:11(2022), 113139 Full text (Publisher's DOI): https://doi.org/10.1063/5.0089694 To cite this reference: https://hdl.handle.net/10067/1927690151162165141

uantwerpen.be

Institutional repository IRUA

4

¹ Dynamical Stability Indicator based on Autoregressive Moving-Average ² Models: Critical Transitions and the Atlantic Meridional Overturning **Circulation**

Marie Rodal,^{1, a)} Sebastian Krumscheid,² Gaurav Madan,³ Joseph Henry LaCasce,³ and Nikki Vercauteren^{3, b)} 1) ⁵ *FB Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin,*

⁶ *Germany* 2) ⁷ *Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany*

3) ⁸ *Section for Meteorology and Oceanography, Department of Geosciences, University of Oslo, Blindernveien 31,*

⁹ *Kristine Bonnevies hus, 0371 Oslo, Norway*

¹⁰ (Dated: 27 September 2022)

 A statistical indicator for dynamic stability known as the ϒ indicator is used to gauge the stability and hence detect ap- proaching tipping points of simulation data from a reduced 5-box model of the North-Atlantic Meridional Overturning Circulation (AMOC) exposed to a time dependent hosing function. The hosing function simulates the influx of fresh water due to the melting of the Greenland ice sheet and increased precipitation in the North Atlantic. The Υ indicator is designed to detect changes in the memory properties of the dynamics, and is based on fitting ARMA (auto-regressive moving-average) models in a sliding window approach to time series data. An increase in memory properties is inter-The performance of the indicator is tested on time series subject to different
types of tipping, namely bifurcation-induced, noise-induced and rate-induced tipping. The numerical analysis show
that the indicator indeed re types of tipping, namely bifurcation-induced, noise-induced and rate-induced tipping. The numerical analysis show that the indicator indeed responds to the different types of induced instabilities. Finally, the indicator is applied to two AMOC time series from a full complexity Earth systems model (CESM2). Compared with the doubling $CO₂$ scenario, 21 the quadrupling CO₂ scenario results in stronger dynamical instability of the AMOC during its weakening phase.
 \approx

 $\overline{22}$ A statistical indicator for dynamic stability is applied to $\overline{47}$ ²⁵ simulation data from an ocean circulation model. The in-48 24 dicator assesses the stability of the time series data and 49 25 gives indication of approaching tipping points. Three dif-so $2\sqrt{2}$ ferent types of tipping, defined by their causing mecha- 51 $\frac{27}{26}$ nism, are explored. In addition, the indicator's reaction $\frac{27}{26}$ $2\frac{1}{25}$ to the application of colored, as opposed to white, noise is 53 $_{29}$ assessed. Finally, the indicator is compared to other statis- $_{54}$ $\overline{\text{36}}$ tical early warning indicators. **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

<u>so</u>
□
a1 I. INTRODUCTION

32 Tipping points, or critical transitions, are sudden, drastic 61 ³³ changes in a system resulting from initial small perturbations. 34 The study of tipping points is of particular interest to climate 63 ³⁵ scientists and ecologists, as several theoretical studies high-36 light such tipping for an assortment of climatic and ecological 65 37 systems, and observations also indicate that abrupt changes 66 38 are, indeed, common in nature¹. 39 Ashwin et al.² classified tipping points according to the

⁴⁰ causing mechanism, yielding three classes of tipping points. 41 Bifurcation-induced tipping, or B-tipping, occurs when a⁷⁰ ⁴² steady change in a parameter past a threshold induces a 43 sudden qualitative change in the system's behaviour. Noise- 72 44 induced tipping, or N-tipping, occurs when short-timescale 73 ⁴⁵ internal variability causes the system to transition between⁷⁴ 46 different co-existing attracting states. Finally, rate-induced 75

tipping, or R-tipping, occurs when the system fails to track a continuously changing attractor and hence abruptly leaves the attractor.

⁵⁰ Of these three, rate-induced tipping is certainly the least stud-⁵¹ ied, however as demonstrated by Scheffer *et al.*³, Wieczorek ⁵² *et al.*⁴ and more recently O'Keeffe and Wieczorek⁵, it is an important tipping mechanism that cannot be explained through classical bifurcation theory. Indeed, when the system ⁵⁵ is unable to track a continuously available quasi-stable state ⁵⁶ due to the system parameters changing too quickly, it might ⁵⁷ shift to another available equilibrium state without crossing a ⁵⁸ bifurcation boundary. There are a few methods available for ⁵⁹ estimating what exactly "too quickly" means, see Wieczorek \bullet and Perrymann⁶, Ashwin, Perrymann, and Wieczorek⁷, ⁶¹ Vanselow, Wieczorek, and Feudel⁸ and O'Keeffe and Wiec- ϵ zorek⁵, but they depend strongly on the time-dependent parameter function; in particular its asymptotic properties. Finding generalizable methods for determining the rate of the ⁶⁵ parameter drift that induces tipping, will be of great interest going forward. Another issue of great practical importance is ⁶⁷ the question of how to obtain early warnings for such tipping ⁶⁸ points, in particular if classical methods for stability analysis also remain valid in the regime of rapid parameter changes.

⁷⁰ Ritchie and Sieber⁹ showed that for rate-induced tipping, the most commonly used early-warning indicators, namely increase in variance and increase in autocorrelation, occur not when the equilibrium drift is fastest but with a delay. This suggests that these indicators might not be able to detect tipping before it has already occurred, although their analysis ⁷⁶ does give indication that the theory behind these indicators, ⁷⁷ the so-called "critical slowing down", may still hold for ⁷⁸ rate-induced tipping.

²⁹ In this paper, we study an indicator for dynamic stability,

⁸⁰ from now on referred to as the ϒ *indicator*, initially proposed

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP
E Publishing

a)marie.rodal@fu-berlin.de

b)nikki.vercauteren@geo.uio.no

The *Υ indicator* for Early Warning 2

ACCEPTED MANUSCRIPT

An Interdisciplinary Journal of Nonlinear Science Chaos

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

AIP
E Publishing

⁸¹ by Faranda *et al.* ¹⁰. The Υ *indicator* uses auto-regressive 82 moving-average or $ARMA(p,q)$ models to estimate how close 40 83 a system is to an equilibrium. It is based on the observation 41 ⁸⁴ that the dynamics of an observable arising from a potentially₁₄₂ 85 complex system very close to a stable equilibrium will appean43 86 like a random walk with a tendency to be attracted to a_{44} 87 well-defined equilibrium. When discretized, such dynamics45 sa can be well represented by an ARMA(1,0) process. When a 89 approaching a transition, however, the system may experience 47 90 a critical slowing down and diverging memory properties. ⁹¹ The trajectory of the observable hence experiences new ⁹² timescales, which can be detected even with a limited dataset ⁹³ through an increase in the necessary memory lags of fitted₅₁ 94 ARMA(p,q) models¹¹. The Y indicator thus defines a distance ⁹⁵ from the limiting random walk-like behaviour as a way to ⁹⁶ assess the dynamical stability properties of an observable. 97 The indicator was applied to atmospheric boundary layenss 98 data by Nevo *et al.* ¹² and Kaiser *et al.* ¹³ and to atmosphericis6 circulation data by Faranda and Defrance¹⁴. They success-¹⁰⁰ fully demonstrated the indicator's ability to both gauge the 101 stability of a time series and detect tipping points. However,159 1022 the indicator requires some additional testing, in particulario 10² concerning its performance for rate-induced tipping, which 61 10² thus far has not been explored. It should be noted that several₆₂ 105 different early warning indicators based on ARMA models. ¹⁰⁶ have been proposed. In fact, in Faranda, Dubrulle, and $10¹¹$ the authors propose the sum of the p and q orders of 108 the model, as well as the sum of the model coefficients as 109 potential indicators. The sum of the order parameters then 67 110 gives an estimate for the memory lag of the process, while. 111 the sum of the model coefficients gives the persistence of this. $\overline{\mathbf{11}}$ memory lag. **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

 $11\frac{11}{2}$ To further test the indicator, we have chosen the global- $14\overline{)}$ oceanic 3-box model studied by Alkhayuon *et al.* ¹⁵, which $\frac{1}{2}$ in turn is based upon the 5-box model of Wood *et al.* ¹⁶ 116 The model represents a simplified Atlantic Meridionaliza 11⁷ Overturning Circulation (AMOC), which transports warm 75 118 surface water from the tropics to North America and Europe,176 119 resulting in a milder climate in these regions than what would 77 120 otherwise be expected. Since the current is density driven,178 121 a large influx of freshwater due to the melting of land ice 122 or increased precipitation in the North Atlantic, would be so 123 expected to result in a reduction in the AMOC flow strength. ¹²⁴ The question of whether the AMOC could undergo a sudden 125 transition from a high flow strength state (the "on" state) to α ¹²⁶ a state with weak or no overturning (the "off" state), is still 127 debated. The latest assessment report of the Internationalss 128 Panel for Climate Change (IPCC AR6) concludes that these 129 AMOC strength will very likely decline in the future, but are ¹³⁰ states with medium confidence that an abrupt collapse will not 131 occur in the next century¹⁷. Simple box models, like the one 132 presented in this paper, show bi-stability, while more realistics. ¹³³ models like the global atmosphere-ocean general circulation 134 models (AOGCMs) are largely mono-stable, implying that¹⁹¹ 135 they do not exhibit the abrupt transition to an "off"-state¹⁹² 136 so characteristic of the simpler models. However, there is¹⁹³ 137 limited evidence that the more complex models may be too¹⁹⁴ 138 stable (Weijer *et al.* ¹⁸, Hofmann and Rahmsdorf¹⁹ and Liu

 239 *et al.* 20), in particular that they mis-represent the direction of AMOC-induced freshwater transport across the southern h_{41} boundary of the Atlantic (Liu *et al.* 20, Huisman *et al.* 21, Liu, Liu, and Brady ²² , Hawkins *et al.* ²³). Liu *et al.* ²⁰ demonstrated that by introducing a flux-correction term into the National Center for Atmospheric Research (NCAR) Community Climate System Model version 3 (CCSM3), they could make the formerly mono-stable system bi-stable.

In addition, it has been suggested that paleoclimate data is consistent with abrupt changes in the surface temperature in the North Atlantic region in the past, as might be expected μ ₅₀ with a collapse of the AMOC. Boers²⁴ applied a statistical early warning indicator on Earth System Model (ESM) outputs, and found significant early-warning signals in eight independent AMOC indices. This was interpreted as a sign that the AMOC is not only a bistable system, but one approaching a critical transition.

Previously, the potential collapse of the AMOC has largely been attributed to the crossing of a bifurcation boundary in the bi-stable system. However, more recent analysis, see in μ_{iso} particular Lohman and Ditlevsen²⁵, demonstrate the possibility of tipping before the bifurcation boundary is reached through the mechanism of rate-induced tipping. In addition, **Example 3** Lohman and Ditlevsen²⁵ demonstrate that due to the chaotic nature of complex systems a well-defined critical rate, i.e., the rate of parameter change at which the system tips, cannot be obtained, which in turn severely limits our ability to predict the long-term behavior of the system. They conclude that due to this added level of uncertainty, it is possible that the safe operating space with regard to future emissions of $CO₂$ might ¹⁷⁰ be smaller than previously thought. This suggests that proper evaluation of the probability of rate-induced tipping in the different tipping elements of the Earth System is of utmost importance in assessing the likelihood of dramatic future changes.

Regardless of whether the AMOC in actuality is bi-stable or mono-stable, the reduced 5-box model of Alkhayuon *et al.* ¹⁵ is the perfect test case for the Υ *indicator* as it exhibits both bifurcation-induced and rate-induced tipping, provided a time dependent hosing function is applied. The hosing function represents the influx of fresh water into the ocean due to increased precipitation and melting of land and sea ice in h_{az} the North Atlantic region. Alkhayuon et al.¹⁵ provide an extensive analysis of the tipping mechanisms present in the model. Armed with such a well studied theoretical model, we will be able to systematically study the indicator's ability to not only detect bifurcation-induced and noise-induced, but also rate-induced tipping. We will additionally assess the indicator's ability to deal with colored noise, something that is known to cause issues for other early warning indicators, Δ_{90} like the increase in variance and auto-correlation²⁴.

In reality, the ocean system has many more degrees of freedom than those included in the box models, and ultimately a mixture of different processes is likely to trigger tipping, if occurring. The Coupled Model Intercomparison Project (CMIP6), with the Community Earth System Model $^{1}_{196}$ (CESM2)²⁶, provides an alternative AMOC model with

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

AIP
E Publishing

197 many more degrees of freedom. Two scenarios where the 249 198 atmospheric $CO₂$ concentration is abruptly increased will less ¹⁹⁹ be considered, providing monthly outputs of geographical 200 density differences on which the Υ *indicator* will be applied₂₅₂ 201 In these model scenarios, the abrupt change in $CO₂$ is as ²⁰² followed by a response of the Earth system, and after 2-3 203 decades, freshwater eventually circulates in the sub-polar⁵⁵⁴ 204 gyre²⁷. This response hence offers similarities with the 205 hosing experiments done in the box models. While the two 256 206 scenarios are insufficient to assess the potential bistabil- $_{257}$ 207 ity of the AMOC, the Y indicator will be used to assess the 258 208 dynamical stability of the AMOC during its weakening phase. 209

210 II. THE Y-INDICATOR FOR EARLY-WARNING SIGNALS

 2121 In what follows, we will briefly outline the method used to ϵ_{loss} $21\frac{20}{20}$ determine the stability of the time series data. Further details₂₆₆ $\sum_{n=1}^{\infty}$ can be found in Faranda *et al.* ¹⁰, Faranda and Defrance ¹⁴, Nevo *et al.* ¹² and Kaiser *et al.* ¹³ 2140

 215 The method relies on an accurate representation of a com- $_{268}$ ²¹⁶ plex dynamical system close to a metastable state by a ran- 217 dom walk-like behavior with a tendency to be attracted to the 269 $\sum_{z_1 \in \mathbb{Q}}$ metastable state. Changes in the system's stability are then $21\degree$ characterized as statistically significant deviations from that $\frac{1}{271}$ $\frac{220}{220}$ local behavior, indicating that the system currently does not $\frac{22}{224}$ reside close to a metastable state. Indeed, the local dynam- $\sum_{n=1}^{\infty}$ ics of a continuous-time random dynamical system (i.e., a_{274} \sum_{225} stochastic differential equation) near a metastable state come₂₇₅ $\frac{222}{224}$ close to the dynamics of a stochastic spring (i.e., an Ornstein– $\frac{276}{276}$ $22\frac{1}{225}$ Uhlenbeck process), whose discrete-time observations are 277 $_{220}$ well approximated by an ARMA (1,0) process. Here, ARMA $227\frac{1}{11}$ denotes the space of autoregressive moving-average models, 226 with the numbers in parentheses denoting the order of the $_{280}$ $\overrightarrow{229}$ model. A time series *x*(*t*), *t* ∈ **Z**, is an ARMA(p,q) process₂₈₁ if it is stationary and can be written as **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

231
$$
x(t) = V + \sum_{i=1}^{p} \phi_i x_{t-i} + \sum_{j=1}^{q} \theta_j w_{t-j} + w_t
$$
 (1)

 with constant ν, coefficients $φ_i$, $θ_j$ and ${w_t}$ being white noise₂₈₇ 233 with positive variance σ^2 (see Brockwell and Davis²⁸ for an introductory text). In addition, constraints are imposed on the 289 coefficients $φ_i$ and $θ_j$ to ensure that the process in (1) is sta-290 tionary and satisfies the invertibility condition. Intuitively, the 237 variables p and q say something about the memory lag of the ω process, while the prefactors $φ_i$ and $θ_j$ relate to the persistence₂₉₃ 239 of said memory lag. One expects that the higher the values for \mathfrak{g}_{94} $_4$ ²⁴⁰ *q* and *p*, the longer the system, once perturbed from its equi-295 librium state, would need to return to equilibrium. It is this 242 intuitive notion that the statistical indicator denoted Υ takes advantage of. Indeed, when approaching a critical transition the response of the system to perturbations can become in- creasingly long (referred to as a critical slow down), and this translates into diverging memory properties of the statistical signal. Hence, an ARMA (p,q) model will require higher or- 302 ders to incorporate the memory effects. By fitting the model

 (1) repeatedly to a time series data set for varying values of $$ and q , one can, through application of an appropriate information criterion, obtain the values of p and q that best represent the time series data. For this purpose, we choose the Bayesian information criterion, BIC:

$$
BIC = -2\ln L(\hat{\beta}) + \ln(\tau)(p+q+1)
$$
 (2)

²₂₅₅ where $\hat{\beta}$ denotes the maximum likelihood estimator of $\beta =$ $(v, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q)$, which is obtained by maximising the likelihood function *L* associated with the $ARMA(p,q)$ model (1) for a given time series; see Brockwell and Davis²⁸ for details. The best fitting $ARMA(p,q)$ model is then deter-²⁶⁰ mined as the one that minimizes the BIC. The second term in ²⁶¹ equation (2) punishes complex models with high *p* and *q* val-²⁶² ues, and is the reason why we prefer to use the BIC over other ²⁶³ criteria, such as the perhaps more familiar Akaike Information 264 Criterion. Here, τ denotes the number of discrete points in the time series to which the ARMA model is fitted. We refer to τ as the *window length*.

Finally, the stability indicator is defined as

$$
\sum_{z \text{os}} \mathbf{Y}(p, q; \tau) = 1 - \exp\left(\frac{-|\text{BIC}(\bar{p}, \bar{q}) - \text{BIC}(p, q)|}{\tau}\right) \tag{3}
$$

where \bar{p} and \bar{q} indicate the order of what we refer to as the theorized *base model*. This is the ARMA(p,q) model, characterized by a specific value of $q = \bar{q}$ and $p = \bar{p}$, to which the chosen best fit is compared. The Y-indicator takes on values between 0 and 1, where lower values imply a higher degree of stability. The intuition behind using the difference in BIC values between the chosen "best" model and a base model is that this quantity assesses just how much better the model with the lower BIC value approximates the fitted data compared to the other. The significance threshold for deviations in the BIC values between an $ARMA(p,q)$ and the base model, simply denoted as $|\Delta BIC|$, is $|\Delta BIC| > 2$. The differences in BIC values can be directly related to the Bayes Factor, see Preacher 282 and Merkle²⁹, which is another way of quantifying the likeli-²⁸³ hood of one model over another.

PB4 For the data sets analysed by Faranda *et al.* ¹⁰, it was de- 285 termined that the appropriate base model is the ARMA(1,0) 286 model, i.e., $\bar{p} = 1$ and $\bar{q} = 0$, which can be viewed as a ²⁸⁷ time discretized Langevin process. In later work by Nevo $e^{i\theta}$ *et al.* ¹² and Kaiser *et al.* ¹³ the authors continued to rely on ARMA(1,0) as the base model. While Faranda *et al.* ¹⁰ used a statistical argument to justify the choice of the base 291 model, Nevo *et al.* ¹² and Kaiser *et al.* ¹³ argued, as already noted above, that the dynamics near a stable state can be approximated as that of a stochastic spring, further strengthening the case for $ARMA(1,0)$ as the general choice of base model. However, due to the additional well-posedness constraints on the autoregressive and moving-average coefficients ϕ *i* and θ *j* in (1), depending on the treatment of constraints by the fitting routine one can have cases where the BIC value of the $ARMA(1,0)$ process is smaller than the corresponding value for the chosen $ARMA(p,q)$ model. In these cases the $ARMA(1,0)$ process is rejected as the best fit, despite having the lowest BIC value, due to violating the stationarity or invertibility conditions required for a numerically well behaved

AIP
E Publishing

³⁰⁴ fit. Thus, in this scenario it becomes unclear how to determine ³⁰⁵ the 'distance' between the states. To overcome this issue we 355 306 have chosen to modify the Y indicator to allow for a seconds 307 base state, namely the ARMA(0,0) model. This model is justes ³⁰⁸ white noise, possibly with a drift, and is guaranteed to sat-³⁰⁹ isfy all the auxiliary conditions for the obvious reasons that 310 there are no coefficients available to violate them. We con-360 311 sider ARMA(0,0) as a special case of ARMA(1,0) in which 61 312 $\phi_1 = 0$. The use of the ARMA(1,0) process as a base models 313 was partly justified by the image of a particle trapped in a po-363 ³¹⁴ tential well, where a restoring force keeps the particle oscil-315 lating around the equilibrium. The justification for includings 316 ARMA(0,0) as a potential base model follows a similar argu-366 317 ment, except that in this case the noise amplitude is too lows⁶⁷ 318 compared to the width of the potential well to feel the restor-368 ³¹⁹ ing force. To use both base models, we first introduce

$$
\Delta \text{BIC}_0(p,q) := \text{BIC}(0,0) - \text{BIC}(p,q) \tag{4}
$$

 $\frac{3200}{\odot}$ and

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

$$
\Delta BIC_1(p,q) := BIC(1,0) - BIC(p,q) \tag{5}
$$

325 With this, the modified Y-Indicator for the extended bases

$$
\sum_{\substack{a \to a \\ a \in A \\ \text{and } b}}^{\infty} \text{model class can be written as}
$$
\n
$$
\sum_{\substack{a \to a \\ a \in A \\ \text{and } b}}^{\infty} \Upsilon(p, q; \tau) = 1 - \exp\left(\frac{-\min\left\{|\Delta BIC_0(p, q)|, |\Delta BIC_1(p, q)|\right\}}{\tau}\right)_{\text{as}}^{\infty}
$$
\n
$$
\sum_{\substack{a \to a \\ (b)_{\text{as}}}}^{\infty} \Upsilon(p, q; \tau) = 1 - \exp\left(\frac{-\min\left\{|\Delta BIC_0(p, q)|, |\Delta BIC_1(p, q)|\right\}}{\tau}\right)_{\text{as}}^{\infty}
$$

 $\overline{326}$ In addition, it must be specified that in the cases where the set 322 constrained fitting failed for the ARMA(1,0) model so that $_{383}$ $\sum_{\mathbf{3260}}$ ∆BIC₁(*p*,*q*) may be negative, $\Delta BIC_0(p,q)$ is automatically₃₈₄ $32e^{\pm}$ chosen in practise. For obvious reasons, there cannot be a_{ss} 33¢⊔ case where $\Delta BIC_0(p,q)$ is itself negative. $33\overline{\circ}$ **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

 $\frac{1}{2}$ Furthermore, following Faranda, Dubrulle, and Pons¹¹, we 333. define the *order*, \mathcal{O} , and *persistence*, \mathcal{R} , of an ARMA(p , q)₃₈₉ $33\overline{6}$ process as

$$
\mathscr{O} = p + q, \qquad (7)
$$
\n
$$
\mathscr{R} = \sum_{i=1}^{p} |\phi_i| + \sum_{i=1}^{q} |\theta_j|, \qquad (8)
$$

337 where ϕ_i and θ_j denote the autoregressive and moving-³³⁸ average coefficients, respectively. While the order relates ³³⁹ to the memory lag of the process, the persistence relates to ³⁴⁶ the *persistence* of said memory lag, hence the name. When³⁸⁸ $\frac{341}{241}$ approaching a tipping point, one would expect one out of two $\frac{3}{400}$ 342 things to happen: either both the persistence and the order ³⁴³ increase significantly, due to the increased memory of the 344 process, or the order remains constant, and the persistence 345 approaches the value of the order \mathcal{O} , indicating a loss of $\frac{1}{246}$ stationarity. According to Faranda, Dubrulle, and Pons 11 , the⁴⁰⁴ ³⁴⁷ latter alternative corresponds to a case in which the potential ³⁴⁸ landscape of the system does not change considerably when ³⁴⁹ approaching the transition. 350 This observation strengthens the case for the modified γ^{407}

³⁵¹ indicator in contrast to excluding windows of the time series

352 where $\Delta BIC_1(p,q)$ is negative, as these periods are indicative. 353 of an instability resulting from the loss of stationarity of the ₄₀₉

$ARMA(1,0)$ process.

To apply the method to a time series data set, one first has to ensure stationarity of the data. This can be done in two ways, depending on the nature of the time series. In some cases, it is sufficient to split the time series into small enough intervals, so that within each interval the time series is approximately stationary. To check for stationarity one ³⁶² runs a Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests on the intervals. This way, one also obtains an upper bound on the length of the intervals; see Kaiser *et al.* ¹³ ³⁶⁴ . The other option is to not assume stationarity from the outset, and instead allow for application of a differencing routine to the separate intervals, achieving stationarity that way. In that case, a KPSS test is run on each interval, and if the interval ³⁶⁹ is found to not be stationary, differencing is applied. This 370 process is then repeated until stationarity is achieved. The (4) ₃₇₁ KPSS test is to be preferred over the unit root test due to the KPSS test is to be preferred over the unit root test due to the 372 danger of over-differencing (Hyndman and Khandakar³⁰). 373 As we wish to study rate induced tipping phenomena, which $(5)^{374}$ yields highly non-stationary time series even for very small \int_{375} interval lengths, the latter method is to be preferred. By this ³⁷⁶ choice we go from an ARMA to an ARIMA model, in which 377 the *I* stands for "integrated" in reference to the differencing ³⁷⁸ routine used to ensure the stationarity of the time series.

Provided one can select sufficiently long time series intervals ³⁸⁰ where the process is approximately stationary, one can fit $(6)_{381}$ ARMA(p,q) models to available observations during these intervals, and through the Υ indicator obtain an estimate for how close any given interval is to an equilibrium state. To determine the best fit, we use the auto.arima function found in the FORECAST R package, setting BIC as the information ³⁸⁶ criterion used for model selection. Since we will not assume ³⁸⁷ stationarity of the time series, auto.arima first determines the correct differencing order before continuing with the fitting procedure; the details of said procedure can be found in 390 Hyndman and Khandakar³⁰.

 73^{91} It is clear that the method is strongly dependent upon the size \int_{392} of the intervals, which we will refer to as the window length, 8 ³⁹³ τ. This is not only due to the inclusion of the $1/\tau$ factor in $\tilde{3}94$ the exponential, but also due to the inherent τ -dependence of $BIC(p,q)$ and $BIC(1,0)$. In fact, the rationale for including the $1/\tau$ factor in the definition of Υ is to attempt to remove or reduce this dependence. From equation (2) one might conclude that the correct scaling would be $1/\ln(\tau)$, as opposed to $1/\tau$. However, we do not only want to remove the dependence on τ , but also include the significance threshold for ∆BIC, such that the Y value of any point where ∆BIC is below 2 is suppressed relative to other points.

⁴⁰⁶ III. APPLICATION TO THE GLOBAL OCEANIC 3-BOX **MODEL**

To determine the validity of the Υ-indicator as a measure ⁴⁰⁹ of stability, as well as its ability to detect different types of

AIP
E Publishing

FIG. 1: Sketch of the 5-box model for the Atlantic Meridional Overturning Circulation (AMOC). Here, a light 424 gray coloring is used to denote the two boxes whose salinities do not change, as well as all the arrows indicating terms which do not appear in the equations describing the dynamics₂₇ of the 3-box model. Adapted from Alkhayuon *et al.* ¹⁵ .

FIG. 2: Schematic illustration of the piece-wise linear hosing function used to simulate the influx of fresh water. Adapted from Alkhayuon et al.¹⁵.

FIG. 3: Bifurcation diagram for *SN*, for the 3-box model of the AMOC. The dashed line denotes the unstable equilibrium
hand-
hand-
 $\frac{1}{429}$ branch. The red diamond denotes the location of the hopf-bifurcation.

 tipping points, we start by applying the method to the global 411 oceanic 3-box model discussed by Alkhayuon *et al.* ¹⁵. The 3-box model of Alkhayuon *et al.* ¹⁵ is a simplification of the 5-box model of Wood *et al.* ¹⁶ ⁴¹³ in which the salinity of the Southern Ocean (S) and the Bottom waters (B) is assumed to be approximately constant. The model thus consists of 5 sep- arate boxes, of which only 3 boxes, namely the North Atlantic (N), Tropical Atlantic (T) and Indo-Pacific (IP) boxes have varying salinities *S*. A schematic illustration of the model is shown in Figure 1. See Alkhayuon *et al.* ¹⁵ or Wood *et al.* ¹⁶ 419 for a detailed exposition of the box model. We note that the parameters of the box model are tuned using the full complex- ity FAMOUS AOGCM model, with varying levels of CO₂. 423 The parameters used in this paper are for the case $2\times$ CO₂ as compared to pre-industrial times.

We denote salinity by S_i , the volume by V_i and the fluxes by *F*_{*i*}, where *i* ∈ {*N*,*T*,*S*,*IP*,*B*} denotes the respective boxes. Let Γ denote the AMOC flow defined by

The model approximates a buoyancy-driven flow, with a transport proportional to the density difference between the boxes, ⁴³¹ assuming a linearized equation of state. The evolution equa-432 tions for the salinities S_N and S_T are

AIP
E Publishing

$$
\frac{V_N}{Y}\frac{dS_N}{dt} = \Gamma(S_T - S_N) + K_N(S_T - S_N) - 100F_NS_0\tag{10}
$$

$$
\frac{V_T}{Y}\frac{dS_T}{dt} = \Gamma[\gamma S_S + (1-\gamma)S_{IP} - S_T] + K_S(S_S - S_T) + K_N(S_N - S_T) - 100F_TS_0 \tag{11}
$$

435 for $\Gamma \geq 0$, and

$$
\frac{V_N}{Y}\frac{dS_N}{dt} = |\Gamma|(S_B - S_N) + K_N(S_T - S_N) - 100F_NS_0
$$
\n(12)

$$
\frac{V_T}{Y}\frac{dS_T}{dt} = |\Gamma|(S_N - S_T) + K_S(S_S - S_T) + K_N(S_N - S_T) - 100F_TS_0
$$
\n(13)

438 for Γ < 0, where S_B and S_S are regarded as fixed parameters. aso and $Y = 3.15 \times 10^7$, which converts the time unit from sec-

440 onds to years. S_0 is a reference salinity, and K_i are coefficients⁷⁶ 441 associated with the gyre strengths. We note that all the salinity

values are given as perturbations from a background state, see⁴⁷⁷ $44\overline{8}$ Appendix A of Alkhayuon *et al.* ¹⁵ for details on the transfor-44⁶ mation. Since the total salinity is assumed to be conserved,⁴⁷⁹ the salinity of the Indo-Pacific (IP) box, S_{IP} , can be computed⁸⁸⁰ $\overrightarrow{4460}$ from S_N and S_T .

The values of the assorted parameters can be found in Table 1^{482} 448 and Table 2.

449 The fluxes, F_N and F_T , are linear functions of the hosing func⁴⁸⁴ $\overline{450}$ tion *H*(*t*) which simulates the influx of fresh water. In the case⁴⁸⁵ $\frac{1}{454}$ of $2 \times CO_2$ the fluxes are (see Wood *et al.* ¹⁶)

$$
F_N = 0.486 \times 10^6 + H(t) \cdot 0.1311 \times 10^6 \tag{14}
$$

$$
F_T = -0.997 \times 10^6 + H(t) \cdot 0.6961 \times 10^6 \tag{15}
$$

 4540 where all fluxes are given in units of Sverdrup (Sv).

45^{$\frac{1}{2}$} The values for the case of $1 \times CO_2$ can be found in Table 5 of $\frac{492}{492}$ ⁴⁵∉ Alkhayuon *et al*. ¹⁵.

 $45\frac{1}{10}$ Figure 3 shows the bifurcation diagram for *S_N*; for *S_T*⁴⁹³ $45\frac{11}{10}$ we refer to Alkhayuon *et al.* ¹⁵ The bifurcation diagram⁴ 459 for the flow strength Γ is qualitatively similar, since all⁴⁹⁵ 46⁰ other parameters in Eq. 9 are kept constant. The diagram⁴⁹⁶ ⁴⁶¹ clearly shows that this is a bi-stable system with two stable⁴⁹⁷ 462 equilibrium branches connected by an unstable branch.⁴⁹⁸ 463 The upper equilibrium branch looses stability, not at the⁴⁹⁹ saddle-node bifurcation, but rather due to a Hopf-bifurcation,⁵⁰⁰ 465 indicated by a red diamond in the diagram. Thus, part of the⁵⁰¹ 466 upper equilibrium branch, denoted in black, is in fact unstable.⁵⁰² 467

468 To simulate the influx of fresh water we apply a time⁵⁰⁴ 469 dependent, piece-wise linear hosing function, $H(t)$ (see⁵⁰⁵ 470 Figure 2), to equations (10)-(13). Here

$$
H(t) = \begin{cases} H_0 & t < 0, \\ H_0 + \alpha(t) & t \in [0, T_{rise}] \,, \\ H_{pert} & t - T_{rise} \in [0, T_{pert}] \,, \\ H_{pert} - \beta(t) & t - T_{rise} - T_{pert} \in [0, T_{fall}] \,, \\ H_0 & t \ge T_{rise} + T_{pert} + T_{fall} \,, \end{cases} \tag{16}
$$

472 where $\alpha(t)$ and $\beta(t)$ are linear functions ensuring continuity⁵¹⁴ 473 of $H(t)$. If we define the rise and fall rates, as

$$
r_{rise} = \frac{|H_{pert} - H_0|}{T_{rise}} \quad \text{and} \quad r_{fall} = \frac{|H_{pert} - H_0|}{T_{fall}} \quad (17)
$$

then

$$
\mathbf{A}^{\text{76}} \qquad \alpha(t) = r_{rise}t \quad \text{and} \quad \beta(t) = r_{fall}(t - T_{rise} - T_{pert}) \quad (18)
$$

 μ ₇₇ As demonstrated by Alkhayuon *et al.* ¹⁵, whether the system undergoes a transition from one stable state to the other, is dependent not only on the value of H_{pert} , but on the rise and fall rates, r_{rise} and r_{fall} , as well as the perturbation time T_{pert} . In particular, they demonstrate that even when H_{pert} is above the bifurcation value that destabilizes the upper equilibrium branch, the system may still return to this equilibrium, provided T_{fall} is short enough; a process which they termed *avoided B-tipping*. In addition, they showed that if T_{pert} is too short, the system will not tip, but return to the initial equilib-

 $(14)_{\bullet\bullet}$ rium branch.
In what follow In what follows, we will apply the Υ indicator as described has in the previous section to time series data generated by the 3-⁴⁹⁰ box model. We will separately study time series undergoing rate-, noise- and bifurcation-induced tipping, while attempting to assess the indicator's ability to gauge the stability of the time series as it approaches the tipping point. Before proceeding, we should clarify one point regarding noise-induced tipping, and what is meant by an early warning indicator in this context. Noise-induced tipping is inherently unpredictable, and hence one might conclude that any attempt at predicting such transitions is doomed to fail based on a single time series. In contrast, assuming the underlying model is known, ⁵⁰⁰ one could use ensembles of realizations to estimate the likelihood of noise-induced transitions. Examples of these sta- $\frac{1}{502}$ tistical approaches are discussed in Thompson and Sieber³¹. ⁵⁰³ Although one cannot expect to develop an *early* warning indicator for these types of transitions, one should at the very least be able to tell, from time series data, once such a transition has ⁵⁰⁶ occurred, i.e., when the unstable equilibrium branch has been ⁵⁰⁷ crossed and the system is approaching a different equilibrium. ⁵⁰⁸ The objective should then be to develop an indicator that is ⁵⁰⁹ able to identify this induced instability as soon as possible af- \int_{0}^{510} ter the transition.

 Finally, we note that, while it is possible to extend ARMA fitting to multivalued time series data, we have chosen to not go down that route, and instead only apply the indicator to a single time series for the salinity values from the North Atlantic basin, S_N . The reason for choosing S_N over S_T is that within the 3-box model, the equilibrium branches of S_N are that much further apart, making the transitions easier to see. Such a simplification might at first glance seem rather con-

The *Υ indicator* for Early Warning 7

FIG. 4: Bifurcation-induced tipping, color coded according to the value of Υ with window length, $\tau = 350$. The gray lines denote the equilibrium branches, with the dashed line corresponding to the unstable branch. We clearly see several brightly colored points corresponding to a high values of ϒ, which should be indicative of a high degree of instability and an approaching tipping point.

FIG. 5: ϒ as a function of time for a time series of *S^N* undergoing B-tipping.

 $\frac{1}{52}$ trived, however we argue that, as the goal of any indicator is $520₁$ to be used on real-world time series data in which the connec- 52% tion to other time series is largely unknown, it is reasonable 522 to only concentrate on one time series, despite the underlying $52\frac{\mu}{\epsilon}$ system being multidimensional.

524 A. Bifurcation-induced Tipping

⁵²⁵ To induce B-tipping in the 3-box model, we gradually ϵ_{25} change $H(t)$ according to equation (16), with $H_0 = 0$, $H_{pert} = \epsilon_{\text{49}}$ 527 0.5, T_{rise} = 1000. This corresponds to an increase in the fresh-sso $\frac{1}{25}$ water fluxes F_T and F_N , corresponding to the flux into thess ⁵²⁹ tropical and North Atlantic boxes, by approximately 34% and 530 13%, respectively. This, in turn, corresponds to roughly a 0.1 $\frac{1}{2}$ ⁵³¹ 0.2 Sv increase, in line with freshwater "hosing" experiments ϵ_{532} of the North Atlantic³². We let T_{pert} go to infinity, such that $H(t)$ never returns to its initial value. As $H(t)$ changes, $S_{\Lambda^{556}}$ 534 follows the upper equilibrium branch as sketched in Figuress 535 3, until it reaches the hopf-bifurcation (around $H = 0.4$), at ϵ 536 which point the upper equilibrium branch becomes unstable,559 537 and S_N starts approaching the lower equilibrium branch. We so ⁵³⁸ choose a window length of 350 points corresponding to about ⁵³⁹ 70 years.

 Figure 4 shows the time series of S_N color coded according to 58 the value of ϒ, with brighter colors corresponding to higher values of ϒ and hence a greater degree of instability. Figure 5 shows ϒ as a function of time, with clear peaks corresponding to brightly colored points in Figure 4. **545**

FIG. 6: Bifurcation induced tipping of $S_N(t)$, color coded according to the value of the best-fit ARMA model orders (a) *q* and (b) *p* (scatter plot). The line plots additionally show the same values for *q* and *p* as functions of time in (a) and (b), respectively.

FIG. 7: Plot of the persistence \mathcal{R} (Eq. 8) as a function of time for a time series of *S^N* undergoing B-tipping.

It should be noted that low amplitude white noise is also applied to facilitate ARIMA model fitting. The noise intensity is kept small enough to avoid noise-induced tipping.

Figures 4 and 5 clearly indicate that there are several points on the time series as it approaches the transition, which are deemed to have a high degree of instability. We further note that, although the result is not shown here, the high Υ values in Figures 4 and 5 correspond to intervals for which $\Delta BIC_1(p,q)$ is negative, indicating that, as discussed previously, the $ARMA(1,0)$ model would, when only considering ⁵⁵⁸ BIC values, be the better fit, but it violates the auxiliary conditions, indicating a loss of stationarity. Hence, at these points $ARMA(1,0)$ is excluded as a possible model, implying that $ARMA(0,0)$ is the chosen base model.

⁵⁶² In addition, we look at the order of the best-fit ARMA model, namely the q and p values, as well as the persistence, to gain further insight into the stability properties of the time series. Figure 6 shows the time series of S_N color coded according to the values of q and p . When comparing with Figure 4, this 567 seems to indicate that the high values of Υ appearing before ⁵⁶⁸ the transition are primarily associated with an increase in the

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

 45

₩

AIP
E Publishing

Transition from the lower to the upper equilibrium branch for $H = -0.25$, $\tau = 350$. (b) Plot of Υ as a function of time.

Note how the peaks correspond to the brightly colored points in (a).

FIG. 9: (a) Noise-induced tipping, color coded according to the value of ϒ. The gray lines denote the equilibria, with the

dashed line denoting the unstable equilibrium branch. Transition from the upper to the lower equilibrium branch for $H = 0.24$, $\tau = 200$. (b) Plot of Υ as a function of time. Note how the peaks correspond to the brightly colored points in (a).

 $570⁵⁵⁶$ in the properties of the noise which is expected to give an⁵⁹⁶ $57\frac{\sqrt{5}}{2}$ indication of an approaching transition. Figure 7 shows the space 572° persistence plotted as a function of time *t*. We see a clear in-⁵⁹⁸ $57\frac{\mu}{\epsilon}$ crease in the persistence directly preceding the tipping point⁵⁹⁹ $\overline{\mathbf{57}}$ around $t = 1000$. **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

575 We make a final comment regarding Figure 6 and its relation⁶⁰¹ $\overline{\text{576}}$ to our choice of ARMA(1,0) and ARMA(0,0) as base models.⁶⁰² $\overline{\mathbf{57}}$ In Faranda *et al.* ¹⁰ this choice was guided by the fact that for 578 the time series under consideration the order, i.e. $p+q$, of the⁶⁰⁴ ₅₇₉ intervals was clustered around 1, and as the authors explicitly⁶⁰⁵ 580 excluded pure moving-average processes, they concluded that⁰⁰⁶ 581 ARMA(1,0) was the appropriate base model. However, from 507 582 Figure 6 we see that for the time series currently under con-⁶⁰⁸ 583 sideration, the order is clustered around 0. This observation⁶⁰⁹ ⁵⁸⁴ further strengthens the case for using ARMA(0,0) as an ad-585 ditional base model. We hypothesize that the dominance of 11 $ARMA(0,0)$ is related to the low degree of noise in the sys $⁶¹²$ </sup> 587 tem, which makes the restoring force that returns the system⁶¹³ 588 to equilibrium less prominent, hence obscuring tendency of 514 ⁵⁸⁹ the random-walk to be attracted to a metastable state.

⁵⁹⁰ B. Noise-induced Tipping

 To induce N-tipping, we fix the hosing parameter *H* and apply additive white noise to all the equations equally. The noise term is added equally to (10)-(13), with the same noise 323 amplitude in all cases. We look at transitions from the upper branch to the lower branch and *vice versa*. In either case,

it is convenient to choose a value for H that is close to the bifurcation point, as the probability of transitioning is much higher in these regions, and hence one does not need high amplitude noise to induce transitions between the branches. Figures 8 and 9 show two time series undergoing noise induced tipping, one going from the lower to the upper branch, while the other going the other way around. In the first case $H = -0.25$, while in the second $H = 0.24$. The amplitude of the additive white noise is the same in both cases. For the window length τ , we have chosen a length of 350 and 200 points, corresponding to about 70 and 41 years, respectively. The window length is chosen so that it is at most half as long as the transition time, which is taken to be the time for the system to arrive at the other equilibrium once it has crossed the unstable branch. Of course, when dealing with simulation data such as this, we have the advantage of knowing where the stable and unstable branches are, which is an advantage that anyone dealing with real-world data does not have. In principle one could use the clustering methods proposed by $\frac{1}{615}$ Kaiser *et al.* ¹³ to approximate the window length, although ⁶¹⁶ this method also requires that one knows how many clusters, ⁶¹⁷ i.e., equilibrium states, one should look for. The clustering ⁶¹⁸ method works particularly well for noise induced transitions, ⁶¹⁹ as one can repeatedly induce transitions back and forth, to ⁶²⁰ gain an ensemble of transitions, yielding a higher degree of accuracy.

In previous works, the choice of τ has largely been guided by a desire to ensure the stationarity of the time series intervals. However, as we are not requiring the individual time series segments to be stationary *a priori*, we are permitted to use

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP
E Publishing

FIG. 10: Noise-induced tipping of $S_N(t)$ for $H = -0.25$, ⁶³⁸ $\tau = 350$, color coded according to the value of (a) *p* and (b)⁶³⁹ *q*. For clarity we have also plotted is *p* and *q* as functions of 640 time in (a) and (b), respectively.

FIG. 11: Noise-induced tipping of $S_N(t)$ for $H = 0.24$, $\tau = 200$, color coded according to the value of (a) *p* and (b) ϵ *q*. For clarity we have also plotted is *p* and *q* as functions of time in (a) and (b), respectively.

⁶²⁶ much longer time series intervals. In the world of ARIMA 627 fitting a time series of length above 200 points would gen-668 ⁶²⁸ erally be considered a very long series, however, we should 629 keep in mind that the sampling frequency of our simulated 60 630 data is quite high; in fact, there are 5 points per time unit (i.e. 50 631 year), yielding a total of 10000 points for the 2000 years of ϵ ⁶³² simulations. An interval consisting of 200 points corresponds 633 to around 40 years, which is not an unreasonably long times

FIG. 12: Rate-induced tipping of *SN*, color coded according to the value of ϒ. The moving equilibria are plotted in gray, with the dashed line denoting the unstable branch. Compare this figure to Figure 14a, which shows the same time series, but color coded according to the value of *q*.

interval for the dynamics of the AMOC. When fitting an ⁶³⁵ ARIMA model to a time series, one wishes to avoid too long ⁶³⁶ time series to avoid including events from the past that no ⁶³⁷ longer have any relevance for the future. This, and not the inherent inaccuracy of the fit itself, is the primary reason for limiting the length of a time series.

 Returning to Figures 8 and 9, we note that there are a few brightly colored points indicating a high degree of insta- bility. There are for example, in both cases, several points in the middle of the gap between the two stable branches, indi- cated by solid gray lines in the figure. This is consistent with ₆₄₆ the results of Kaiser *et al.* ¹³. In addition, for the transition \mathbb{P}_{647} from the lower to the upper branch, Figure 8, there are several brightly colored points just after the system has reached the upper equilibrium branch. Although it is not so clear in the 650 figure due to the presence of noise, any time S_N returns to the upper equilibrium branch it initially overshoots and then oscillates around the equilibrium value with continuously decreasing amplitude (see Figure 13 for a clearer example of this behavior). This is probably due to the presence of an unstable limit cycle, and the aforementioned sub-critical hopf bifurcation. Hence, we see it as an encouraging sign that the indicator seems to be able to identify these points as well. We further note that, although the result is not shown, the high T value points in figure 8 and 9 correspond to points where $\Delta_1 \text{BIC}(p,q)$ is negative, as was the case for the B-tipping example in the previous section.

 662 Looking at the *p* and *q* values in Figures 10 and 11, it is clear 663 that high values of Υ correspond to high values of q , while the connection between p and Υ remains uncertain. However, we note that the high Υ values appearing around the transition 666 correspond to high values of both p and q , and consequently ⁶⁶⁷ also of persistence (result not shown).

⁶⁶⁸ C. Rate-induced Tipping

To induce R-tipping we fix H_{pert} below the bifurcation value, ensuring that both equilibria still exist and are stable, and vary T_{fall} . We set $T_{rise} = 100$ and $T_{pert} = 400$, while $H_{pert} = 0.37$. This corresponds to an increase in the freshwater fluxes F_T and F_N , corresponding to the flux into the tropical

An Interdisciplinary Journal of Nonlinear Science Chaos

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP
E Publishing

The *Υ indicator* for Early Warning 10

FIG. 13: S_N as a function of time, color coded according to the value of Υ for $T_{fall} = 280$. With these parameter values, the system does not tip, but returns to the upper equilibrium branch after some time. Note that the system initially

overshoots the stable branch upon return. This is probably due to the presence of the unstable limit cycle. The equilibrium branches are plotted in gray, with the dashed line denoting the unstable branch.

FIG. 14: Rate-induced tipping of $S_N(t)$, color coded according to the value of (a) *q* and (b) *p*. The value for *q* and *p* are also plotted as functions of time in (a) and (b), respectively.

674 and North Atlantic boxes, by approximately 25% and 10%, re-690 675 spectively. Next, we observe that for $T_{fall} = 280$ the systems 676 returns to the upper equilibrium branch, while for $T_{fall} = 320$ 692 ⁶⁷⁷ the system transitions to the lower branch. The transition ⁶⁷⁸ happens even though the bifurcation boundary has not been ⁶⁷⁹ crossed. Again, we note that some additive white noise has ⁶⁸⁰ been applied to allow for ARIMA fitting. ⁶⁸¹ Figure 12 shows a time series undergoing rate-induced tip-682 ping, with the color coding corresponding to the values of Υρο 683 Again, we have chosen $\tau = 350$ points, corresponding to 70. ⁶⁸⁴ years. We see several brightly colored points, indicating a 685 high degree of instability, before the system transitions. These of 686 points occur initially as the system approaches the unstable o2 687 branch (between approximately $t = 350$ and $t = 500$). These ϵ 688 points do not appear for the time series that does not tip, Fig-704

FIG. 15: S_N as a function of time, color coded according to the value of (a) *q* and (b) *p*, for $T_{fall} = 280$. For these parameter values, the system does not tip, but returns to the initial equilibrium after some time *t*. For clarity, *p* and *q* are also plotted as functions of time in (a) and (b), respectively. It is instructive to compare these plots to Figure 13.

FIG. 16: Persistence of a time series undergoing rate-induced tipping, plotted as a function of time. The underlying series is the time series shown in Figure 12. We see several high persistence values, corresponding with a high value for the order, $q + p$ (compare with Figure 14), appearing before the potential tipping point around $t = 500$.

⁶⁸⁹ ure 13, despite the fact that within this time interval, the two time series are virtually identical, and could therefore be an indication of an approaching tipping point. However, again looking at Figure 13 we see some brightly colored points, corresponding to large Υ , in the interval $t = 600$ to $t = 750$, and it is unclear what approaching instability these points would be indicative of, and thus might be regarded as false signals.

⁶⁹⁶ Looking at Figure 14, it becomes clear that the high values of Υ found in Figure 12 correspond to high values of *q*, while a comparison with Figure 16, gives the same indication for the persistence. In other words, high values of Υ primarily correspond to high values of persistence and *q*.

From Figure 13, we can also see how the indicator correctly identifies the unstable limit cycle, which we have argued causes the overshoot when returning to the upper equilibrium branch. Figure 15 shows the same time series as in Figure 13,

An Interdisciplinary Journal of Nonlinear Science Chaos

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP
Enblishing

 color coded according to the values of *q* and *p*. While high values of q seem to be associated with increased instability, the high values of *p* primarily occur as the system returns to the equilibrium. We would therefore suggest that high val- ues of the autoregressive order, *p*, should be interpreted as an indication that the system is following a moving equilibrium branch. Comparing Figures 16 and 14a it becomes clear that the points with high *q* value around $t = 1000$, correspond to particularly high values of persistence, even when compared to other points of similar order. We also note that, as in the previous two tipping scenarios, the high Υ values, or equiva-lently high *p* values,

 717 We end this section with a brief comment on the rate-induced 718 tipping example presented in this section. In this example the $\frac{1}{761}$ ⁷¹⁹ system is, as it undergoes rate-induced tipping, approaching a_{res} $\frac{1}{720}$ bifurcation boundary. It would be instructive to study a case in $\frac{1}{763}$ $\frac{720}{784}$ which this is not the case to ensure that the detected instabil- $\frac{764}{764}$ 722 ity is not merely due to the approaching bifurcation boundary. $72\frac{1}{30}$ However, as one would need to look at different model exam- $72\frac{2}{5}$ ples than those presented here, this is outside the scope of the $\frac{2}{767}$ 725 current work.

⁷²⁶ IV. COMPARISON WITH OTHER EARLY WARNING $72\overline{2}$ INDICATORS

 $\begin{array}{c}\n\circ \\
\hline\n\downarrow \\
\hline\n\downarrow \\
\hline\n\downarrow\n\end{array}$ As briefly alluded to in the introduction, it is well estab- $72\overline{6}$ lished that bifurcation-induced tipping is generally preceded 730 by an increase in lag 1 autocorrelation and variance (Lenton⁷³ ϵt *et al.* ³³, Dakos *et al.* ³⁴, Boers²⁴). The intuition behind $73\frac{3}{21}$ this is that as the system approaches a bifurcation point, ⁷³³ the potential well flattens out, reducing the speed at which $73\frac{1}{22}$ the system recovers from a perturbation, so called "critical 734μ slowing down", which should manifest as an increase in the 75μ variance and autocorrelation of the time series. However, the₇₆ 737 variance and autocorrelation might also increase for other-⁷³⁸ reasons, in particular if the properties of the noise changes₇₇₈ 739 What happens to the autocorrelation and variance when the₇₉ ⁷⁴⁰ system approaches a rate-induced tipping point is thus far ⁷⁴¹ unclear, although it is conceivable that the "critical slowing ⁷⁴² down" hypothesis still holds for this type of tipping, see 743 Ritchie and Sieber⁹. Obviously, it does not hold true for time ⁷⁴⁴ series undergoing purely noise induced tipping, as there is no ⁷⁴⁵ change in the potential well. However, the autocorrelation ⁷⁴⁶ and variance of the time series will dramatically change as ⁷⁴⁷ the system crosses the unstable equilibrium branch and enters ⁷⁴⁸ a different potential well. **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

 In what follows, we will compare these classical indicators to the ϒ indicator for rate-induced and bifurcation-induced tipping in the AMOC 3-box model. It is instructive to just 752 look at the part of the time series prior to the transition, as in general one wishes to be able to detect early signs of the transition *before* it happens. For the time series undergoing bifurcation-induced tipping (Figure 4) we chose a segment τ ⁵⁶ consisting of the points between approximately $t = 200$ and τ τ_{57} $t = 1100$. For the time series undergoing rate-induced tipping. (Figure 13), we choose a segment consisting of the points be- 799 759 tween $t = 200$ and $t = 700$. This segment is in all probability too

FIG. 17: Autocorrelation, Variance and ϒ plotted as functions of time for a time series undergoing B-tipping. The increase in the variance as one approaches the tipping point is clear, while the increase in autocorrelation is less clear.

⁷⁶⁰ too long, meaning that it also contains the transition itself, as opposed to only points prior to the transition. However, this is the inherent difficulty with rate induced tipping; there is ⁷⁶³ currently no way to analytically determine *when* the transition happens, and one largely has to guess. Based on Figures 12 and 13, one could potentially conclude that the tipping point is found somewhere between $t = 400$ and $t = 600$, but this is pure guess work. For this reason we have included points up 768 until $t = 700$.

770 Given a set of measurements Y_1, Y_2, \dots, Y_N the sample ⁷⁷¹ variance is defined as

$$
\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}
$$
 (19)

while the lag k autocorrelation is given by

769

$$
r_k = \frac{1}{N\sigma^2} \sum_{i=1}^{N-k} (Y_i - \overline{Y}) (Y_{i+k} - \overline{Y})
$$
 (20)

where \overline{Y} denotes the sample mean of the series Y_1, Y_2, \dots, Y_N 276 (see for example chapter 2 of Box, Jenkins, and Reinsel 35). Although time does not enter explicitly in the formulas, it is assumed that the measurements are taken at regular intervals.

When computing the variance and autocorrelation it is essential that the signal is properly detrended; otherwise any trend will immediately obscure the relevant dynamics. As for the Υ indicator, one generally employs a rolling window approach, with an appropriately chosen window length τ . bes Lenton *et al.* 33 demonstrated that detrending can be done within each time window, as opposed to on the whole time series at once, without significantly changing the result. We ⁷⁸⁸ have chosen this same approach, using linear detrending, as ⁷⁸⁹ opposed to quadratic or higher order detrending methods, to remove the trend. The window length τ was set to 350 points, corresponding to 70 years.

Figures 17 and 18 show the autocorrelation, variance and Υ plotted as functions of time. The peaks in Υ preceding the transition are clear, as is the increase in variance and autocorrelation, at least in the case of R-tipping, provided the tipping point is approximately at $t = 450$. For B-tipping, there appears to be a clear increase in the variance preceding the tipping point, provided the tipping point happens around

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

 063

AIP
E Publishing

The *Υ indicator* for Early Warning 12

FIG. 18: Autocorrelation, Variance and ϒ plotted as functions of time for a time series undergoing R-tipping. Assuming that the tipping point is around t=450, one can clearly see an increase in both autocorrelation and variance prior to the tipping point.

FIG. 19: Time series with colored noise but no tipping points, color coded according to the value of ϒ.

 $t = 850$ (see Figure 4 for comparison). The expected increase $\frac{1}{2}$ in autocorrelation is, however, less clear.

 $\frac{1}{2}$ It is possible that the high degree of autocorrelation in the ⁸⁰⁴ 3-box model, as observed in Figures 17 and 18 is correlated ⁸⁰⁵ to the frequent failure of the ARMA(1,0) model, whereby ⁸⁰⁶ failure we mean that the autoregressive coefficent, sometimes \bullet ¹¹ referred to as the AR1 coefficient, violates the stationarity $\overline{\text{1}}$ condition, and resulting in ARMA(1,0) being excluded as a $\overline{\text{800}}$ possible candidate model. **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

⁸¹⁰ As already noted, the upper equilibrium branch does not $\overline{\text{min}}$ lose stability due to a saddle node bifurcation, but rather ⁸¹² loses stability due to a sub-critical Hopf bifurcation. It 813 is possible that classical indicators are struggling to pick⁸²¹ 814 up on this. Furthermore, the noise amplitude is kept low⁸²² 815 to avoid noise-induced tipping, which might make it dif³²³ ⁸¹⁶ ficult for the indicators to pick up on changes in the dynamics. 817

⁸¹⁸ The autocorrelation and variance of a time series can in-819 crease for reasons that have nothing to do with an approaching⁸²⁵ 820 tipping point. Hence, we wish to see how the Υ indicator re- $\frac{826}{827}$

FIG. 20: Autocorrelation, Variance and ϒ plotted as functions of time for a time series with colored noise but no tipping points. All three indicators show a dramatic increase, falsely suggesting an upcoming tipping point.

FIG. 21: Time series with colored noise and no tipping points, corresponding to equation (21), color coded according to the value of (a) *q* and (b) *p*.

FIG. 22: The values of *p* and *q* for the colored noise time series, averaged with a window length of 50 points, corresponding to 25 non-dimensional time units.

sponds to colored noise, whose variance and autocorrelation increases with time t . To this end, we construct an artificial time series of the form

$$
\frac{dx}{dt} = -5x + \xi(t)
$$
 (21)

where $\xi(t)$ is autocorrelated colored noise. $\xi(t)$ is in effect modelled as an $ARMA(1,0)$ process whose AR1 coefficient increases linearly in time. In addition, the variance of this ⁸²⁸ process also increases linearly in time. This is equivalent to ϵ_{229} the example presented in Boers²⁴. Applying the Y indicator 830 to this time series yields the result shown in Figure 19. Figure 831 20 shows a comparison between the autocorrelation, variance 832 and value of Y for the same time series. All three indicators show a dramatic increase, despite there being no approaching ⁸³⁴ tipping point. However, looking at the plot of the time series 835 when color coded according to the values of p and q , Figure 836 21, a curious pattern emerges: the increase in Υ is largely associated with increased *p* value. Looking at Figure 22 the trend becomes even clearer: here we have computed the ⁸³⁹ rolling average of the *p* and *q* values with a window length

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP
E Publishing

The *Υ indicator* for Early Warning 13

840 of 50 points corresponding to 25 non-dimensional time units. We see that while the average value of q goes towards zero $\frac{1}{2}$ for large *t*, the average value of *p* settles around one. The 843 general trend is independent of the choice of window length, provided the window length is between 30 and 300 points. This behavior is unlike what was observed for the 3-box 846 model. The high values of Y were associated with a high value of *q*. We thus argue that high values of *q* were associated with increased instability, while high values of *p* were more indicative of the system following a moving equilibrium. Thus, one would, through the distinction between *q* and *p* values, potentially have a way of distinguishing the effect of colored noise from real early warning signals. However, it is conceivable that the result for the artificial colored noise

⁸⁵⁴ time series is a consequence of how we have constructed the

⁸⁵⁵ colored noise, so further studies on this are warranted. 856

 857 Finally, we note that the constructed colored noise time⁸⁹⁴ sse series is a very artificial example of colored noise, as the⁸⁹⁵ ⁸⁶⁶ noise amplitude increases by a probably unrealistic amount,⁸⁰⁶ 860_c and when applied to any reasonable time series it would⁸⁹⁸ 863⁸⁹⁹ obscure the dynamics altogether. This is to say that although⁸⁹⁹ $\overline{\text{662}}$ we can likely assume that the noise in real-world data is $\overline{\text{68}}$ $\sum_{\substack{80 \leq x \\ 002}}$ autocorrelated, it will be much more subtle, and not result in $\sum_{\substack{902}}$ $\overline{\mathcal{B}}$ equally high values of Υ .

**86ED V. APPLICATION TO SIMULATION DATA FROM CESM2
006**

866 So far, we have only applied the dynamic stability indica-
866 so far, we have only applied the dynamic stability indicator to data from a very simplified model. The actual ocean₀₀₉ $\overline{\mathbf{868}}$ has many more degrees of freedom and the response could **86** be quite different. Nevertheless, it is of interest to see how₉₁₁ $\frac{870}{870}$ the indicator responds when applied to such a system. To this $\overline{\mathcal{B}}$ end, we employ data from the earth systems model CESM2₉₁₃ $\mathsf{B72}^{\perp\perp}$ under two climate scenarios: one in which the atmospheric₉₁₄ 873° CO₂ concentration is abruptly doubled and another in which $_{215}$ 874 it is abruptly quadrupled. Both simulations were initialized₉₁₆ 875 using a pre-industrial control run (*piControl*) and then run for₉₁₇ 876 500 years. The CO₂ was then increased, at $t = 6000$ months. 877 The data was saved at monthly intervals and the seasonal cy_{919} 878 cle was removed prior to the analysis. Such an abrupt change₉₂₀ 879 in CO₂ represents an extreme forcing, and contrasts with the $_{221}$ 880 ramped-up hosing employed with the idealized model. How-881 ever, the oceanic response is not instantaneous, but requires 2_{22} 882 3 decades for freshwater to circulate in the model's sub-polar $_{224}$ $_{883}$ gyre²⁷. We consider this more hereafter. **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

884 A. Abrupt $4 \times CO_2$

885 The time series of a monthly-mean density difference, $\delta \rho_{\text{0.830}}$ 886 and AMOC strength, V_{AMOC} , are shown in Figure 23 for the 31 887 case of abrupt $4 \times CO_2$. The density difference, a measure dy-932 sss namically linked to the AMOC strength (Madan *et al.* ²⁷), is 889 calculated from the difference in surface densities averaged in 890 boxes to the north and south of the North Atlantic Current. 891 The surface density is calculated using the thermodynamicss

FIG. 23: CESM2 model with abrupt $4 \times CO_2$, where the monthly density difference (blue) is plotted together with the maximum AMOC flow strength (red). Note that the $CO₂$ was increased at t=6000 months.

equation of state of seawater as per UNESCO 1983 Report³⁶. 893 The AMOC strength is calculated as the monthly maxima of meridional overturning stream function between 20*oN*-60*^o* ⁸⁹⁴ *N* and below 450 m depth.

Shortly after the quadrupling of $CO₂$, there is an abrupt transition followed by a dramatic increase in the variance. We will apply the indicator to the density difference time series, although one could of course apply the same analysis to the AMOC strength.

We choose a window length of 250 data points, corresponding ⁹⁰³ to exactly 20 years of monthly data. Figure 24 shows the den-904 sity difference, $\delta \rho$, color coded according to the values of Υ . We only display the part of the time series close to the transition, as this is of primary interest. The point at which the 907 CO2 concentration is abruptly increased, at $t = 6000$ months, is indicated by a dashed line.

The increase in Υ during the early part of the AMOC weakening process is apparent. Note in particular the three sharp peaks shortly after time $t=6000$. Figure 25 again shows the time series, now color coded according to the values of q and p. The latter are also plotted for further clarification. From this plot, it becomes clear that the most common fit prior to the transition is the $ARMA(1,0)$ process, which aligns with the **b16** observations of Faranda *et al.* ¹⁰. After the weakening phase, the value of p is generally an order higher, presumably related to the dramatic increase in the variance. The three sharp peaks in the plot of Υ appearing around time $t = 6300$ correspond to high values of q . The gradual increase in Υ preceding these peaks is presumably due to the increase in the persistence (not shown). The *q* component exhibits peaks prior to $t = 6000$, when the forcing is applied and these are reflected in small peaks in Υ. These are obviously not connected to the AMOC ⁹²⁵ weakening. Following the initial weakening phase, the value ⁹²⁶ for ϒ remains high, probably a result of the increase in the *p* 927 value. However, the values of Υ do not go above 0.4 which ⁹²⁸ is considerably smaller than the values found for the 3-box ⁹²⁹ model. In addition, from our previous discussion on the response of the Υ indicator to colored noise, it is conceivable that the increase in Υ observed from in the CESM2 data is primarily caused by changes in the noise amplitude, and not as a consequence of inherent instability of the underlying dynamics.

Furthermore we note that, although the result is not explicitly shown, for the CESM2 data ΔBIC_1 is always smaller than

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

S)

AIP
E Publishing

FIG. 24: Time series of monthly density changes for abrupt $4 \times CO_2$, color coded according to the value of Y. The window length is 250 points, corresponding to exactly 20 years. The dashed line indicates the point when the CO2 concentration abruptly changes.

FIG. 25: Time series of monthly density changes for abrupt $\frac{1}{100}$ $4 \times CO_2$, color coded according to the value of (a) *q* and (b) ϵ *p*. The value for *q* and *p* are also plotted as functions of time in (a) and (b), respectively.

937 $\triangle BIC_0$, and the $\triangle BIC_1$ values are at no point negative, im-973 938 plying that the autoregressive coefficient in the $ARMA(1,0)$ 74 939 model always satisfy the stationarity constraints. This differsors 940 from what was observed in the 3-box model and is presum-976 941 ably related to the difference in the observed Υ values. 942 However, we emphasize that it is not clear if one in actuality by a 943 can compare values of Υ between datasets. For the autocor-979 relation and the variance it is typically assumed that it is thesso ⁹⁴⁵ change *within* the dataset that is significant, rather than the ab-⁹⁴⁶ solute numerical values. 947 For completeness, we have included a comparison between Y₉₈₃ ⁹⁴⁸ and two other statistical early warning indicators, namely au-

949 tocorrelation and variance. This is shown in Figure 26. In 950 all cases, the window length is 250 points, corresponding to to 100 as 951 approximately 20 years. All three indicators show a clear in- 953 crease shortly after time t = 6000.

FIG. 26: Autocorrelation, variance and ϒ plotted as functions of time for the case of abrupt $4 \times CO_2$.

FIG. 27: CESM2 model with abrupt $2 \times CO_2$, where the monthly density difference (blue) is plotted together with the maximum AMOC flow strength (red).

956 B. Abrupt $2 \times CO_2$

957 The time series of the monthly density difference, $\delta \rho$, and 958 AMOC strength, ψ_{AMOC} , in the case of abrupt $2 \times CO_2$ is P_{959} shown in Figure 27. Again, we only apply the indicator to the ⁹⁶⁰ density difference data, and choose the same window length 961 as in the case of abrupt $4 \times CO_2$. Figure 28 shows an ex-⁹⁶² cerpt of the density difference time series close to the initial 963 weakening, as well as a plot of the Υ values. A weakening is ⁹⁶⁴ clearly seen in the model's own AMOC measure, and is also ⁹⁶⁵ accurately captured with the measure based on the density difference across the Gulf Stream (Fig. 27).

The first thing to note is how small the Υ values are compared 968 to what we have seen previously; on the order of 10^{-2} . It ⁹⁶⁹ should, however, be noted that the ∆BIC values are well above $\frac{1}{270}$ the significance threshold²⁹. Figure 29 shows the density dif- 971 ference time series color coded according to the value of *q* and \mathfrak{p}_2 *p*. From this, we again see that prior to the increase in CO₂, the most common fit is the $ARMA(1,0)$ process, while after the initial weakening phase the p values show a clear increase. The *q* value, on the other hand, does not exceed 2, indicating a very low degree of memory in the noise term. Since we have ⁹⁷⁷ by now clearly demonstrated a correlation with the value of Υ and the value of *q*, this should provide an explanation as to why we see such low values of Υ. From this analysis, one would conclude the system does not appear to be approaching a tipping point. Indeed, the measure suggests that the weak-⁹⁸² ening in the overturning in this case with reduced forcing is not associated with a loss of dynamical stability. Once more we have, as shown in Figure 30, included a comparison with other early warning indicators. The autocorrelation and variance show a dramatic increase around time t=6000, which corresponds to the appearance of the cluster of sharp peaks in the time series plot for Υ .

An Interdisciplinary Journal of Nonlinear Science Chaos

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP
E Publishing

The *Υ indicator* for Early Warning 15

FIG. 28: Monthly density changes, $\delta \rho$, for abrupt $2 \times CO_2$ ¹⁰⁰⁸ (blue) and the value of Υ (green) plotted as functions of time. The dashed line indicates the point when the $CO₂$ concentration abruptly changes.

FIG. 29: Time series of monthly density changes for abrupt $2 \times CO_2$, color coded according to the value of (a) *q* and (b) μ PLEASE *p*. The value for *q* and *p* are also plotted as functions of time in (a) and (b), respectively.

993 VI. DISCUSSION

994 In summary, we analysed an indicator for dynamical 995 stability based on ARMA modelling as a way to detectors 996 transitions in complex systems. A detected need for higher 997 order terms in the ARMA model fitted to moving windows of ₁₀₄₅ 998 a timeseries is related to diverging memory properties, which 999 are expected to arise when approaching a transition to a new 1000 equilibrium state. The rationale behind this indicator is that.

FIG. 30: Autocorrelation, variance and Υ plotted as functions **property** of time for the case of abrupt $2 \times CO₂$

 it uses a broad family of linear statistical models that can be ₁₀₀₂ fitted even on short time series and which have proven their $\frac{1}{2}$ 003 utility in many contexts (see Brockwell and Davis²⁸). That the underlying models do not require long time series is an advantage when employing a sliding window approach on limited data sets. The method generalizes classical metrics of instability, and allows one to extract more global dynamical information from the time series data.

The indicator was tested on time series data from a 3-box ¹⁰¹⁰ model of the AMOC, where three categories of critical ¹⁰¹¹ transitions, namely B-, N-, and R-tipping, were explored. In ¹⁰¹² all cases the transition is identified by the indicator, albeit it $_{10}$ ¹⁰¹³ is not always easy to interpret the signal. In the rate-induced $\sum_{n=1}^{\infty}$ tipping scenario a comparison between the avoided tipping $\sum_{2,0}^{10}$ and the tipping cases shows a response of the indicator prior $\frac{1}{1016}$ to the transition only in the tipping case although the time $\frac{1}{1014}$ series are nearly identical at this stage. The indicator also \sin successfully identifies the unstable limit cycle when returning ¹⁰¹⁹ to the upper equilibrium branch. We similarly see fairly clear ¹⁰²⁰ signals in the bifurcation-induced tipping scenario prior to the ¹⁰²¹ transition. For the case of noise-induced tipping, the signal is ¹⁰²² less clear, obscured by the high amplitude noise. However, θ_{1023} when going from the lower to the upper equilibrium branch 1.5 ¹⁰²⁴ the indicator signals an increased degree of instability in ¹⁰²⁵ accordance with the presence of the unstable limit cycle.

1028 The primary drawback of the Y indicator is that it is ¹⁰²⁹ computationally quite expensive, at least compared to the ¹⁰³⁰ autocorrelation and variance, and that, due to its complexity, ¹⁰³¹ the results can be harder to interpret. We therefore suggest ¹⁰³² that the indicator should be applied with care, and preferably in combinations with other measures of instability, like the increase in the order, $p + q$, and the persistence. Although the current scaling with τ , see equation (3), seems to yield ¹⁰³⁶ reasonable results, it is certainly possible that another scaling ¹⁰³⁷ would be preferred. It is also possible that this is problem-¹⁰³⁸ dependent. This uncertainty regarding the correct scaling ¹⁰³⁹ is certainly a drawback, but we argue that this problem can ¹⁰⁴⁰ largely be circumvented by including an examination of the ¹⁰⁴¹ persistence and order values. However, it would still be advantageous to have an indicator whose values were to have a clear meaning in terms of the stability of the system, and it is not clear if the Υ indicator as it stands achieves this, partly due to the aforementioned issue with the choice of the correct scaling. Although we have attempted to make some comparison to other early warning indicators, like the increase in autocorrelation and variance, we are not claiming 1049 that the Y indicator is in any way better than these other ¹⁰⁵⁰ indicators, rather that it can act as a complementary approach, ¹⁰⁵¹ as it can allow one to extract more information from time ¹⁰⁵² series data. For example, we have suggested, that it might be ¹⁰⁵³ helpful in identifying the effects of colored noise, something ¹⁰⁵⁴ the other indicators struggle with.

¹⁰⁵⁶ Furthermore, we note that it is conceivable that one would wish to exclude white noise and pure moving-average, ¹⁰⁵⁸ MA(1), processes when doing the fitting, as was done in the

An Interdisciplinary Journal of Nonlinear Science Chaos

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP
E Publishing

The *Υ indicator* for Early Warning 16

1060 modified definition of the Y indicator would of course nous code used for the numerical analysis. longer be valid, as the ARMA(0,0) process is excluded, and thus cannot be used as a base model. In this case one might 1063 argue that the points where Δ_1 BIC are negative should either₁₁₆ be ignored completely, or one should assume that the best fit is in fact the ARMA $(1,0)$ process and the algorithm is being too strict it its enforcement of the auxiliary conditions on 1067 the fitting parameters. This would of course lead to different results than what has been presented here, and is an option worth considering.

¹¹²¹
1071 When considering a full complexity AMOC model $a_{\text{R}_{22}}$ 1072 arising from a global climate model (CESM2) many more 23 1073 degrees of freedom are involved. This has two consequences.¹²⁴ 1074 firstly, the pure categories of tipping cannot really be expected⁴²⁵ 1075 anymore and secondly, the tipping behaviour might disappearing 1076 altogether as the added degrees of freedom may stabilize the 28 107% system.

1078 When applied to the CESM2 data, the results were mixed.¹³⁰ 1079 The measure exhibited a significant increase in Y under the¹³³¹ 1080 more severe $4xCO₂$ forcing but much less variability with $\frac{1}{3}$ ϵ_{1081} the weaker 2xCO₂ forcing. Hence the measure only registers ϵ_{134} $_{1082}$ larger changes in AMOC as associated with dynamically un 1083 stable behavior. Indeed, it is possible that the model AMOC¹³⁶ 1084 experiences a continuously shifting steady state, rather than 1085 making a transition between two distinct states as in \log_{139} 1086 dimensional models. The results from the doubling CO₂₁₄₀ 108^{\pm} experiment seems to support this hypothesis. Other members⁴¹ 1088 of the CMIP6 ensemble exhibiting very different AMOC¹⁴² $\frac{108}{208}$ weakening from the same forcing, with some declining by $\frac{1143}{2144}$ $\overline{\text{cos}^2}$ only 15% and others falling by 80%²⁷, and this suggests a $_{109}$ continuum of different responses. **PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694**

1092 While the results for $4 \times CO_2$ suggest a loss of dynamical⁴⁷ 10937 stability during the AMOC weakening phase, concluding on¹⁴⁸ $\overline{1094}$ the tipping behaviour would require a more in depth analysis- $\overline{1000}$ along the lines done in Hawkins *et al.* ²³; in this paper the 1096 bi-stability is clearly demonstrated by exploring a range of s2 1097 hosing experiments. Although we are confident that the T⁵³ 1098 indicator can be used to assess the stability of such complex $\frac{1154}{1156}$ 1099 systems, as was already demonstrated in previous works b_{156} 1100 Nevo et al.¹², concluding on the ability to detect critical 1101 transitions would require a full analysis of the hysteresises
hobeyiour of the system ¹¹⁰² behaviour of the system.

1103 ACKNOWLEDGMENTS

¹¹⁰⁴ This research has been partly funded by the Deutsche ¹¹⁰⁵ Forschungsgemeinschaft (DFG) through grant CRC 1114 1106 "Scaling Cascades in Complex Systems", Project Number¹¹⁶⁸ 1107 235221301.

1108 LaCasce was supported in part by the Rough Ocean project. ¹¹⁰⁹ number 302743, from the Norwegian Research Council. 1110 The computations for CESM2 data were performed on re¹¹⁷³ ¹¹¹¹ sources provided by Sigma2 - the National Infrastructure for $\frac{1174}{1175}$ 1112 High Performance Computing and Data Storage in Norway. 1176 ¹¹¹³ The authors thank Davide Faranda for stimulating discussions₁₇₇

1059 earlier studies by Faranda et al.¹⁰. In such a scenario the 14 and Amandine Kaiser for help with the development of the

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

1121 ¹T. M. Lenton, "Environmental Tipping Points," Annual Review of Environment and Resources 38, 1–29 (2013), publisher: Annual Reviews.

223 ²P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox, "Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system," Phil. Trans. R. Soc. A 370, 1166-1184 (2012), ¹¹²⁶ doi:10.1098/rsta.2011.0306.

 $3M$. Scheffer, E. H. Van Nes, M. Holmgren, and T. Hughes, "Pulse-driven loss of top-down control: the critical-rate hypothesis," Ecosystems 11, ¹¹²⁹ 226–237 (2008), doi:0.1007/s10021-007-9118-8.

4 ¹¹³⁰ S. Wieczorek, P. Ashhwin, C. Luke, and P. M. Cox, "Excitability in ramped systems: The compost-bomb instability," Phil. Trans. R. Soc. A ¹¹³² 467, 1243—126 (2011).

h₁₃₃ ⁵P. E. O'Keeffe and S. Wieczorek, "Tipping phenomena and points of no return in ecosystems: Beyond classical bifurcations," SIAM Journal on Applied Dynamical Systems 19, 2371–2402 (2020).

6 ¹¹³⁶ S. Wieczorek and C. Perrymann, "Adapting to a changing environment: Non-obvious thresholds in multi-scale systems," Proc. R. Soc. A 470, 20140226 (2014).

 $\frac{1}{4}$ 139 ⁷P. Ashwin, C. Perrymann, and S. Wieczorek, "Parameter shifts for nonautonomous systems in low dimension: bifurcation- and rate-induced tipping," Nonlinearity 30, 2185–2210 (2017).

1142 ⁸A. Vanselow, S. Wieczorek, and U. Feudel, "When very slow is too fastcollapse of a predator-prey system," Journal of theoretical biology 479, 64– 72 (2019), doi: 10.1016/j.jtbi.2019.07.008.

A₄₅ ⁹P. Ritchie and J. Sieber, "Early-warning indicators for rate-induced tipping," ¹¹⁴⁶ Chaos 26, 093116 (2016), doi:10.1063/1.4963012.

¹⁰D. Faranda, F. M. E. Pons, E. Giachino, S. Vaienti, and B. Dubrulle, "Early warnings indicators of financial crises via auto regressive moving average models," Communications in Nonlinear Science and Numerical Simulation 29, 233-239 (2015), doi:10.1016/j.cnsns.2015.05.002.

 11 D. Faranda, B. Dubrulle, and F. M. E. Pons, "Statistical early-warning indicators based on autoregressive moving-average models," Journal of Physics A: Mathematical and Theoretical 47, 252001 (2014), doi:10.1088/1751-8113/47/25/252001.

¹²G. Nevo, N. Vercauteren, A. Kaiser, B. Dubrulle, and D. Faranda, "Statistical-mechanical approach to study the hydrodynamic stability of the stably stratified atmospheric boundary layer," Phys. Rev. Fluids 2, 084603 ¹¹⁵⁸ (2017), doi:110.1103/PhysRevFluids.2.084603.

¹³ A. Kaiser, D. Faranda, S. Krumscheid, D. Belusic, and N. Vercauteren, "Detecting regime transitions of the nocturnal and polar near-surface temperature inversion," Journal of the Atmospheric Sciences, AMS 77, 2921–2940 (2020), doi:10.1175/JAS-D-19-0287.1.

 $\frac{14}{}$ D. Faranda and D. Defrance, "A wavelet-based approach to detect climate change on the coherent and turbulent component of the atmospheric cir- culations," Earth Syst. Dynam. 7, 517–523 (2016), doi:10.5194/esd-7-517- 2016.

¹⁵H. Alkhayuon, P. Ashwin, L. C. Jackson, C. Quinn, and R. A. Wood, "Basin bifurcations, oscillatory instability and rate-induced thresholds for atlantic meridional overturning circulation in a global oceanic box model," ¹¹⁷⁰ Proc. R. Soc. A 475 (2019), doi:10.1098/rspa.2019.0051.

 $16R$. A. Wood, J. M. Rodriguez, R. S. Smith, L. C. Jackson, and E. Hawkins, ¹¹⁷² "Observable, low-order dynamical controls on thresholds of the atlantic meridional overturning circulation," Climate Dynamics 53, 6815–6834 (2019), doi:10.1007/s00382-019-04956-1.

¹⁷V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews, T. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Z.

1070

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

AIP
E Publishing

TABLE II: Adapted from Alkhayuon *et al.* ¹⁵

1178 (eds.), "IPCC 2021: Climate change 2021: The physical science basis. $\text{con}_{\mathbf{222}}$ 117 $\frac{11}{2}$ tribution of working group i to the sixth assessment report of the intergov₁₂₂₃ 118 $\overline{\odot}$ ernmental panel on climate change," Cambridge University Press (2021)₂₂₄ $118\frac{11}{10}$ doi:10.1017/9781009157896.

- 11830 11825
1182 18W. Weijer, W. Cheng, S. S. Drijfhout, A. Federov, A. Hu, and L. C. Jack $\frac{1225}{1226}$ 1183 son, "Stability of the atlantic meridional overturning circulation: A review₂₂₇ 1184 and synthesis," Journal of Geophysical Research: Oceans 124, 5336–537 $\frac{5}{1228}$ ¹¹⁸⁵ (2019), doi:10.1029/2019JC015083.
- 1186 (2019), doi.10.1029/201900013063.
1186 ¹⁹M. Hofmann and S. Rahmsdorf, "On the stability of the atlantic₂₃₀ 1187 meridional overturning circulation," PNAS 106, 20584 -2058 (2009 $_{231}$ ¹¹⁸⁸ doi:10.1073/pnas.201798911.
- 1188 doi.10.1075/phas.201796911.
1189 20 W. Liu, S.-P. Xie, Z. Liu, and J. Zhu, "Overlooked possibility of a collapsed $\frac{1232}{2233}$ 1190 atlantic meridional overturning circulation in warming climate," Science 1234 ¹¹⁹¹ Advances 3 (2017), doi:10.1126/sciadv.1601666.
- 21 22 S. E. Huisman, M. den Toom, H. A. Dijkstra, and S. Drijfhout, "An indic $\frac{21}{2}$ 36 1193 tor of the multiple equilibria regime of the atlantic meridional overturning ¹¹⁹⁴ circulation," J. Phys. Oceanography 40, 551–567 (2010).
- 1194 circulation, J. Phys. Oceanography 40, 351-307 (2010).
1238 1195 ²²W. Liu, Z. Liu, and E. C. Brady, "Why is the amoc monostable in coupled, ¹¹⁹⁶ general circulation models?" J. Clim 27, 2427–2443 (2014).
- ²³ 1196 general circulation models? J. Clim 27, 2427-2443 (2014).
²³ 23 E. Hawkins, R. Smith, L. Allison, J. Gregory, T. Woollings, H. Pohlmann₂₄₁ 1198 and B. de Cuevas, "Bistability of the atlantic overturning circulation in $\frac{3}{242}$ 1199 global climate model and links to ocean freshwater transport," Geophys₂₄₃ 1200 Res. Lett. 38, L10605 (2011).
- 24 N. Boers, "Observation-based early-warning signals for a collapse of the ¹²⁰² Atlantic Meridional Overturning Circulation," Nature Climate Change 11,

¹²⁰³ 680–688 (2021).

- 1204 25 J. Lohman and P. D. Ditlevsen, "Risk of tipping the overturning ¹²⁰⁵ circulation due to increasing rates of ice melt," PNAS 118 (2021), ¹²⁰⁶ doi:10.1073/pnas.201798911.
- ²⁶G. Danabasoglu, "Ncar cesm2 model output prepared for cmip6 cmip," 208 (2019).
- 209 27 G. Madan, A. Gjermundsen, S. Iversen, and J. H. LaCasce, "Weakening ¹²¹⁰ of the atlantic meridional overturning circulation under extreme climate 211 change." (2022), (In prep.).
- 212 ²⁸P. J. Brockwell and R. A. Davis, *Introduction to Time Series and Forecast-*¹²¹³ *ing*, 2nd ed. (Springer, 2002).
- 294 $29K$. J. Preacher and E. C. Merkle, "The problem of model selection uncer-¹²¹⁵ tainty in structural equation modeling," Psychological Methods 17, 1–14 ¹²¹⁶ (2012), doi:10.1037/a0026805.
- $30 R$. J. Hyndman and Y. Khandakar, "Automatic time series forecasting: The ¹²¹⁸ forecast package for R," Journal of Statistical Software 27 (2008).
- $\frac{1}{2}$ ³¹ J. M. T. Thompson and J. Sieber, "Climate tipping as a noisy bifurcation: ¹²²⁰ a predictive technique," IMA Journal of Applied Mathematics 76, 27–46 ¹²²¹ (2011).
	- ³² D. Roche, D. Paillard, T. Caley, and C. Waelbroeck, "Lgm hosing approach to heinrich event 1: results and perspectives from data-model integration using water isotopes," Quartenary Science Reviews 106, 247–261 (2014).
	- ³T. M. Lenton, V. N. Livina, V. D. Dakos, E. H. van Nes, and M. Scheffer, "Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness," Phil. Trans. R. Soc. A 370, ¹²²⁸ 1185–1204 (2012).
	- ³⁴ V. Dakos, S. R. Carpenter, W. A. Brock, A. M. Ellison, V. Guttal, A. R. Ives, S. Kefi, V. Livina, D. A. Seekell, E. H. van Nes, and M. Scheffer, "Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data," PLoS ONE 77, e41010 (2012), ¹²³³ doi:10.1098/rsta.2011.0304.
- ³⁵G. E. Box, G. M. Jenkins, and G. C. Reinsel, *Time Series Analysis:* ¹²³⁵ *Forecasting and Control*, 4th ed. (WILEY SONS, INC., PUBLICATION, 2008).
	- 36 N. P. Fofonoff and R. Millard Jr, "Algorithms for the computation of fundamental properties of seawater." (1983).
	- ³⁷ P. D. Ritche, J. J. Clark, P. M. Cox, and C. Huntingford, "Overshooting tipping point thresholds in a changing climate," Nature 592, 517–523 (2021), doi:10.1038/s41586-021-03263-2.
	- ³⁸ V. Laitinen, V. Dakos, and L. Lahti, "Probabilistic early warning signals," Ecology and Evolution 11, 14101-14114 (2021), doi:10.1002/ece3.8123.

An Interdisciplinary Journal of Nonlinear Scienc haos

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

 $\frac{8}{11}$

AIP
Enblishing

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694

Chaos An Interdisciplinary Journal of Nonlinear Science

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

么 AIP

 AIP

Chaos An Interdisciplinary Journal of Nonlinear Science

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

 0.0

 -0.8

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

 0.0

 0.8

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has <u>be</u>en copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

么 AIP

 AIP
 Manufation

Chaos An Interdisciplinary Journal of Nonlinear Science

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

ີ∽

0

ω

4

Uл

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694

Chaos An Interdisciplinary Journal of Nonlinear Science

ACCEPTED MANUSCRIPT

Chaos An Interdisciplinary Journal of Nonlinear Science

ACCEPTED MANUSCRIPT

Chaos An Interdisciplinary Journal of Nonlinear Science

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

Chaos An Interdisciplinary Journal of Nonlinear Science

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694

Chaos An Interdisciplinary Journal of Nonlinear Science

ACCEPTED MANUSCRIPT

Chaos of Nonlinear Science

么 AIP
《Publishing

An Interdisciplinary Journal **ACCEPTED MANUSCRIPT**

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694

Chaos of Nonlinear Science

么 AIP
《Publishing

An Interdisciplinary Journal **ACCEPTED MANUSCRIPT**

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0089694 2.0 О.
Б О.5 1.0 1.5 o:o 5250 **5500** 5750 0009 oo
time [months]
time [months] 0200 0250 7000 Σ.5 ω
Ο 2.0 1.0 Т.
С $\frac{2.0}{\mathsf{d}}$ 52- -3.0 .
ה 1.0

ACCEPTED MANUSCRIPT

