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Abstract 35 

Amyotrophic lateral sclerosis (ALS) is a progressively fatal neurodegenerative disease affecting motor 36 

neurons in the brain and spinal cord. Here we investigated gene expression changes in ALS via RNA-37 

seq in 380 post-mortem samples from cervical, thoracic, and lumbar spinal cord segements from 154 38 

individuals with ALS and 49 control individuals. We observed an increase in microglia and astrocyte 39 

gene expression, accompanied by a decrease in oligodendrocyte gene expression. By creating a gene 40 

co-expression network in the ALS samples, we identify several activated microglia modules that 41 

negatively correlate with retrospective disease duration. We map molecular quantitative trait loci and 42 

find several potential ALS risk loci that may act through gene expression or splicing in the spinal cord 43 

and assign putative cell-types for FNBP1, ACSL5, SH3RF1 and NFASC. Finally, we outline how 44 

common genetic variants associated with splicing of C9orf72 act as proxies for the well-known repeat 45 

expansion,, and use the same mechanism to suggest ATXN3 as a putative risk gene.  46 

  47 
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Introduction 48 

Amyotrophic lateral sclerosis (ALS) is a progressively fatal neurodegenerative disease characterized by 49 

degeneration of upper and lower motor neurons that control voluntary movement via the corticospinal 50 

tract. Most patients have a disease onset in middle age but there is a wide clinical variability in onset of 51 

symptoms and the pace of disease progression before death1. About 5-10% of ALS cases have a family 52 

history of disease3, with the remaining patients deemed to be sporadic. The field has focused on rare 53 

mutations of large effect size, such as large repeat expansions in the gene C9orf72, found in 40% of 54 

familial ALS and also in 10% of sporadic ALS cases4. Other rare mutations, in genes such as SOD1, 55 

TARDBP, FUS, NEK1, TBK1, and KIF5A make up only a small fraction of the total familial ALS 56 

population5–8 and the majority of non-familial ALS cases have no known causative mutation. Large-scale 57 

genome-wide association studies have repeatedly found common genetic variants associated with ALS 58 

risk8–11. Common polymorphic short-tandem repeats are a further contributor to genetic risk of ALS, 59 

including ATXN212, and other ATXN family members13–15 where intermediate repeat lengths impart a 60 

small increase in ALS risk.  The interplay between rare and common genetic variants in shaping ALS 61 

risk is still being explored. Crucially, there has been little progress in assigning risk genes to particular 62 

cell-types. One method to achieve this is the mapping of molecular quantitative trait loci (QTLs), the 63 

association between common genetic variants and a molecular phenotype such as gene expression. 64 

By performing this in a relevant tissue, QTL variants can be colocalized with GWAS risk variants to 65 

identify risk genes16. In Alzheimer’s disease, multiple studies have applied this framework to identify 66 

multiple disease risk variants as acting through gene expression and/or splicing in genes specific to 67 

microglia and monocytes17–19.  68 

 69 

Although motor neurons are thought to be the predominantly affected cell type within the spinal cord, 70 

much research has focused on non-neuronal contributions to disease initiation and progression. Studies 71 

using mouse models of SOD1 mutations have identified a non-neuronal contribution to disease initiation 72 

and length of survival20,21. These studies and many others identified both astrocytes and microglia as 73 

being able to modify disease duration22–26. As motor neurons degenerate during disease they release 74 

factors which cause microglia to assume an activated pro-inflammatory state27,28, which can then induce 75 

an activated state in astrocytes29. Both activated microglia and astrocytes are toxic to motor neurons30,31, 76 

and blocking this microglia-astrocyte crosstalk extends survival in a SOD1 mouse model32. Several 77 

studies have profiled gene expression in human post-mortem ALS tissues, in spinal cord33–35, frontal 78 

cortex35, and motor cortex36. These studies have identified a broad upregulation of inflammatory and 79 

immune-related genes and a downregulation in oligodendrocyte and neuron genes. Further 80 



 
5 

investigation of glial activation and neuron-glia crosstalk in the context of ALS is therefore required.  81 

However due to small sample sizes, these studies have been unable to identify more subtle changes in 82 

gene expression, nor to compare these changes with clinically variable traits, or to leverage molecular 83 

QTLs. 84 

Results 85 

Cellular composition changes in the ALS spinal cord  86 

We aligned and processed post-mortem RNA-seq data from three spinal cord regions (cervical, lumbar, 87 

and thoracic) from 154 subjects with ALS and 49 non-neurological controls from the New York Genome 88 

Center ALS Consortium, contributed by 8 different medical centres. All samples underwent extensive 89 

quality control (Supplementary Fig. 1-3). Demographic and technical information for the donors is 90 

summarised in Table 1; full details are in Supplementary Table 1.  91 

We performed differential gene expression between all ALS cases and controls in each spinal cord 92 

section, controlling for sex, age at death, sequencing batch, submitting site, and technical factors 93 

including RNA integrity number (RIN). At a false discovery rate (FDR) < 0.05 we found large numbers 94 

of differentially expressed genes (DEGs) in the Cervical and Lumbar regions, with 7,349 and 4,694 95 

respectively, and only 256 in the smaller Thoracic cohort (Fig. 1a-b; Table 2; Supplementary Table 96 

2). Of the genes significant in both lumbar and cervical spinal cord, 238 were upregulated with LFC > 1 97 

in at least one of two regions, with 109 in both, all of which were more strongly upregulated in the 98 

Cervical region (Fig. 1c). Although highly concordant, only 12 of those 109 genes passed FDR < 0.05 99 

in the thoracic spinal cord, demonstrating the added benefit of our increased sample size. A smaller 100 

number of DEGs were strongly upregulated (log2 fold change > 2, equivalent to a 4-fold increase in 101 

mean expression), including CHIT1, CCL18, CHRNA1, GPNMB, and LYZ, mostly genes encoding 102 

proteins secreted by activated macrophages/microglia. CHIT1, encoding the enzyme chitotriosidase, is 103 

known to be upregulated in the cerebrospinal fluid (CSF) and plasma of ALS patients37. GPNMB, 104 

encoding glycoprotein nonmetastatic melanoma B, is upregulated at the protein level in ALS patient 105 

spinal cord, CSF, and sera38,39 and is expressed by activated microglia40. A common genetic variant in 106 

GPNMB is associated with Parkinson’s disease41,42. CCL18 is a cytokine released by myeloid cells. LYZ 107 

encodes human lysozyme, an antibacterial protein secreted by myeloid cells. Neither CCL18 nor LYZ 108 

have been previously linked to ALS. CHRNA1, encoding the alpha subunit of the muscle acetylcholine 109 

receptor, is a known marker of denervation of muscles in SOD1 mouse models43. A marker of astrocyte 110 

activation, C329,32, was also upregulated, albeit with a lower effect size.  111 
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Of the 67 genes downregulated with LFC < -1 in at least one of the two regions, only 13 were < -1 in 112 

both, with the majority (46) more strongly downregulated in the lumbar spinal cord. The downregulated 113 

genes include the small nucleolar RNA gene SNORD3C and MOBP, a marker of oligodendrocytes (Fig. 114 

1d). The motor neuron marker genes MNX1 and ISL1 were both downregulated in the cervical and 115 

lumbar spinal cord with LFC > -1 (FDR < 0.05). The top 20 strongest (by effect size) upregulated and 116 

downregulated genes are presented (Fig. 1e). 37 of the 67 most downregulated genes (55%) were non-117 

coding, including antisense transcripts and long intergenic non-coding RNAs, compared to only 38 of 118 

the 246 (15%) of the upregulated genes. 119 

 120 

We performed Gene Set Enrichment Analysis (GSEA)44 using both curated molecular pathways and 121 

sets of cell-type marker genes. Using MSigDB curated pathways45, we identified 21 pathways positively 122 

enriched in both regions (normalised enrichment score (NES) > 1; adjusted P < 0.05), which mostly 123 

reflected different immune and inflammatory pathways (Fig. 1f; Supplementary Fig. 8). We next 124 

performed GSEA with lists of the 100 most specific human cell-type marker genes for six major brain 125 

cell-types46. We observed strong positive enrichment of microglia markers, whereas oligodendrocyte 126 

markers were negatively enriched (Fig. 1g). Repeating the analysis with several other marker gene sets 127 

resulted in concordant results and revealed positive enrichments in endothelial cells and pericytes, 128 

despite there being low overlap between genes used in each set (Supplementary Figure 9a-b; 129 

Supplementary Table 3).  130 

We then prepared a panel of immune activation genes using four studies of microglia and/or astrocyte 131 

responses to pro-inflammatory stimuli in mice. These are disease-associated microglia (DAM)47, 132 

disease-associated astrocytes (DAA)48, reactive astrocytes (RA)49, and plaque-associated genes 133 

(PIG)50. These gene lists only partially overlap (Supplementary Fig. 10), and represent signatures of 134 

microglia and astrocyte responses to a range of stimuli, including amyloid plaques, neurodegeneration, 135 

hypoxia (MCAO) and lipopolysaccharide (LPS). All glial activation sets were enriched in the upregulated 136 

genes in both regions (Fig. 1h).  137 

 138 

We then estimated cell-type proportions in the bulk RNA-seq using both single-nucleus and single-cell 139 

RNA-seq from human cortical samples46,51, using two different algorithms52,53, producing four different 140 

predictions per sample. Predictions for each cell-type were highly correlated between tools and 141 

references (Supplementary Fig. 11-15; Supplementary Table 4). We highlight the deconvolution 142 

estimates for the cervical spinal cord using single-nucleus RNA-seq reference data from human frontal 143 

cortex46 and the MuSiC algorithm52 (Fig. 1i). As a further analysis of cell-type changes we ran 144 

expression-weighted cell-type enrichment (EWCE)54 using the differentially expressed genes and the 145 
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same single-nucleus RNA-seq data46, which confirmed the observations from deconvolution 146 

(Supplementary Fig. 17).  147 

 148 

We overlapped the 7,349 cervical spinal cord DEGs (FDR < 0.05) with a recently published mass 149 

spectrometry proteomic dataset (Supplementary Table 5)39. The study performed differential protein 150 

expression in an independent cohort of post-mortem spinal cord samples from 8 ALS cases and 7 151 

controls, and cerebrospinal fluid (CSF) from 24 cases and 16 controls. Of the 287 differentially 152 

expressed proteins found in the spinal cord (FDR < 0.05), 153 were also DEGs in our dataset (OR = 153 

2.8; P < 1e-16, Fisher’s exact test), and 137 (90%) had the same direction of effect between mRNA and 154 

protein (Fig. 1j). The top two most upregulated genes were GPNMB and IQGAP2. PEX5L, found to be 155 

highly oligodendrocyte specific in single cell and single nucleus RNA-seq46,51 was downregulated at both 156 

RNA and protein level. In the CSF, of the 30 genes significant at the protein level, 17 were DEGs (P = 157 

0.001), with all but one upregulated (Fig. 1k). GPNMB and CHIT1 were both upregulated in CSF, 158 

validating their associations with ALS. As well as GPNMB, SERPINA3 was upregulated in both RNA 159 

and protein in spinal cord and CSF. Together, these results suggest that ALS spinal cord experiences 160 

a robust inflammatory reaction driven by microglia and astrocytes, with dysregulation of 161 

oligodendrocytes.   162 

C9orf72-ALS transcriptomes indistinguishable from sporadic ALS 163 

Analysis of frontal cortex and cerebellum has reported distinct sets of differentially expressed genes 164 

between C9orf72 repeat expansion carriers and sporadic ALS and/or FTD patients55,56. We repeated 165 

the differential expression analysis but split patients by C9orf72 repeat expansion status, as assessed 166 

by repeat-primed PCR or estimated through ExpansionHunter57. Comparing each disease set to 167 

controls, the directionality of expression changes in each comparison were highly concordant within 168 

each spinal cord section (Supplementary Fig. 19). Directly comparing C9orf72 carriers to sporadic ALS 169 

cases, no differentially expressed genes were observed, with the exception of C9orf72 itself, which was 170 

downregulated in C9orf72-ALS (cervical spinal cord: log2 fold change = -0.45; P = 1e-5). This has been 171 

previously observed due to hypermethylation of the C9orf72 promoter in expansion carriers58. 172 

Gene co-expression networks associate with disease duration 173 

We then created a weighted gene co-expression network using all 303 ALS samples, adjusting for spinal 174 

cord region, contributing site, and other technical factors. We identified 23 modules of co-expressed 175 

genes (Fig. 2a; Supplementary Table 6) and labelled them in ascending order of size from M1 (50 176 
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genes) to M23 (3,121). For each module we created a module eigengene (ME), equivalent to the first 177 

principal component of the expression of all genes within that module in each sample (Supplementary 178 

Table 7). Modules are presented clustered by eigengene correlation (Fig. 2a). Co-expression modules 179 

are known to identify cell-types59, and 13 modules were significantly enriched with the top 100 cell-type 180 

marker genes for the six major cell types of the brain46 (Fig. 2b; Supplementary Table 8). Similarly, we 181 

correlated each ME with cell-type proportion estimates in the ALS samples (created using the same 182 

Mathys reference and MuSiC algorithm) and found the same modules with marker gene enrichment 183 

were strongly positively correlated (Spearman’s R = 0.46-0.82) with the respective cell-type proportion 184 

(Supplementary Fig. 20).  Using the same panel of glial activation gene sets as before, we found 6 185 

modules enriched with genes from the different sets (Fig. 2c). We observed that the module enriched 186 

with microglia marker genes (M17) was also enriched for disease-associated microglia and plaque-187 

induced genes, whereas of the four astrocyte marker-enriched modules, one was enriched only with 188 

disease-associated astrocytes (M3). The two modules enriched with reactive astrocyte (RA) markers 189 

(M9, M18) were enriched with endothelial and/or endothelial cell markers, not astrocytes. 190 

 191 

We next performed gene ontology (GO) enrichment on each module using the GO Biological Process 192 

gene sets. Overall, 22 of 23 modules had at least 1 significant GO term (Supplementary Table 9). We 193 

manually collapsed GO terms into broad sets (Fig. 2d). Some sets reflect potentially cell-type specific 194 

functions, such as myelination terms with oligodendrocytes, vasculature with endothelial cells/pericytes, 195 

and immune response with microglia, whereas modules enriched in terms relating to gene expression 196 

and translation were not enriched with cell-type specific or glial activation markers. To assess each 197 

module’s relevance to ALS-specific changes, we performed enrichment tests using a consensus set of 198 

genes upregulated or downregulated in the ALS spinal cord versus controls (Fig. 2e). 3 modules were 199 

enriched in downregulated genes, two of which were also enriched in oligodendrocyte markers, whereas 200 

the six modules enriched with upregulated genes were also enriched with astrocyte, microglia, 201 

endothelial, and glial activation markers, confirming our previous cell-type proportion analyses. 202 

 203 

We then used the modules to find associations with clinical variables (Supplementary Table 10). 204 

Correlating each ME with different clinical traits, we observed 1 module (M3) to correlate with age at 205 

death and age of onset (Fig. 2g), whereas 5 modules correlated with retrospective disease duration, 206 

defined as the length of time between the age at recorded disease onset and age at death. All 3 207 

positively correlated modules were enriched with astrocyte marker genes (Fig. 2h), and of the two 208 

negatively correlated modules were enriched with microglia (Fig. 2i) and endothelial marker genes 209 

respectively. 2 modules associated with sex, an oligodendrocyte module (M16), and an astrocyte 210 
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module (M6), suggesting potential cell composition differences between males and females. Our 211 

previous study60 used these same samples to estimate the abundance of truncated STMN2 (tSTMN2), 212 

a novel cryptic exon transcript created by loss of nuclear TDP-4361,62, which may be a biomarker of TDP-213 

43 pathology60. 2 modules correlated with tSTMN2 abundance. One module, M20, was positively 214 

correlated with tSTMN2 (Fig. 2j). M20 is a large module containing 2048 genes and is enriched with 215 

neuronal marker genes, including the full-length STMN2 gene, as well as motor neuron markers MNX1 216 

and ISL1, though as the sole neuronal module it is likely non-specific to motor neurons. The module 217 

negatively correlated with tSTMN2 (M4) is enriched with pericyte marker genes. No modules were 218 

significantly associated with the site of motor onset (limb vs bulbar).  219 

Glial composition associates with disease duration 220 

To further investigate the associations with disease duration, we performed a transcriptome-wide 221 

correlation analysis with disease duration as a continuous variable. 745 and 39 genes were significantly 222 

associated with disease duration at FDR < 0.05 in the cervical and lumbar spinal cord, respectively 223 

(Supplementary Table 11). Estimated fold-changes represent unit change in expression per month of 224 

disease. No effect size threshold was applied. Test statistics for each gene were highly concordant 225 

between the cervical and lumbar cords (Pearson R = 0.71, P < 1e-16; Supplementary Fig 21). Using 226 

GSEA, we found that negatively correlated genes were enriched with microglia markers and microglia 227 

activation genes, whereas positively correlated genes were enriched with astrocyte markers and 228 

pericyte markers but not astrocyte activation gene sets (Fig. 3b-c). Using cell-type proportion estimates 229 

from the cervical spinal cord, we observed the same negative correlation between duration and 230 

microglial proportion (R = -0.31; adjusted P = 0.002), (Fig. 3d), but not with astrocyte proportion (R = 231 

0.15; adjusted P = 0.49). One of the strongest positive correlations with disease duration was found for 232 

the paraxaonase gene PON3, which has been previously linked to ALS through rare mutations63. The 233 

previously observed CHIT1 was found to be the strongest negatively correlated gene with disease 234 

duration in both cervical and lumbar spinal cord. There is a non-linear relationship between age of onset 235 

and age at death in ALS, with shorter durations seen in both younger and older onset patients. We 236 

confirm that the association with CHIT1 expression is strongest with disease duration, and not with age 237 

of onset or death (Fig. 3e-f).  238 

Mapping spinal cord QTLs 239 

We took common genetic variants (minor allele frequency > 1%) from the matched whole genome 240 

sequencing for all donors of European ancestry (Supplementary Fig. 22; Supplementary Table 12) 241 
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in the cohort, including cases of non-ALS neurodegeneration. We used this to map quantitative trait loci 242 

(QTLs) for gene expression and splicing, the latter using the intron-junction clustering method 243 

Leafcutter64. We identified 9,492 genes with an expression QTL (eQTL) and 5,627 with a splicing QTL 244 

(sQTL) in at least one region (Fig. 4a; Supplementary Fig. 23). As a comparison, we downloaded 245 

summary statistics for the only other available human spinal cord dataset, from GTEx (v8). We 246 

discovered substantially more genes with sQTLs than the 965 found by GTEx. Using Storey’s π1 we 247 

observed high sharing of QTLs between each region and with GTEx (Fig. 4b-c), although sharing was 248 

higher in sQTLs than eQTLs, as previously observed65,66. We used our previously generated cell-type 249 

proportion estimates to find cell-type interaction QTLs67 but no tissue had sufficient power to detect any 250 

such associations. 251 

Putative ALS risk variants colocalise with spinal cord QTLs 252 

We then used our QTLs, in combination with GTEx, to prioritise common genetic risk loci using the latest 253 

available ALS GWAS8 (Fig. 4d). Taking a relaxed approach, we extended our search from the 10 254 

genome-wide significant loci (P < 5e-8) to 64 nominally significant subthreshold loci (P < 1e-5) 255 

(Supplementary Table 13). Among genome-wide significant loci, we identified strong colocalization 256 

with QTLs at a posterior probability of colocalization hypothesis 4 (PP4) > 0.8, only in C9orf72. In the 257 

UNC13A locus we observed a potentially spurious colocalization with MVB12A only in GTEx (PP4 = 258 

0.5). Among the subthreshold loci, we observed colocalization in 16 loci, with the strongest colocalizing 259 

genes (PP4 > 0.8) across our tissues and GTEx seen for ATXN3, GGNBP2, ACSL5, and FNBP1 260 

(Supplementary Table 14).   261 

We then ran transcriptome-wide association study (TWAS), an orthogonal method that uses common 262 

variants, gene expression, and splicing ratios to predict cis-regulated expression and splicing. TWAS 263 

then imputes those models to GWAS summary statistics to identify genes that are associated with 264 

disease risk. We generated TWAS models for each spinal cord section and used summary statistics 265 

from the latest available ALS GWAS8. In both cervical and lumbar spinal cord, splicing in C9orf72 and 266 

ATXN3 were significantly associated with ALS (FDR < 0.05) (Supplementary Fig. 24; Supplementary 267 

Table 15). The lumbar spinal cord TWAS models also identified an association with expression of 268 

MAPT-AS1 and splicing of LINC02210 and LINC02210-CRHR1. These three genes are within the 269 

contentious MAPT H1/H2 haplotype region, which has a complex linkage disequilibrium structure, and 270 

so are potential false positives. As a comparison, we downloaded pre-computed expression and splicing 271 

weights for the dorsolateral frontal cortex (n = 453;68), which found associations with C9orf72 in both 272 

splicing and expression. In addition, the cortex TWAS models identified SLC9A8, G2E3, SCFD1, and 273 

GPX3 (Supplementary Fig. 24). 274 
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Prioritised genes annotate to cell-types  275 

We took each colocalised protein-coding gene (PP4 > 0.7) in any of the three spinal cord datasets and 276 

annotated them to a cell-type, and to understand how these genes might be involved in ALS. We first 277 

took cell-type fidelity ratings69, expressed as a fidelity score from 0-100, with high scores suggesting 278 

greater cell-type specificity. Although most genes showed no preference towards any cell type, FNBP1 279 

(fidelity = 92) showed high specificity to oligodendrocytes (Fig. 5a; Supplementary Fig. 25). We then 280 

used the ALS co-expression network modules generated earlier to infer roles for the genes specifically 281 

in ALS. Using guilt-by-association, if a gene belongs to a module enriched in a particular cell-type or 282 

marker list, it may also be involved in that cell-type. Both FNBP1 and SH3RF1 were placed in module 283 

M16, highly enriched for oligodendrocytes (Fig. 5b). NFASC was placed within M6, a module enriched 284 

in both astrocyte marker genes and in disease-associated astrocytes, whereas ACSL5 was located in 285 

M14, a module enriched in disease-associated microglia genes but not microglia markers. We then 286 

correlated each prioritised gene with estimated cell-type proportions for six cortical cell types46. A 287 

positive correlation with a particular cell-type proportion is suggestive evidence for specificity. FNBP1, 288 

SH3RF1, and NFASC all positively correlated with oligodendrocyte proportions (Fig. 5c). ACSL5 289 

positively correlated with microglia, endothelial and pericyte proportions, with the strongest correlation 290 

seen with endothelial cells. Repeating the analysis in just the control samples replicated the correlations 291 

between FNBP1 and oligodendrocytes and ACSL5 with endothelial cells (Supplementary Fig. 26). 292 

 293 

Finally, both FNBP1 and SH3RF1 are downregulated in ALS cases, whereas NFASC expression is 294 

positively associated with disease duration in the cervical spinal cord, the only colocalised gene to do 295 

so (Fig. 5d). GGNBP2 was upregulated in ALS patients but did not show a clear cell-type specificity. 296 

Despite C9orf72 being highly expressed in mouse microglia70, we observed no associations between 297 

C9orf72 and any cell-type or module.  298 

Splicing QTLs implicate repeat expansions in ALS risk 299 

The C9orf72 gene produces transcripts from two alternative promoters, exon 1a and exon 1b. The ALS-300 

associated G4C2 hexanucleotide repeat expansion (HRE) is located between the two exons (Fig. 6a), 301 

with more than 30 copies of the HRE considered to be pathogenic71. The C9orf72 GWAS locus 302 

colocalizes with a splicing QTL in the C9orf72 transcript in the NYGC lumbar spinal cord, as well as an 303 

eQTL in GTEx (Fig. 4a). The sQTL increases the usage of the intron J1 connecting exon 1a with exon 304 

2, which spans the HRE (Fig. 6a). The lead GWAS SNP rs8349943 and the lead sQTL SNP rs1537712 305 

are in strong LD in Europeans (R2 = 0.75) and we show that the GWAS SNP is also associated with J1 306 
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intron usage (Fig. 6b; Supplementary Table 15). The lead GWAS SNP rs8349943 is known to tag a 307 

founder haplotype which is more susceptible to the HRE72. Using ExpansionHunter to estimate the 308 

length of the HRE in our cohort, we replicate this finding, as carriers of rs8349943 are also enriched for 309 

the HRE (Fig. 6c). The usage of the J1 intron is correlated with repeat length (Fig. 6d). Therefore, the 310 

sQTL colocalization result is likely being driven by the effect of the tagged repeat expansion on the 311 

splicing of intron J1.  312 

 313 

We propose a similar mechanism for the colocalization of a subthreshold GWAS locus (P = 3.2e-7) with 314 

the splicing of ATXN3, a promising potential ALS risk gene. The lead SNP rs10143310 was below 315 

genome-wide significance in the European ALS GWAS8 but crossed the threshold in a multi-ethnic 316 

meta-analysis73. A CAG repeat in exon 10 of ATXN3 is highly polymorphic, and expansions greater than 317 

45 copies cause spinocerebellar ataxia type 3 (SCA3), also known as Machado-Josephs disease74. 318 

SCA3 patients have lower motor neuron loss and have detectable TDP-43 protein inclusions75. 319 

Intermediate length expansions, not sufficient to cause ataxia, have been shown to increase ALS risk in 320 

several other ataxin family genes, most notably ATXN212, but also ATXN113 and ATXN8OS15. Tagging 321 

repeat expansions in ATXN3 with common genetic variants has been previously explored in SCA3 322 

patients76. In both lumbar and cervical spinal cord samples, and in GTEx, the lead QTL SNP 323 

rs200388434 is associated with splicing with a cluster of introns at the 3’ end of the ATXN3 gene, just 324 

downstream of the site of the repeat expansion in exon 10 (Fig. 5e). The lead QTL SNP rs200388434 325 

is in high linkage disequilibrium (R2 = 0.93) with the lead GWAS SNP rs10143310 in Europeans, and 326 

rs10143310 also associated with intron splicing (Fig. 5f). We hypothesise that the GWAS association 327 

is tagging an intermediate length CAG repeat, and this may be the underlying causal genetic factor. We 328 

were able to genotype the CAG repeat in 304 individuals in the cohort using ExpansionHunter, observing 329 

that the lead QTL SNP associated with a narrow range of repeat lengths >= 16 (Fig. 5g). CAG repeat 330 

length also correlated with splicing in the lumbar spinal cord (Fig. 5h).  331 

Discussion 332 

In this study we assembled the largest ever cohort of post-mortem ALS spinal cords. This has allowed 333 

us not only to identify differentially expressed genes when compared to controls, but to identify genes 334 

associated with clinical characteristics within the ALS patient cohort. By integrating common genetic 335 

variants we prioritise several new candidate ALS genes that may have cell-type-specific functions. In 336 

this way, we investigated both the cause (genetic risk) and likely consequence (post-mortem gene 337 

expression changes) of disease. 338 
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 339 

Comparing ALS cases to controls we identified robust shifts in cell-type in the spinal cord, primarily 340 

comprised of a downregulation of oligodendrocytes and motor neurons, and an upregulation in 341 

astrocytes and microglia, as well as smaller upward shifts in endothelial cells and pericytes. We observe 342 

this across the three spinal cord regions with multiple orthogonal techniques (GSEA, deconvolution, 343 

EWCE). However, the interpretation of our results is constrained by the relatively low number of control 344 

samples in the cohort, as well as the inherent limitations in the use of bulk tissue sections. The reduction 345 

in oligodendrocyte gene expression may reflect genuine cell loss due to secondary demyelination 346 

accompanying axonal loss77, but this may also reflect a relative shift in proportion compared to increased 347 

astrocytes and microglia. For both microglia and astrocytes, although we saw overall upregulation of 348 

multiple microglia and astrocyte activation gene lists, it is currently intractable to separate changes in 349 

cell-type proportion from changes in cell state in bulk tissue RNA-seq. We also cannot rule out that the 350 

increased microglia and activated microglia gene expression signatures may be driven by peripheral 351 

monocytes and/or T-cells, which are known to migrate into the spinal cord78. We also observed small 352 

increases in endothelial cells and pericytes. Alterations to the choroid plexus, including reductions in 353 

pericytes, have been observed in ALS79. Increases in the recently identified perivascular fibroblast cell-354 

type have been observed in ALS spinal cord RNA-seq as well as ALS mouse models80, although we did 355 

not explicitly look for this cell type. Crucially, we observed high concordance between our data and a 356 

published proteomic dataset from an independent ALS spinal cord and cerebrospinal fluid cohort, 357 

suggesting that the gene expression changes we identify are maintained at the protein level, increasing 358 

their utility as potential biomarkers.  359 

Using co-expression networks built in ALS samples only, we observed a series of associations with 360 

disease duration and co-expression modules enriched in microglia and astrocyte genes, in opposing 361 

directions. Increased numbers of activated microglia, as measured by CD68 staining in the spinal cord, 362 

have been observed in faster progressing ALS patients85. However, it is unclear whether microglia 363 

activation accelerates neuronal death, or whether microglia activation is an attempted compensatory 364 

process, with disease duration driven by some other factor. The negative correlation observed between 365 

CHIT1 expression and disease duration replicates previous findings at the protein level37,39,86,87, but we 366 

also find hundreds of new associations, including in the ALS-linked gene PON3.  367 

By mapping QTLs we provide a genetic resource for the ALS and wider neuroscience community to 368 

understand common genetic drivers of gene expression and splicing in the spinal cord.  369 

Colocalization has allowed us to prioritise new ALS risk genes, but we must stress that the bulk of our 370 

findings rely on nominally significant genetic loci. We are also mindful of the potential for false positive 371 
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associations due to gene co-expression and LD contamination, which affect both colocalization and 372 

TWAS89.  373 

Taken together, our analyses of the ALS spinal cord point to non-neuronal cells as firmly in the heart of 374 

disease in the spinal cord in responding to, and potentially driving, progression of the disease. Our 375 

genetic analyses highlight potential new genes that may act on ALS through specific glial cell types. 376 

Future genome-wide survival studies may highlight more glial genes in also driving ALS progression.  377 

We hope our data are a useful resource for the design of future experiments. 378 
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Tables 403 

 404 

Table 1 - Clinical and technical characteristics of the differential gene expression cohort 405 

 Control ALS ALS-C9orf72  P-value 

Donors 49 125 29 - 

% Female 53.1% 43.2% 58.6% 0.29 

% Bulbar onset - 24.2% 25.1% 1 

Disease duration, months - 35 (6-156) 31 (6-90) 0.12 

Age at death 66 (16-89) 66 (32-85) 64 (50-78) 0.63 

Sequencing platform  
(NovaSeq / HiSeq 2500) 

66.7% 59.3% 78.8% 0.104 

Tissues  

Cervical Spinal Cord 35 111 28 - 

    RIN  6.4 (5.1-8.1)        7 (5-9) 6.5 (5.1-8.6) 0.0077 

Lumbar Spinal Cord 32 101 21 - 

    RIN 5.8 (5-7.8) 6.9 (5.1-8.7) 6.3 (5.1-8) 3e-05 

Thoracic Spinal Cord 10 37 5 - 

    RIN 6.35 (5.6-8.1) 6.5 (5-8) 7.5 (5.5-8) 0.79 

ALS-C9orf72: ALS with confirmed C9orf72 hexanucleotide expansion. RIN: RNA integrity number. Continuous 406 
variables presented as median and range. Categorical variables compared with Fisher’s exact test, continuous 407 
variables with Kruskal-Wallis or Wilcoxon rank sum tests. P-values shown are uncorrected for multiple testing, P-408 
values < 0.05 are bolded  409 
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 410 
 411 
Table 2 - Differentially expressed genes (DEGs) found in each spinal cord region 412 

Region Control ALS Genes 
tested 

All DEGs  
(FDR < 0.05) 

DEGs 
|LFC] > 1  

DEGs 
|LFC| > 2 

Cervical 35 139 25,389 7,349 377 29 

Thoracic  10 42 19,367 256 65 9 

Lumbar 32 122 25,601 4,694 233 7 

 413 

Figure Legends 414 

Fig. 1 | Differential gene expression in the ALS spinal cord is driven by cell-type composition.  a-b. Volcano 415 
plots comparing ALS patients to controls in each spinal cord section. P-values for each gene generated from 416 
empirical Bayes moderated t-statistics (limma-voom), followed by Benjamini-Hochberg multiple testing adjustment. 417 
Genes coloured by whether not differentially expressed (FDR < 0.05; grey), differentially expressed but with 418 
modest effects (|log2 fold change (LFC)| < 1; orange) and with stronger effects (|LFC| > 1; red). Numbers of genes 419 
in each category above the plot. c-d. Comparing LFC effect sizes between the two regions for the most upregulated 420 
(c) or downregulated (d) genes. e. The 20 most upregulated (left) and downregulated (right) genes, ordered by 421 
LFC. Asterisks represent Benjamini-Hochberg adjusted P < 0.05 across the 25,389 and 25,601 respective genes 422 
from differential expression.  (f-h) Gene Set Enrichment Analysis results.Normalised enrichment score (NES) is a 423 
measure of enrichment of a gene set within a ranked list of genes compared to a permuted background. All 424 
pathways are enriched in upregulated genes. Significance derived from empirical P-values from a one-sided 425 
permutation test followed by Benjamini-Hochberg correction. (f) GSEA results for the 50 molecular signature 426 
hallmark pathways genes sets. 100 tests performed. (g GSEA results for the cell-type signature gene sets. 12 427 
tests performed.  h. GSEA results for the glial activation gene sets. 10 tests performed. DAA: disease-associated 428 
astrocytes; DAM: disease-associated microglia; PIG: plaque-induced genes; RA-LPS: reactive astrocytes in 429 
response to lipopolysaccharide; RA-MCAO: reactive astrocytes in reponse to hypoxia. i. Estimated cell-type 430 
proportions in the cervical spinal cord, between 139 ALS patients and 35 controls. n=174 biologically independent 431 
samples. P-values  from a two-sided Wilcoxon non-parametric test comparing residuals after regressing technical 432 
covariates, followed by Bonferroni correction. 6 tests performed. Boxplots show the median, first and third quartile 433 
of the distribution with whiskers extending to 1.5 times the interquartile range. j-k. Correlating differentially 434 
expressed genes (FDR < 0.05) in the Cervical spinal cord with differentially expressed proteins (FDR < 0.05) from 435 
post-mortem spinal cord (j) and cerebrospinal fluid (k). Asterisks reflect magnitude of adjusted P-values: *** q < 436 
1e-4; ** q < 1e-3; * q < 0.05; . q > 0.05.  437 
 438 
Fig. 2 | Gene co-expression network in the ALS spinal cord. (a-g) Weighted gene co-expression network 439 
analysis of 303 ALS spinal cord samples identifies 23 gene modules. a. Modules are presented as hierarchical 440 
clustering based on module eigengene (ME) correlation. b-e: Enrichment results between each module and b) 441 
cell-type marker genes from Mathys et al, c) glial activation genes, d) gene ontology (biological process) 442 
enrichment, manually collapsed, e) differentially expressed genes (FDR < 0.05, no fold change cutoff) between 443 
ALS and controls, across all spinal cord regions, f) Spearman correlation with disease traits. g-j). MEs for each 444 
ALS patient. M3 correlates with age of symptom onset, M8 and M17 with duration of disease in months, and M20 445 
with tSTMN2 expression. R refers to Spearman correlation. * refers to Bonferroni adjusted P < 0.05, adjusted for 446 
the number of cells in each panel separately. Tests performed: 138 (b), 115 (c), 3,326 (d), 46 (e), 161 (f).   tSTMN2 447 
- truncated STMN2. TPM - transcripts per million.  P-values for b,c,e from one-sided Fisher’s exact test followed 448 
by Bonferroni adjustment, d from one-sided hypergeometric test followed by g:SCS adjustment, f from two-sided 449 
Spearman correlation test followed by Bonferroni adjustment.  450 
 451 
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Fig. 3 | Gene expression correlations with duration of disease. a. Volcano plots for correlation in each tissue. 452 
Log2 fold-changes represent unit change in expression per month of disease duration. P-values for each gene 453 
generated from empirical Bayes moderated t-statistics (limma-voom), followed by Benjamini-Hochberg multiple 454 
testing adjustment b. GSEA with cell-type marker genes. 8 tests performed. c. GSEA with glia activation gene 455 
lists. 10 tests performed. GSEA P-values generated from a one-sided permutation test followed by Benjamini-456 
Hochberg correction  d. Cell-type proportions in the cervical spinal cord estimated with deconvolution plotted 457 
against disease duration. e. CHIT1 is strongly upregulated in ALS in all three tissues. Sample numbers in Table 458 
1. f. CHIT1 expression negatively correlates with disease duration, but not with age of onset, and only weakly with 459 
age at death. All correlations are Spearman rank correlations. Two-sided P-values in panels b and c are Bonferroni 460 
corrected for 12 and 10 tests respectively. P-values in d. are Bonferroni-corrected for 6 tests. Asterisks reflect 461 
magnitude of adjusted P-values: *** q < 1e-4; ** q < 1e-3; * q < 0.05; . q > 0.05. Boxplots show the median, first 462 
and third quartile of the distribution with whiskers extending to 1.5 times the interquartile range. 463 
 464 
Fig. 4 | Quantitative trait loci (QTL) colocalize with putative ALS risk variants. a. QTL discovery in the three 465 
spinal cord tissues and compared with GTEx (v8). Numbers refer to genes with an expression QTL (eGenes) or a 466 
splicing QTL (sGenes) at qvalue < 0.05. b-c. Sharing of QTLs between tissues using Storey’s π1 metric. Values 467 
are not symmetric. d. Colocalization of subthreshold ALS GWAS loci with spinal cord QTLs. Loci are named for 468 
their nearest protein-coding gene. P-values refer to the association of the lead variant in the locus with ALS risk 469 
from the GWAS (logistic regression). Numbers refer to the probability of a single shared variant in both GWAS and 470 
QTL (PP4). All genes and loci shown with PP4 > 0.5 in at least one QTL dataset. Genes taken for further analysis 471 
are in bold font. Circles refer to eQTLs, triangles to sQTLs. PP4: posterior probability of colocalization hypothesis 472 
4.  473 
 474 
Fig. 5 | Annotating colocalised genes with cell-type information. a-d. Each protein-coding gene with PP4 > 475 
0.7 in at least one spinal cord QTL dataset. a. Cell-type fidelity scores from Kelley et al., higher scores imply higher 476 
cell-type specificity. b. The cell-type and activation marker enrichment p-values (one-sided Fisher’s exact test) 477 
from Fig. 4 for the modules containing each gene. c. Each gene correlated with estimated cell-type proportions in 478 
cervical spinal cord in the ALS samples only. Two-sided Pearson correlation test. d. Log2 fold changes from 479 
differential expression in ALS vs Control (upper panel) and ALS disease duration (lower panel) in cervical and 480 
lumbar spinal cord. P-values in b. and c. Bonferroni adjusted for 138 (b upper panel), 115 (b lower panel), and 72 481 
(c) tests. P-values in d. from limma-voom adjusted by Benjamini-Hochberg method for all genes tested in each 482 
cohort. Asterisk denotes adjusted p-value < 0.05.   483 
 484 
Fig. 6 | Splicing QTLs illuminate genetic associations with repeat expansions in C9orf72 and ATXN3. a. 485 
The ALS-causing GGGGCC repeat expansion lies in between the two first exons, 1a and 1b. The intron connecting 486 
the exon 1a with exon 2 (J1) has an sQTL in the lumbar spinal cord that colocalises with ALS risk (PP4 = 0.78). 487 
b. The lead GWAS SNP rs8349943 is associated with J1 intron splicing in the lumbar spinal cord (P = 1.3e-9, 488 
linear regression, n=197 independent samples). c. The GGGGCC expansion is only observed in carriers of 489 
rs8349943. 30 copies of the repeat is considered the threshold for disease initiation. (P=1.6e-4, linear regression, 490 
n=139 independent samples) 71. d. The GGGGCC repeat expansion is associated with J1 intron splicing (R=0.33, 491 
P = 8.8e-5, two-sided Pearson correlation test). e. The ATXN3 gene produces multiple transcripts, including 492 
several short transcripts at the 3’ end of the gene. Three introns have sQTLs that colocalise with a subthreshold 493 
ALS risk GWAS locus with high PP4. The introns are all immediately downstream of a CAG repeat within exon 10. 494 
f. The lead GWAS SNP rs10143310 is associated with usage of the J1 intron, (P=3.8e-13, linear regression, n=196 495 
independent samples).  g.  Carriers of rs10143310 have a CAG repeat length > 16 copies. (P=1.1e-7, linear 496 
regression, n=130 independent samples). h. The length of the CAG repeat correlates with J1 splicing (p = 0.05, 497 
two-sided Pearson correlation test). Boxplots show the median, first and third quartile of the distribution with 498 
whiskers extending to 1.5 times the interquartile range. 499 
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Methods 673 

NYGC ALS Consortium cohort 674 

The 1,917 RNA-seq samples from the January 2020 freeze of the New York Genome Center (NYGC) 675 

ALS Consortium were downloaded, comprising of samples from cortical regions, cerebellum and spinal 676 

cord. This study used only the spinal cord samples. Diagnosis was determined by each contributing site. 677 

Donors include non-neurological disease controls (hereafter controls), those with classical ALS 678 

(hereafter ALS), frontotemporal dementia (FTD), mixed pathologies (ALS-FTD, ALS-Alzheimer’s), and 679 

a small number of other diseases including Primary Lateral Sclerosis, Kennedy’s Disease and 680 

Parkinson’s Disease. C9orf72 and ATXN3 repeat expansion lengths were estimated by the Consortium 681 

using ExpansionHunter (v2.5.5)1 on samples that had PCR-free whole genome sequencing available. 682 

Patients with greater than 30 repeats were defined as C9orf72-ALS. For ALS patients, age of symptom 683 

onset and age at death was reported by each contributing site. Disease duration was defined as the 684 

difference between age at death and symptom onset, in months. The NYGC ALS Consortium samples 685 

presented in this work were acquired through various institutional review board (IRB) protocols from 686 

member sites and the Target ALS postmortem tissue core and transferred to the NYGC in accordance 687 

with all applicable foreign, domestic, federal, state, and local laws and regulations for processing, 688 

sequencing, and analysis. The Biomedical Research Alliance of New York (BRANY) IRB serves as the 689 

central ethics oversight body for NYGC ALS Consortium. Ethical approval was given and is effective 690 

through 08/22/2022. 691 

RNA-seq processing and quality control 692 

The Consortium’s RNA-seq sample processing has been, in part, previously described2,3. In brief, RNA 693 

was extracted from flash-frozen postmortem tissue using TRIzol (Thermo Fisher Scientific) chloroform, 694 

followed by column purification (RNeasy Minikit, QIAGEN). RNA integrity number (RIN)4 was assessed 695 

on a Bioanalyzer (Agilent Technologies). RNA-Seq libraries were prepared from 500 ng total RNA using 696 

the KAPA Stranded RNA-Seq Kit with RiboErase (KAPA Biosystems) for rRNA depletion and Illumina-697 

compatible indexes (NEXTflex RNA-Seq Barcodes, NOVA-512915, PerkinElmer, and IDT for Illumina 698 

TruSeq UD Indexes, 20022370). Pooled libraries (average insert size: 375 bp) passing the quality 699 

criteria were sequenced either on an Illumina HiSeq 2500 (125 bp paired end) or an Illumina NovaSeq 700 

(100 bp paired-end). Samples were subjected to extensive sequencing and RNA-Seq quality control 701 

metrics at the NYGC that are described below. Notably, a set of more than 250 markers was used to 702 

confirm tissue, neuroanatomical regions, and sex in the RNA-Seq data. Only samples passing these 703 
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metrics are available for distribution. The samples had a median sequencing depth of 42 million read 704 

pairs, with a range between 16 and 167 million read pairs. 705 

 706 

Samples were uniformly processed using RAPiD-nf, an efficient RNA-Seq processing pipeline 707 

implemented in the NextFlow framework5. Following adapter trimming with Trimmomatic (version 0.36) 708 

6, all samples were aligned to the hg38 build (GRCh38.primary_assembly) of the human reference 709 

genome using STAR (2.7.2a)7, with indexes created from GENCODE, version 30 8. Gene expression 710 

was quantified using RSEM (1.3.1)9. Quality control was performed using SAMtools (v1.9) 10 and Picard  711 

(v2.22.3), and the results were collated using MultiQC (v1.8)11.  712 

 713 

Aligned RNA-seq samples were subjected to quality control modelled on the criteria of the Genotype 714 

Tissue Expression Consortium12. Any sample failing 1 of the following sequencing metric thresholds 715 

was removed: a unique alignment rate of less than 90%, ribosomal bases of greater than 10%, a 716 

mismatch rate of greater than 1%, a duplication rate of greater than 0.5%, intergenic bases of less than 717 

10.5%, and ribosomal bases of greater than 0.1%. For tissue identity, both principal components 718 

analysis and UMAP were performed on the TMM-normalised gene expression matrix, followed by k-719 

means clustering. This identified three clusters of samples, grouped by cerebellum, cortical regions, and 720 

spinal cord. Samples that clustered with a non-matching tissue type were flagged and tissue identity 721 

was re-confirmed using the expression of the cerebellar marker CBNL1, the cortical marker NRGN and 722 

the oligodendrocyte marker MOBP. 19 samples were removed for having ambiguous tissue identity. For 723 

duplicate samples, where samples of the same tissue from the same donor were sequenced, the sample 724 

with the highest RIN was retained, this removed 15 duplicate samples. Sex was confirmed using XIST 725 

and UTY expression. 11 samples with missing sex information were confirmed as males. Due to the 726 

large impact of RNA integrity number (RIN) on expression, only samples with RIN >= 5 were included 727 

in the differential expression analysis, totalling 380 spinal cord samples from 203 donors. For the QTL 728 

analyses (see below), no RIN threshold was applied. 729 

Covariate selection and modelling for differential expression 730 

The following was run for each tissue separately: Clinical variables (disease status, age at death, sex, 731 

contributing site) were combined with sequencing variables (RIN, sequencing preparation method, 732 

sequencing platform), technical metrics of the RNA-seq libraries from Picard (% mRNA bases, 3’ bias, 733 

etc), and genotype principal components (see below). Using voom-normalised gene expression 734 

removing lowly expressed genes, principal components analysis was performed. The top 10 principal 735 

components were then associated with each potential confounding variable using a linear model, 736 
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estimating the variance explained (r2) of the confounder on each principal component (Supplementary 737 

Fig. 3a). Using an orthogonal approach, variancePartition (v1.21.6)13 was run on a reduced set of 738 

confounding variables, taking only the nominally independent sequencing metrics (Supplementary Fig. 739 

3b).   740 

 741 

For performing differential gene expression between ALS and control samples, multiple model designs 742 

were fitted to account for differences in sequencing batch and contributing site, both of which are 743 

correlated with disease status. To account for potentially non-linear dependence of RIN and age at 744 

death, squared terms were included. To account for potential confounding differences due to genetic 745 

background, the first 5 genotype principal components (gPCs) from smartpca (v6.0.1)14 were included. 746 

For filtering lowly expressed genes, a permission threshold of median TPM > 0 was applied, resulting 747 

in 24-25,000 genes being kept for each analysis. For Cervical and Lumbar spinal cord, the following 748 

model was fitted: expression ~ disease + sex + library preparation method + contributing site + age + 749 

age2 + RIN + RIN2 + % mRNA bases + gPC1 + gPC2 + gPC3 + gPC4 + gPC5. For the smaller set of 750 

Thoracic spinal cord samples, a reduced model was fitted as it maximised the gene-gene correlation of 751 

differential expression effect sizes with the other two regions:  expression ~ disease + sex + RIN + RIN2 752 

+ age + age2 + library preparation method + gPC1 + gPC2 + gPC3 + gPC4 + gPC5. Differential gene 753 

expression was fitted using limma voom (v3.46.0)15 on TMM-normalized16 read counts. P-values were 754 

adjusted for multiple testing using FDR correction, with genes were considered differentially expressed 755 

at FDR < 0.05. A gene was considered to have a moderate effect size at |log2 fold change| > 1.  756 

For transcriptome-wide correlations with disease duration, the same models as before were used in the 757 

ALS samples only, with disease duration (years) used as continuous variables. Downsampling was 758 

performed by taking random subsets of either the Cervical or Lumbar samples, without replacement.  759 

Gene set enrichment analysis 760 

Sets of genes were collected from multiple sources and compared to the full differential expression 761 

results for each tissue using Gene Set Enrichment Analysis (GSEA)17, as implemented in the 762 

Clusterprofiler R package (v3.18.1)18. As input we included all tested genes from the differential 763 

expression or disease duration analysis for each tissue at nominal (unadjusted) P-value < 0.05, ranked 764 

by log2 fold change. For each gene set, a running cumulative tally is made of whether genes in a set are 765 

present or absent during a walk down the list. The maximal score during the walk is the enrichment 766 

score (ES), which reflects the degree of which a gene set is enriched at either the top or bottom of a list. 767 

Labels are then randomly permuted to generate an empirical null ES distribution and a P-value is 768 

calculated. To aid comparison between sets, each ES is then divided by the mean null ES to create a 769 
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normalised enrichment score (NES). Hallmark pathway gene sets (h.all.v7.2.symbols.gmt) were 770 

downloaded from the molecular signatures database19. Cell-type marker genes were created using 771 

single cell RNA-seq20 and single nucleus RNA-seq21 from human cortex. For each dataset, the top 100 772 

cell-type specific genes were calculated by comparing gene expression of each cell-type group against 773 

the mean of all cells in Limma Voom. Marker genes for astrocytes, microglia, neurons, oligodendrocytes, 774 

and pericytes were downloaded from the Kelley et al22, PanglaoDB23  and Neuroexpresso24 websites 775 

(see URLs). Disease-associated Microglia (DAM) signature genes25, Disease-associated astrocytes26, 776 

Plaque-associated genes27, and LPS and MCAO-activated astrocyte genes28 were downloaded from 777 

their respective supplementary materials. Mouse genes were lifted over to their human homologues 778 

using Homologene29. Any duplicate gene name, or gene name without a matching Ensembl ID in 779 

GENCODE v30 was removed.  780 

Re-analysis of proteomics data 781 

Summary statistics from a published study30 applying isobaric tags for relative and absolute 782 

quantification (iTRAQ) proteomics for cerebrospinal fluid (26 ALS, 16 Control) and label-free proteomics 783 

to human spinal cord (8 ALS, 7 control) were downloaded from the study’s supplementary data files. A 784 

total of 1,929 proteins were tested in the cerebrospinal fluid, of which 32 were called significant at FDR 785 

< 0.05. 5,115 peptides were tested in spinal cord samples, of which 292 were called significant at FDR 786 

< 0.05. Peptides assigned to multiple genes were discarded, resulting in 287 genes in the spinal cord 787 

and 30 in CSF. 788 

Cell-type deconvolution 789 

Filtered counts and cell-type labels for single nucleus RNA-seq from 80,660 cells from 48 human 790 

dorsolateral prefrontal cortex samples21 were downloaded from Synapse (syn18681734). Only cells 791 

from the 14 donors without dementia were kept. Single cell RNA-seq data of 466 cells from 12 donors20 792 

was downloaded from Gene Expression Omnibus (GSE67835) using the count matrices and cell-type 793 

labels provided.  Bulk spinal cord RNA-seq data was voom-normalized before deconvolution was 794 

estimated using MuSiC (v0.1.1)31, a method which incorporates the variance between multiple donors 795 

from single cell/nucleus RNA-seq. In addition, we ran dtangle (v2.0.9)32, which requires marker genes 796 

to be generated for each cell-type. Markers were created using Voom to compare each gene in purified 797 

cell-type to the mean of all cell-types. The top 100 genes ranked by effect size were used as cell-type 798 

markers. Estimated proportions of each cell-type were compared between ALS and control using non-799 

parametric Wilcoxon tests after regressing the same technical covariates above. P-values were 800 
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corrected for multiple testing using Bonferroni correction. For comparing duration of onset, estimated 801 

cell-type proportions were correlated using a Spearman correlation. 802 

Expression-weighted Cell-type Enrichment 803 

Expression-weighted cell-type enrichment analysis was performed using the EWCE package33. Cell-804 

type specificity scores for each gene were created using human frontal cortex single-nucleus RNA-805 

seq21. Cell-type enrichment results were generated using the top 250 upregulated and downregulated 806 

genes, ordered by t-statistic, for the differential expression results for each segment. Specificity scores 807 

for each set were then compared to the mean of the empirical null distribution from 10,000 random gene 808 

sets. Enrichment was expressed as the number of standard deviations from the mean. P-values were 809 

Bonferroni corrected for multiple testing. Significance was set at adjusted P < 0.05. 810 

Gene co-expression Networks 811 

Gene expression from all 303 ALS samples from the three spinal cord regions was combined into a 812 

single matrix. Genes annotated as protein-coding by Ensembl were kept, and only then if each gene 813 

had at least 1 read count per million in at least 50% of samples, resulting in 16,992 genes. Gene counts 814 

were then transformed using Voom and TMM normalization. The following covariates were then 815 

regressed out using removeBatchEffect(): library preparation, contributing site, spinal cord section, RIN, 816 

% mRNA bases, and genomic PCs 1-5.  Co-expression network analysis was performed using Weighted 817 

Gene Correlation Network Analysis (WGCNA; v1.70-3) following a standard pipeline. Scale-free 818 

topology (R2 > 0.8) was achieved by applying a soft threshold power of 8 into a signed network model. 819 

The adjacency matrices were constructed using the average linkage hierarchical clustering of the 820 

topological overlap dissimilarity matrix (1-TOM). Co-expression modules were defined using a dynamic 821 

tree cut method with minimum module size of 50 genes and deep split parameter of 4. Modules highly 822 

correlated with each other, corresponding to a module eigengene (ME) correlation > 0.75, were merged, 823 

resulting in a total of 23 modules. Modules were labelled according to their size.  824 

We calculated the Spearman correlation between each module eigengene and the following clinical 825 

variables: age of disease onset, age at death, disease duration (years), site of disease onset (bulbar or 826 

limb), C9orf72 status, sex, and tSTMN2 abundance. tSTMN2 abundance in TPM for the matching 827 

samples was extracted from the supplementary data from3. 828 

Cell-type and glial activation genes were tested for enrichment within each module using Fisher’s exact 829 

test using a background set of 16,922 genes, followed by Bonferroni correction for the number of tests 830 

performed. Gene ontology biological process terms were tested for enrichment using the gProfiler2 831 



 
28 

package (v0.2.0)34. Terms with less than 10 genes were removed before correction for multiple testing. 832 

Enriched terms were then manually grouped into sets for presentation. Full module assignments, 833 

eigengenes, and  enrichment results are shared as Supplementary Tables 6-10. 834 

Quantitative Trait Loci mapping  835 

To perform expression QTL (eQTL) mapping, we created a pipeline based on the one created by the 836 

GTEX consortium. We completed a separate normalization and filtering method to previous analyses. 837 

Gene expression matrices were created from the RSEM output using tximport47. Matrices were then 838 

converted to GCT format, TMM normalized, filtered for lowly expressed genes, removing any gene with 839 

less than 0.1 TPM in 20% of samples and at least 6 counts in 20% of samples. Each gene was then 840 

inverse-normal transformed across samples. PEER48 factors were calculated to estimate hidden 841 

confounders within our expression data. We created a combined covariate matrix that included the 842 

PEER factors and the first 5 genotyping principal component values as input to the analysis. We tested 843 

numbers of PEER factors from 0 to 30 and found that between 10 and 30 factors produced the largest 844 

number of eGenes in each region (Supplementary Fig. 23).  845 

To test for cis-eQTLs, linear regression was performed using the tensorQTL (v1.0.5)49 cis_nominal mode 846 

for each SNP-gene pair using a 1 megabase window within the transcription start site (TSS) of a gene. 847 

To test for association between gene expression and the top variant in cis we used tensorQTL cis 848 

permutation pass per gene with 1000 permutations. To identify eGenes, we performed q-value 849 

correction of the permutation P-values for the top association per gene at a threshold of 0.05. 850 

We performed splicing quantitative trait loci (sQTL) analysis using the splice junction read counts 851 

generated by regtools (v0.5.1)50. Junctions were clustered using Leafcutter (psi_2019 branch)51, 852 

specifying for each junction in a cluster a maximum length of 100kb. Following the GTEx pipeline, introns 853 

without read counts in at least 50% of samples or with fewer than 10 read counts in at least 10% of 854 

samples were removed. Introns with insufficient variability across samples were removed. Filtered 855 

counts were then normalized using prepare_phenotype_table.py from Leafcutter, merged, and 856 

converted to BED format, using the coordinates from the middle of the intron cluster. We created a 857 

combined covariate matrix that included the PEER factors and the first 5 genotype principal components 858 

as input to the analysis. We mapped sQTLs with between 0 and 30 PEER factors as covariates in our 859 

QTL model and determined 5 and 15 factors produce the largest number of sGenes (Supplementary 860 

Fig. 23). 861 

 862 

To test for cis sQTLs, linear regression was performed using the tensorQTL nominal pass for each SNP-863 

junction pair using a 100kb window from the center of each intron cluster. To test for association between 864 
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intronic ratio and the top variant in cis we used tensorQTL permutation pass, grouping junctions by their 865 

cluster using --grp option. To identify significant clusters, we performed q-value52 correction using a 866 

threshold of 0.05.  867 

We estimated pairwise replication (π1) of eQTLs and sQTLs using the q-value R package. This involves 868 

taking the SNP-gene pairs that are significant at q-value < 0.05 in the discovery dataset and extracting 869 

the unadjusted P-values for the matched SNP-gene pairs in the replication dataset.  870 

GTEX Spinal Cord QTL summary statistics 871 

Full summary statistics for the cervical spinal cord expression QTLs (v8) were downloaded from the 872 

eQTL catalogue (see URLs). The splicing QTLs were downloaded from the Google Cloud portal.  Top 873 

associations for each gene were downloaded from the GTEx portal. 874 

Genome-wide association study summary statistics 875 

Full summary statistics for the 2018 ALS GWAS53 were downloaded from the EBI GWAS Catalogue, 876 

which have lifted over the variants to the hg38 build. Genome-wide significant loci were taken to be the 877 

most significant variants within 1 megabase at a threshold of P < 5e-8. Subthreshold loci were defined 878 

at a relaxed threshold of P < 1e-5.  Loci were named by their nearest protein-coding gene using 879 

SNPnexus (v4)54.  880 

Colocalization analysis 881 

We used coloc (v3.2-1)55 to test whether SNPs from different loci in the ALS GWAS colocalized with 882 

expression and splicing QTLs from the spinal cord. For each genome-wide and subthreshold locus in the 883 

ALS GWAS we extracted the nominal summary statistics of association for all SNPs within 1 megabase 884 

either upstream/downstream of the top lead SNP (2Mb-wide region total). In each QTL dataset we then 885 

extracted all nominal associations for all SNP-gene pairs within that range and tested for colocalization 886 

between the GWAS locus and each gene. To avoid spurious colocalization caused by long range linkage 887 

disequilibrium, we restricted our colocalizations to GWAS SNP - eQTL SNP pairs where the distance 888 

between their respective top SNPs was ≤ 500kb or the two lead SNPs were in moderate linkage 889 

disequilibrium (r2 > 0.1), taken from the 1000 Genomes (Phase 3) European populations using the 890 
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LDLinkR package (v1.1.2)56. For splicing QTLs we followed the same approach but collapsed junctions 891 

to return only the highest PP4 value for each gene in each locus. Due to the smaller window of 892 

association (100kb from the center of the intron excision cluster) we restricted reported colocalizations 893 

to cases where the GWAS SNP and the top sQTL SNP were either within 100kb of each other or in 894 

moderate linkage disequilibrium (r2 > 0.1). 895 

 896 

All plots were created using ggplot2 (v3.3.3)61 in R (version 4.0.4), with ggrepel (v0.9.1)62, ggfortify 897 

(v0.4.11)63, patchwork (v1.1.1)64, ggbreak (v0.0.9)65, and ggbio (v1.38.0)66 for additional layers of 898 

visualization.  899 

Data availability 900 

All raw RNA-seq data can be accessed via the NCBI’s GEO database (GEO GSE137810, GSE124439, 901 

GSE116622, and GSE153960). Processed gene expression count matrices with de-identified metadata 902 

have been deposited on Zenodo (10.5281/zenodo.6385747) and we provide an RMarkdown vignette 903 

on downloading them and performing differential expression (see URLs). In addition, we provide an 904 

interactive R Shiny app to visualise the gene expression and other clinical variable associations (see 905 

URLs). Full summary statistics for expression and splicing QTLs have been deposited on Zenodo 906 

(10.5281/zenodo.5248758). All TWAS weight files have been deposited on Zenodo 907 

(10.5281/zenodo.5256613). All RNA-seq and whole genome sequencing data generated by the NYGC 908 

ALS Consortium are made immediately available to all members of the Consortium and with other 909 

consortia with whom we have a reciprocal sharing arrangement. To request immediate access to new 910 

and ongoing data generated by the NYGC ALS Consortium and for samples provided through the Target 911 

ALS Postmortem Core, complete a genetic data request form at CGND_help@nygenome.org. All whole 912 

genome sequencing data will be deposited on dbGaP at the conclusion of the project in late 2023. 913 

Code availability 914 

All analysis code written in R is available in Rmarkdown workbooks in a Github repository, and specific 915 

data processing pipelines are in separate repositories (see URLs). 916 

URLs 917 

Website associated with this manuscript, including all code notebooks written for this project: 918 

https://jackhump.github.io/ALS_SpinalCord_QTLs/  919 
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Gene expression counts and TPMs with de-identified  metadata: 920 

https://zenodo.org/record/6385747  921 

Code vignette demonstrating how to download data and perform differential expression with R: 922 

https://jackhump.github.io/ALS_SpinalCord_QTLs/html/DE_Vignette.html  923 

R Shiny app for visualisation: 924 

https://jackhumphrey.shinyapps.io/als_spinal_cord_browser/  925 

Full QTL summary statistics: 926 

https://zenodo.org/record/5248758  927 

Full TWAS weights: 928 

https://doi.org/10.5281/zenodo.5256613  929 

Molecular Signatures Database (MSigDb):  930 

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp  931 

Kelley et. al. gene fidelity marker genes: 932 

http://oldhamlab.ctec.ucsf.edu/data-download/ 933 

Neuroexpresso marker genes: 934 

http://neuroexpresso.org/  935 

PanglaoDB marker genes: 936 

https://panglaodb.se/   937 

ENCODE Blacklist:  938 

https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz  939 

WGS QC pipeline: 940 

https://github.com/jackhump/WGS-QC-Pipeline  941 

QTL mapping pipeline: 942 

https://github.com/RajLabMSSM/QTL-mapping-pipeline  943 

DLPFC TWAS weights: 944 

http://gusevlab.org/projects/fusion/#reference-functional-data  945 

ExpansionHunter: 946 

https://github.com/Illumina/ExpansionHunter 947 

SNPNexus: 948 

https://www.snp-nexus.org/v4/  949 

VCFs of 1000 Genomes samples: 950 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20190312_bi951 

allelic_SNV_and_INDEL/ 952 
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