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Abstract 

Background:  Magnetic resonance imaging (MRI) carries prognostic importance after traumatic brain injury (TBI), 
especially when computed tomography (CT) fails to fully explain the level of unconsciousness. However, in critically ill 
patients, the risk of deterioration during transfer needs to be balanced against the benefit of detecting prognostically 
relevant information on MRI. We therefore aimed to assess if day of injury serum protein biomarkers could identify 
critically ill TBI patients in whom the risks of transfer are compensated by the likelihood of detecting management-
altering neuroimaging findings.

Methods:  Data were obtained from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic 
Brain Injury (CENTER-TBI) study. Eligibility criteria included: TBI patients aged ≥ 16 years, Glasgow Coma Score (GCS) 
< 13 or patient intubated with unrecorded pre-intubation GCS, CT with Marshall score < 3, serum biomarkers (GFAP, 
NFL, NSE, S100B, Tau, UCH-L1) sampled ≤ 24 h of injury, MRI < 30 days of injury. The degree of axonal injury on MRI 
was graded using the Adams-Gentry classification. The association between serum concentrations of biomarkers and 
Adams-Gentry stage was assessed and the optimum threshold concentration identified, assuming different minimum 
sensitivities for the detection of brainstem injury (Adams-Gentry stage 3). A cost–benefit analysis for the USA and UK 
health care settings was also performed.

Results:  Among 65 included patients (30 moderate-severe, 35 unrecorded) axonal injury was detected in 54 (83%) 
and brainstem involvement in 33 (51%). In patients with moderate-severe TBI, brainstem injury was associated with 
higher concentrations of NSE, Tau, UCH-L1 and GFAP. If the clinician did not want to miss any brainstem injury, NSE 
could have avoided MRI transfers in up to 20% of patients. If a 94% sensitivity was accepted considering potential 
transfer-related complications, GFAP could have avoided 30% of transfers. There was no added net cost, with savings 
up to £99 (UK) or $612 (US). No associations between proteins and axonal injury were found in intubated patients 
without a recorded pre-intubation GCS.

Conclusions:  Serum protein biomarkers show potential to safely reduce the number of transfers to MRI in critically ill 
patients with moderate-severe TBI at no added cost.
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Introduction
Traumatic brain injury (TBI) accounts for 300,000 hos-
pitalizations in the US and 1.5 million hospitalization in 
Europe every year [1]. Some patients present with a low 
Glasgow Coma Scale score (GCS) [2] without evidence 
of mass lesion or raised intracranial pressure on com-
puted tomography (CT). The low GCS may be caused 
either by CT-occult traumatic (diffuse) axonal injury, or 
by more reversible factors such as alcohol, drugs and/or 
seizures. Other patients are emergently intubated at the 
injury scene to manage extra-cranial injuries and arrive 
at the hospital without a recorded pre-intubation GCS. 
In these patients, a normal CT does not preclude the 
presence of CT-occult injury.

Magnetic resonance imaging (MRI) is increasingly 
used to detect such CT-occult axonal injury. High-
grade axonal injury (particularly brainstem injury) is 
clinically important, since it tends to drive outcome [3, 
4]. According to the Adams-Gentry grading, foci con-
fined to the hemispheres indicate stage 1, foci involving 
the corpus callosum stage 2 and foci in the brainstem 
stage 3 [5, 6]. Such information is critical when consid-
ering interventions such as decompressive craniectomy, 
which can increase survival in refractory intracranial 
hypertension, but at the risk of unacceptable disability 
in patients in whom outcome is driven by the primary 
injury rather than secondary insults of intracranial 
hypertension [7].

The prognostic benefit of MRI, however, needs to 
be weighed against the clinical risk of patient trans-
fer to the scanner, even if MRI is available within the 
same hospital. Previous studies found that one in four 
intra-hospital transfers of ventilated patients is asso-
ciated with complications (1.5% with life-threatening 
complications), which occur at twice the rate seen in 
non-transferred patients [8, 9]. A serum biomarker of 
axonal injury as a triage tool for MRI would thus be 
useful. Serum protein biomarkers, especially glial fibril-
lary acidic protein, have been shown to detect CT-
occult (axonal) injury in mild TBI, but their utility in 
moderate-severe TBI is still unclear [10]. To be useful, 
serum biomarkers would need to prove clinically safe 
(i.e., reach an acceptable minimum sensitivity for the 
detection of brainstem injury) and affordable (i.e., not 
generating large additional costs).

We therefore aimed to investigate if serum protein bio-
markers could identify critically ill TBI patients for MRI.

Methods
Patients were selected from the Collaborative Euro-
pean NeuroTrauma Effectiveness Research in Trau-
matic Brain Injury (CENTER-TBI) study [11]. Clinical 
data was accessed via the Neurobot platform (RRID/
SCR_017004, core data, version 3.0; International Neu-
roinformatics Coordinating Facility; released Novem-
ber 24, 2020).

The present analysis included all patients in whom 
the CT did not fully explain the GCS, defined as:

(1)	 a CT within 24  h of injury without evidence of 
raised intracranial pressure or mass lesion i.e., Mar-
shall score < 3 [12].

(2)	 PLUS

a.	 a GCS < 13 (“moderate-severe sub-cohort”) OR
b.	 a GCS that was unrecorded prior to intubation 

(“unrecorded sub-cohort”).

In addition, all patients must have been 
aged ≥ 16  years, undergone MRI within 30  days of 
injury, and had serum protein biomarkers sampled 
within 24 h. Glial fibrillary acidic protein (GFAP), neu-
rofilament light (NFL), neuron-specific enolase (NSE), 
S100 calcium-binding protein B (S100B), total tau (Tau) 
and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) 
were assayed as described previously [13].

Image acquisition, and reporting
CT images were acquired according to local site pro-
tocols, were reported centrally by trained investigators 
blinded to outcome and assigned a Marshall score [12, 
14].

MR images were obtained following study-spe-
cific protocols (https://​www.​center-​tbi.​eu/​proje​ct/​
mri-​study-​proto​cols) and included T1-weighted, 
T2-weighted, fluid-attenuated inversion recovery, sus-
ceptibility-weighted and diffusion-weighted images. 
The location of axonal injury on MRI was reported 
in Cambridge by one neurotrauma research clinician 
blinded to patient characteristics (SR) and reviewed by 
a second neurotrauma research clinician (VFJN). The 
degree of axonal injury was scored using the Adams-
Gentry classification [5, 6]. For axonal brainstem injury 
we recorded if known adverse features were present, 
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i.e., injury that was bilateral, dorsal, pontine or associ-
ated with Duret hemorrhage or contusion [4, 15, 16].

Statistical analysis
The associations between proteins and the Adams-Gen-
try stage or the presence of brainstem injury was assessed 
with a two-sided Jonckheere-Terpstra test and a Mann–
Whitney U test, respectively. Statistical analysis was con-
ducted in R 4.2.0 (R Project for Statistical Computing). 
The significance threshold for p values was set at 0.05 and 
all p values adjusted for multiple comparisons using the 
Benjamini–Hochberg method [17].

For each protein we identified the serum concentration 
where specificity would be maximal given a minimum 
sensitivity of (a) 90% or (b) 100%, using the R package 
OptimalCutpoints. The cost–benefit analysis was con-
ducted with the perspectives of the UK and the USA 
health care systems (Additional file 1: Methods).

Results
Inclusion criteria were met by 65 patients (30 in the 
moderate-severe sub-cohort, 35 in the unrecorded sub-
cohort), of which 49 (75%) were male, 60 (92%) were 
intubated and 39 (60%) had sustained major extra-cra-
nial injuries; the median age was 40 years (range 16–82) 
(Additional file  1: Table  S1). The study population was 
younger and more severely injured than the whole 
CENTER-TBI population (Additional file  1: Table  S2). 
The MRI was performed at a median of 6  days (range 
0–29), showed axonal injury in 54 (83%) and brain-
stem involvement 33 (51%) patients (Additional file  1: 
Table S3).

Axonal injury burden irrespective of location was asso-
ciated with serum GFAP concentrations (Additional 
file  1: Fig. S1). The Adams-Gentry stage was associated 
with GFAP, NSE and UCH-L1 in the moderate-severe 
sub-cohort but was not associated with any proteins in 
the unrecorded sub-cohort or the overall study cohort 
(Additional file 1: Table S4).

Adams-Gentry stage 3 (brainstem involvement) was 
associated with GFAP (borderline statistical signifi-
cance), NSE, Tau and UCH-L1 in the moderate-severe 
sub-cohort but was not associated with any proteins in 
the unrecorded sub-cohort or the overall study cohort 
(Table 1).

In the moderate-severe sub-cohort protein biomarkers 
showed potential for MRI triage. Assuming a minimum 
sensitivity of 90% for the detection of brainstem injury, 
the best specificity was achieved by GFAP, avoiding 30% 
of MRI transfers whilst missing 1 in 20 brainstem injuries 
(Table 2). If a sensitivity of 100% was desired, then NSE 
performed best, avoiding 20% of MRI transfers whilst 

not missing any brainstem injury (Table 2 and Additional 
file 1: Table S5). Both approaches were cost-saving.

The prevalence of adverse features of brainstem injury 
is documented in Additional file  1: Table  S3. In the 
moderate-severe sub-cohort, GFAP, NSE and UCH-L1 
were associated with adverse features (Additional file  1: 
Table S6).

Discussion
This study evaluated whether protein biomarkers could 
help avoid high-risk clinical transfers for MRI in critically 
ill TBI patients in whom the CT may not fully explain the 
GCS.

The risk of deterioration during transfer varies widely 
depending on, for example, the patient’s clinical status, 
the availability of trained personnel and the distance to 
the MRI scanner [8, 9]. Depending on this estimated 
risk a clinician may tolerate different levels of sensitivity 
for protein biomarkers. We identified NSE as the most 
promising biomarker in patients at lower risk of transfer-
related complications and GFAP as the most promising 
biomarker when transfer-related adverse events are likely. 
In both scenarios, protein biomarkers were not only 
affordable but cost-saving.

We found GFAP, NSE, UCH-L1 outperformed axonal 
markers (NFL and Tau) for the detection of axonal injury. 
Sampling within 24 h may have discriminated against the 
slower to peak NFL. Protein biomarker concentrations 
have previously been found using CT to reflect the total 
burden of injury irrespective of lesion type or location 
[18]. The complex pathophysiology after TBI including 
traumatic vascular injury, blood brain barrier disruption 
and a host inflammatory response means biomarker ele-
vations may not only result from axonal injury.

We considered whether the poor relationship between 
biomarkers and MRI in the unrecorded sub-cohort might 
be due to a lower severity of brain stem injury in these 
emergently intubated patients, which however was not 
the case. Despite additional exploration of the data, we 
were unable to find a satisfactory explanation. Possi-
ble confounds that we are unable to test for in our data 
include high volume transfusions which may have diluted 
biomarker levels; second insults not reflected in admis-
sion biomarker levels; or a Type II error due to relatively 
small sample sizes in subgroups, which may be addressed 
in a larger study.

Limitations
The sample size of 65, while large for a prospective study 
of early MRI after moderate-to-severe TBI, requires 
external validation in larger cohorts. This would also 
enable more refined analysis of the influence of lesion 
location and type. Furthermore, Quanterix assay kits are 
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Table 1  Association between serum protein concentration and brainstem injury (Adams-Gentry stage 3)

Values are presented as count (percent) or median (first quartile – third quartile). Serum protein concentrations are measured in ng/ml for GFAP, NSE and S100B, 
and in pg/ml for NFL, Tau and UCH-L1. Adj. p value = P values from the Mann–Whitney U-test adjusted for multiple comparisons. Significant p values are in bold. 
TBI = traumatic brain injury, GCS = Glasgow Coma Scale score

Brainstem injury absent Brainstem injury present Adj. p value

Overall cohort

Number of patients 32 (49%) 33 (51%)

Sample time in hours 16 (11–21) 17 (10–18) 0.600

GFAP 10.19 (4.03–28.13) 27.07 (9.41–38.60) 0.184

NFL 28.13 (20.82–102.72) 43.82 (28.86–82.09) 0.600

NSE 20.33 (15.30–33.97) 23.58 (20.31–39.52) 0.184

S100B 0.29 (0.17–0.66) 0.27 (0.20–0.51) 1.000

Tau 5.55 (3.06–12.09) 8.90 (3.33–17.07) 0.600

UCH-L1 237.28 (108.64–526.42) 466.39 (169.42–899.86) 0.184

Sub-cohort with moderate-severe TBI

Number of patients 13 (43%) 17 (57%)

Sample time in hours 14 (10–21) 16 (10–20) 0.711

GFAP 4.46 (3.11–25.91) 30.31 (18.90–40.99) 0.050
NFL 27.82 (18.63–47.75) 47.21 (37.55–81.19) 0.186

NSE 17.14 (13.38–25.05) 31.91 (22.98–46.36) 0.041
S100B 0.17 (0.07–0.24) 0.29 (0.22–0.51) 0.093

Tau 4.31 (2.17–7.27) 14.36 (4.47–21.49) 0.046
UCH-L1 123.48 (98.13–262.49) 696.42 (218.56–953.05) 0.040
Sub-cohort with unrecorded GCS

Number of patients 19 (54%) 16 (46%)

Sample time in hours 16 (11–21) 17 (10–18) 0.803

GFAP 12.69 (5.21–28.57) 21.84 (9.39–33.22) 0.803

NFL 28.45 (21.43–125.89) 35.74 (18.39–83.29) 0.878

NSE 20.90 (18.31–34.00) 22.84 (19.34–26.29) 0.987

S100B 0.46 (0.22–0.66) 0.25 (0.16–0.47) 0.512

Tau 9.01 (4.76–13.92) 4.81 (2.94–11.34) 0.803

UCH-L1 379.55 (178.36–557.11) 273.19 (128.58–503.10) 0.936

Table 2  Using serum protein biomarkers for MRI triage in patients with moderate-severe traumatic brain injury

N = 30. Threshold = optimal cut-off for the serum protein concentration measured in ng/ml for GFAP, NSE and S100B, and in pg/ml for NFL, Tau and UCH-L1. “Optimal” 
means maximizing the specificity whilst achieving a minimum sensitivity of 0.90. MRI for all = cost per patient of subjecting all patients to magnetic resonance 
imaging (MRI). Protein plus selected MRI = cost per patient of sampling serum protein biomarkers from all patients and taking only those patients for MRI who exceed 
the threshold serum concentration. Savings = Cost savings when using Protein plus selected MRI compared to MRI for all. To gain an estimate of real-world clinical 
costs, the United States costs are not based on the assays used in the present study (which are for research only) but on the FDA-approved i-stat platform by Abbott. 
This platform only measures GFAP and UCH-L1, so costs for other proteins were not calculated

Protein Threshold Sensitivity Specificity Patients 
above 
threshold

Costs in the United Kingdom (GBP 
per patient)

Costs in the United States (USD per 
patient)

MRI for all Protein plus 
selected MRI

Savings MRI for all Protein plus 
selected MRI

Savings

GFAP 5.73 0.94 0.62 21 (70%) 385.80 286.88 98.92 2758.56 1996.15 762.41

NFL 19.42 0.94 0.38 24 (80%) 385.80 331.09 54.71 2758.56 – –

NSE 16.61 1.00 0.46 24 (80%) 385.80 322.32 63.48 2758.56 – –

S100B 0.09 0.94 0.38 24 (80%) 385.80 330.20 55.60 2758.56 – –

Tau 2.34 1.00 0.31 26 (87%) 385.80 355.42 30.38 2758.56 – –

UCH-L1 133.23 0.94 0.54 22 (73%) 385.80 298.95 86.85 2758.56 2088.10 670.46
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currently only available for research purposes. However, 
an alternative platform is already licensed for GFAP and 
UCH-L1 and more are likely to be approved in the future 
[19]. Our time window for MRI ranged from 0 to 30 days. 
As imaging features change during this timeframe, future 
studies should aim for a more uniform imaging timepoint 
[4, 20]. Our findings should therefore not be interpreted 
as a call to change clinical practice, but as an encourage-
ment to repeat this study in a larger cohort.

Conclusion
Serum protein biomarkers show promise as a triage tool 
for MRI in TBI patients where the CT does not fully 
explain a low GCS, but not in patients with an unre-
corded GCS. Findings require validation in a larger 
cohort.
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