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Abstract

As software has become ever important in our lives, all that code needs to be of a high
quality. A common way to achieve this is via software testing, where additional “test
code” is written with the sole purpose of finding mistakes in the original code, or “pro-
duction code”. As test code has the large responsibility of ensuring qualitative software,
it is critical that the test code itself is of high quality as well. However, while the quality
of test code is often synonymous with its ability to find bugs, it is equally important to
ensure readability and maintainability of test code to allow agile teams working incre-
mentally to update, extend, and maintain the test code each iteration.

The presence of code duplication, or “code clones”, can affect the readability and
maintainability of code. While code clones have already been extensively researched in
production code, research on test code duplication is limited. And yet, duplicate tests are
a common occurrence, as the quickest way for a developer to test a new feature is to copy,
paste, and modify an existing test. In this thesis, we address this gap in the literature
by answering two research questions. First, we investigate whether the structure of test
code can be exploited to detect semantic code clones. Second, we investigate whether test
code duplication should be considered independently of production code duplication.
In the end, we show that test code is a rich source for studying clones and that further
investigation is warranted.





Nederlandstalige Samenvatting

Omdat software steeds belangrijker wordt in ons leven, moeten we een hoge kwaliteit
van code nastreven. Dit wordt typisch gedaan aan de hand van softwaretesten, waarbij
aanvullende “testcode” wordt geschreven met als doel fouten in de originele code, of
“productiecode”, te vinden. Aangezien testcode de verantwoordelijkheid heeft om de
kwaliteit van software te garanderen, is het van cruciaal belang dat de testcode zelf ook
van hoge kwaliteit is. En ondanks dat de kwaliteit van de testcode vaak synoniem staat
met het vermogen om bugs te vinden, is het net zo belangrijk omde leesbaarheid en onder-
houdbaarheid van de testcode te waarborgen, zodat agile teams de testcode incrementeel
kunnen uitbreiden en onderhouden.

Duplicate code, of een zogenaamde “code clone”, kan de leesbaarheid en onderhoud-
baarheid van code beïnvloeden. Hoewel code clones reeds uitgebreid onderzocht werden
in productiesystemen, is onderzoek naar duplicatie in testcode nog zeer beperkt. Des-
ondanks komen duplicate testen veel voor, aangezien een ontwikkelaar het snelst een
nieuwe functie kan testen door een bestaande test te kopiëren, plakken en wijzigen. In
dit proefschrift pakken we dit gebrek in de literatuur aan door twee onderzoeksvragen te
beantwoorden. Eerst onderzoeken we of de structuur van testcode gebruikt kan worden
om semantische code clones te detecteren. Ten tweede onderzoeken we of testcodedupli-
catie en duplicatie in productiesystemen afzonderlijk moeten beschouwen. Uiteindelijk
tonen we aan dat testcode een rijke bron is voor het bestuderen van code clones en dat
verder onderzoek gerechtvaardigd is.
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Chapter 1
Introduction

Software has taken over theworld. It flies our planes, helps drive our cars, andmakes our
trains run on time. Hospitals and critical infrastructure, such as emergency services and
the electric grid, all depend on software to operate effectively and efficiently. It would be
difficult to find a single person whose life is not influenced by software in some way, as
personal experience has shown me that even the most primitive Maasai tribes that roam
the savannahs in Tanzania use cellphones to communicate.

As software has become ever important in our lives, all that code needs to be of a high
quality. A common way to achieve this is via software testing. Simply put, another piece
of software, called “test code”, is written with the sole purpose of finding mistakes in the
original code, or “production code”.

In most organizations, the test code is the final “quality gate” for an application, al-
lowing or denying the move from development to release. With this role comes a large
responsibility: the success of an application, and possibly the organization, rests on the
quality of the software product [1, 2]. Therefore, it is critical that the test code itself is of
high quality.

The quality of test code is often synonymous with its ability to find bugs. Methods
such as code coverage analysis and mutation testing help developers assess the effective-
ness of their test code, and are therefore commonly used as metrics to measure quality
in the test suite. The quickest way for a developer to improve these metrics is to extend
existing unit tests or add new unit tests, regardless of how this affects the test code itself.
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However, with agile teams working incrementally on production code, the test code
needs to be updated, extended, and maintained each iteration as well. As a result, it is
equally important to ensure quality of the test code in terms of readability and maintain-
ability, as the test code should allow for these repeated changes to be easily applied. It
has become a recommended practice to continuously monitor the readability and main-
tainability of the test suite [3, 4].

The presence of code duplication, or “code clones”, can affect the readability and
maintainability of code. In test code, duplicate tests are a common occurrence, as the
quickest way for a developer to test a new feature is to copy, paste, and modify an ex-
isting test [5]. Even if a developer does create a new test from scratch, the consistent
structure of unit test code can still cause clones accidentally. Yet, while code clones have
already been extensively researched in production code, research on test code duplica-
tion is limited [6].

In this thesis, we address this gap in the literature by investigating duplication in test
code. Our investigation focusses specifically on unit and integration test code, yet in the
interest of brevity, we will simply use the term “test code” in the rest of this thesis. We
try to address the gap in the literature by answering two main research questions, and
in the end, we show that test code is a rich source for studying clones and that further
investigation is warranted.

RQ1: Can we exploit the structure of test code to detect semantic code clones?
While many tools already exists to detect syntactically similar code fragments, detecting
semantical similarity remains a difficult task. We propose that typical test idioms and
the consistent structure of test code can be exploited to find semantically similar tests.
This would enable both practitioners and researchers to find a large set of interesting test
clones, allowing better refactoring efforts and further in-depth studies for practitioners
and researchers respectivly. We will address this research question in Chapters 3 to 5 by
implementing a semantic test clone detection tool.

RQ2: Should test code duplication be considered independently of production code duplica-
tion?
Since test code differs significantly from production code in its structure, we propose
that duplication in test code also differs significantly fromduplication in production code.
This wouldmean that current clone detection, refactoring, andmaintainance approaches
might not be optimised for test code, and that current code cloning research might not
apply for test code. We will address this research question in Chapters 6 to 7 by perform-
ing a series of empirical studies into test code duplication, comparing it with production
code duplication.

2



1.1. CONTRIBUTIONS

1.1 CONTRIBUTIONS

The main contributions of this thesis are as follows.

� In Chapter 3, we provide a theoretical model that defines the behaviour of a test
case. This model provides a basis that can be used to detect semantic clones in test
code.

� In Chapter 4, we show that it is feasible to detect test behaviour with our theoretical
model. We do this by creating T-CORE, a tool that uses ourmodel to detect changes
in test behaviour.

� In Chapter 5, we show that it is feasible to detect semantic clones in test code using
our theoretical model. We do this by using T-CORE to detect 259 semantic clones
in a large open-source project.

� In Chapter 6, we perform a comparative study between code clones in test code
and in production code. We find that test code contains more than twice as much
duplication compared to production code, that clones in production code cause a
significant increase in test clones, and that clones in test code inherently differ from
clones in production code.

� In Chapter 7, we perform a larger comparative study that focusses on clone evolu-
tion in test code and in production code. We conclude that the amount of dupli-
cation in test code is significantly higher than in production at every point during
development, that clone density in test code much more sensitive is to changes in
the codebase compared to production code, and that clones in test code are being
changed slightly more often than in production code, yet they are more likely to be
changed consistently than inconsistently.

3



1.2 ORIGINS OF CHAPTERS

Chapters 3 to 6 are peer-reviewed and published. Chapter 7 will be published in
March 2023.

Chapter 3 was published in the Post-proceedings of the Tenth Seminar on Advanced Tech-
niques and Tools for Software Evolution (SATTOSE) [7].

Chapter 4 was published in the Proceedings of the 2nd International Workshop on Refactor-
ing (IWOR) [8].

Chapter 5 was published in theProceedings of the 13th InternationalWorkshop on Software
Clones (IWSC) [9].

Chapter 6 was published in the Journal of Systems and Software (JSS) [10] as an exten-
sion of our previously published paper in the Proceedings of the 27th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER) [11].

Chapter 7 will be published in the Proceedings of the 6thWorkshop on Validation, Analysis
and Evolution of Software Tests (VST).

4



Chapter 2
Terminology

In this chapter, we define the terminology necessary to understand the rest of this thesis.

Code clone. When two fragments of code are either exactly the same or similar to each
other, we call them a code clone. A code clone is also synonymous with a software
clone or duplicated code, and these terms can be used interchangeably.

Clone fragment. One fragment of code that is duplicated is called a clone fragment.
Therefore, a code clone consists of two or more such clone fragments. When we con-
sider a code clone that consists of exactly two clone fragments, we use the term clone
pair. Most code clone detection tools report their results in terms of clone pairs.

Clone class. When a clone fragment is duplicated more than two times, we get a set
of clone fragments called a clone class. Note that each combination of clone fragments
in this set will also form a clone pair. One way to visualize the differences between
these terms is to consider a graph: if every clone fragment is a node in a graph, then
every edge between two nodes is a clone pair, and a fully connected graph is a clone
class. A clone class therefore consists of a set of clone fragments that all form clone
pairs between themselves.

Clone density. Clone density, also known as clone percentage [12], or the Total Cloned
Method percentage (TCMp) or the Total Cloned Line of Code percentage (TCLOCp), de-
pending on the granularity [13, 14], is a metric that describes the amount of duplica-
tion in a codebase. For a function-level granularity, it is defined as

clone density =
fc ∗ 100

ftot
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where fc denotes the number of cloned functions, and ftot refers to the total number
of functions in the system. In other words, the percentage of functions that appear
in at least one clone fragment. In this thesis, we always refer to clone density at a
function-level granularity.

Clone type. Code clones can be differentiated based on their degree of similarity. First,
code clones can be divided into syntactic clones and semantic clones.

Syntactic clones. are code clones that are syntactically similar, and are further divided
in three types.

— Type-1 clones are exactly the same, only allowing differences in comments,
whitespaces, and indentation.

— Type-2 clones are type-1 clones that also have differences in variable names and
literal values.

— Type-3 clones are type-2 clones that also contain added or removed lines of
code.

Semantic clones. on the other hand are code clones that are semantically similar with-
out necessarily being syntactically similar. These are often called type-4 clones.

Clone lineage. A clone lineage is the ordered set of all versions of one clone class
throughout development. Each version corresponds to the clone class at a certain
commit of the project, from its introduction to its removal or to the last commit of the
project.

Clone genealogy. A clone genealogy is a set of clone lineages that have originated
from the same clone. This occurs when a subset of the clone fragments in a clone class
are changed, such that these clone fragments are still syntactically similar with each
other, but no longer syntactically similar to the other clone fragments from the original
clone class. As a result, the subset of clone fragments will form a new clone class by
itself, and the original clone class now consists of a smaller set of clone fragments, yet
both originate from the same clone.

6
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Chapter 3
Defining Test Code Semantics

Test Refactoring: a Research Agenda
Brent van Bladel and Serge Demeyer
In Post-proceedings of the Tenth Seminar on Advanced Techniques and Tools for Software
Evolution (SATTOSE), 1–6. Madrid, Spain. June, 2017.
This chapter was originally published in the Post-proceedings of the Tenth Seminar on Advanced Techniques and Tools for
Software Evolution (SATTOSE).

CONTEXT
In this chapter, we provide a theoretical model that defines the behaviour of a test
case. This model will provide the basis of our semantic test clone detector in an at-
tempt to answer our first main research question. Note that this chapter presents our
theoretical model as part of a larger proposed research agenda on test quality. Part of
this research plan is out of scope for this thesis, so we leave this as future research.

ABSTRACT Research on software testing generally focusses on the effectiveness of test suites
to detect bugs. The quality of the test code in terms of maintainability remains mostly ignored.
However, just like production code, test code can suffer from code smells that imply refactoring
opportunities. In this paper, we will summerize the state-of-the-art in the field of test refactoring.
We will show that there is a gap in the tool support, and propose future work which will aim to fill
this gap.
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3.1 INTRODUCTION

Refactoring is “the process of changing a software system in such a way that it does
not alter the external behaviour of the code yet improves its internal structure” [15]. If
applied correctly, refactoring improves the design of software, makes software easier to
understand, helps to find faults, and helps to develop a program faster [15].

In most organizations, the test code is the final “quality gate” for an application, al-
lowing or denying the move from development to release. With this role comes a large
responsibility: the success of an application, and possibly the organization, rests on the
quality of the software product [1]. Therefore, it is critical that the test code itself is of
high quality. Methods, such as code coverage analysis and mutation testing, help de-
velopers assess the effectiveness of the tests suite. Yet, there is no metric or method to
measure the quality of the test code in terms of readability and maintainability.

One indication of the quality of test code could be the presence of test smells. Similar
to how production code can suffer from code smells, these test specific smells can indi-
cate problems with the test code in terms of maintainability [16]. However, refactoring
test smells can be tricky, as there is no reliable method to verify if a refactored test suite
preserves its external behaviour. Several studies point out the peculiarities of test code
refactoring [15, 16, 17, 18]. However, none of them provided an operative method to
guarantee that such refactoring was preserving the behaviour of the test.

The rest of the paper is organized as follows. In section 3.2 we will summerize the
related work on test smells and test refactoring, which shows test smells to be an impor-
tant issue. Section 3.3 we will go over the existing test refactoring tools, showing there is
a gap in the current tool support. We will propose our future work which aims to fill the
gap in existing tool support in section 3.4. In section 3.5 we define a theoretical model
for defining test behaviour, which will form the basis of our proposed future work. We
conlude in section 3.6.

3.2 RELATED WORK

The term test smell was first introduced by van Deursen et al. in 2001 as a name for
any symptom in the test code of a program that possibly indicates a deeper problem. In
their paper, they defined a first set of eleven common test smells and a set of specific
refactorings which solve those smells [16]. Meszaros expanded the list of test smells
in 2007, making a further distinction between test smells, behaviour smells, and project
smells [19]. Greiler et al. defined five new test smells specifically related to test fixtures
in 2013 [20].
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Several studies have investigated the impact test smells have on the quality of the
code. Van Rompaey et al. performed a case study in 2006 in which they investigated two
test smells (General Fixture and Eager Test). They concluded that all tests which suffer
from these smells have a negative effect on the maintainability of the system [21]. In
2012, Bavota et al. performed an experiment with master students in which they studied
eight test smells (Mystery Guest, General Fixture, Eager Test, Lazy Test, Assertion Roulette,
Indirect Testing, Sensitive Equality, and Test Code Duplication). This study provided the
first empirical evidence of the negative impact test smells have on maintainability [22].
In 2015, they continued their research and performed the experiment with a larger group,
containing more students as well as developers from industry. They conclude that test
smells represent a potential danger to the maintainability of production code and test
suites [23].

In 2016, Tufano et al. investigated the nature of test smells. They conducted a large-
scale empirical study over the commit history of 152 open source projects. They found
that test smells affect the project since their creation and that they have a very high sur-
vivability. This shows the importance of identifying test smells early, preferably in the
IDE before the commit. They also performed a survey with 19 developers which looked
into their perception of test smells and design issues. They showed that developers are
not able to identify the presence of test smells in their code, nor do developers perceive
them as actual design problems. This highlights the importance of investing effort in the
development of tools to identify and refactor test smells [24].

3.3 TOOL SUPPORT

3.3.1 Test Smell Detection

There aremany tools that can automatically detect code smells, for example the JDeodor-
ant Eclipse plugin and the inFusion tool [25]. Test smells, however, are very different
from code smells and these tools are not able to detect them. Tool support for handling
test smells and refactoring test code is limited.

In 2008, Breugelmans et al. presented TestQ, a tool which can statically detect and
visualize 12 test smells [26]. TestQ enables developers to quickly identify test smell hot
spots, indicating which tests need refactoring. However, the lack of integration in devel-
opment environments and the overall slow performancemake TestQ unlikely to be useful
in rapid code-test-refactor cycles [26].

11
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In 2013, Greiler et al. presented a tool which can automatically detect test smells in test
fixtures [20]. A test fixture is a set of fixed steps that setup and teardown the object under
test in a consistent way for multiple unit tests. Their tool, called TestHound, provides
reports on test smells and recommendations for refactoring the smelly test fixtures. They
performed a case study where developers are asked to use the tool and afterwards are
interviewed. They show that developers find that the tool helps them to understand,
reflect on and adjust test code. However, their tool is limited to smells related to test
fixtures. Furthermore, they only report the occurences of the different fixture-related test
smells in the code. Theydo not give one singlemetric that represents the overall quality of
the test code. During the interviews, one developer said that the different smells should
be integrated in one high-level metric: “This would give us an overall assessment, so that
if you make some improvements you should see it in the metric.” [20].

3.3.2 Defining Test Behaviour

Refactoring of the production code can be done with little risk using the test suite as
a safeguard. However, since there is no safeguard when refactoring test code, there is
a need for tool support that can verify if a refactored test suite preserves its behaviour
pre- and post-refactoring. Previous research on this topic has been performed by Parsai
et al. in 2015 [27]. They propose the use of mutation testing to verify the test behaviour.
However, mutation testing requires the test suite to be ran for each mutant, which can be
hundreds of times, making it unlikely to be useful in practice.

As an alternative, one could consider line coverage or branch coverage, as this would
only require the test suite to be ran once. However, while this can provide an indication
of the test behaviour, it cannot fully guarantee that the test behaviour is preserved. For ex-
ample, changing the value of a test parameter changes the test behaviour while resulting
in the same line coverage. As such, there is still room for improvements when it comes
to verifying test behaviour.

3.4 RESEARCH PLAN

As we have shown, there is a lack of tool support when it comes to test refactoring.
We plan on creating a tool that will help developers during this process. We present our
future work in terms of a research agenda:

12
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3.4.1 Test Smell Detection

— Objective - Create a tool that is able to detect test smells. More specifically, the tool
should be able to detect all test smells definedbyvanDeursen,Meszaros, andGreiler [16,
19, 20]. This tool should also be able to create a metric that represents the overall qual-
ity of the test code in terms of maintainability.

— Approach - Breugelmans et al. proposed methods for detecting all the original test
smells (defined by van Deursen et al.) [26]. We will use these methods in our tool.
For the other test smells (defined byMeszaros and Greiler et al.), wewill use a similar
approach in order to define detection methods ourselves. The metric that represents
the overall quality of the test code can be calculated based on the number of test smells
present in the test code.

— Validation - Verification of correctness will be made using a dataset consisting of a set
of real open-source software projects. We can compare the tool with TestHound for
fixture related test smells and with TestQ for the other test smells. Smells not covered
by either TestHound or TestQ will require manual verification.

3.4.2 Defining Test Behaviour

— Objective - Define test behaviour such that developers can verify if the test code is
behaviour preserving between pre- and post- refactoring.

— Approach - The production code should be deterministic, and thus the same set of
inputs should always result in the same set of outputs. We will analyse the code in
order to map all entry and exit points from test code to production code and link
them with the corresponding assertions. This will result in the construction of a Test
Behaviour Tree (TBT), which defines the behaviour of the test. Comparison of TBTs
will allow for validating behavior preservation between pre- and post- refactoring.
Section 3.5 will explain this concept in more detail.

— Validation - Wewill run the algorithm on the dataset of commits used for verifying the
test quality metric. We can do an initial check using coverage metrics and mutation
testing. When these metrics change pre- and post-refactoring, we know for certain
that the test behaviour changed. When these metrics remain constant, we will have to
manually verify wether the refactoring is behaviour preserving.

13
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3.5 THEORETICAL MODEL FOR DEFINING TEST BEHAVIOUR

In order to determine test behaviour, we propose that a Test Behaviour Tree (TBT)
can be constructed from the Abstract Syntax Tree (AST) of the test. To construct the TBT,
start from the AST of the unit test and choose the scope-node of the unit test as the root
for the TBT. This will result in a tree that has a child for every statement in the unit test.
Then, for every statement that is not an assert statement, remove the corresponding node
and its subtree from the TBT. This results in a TBT where the root-node has a child-node
for every assert statement.

Then we replace all variable-nodes in the TBT with a literal-node containing their
value at runtime. If a variable is initialized with a functioncall to production code, it
should be represented as such. Since the implementation of production code does not
affect the behaviour of the test code, we consider it as a ‘black box’. Further operations
on that variable will then be stored as the sequence of those operations on that object.
The final tree represents what is being tested, and thus describes the behaviour of the
test.

3.5.1 Running Example

As an example to illustrates the approach, we use the following simple production
code:

c l a s s Rectangle {
public :

Rectangle () ;
in t getHeigth () ;
in t getWidth () ;
void setHeigth ( in t h) ;
void setWidth ( in t w) ;

private :
in t heigth ;
in t width ;

} ;

Rectangle : : Rectangle () {}
in t Rectangle : : getHeigth () { return heigth ; } ;
in t Rectangle : : getWidth () { return width ; } ;
void Rectangle : : setHeigth ( in t h) { heigth = h ; }
void Rectangle : : setWidth ( in t w) {width = w; }

14
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It defines a class Rectangle which has two private data members heigth and width, as
well as getters and setters for these data members. Note that even though this is a toy
example, there is no technical difference between simple getters and setters and large
algoritmic functions as the production code is considered a ‘black box’. There would be
no difference if the getters did some advanced mathematical calculations, read from a
file, or contacted a networked database.

We will start with a simple test for this production code:

Rectangle r = Rectangle () ;
r . setWidth (5) ;
r . setHeigth (10) ;
a s s e r t (5 == r . getWidth () ) ;
a s s e r t (10 == r . getHeigth () ) ;

This test will result in the Test Behaviour Tree shown in figure 3.1. As shown, the TBT has
one root nodewhich has a child for every assert. Each assert node has the full comparison
as a child, where variables are replaced with their value. Since the call on the rectangle
object is considered a call to production code, the sequence of operations is appended as
a child rather than a single value, because we consider production code as a ‘black box’.
We can safely assume this, since the production code should be deterministic (otherwise
you could not write tests for it) and should not change when refactoring test code.

3.5.2 Variable Refactorings

One way to refactor this test would be to replace the ‘magic numbers’ in the with
variables. This would greatly increase maintainability, as consistency between input and
expected output would be guaranteed. Because variables are replaced with their value
in our approach, the following refactored test code will result in the exact same TBT:

in t x = 5 ;
in t y = 10 ;
Rectangle r = Rectangle () ;
r . setWidth (x) ;
r . setHeigth (y) ;
a s s e r t (x == r . getWidth () ) ;
a s s e r t (y == r . getHeigth () ) ;

Similarly, the common refactoringwhere a variable is renamed can be performedwith-
out changing the TBT. The following code also generates the same TBT.
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Node

assert assert

==

5 FunctionMemberCallNode

FunctionMemberCallNode getWidth

FunctionMemberCallNode setHeigth 10

FunctionCallNode setWidth 5

Rectangle

==

10 FunctionMemberCallNode

FunctionMemberCallNode getHeigth

FunctionMemberCallNode getWidth

FunctionMemberCallNode setHeigth 10

FunctionCallNode setWidth 5

Rectangle

Figure 3.1: The Test Behaviour Tree from the example tests.

in t testWidth = 5 ;
in t t e s tHe ig th = 10 ;
Rectangle t e s tRec t ang l e = Rectangle () ;
t e s tRec t ang l e . setWidth ( testWidth ) ;
t e s tRec t ang l e . setHeigth ( tes tHe ig th ) ;
a s s e r t ( testWidth == tes tRec t ang l e . getWidth () ) ;
a s s e r t ( tes tHe ig th == tes tRec t ang l e . getHeigth () ) ;

These refactorings did not change behaviour, which is why we get the same resulting
TBT. If you would change the value of testWidth or testHeigth, the behaviour of the test
would change as you would be testing different input - output pairs. This change in
behaviour would be detected easily detected by our approach, as the values in the TBT
would change accordingly, resulting in a different TBT.

3.5.3 Expression Refactorings

Detecting a change in input - output pairs is more important when the test code con-
tains some arithmetic operations. Sometimes it is necessary to make a calculation in the
test code to use as an oracle. When it comes to these kind of expressions in the AST, it is
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possible to simply evaluate them during traversal of the AST. The values of all variables
are stored upto that point in the program, and the result can be stored as the new value
for the corresponding variable. Therefore, the following code still generates the same
TBT, as the behaviour did not change since the values for testWidth and testHeigth still
evaluate to 5 and 10 respectively 1):

in t testWidth = 1 ;
in t t e s tHe ig th = ((++testWidth ) ∗ 2) + (( testWidth++) ∗ 3) + 2 ;
testWidth = testWidth++;
Rectangle t e s tRec t ang l e = Rectangle () ;
t e s tRec t ang l e . setWidth ( testWidth ) ;
t e s tRec t ang l e . setHeigth ( tes tHe ig th ) ;
a s s e r t ( testWidth == tes tRec t ang l e . getWidth () ) ;
a s s e r t ( tes tHe ig th == tes tRec t ang l e . getHeigth () ) ;

3.5.4 Function Refactorings

Another common refactoring is to extract part of the test code to a function. As an
example, we could define the following functions:

in t setupWidth( in t x) {
return x /2 ;

}

in t setupHeigth ( in t y) {
return y∗2 ;

}

and rewrite our test to:

in t testWidth = setupWidth (10) ;
in t t e s tHe ig th = setupHeigth (5) ;
Rectangle t e s tRec t ang l e = Rectangle () ;
t e s tRec t ang l e . setWidth ( testWidth ) ;
t e s tRec t ang l e . setHeigth ( tes tHe ig th ) ;
a s s e r t ( testWidth == tes tRec t ang l e . getWidth () ) ;
a s s e r t ( tes tHe ig th == tes tRec t ang l e . getHeigth () ) ;

If these functions are marked as part of the production code, they will be treated
as ‘black box’ functions. This is not desirable, since then the TBT will change while be-
haviour is preserved. Therefore, these functions need to be evaluated similarly to expres-

1Note that it would be bad practice to write this test, but we use it here simply to showcase the approach.
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sions. Again this is perfectly possible since we have the values of all variables at each
point in the program. Upon evaluation, the values for testWidth and testHeigth still re-
sult in 5 and 10 respectively, and thus the TBT would be unchanged.

3.5.5 Conditionals and Loops

Upto now, our examples did not contain any conditionals or loops, since they are not
desirable in test code. However, sometimes they could appear in test code, in which case
they can be evaluated similarly to expressions and function calls. For example, we could
define the following function:
in t setupData ( in t i ) {

i f ( i == 1) {
return 5 ;

} e lse {
i f ( i == 2) {

return 5 + 5 ;
}

}
return 0 ;

}

and rewrite our test to:
in t testWidth = setupData (1) ;
in t t e s tHe ig th = setupData (2) ;
Rectangle t e s tRec t ang l e = Rectangle () ;
t e s tRec t ang l e . setWidth ( testWidth ) ;
t e s tRec t ang l e . setHeigth ( tes tHe ig th ) ;
a s s e r t ( testWidth == tes tRec t ang l e . getWidth () ) ;
a s s e r t ( tes tHe ig th == tes tRec t ang l e . getHeigth () ) ;

Again, the values for testWidth and testHeigth still evaluate to 5 and 10 respectively,
resulting in the same TBT. When conditionals or loops are used in combination with
calls to production code, it would be handled similarly to how the testRectangle object is
handled. The sequence of operations would be kept, including the conditional or loop,
similarly to how they would be represented in AST form.
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3.6 CONCLUSION

We have presented an overview of the research done in the field of test smells and
test refactoring. Research has indicated that test smells have a negative impact on main-
tainability and therefore need to be refactored. We have shown that there is a lack of tool
support to aid developers with test refactoring. We also provided a theoretical model
that defines test behaviour, in the form of Test Behaviour Trees, which can be used to
compare test behaviour pre- and post-refactoring. We plan to create a tool for test refac-
toringwhich can detect test code smells, evaluate the test quality, and assure behaviour is
preserved after test refactoring using our theoretical model. We currently have aworking
prototype for the latter. Our final tool will help developers decide when and where to
refactor the test code, as well as help them perform the refactorings correctly, allowing
developers to improve their test suite quickly and with confidence.
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Chapter 4
Implementing a Tool to Capture Test Code

Semantics

Test Behaviour Detection as a Test Refactoring Safety
Brent van Bladel and Serge Demeyer
In Proceedings of the 2nd International Workshop on Refactoring (IWOR), 22–25. Mont-
pellier, France. September, 2018.
This chapter was originally published in the Proceedings of the 2nd International Workshop on Refactoring (IWOR).

CONTEXT
In this chapter, we present T-CORE, a tool that uses our theoretical model of test be-
haviour to detect changes in test semantics. While this version of the tool was not yet
able to detect semantic clones, it does show that it is feasible to capture test behaviour
using our theoretical model. As a use-case, we propose that this version of the tool
can be used to verify that test semantics remain unchanged after the refactoring of
test code.

ABSTRACT When refactoring production code, software developers rely on an automated test
suite as a safeguard. However, when refactoring the test suite itself, there is no such safeguard.
Therefore, there is a need for tool support that can verify if a refactored test suite preserves its
behaviour pre- and post-refactoring. In this work we present T-CORE (Test COde REfactoring
tool); a tool that captures the behaviour of Java tests in the form of a Test Behaviour Tree. T-CORE
allows developers to verify that the refactoring of a test suite has preserved the behaviour of the test.
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4.1 INTRODUCTION

In most organizations, the test suite is the final “quality gate” for an application, per-
mitting or denying the move from development to release. With this role comes a large
responsibility: the success of an application, and possibly the organization, rests on the
quality of the software product [1]. Therefore, it is critical that the test code itself is of
high quality.

Metrics such as code coverage [28] and techniques such as mutation testing [29] are
used tomeasure how effective a test suite is in terms of catching bugs. Yet, the quality of a
test suite is not only determined by its effectiveness. With software projects continuously
evolving during development, it is important that the test code is as easily modifiable as
the production code [16]. Non-functional requirements, such as readability and main-
tainability, are therefore also an important part of the quality of a test suit.

One indication of the quality of test code is the presence of test smells. Similar to
how production code can suffer from code smells, these test specific smells can indicate
problems with the test code in terms of maintainability [16].

Refactoring test code suffering from test smells can be tricky, as there is no reliable
method to verify if a refactored test suite preserves its external behaviour. Several stud-
ies point out the peculiarities of test code refactoring [16, 17, 18]. However, none of them
provided an operative method to guarantee that such refactoring was preserved the be-
haviour of the test. In this paper we present T-CORE, a tool that tackles this problem.

4.2 RELATED WORK

The term test smell was first introduced by van Deursen et al. in 2001 as a name for
any symptom in the test code of a program that possibly indicates a deeper problem [16].
In their paper, they defined a first set of eleven common test smells and a set of specific
refactorings that solve those smells. Since then, several studies have investigated the im-
pact of test smells on the quality of the code. All these studies concluded that test smells
have a negative impact on maintainability [21, 22, 23]. This shows the importance of
refactoring test code.

While refactoring of the production code can be done with little risk using the test
suite as a safeguard, there is no safeguard when refactoring the test code itself. There is
a need for tool support that can verify if a refactored test suite preserves its behaviour
pre- and post-refactoring. Previous research on this topic has been performed by Parsai
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Figure 4.1: Example of a part of the T-CORE output when run on a behaviour changing
refactor.

et al. in 2015 [27]. They propose the use of mutation testing to verify the test behaviour.
However, mutation testing requires the execution of the complete test suite for each mu-
tant, which makes it computationally expensive.

In 2017, Garousi et al. conducted a ‘multivocal’ literature mapping on both the sci-
entific literature and also practitioners’ grey literature, surveying all the sources on test
smells and their refactoring [30]. In their work, they present an exhaustive list of tools for
refactoring test code. All these tools focus on detecting test smells, while none of them
help the developer actually perform the refactoring. With T-CORE, we fill this lack of
tool support.

4.3 T-CORE

In this section we will provide a detailed overview of the implementation of our tool,
as well as how it can be used.

4.3.1 Test Behaviour Detection

In order to capture test behaviour, we construct the Test Behaviour Tree [7]. This tree,
which is similar to the Abstract Syntax Tree, represents the behaviour of the test code.
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We construct the test behaviour tree in a way that is inspired by the technique named
symbolic execution [31, 32]. During symbolic execution, one supplies symbols represent-
ing a set of possible values to the program instead of the normal inputs (e.g. numbers).
The execution proceeds as normal except that values may be symbolic formulas over the
input symbols [32]. For example: if a program takes an input x, then the value of a vari-
able var = x + 2would be stored as the formula x + 2 after symbolic execution instead
of an actual value.

We use this technique in combination with a special feature of unit test code, namely
that most of the values of the variables can be deduced from the local code. This allows
us to annotate the variables with concrete values in most situations and consequently
can derive an accurate approximation of the test values. This technique is based on the
constant folding optimization technique used in some compilers [33].

Practically, we construct the test behaviour tree by traversing the abstract syntax tree.
During this pass of the abstract syntax tree, all variables and objects are stored, similar to
how a compiler stores variables and objects in symbol table [34]. However, the difference
with a compiler is that we also store the value of variables if possible, or the formula that
represents the value otherwise. This way, all subsequent operations on variables can be
performed with this stored value. If a function call to production code occurs in the test,
the value will be a formula that includes this call. We can treat all calls to production
code as “black box” operations because production code does not define test behaviour.
Further operations will then result in formulas that include the calls to production code
as a symbol rather than a value. When we encounter an assert in the test code, a node
representing that assert is added to the test behaviour tree. This node will have one child
nodes for the input and one for the expected output, for both of whichwe know the value
or formula.

Once the test behaviour tree is constructed for both the pre- and post-refactoring test
cases, we can compare them to determine if the test behaviour was preserved. Since
variables have been replaced with their value or a symbol, and expressions have been
reduced to their most simple form, both trees should be mostly identical in order for
behaviour to be preserved.

4.3.2 Architecture

T-CORE is implemented in Python. We use ANTLR to parse Java test code and con-
struct the abstract syntax tree [35]. The abstract syntax tree is then traversed in Python
to create the test behaviour tree. Creation and comparison of the test behaviour trees can
be done by running T-CORE via the command line, or by using the user interface.

24



4.4. USAGE SCENARIO

Figure 4.2: Example of a part of the T-CORE trace information.

The user interface was built using flask [36]. Flask is a microframework for Python
based onWerkzeug, which allows for the creation of web applications. Since Python and
Flask are the only dependencies, T-CORE is lightweight and easily installed. It can be run
locally for small development teams, or it can be run on a server for larger development
teams. In the latter case, developers do not need to install anything on their machine: the
T-CORE tool can then be accessed using any web browser.

4.4 USAGE SCENARIO

Prelude: Bob is a member of a small development team that writes and maintains
safety-critical software for a controller in a large factory. Their system is extensively
tested, and the test values were calculated by external domain experts. As the produc-
tion code grew, so did the test code. However, while the production code was regularly
refactored to improve maintainability, the test code was not due to time constraints. As
long as a test was green, it was not touched. This has made it gradually more difficult to
find the cause of failing tests, as tests were now incorrectly named or located. The team
decided it was time for improvement, and Bob was appointed the task of refactoring the
test code.

Scene 1: Bob has refactored the test code: tests were renamed, duplicated test code
was extracted into methods, and assertions were moved to more appropriate test cases.
He runs the tests, and everything is green. However, he wants to be sure that he did not
make amistake, as amissing assertion or a changed test value could allow critical bugs to
go undetected in the future. He opens his favorite web browser and surfs to their server
where T-CORE is hosted. He uploads the test files from before and after the refactoring.
Once uploaded, all tests in each file are listed and the user is asked to select the test cases
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that need to be checked. Since Bob wants to make sure nothing changed in the entire test
suite, he simply selects all tests. Bob then presses the compare button and the tool shows
the result.

T-CORE shows whether the behaviour was preserved or not with a big color-coded
(green or red)message. Bob sees the redmessage pop up and realises hemade amistake.
Figure 4.1 shows an example of this output. As shown in Figure 4.1, when the behaviour
is changed, the percentage of asserts that are different is shown. Then, an overview of
the test files from before and after the refactoring is shown. In this overview, each assert
is marked green if it was preserved and red if it was changed. This allows Bob to quickly
find the tests that where not refactored correctly.

After Bob has found the incorrectly refactored tests, he investigates what happened.
He quickly realises that he initialised the object under test differently, which results in a
different program state being tested. After a quick fix, he uploads the new test files to
T-CORE and runs the comparison again. This time, Bob is happy to see the big green
notification saying test behaviour was not changed.

Scene 2: A few weeks after Bob refactored the test suite, one of the tests fails. Alice, a
colleague of Bob, recognizes the failing assertion as the same bug they fixed a few weeks
earlier. Alice wants to lookup the commit that previously fixed this bug. However, since
the assert was moved and the test cases were renamed, she has trouble finding the fixing
commit. Therefore, she asks Bob for help. Bob opens up the T-CORE report he saved
after refactoring the test suite, and goes to the detailed traceability overview. In this
overview, each original assert is presented next to its refactored version, an example of
which is shown in Figure 4.2. Bob looks up the failing assert, and immediately sees from
which test case it came originally. This information helps Alice to find the fixing commit,
allowing her to solve the bug.

4.5 VALIDATION

4.5.1 Benchmark

First, we tested our tool on an artificial benchmark we constructed to confirm that T-
CORE behaves as expected for a base-line of known test refactorings. This benchmark is
based on the following code.
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in t testWidth = 5 ;
in t t e s tHe ight = 10 ;
Rectangle r = new Rectangle () ;
r . setWidth ( testWidth ) ;
r . setHeight ( tes tHe ight ) ;
a s se r tEqua l s ( testWidth , r . getWidth () ) ;
a s se r tEqua l s ( tes tHeight , r . getHeight () ) ;

The benchmark consists of a set of 32 versions of this test code, where each version
represents the same test before or after a test refactoring. These refactorings include the
renaming of variables, the replacing of literal values with expressions, the extracting of
these expressions in functions, the moving of initialisation to a setup method, and the
removal of conditionals. In this set, 16 refactorings are behaviour preserving versions of
the test code, while the other 16 refactorings change the behaviour. These latter refactor-
ingswere created by introducing a small bug ormistake during the refactoring that could
also be made by the developer while performing the refactoring. We then ran our tool on
each of these refactorings, and could easily verify whether the behaviour was correctly
classified as either behaviour preserving or behaviour changing.

A tool that always outputs one class, or a tool that guesses randomly, would achieve
an accuracy of 50% on this data set. This provides a base line to compare our tool with.
When running T-COREon this dataset, we get the results shown in Table 4.2 in the formof
a confusion matrix. We can see that our tool achieves an accuracy of 100%, as it correctly
classifies all 16 behaviour preserving refactorings correctly as well as all 16 behaviour
changing refactorings. Therefore we can state that our tool is able to correctly detect
whether the behaviour was preserved or changed in 100% of the cases.

4.5.2 Open-Source Projects

While our benchmark covers a lot of technical language features, we cannot claim that
it covers everything from the Java language. Therefore, to increase our confidence that
our tool works on a significant part of the Java language, we also tested it on a small set
of open-source refactorings.

We use the Boa framework [37] to find instances of test refactorings in open-source
projects from GitHub, and then we manually selected 5 commits such that each covered
a different kind of refactoring or specific language feature.

Table 4.1 provides an overview of this set. Note that the last column shows the size of
the refactored test, not the size of the project, since our tool does not analyze the entire
project but only the relevant test code. After a manual analysis of these open-source
refactorings, we found that all 5 preserved the behaviour of the test code. We then ran
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Table 4.1: Open-soure test refactorings.

Project Refactoring LOC
Enero-String-Calculator Extract data to test setup. 55
CodeKatas Extract data to test setup. 61
soen490 Extract data to test class. 69
Beta Variable and methods rename. 132
spring-data-simpledb Extract duplicate code to method. 236

Table 4.2: Confusion matrix of the results of our tool.

Tool Result
Behaviour Behaviour
Preserving Changing

Behaviour Preserving Refactoring 16 0
Behaviour Changing Refactoring 0 16

our tool on each of these refactorings, and observed that our tool correctly detected that
the behaviour was preserved for all 5 refactorings. We conclude that our tool achieves
an accuracy of 100% on this set of open-source projects as well. We also validated the
correctness of the traceability report by manually verifying that all test cases matched
where in fact the same test case.

4.6 CONCLUSION

In this work we presented T-CORE, a tool that infers the behaviour of test code, allow-
ing developers to verify that the refactoring of a test suite preserved the behaviour of the
test, as well as providing valuable traceability information. The traceability information
provided by T-CORE allows the developer to trace an assert back through refactorings
that changed the name of the test of moved it to another test.
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A Novel Approach for Detecting Type-IV Clones in Test Code
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Hangzhou, China. Februari, 2019.
This chapter was originally published in the Proceedings of the 13th International Workshop on Software Clones (IWSC).

CONTEXT
In this chapter, we provide an answer to our first main research question by adapting
T-CORE to detect semantic clones in the test code of a large open-source project.

ABSTRACT The typical structure of unit test code (setup - stimulate - verify - teardown) gives
rise to duplicated test logic. Researchers have demonstrated the widespread use of syntactic clones
in test code, yet if duplicated test code is indeed a problem, then semantic clones may be an issue as
well. However, while detecting syntactic similarities can be done relatively easy, semantic similar-
ities are more difficult to find. In this paper we present a novel way of detecting semantic clones by
exploiting the unique features present in test code. We demonstrate on the Apache CommonsMath
Library’s test suite that our approach can detect 259 semantic clones, of which only 54 were also
detected by NiCad. This confirms that it is both feasible and worthwhile to investigate semantic
clones in test code.
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5.1 INTRODUCTION

The introduction of the Agile methodology and extreme programming techniques
had a major impact on how developers create software systems [38]. The focus shifted
towards writing working increments of the software system, in contrast to the waterfall
approach [39]. With each increment of the production code, the test code is updated,
extended, and maintained as well. The quality of the test code quickly became as impor-
tant as the quality of the production code. An intitial list of test smells was introduced in
literature by Van Deursen et al. [16].

One of these initial test smells was Test Code Duplication, which is similar to the smell
for production code [40]. However, the structure of unit test code ismuchmore consistent
than that of production code, with the idiomatic structure of the setup-stimulate-verify-
teardown (S-S-V-T) cycle [41]. This causes duplication to be much more common in test
code, with some systems having half of the entire test code being syntactic clones [42].

While the detection of syntactic clones can be done relatively easy, semantic clones are
more difficult to detect [43]. This is especially true for test code, where semantics differ
from production code. Production code usually performs some calculation which can be
represented with a program dependency graph, while test code verifies the semantics of
production code, verifying observable properties by means of assert statements.

In this paper, we will tackle the problem of semantic clone detection in test code by
answering the following research questions:

— RQ 1: Is it feasible to detect semantic clones in test code? And, if yes, how does this
compare to a syntactic clone detector?

— RQ 2: How do the clones detected by a semantic clone detector differ from those
detected by a syntactic clone detector?

To answer these questions, we propose a novelmethod to detect semantically similar code
clones in test code. We do this by using symbolic execution to generate a representation
of test behaviour, which we then compare. We demonstrate our approach on the Apache
Commons Math Library’s test suite. The rest of this paper is structured as follows. In
Section 5.2 we present the related work. In Section 5.3 we explain our approach and how
we validated it. In Section 5.4 we present our results and in Section 5.6 we conclude.
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Test 2

assert

null FunctionMemberCallNode

FunctionCallNode divide 10 0

MyCalc

Test 3

assert

Null FunctionMemberCallNode

FunctionCallNode calculateDivision 10 0

OtherCalc

Figure 5.1: The test behaviour trees from the toy example.

5.2 RELATED WORK

There are many clone detectors that compare token strings, abstract syntax trees, or
a combination of both. While these clone detectors are very useful for finding syntac-
tic clones (type-I, type-II, or type-III), they are not capable of detecting semantic clones
(type-IV) [43].

Komodoor et al. were the first to investigate a new approach to detect semantic clones.
They proposed the use of program dependency graphs and program slicing [44]. Soon
after, Krinke again showed how progam dependency graphs can be used to detect se-
mantic clones [45]. This technique has since been implemented in a few tools, such as
DECKARD and CCCD [46, 47].

Kim et al. proposed the use of static analysis to extract the memory states for each
procedure exit point [48]. Another approach was proposed by Jiang et al. who apply
random testing to detect similar function output [49]. Their techniques are the first to
detect semantic clones without any syntactic similarities, yet they can not be applied on
test code. For the moment it is not yet known whether it is feasible or worthwhile to
detect semantic clones in test code [50].

5.3 EXPERIMENTAL SETUP

5.3.1 Detection Method

In order to detect semantic clones in test code, we compare the behaviour of the
tests. Test code verifies observable properties of production code using assert statements.
These assert statements define what is being verified by the test, and therefore define
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Test 1:

MyCalc t e s t e r = new MyCalc ( ) ;
i n t r e s u l t = t e s t e r . divide ( 1 0 , 1 ) ;
a s s e r t E q u a l s ( 1 0 , r e s u l t ) ;

Test 2:

MyCalc t e s t e r = new MyCalc ( ) ;
i n t r e s u l t = t e s t e r . divide ( 1 0 , 0 ) ;
a s s e r t E q u a l s ( null , r e s u l t ) ;

Test 3:

OtherCalc t e s t c a l c = new OtherCalc ( ) ;
a s s e r t N u l l ( t e s t c a l c . c a l c u l a t e D i v i s i o n ( 1 0 , 0 ) ) ;

Figure 5.2: Example of how asserts define test behaviour.

the behaviour of the test. We demonstrate this with a toy example in Figure 5.2. The
setup and stimulation in the first two tests are syntactically almost identical, yet some-
thing different is being tested: the first test verifies that a division produces the correct
result, while the second test verifies that a zero division does not produce any result. Fur-
thermore, the second and third tests are syntactically different, yet semantically the same.
Therefore, the behaviour of the test is defined by what is verified (e.g. assert statements),
and not by the setup or stimulation.

We use a Test Behaviour Tree (TBT) to represent the behaviour of a test. We defined
this representation in our previous work on test refactoring [7]. This tree consists of the
assert statements of a test and their backward slice. As an example, Figure 5.1 shows the
test behaviour trees of the latter two tests from Figure 5.2. Note that, if a test contains
multiple assert statements, that test will have multiple TBTs. Because we compare these
trees, we detect semantic clones at an assert-level granularity.

5.3.2 Algorithm

For the construction of the test behaviour trees, weuse our open-source tool T-CORE [8].
This tool was originally created to help developers refactor their test code by detecting
non-semantic-preserving changes during refactoring. It constructs the TBT internally,
and then uses these trees to detect changes in behaviour. In this study, we extracted the
code that constructs the TBT and reused it for our clone detection purposes.
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T-CORE uses symbolic execution to generate the test behaviour tree of each assert.
This symbolic execution will pass over the code line by line, simulating the current mem-
ory state at every step. However, it utilizes a unique feature of unit test code, namely
that most of the values of the variables can be deduced from the local code. This allows
the symbolic execution to perform calculations for all operations performed on local vari-
ables, similar to how a compiler would perform constant folding [33]. Above that, the
symbolic execution also evaluates loops, conditionals, and function calls. As a result, the
symbolic execution can replace many of the symbols for variables with their actual value.
When an assert statement is reached, it already has all the necessary data to create the
backward slice of the assert statement, and the TBT can be constructed.

After we construct the test behaviour trees for each test, we perform a comparison of
each tree with every other tree. This comparison requires the trees to be exactly the same,
with exception of literals and identifiers. We allow the value of literals to be different, such
that type-II clones can be detected. We also allow identifiers to be different, as long as the
number of different identifiers does not exceed 5%of the total tree size. This threshold can
be tweaked for a more strict or less strict comparison. However, we determined through
the experiment that 5% is ideal, as increasing it generates many more false positives and
decreasing it causes some obvious clones to be missed. We write the discovered clone
pairs to an XML file.

5.3.3 Dataset

We evaluate our technique on the Apache Commons Math Library. This is an open-
source Java library that implements solutions for manymathematical problems. Because
it implements different algorithms for each problem, we know that it in fact contains
type-IV code clones. For example, it implements 6 different algorithms that perform inte-
gration of a curve. While these algoritms are syntactically completely different, they are
semantically identical. The library contains an extensive test suite, which has a size of
105 KLOC, consisting of 4475 unit tests, and has 90% line coverage. Since our approach
only works on test code, this test suite will be our dataset.

Because T-CORE is currently still a prototype, it is unable to parse all files in the test
suite. Some files contain advanced language features, such as the use of templated con-
tainers, while other files contain quadruple nested loops that timed out the symbolic
execution. We excluded these files from our dataset. The final dataset consisted of 360
files from the Apache CommonsMath Library’s test suite, which contained 32 KLOC and
1613 unit tests.
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5.3.4 Post-Processing

Because the symbolic execution analyses each iteration of each loop, some assert state-
ments were added multiple times, and subsequently matched with themselves during
our comparison. To solve this problem, we performed a post-processing step to filter out
all unnecessary clone pairs. We implemented this filter in a python script, such that it
can easily be replicated. After filtering out these duplicate clone pairs, we scale up our
granularity to test size. If an assert from one test is matched with an assert from another
test, it is likely the other asserts in those tests will be matched as well. This results in
unique clone pairs of test granularity.

5.3.5 Evaluation

In order to answer our first research question, we do a quantitative evaluation of our
approach. We investigate the number of type-IV clones detected. Above that, since type-
I, type-II, and type-III clones are likely to have similar semantics as well, our approach
should also detect them. We investigate the number of these clones detected as well.

To provide more insight for this quantitative evaluation, we compare our approach
with a state-of-the-art syntactic clone detector. We use the NiCad clone detector [51].
NiCad is a scalable and flexible state-of-the-art clone detection tool which implements a
hybrid clone detection method. It takes as input a source directory and provides output
results in XML. We made sure that our XML format matched the output generated by
NiCad, to allow for easy analysis.

Once we have all clones from both T-CORE and NiCad, we classify them according
to type: type-I to type-IV, or as false positive. This classification is performed manually
by the authors by inspecting both tests of each clone pair. We used the definitions of
the types specified by Roy et al. to solve dubiety [43]. In order to help this process, we
use a python script that automatically opens the source of both tests side-by-side and
highlights all syntactic similarities.

In order to answer our second research question, we split up the clones found by T-
CORE and NiCad into three categories: (a) clones that were found only by T-CORE, (b)
clones that were found by both tools, and (c) clones that were found only byNiCad. This,
combinedwith the type-classification, allows us to perform a qualitative evaluation of the
clones found. This evaluation provides insight in how clones detected by a syntactic clone
detector differ from those detected by a semantic clone detector.
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Table 5.1: Clones found classified by type.

Tool T-I T-II T-III T-IV FP Total
T-CORE 52 385 44 259 15 755
NiCad 13 50 27 100 0 190
Category
a) T-CORE only 40 363 36 205 15 659
b) T-CORE & NiCad 12 22 8 54 0 96
c) NiCad only 1 28 19 46 0 94

5.4 RESULTS

RQ1: Is it feasible to detect semantic clones in test code? And, if yes, how does this compare to a
syntactic clone detector?

Table 5.1 provides an overview of the number of clones detected by each tool catego-
rized by type. In total, we found 755 clone pairs using T-CORE. Of these 755 clones, our
classification found that only 15 are false positives (column FP). Therefore we state that
our approach has a precision of 98%. NiCad found 190 clone pairs, which is significantly
less than our approach. However, NiCad did not report any false positives, and thus has
a higher precision. We can conclude that it is indeed feasible to detect semantic clones
with a relatively high precision using our approach.

The 15 false positives are generated for two reasons. First, the test suite contains some
asserts that compare two local variables. Since the symbolic execution calculates the value
of these variables, and since we do not check these values to allow the detection of type-
II clones, such asserts are too general to detect clones correctly. This could be solved by
introducing a minimum tree size parameter in the detection algorithm, similar to a mini-
mum number of lines or tokens used in other clone detectors. Secondly, some asserts are
used at the start of the test to verify that the set-up was correct, before theUnit Under Test
(UUT) is exercised. While these asserts are clones when considering them at an assert-
level granularity, they become a false positive when comparing the tests at function-level
granularity.

RQ2: How do the clones detected by a semantic clone detector differ from those detected by a
syntactic clone detector?

Of the 755 clones detected by T-CORE, we notice that 385 are of type-II. These clones
are common in test code, as one function from production code will be tested by multi-
ple unit tests which differ only in input values. Figure 5.3 shows an example of such a
typical type-II clone in test code. We note that NiCad detects significantly fewer clones
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f i n a l double [ ] a = { 1 , 2 , 3 , 4 } ;
f i n a l double [ ] b = { −5 , −6 , 7 , 8 } ;
f i n a l double expected = 8 ;
a s s e r t E q u a l s ( expected , d i s t a n c e . compute ( a , b ) ) ;
a s s e r t E q u a l s ( expected , d i s t a n c e . compute ( b , a ) ) ;

f i n a l double [ ] a = { 1 , −2 , 3 , 4 } ;
f i n a l double [ ] b = { −5 , −6 , 7 , 8 } ;
f i n a l double expected = 18 ;
a s s e r t E q u a l s ( expected , d i s t a n c e . compute ( a , b ) ) ;
a s s e r t E q u a l s ( expected , d i s t a n c e . compute ( b , a ) ) ;

Figure 5.3: Example of a typical type-II clone in test code.
(differences marked in bold and underlined)

of this type compared to T-CORE, even though it should be able to detect the syntacti-
cal similarities of a type-II clone easily. This anomaly is caused by the size of the cloned
unit tests. Unit tests are often relatively small. We ran NiCad using the default settings,
which include a minimum clone size of 10 lines, but a lot of unit tests are much smaller
than that. Upon inspection of the type-II clones found by T-CORE, we noticed that a
significant number of these clones are smaller than 5 lines. Running NiCad with a mini-
mum size of 5 lines or less would generate too many false positives. In fact, any syntactic
detector would generated many false positives with such small sizes. This shows that it
is worthwhile to detect semantic clones in test code.

When we look at the total number of type-III clones found by each tools, the differ-
ence is relatively small, with T-CORE detecting 44 andNiCad detecting 27 type-III clones.
However, we see that only 8 of these clones are common between both tools. This indi-
cates that there are differences in the type-III clones found by each tool. We first inspect
the clones that only NiCad detects and find that these cloned tests setup and stimulate
the UUT in a similar way, but then verify a different aspect of the UUT. Therefore, we
can conclude that the semantics of the tests are different, which is why T-CORE does not
detect them as clones. Whenwe inspect the clones that only T-CORE detects, we find two
interesting cases. First, we discover a test containing inline function definitions. These
functions are used as a mock for the UUT. Because they are defined inline, they create a
gap between the setup of the UUT and its stimulation. While type-III clones are allowed
to have gaps by definition, the inline functions create a too large gap for NiCad to detect.
Secondly, we discover a few clones where the setup and oracle part of the tests are sim-
ilar, but the stimulation of the UUT is different. More specifically, these tests verify that
special cases would not cause the UUT to become inconsistent. This again causes a gap
between the syntactically similar parts that is too large for NiCad to detect.
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TestProblem1 pb = new TestProblem1 ( ) ;
F i r s t O r d e r I n t e g r a t o r i n t e g = new HighamHall54Integrator ( minStep , maxStep ,

sca lAbsoluteTolerance , s c a l R e l a t i v e T o l e r a n c e ) ;
TestProblemHandler handler = new TestProblemHandler ( pb , i n t e g ) ;
i n t e g . addStepHandler ( handler ) ;
i n t e g . i n t e g r a t e ( pb ,

pb . g e t I n i t i a l T i m e ( ) , pb . g e t I n i t i a l S t a t e ( ) ,
pb . getFinalTime ( ) , new double [ pb . getDimension ( ) ] ) ;

Assert . asser tTrue ( handler . getMaximalValueError ( ) < ( 1 . 3 * sca lAbsoluteTolerance ) ) ;
Assert . a s s e r t E q u a l s ( 0 , handler . getMaximalTimeError ( ) , 1 . 0 e−12) ;

TestProblem1 pb = new TestProblem1 ( ) ;
EmbeddedRungeKuttaIntegrator i n t e g = new DormandPrince54Integrator ( minStep , maxStep ,

sca lAbsoluteTolerance , s c a l R e l a t i v e T o l e r a n c e ) ;
TestProblemHandler handler = new TestProblemHandler ( pb , i n t e g ) ;
integ . se tSafe ty ( 0 . 8 ) ;
integ . setMaxGrowth ( 5 . 0 ) ;
integ . setMinReduction ( 0 . 3 ) ;
i n t e g . addStepHandler ( handler ) ;
i n t e g . i n t e g r a t e ( pb ,

pb . g e t I n i t i a l T i m e ( ) , pb . g e t I n i t i a l S t a t e ( ) ,
pb . getFinalTime ( ) , new double [ pb . getDimension ( ) ] ) ;

Assert . asser tTrue ( handler . getMaximalValueError ( ) < ( 0 . 7 * sca lAbsoluteTolerance ) ) ;
Assert . a s s e r t E q u a l s ( 0 , handler . getMaximalTimeError ( ) , 1 . 0 e−12) ;

Figure 5.4: Example of a type-IV clone.
(differences marked in bold and underlined)

Of the 755 clone pairs found by T-CORE, 259 are of type-IV clones. Figure 5.4 shows
an example of such a type-IV clone. In this example, two different integrators are being
tested. The integrators themselves, as they are implemented in production code, are type-
IV clones: they each implement a different algorithm for integration of a curve. These two
tests verify the same properties of the different integration algorithms on the same curve.
We state that the semantics of the test (what is being verified) is the same, yet how it is
being done (algorithm and its parameters) is different. Therefore, these two tests are also
type-IV clones.

Even though there are some syntactic similarities, mostly in the setup and assert state-
ments, NiCad can not detect these due to the large gap created by the stimulation of the
UUT. NiCad does detect a relatively large number of type-IV clones. However, these
clones are similar to the one in Figure 5.4, but with the gap between the syntactically sim-
ilar parts of the test small enough for NiCad to detect it as a type-III clone. We classify
these clones as type-IV clones, since we consider them at a test granularity. These type-
IV clones indeed contain a smaller type-III clone, similar to how type-III clones contain
smaller type-II clones, and type-II clones contain smaller type-I clones, yet we always
classify them as the largest possible type given the granularity level.
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5.5 THREATS TO VALIDITY

5.5.1 Internal Validity

The manual classification of the discovered clones is a threat to internal validity. In
order to minimize this threat, we strictly applied the definitions of the types specified by
Roy et al. [43]. We also used a python script that automatically opens the source of both
tests side-by-side and highlights all syntactic similarities to minimize the mental load.
Yet, we cannot guarantee that no mistakes were made during this classification.

5.5.2 External Validity

In this work, we performed an initial investigation towards the feasibility of our ap-
proach. Because this initial investigation was limited in size, a threat exists that our con-
clusions are not generalizable. In future work, we will perform the same experiment on
a larger dataset and compare to other clone detection tools.

5.6 CONCLUSIONS

In this paper we proposed a novel method to detect semantic code clones in test code.
We do this by using symbolic execution to generate a representation of test behaviour,
which we compare. We demonstrated on the Apache CommonsMath Library’s test suite
that our approach detects 755 clone pairs with a precision of 98%. We also showed that
259 of the 755 detected clone pairs are type-IV clones. This confirms that it is both feasible
and worthwhile to investigate semantic clones in test code.
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This chapter was originally published in the Journal of Systems and Software (JSS) as an extension of our previously pub-
lished paper Clone Detection in Test Code: an Empirical Evaluation in Proceedings of the 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER).

CONTEXT
In this chapter, we tackle our second main research question by directly comparing
duplication in the production and test code of open-source projects. We focus our
analysis on the latest version of each project, and as such only provide findings con-
cerning the latest snapshot of the projects. Yet, we are already able to provide many
interesting insights in the differences between test clones and production clones.

ABSTRACT Clones are one of the most widespread code smells, known to negatively affect the
evolution of software systems. While there is a large body of research on detecting, managing, and
refactoring clones in production code, clones in test code are often neglected in today’s literature.
In this paper we provide empirical evidence that further research on clones in test code is warranted.
By analysing the clones in five representative open-source systems and comparing production code
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clones to test code clones, we observe that test code contains twice as many clones as production
code. A detailed analysis reveals that most test clones are of Type II and Type III, and that many
tests are duplicated multiple times with slight modifications. Moreover, current clone detection
tools suffer from false negatives, and that this occursmore frequently in test code than in production
code (NiCad = 76%, CPD = 90%, iClones = 12%). So even from a tools perspective, specific
fine-tuning for test code is needed.

6.1 INTRODUCTION

The recent popularity of agile software development has increased the emphasis on
software testing for developers. In particular, test-driven development [52] and contin-
uous integration [53, 54] require an effective test suite, which is executed early and of-
ten [55]. With each increment of the production code, the test code needs to be updated,
extended, and maintained as well. Therefore, it is a recommended practice to continu-
ously monitor the quality of the test suite [3, 4].

However, as agile teams aim to fix bugs and cover new features with the test suite, less
time is spent on maintaining or refactoring the test code. This gives rise to the concept
of “test smells”: sub-optimal design choices in the implementation of test code [56, 57].
Duplicate tests (a.k.a. test clones) are one of the common symptoms, as the quickest way
for a developer to test a new feature is to copy, paste, and modify an existing test [5].
Even if the developer does create a new test from scratch, the consistent structure of unit
test code (the setup-stimulate-verify-teardown (S-S-V-T) cycle [41]) can still cause clones
accidentally. The prevalence of clones in test code has been shown byHasanain et al. [58]
and was confirmed in our prior work [11].

This high amount of duplicated test code can be problematic, as test smells (such as
test code duplication) have been shown to have a strong and negative impact on program
comprehension and maintenance [22]. Yet, research on test code duplication is limited,
as most code cloning research focuses on production code.

In this paper, we explicitly compare the clones in the test code against the clones
in the system under test by running three state-of-the-art clone detection tools (NiCad,
CPD, and iClones) on five representative open-source software projects. We extend our
previous work [11] and classify, analyse, and compare a total of 21,289 test clones with
18,493 clones from production code. The dataset is made publicly available (see DOI
10.6084/m9.figshare.12644921) and classifies all clones in the appropriate categories (by
type, tool, production or test code). The scripts to automatically create the dataset for a
given system are publicly available as well.
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6.2. BACKGROUND

Based on a quantitative and qualitative comparison of the clones in the test code
against the clones in the system under test we make the following observations.

1. For each project, test code contains more than twice as much duplication as produc-
tion code, even for projects with a small number of clones.

2. Tests are often copied multiple times, each time with small modifications.
3. Clones in production code cause a significant increase in test clones.
4. Clones in test code are inherently different from clones in production code due to

the typical structure of unit tests.
5. Current clone detection tools suffer from false negatives, and this occurs more fre-

quently in test code than in production code, especially for text-based and token-
based clone detectors.

6. A tree-based clone detection technique generally performs best on test code, while
on production code it depends on the project.

We conclude that from a research perspective, more work on clones in test code is war-
ranted. From a tools perspective, specific fine-tuning for test code is needed.
The remainder of this paper is organised as follows. Section 6.2 provides the required
theoretical background while Section 6.3 lists the related work. Section 6.4 describes the
experimental set-up, which naturally leads to Section 6.5 reporting the results. Section 6.6
lists avenues for further work, both from a research and tool builders perspective. Sec-
tion 6.7 enumerates the threats to validity, and Section 6.8 concludes the paper.

6.2 BACKGROUND

Code clone. When two fragments of code are either exactly the same or similar to each
other, we call them a code clone. A code clone is also synonymous with a software clone
or duplicated code, and these terms can be used interchangeably.

Clone fragment. A fragment of code that is duplicated is called a clone fragment. There-
fore, a code clone consists of two or more such clone fragments.

Clone pair. Whenwe consider a code clone that consists of exactly two clone fragments,
we use the term clone pair. Most clone detection tools report their results in terms of clone
pairs.

Clone class. When a clone fragment is duplicated more than two times, we get a set of
clone fragments called a clone class. Note that each combination of clone fragments in
this set will also form a clone pair. One way to visualize the differences between these
terms is to consider a graph: if every clone fragment is a node in a graph, then every
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edge between two nodes is a clone pair, and a fully connected graph is a clone class. A
clone class therefore consists of a set of clone fragments that all form clone pairs between
themselves.

Clone types (I, II, III, IV). Code clones can be differentiated based on their degree of
similarity. First, code clones can be divided into syntactic clones and semantic clones.
Syntactic clones are code clones that are syntactically similar, and are further divided in
three types. Type I clones are exactly the same, only allowing differences in comments,
whitespaces, and indentation. Type II clones are the same as Type I clones, but also allow
differences in variable names and literal values. Type III clones are the same as Type II
clones, but also allow for lines of code to be added or removed in the clone fragment.
Note that it is not required for these types of clones to be functionally similar. Semantic
clones on the other hand are code clones that are semantically similar without necessarily
being syntactically similar. They are often called Type IV clones.

6.3 RELATED WORK

Clone Benchmarks A lot of research has already been performed on software clones.
In 2007, Koschke performed a survey of the literature on software clones [6]. This was
followed in 2009 by him and his colleagues (Roy et al.) with an extensive comparison and
evaluation of all code clone detection techniques and tools [59]. Svajlenko et al. manually
curated a data set containing six million inter-project clones (Type I, II, III, and IV), in-
cluding various strengths of Type III similarity (strong, moderate, weak) [60]. Over the
years, a lot of research has been performed to further investigate the prevalence, character-
istics, impact, and detection methods of software clones. However, most of this research
focuses on production code; test code is rarely ever considered separately [6, 59, 61].

Evaluation Criteria A common denominator in comparative research on software
clones is to evaluate across the different clone types (I, II, III), ignoring Type IV as most
tools cannot identify them [6, 59, 61]. When analysing the prevalence of clones this is
usually done by comparing the clone density (also known as clone percentage [12], or
TCMp or TCLOCp depending on the granularity [13, 14]). When researchers compare
clone detection tools, they calculate the precision and recall [59]. However, since it is
impossible to know all clones in a given system, researchers typically approximate the
recall by using the clones detected by all tools under study as a total. This is known as
the relative recall [62].

Test Smells In 2012, Bavota et al. performed two empirical studies towards the effects
of test smells, including test code duplication. Their results show that most test smells
have a strong negative impact on the comprehensibility and maintainability of both the
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test code and the production code [22]. In 2018, Garousi et al. performed an extensive
literature study on test smells, including knowledge from both industry and academia.
Besides the work performed by Bavota et al., they found 37 sources that explicitly dis-
cuss negative consequences as a result of test smells [57]. Most recently, in 2020, Junior
et al. conducted a survey amongst professionals to identify whether professional experi-
ence influences the adoption of test smells. They found that all developers introduce test
smells irregardless of the developers experience [63].

Test Clones In 2015, Tsantalis et al. performed a large-scale empirical study using
nine open-source projects. For their analysis, they used four different clone detection
tools: CCFinder, Deckard, CloneDR, and NiCad. The focus of their study was on the
refactorability of code clones in general, not specifically on test code duplication. How-
ever, they did briefly look at the difference between clones in test code and clones in
production code. They found that in general test code contained more code clones than
production code [64]. More recently, in 2018, Hasanain et al. performed an industrial
case study that aims at better understanding code clones in test code. They used NiCad
to detect clones on a large test suite provided by Ericsson. They found that 49% (in terms
of LOC) of the entire test code are clones [58]. In our previous work, we performed an
exploratory study on duplicated test code by running four clone detection tools (NiCad,
CPD, iClones, and TCORE) on three open-source test suites. We showed the prevalence
of clones in test code and provided anecdotal evidence that these clones stem from the
typical structure of unit tests [11].

�




�

	

There is a large body of work investigating the prevalence and characteristics of
software clones across the different clone types (I, II, III). Clone density is a com-
monly applied metric when comparing clones within software systems, while
both precision and relative recall is used when comparing clone tools. It is only re-
cently that clones in test code are investigated as a separate topic. At the time of
writing, there is no research investigating the differences between clones in test
code and clones in production code.

6.4 EXPERIMENTAL SETUP

In this section we provide a detailed description of the process we followed to reach
our results. First we go over the tools and data we used, followed by the steps we took to
perform our comparison.
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6.4.1 Clone Detection Tools

There are many different code clone detection tools available, divided in a few ap-
proaches. The three most common ones are (i) text-based, (ii) token-based, and (iii) tree-
based. (i) Text-based approaches use the raw source code for comparison in the clone
detection process, sometimes with a minimal amount of normalization (such as removal
of empty lines and extra whitespaces). (ii) Token-based approaches begin by transform-
ing the source code into a sequence of lexical tokens, which is then scanned for duplicated
subsequences of tokens. (iii) Tree-based approaches use a parser to convert the source
code into abstract syntax trees, which can then be scanned for duplicated subtrees using
tree matching algorithms [59].

Clone detection techniques that do not fall under one of these three approaches have
been proposed aswell. For example, it has been shown that program dependency graphs
(PDGs) and program slicing can be used to detect code clones [44, 45]. Other techniques
include static analysis of memory states at each procedure exit point [48], or applying
random testing to detect similar function output [49]. More recently, machine learning
techniques, such as deep neutral networks, have been successfully used to detect more
difficult Type III and Type IV clones [65, 66].

In order to select the tools for our comparison, we used the following criteria:
• Availability: To allow for our comparison to be easily reproduced, we selected tools
which are publicly available for download. For example, CloneDR [12] was consid-
ered, but since this tool is not publicly available, we decided not to include it in our
study.

• Configuration: To allow an accurate comparison between tools, we selected tools
that are easily configurable in a similar manner (see Section 6.4.3). For example,
Deckard [67] was considered, but we were unable to run it succesfully with the de-
sired configuration.

• Output: To allow an automatic analysis of the results, we selected tools that have
a structured output format. For example, CCFinder [68], SourcererCC [69], and
CloneWorks [70] were considered, but their output was not easily converted to our
reference format (see Section 6.4.4).

• Approach and implementation: To allow for a more broad analysis, we selected tools
with different approaches: one text-based, one token-based, and one token/tree-
based hybrid. We also selected tools with different implementations: one academic
tool, one open-source tool, and one commercial tool. We would have also liked to
include a PDG-based approach, but we were unable to find one that works for both
production and test code. For example, TCORE [9] was considered, but it can only
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be used on test code. We did not select tools that implement the more advanced
techniques, such as memory states or machine learning, as they typically focus on
Type IV clones.

Using these criteria, we selected the following clone detection tools:
• NiCad is an academic tool that uses a text-based approach that performs clone detec-

tion in 3 stages. First it splits the input source into fragments of a certain granularity
(e.g. blocks, functions). It then normalizes these fragments to a standard textual
form. Finally, the normalized fragments are linewise compared using an optimized
longest common subsequence algorithm to detect clones [51, 71].

• PMD’s CPD is an open-source tool that adopts a token-based approach based on
the Karp–Rabin string matching algorithm on a frequency table of tokens in order
to detect clones [59].

• iClones is a commercial tool that uses a token- and tree-based hybrid approach. First,
it generates the abstract syntax tree of the source code and serializes it into a token
sequence. Then it applies a suffix tree detection algorithm on this sequence in order
to find clones [72, 73].

6.4.2 Dataset

For our comparison, we selected five open-source Java projects fromGitHub: the Java
Spring Framework (from now on referred to as Spring), the Elastic Search distributed
search engine (Search), the Apache CommonsMath library (Apache), the Google Guava
library (Google), and the Java Design Patterns library (Patterns). These projects were
selected because they are popular and commonly used open-source Java projects with
extensive test suites. All five projects make use of a continuous integration (CI) server
that runs the test suite after each commit. At the time of analysis1, all projects pass their
CI build.

We use both the production code and the test suite of these projects as the dataset
for our comparison. Table 6.1 shows an overview of the size of each project in terms of
functions (for the production code), tests (for the test code), and lines of code (LOC).
Note that the LOC metric does not include comments or blank lines. The Spring dataset
is the largest of the five with a total of 627k LOC, the Patterns dataset is the smallest with
28k LOC. We selected the projects specifically to have this difference in size to allow for
more generalized results.

1May 2020
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Table 6.1: Dataset descriptive statistics.

Name Functions LOC Min Median Max
Spring Production 18,821 295,232 6 11 429

Test 12,105 331,852 6 9 165
Search Production 28,911 236,239 8 13 650

Test 9,401 145,041 8 17 389
Apache Production 7,564 92,683 1 5 848

Test 6,791 95,562 1 8 359
Google Production 6,303 87,716 1 3 122

Test 8,917 112,821 1 7 604
Patterns Production 1,690 17,962 2 3 66

Test 603 10,990 1 7 43

To allow for comparison between production clones and test clones, we consider the
production code and test code of each project as separate datasets. This means that all
detected clones are completely contained within either the production code or test code
of one project.

6.4.3 Clone Detection

The configuration of a clone detector can have a large impact on the number and
quality of clones detected by the tool. For each tool we opt for the default configuration
for most parameters, as we assume that the default configuration would be best suited
for a general purpose. There are only three parameters which we change: granularity,
minimum clone length, and the output format.

In this research, we use a function level granularity, meaning that each clone fragment
will consist of a function containing the cloned code. This allows us to match the same
clone detected by multiple tools, since the start and end of the clone is strictly defined
by the start and end of the function. This has the added benefit that a cloned function
corresponds to a cloned JUnit test case when considering test code.

Because the size of a test can be significantly smaller than the size of functions in
production code, and since we detect clones at a test level granularity in the test code,
we choose to decrease the minimum clone length. For fair comparison, we do this for
both production code and test code. By default, the minimum length is set to 10 lines of
code for NiCad or 100 tokens for iClones and CPD. In our previous research, we found
that half of the default (5 LOC or 50 tokens) is the best option for code clone detection in
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<clone type ="T3 " i c l o n e s ="True " pmd=" Fa l se " nicad =" Fa l se ">
<source f i l e =" Collect ionToArrayConverter . j ava " s t a r t l i n e ="65" endl ine ="80">
</ source >
<source f i l e =" StringToArrayConverter . j ava " s t a r t l i n e ="61" endl ine ="76">
</ source >

</ clone >

Figure 6.1: Example of a clone pair in the reference XML format.

test code, as this allows for the smaller duplicated tests to be detected without generating
many false positives [9]. Therefore, we set the minimum clone size parameter for NiCad,
iClones, and CPD to half their default.

All four tools have the option to export the detected clones to an XML file. We choose
this option as the structured XML output allows for easy and automated handling of the
data.

6.4.4 Postprocessing

After running each clone detection tool on the dataset, we have a set of XML files
containing the detected clones. To allow for easy analysis, we use a Python script tomerge
the XML output of the different tools into a single file. Figure 6.1 shows the format of this
merged XML file. As shown in the figure, we represent clone pairs using the location of
each fragment (i.e. the filename, startline, and endline of the clone fragments). We also
add three boolean attributes for each clone; one for each tool indicating whether or not
the tool was able to detect the clone. Finally, the type attribute is added after classification
(see Section 6.4.5).

6.4.5 Classification

After postprocessing, we performed type classification on all detected clones. Due to
the large number of detected clones, we partially automated this classification using a
Python script. For each clone pair, this script: (1) extracts both code fragments from the
source code, (2) normalizes indentation and removes comments from the code fragments,
and (3) compares the fragments. If the comparison shows that a continuous sequence
of at least 5 lines from one fragment is exactly the same as a continuous sequence in
the other fragment, the clone is automatically classified as a Type I clone. Otherwise,
if there is a matching continuous sequence of at least 5 lines, but the sequence differs
in variable names and/or literal values, the clone is automatically classified as a Type II
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clone. Finally, if one of the fragments contains amatching continuous sequence of at least
5 lines only differing in variable names and/or literal values, but the matched lines in the
other fragment is not continues, the clone is automatically classified as a Type III clone.

When the script cannot classify the clone according to any of these rules, it shows both
normalized fragments side by side in a GUI and asks the user to manually classify the
clone. In practice, this means deciding wether the clone is of Type III or a false positive.
Due to this limited human interaction, a consistent classification is guaranteed and any
room for interpretation is removed.

Type IV clones are not considered, as the detection tools are focussed on syntactic sim-
ilarity. Moreover, since the semantics of test code differ from the semantics of production
code, it would be difficult to make a meaningful comparison between the two.

6.4.6 Research Questions

In this paperwe explicitly compare the clones in production code against the clones in
test code across the different clone types (I, II, III). We do so from a system-oriented and
a tool-oriented perspective. From the system-oriented perspective we investigate charac-
teristics of the clones within the same system and analyse the nature of the differences.
From the tool-oriented perspective, we compare the precision and recall and see whether
there are differences when applied on production code versus test code. As such our
comparison is driven by four research questions. In this section, we motivate why we
investigate these research questions and explain the approach we use to answer them.

RQ1: What is the difference in clone density for production code and test code?

Motivation: A recent case study on a large project from industry found that 49% of the
entire test code is duplicated [58]. Our previouswork confirmed the prevalence of clones
in test code by analyzing three open-source systems [11]. However, it is yet unknown
whether test code contains more or fewer clones than its production counterpart.
Approach: To answer this research question, we calculate the clone density for each of
the datasets. Clone density (also known as clone percentage [12], or TCMp or TCLOCp
depending on the granularity [13, 14]) is defined as

clone density =
fc ∗ 100

ftot

where fc denotes the number of cloned functions, and ftot refers to the total number of
functions in the system. In other words, the percentage of functions (or tests) that appear
in at least one clone fragment. Since we detect clones on a function level granularity,
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each clone fragment contains exactly one function. Therefore fc is equal to the number of
unique clone fragments. Once we have the clone density for each dataset, we can make
a comparison between production code and test code.

We inspect the distribution of clone types in each dataset by calculating the clone
density for each type. In other words, for each clone type we calculate the percentage of
duplication in the entire project as if the clones of other types did not exist. We expect that,
when taking two subsets of a software system, the distribution of the different clone types
should be relatively constant in both. By making the comparison between production
code and test code, which are two subsets of one software system, we can verify whether
this still holds or whether test clones show traits that are specific to test code, and thus
inherently differ from clones in production code.

RQ2: How do clone classes in test code differ from clone classes in production code?

Motivation: The quickest way for a developer to test a new feature is to copy, paste, and
modify an existing test [5]. Even if the developer does create a new test from scratch,
the consistent structure of unit test code (the setup-stimulate-verify-teardown (S-S-V-T) cy-
cle [41]) can still cause clones accidentally. By investigating clone classes, we can deter-
mine how often the same unit tests is cloned and analyse the extent of the differences
between each clone fragment.
Approach: We compare the number of clone classes in production code and test code,
where a clone class consists of all clone fragments that form clone pairs between them-
selves. We explicitly distinguish between the different clone types (I, II, III).

To verify whether the relation between clone classes and test code is significant, we
calculate the Jaccard Similarity Coefficient. We use Jaccard similarity since it is best suited
for binary data (e.g. Production code or Test code; clone pair or clone class) [74, 75]. The
Jaccard Similarity Coefficient (JSM) is defined as

JSM =
|X ∩ Y|
|X ∪ Y|

where, in our case, X denotes the set of clone fragments from test code and Y denotes the
set of clone fragments that are part of a clone class. Note that if a clone fragment is an
element of Y and not an element of X, it is a clone fragment from production code that
forms a clone class. Similarly, if a clone fragment is an element of X and not an element
of Y, it is a clone fragment from test code that forms a clone pair but no clone class. As
a result, a higher JSM indicates that code classes occur more often in test code than in
production code.
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RQ3: How can the differences between test clones and production clones be explained?

Motivation: Kapser et al. argued that not all clones are harmful, and proposed several
patterns of accepted cloning behaviour [76]. One such pattern is templating, a matter
of parameterisation of a proven solution. API/Library Protocols are a particular instance
of templating, inducing a sequence of procedure calls to achieve the desired behaviour.
The consistent structure of unit test code (the setup-stimulate-verify-teardown (S-S-V-T) cy-
cle [41]) may explain why clones occur so often in test code.
Approach: We collect anecdotal evidence for typical examples of both Type II and Type III
test clones from our dataset. We investigate whether the consistent structure of test code
causes these clones, and we look into the relationship between these clones and the pro-
duction code under test.

RQ4: How effective are clone detection tools on test code compared to production code?

Motivation: In order to assess and improve clone detection tools and techniques, clone
benchmarks have been created [60, 77]. However, these benchmarks focus only on pro-
duction code and do not contain test code [61]. As a result, clone detection tools and
techniques are not being evaluated on test code, which might impact their effectiveness
in detecting test code duplication.
Approach: To answer this research question, we calculate the precision and recall for
each of the tools. Precision is defined as

precision =
cTP ∗ 100

call

where cTP denotes the number of true positive clones found by the tool and call the total
number of clones found by the tool. Recall is defined as

recall =
call ∗ 100

ctot

where call denotes the total number of clones found by the tool and ctot the total number
of clones in the dataset. However, since we do not know the total number of clones in the
dataset, we approximate the recall by using all clones detected by the three tools as ctot.
This approximation is called the relative recall and is commonly used in the field of infor-
mation retrieval as an upperbound approximation of the actual recall [62]. The relative
recall also provides us with the percentage of false negatives, since it can be calculated as

100 ∗
cFN

call
= 100 ∗

ctot − call

ctot
= 100 − recall
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Table 6.2: Overview of clone pairs, clone fragments, and clone density.

(For the clone density columns, the minimum is underlined, the maximum is double underlined.)

Production code Test code
Project Pairs Frag. Density Pairs Frag. Density
Spring 4,441 867 4.6% 2,862 1,759 14.5%
Search 11,422 1,445 5.0% 9,881 2,238 23.8%
Apache 1,554 1,194 15.8% 5,327 2,103 31.0%
Google 851 446 7.1% 3,163 1,934 21.7%
Patterns 225 67 4.9% 56 77 12.8%
Total 18,493 4,019 - 21,289 8,111 -

Once we have these metrics, we can use them to compare the tools and evaluate their
performance.

We then analyse the types of clones (Type I, Type II, Type III) found by each tool. By
calculating both the distribution of types and the relative recall per type for each tool, we
can gain a better understanding of the impact that different clone detection techniques
have on the types of clones that are (not) detected. Moreover, we investigate how the
characteristics of test clones affect the results of code clone detection tools.

6.5 RESULTS AND DISCUSSION

In this section, we present our results and answer our research questions.

RQ1: What is the difference in clone density for production code and test code?

Table 6.2 provides an overview of all clones detected by the three tools for each dataset
in terms of clone pairs, clone fragments, and clone density. In total 39,782 clones were
detected, of which 18,493 in production code and 21,289 in test code.

When considering the clone density (e.g. the duplication relative to the size of the
code), we can see that the production code of all projects contain around 5% duplication,
where Apache is a notable exception with 15.8%. These results fall within the average
duplication of 5% - 20% reported in literature [43]. If we consider the clone density of the
test code, we can see that the Search, Apache, and Google datasets exceed this average of
5% - 20% duplication, with 23.8%, 31%, and 21.7% respectively. The Spring and Patterns
projects have less duplication in their test code, with a clone density of 14.5% and 12.8%
respectively. However, these were also the projects with the lowest number of clones in
the production code, with the clone density in test code still more than twice of that in
production code.
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Table 6.3: Overview of clone density per type.

( The minimum in each column is underlined, the maximum is double underlined.)
Production code Test code

Project Type I Type II Type III Type I Type II Type III
Spring 0.4% 2.3% 1.8% 1.3% 6.8% 6.5%
Search 0.7% 1.8% 2.5% 0.8% 8.0% 15.0%
Apache 2.1% 6.7% 7.0% 1.9% 15.5% 13.6%
Google 0.7% 4.8% 1.5% 1.6% 12.8% 7.3%
Patterns 0.4% 2.2% 1.4% 0.0% 8.5% 4.3%

�
�

�
�

Test code contains twice as many clones as production code, regardless of the
system analysed.
⇒ Developers clone twice as often in test code than in production code.

Table 6.3 provides an overview of the clone density per type (Type I, Type II, Type III).
More specifically, it shows for each project the clone density when only considering du-
plication of a certain type. For exact clones (Type I), the clone density in both production
code and test code is minimal (i.e. between 0% - 2%). For Type II and Type III clones, the
clone density is between 1% - 7% in production code and between 5% - 15% in test code.
Whether there are more Type II clones or Type III clones depends on the project. How-
ever, for each project, the clone density of these non-exact clones is consistently higher
in the test code compared to the production code. This causes the overall increase in test
code clone density compared to production code.

�
�

�
�

Test code has an increased number of Type II and Type III clones compared to
production code.
⇒When developers clone test code, they make small modifications.

RQ2: How do clone classes in test code differ from clone classes in production code?

Table 6.4 provides an overview of the clone classes detected by the three tools in each
dataset. The column labelled Classes shows the number of clone classes that contain at
least 3 clone fragments. Therefore clone pairs (e.g. clone classes with only 2 fragments)
are not counted. The column labelled Fragments shows the percentage of clone fragments
that are part of these clone classes. In other words, it is the percentage of code fragments
that is duplicated more than once throughout the project.

For production code, the percentage of code fragments that is duplicated more than
once is around 50% - 65%. For test code, this is around 60%-75%. We see that the number
of such fragments is consistently higher for test code compared to production code, most
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Table 6.4: Overview of clone classes.

Production code Test code
Project Classes Fragments Classes Fragments
Spring 73 49.1% 234 69.0%
Search 109 66.8% 229 76.1%
Apache 135 56.4% 240 70.7%
Google 39 59.0% 214 59.2%
Patterns 11 83.6% 11 51.9%

significantly in the Spring, Search, and Apache datasets. The Patterns dataset is a notable
exception, however since it only has 11 clone classes (the smallest in our analysis) for both
its production and test code, the sample size is too small to drawmeaningful conclusions.

To verify whether the difference in the number of clone classes between test code and
production code is significant, we calculate the Jaccard Similarity Coefficient (JSM). It’s
a measure of similarity for two sets of data (clone fragments that are part of a clone class
and clone fragments that are part of the test code): the higher the percentage, the more
similar the two sets are. For context, if we were to generate datapoints according to a
uniform random distribution, the JSM would equal 33.33%. On the other hand, if clone
classes occurred only in test code and clone pairs only in production code, the JSMwould
be equal to 100%. In our case, we arrived at a JSM of 52.8%, indicating a significantly
higher number of clone classes in test code compared to production code.

Figure 6.2 shows the boxplot of the size of the clone classes for each datasets. Or, in
other words, it shows the number of times a clone fragment was duplicated when it was
duplicatedmore than once. As we can see, the average size of the clone classes is 4 across
all datasets, both for test code and production code. The exception here is the Google
dataset, having an average of 6 clone fragments per class. Outliers are not visualized on
this graph as there are too many to provide an informative graphic. Instead, to elaborate
on the extremes, Figure 6.3 shows an overview of the size of clone classes across the
whole dataset. Again, the size of the clone classes for both production code and test code
is similar in general. However, the production dataset count 34 outliers while the test
datasets on the other hand count 87 outliers. These outliers are instances where a clone
fragment was duplicated more than 10 ten times, which occurs more than twice as often
in test code. Themost extreme case was from the Search dataset, where the same test was
duplicated and slightly modified 178 times. This indicates that some clone fragments in
test code are copied far more often than production code.
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Figure 6.2: Clone class sizes for each dataset.
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Figure 6.3: Clone class sizes for production code and test code, with outliers.
(The left figure shows the full overview, while the right figure zooms in on the central clusters.)
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�
�

�
�

Clone classes in test code are larger compared to production code, as clone frag-
ments in test code are duplicated more often.
⇒ Tests are often copied multiple times.

RQ3: How can the differences between test clones and production clones be explained?

We have shown that test code contains more Type II and Type III clones than produc-
tion code, and that clone fragments in test code are often duplicated multiple times. The
phenomenon of many larger Type II clone classes in test code is caused by the typical
structure of unit tests. Figure 6.4 shows an example from the Search test dataset of such
a typical Type II clone in test code. As we can see, both tests are completely the same
with exception of the input and the expected output of the unit under test. Since it is
common practice to test multiple input values for each function, this kind of clone occurs
a significant number of times in test code. For example, the specific clone fragments from
Figure 6.4 are part of a clone class containing 32 such clone fragments, each exactly the
same except for the input and expected output.

publ ic void tes tFoldingToLocalExecWithPro jec t ( ) {
Phys ica lP lan p = plan ( " SELECT keyword FROM t e s t WHERE 1 = 2 " ) ;
a s s e r t E q u a l s ( LocalExec . c l a s s , p . ge tClass ( ) ) ;
LocalExec l e = ( LocalExec ) p ;
a s s e r t E q u a l s ( EmptyExecutable . c l a s s , l e . executab le ( ) . ge tClass ( ) ) ;
EmptyExecutable ee = ( EmptyExecutable ) l e . executab le ( ) ;
a s s e r t E q u a l s ( 1 , ee . output ( ) . s i z e ( ) ) ;
a s s e r t T h a t ( ee . output ( ) . get ( 0 ) . t o S t r i n g ( ) , s t a r t s W i t h ( " t e s t . keyword { f } # " ) ) ;

}

publ ic void testLocalExecWithPrunedFi l terWithFunct ion ( ) {
Phys ica lP lan p = plan ( " SELECT E ( ) FROM t e s t WHERE PI ( ) = 5 " ) ;
a s s e r t E q u a l s ( LocalExec . c l a s s , p . ge tClass ( ) ) ;
LocalExec l e = ( LocalExec ) p ;
a s s e r t E q u a l s ( EmptyExecutable . c l a s s , l e . executab le ( ) . ge tClass ( ) ) ;
EmptyExecutable ee = ( EmptyExecutable ) l e . executab le ( ) ;
a s s e r t E q u a l s ( 1 , ee . output ( ) . s i z e ( ) ) ;
a s s e r t T h a t ( ee . output ( ) . get ( 0 ) . t o S t r i n g ( ) , s t a r t s W i t h ( " E ( ) { r } # " ) ) ;

}

Figure 6.4: Example of a typical Type II clone in test code, from the Search test dataset.
(differences marked in bold and underlined)

For the same reason, the typical structure of unit tests also cause many Type III clones.
Figure 6.5 shows an example from the Spring test dataset of such a typical Type III clone
in test code, which was copied 10 times with slight modifications. Here as well, the dif-
ferences accommodate different input and expected output. However, in contrast to a
Type II clone, in order to test different states of a class, additional calls on the object un-
der test are inserted.
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publ ic void pr in tScopedAt t r ibuteResul t ( ) throws Exception {
tag . se tExpress ion ( " bean . method ( ) " ) ;

i n t a c t i o n = tag . doStartTag ( ) ;
a s s e r t T h a t ( a c t i o n ) . isEqualTo ( Tag .EVAL_BODY_INCLUDE) ;
a c t i o n = tag . doEndTag ( ) ;
a s s e r t T h a t ( a c t i o n ) . isEqualTo ( Tag .EVAL_PAGE) ;
a s s e r t T h a t ( ( ( MockHttpServletResponse )

contex t . getResponse ( ) ) . getContentAsStr ing ( ) ) . isEqualTo ( " foo " ) ;
}

publ ic void printHtmlEscapedAttr ibuteResult ( ) throws Exception {
tag . se tExpress ion ( " bean . html ( ) " ) ;
tag . setHtmlEscape ( true ) ;

i n t a c t i o n = tag . doStartTag ( ) ;
a s s e r t T h a t ( a c t i o n ) . isEqualTo ( Tag .EVAL_BODY_INCLUDE) ;
a c t i o n = tag . doEndTag ( ) ;
a s s e r t T h a t ( a c t i o n ) . isEqualTo ( Tag .EVAL_PAGE) ;
a s s e r t T h a t ( ( ( MockHttpServletResponse )

contex t . getResponse ( ) ) . getContentAsStr ing ( ) ) . isEqualTo ( "&l t ; p&gt ; " ) ;
}

Figure 6.5: Example of a typical Type III clone in test code, from the Spring test dataset.
(differences marked in bold and underlined)

�

�

�

�

Test code is often duplicatedmultiple timeswith slight changes in order to test dif-
ferent inputs of a function (Type II) or different states of a class (Type III). These
test clones can be seen as a particular instance of templating, and are therefore
not necessarily harmful.
⇒The typical structure of unit tests gives rise tomanyType II andType III clones.

As we have seen, a function in production code can lead to Type II clones in test code.
While this can be seen as a instance of unharmful templating, it can have further conse-
quences. Namely, if a function in production code is duplicated, we found that its tests
are duplicated as well. Figure 6.6 provides a generalized example. Here, function A has
three tests that check different inputs for the function. As a result, they are Type II clones.
Function B, which is a clone of function A, is being tested with in the same way. Not only
are the tests of function B Type II clones, every test of function A is now a Type III clone
with every test of function B, as they only differ in the function being called (and possibly
the input value).

We found many cases of this scenario in our dataset. Most notably in the Apache
dataset, which implements different algorithms for mathematical problems such as inte-
gration and interpolation. The tests of each of these algorithms only differ in the call to
the algorithm, causing them to all be Type III clones. Another example is from the Pat-
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Figure 6.6: Relation between test clones and production clones.

terns dataset, which contains multiple dummy classes to showcase their design patterns.
Each of these classes provides a similar interface, which again causes duplication in the
test code.�

�
�
�

When functionality is duplicated in production code, all tests that verify this func-
tionality are also duplicated.
⇒ Clones in production code cause a significant increase in test clones.

RQ4: How effective are clone detection tools on test code compared to production code?

Table 6.5 provides an overview of the precision and the relative recall of the different
clone detectors on each dataset. When we look at the precision, all tools produce few
false positives (e.g. incorrectly marking fragments of code as clones), with a total preci-
sion between 95% - 100%. All three clone detection techniques (text-based, token-based,
and tree-based) are capable of detecting clones with a high precision and this both for
production and test code.

When we look at relative recall, we can see that NiCad’s text-based technique detects
themost syntactic clones in production code, with a total relative recall of 74%. Although
iClones does perform well on the Apache and Patterns production datasets, the total rel-
ative recall of both PMD’s token-based approach and iClones’ tree-based approach is sig-
nificantly less, with 18% and 31% respectively. When considering the test code datasets,
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Table 6.5: Overview of the precision and relative recall for each clone detector.

Precision Relative Recall
Project NiCad CPD iClones NiCad CPD iClones
Spring Production 95% 97% 99% 93% 8% 9%

Test 100% 100% 100% 28% 13% 88%
Search Production 100% 99% 100 70% 21% 31%%

Test 100% 99% 98% 9% 4% 98%
Apache Production 88% 99% 98% 46% 17% 83%

Test 91% 98% 99% 30% 11% 93%
Google Production 87% 100% 100% 84% 31% 40%

Test 98% 99% 98% 55% 23% 49%
Patterns Production 88% 97% 100% 27% 16% 91%

Test 84% 90% 90% 29% 46% 50%

Total Production 97% 99% 100% 74% 18% 31%
Test 96% 99% 98% 24% 10% 88%

Figure 6.7: Clones of each type detected by the different tools.

however, we note that iClones tree-based approach outperforms the others with a total
relative recall of 88%. Moreover, with exception of the Patterns dataset, the tree-based
approach performs consistently better on test code compared to production code across
all projects.

The reason why a tree-based approach works better is caused by the prevalence of
Type III clones in test code. This can be deduced from Figure 6.7, which provides an
overview of the total number of clones detected, classified per type (Type I, Type II and
Type III) and per tool. NiCad and CPD have a very similar distribution, with around 12%
of their detected clones being of Type I, 66% of Type II, and 21% of Type III. In relative
terms, iClones detects fewer Type I clones (4%) and Type-II clones (26%), but a lot more

60



6.6. AVENUES FOR FURTHER RESEARCH

Type III clones (70%). This confirms that the tree-based approach can detect Type III
clones more easily than a text- or token-based approach. The text- and token-based ap-
proaches are much better at detecting Type I and Type II clones on the other hand.

Nevertheless, low relative recall indicates that every tool suffers frommany false neg-
atives. These false negatives occur more frequently in test code than in production code,
especially for text-based and token-based clone detectors. For NiCad, the relative recall
decreases from 74% on production code to 24% on test code (-50%). In other words,
the number of false negatives increases from 26% to 76%. Similarly, CPD sees a differ-
ence from 18% to 10% (-10%), and therefore an increase in false negatives from 82% to
90%. iClones however sees a positive difference: relative recall increases from 31% to 88%
(+57%).

The large number of false negatives combined with the earlier observation of large
clone classes is worrisome. A test engineer wants to detect all copies of a certain code
fragment when searching for test smells to assess which tests are copied most frequently
and thus are the best refactoring candidates. Moreover, when tests are refactored, a test
engineer wants to identify all tests that will be affected by the refactoring. In both cases,
false negatives impair the refactoring process.�




�

	

We conclude that, even though the tools perform excellent in terms of precision,
every tool suffers from false negatives (e.g. cloneswhich are not detected). These
false negatives occur more frequently in test code than in production code, espe-
cially for text-based and token-based clone detectors. When detecting clones in
test code, a tree-based approachworks better due to the larger number of Type III
clones.
⇒ From a tools perspective, specific fine-tuning for test code is needed.

6.6 AVENUES FOR FURTHER RESEARCH

In the paper we provide empirical evidence on the differences between clones in pro-
duction code and test code. We argue that clones in test code are sufficiently different
from clones in production code to warrant increased research attention. Belowwe sketch
a few avenues for further research, refining existing work from the cloning community
but gear it towards clones in test code.

Clone Genealogies In 2005, Kim et al. coined the term “Code Clone Genealogies"
for describing how a family of clone classes evolves over time [78]. They illustrated that
clones are either short-lived and disappear due to natural code evolution, or long-lived
and get changed consistently over time since there is no proper way to refactor them into
a single abstraction. Krinke as well studied the changes applied to a clone class over
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time and noticed that clones are not always changed consistently [79]. Knowing that
clone classes are often large (i.e. a single unit test gets copied multiple time) and consist
mainly of Type II and Type III clones (i.e they consist of smaller variations), studying how
such a clone class evolves over timewould be interesting. Do these test clones appear in a
short bursts or do they slowly emerge over time? In the former case, they are a potential
symptom of a well thought out test case design covering a series of well-defined input-
output combinations. In the latter case, theymay illustrate graceful co-evolution between
the system under test and its test cases. Another interesting avenue is to consider how
test clones deal with stable or unstable APIs in the system under test [80].

Test Amplification Test amplification is the act of automatically transforming a man-
ually written unit-test to exercise boundary conditions [81]. In that sense, test amplifi-
cation is a special kind of test generation: it relies on test cases previously written by
developers which it tries to improve. DSpot is an example of a test amplification tool for
Java projects [82] which has been replicated for Pharo/Smalltalk within our lab under
the name of SmallAmp [83]. Such tools iteratively create extra test cases by changing
the setup and the assertions, resulting in a new and larger set of test cases, essentially
creating a series of Type III clones of the amplified test case. Yet, test amplification tools
amplify a single test at a time and don’t exploit the fact that some tests are copied multi-
ple times. One could for instance focus the test amplification process on tests which are
cloned often as they represent important hot spots in the system under test. Conversely,
one could amplify tests which are never copied as these may represent less tested parts
of the system.

Test Transplantation Initially clones were mainly investigated from a single system
perspective [77]. Yet, with the arrival of various open-source code hosting platforms, re-
searchers investigated inter-project Type III clones as a way to search for idioms, patterns
and API-usages [60, 84]. In a similar vein, if we would be able to find inter-project clones
within test code, we could mine the "wisdom of the crowds" for testing a certain library
or API. We could then go one step further and improve the test base from one system by
applying a variant of code transplantation [85]. Rather than transplanting tests for clones
in the system under test (like advocated by Zhang et al. [86]), we argue to transplant the
cloned tests themselves.

Reduce False Negatives In our prior work, we noticed that clones in test code tend to
be smaller in size [11] Hence one cannot just blindly follow the default parameters pro-
vided in clone detection tools when searching for clones in test code. So an obvious way
to reduce the number of false negatives is fine-tuning the available parameters to better
accomodate the nature of test code. Tools like SonarQube (https://www.sonarqube.org),
CodeScene (https://codescene.io), and source{d} (https://github.com/src-d) in par-
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ticular should explore this avenue. A next step would be to exploit the presence of the
abstract syntax tee in tree-based clone detectors (which have the least false positives
anyway) to exploit the consistent structure of unit test code (the setup-stimulate-verify-
teardown (S-S-V-T) cycle [41]).

Test CloneManagementOne school of thought in the cloning community argues that
non-harmful clones should be tolerated and that tool support should focus on managing
the consistency between clones [87]. Several such consistent change recommenders have
been created over the years, we list just a few: CloneTracker [88], CodeCloningEvents [89],
Clone Change Notification [90], Clone Notifier [91]. Knowing that clones in test code of-
ten get copied multiple times, it would be interesting to explore how such recommender
systems would work for test code. It could, for example, allow developers to consistently
change every test for a single unit, whenever this unit under test changes its interface or
behaviour.

6.7 THREATS TO VALIDITY

6.7.1 Internal Validity

The classification of the discovered clones is a threat to internal validity. There is room
for interpretation when manually classifying code clones. To minimize this threat, we
automated a large part of the classification, limiting manual classification to the decision
between Type III and false positives. Moreover, our dataset is publicly available to allow
for review by the community.

A second threat to internal validity is the comparison of the different tools. We use
relative recall as a metric during this comparison, since it is not feasible to calculate the
actual recall. It is highly likely that there are more clones in the dataset than we detected,
which would result in the actual recall being less than the reported relative recall. How-
ever, if there are additional clones in the dataset, none of the tools used in our comparison
detected them. Thus, recall of each tool would be lowered, which would not affect our
conlusions.

6.7.2 External Validity

In our evaluation, we ran three clone detection tools on five open-source Java projects.
A threat to external validity is that the tools and the datasets we used in our evalution are
not representative of all clone detection tools and/or code bases. To minimize this threat,
we chose the tools such that they differ in implementation (open-source, academic, and
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commercial) and clone detection algorithm (text-, token-, and tree-based). Similarly, we
chose the datasets such that they vary in size, type, and complexity. We encourage fu-
ture research to confirm our findings by adding more datasets and clone detection tools
to our evaluation. More specifically, we believe that extending the dataset with different
programming languages (such as dynamically typed programming languages) and dif-
ferent tests (such as integration tests) are important to measure the generalizability of
our results.

6.8 CONCLUSION

In the paper we provide empirical evidence on the differences between clones in pro-
duction code and test code. We collected clone reports from five representative open-
source software projects using three state-of-the-art clone detection tools (NiCad, CPD,
and iClones). We then classified, analysed, and compared a total of 21,289 test clones
with 18,493 clones from production code. We found that test code contains twice asmany
clones than production code, even for projects with a small number of clones. This in-
crease can be attributed to significantly more occurrences of Type II and Type III clones;
Type I (exact) clones are negligible. We deduced that when developers clone test code,
they they often copy multiple times making small modifications to test different input
values.

The clone detection tools under analysis perform excellent in terms of precision, yet
every tool suffers from false negatives (e.g. clones which are not detected). These false
negatives occur more frequently in test code than in production code, especially for text-
based and token-based clone detectors.

We conclude that from a research perspective, morework on clones in test code is war-
ranted. Clone genealogies, test amplification, and test transplantation in particular seem
promising avenues for future research. From a tools perspective, specific fine-tuning for
test code is needed to reduce the number of false positives. Improving the current genera-
tion of tree-based clone detectors to exploit the consistent structure of unit test code is the
way to go. Since clones in test code are often duplicated multiple times, clone manage-
ment tools recommending consistent modifications to clones in test code are more than
welcome.
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CONTEXT
In this chapter, we tackle our second main research question by comparing the full
evolution of duplication in production code and test code. By focussing our analysis
on the entire evolution of the code clones, we get a full picture of the differences
between test clones and production clones, and are confident that we can provide a
thorough answer to our second main research question.

ABSTRACT Recent research has shown that clones occur far more often in test code than in
production code. This is explained by the typical template of unit test code (the setup-stimulate-
verify-teardown cycle), a template which lends itself well to parameterisation of proven solutions.
However, little is known on how these clones evolve over time. In this paper, we compare the
evolution of clones in test code with those in production code. Based on a quantitative and quali-
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tative study of eight representative open-source systems, we conclude that clones in test code are
inherently different than clones in production code throughout development. As a consequence,
consistent maintenance and tracking of test clones becomes more important, hence the need for
special purpose clone tracking and management tools.

7.1 INTRODUCTION

Software testing provides important information on the efficacy as well as efficiency
of software applications. The test suite is often used as a final quality gate, and as such
it plays a crucial role in the success of an application [2]. With agile teams working in-
crementally on the production code, the test code needs to be updated, extended, and
maintained each iteration. Therefore, it is a recommended practice to continuously mon-
itor the quality of the test suite [3, 4].

However, as agile teams aim to fix bugs and cover new features with the test suite,
less time is spent on maintaining or refactoring the test code. This may cause duplicate
tests (a.k.a. test clones), as the quickest way for a developer to test a new feature is to
copy, paste, and modify an existing test [5]. Even if the developer does create a new test
from scratch, the consistent structure of unit test code (the setup-stimulate-verify-teardown
(S-S-V-T) cycle [41]) induces a template which easily causes variations on a given theme.
These variations then surface as clones with small differences in literal values to exercise
boundary values (a.k.a. copy-paste clones), or extra statements to bring the component
under test in a given state (a.k.a near-miss clones). Previous research has already re-
ported the prevalence of clones in test code [11, 58]. In follow-up research, we showed
that test code contains more than twice the amount of duplication compared to produc-
tion code, as duplicated functionality in production code causes a significant increase in
test clones [10]. Moreover, we found that test clones inherently differ from clones in pro-
duction code, with unit tests often being duplicated many times with small variations,
confirming that this duplication is caused by the S-S-V-T cycle [10].

In this paper, we further investigate this inherent difference between clones in pro-
duction and test code by analysing how they evolve throughout software development.
The idea of studying clone evolution originated in 2005, when Kim et al. coined the term
“Code Clone Genealogies" for describing how a family of clones evolves over time [92],
which has led to many interesting insights. With this study, we extend these insights to
test code.

Based on a quantitative and qualitative comparison of the evolution of clones in eight
representative open-source systems, we make the following observations.
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1. The amount of duplication in test code is significantly higher than in production at
every point during development.

2. Clone density in test code is muchmore sensitive to changes in the code base, while
clone density in production code is far more stable.

3. Overall the survivability of test clones is similar to that of production clones. How-
ever, when clones do not survive, they disappear sooner in test code than in pro-
duction code.

4. Clones in test code are being changed slightly more often than in production code,
yet they are more likely to be changed consistently than inconsistently.

These four observations confirm that test code clones do indeed inherently differ from
production clones, not only at their instantiation, but at every point of their evolution. It
implies that resource allocation and time estimation for clone-related maintenance activ-
ities must take into account the special nature of test code. Moreover, consistent main-
tenance and tracking of test clones becomes more important, hence the need for special
purpose clone tracking and management tools increases.
The remainder of this paper is organised as follows. Section 7.2 provides the required
theoretical background while Section 7.3 lists the related work. Section 7.4 describes the
experimental set-up, which naturally leads to Section 7.5 reporting the results. Section 7.6
enumerates the threats to validity, and Section 7.7 concludes the paper.

7.2 TERMINOLOGY

In this section we will provide definitions of the used terminolgy in this paper. These
definitions were adopted from Kim et al. [92].

Clone fragment. One fragment of code that is duplicated is called a clone fragment.
Code clone. When two or more fragments of code are either exactly the same or similar

to each other, we call them a code clone. A code clone is also synonymouswith a software
clone or duplicated code, and these terms are used interchangeably in this paper.

Change pattern. A change pattern describes how clone fragments change from one
version of the system to the next. We differentiate three different change patterns in this
paper.

— Same: The code of every clone fragment in the clone remains the same. Development
activities (e.g. bug fix, refactoring) did not alter the duplicated code.

— Consistent: A certain change was made to every clone fragment in the clone. Some
development activity altered the duplicated code, and as such had to be applied to
every fragment of the clone.
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Version n Version n+1 Version n+2 Version n+3
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A
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C
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c
ADD SAME SUBTRACT

same inconsistent

consistent

Figure 7.1: Example of a clone lineage. The bold arrows show the evolution pattern, the
dotted arrows show the change pattern.

— Inconsistent: A certain change was made to some clone fragments in the clone. Some
development activity altered the duplicated code, but was not applied to every frag-
ment of the clone.

Evolution pattern. An evolution pattern describes how the number of clone fragments
changes from one version of the system to the next. We differentiate three different evo-
lution patterns in this paper.

— Same: The number of code fragments in the clone remains the same.

— Addition: The number of code fragments in the clone increases. Some development
activity added or changed code outside the clone such that the code matches the du-
plicated code.

— Subtraction: The number of code fragments in the clone decreases. Some develop-
ment activity removed or changed code inside the clone such that the code no longer
matches the duplicated code.

Clone lineage. A clone lineage is the ordered set of all versions of one clone throughout
development. In a clone lineage, a clone in version n of the system is connected with a
clone in version n - 1 by a change and evolution pattern. Figure 7.1 shows an example of
a clone lineage, as well as an example of every change and evolution pattern.

Clone genealogy. A clone genealogy is a set of clone lineages that have originated from
the same clone. Figure 7.2 shows an example of a clone genealogy of two lineages with a
common origin. Note how the change and evolution pattern can differ between lineages
when they split from the common line.
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Figure 7.2: Example of a clone genealogy. The bold arrows show the evolution pattern,
the dotted arrows show the change pattern.

7.3 RELATED WORK

A lot of research has already been performed on software clones. In 2007, Koschke
performed a large survey of the literature on software clones, summarizing the state of
clone detection research [6]. This was followed in 2009 by him and his colleagues (Roy et
al.) with an extensive comparison and evaluation of all code clone detection techniques
and tools [59]. Over the years, many studies have been performed to further investigate
the prevalence, characteristics, impact, and detection methods of software clones. How-
ever, most of this research focuses on production code; test code is rarely ever considered
separately [6, 59, 61].

In our previous research, we were the first to consider clones in test code separately
from clones in production code in a comparative study of the two [10]. We found that
code clones in test code inherently differ from those in production code, mainly caused by
the specific structure of unit tests. This motivated us to investigate this difference further,
by analysing the evolution of test clones from the perspective of clone genealogies.

The idea of studying the evolution of code clones was first introduced in 2005 by Kim
et al. [92]. They defined the terms clone genealogy and clone lineage, and proposed a
set of 6 patterns that describe their evolution. They also implemented a tool to extract
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this evolution data [93]. In an initial study, they applied their tool on two projects and
concluded that clones impose obstacles during software evolution and that popular refac-
toring techniques cannot easily remove many long-lived clones.

In 2007, JensKrinke investigated changesmade to code clones in evolving software [94,
95]. He found that usually half of the changes to code clones are inconsistent changes, and
when there are inconsistent changes to a code clone in a version, it is rarely the case that
there are additional changes in later versions to make the clone group consistent again.
A year later, he found that generally cloned code is changed less often than non-cloned
code [96], indicating that clones indeed impose obstacles during software evolution.

By 2009, several different techniques for tracking code clones throughout software de-
velopment had been proposed [97, 98, 99]. This opened the door tomanymore studies on
clone evolution, all of which confirmed that clones are rarely changed and, when they are
changed, the change is most likely inconsistent [100, 101, 102, 103]. Other studies started
to focus on how harmful long-living clones and inconsistent changes to clones actually
are [104, 105, 106, 107]. They found that clones may not be as detrimental in software
maintenance as previously thought, as the inconsistent changes are made intentionally
to adapt the clone to its environment. They propose that instead of aggressively refactor-
ing clones, the focus should be on tracking and managing clones during the evolution of
software systems.

As the focus shifted towards tracking and managing clones, more tools and tech-
niques were proposed for this purpose [108, 109, 110, 111]. The research on clone evolu-
tion also shifted towards more practical applications, such as investigating late propaga-
tion of clones [112, 113, 114], studying fault-proness and bug propagation of clones [115,
116, 117], and even predicting changes to clones [118]. Yet no research has been per-
formed on the evolution of clones in test code.

7.4 EXPERIMENTAL SETUP

In this section, we provide a detailed description of the process we followed to obtain
our results. First, we go over the tools and data we used, followed by the steps we took
to perform our comparison.
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7.4.1 Clone Detection Tools

We selectedNiCad and iClones as our clone detection tools. Both are fast tools that are
easily configured for our purposes [59]. NiCad detects code clones using a text-based ap-
proach, while iClones uses a tree-based approach. By combining the results of two tools
with two different approaches, we are able to detect a larger and more divers number of
clones.

We opt for the default configuration of the tools, as we assume that the default config-
uration would be best suited for a general purpose. There is only one parameter which
we change: granularity. We set the granularity to function-level, meaning that each clone
fragment will consist of a function containing the cloned code. Since every unit-test is
implemented as a function, clone detection on the test suite will happen on a test-level
granularity.

7.4.2 Dataset

For our study, we selected four open-source Java projects and four open-source C
projects from GitHub. For Java, we chose the Google Guava library, the Apache Com-
mons Math library, the Apache Avro library, and the Eclipse vert.x toolkit. For C, we
chose the Cairo graphics library, the Apache APR project, the libarchive library, and the
libsodium library. These projects were selected because they are popular and commonly
used open-source projects with extensive test suites. All eight projects make use of a con-
tinuous integration (CI) server that runs the test suite after each commit. At the time of
writing,1 all projects pass their CI build.

We use the production code and the test suite of these projects as the dataset for our
study. Table 7.1 and Table 7.2 shows an overview of the size of each project at the time
of writing. The size is presented in terms of functions (for the production code), tests
(for the test code), and lines of code (for both). Note that the lines of code (LOC) metric
does not include comments or blank lines. The number of commits and the number of
analysed versions are also included in the tables.

7.4.3 Data Collection

In order to construct code clone genealogies, we need cloning data from the whole
software evolution history. We implemented a Python script to collect this data.2

1March 2022
2All scripts and data used are available in our replication package: DOI 10.6084/m9.figshare.17206997.v3.
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Table 7.1: Descriptive Statistics of Java projects.

Name Functions LOC Total Analysed
or Tests Commits Versions

Google Guava Prod 4,773 91,287 5,785 577Test 13,822 159,776
Apache Math Prod 4,741 70,640 6,479 647Test 5,168 75,567
Apache Avro Prod 2,524 35,578 2,734 272Test 2,769 40,010
Eclipse vert.x Prod 2,737 59,702 3,053 304Test 784 72,873

Table 7.2: Descriptive Statistics of C projects.

Name Functions LOC Total Analysed
or Tests Commits Versions

Cairo Prod 5,241 160,037 10,842 1,084Test 1,488 41,048
Apache APR Prod 1,247 56,505 9,070 907Test 672 21,921
libarchive Prod 2,102 96,792 4,620 461Test 731 52,701
libsodium Prod 871 19,208 3,536 353Test 136 16,679

A. Analysed versions

First, the Python script gathers the commit history of the project viaGit. This results in
a list of the short Git version hash for each commit, which can be used to switch between
different versions of the project.

Because clone detection is a time-consuming process, it would not be feasible to per-
form it on every version of the project. Moreover, some commits do not alter the code
(e.g. adding documentation or changing configuration files), so two consecutive versions
could be programmatically the same, which would not be interesting for our analysis.
Therefore, we decided to only analyse project versions according to a constant interval of
10 commits. We found this interval large enough to make clone detection feasible while
still small enough to capture changes in the cloning data. The final number of analysed
versions for each project can be found in Table 7.1 and Table 7.2.
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B. Clone detection

For every version we want to analyse, the Python script first divides the project into
two parts: the production code and the test code. We make this division based on the
naming convention of the source files: each file that has the word “Test” in its name or
path is part of the test code, every other file is part of the production code. We manually
verified that the projects in our dataset all followed this naming convention.

The Python script then runs theNiCad and iClones clone detector tools on the produc-
tion code and the test code separately. This means that all detected clones are completely
contained within either the production code or test code of the project. We merge the de-
tected clones from both tools, in order to have a larger dataset of clones for our analysis.
Each clone consists of multiple clone fragments, for which the filename and line numbers
are extracted.

The Python script then extends this data with additional information needed for post-
processing. For every clone fragment, it adds the name of the function containing the
clone fragment. Note that each clone fragment is contained in exactly one function, since
we detect clones on a function-level granularity. The fragment’s code is then normalized
(i.e. removing whitespace and comments) and hashed. The resulting hash is also added
to every clone fragment in the XML file.

C. Post-processing

After collecting the clone data at every version we want to analyse, the Python script
performs several post-processing steps to construct the clone genealogies. The post-processing
steps that construct clone genealogies are based on the original methods defined by Kim
et al. and Bakota et al. [92, 97].

First, we need to track the clones that appear throughout multiple versions of the
project. This is done by chronologically traversing the analysed versions, comparing the
filename and function name of clone fragments with those of the next analysed version.
We assume that every function in a certain file has a unique name, and therefore that, if
a function foo in a file bar is a clone fragment in two consecutive analysed versions, they
are the same clone fragment. By tracking the clone fragments throughout the versions,
we can easily match the clones containing those fragments. When we have all instances
of a clone throughout the different analysed versions chronologically, we call it a clone
lineage. Finally, we can group clone lineages that have a common origin to construct the
clone genealogies.
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Once we have the clone genealogies, we annotate them with the evolution pattern
and change pattern. To determine the evolution pattern, we count the number of clone
fragments contained in two consecutive versions. If this number increases or decreases,
there was an addition or subtraction respectively. To determine the change pattern, we
compare the hashes of the fragments’ normalized code from two consecutive versions. If
some of the hashes have changed, but not all, there was an inconsistent change. If all of
the hashes have changed, there was a consistent change. We perform this annotation for
every version in every genealogy.

7.4.4 Research Questions

In this paper we analyse how code clone genealogies in production code differ from
those in test code. To guide us through our analysis, we propose three research questions.
In this section, we motivate why we investigate these research questions and explain the
approach we use to answer them.

RQ1: How do the clone density for production code and test code evolve throughout development?

Motivation: In our previous research, we have shown that test code contains more than
twice as much duplication as production code [10]. However, we only considered the
latest version of each project. It is unknown how the duplicated code evolved to get to
that point, whether the amount of duplication in test code was higher than production
throughout development or if it only peaked near the end. Investigating how the clone
density evolves through time will not only provide more insight in the results of our
previous research, but also in developers coding, testing, and cloning practices.
Approach: To answer this research question, we calculate the clone density for both pro-
duction and test code at every analysed version. Clone density (also known as clone
percentage [12], or TCMp or TCLOCp depending on the granularity [13, 14]) is defined
as

clone density =
fc ∗ 100

ftot

where fc denotes the number of cloned functions, and ftot refers to the total number of
functions in the system. In other words, the percentage of functions (or tests) that appear
in at least one clone. Since we detect clones on a function-level granularity, fc is equal to
the number of unique clone fragments.
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By constructing a timeplot of the clone density for both production and test code, we
can compare the evolution throughout development. To complement this data, we also
inspect the code whenever a sudden change in clone density was recorded, in order to
find the cause of these anomalies.

We also determined the clone density in terms of LOC, defined as

clone density =
LOCc ∗ 100

LOCtot

where LOCc denotes the number of cloned lines of code, and LOCtot refers to the total
number of lines of code in the system. However, since there is a direct correlation between
the density in terms of LOC and the density in terms of functions, we omit the former
from our results in favor of a closer analysis of the latter. Yet, our conclusions hold for
both. The omitted density data is available in our replication package.

RQ2: Do clones in test code live longer compared to clones in production code?

Motivation: Even though analysing the total amount of duplication at each version can
provide useful insights (RQ1), it does not tell us anything about the actual clones. There-
fore, in RQ2 and RQ3, we focus our investigation towards the evolution of clone geneolo-
gies throughout development.

First we look at how long clones survive in the system, again making the comparison
between production and test code. We know that test code contains more than twice as
much duplication as production code, but it is unknown if clones in test code also survive
longer, or if this additional duplication is caused by many shortlived clones. Answering
this research question will help developers better understand how to maintain clones,
since depending on the answer, a different maintenance strategy is required.
Approach: To answer this research question, we first divide the clone geneologies into
two categories, alive and dead. Alive genealogies are still in the system in the final version,
while dead genealogies do not appear in the final version [92]. Since alive genealogies
are still currently evolving, they cannot be used to determine how long the clone will
survive. Therefore, we exclude clones that are alive in our analysis, focussing only on
the dead genealogies. More specifically, we gather data on k-volatile genealogies. A k-
volatile genealogy is a dead genealogy that has an age lower or equal to k [92]. Using
a cumulative distribution function to sum all k-volatile genealogies for every k, we can
calculate the relative number of clones that survive up to a certain age. By doing this for
both production and test genealogies, we can compare the age of test clones with that of
production clones.
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RQ3: How do clones in production code and test code evolve according to the evolution and change
patterns?

Motivation: After investigating how long clones live, we focus our research to how clones
evolve while they live. More specifically, how clones evolve according to the evolution
and change patterns. Our previous research showed that test clones are inherently differ-
ent from production clones [10]. However, it is unknown if they also evolve differently,
if they change consistently or inconsistently more or less often, or if they grow or shrink
more or less often, compared to production clones. Depending on the answer of this
research question, refactoring and maintenance efforts might need to be prioritized for
either production or test clones.
Approach: To answer this research question, we use the evolution pattern and change
pattern annotations added during post-processing. We first use the change pattern an-
notations to calculate the relative ratio of lineages that never changed, lineages that only
changed consistently, and lineages that changed inconstistently at least once. This will
provide an indication on how stable the clones are. Then, we calculate the relative ratio
of the evolution and change pattern annotations, such that we can get an idea of how the
clones evolve. If we do this for both the production code and test code of each project,
we can compare this evolution.

7.5 RESULTS AND DISCUSSION

In this section, we present the results from our study and formulate answers to our
research questions.

7.5.1 RQ1: How Do the Clone Density For Production Code and Test Code Evolve
Throughout Development?

Figure 7.3 shows the evolution of clone density for the eight projects under study. We
can see that, generally, the amount of duplication in test code is significantly higher than
that in production code at every point during development, except during the very first
few commits of the projects when testing has not started yet.

The only exception is the Apache APR project. This project added their first tests
around commit 2500, which causes the amount of test duplication to rise, reaching a
maximum of 17% around commit 4000. However, the clone density of the test code then
suddenly drops to 10.5%. After investigating the Git history, we found that this sudden
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Figure 7.3: Evolution of clone density throughout project development. The upper four
are Java projects, the lower four are C projects.
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drop is caused by the deprecation of one of their API’s, which lead to the removal of
manyduplicatedAPI tests.3 Throughout the rest of the project, the test code clone density
remains around 10%, following a similar trend to the production code clone density.

Other projects also show the clone density of test code following the same trend as
the clone density of production code, for example in the ApacheMath and Cairo projects.
This could be a result from the observation from our previous research, where we noted
that clones in production code induce multiple clones in test code [10]. For example, if
two functions foo and bar in production code are clones, multiple unit tests in fooTests and
barTests will likely also be clones. Thus, a change in the production code clone density
will result in a similar change in the test code clone density. We do observe that these
changes in production code clone density only occur occasionally, as in most projects the
production code clone density is very stable. It generally evolves very slowly over time,
or often even remains around the same level throughout the entire project.

Test code clone density on the other hand is less stable. There are quite a few occur-
rences where it undergoes a significant change in a limited amount of time. We already
discussed this for the Apache APR project. Another notable example is around commit
1800 of the Google Guave dataset, where the clone density for test code suddenly drops
from 6.7% to 4.2%. When looking at the Git history, we found that one commit added
a large set of hidden internal tests to the public project repository.4 This commit added
73,306 LOC spread over 252 files, increasing the total number of tests from11,914 to 18,994.
However, many of these new tests were very small (2 - 4 LOC), and since our detection
tools were configured with the default minimum clone size of 10 LOC, these tests were
not considered during clone detection. As such, the clone density dropped due to the
significant increase in the total number of tests, whilst the number of clone fragments
stayed the same. We found that these two examples showcase the two common causes
for these points of interest: either a large part of the code base is removed, such as a
deprecated API in the Apache APR project, or a large amount of code is added, such as
the set of hidden internal test in the Google Guave dataset. We conclude that the clone
density in test code is much more sensitive to such large changes in the codebase, while
clone density in production code is far more stable.�

�

�

�
The amount of duplication in test code is significantly higher than in production
at every point during development. Moreover, clone density in test code ismuch
more sensitive to changes in the code base, while clone density in production code
is far more stable.

3Commit 461f265f2521781c2aa031334db587c9bcbb432a: “Remove all uses of the apr_lock.h API from the tests.”
4Commit 31978328af5af66bc67bcbdda12b20710c2cfcad: “Run “normal" GWT tests in public Guava.”
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7.5.2 RQ1 Discussion

Our results show that duplication in test code is consistently higher throughout de-
velopment, indicating that duplication is inherent to test code. We identified two main
reasons why this is the case. First, the consistent structure of unit test code (the setup-
stimulate-verify-teardown (S-S-V-T) cycle) induces a templatewhich surfaces as clones [11].
Second, clones in production code can induce a multitude of clones in test code, as mul-
tiple test cases for duplicated functionality will themselves also be duplicated.

This will impact practitioners, as these inherent clones either can not or should not be
refactored. There is no need to refactor test clones caused by the S-S-V-T cycle, as these
can be considered as a particular instance of templating, and therefore should not be con-
sidered harmful [76]. On the other hand, test clones caused by duplicated functionality
in the production codewill be difficult to refactor, as both versions of the duplicated func-
tionality need to be tested separately. In order to remove these test clones, the duplicated
functionality in the production code will have to be refactored, not the test code itself.
After the production code is refactored, then the test clones will disappear as a result.

We conclude that refactoring efforts need to be prioritized on production code, while
duplicated test code can be used as an indication forwhich functionality needs to be refac-
tored. The latter is especially true for purely semantic production clones, which are diffi-
cult to detect. As such, clone refactoring andmaintanance tools that want to capitalize on
this, will need to be able to ignore test duplication caused by the (S-S-V-T) cycle, whilst
still detecting test clones caused by duplicated functionality in the production code.

7.5.3 RQ2: Do Clones in Test Code Live Longer Compared to Clones in Production
Code?

Table 7.3 shows an overview of the number of alive and dead genealogies. We can see
that test clones in C projects are likely to survive, as between 58% and 73% of test clones
are alive. Production clones in C projects on the other hand are less likely to survive,
with only between 24% and 58% of production clones still alive. In the Java projects, test
clones also seem less likely to survive, with only between 19% and 49% of test clones
alive. Production clones in Java projects are more similar to those in C projects, with 26%
to 65% of production clones surviving. Overall, when looking at the total numbers, we
can see that there the survivability of test clones is similar to that of production clones.

For a detailed overview of the age of clones, we provide a plot of the cumulative
distribution for all k-volatile genealogies in Figure 7.4. Note that we omit the apache
APR and libsodium graphs, as these projects only contain 17 and 4 dead test geneologies
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Table 7.3: Clone Genealogies Statistics

Name Alive Dead
Genealogies Genealogies

Google Guava Prod 78 (26.99%) 211 (73.01%)
Test 313 (31.78%) 672 (68.22%)

Apache Math Prod 216 (35.53%) 392 (64.47%)
Test 384 (33.54%) 761 (66.46%)

Apache Avro Prod 56 (65.12%) 30 (34.88%)
Test 118 (49.17%) 122 (50.83%)

Eclipse vert.x Prod 52 (41.27%) 74 (58.73%)
Test 29 (19.08%) 123 (80.92%)

Cairo Prod 265 (24.91%) 799 (75.09%)
Test 93 (67.39%) 45 (32.61%)

Apache APR Prod 67 (46.53%) 77 (53.47%)
Test 24 (58.54%) 17 (41.46%)

libarchive Prod 90 (58.06%) 65 (41.94%)
Test 82 (63.08%) 48 (36.92%)

libsodium Prod 54 (49.54%) 55 (50.46%)
Test 11 (73.33%) 4 (26.67%)

Total Production 878 (34.02%) 1703 (66.98%)
Test 1054 (37.03%) 1792 (62.97%)

respectively, which is too small a sample size. The graphs can be interpreted as follows.
When considering the X-axis, the graph can be interpreted as “what percentage of clones
has an age of X or lower”. When considering the Y-axis, the graph can be interpreted as
“at what age has Y% of clones disappeared”. In our discussion, wewill be using the latter
interpretation.

When inspecting Figure 7.4, it is interesting to observe that the cumulative distribu-
tion approximates a logarithmic function for both production and test code. This means
thatmost clones disappear relatively quickly, yet the oldest clones live significantly longer.
Let us consider the Apache dataset for example. We can see that 90% of the clones have
disappeared before reaching an age of 3,000 commits, yet the oldest clone reaches an age
twice as high of 6,000 commits. Because of this, we will split our analysis in two parts.
First, we will look at the short-lived clones by focussing on the first 50% of genealogies.
Then, wewill look at the long-lived clones, wherewe focus on the oldest 10% genealogies.

When looking at the short-lived clones, we can see that clones in production code
generally live longer than clones in test code. For example, in the Google Guava project,
50%of all genealogies in test code have disappearedwithin 500 commits, while at that age
only 40%of production genealogies have disappeared. Only after 1000 commits have 50%
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Figure 7.4: Cumulative distribution of k-volatile dead clones.

81



CHAPTER 7. COMPARITATIVE STUDY OF CLONE EVOLUTION IN TEST CODE AND PRODUCTION CODE

of all genealogies in production code disappeared. While the difference is less notable in
the other datasets, such as in the Apache Commons Math library or the Ecliplse Vert.X
project, most short-lived clone genealogies live longer in production code than in test
code.

While long-lived test clones still live longer than long-lived production clones in the
Apacha Avro and Cairo projects, and to a lesser extent in the Google Guava project, this
is not the case for the other projects. In the Eclipse Vert.X project, the age of long-lived
clones in production and test code becomes similar when considering the last 10%. In the
libarchive project, the 10% oldest test clones actually live longer than their production
counterpart. We therefore cannot draw a conclusion for long-lived clones when compar-
ing test and production code.

We omitted alive genealogies from the previous analysis as it is impossible to know
how long these clones will live. However, if there are many long-lived clones that are
still alive, omitting these clones may skew the results. Therefore, in order to validate our
previous observations, we also created the graphs including alive clones in Figure 7.5. It
is important to note that we cannot use these graphs to draw conclusions about short-
lived clones, as a part of them are still alive and in reality will end up living longer. We
can, however, make observations about long-lived clones.

When comparing Figure 7.5 with Figure 7.4, we observe that the differences of long-
lived clones betweenproduction code and test code have changed. Now,whenwe include
alive genealogies, long-lived clones in production code live longer compared to those
in test code, similar to what we concluded for short-lived clones previously. The one
exception is the Cairo project, where 90% of production clones disappear before reaching
an age of 5,000 commits, yet only 70% of test clones have disappeared by then. Yet, every
other project confirms that our conclusion about short-lived clones also holds for long-
lived clones.�

�
�
�

Overall, the survivability of test clones is similar to that of production clones.
However, when clones do not survive, they disappear sooner in test code than in
production code

7.5.4 RQ2 Discussion

Our results show that test clones are just as likely to survive as production clones,
as both end up with around one third of all clones alive. This means that two thirds
of all clones disappeared during the development process, either as a consequence of
refactoring efforts or by chance. Our results show that these disappeared clones live
shorter in test code compared to production code, indicating that they likely disappear
naturally during the development process.
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Figure 7.5: Cumulative distribution of all k-volatile clones.
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Table 7.4: Clone Lineage Stability

Name Consistent Same Inconsistent
Google Guava Prod 16.96% 58.13% 24.91%

Test 29.64% 46.80% 23.55%
Apache Math Prod 24.01% 37.66% 38.32%

Test 25.41% 33.19% 41.40%
Apache Avro Prod 12.79% 63.95% 23.26%

Test 28.75% 45.00% 26.25%
Eclipse vert.x Prod 13.49% 72.22% 14.29%

Test 25.00% 55.92% 19.08%
Cairo Prod 40.88% 43.14% 15.98%

Test 28.99% 50.00% 21.01%
Apache APR Prod 19.44% 67.36% 13.19%

Test 41.46% 34.15% 24.39%
libarchive Prod 16.77% 62.58% 20.65%

Test 33.08% 34.62% 32.31%
libsodium Prod 28.44% 59.63% 11.93%

Test 20.00% 13.33% 66.67%

This confirms our previous conclusion that refactoring efforts need to be prioritized
on production code, where more longer-living clones reside. However, even though test
clones do not necessarily need to be refactored, they still need to bemaintained. A change
to the functionality under test will require all related duplicate tests to be adjusted aswell.
As such, practitioners should take this into account during effort estimation, as continu-
ous tracking of a higher number of short-lived test clones will require more maintenance
effort.

7.5.5 RQ3: HowDo Clones in Production Code and Test Code Evolve According to the
Evolution and Change Patterns?

Table 7.4 shows for each dataset the number of lineages that never changed, only
changed consistently, and changed inconsistently at least once. We can see that in almost
all projects, around 60% of production clones never change after being introduced. Only
in the Apache Math library and the Cairo project, this number is lower, with around 40%
of clones never being changed after introduction. This confirms findings from previous
research, namely that cloned code is generally stable [96, 103]. However, when consider-
ing test code, we can see that the percentage of unchanged lineages is consistently lower
than their production counterparts. A larger percentage of clones in test code is changed
after introduction compared to production code. Or in other words, test clones are less
stable than production clones.
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Table 7.5: Evolution and Change Patterns of Clone Versions

Name Change Pattern Evolution Pattern
Consistent Inconsistent Add Subtract

Google Guava Prod 81.32% 18.68% 50.24% 49.76%
Test 81.67% 18.33% 49.62% 50.38%

Apache Math Prod 75.83% 24.17% 49.76% 50.24%
Test 70.82% 29.18% 50.35% 49.65%

Apache Avro Prod 85.59% 14.41% 49.91% 50.09%
Test 70.81% 29.19% 49.13% 50.87%

Eclipse vert.x Prod 80.65% 19.35% 50.16% 49.84%
Test 84.06% 15.94% 48.88% 51.12%

Cairo Prod 79.79% 20.21% 53.81% 46.19%
Test 67.15% 32.85% 81.94% 18.06%

Apache APR Prod 77.29% 22.71% 48.00% 52.00%
Test 68.85% 31.15% 58.33% 41.67%

libarchive Prod 60.77% 39.23% 80.00% 20.00%
Test 76.35% 23.65% 41.67% 58.33%

libsodium Prod 80.49% 19.51% 54.55% 45.45%
Test 62.75% 37.25% 31.58% 68.42%

When test lineages change, they change consistently more often than inconsistently.
The Apache Math library is again an exception here, with a larger percentage of lineages
changed inconsistently. The libsodium project also sees a significant number of incon-
sistently changed test lineages, yet these numbers might be skewed as there are only 15
lineages in the project’s test code. This is confirmed by Table 7.5, where 62% of clone
versions are in fact changed consistently. We can conclude that often, when one test is
changed, all duplicated tests are changed as well.

When production lineages change, they change inconsistently more often than consis-
tently. Although there are some exceptions here as well, most notably the Cairo project.
When comparing production and test lineages, we can see that test lineages are changed
consistently more often than production lineages, and they are also changed inconsis-
tently more often as well. This is of course due to the smaller number of unchanged
lineages in test code, increasing the number of changed lineages both consistently and
inconsistently.

Table 7.5 shows how often each change pattern and evolution pattern occurs in total.
Note that, contrary to Table 7.4, we now consider all clone versions instead of just the
clone lineages, meaning that if the same clone is changed multiple times, each change
is recorded. Also note that we omit the “Same” category in this table, as the number of
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times any clone version is unaffected by any commit does not provide meaningful data.
We can see that, for both clones in production code and clones in test code, changes are
most often consistent.

When comparing Table 7.4 and Table 7.5, the change patterns differ greatly when con-
sidering them on a version granularity compared to a lineage granularity. More specif-
ically, the ratio of consistent and inconsistent clone lineages does not match the ratio of
consistent and inconsistent clone versions, as there are many more consistently changed
versions than consistent lineages. This is caused by two reasons. Firstly, both consistent
and inconsistent lineages contain 5 consistent changes on average, while inconsistent lin-
eages only contain 2 inconsistent changes on average. Secondly, a handful of highly un-
stable lineages contain hundreds of consistent changes. The maximum we found was
one lineage from the Google Guava dataset, which changed consistently 2,066 times. As
a result, the percentage of consistently changed clone versions is significantly higher than
the percentage of consistently changed clone lineages.

When considering the evolution patterns, there again seems no inherent difference
between production clones and test clones. For both, the number of versions where a
clone fragment is added is similar to that where a clone fragment is removed.

�
�

�
�

Clones in test code are less stable than those in production code, yet they aremore
likely to change consistently than inconsistently.

7.5.6 RQ3 Discussion

Our results show that clones in test code not only change more often than clones in
production code, but changes are also applied consistently more often. This is to be ex-
pected, since duplication in test code mostly stems from (A) multiple similar unit tests
testing a certain functionality, or (B) multiple tests testing the same functionality for du-
plicated production code; with both types of clone inherently requiring consistent change.
While this is again in line with the use of the S-S-V-T template, it does raise an interesting
problem. As changes need to be consistently applied to all duplicated yet adapted test
cases, it becomes important for practitioners to be able to find and track these duplicated
tests. On a small scale, this can be achieved with naming conventions, documentation,
and grouping duplicated tests together in files. On a larger scale, as consistent main-
tenance and tracking of test clones becomes more important yet difficult, the need for
special purpose clone tracking and management tools increases. Such tools may exploit
the presence of the S-S-V-T template to provide actionable recommendations.
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7.6 THREATS TO VALIDITY

7.6.1 Internal Validity

We are aware of three main threats to the internal validity of our study. The first
threat lies in thewaywedeterminewhether a clone changed consistently or inconsistently
between two versions of the system. We do this by comparing the hash of the normalized
code in both versions in order to detect change. While this method does accurately detect
change in the code, we have no information about what that change was. We assume that
if both fragments of a clone change in the same version, that this change was consistent.
However, it is possible that a different (inconsistent) change wasmade to both fragments
in the same version, which would result in a false positives in our classification.

A second threat to internal validity comes from tracking the clones throughout devel-
opment. We track clones with their previous version based on the name of the file and
function. However, if a file or functionwas renamed during development, we are not able
to track the containing clones. This would result in a clone lineage being split in two.

The third threat lies in the fact that we only analyse every tenth commit. Analysing
every commit is not feasible due to hardware limitations, so we experimentaly decided
on a 10-commit interval. It is possible that a clone is changed multiple times in that 10-
commit interval, in which case we would only detect one change. This would mean that
our results are, in general, a slight underestimation of reality.

All of these threats stem from the limitations of automation. In order to remove these
threats, we would need to manually analyse every clone in every version, which would
not be possible on this scale. Therefore, we are confident that the benefit of automation,
namely the large scale of our study, outweighs the potential of a small number of false
positives. We are also confident that a small number of false positives would not alter
our conclusions, as these are based on a significantly large amount of data.

7.6.2 External Validity

We are aware of twomain threats to the external validity of our study. The first threat
lies in the way we detect clones. We use two clone detector, namely NiCad and iClones.
While these are reliable, time-tested, and commonly-used clone detectors, it is possible
that there are additional clones in the dataset that were not detected. However, since we
used the same clone detectors on both the production and the test datasets, and since
we did find an number of clones in both that is in line with previous research, we are
confident that our comparison is fair and correct, and that our conclusions hold.
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A second threat comes from our dataset. In our evaluation, we use four open-source
Java projects and four open-source C projects. A threat to external validity is that these
projects, and the clones within these projects, are not representative of all clones and/or
code bases. To minimize this threat, we chose the projects in our dataset such that they
vary in size, type, complexity, and language. We encourage future research to confirm
our findings by adding more datasets and clone detection tools to our evaluation.

7.7 CONCLUSION

In this paper, we investigated the inherent differences between test and production
clones through the lens of “clone genealogies". Clone genealogies are the accepted way of
studying the evolution of clones in academic literature and has led tomany interesting in-
sights in the past [92, 93, 96, 106, 107]. Nevertheless, these insights were always based on
studying clones in production code and so far did not explicitly consider what happens
in test code, where code clones are known to occur far more often [10, 11, 58].

We collected data on 5,427 clone genealogies from eight open-source projects; four
written in Java and four written in C. We studied the differences between these genealo-
gies as they appear in production code and in test code using three research questions.

RQ1: How do the clone density for production code and test code evolve throughout development?
We observed that at every point during development the amount of duplication in test
code is significantly higher than in production code. We identified twomain reasonswhy
this is the case. First, the consistent structure of unit test code (the setup-stimulate-verify-
teardown (S-S-V-T) cycle [41]) induces a template which surfaces as clones [11]. Second,
clones in production code can induce a multitude of clones in test code, as multiple test
cases for duplicated functionality will themselves also be duplicated. We conclude that
duplication is inherent to test code, and that refactoring efforts need to be prioritized on
production code while duplicated test code can serve as an indication for which function-
ality needs to be refactored.

RQ2: Do clones in test code live longer compared to clones in production code? Overall the
survivability of test clones is similar to that of production clones. However, when clones
do not survive, they disappear sooner in test code than in production code. We conclude
that practitioners should take this into account during effort estimation, as continuous
tracking of a higher number of short-lived test clones will require more maintenance
effort.
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RQ3: How do clones in production code and test code evolve according to the evolution and change
patterns? We found that clones in test code are less stable than those in production code,
yet they are more likely to change consistently than inconsistently. This raises an inter-
esting problem, as changes need to be consistently applied to all duplicated yet adapted
test cases, it becomes important for practitioners to be able to find and track these du-
plicated tests. We conclude that, as consistent maintenance and tracking of test clones
becomes more important and more difficult, the need for clone detection, tracking, and
management tools increases.

These observations confirm previous research that test code is a rich source for studying
clones and warrants further investigation. In particular we see following avenues for
further research (FR).

FR1: Pro-active recommendations for refactoring: While there is a consensus that not all
clones should be considered harmful, clones that induce downstream clones in test code
represent a prime refactoring opportunity.
=⇒ Clone tracking and managing tools should more deeply study the phenomenon

of production code clones causing an avalanche of clones in test code and provide
actionable suggestions thereon.

FR2: Missing abstractions: Many of the short-lived clones in test code are changed consis-
tently, which appears to be a case of “shotgun surgery" [40]. This suggests that today’s
unit testing frameworks miss certain abstractions to express typical coding patterns.
=⇒ Developers involved in unit testing frameworks should scrutinise such consistently

changing long lived clones to see where the S-S-V-T cycle could be refined.

FR3: Revisit benchmarks for a threat to construct validity: All of our research illustrates that
clones in test code should be treated separately from clones in production code. However,
the commonly used benchmarks for code clones (most notably [60, 77]) don’t make that
distinction, which may be a threat to construct validity.
=⇒ Benchmark creators should refine their datasets and add meta-data to distinguish

between a clone that appears in production code and one that appears in test code.
=⇒ Researchers relying on these benchmarks should reconsider their conclusions and

see whether this threat to validity affects their results.
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Chapter 8
Conclusion

In this thesis, we investigated code duplication in test code based on two research ques-
tions.

RQ1: Can we exploit the structure of test code to detect semantic code clones?
In Chapters 3 to 5, we presented a new technique to detect semantic code clones in test
code. We first provided a theoretical model that defines test behaviour, in the form of
Test Behaviour Trees. We showed that it is feasible to use our theoretical model by imple-
menting T-CORE, a tool that uses symbolic execution to create the Test Behaviour Tree for
a unit test in order to detect changes in test behaviour. Then, we proposed that T-CORE
could be used to detect semantic code clones in test code by comparing the Test Behaviour
Trees of unit tests. We demonstrated on the Apache Commons Math Library’s test suite
that our approach detects 755 clone pairs with a precision of 98%. We also showed that
259 of the 755 detected clone pairs are type-IV clones, i.e. semantic clones. This confirms
that it is both feasible and worthwhile to investigate semantic clones in test code.

RQ2: Should test code duplication be considered independently of production code duplica-
tion?
In Chapters 6 to 7, we performed a series of empirical studies into test code duplication,
comparing it with production code duplication. We observed that, at every point dur-
ing development, the amount of duplication in test code is significantly higher than in
production code. This increase can be attributed to significantly more occurrences of
Type II and Type III clones in test code. In other words, many tests are duplicated multi-
ple times, each time only slightly modified. We identified two main reasons why this is
the case. First, the consistent structure of unit test code (the setup-stimulate-verify-teardown
(S-S-V-T) cycle [41]) induces a template which surfaces as clones [11]. Second, clones in



production code can induce amultitude of clones in test code, asmultiple test cases for du-
plicated functionality will themselves also be duplicated. We conclude that duplication
is inherent to test code, and that refactoring efforts need to be prioritized on production
code while duplicated test code can serve as an indication for which functionality needs
to be refactored.

We also found that, while overall the survivability of test clones is similar to that of
production clones, code clones disappear sooner in test code than in production code.
Practitioners should take this into account during effort estimation, as continuous track-
ing of a higher amount of short-lived test clones will require more maintenance effort.
Moreover, clones in test code are less stable than those in production code, yet they are
more likely to change consistently than inconsistently. This raises an interesting problem,
as changes need to be consistently applied to all duplicated yet adapted test cases, it be-
comes important for practitioners to be able to find and track these duplicated tests. We
conclude that, as consistent maintenance and tracking of test clones becomes more im-
portant and more difficult, the need for clone detection, tracking, and management tools
increases.

These observations confirm that test code is a rich source for studying clones and
warrants further investigation.
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