

This item is the archived peer-reviewed author-version of:

Incidence of hepatic decompensation after nucleos(t)ide analogue withdrawal : results from a large, international, multi-ethnic cohort of patients with chronic hepatitis B (RETRACT-B study)

Reference:

Hirode Grishma, Hansen Bettina E., Chen Chien-Hung, Su Tung-Hung, Wong Grace, Seto Wai-Kay, Van Hees Stijn, Papatheodoridi Margarita, Brakenhoff Sylvia M., Lens Sabela, ...- Incidence of hepatic decompensation after nucleos(t)ide analogue withdrawal : results from a large, international, multi-ethnic cohort of patients with chronic hepatitis B (RETRACT-B study) The American journal of gastroenterology / American College of Gastroenterology [Bethesda, Md]- ISSN 0002-9270 - (2023), p. 1-28

- Full text (Publisher's DOI): https://doi.org/10.14309/AJG.00000000002203
- To cite this reference: https://hdl.handle.net/10067/1936050151162165141

uantwerpen.be

1	Incidence of hepatic decompensation after nucleos(t)ide analogue withdrawal: Results from
2	a large, international, multi-ethnic cohort of patients with chronic hepatitis B (RETRACT-
3	<u>B study)</u>
4	
5	Short title: Hepatic decompensation after NA withdrawal
6	
7	Author(s): Grishma Hirode ^{1,2} , MSc; Bettina E. Hansen ³ , PhD; Chien-Hung Chen ⁴ , MD; Tung-
8	Hung Su ⁵ , MD, PhD; Grace Wong ⁶ , MD; Wai-Kay Seto ⁷ , MD; Stijn Van Hees ⁸ , PhD; Margarita
9	Papatheodoridi ⁹ , MD, PhD; Sylvia M. Brakenhoff ³ , MD; Sabela Lens ¹⁰ , MD; Hannah SJ Choi ¹ ,
10	PhD; Rong-Nan Chien ¹¹ , MD; Jordan J. Feld ^{1,2} , MD, MPH; Xavier Forns ¹⁰ , MD; Milan J.
11	Sonneveld ³ , MD, PhD; George V. Papatheodoridis ⁹ , MD, PhD; Thomas Vanwolleghem ⁸ , MD,
12	PhD; Man-Fung Yuen ⁷ , MD, PhD; Henry L. Y. Chan ⁶ , MD; Jia-Horng Kao ⁵ , MD, PhD; Yao-
13	Chun Hsu ¹² , MD, PhD; Markus Cornberg ¹³ , MD; Wen-Juei Jeng ¹¹ , MD; Harry L.A. Janssen ³ ,
14	MD, PhD; on behalf of the RETRACT-B study group.
15	
16	¹ Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network,
17	Toronto, Canada
18	² The Toronto Viral Hepatitis Care Network (VIRCAN), Toronto, Canada
19	³ Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center,
20	Rotterdam, Netherlands
21	⁴ Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
22	⁵ Division of Gastroenterology and Hepatology, Department of Internal Medicine, National
23	Taiwan University Hospital, Taipei, Taiwan

24	⁶ The Chinese University of Hong Kong, Hong Kong, SAR, China	
25	⁷ Department of Medicine and State Key Laboratory of Liver Research, The University of	
26	Hong Kong, Hong Kong, SAR, China	
27	⁸ Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp,	
28	Belgium	
29	⁹ Medical School of National and Kapodistrian University of Athens, Greece	
30	¹⁰ Hospital Clinic Barcelona, IDIBAPS and CIBEREHD, University of Barcelona, Spain	
31	¹¹ Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital Linkou	
32	Medical Center, Chang Gung University, Taoyuan, Taiwan	
33	¹² E-Da Hospital/I-Shou University, Kaohsiung, Taiwan	
34	¹³ Department of Gastroenterology, Hepatolology and Endocrinology, Hannover Medical	
35	School, Germany; Centre for Individualized Infection Medicine (CiiM), Hannover, German	y.
36		
37	Corresponding author:	
38	Harry L.A. Janssen	
39	Department of Gastroenterology and Hepatology,	
40	Erasmus MC University Medical Center,	
41	Rotterdam, Netherlands	
42	Email: h.janssen@erasmusmc.nl	
43		
44	Manuscript word count: 2,283 words (excluding abstract, tables, references, figure legends)	
45		

7 Conflict of interest disclosures:

48

49

50 Gliad and is a consultant for Intercept, CymaBay, Albireo, Mirum, Genfit, Calliditas, Eiger and 51 ChemomAb. 52 53 Tung-Hung Su receives research grants from Gilead Sciences, and was on speaker's bureaus for 54 Abbvie, Bayer, Bristol Myers Squibb, Gilead Sciences, Merck Sharp and Dohme, and Takeda. 55 56 Grace Wong receives research support from AbbVie and Gilead Sciences, is an advisory 57 board member or consultant for Gilead Sciences and Janssen, and is a speaker for 58 Abbott, AbbVie, Bristol Myers Squibb, Echosens, Furui, Gilead Sciences, Janssen, and Roche. 59 Wai-Kay Seto received speaker's fees from AstraZeneca and Mylan, is an advisory board 60 61 member of CSL Behring, is an advisory board member and received speaker's fees from 62 AbbVie, and is an advisory board member, received speaker's fees and researching funding from 63 Gilead Sciences. 64 65 Sabela Lens received speaker and advisor fees from Abbvie and Gilead Sciences and grant 66 support from Gilead Sciences. 67 68 Jordan Feld receives research grants from Abbvie, Gilead, Janssen, Enanta, Eiger, and is a 69 consultant for Abbvie, Gilead, Finch, Arbutus and GlaxoSmithKline.

Bettina E. Hansen has received grants from Intercept, CymaBay, Albireo, Mirum, Calliditas and

71 Xavier Forns is an advisor for Abbvie and Gilead Sciences.

72

73 Milan Sonneveld receives speakers' fees and research support from Roche, Bristol Myers

74 Squibb, Gilead Sciences, and Fujirebio.

75

76 George V. Papatheodoridis is an advisor/lecturer for Abbvie, Dicerna, Gilead Sciences,

77 GlaxoSmithKline, Ipsen, Janssen, Merck Sharp and Dohme, Roche, Spring Bank, Takeda, and

78 has received research grants from Abbvie, Gilead Sciences.

79

Thomas Vanwolleghem has received grants from Gilead Sciences, Roche, Bristol Myers Squibb,
is a consultant for Janssen Pharmaceuticals, Gilead Sciences, Abbvie, Bristol Myers Squibb, and

82 a sponsored lecturer for W.L. Gore, Gilead Sciences, Bristol Myers Squibb.

83

84 Man-Fung Yuen serves as advisor/consultant for AbbVie, Aligos Therarpeutics, Arbutus

85 Biopharma, Bristol Myers Squibb, Dicerna Pharmaceuticals, Finch Therapeutics,

86 GlaxoSmithKline, Gilead Sciences, Janssen, Merck Sharp and Dohme, Clear B Therapeutics,

- 87 Springbank Pharmaceuticals, Roche and receives grant/ research supports from Assembly
- 88 Biosciences, Arrowhead Pharmaceuticals, Bristol Myers Squibb, Fujirebio Incorporation, Gilead
- 89 Sciences, Merck Sharp and Dohme, Springbank Pharmaceuticals, Sysmex Corporation, Roche.

91	Henry LY Chan is a consultant for AbbVie, Aligos, Arbutus, Hepion, Janssen, Glaxo-Smith-
92	Kline, Gilead Sciences, Merck, Roche, Vaccitech, VenatoRx, and Vir Biotechnology, has
93	received an honorarium for lectures for Gilead Sciences, Mylan, and Roche.
94	
95	Jia-Horng Kao is a consultant for or on the advisory board of Abbvie, Roche, Gilead Sciences,
96	and a speaker for Abbvie, Fujirebio, and Gilead Sciences.
97	
98	Yao-Chun Hsu has served as an Advisory Committee member for Gilead and as a speaker for
99	Abbvie, Bristol Myers Squibb, Roche, Novartis, and Gilead.
100	
101	Markus Cornberg reports personal fees for lectures and/or consulting from Abbvie, Gilead
102	Sciences, Merck Sharp and Dohme, GlaxoSmithKline, Janssen-Cilag, Spring Bank
103	Pharmaceuticals, Novartis, Swedish Orphan Biovitrum, Falk Foundation, grants and personal
104	fees from Roche, outside of the submitted work.
105	
106	Harry LA Janssen has received grants from AbbVie, Gilead Sciences, Janssen, and Roche, and is
107	a consultant for AbbVie, Bristol Myers Squibb, Gilead Sciences, Janssen, Merck, Roche,
108	Arbutus, Vir Biotechnology Inc.
109	
110	No other disclosures were reported.
111	
112	
113	

114	Author contributions:
115	
116	Study concept and design: GH, BEH, HLAJ
117	Data acquisition: All authors
118	Data analysis and interpretation: GH, BEH
119	Drafting of the manuscript: GH
120	Critical revision of the manuscript for important intellectual content: All authors
121	Funding and supervision: HLAJ
122	
123	Acknowledgements
124	
125	We would like to thank all the participating centers, investigators, and research staff for their
126	time and effort.
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	

137	List of abbreviations
138	
139	ALT – Alanine aminotransferase
140	CHB – Chronic hepatitis B
141	CI – Confidence interval
142	DNA – Deoxyribonucleic acid
143	EOT – End of therapy
144	HBeAg – Hepatitis B e antigen
145	HBsAg – Hepatitis B surface antigen
146	HBV – Hepatitis B virus
147	HCC – Hepatocellular carcinoma
148	HIV – Human immunodeficiency virus
149	HR – Hazard ratio
150	NA – Nucleos(t)ide analogue
151	PEG - Pegylated
152	ULN – Upper limit of normal
153	
154	
155	
156	
157	
158	
159	

160 Abstract

161

<u>Background</u>: Despite improvements in the management of chronic hepatitis B (CHB), risk of
cirrhosis and hepatocellular carcinoma remains. While hepatitis B surface antigen loss is the
optimal endpoint, safe discontinuation of nucleos(t)ide analogue (NA) therapy is controversial
due to the possibility of severe or fatal reactivation flares.

166

167 <u>Methods</u>: Multi-center cohort study of virally suppressed, end-of-therapy HBeAg negative CHB 168 patients who stopped NA therapy (n = 1,557). Survival analysis techniques were used to analyze 169 off-therapy rates of hepatic decompensation, and differences by patient characteristics. We also 170 examined a subgroup of non-cirrhotic patients with consolidation therapy of ≥ 12 months prior to 171 cessation (n = 1,289). Hepatic decompensation was considered related to therapy cessation if 172 diagnosed off-therapy or within 6 months of starting retreatment.

173

<u>Results</u>: Among the total cohort (11.8% diagnosed with cirrhosis, 84.2% start of therapy HBeAg
negative), 20 developed hepatic decompensation after NA cessation; 10 events among the
subgroup. Cumulative incidence of hepatic decompensation at 60 months off-therapy among the
total cohort and the subgroup was 1.8% and 1.1%, respectively. Hepatic decompensation rate
was higher among patients with cirrhosis (HR 5.08, *P*<0.001), and start of therapy HBeAg
positive patients (HR 5.23, *P*<0.001). This association between start of therapy HBeAg status
and hepatic decompensation remained significant even among the subgroup (HR 10.5, *P*<0.001).

182	Conclusion: Patients with cirrhosis and start of therapy HBeAg positive patients should be
183	carefully assessed prior to stopping NAs to prevent hepatic decompensation. Frequent
184	monitoring of viral and host kinetics after cessation is crucial to determine patient outcome.
185	
186	Keywords: HBV, finite therapy, decompensation, hepatic failure
187	
188	Abstract word count: 249 words
189	
190	
191	
192	
193	
194	
195	
196	
197	
198	
199	
200	
201	
202	
203	
204	

205	Study Highlights
206	
207	WHAT IS KNOWN
208	
209	• The safe discontinuation of nucleos(t)ide analogue therapy in chronic hepatitis B patients is
210	controversial due to the risk of hepatic decompensation and liver failure.
211	• Existing literature on off-therapy complications mostly includes case reports and single-site
212	studies.
213	
214	WHAT IS NEW HERE
215	
216	• This is the first large, international, multi-ethnic cohort study to estimate the incidence of
217	hepatic decompensation after nucleos(t)ide analogue withdrawal.
218	• As expected, but never truly estimated, the rate of hepatic decompensation was higher among
219	patients with cirrhosis. It was also higher among start of therapy HBeAg positive patients.
220	• The risk of hepatic decompensation remains even among patients without cirrhosis who
221	discontinue therapy as per the guidelines.
222	
223	
224	
225	
226	
227	

228 Introduction

230	Chronic hepatitis B virus (HBV) infection is one of the leading causes of liver cancer and liver-
231	related mortality worldwide. ¹ Effective viral suppression with nucleos(t)ide analogues (NAs) has
232	been shown to alleviate the risk of progression to cirrhosis, and development of hepatocellular
233	carcinoma (HCC). ^{2,3} In recent years, NA withdrawal has become an increasingly popular
234	treatment option because it provides an opportunity for increased hepatitis B surface antigen
235	(HBsAg) loss; ⁴ HBsAg loss is considered the functional cure because it is associated with
236	favorable outcomes including a reduction in the incidence of liver-related complications. ⁵ There
237	are three major guidelines that have pre-specified stopping criteria to ensure patient safety after
238	NA withdrawal however, these tend to vary by geographical region and local reimbursement
239	policies. ⁶⁻⁹ As Hepatitis B e antigen (HBeAg) seroconversion comes with increased immune
240	control, the HBeAg status also plays an important role in assessing patient eligibility for
241	treatment cessation. ¹⁰
242	
243	There have been several case reports and small studies describing severe hepatic flares or acute
244	exacerbation of hepatitis B after NA cessation, which are sometimes fatal. ^{11–15} Thus far, there
245	has been one large cohort study reporting off-therapy incidence rates of hepatic decompensation
246	and HCC among Asian, pre-therapy HBeAg negative patients who discontinued NAs as per the
247	Asian Pacific Association for the Study of the Liver (APASL) guidelines. ^{16,17} While most studies
248	have reported a higher incidence of liver-related complications among chronic hepatitis B (CHB)
249	patients with cirrhosis, liver failure associated with HBV reactivation after NA withdrawal
250	among patients without documented cirrhosis has also been reported. ¹⁸

2	5	1
2	J	Т

252	In order to resolve the discrepancies between guidelines, larger cohort studies are needed to
253	understand the characteristics of patients who experience withdrawal-related hepatic
254	decompensation. The main aim of this study was to analyze the incidence of hepatic
255	decompensation after NA withdrawal and describe that cohort of multi-ethnic CHB patients.
256	
257	Methods
258	
259	Study setting and patients
260	
261	This cohort study included adult, virally suppressed CHB patients who discontinued NA therapy
262	and were HBeAg negative at end of therapy; using the RETRACT-B study cohort with updated
263	information. ^{4,19} Study inclusion and exclusion criteria, and data collection methods were as
264	previously described. ⁴ The study was approved by the research ethics board of each participating
265	center and performed in concordance with Good Clinical Practice guidelines and the Declaration
266	of Helsinki 1964 as modified by the 59th WMA General Assembly, Seoul, South Korea October
267	2008, and the local national laws governing the conduct of clinical research studies.
268	
269	Study definitions
270	
271	The primary outcome analyzed in this study was hepatic decompensation. Hepatic
272	decompensation was defined based on development of a serum total bilirubin level $\geq 2 \text{ mg/dL}$,
273	INR \geq 1.5, onset of ascites, variceal bleeding, or hepatic encephalopathy. Hepatic

274	decompensation was considered related to treatment withdrawal if diagnosed off-therapy or
275	within 6 months of starting retreatment. Other definitions included virological relapse (HBV
276	DNA \geq 2,000 IU/mL), clinical relapse (HBV DNA \geq 2,000 IU/mL and ALT \geq 2x ULN), and an
277	ALT flare (ALT \geq 5x ULN). All outcomes were analyzed off-therapy. The presence of cirrhosis
278	was determined based on histological findings or ultrasonographic evidence.
279	
280	Subgroup definition
281	
282	Because most guidelines do not recommend NA withdrawal among patients with cirrhosis, and
283	recommend a minimum consolidation period of 12 months, ^{7,9,20} we also performed subgroup
284	analyses among patients who were non-cirrhotic, virally suppressed and HBeAg negative at EOT
285	with at least 12 months of consolidation therapy were included in the subgroup (Figure 1).
286	
286 287	Statistical analysis
286 287 288	Statistical analysis
286 287 288 289	Statistical analysis Continuous variables were presented as mean ± standard deviation (SD) or median and
286 287 288 289 290	Statistical analysis Continuous variables were presented as mean ± standard deviation (SD) or median and interquartile range (IQR), as appropriate, and categorical variables were presented as frequencies
286 287 288 289 290 291	Statistical analysis Continuous variables were presented as mean ± standard deviation (SD) or median and interquartile range (IQR), as appropriate, and categorical variables were presented as frequencies and proportions. Cumulative incidence was estimated using Kaplan–Meier methods; the latest
286 287 288 289 290 291 292	Statistical analysis Continuous variables were presented as mean ± standard deviation (SD) or median and interquartile range (IQR), as appropriate, and categorical variables were presented as frequencies and proportions. Cumulative incidence was estimated using Kaplan–Meier methods; the latest time under which patients were both under observation and at risk was 60 months. Cox
286 287 288 289 290 291 292 293	Statistical analysis Continuous variables were presented as mean ± standard deviation (SD) or median and interquartile range (IQR), as appropriate, and categorical variables were presented as frequencies and proportions. Cumulative incidence was estimated using Kaplan–Meier methods; the latest time under which patients were both under observation and at risk was 60 months. Cox regression was used to analyze differences in outcomes by patient characteristics. We also
286 287 288 289 290 291 292 293 293 294	Statistical analysis Continuous variables were presented as mean ± standard deviation (SD) or median and interquartile range (IQR), as appropriate, and categorical variables were presented as frequencies and proportions. Cumulative incidence was estimated using Kaplan–Meier methods; the latest time under which patients were both under observation and at risk was 60 months. Cox regression was used to analyze differences in outcomes by patient characteristics. We also examined the interaction between the presence of cirrhosis and start of therapy HBeAg status for
286 287 288 289 290 291 292 293 293 294 295	Statistical analysis Continuous variables were presented as mean ± standard deviation (SD) or median and interquartile range (IQR), as appropriate, and categorical variables were presented as frequencies and proportions. Cumulative incidence was estimated using Kaplan–Meier methods; the latest time under which patients were both under observation and at risk was 60 months. Cox regression was used to analyze differences in outcomes by patient characteristics. We also examined the interaction between the presence of cirrhosis and start of therapy HBeAg status for the model for hepatic decompensation. A two-tailed <i>P</i> value <.05 was considered statistically
286 287 288 289 290 291 292 293 293 294 295 296	Statistical analysisContinuous variables were presented as mean \pm standard deviation (SD) or median and interquartile range (IQR), as appropriate, and categorical variables were presented as frequencies and proportions. Cumulative incidence was estimated using Kaplan–Meier methods; the latest time under which patients were both under observation and at risk was 60 months. Cox regression was used to analyze differences in outcomes by patient characteristics. We also examined the interaction between the presence of cirrhosis and start of therapy HBeAg status for the model for hepatic decompensation. A two-tailed P value <.05 was considered statistically significant. Statistical analyses utilized STATA Version 15.1 (StataCorp, College Station, TX).

298	Results
299	
300	Hepatic decompensation among the total cohort
301	
302	We analyzed 1,557 patients in this study of which 20 patients developed hepatic decompensation
303	with a median time to decompensation of 9.9 (IQR: $5.9 - 14.6$) months (Figure 1). Among the
304	total cohort, 11.8% had been diagnosed with cirrhosis, and the majority were start of therapy
305	HBeAg negative (84.2%) (Table 1). The median ALT level was normal (0.6 ULN [IQR: 0.4-
306	0.8]) and the mean HBsAg level was $2.6 \pm 0.8 \log_{10} \text{IU/mL}$ at end of therapy.
307	
308	The average incidence rate was 0.41 per 1000 person-years. The cumulative incidence of hepatic
309	decompensation among the total cohort was 1.0% (95% CI 0.6-1.6%), 1.4% (95% CI 0.9-2.2%),
310	1.6% (95% CI 1.0-2.5%), 1.8% (95% CI 1.1-3.0%), and 1.8% (95% CI 1.1-3.0%) at 12, 24, 36,
311	48, and 60 months, respectively (Figure 2).
312	
313	On univariate analyses, there were statistically significant differences in the rate of hepatic
314	decompensation by presence of cirrhosis and HBeAg status at start of therapy (Table 3). At 60
315	months after NA cessation, the cumulative incidence of hepatic decompensation among patients
316	diagnosed with cirrhosis was 6.4% (95% CI 3.1-12.8%) compared to 1.2% (95% CI 0.6-2.2%)
317	among those without cirrhosis (hazard ratio [HR] 5.08; 95% CI 2.08-12.4) (Table 3,
318	Supplemental Figure 1). The cumulative incidence was 5.4% (95% CI 2.8-10.2%) among start of
319	therapy HBeAg positive patients compared to 1.1% (95% CI 0.6-2.1%) among start of therapy

320	HBeAg negative patients (HR 5.23; 95% CI 2.18-12.6) (Table 3, Supplemental Figure 1). There
321	was no significant interaction between cirrhosis status and start of therapy HBeAg status; start of
322	therapy HBeAg positive patients had higher rates of decompensation compared to start of
323	therapy HBeAg negative patients, and this association remained significant among patients who
324	had never been diagnosed with cirrhosis.
325	
326	Most patients who developed hepatic decompensation also experienced at least one additional
327	off-therapy event such as a virological relapse, a clinical relapse, or an ALT flare with the
328	median maximum HBV DNA value of 6.5 (IQR: 5.0-8.2) log10 IU/mL and median maximum
329	ALT x ULN elevation of 13.3 (IQR: 2.5-24.5). Among the 20 decompensated patients, 90.0%
330	experienced a clinical relapse, 65.0% experienced an ALT flare, 60.0% experienced an ALT
331	elevation of $\geq 10x$ ULN, 85.0% were retreated, and 35.0% died. ⁴
332	
333	Hepatic decompensation among the subgroup
334	
225	
335	The selection of patients for subgroup analyses has been shown in Figure 1. Among 1,289
335 336	The selection of patients for subgroup analyses has been shown in Figure 1. Among 1,289 patients in the subgroup, 10 patients developed hepatic decompensation with a median time to
335 336 337	The selection of patients for subgroup analyses has been shown in Figure 1. Among 1,289 patients in the subgroup, 10 patients developed hepatic decompensation with a median time to decompensation of 9.1 (IQR: 6.0–10.8) months (Figure 1). The majority were start of therapy
335 336 337 338	The selection of patients for subgroup analyses has been shown in Figure 1. Among 1,289 patients in the subgroup, 10 patients developed hepatic decompensation with a median time to decompensation of 9.1 (IQR: 6.0–10.8) months (Figure 1). The majority were start of therapy HBeAg negative (87.3%) (Table 2). The median ALT level and mean HBsAg levels at end of
335 336 337 338 339	The selection of patients for subgroup analyses has been shown in Figure 1. Among 1,289 patients in the subgroup, 10 patients developed hepatic decompensation with a median time to decompensation of 9.1 (IQR: 6.0–10.8) months (Figure 1). The majority were start of therapy HBeAg negative (87.3%) (Table 2). The median ALT level and mean HBsAg levels at end of therapy were comparable to those of the total cohort.
 335 336 337 338 339 340 	The selection of patients for subgroup analyses has been shown in Figure 1. Among 1,289 patients in the subgroup, 10 patients developed hepatic decompensation with a median time to decompensation of 9.1 (IQR: 6.0–10.8) months (Figure 1). The majority were start of therapy HBeAg negative (87.3%) (Table 2). The median ALT level and mean HBsAg levels at end of therapy were comparable to those of the total cohort.
 335 336 337 338 339 340 341 	The selection of patients for subgroup analyses has been shown in Figure 1. Among 1,289 patients in the subgroup, 10 patients developed hepatic decompensation with a median time to decompensation of 9.1 (IQR: 6.0–10.8) months (Figure 1). The majority were start of therapy HBeAg negative (87.3%) (Table 2). The median ALT level and mean HBsAg levels at end of therapy were comparable to those of the total cohort.

0.8% (95% CI 0.4-1.6%), 1.1% (95% CI 0.5-2.2%), and 1.1% (95% CI 0.5-2.2%) at 12, 24, 36,
48, and 60 months, respectively (Figure 2). The cumulative incidence remained higher at 5.7%
(95% CI 2.4-13.4%) among start of therapy HBeAg positive patients compared to 0.4% (95% CI 0.1-1.0%) among start of therapy HBeAg negative patients (HR 10.5; 95% CI 2.95-37.2) (Table
347 3, Supplemental Figure 2). Additional off-therapy events among patients who developed hepatic
decompensation among the subgroup have been shown in Figure 3.

349

350 Discussion

351

In this study of CHB patients who discontinued NA therapy, the cumulative incidence of hepatic decompensation was 1.8% and 1.1% at 60 months after NA cessation among the total cohort and the subgroup of patients, respectively. The 5-year cumulative incidence of decompensation reported in this study is higher across all patient groups compared to that reported by Jeng et al.¹⁶ despite having fewer patients with cirrhosis included in the cohort. Among 691 patients, Jeng et al.¹⁶ reported an off-therapy annual incidence rate of 0.3% of hepatic decompensation. This rate is comparable to the subgroup but is higher among the total cohort.

359

Currently, there are three major guidelines with stopping rule based on HBeAg status: APASL, AASLD, and EASL.^{7,9,20} In the absence of HBsAg loss, all three guidelines agree that NAs can be withdrawn in non-cirrhotic HBeAg positive patients after HBeAg seroconversion with a consolidation period of at least 12 months and undetectable HBV DNA. However, in the case of HBeAg negative patients, there is discordance between guidelines. This study showed that start of therapy HBeAg negative patients who were non-cirrhotic and well-suppressed had lower rates

of hepatic decompensation compared to start of therapy HBeAg positive patients.^{6,21} While not 366 367 significant, a prior study on the RETRACT-B cohort showed that start of therapy HBeAg positive patients tended to have relatively higher rates of HBsAg loss.⁴ Berg et al.⁶ and Liem et 368 al.²¹ suggested that the differences in off-therapy responses between these groups, particularly 369 370 the higher rates of retreatment among start of therapy HBeAg positive patients may be 371 attributable to differences in how immune control was established. If confirmed these data may 372 prompt a revision of the guidelines to only withdraw NA in those who are HBeAg negative at 373 start of therapy.

374

375 Most patients who decompensated experienced the event early, within the first 18 months after 376 stopping, and experienced significant viral rebounds and ALT elevations around the 377 decompensating event. Thus, the timing of decompensation indicates that the event was related 378 to treatment withdrawal given that these patients were very well suppressed on long-term therapy 379 prior to cessation. Clinical relapse is often used as a criterion for retreatment in current clinical 380 practice as well as in randomized trials, and it has been shown that the risk of relapse does not differ between start of therapy HBeAg positive and negative patients.^{21–23} Given that about 90% 381 382 of the decompensated patients experienced a clinical relapse after NA cessation, our study 383 suggests that frequent monitoring after stopping therapy remains crucial. While there have been studies showing that an ALT flare is a prerequisite to induce HBsAg loss,^{6,16,22,24–26} the results 384 385 from this study show that a single clinical relapse with ALT elevations $\geq 2x$ ULN may also be an indication of impending decompensation. Zhang et al.²⁷ showed that low-level viremia can result 386 in end-stage liver disease compared to patients with maintained virological response however, a 387 recent study by Papatheodoridi et al.¹⁷ reported conflicting results. However, the probability of 388

decompensation for patients suppressed on-therapy is relatively lower.² Thus, in the absence of
HBsAg loss, there is sparse evidence to determine whether patients with mildly active disease
would benefit from initiating retreatment. Typically, NAs are widely available, lack side effects
and long-term resistance, are relatively cheap and effective, and reimbursed in most global
regions. Nevertheless, the frequency of follow-up after NA cessation and the biomarkers being
measured play a vital role in predicting off-therapy outcomes.

395

396 Although existing studies have shown the ability of HBsAg levels at EOT to reasonably predict HBsAg loss after cessation,^{4,28–30} it is unable to estimate the probability that a patient will not 397 experience exacerbation and decompensation of hepatitis B. Other studies have shown that 398 399 detectable levels of hepatitis B core-related antigen (HBcrAg) and HBV RNA at EOT can 400 predict an unfavourable outcome such as relapses however, the assays lack sensitivity and the undetectability of these markers is not a strong predictor of HBsAg loss.^{31–35} Nevertheless, a 401 recent study by Sonneveld et al.,²⁸ showed that quantification of HBcrAg at EOT may be useful 402 403 in predicting of-therapy HBsAg loss. The frequency of follow-up at most participating centers in 404 this study was every 3-6 months. ALT and HBV DNA were monitored more closely compared to HBsAg levels during off-therapy follow-up. As suggested by Liaw,³⁶ frequent i.e., bi-weekly or 405 406 monthly, quantification of HBsAg levels in addition to HBV DNA and ALT, especially soon 407 after the flare may be more effective in determining patient outcome. A "virus-dominating" flare, 408 marked by increasing viral activity, may lead to decompensation and would be indicative of 409 requiring retreatment. In the case of a "host-dominating flare", marked by HBsAg decline and 410 potentially HBsAg loss, retreatment can be withheld if we have a high degree of certainty that patients will not decompensate.³⁶ 411

413 This study has limitations. First, due to the differences in local guidelines and policies by 414 geographical location within this cohort, we could not apply and analyze data as per any one 415 particular guideline. However, subgroup analyses ensured reporting of results following 416 recommendations on stopping that are consistent across guidelines. Second, while patients who 417 had been diagnosed with cirrhosis had relatively higher rates, the 60-month cumulative incidence 418 of hepatic decompensation was 1.2% among patients who had never been diagnosed with 419 cirrhosis and this may be attributable to undiagnosed cirrhosis. Thus, even though several 420 patients in the cohort may have had reversal of fibrosis and benefitted from long-term NA use,² 421 due to the lack of fibrosis assessments at end of therapy few patients may have had underlying, 422 undiagnosed cirrhosis. Additionally, it is important to note that cirrhosis diagnosis varied by 423 center and location however, each center included in this study are high-volume centers with 424 expertise in treating CHB. Lastly, there may have been additional misclassification bias due to 425 insufficient information on certain factors. 426

In conclusion, the findings from this study suggest that to evade hepatic decompensation,
patients diagnosed with cirrhosis and start of therapy HBeAg positive patients should be very
carefully assessed if NA withdrawal is being considered as a treatment option. In contrast,
guidelines can consider establishing albeit strict but standardized stopping criteria for patients
who begin antiviral therapy in the HBeAg-negative phase.³⁷ Decompensation was mostly
heralded by clinical relapse and flares and these patients may benefit from timely retreatment.
Further insight into the dynamics of HBsAg, HBV DNA, ALT and novel biomarkers through

434	well-designed prospective studies are warranted to determine the balance between successful and
435	detrimental outcome after NA withdrawal.
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	

	Overall	Hepatic decompensat	tion ₅₈
	(N = 1,557)	(N = 20)	400
Age at end of therapy, <i>years</i> , mean \pm SD	52.9 ± 11.3	57.0 ± 13.1	459
Male sex, n (%)	1,125 (72.3)	15 (75.0)	
Asian race/ethnicity, n (%)	1,363 (87.5)	18 (90.0)	460
HBV genotype, n (%)			
А	9 (0.6)	0 (0)	461
В	666 (42.8)	10 (50.0)	462
С	170 (10.9)	3 (15.0)	402
D	45 (2.9)	1 (5.0)	463
Unavailable	667 (42.8)	6 (30.0)	
NA withdrawn, n (%)			464
Entecavir	985 (63.3)	11 (55.0)	105
Tenofovir	454 (29.2)	9 (45.0)	465
Other	118 (7.6)	0 (0)	466
Duration of continuous NA therapy, years, median (IQR)	3.0 (3.0 – 4.0)	3.1 (3.0 – 6.9)	400
Duration of consolidation therapy, years			467
<1	90 (5.8)	3 (15.0)	
1 to <2	563 (36.2)	4 (20.0)	468
2 to <3	564 (36.2)	11 (55.0)	160
≥3	339 (21.8)	2 (10.0)	469
Prior NA therapy, n (%)	270 (17.3)	5 (25.0)	470
Prior interferon therapy, n (%)	134 (8.6)	1 (5.0)	470
Cirrhosis, n (%)	184 (11.8)	8 (40.0)	471
HBeAg negative at start of therapy, n (%)	1,311 (84.2)	10 (50.0)	
HBsAg at end of therapy, $log_{10} IU/mL$, mean \pm SD	2.6 ± 0.8	2.5 ± 0.7	472
ALT x ULN at end of therapy, median (IQR)	0.6(0.4-0.8)	0.5(0.4-0.7)	470
Number of off-therapy visits, median (IQR)	6 (3 - 9)	4 (3 – 5.5)	473
Mean time between off-therapy visits, <i>months</i> , median (IQR)	2.8 (2.0 – 5.0)	2.2 (1.6 – 3.8)	171
Total off-therapy time, <i>months</i> , median (IQR)	19.3 (8.0 - 39.5)	9.5 (5.7 - 14.6)	

457	Table 1.	Characteristics	of the total	l cohort and	d those who	developed	l hepatic	decompens	sation.
						1		1	

476 477 ALT, Alanine aminotransferase; HBeAg, Hepatitis B e antigen; HBsAg, Hepatitis B surface antigen; HBV, Hepatitis B virus; IQR, Interquartile range; NA, Nucleos(t)ide analogue; SD, Standard deviation; ULN, Upper limit of normal.

	Overall	Hepatic decompensation
	(N = 1,289)	(N = 10)
Age at end of therapy, <i>years</i> , mean \pm SD	53.0 ± 11.0	55.1 ± 13.5
Male sex, n (%)	929 (72.1)	6 (60)
Asian race/ethnicity, n (%)	1,125 (87.3)	10 (100)
HBV genotype, n (%)		
A	6 (0.5)	0 (0)
В	554 (43.0)	5 (50.0)
С	131 (10.2)	3 (30.0)
D	42 (3.3)	0 (0)
Unavailable	556 (43.1)	2 (20.0)
NA withdrawn, n (%)		
Entecavir	830 (64.4)	6 (60.0)
Tenofovir	396 (30.7)	4 (40.0)
Other	63 (4.9)	0 (0)
Duration of continuous NA therapy, years, median (IQR)	3.0 (3.0 – 3.9)	3.0 (3.0 – 3.1)
Duration of consolidation therapy, years		
1 to <2	501 (38.9)	3 (30.0)
2 to <3	495 (38.4)	7 (70.0)
≥3	293 (22.7)	0 (0)
Prior NA therapy, n (%)	215 (16.7)	3 (30.0)
Prior interferon therapy, n (%)	111 (8.6)	0 (0)
HBeAg negative at start of therapy, n (%)	1,125 (87.3)	4 (40.0)
HBsAg at end of therapy, $log_{10} IU/mL$, mean \pm SD	2.6 ± 0.8	2.5 ± 0.9
ALT x ULN at end of therapy, median (IQR)	0.6(0.4-0.8)	0.4 (0.3 – 0.6)
Number of off-therapy visits, median (IQR)	6 (3 – 9)	4 (4 – 5)
Mean time between off-therapy visits, <i>months</i> , median (IQR)	2.8 (2.0 – 4.7)	2.2 (1.7 – 3.6)
Total off-therapy time, <i>months</i> , median (IQR)	19.6 (7.8 - 38.0)	9.0 (6.0 – 14.5)

Table 2. Characteristics of the subgroup of patients and those who developed hepatic decompensation.

481 ALT, Alanine aminotransferase; HBeAg, Hepatitis B e antigen; HBsAg, Hepatitis B surface antigen; HBV, Hepatitis B virus; IQR, Interquartile range; NA,

482 Nucleos(t)ide analogue; SD, Standard deviation; ULN, Upper limit of normal.

	Total		Subgroup	
	Hazard Ratio (95% CI)	Р	Hazard Ratio (95% CI)	Р
Age at end of therapy, years				
Sex	1.04 (1.00 - 1.08)	0.08	1.02 (0.96 - 1.08)	0.51
Female	1.00 (reference)		1.00 (reference)	
Male	1.14 (0.41 - 3.14)	0.80	0.57 (0.16 – 2.01)	0.38
Race/ethnicity				
Non-Asian	1.00 (reference)			
Asian	1.07 (0.25 – 4.64)	0.92		
NA withdrawn				
Entecavir	1.00 (reference)		1.00 (reference)	
Tenofovir	1.83 (0.76 – 4.41)	0.18	1.46 (0.41 - 5.17)	0.56
Duration of continuous NA therapy, years	1.11 (0.97 – 1.26)	0.14	0.99 (0.75 - 1.30)	0.92
Duration of consolidation therapy, years	0.87 (0.64 - 1.19)	0.38	0.44 (0.18 - 1.05)	0.06
Prior NA therapy				
No	1.00 (reference)		1.00 (reference)	
Yes	1.71 (0.62 – 4.70)	0.30	2.38 (0.61 - 9.20)	0.21
Prior interferon therapy				
No	1.00 (reference)			
Yes	0.56 (0.08 - 4.22)	0.58		
Cirrhosis				
No	1.00 (reference)			
Yes	5.08 (2.08 - 12.4)	< 0.001		
HBeAg status at start of therapy				
Negative	1.00 (reference)		1.00 (reference)	
Positive	5.23 (2.18 - 12.6)	< 0.001	10.5 (2.95 - 37.2)	< 0.001
HBsAg at end of therapy, <i>log</i> ₁₀ <i>IU/mL</i>	0.88 (0.52 - 1.48)	0.62	0.86(0.44 - 1.67)	0.66
ALT x ULN at end of therapy	0.44 (0.09 - 2.17)	0.31	0.01 (0.00 - 0.65)	0.03

Table 3. Univariate Cox regression models for hepatic decompensation.

ALT, Alanine aminotransferase; HBeAg, Hepatitis B e antigen; HBsAg, Hepatitis B surface antigen; NA, Nucleos(t)ide analogue; ULN, Upper limit of normal.

489	Refei	rences
490		
491	1.	Hepatitis B Foundation. Risk Factors. Liver Cancer Connect.
492		https://www.hepb.org/research-and-programs/liver/risk-factors-for-liver-cancer/

- 493 2. Marcellin P, Gane E, Buti M, et al. Regression of cirrhosis during treatment with tenofovir
- disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. *Lancet*.

495 2013;381(9865):468-475.

- 496 3. Suk-Fong Lok A. Hepatitis B Treatment: What We Know Now and What Remains to Be
 497 Researched. *Hepatol Commun.* 2019;3(1):8-19.
- 498 4. Hirode G, Choi HSJ, Chen C-H, et al. Off-Therapy Response After Nucleos(t)ide
- Analogue Withdrawal in Patients With Chronic Hepatitis B: An International, Multicenter,
 Multiethnic Cohort (RETRACT-B Study). *Gastroenterology*. Published online 2022.
- 501 5. Yip TCF, Wong GLH, Chan HLY, et al. HBsAg seroclearance further reduces
- bepatocellular carcinoma risk after complete viral suppression with nucleos(t)ide
- 503 analogues. *J Hepatol*. 2019;70(3):361-370.
- 504 6. Berg T, Lampertico P. The times they are a-changing A refined proposal for finite HBV
 505 nucleos(t)ide analogue therapy. *J Hepatol*. Published online 2021.
- 506 7. Sarin SK, Kumar M, Lau GK, et al. Asian-Pacific clinical practice guidelines on the
 507 management of hepatitis B: A 2015 update. *Hepatol Int*. 2016;10(1):1-98.
- 508 8. Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH. AASLD
- 509 guidelines for treatment of chronic hepatitis B. *Hepatology*. 2016;63(1):261-283.
- 510 9. Lampertico P, Agarwal K, Berg T, et al. EASL 2017 Clinical Practice Guidelines on the
- 511 management of hepatitis B virus infection. *J Hepatol*. 2017;67(2):370-398.

512	10.	Vanwolleghem T, Adomati T, Van Hees S, Janssen HLA. Humoral immunity in hepatitis
513		B virus infection: Rehabilitating the B in HBV. JHEP Reports. 2022;4(2):100398.
514	11.	Chi H, Hansen BE, Yim C, et al. Reduced risk of relapse after long-term nucleos(t)ide
515		analogue consolidation therapy for chronic hepatitis B. Aliment Pharmacol Ther.
516		2015;41(9):867-876.
517	12.	Hung CH, Wang JH, Lu SN, Hu TH, Lee CM, Chen CH. Hepatitis B surface antigen loss
518		and clinical outcomes between HBeAg-negative cirrhosis patients who discontinued or
519		continued nucleoside analogue therapy. J Viral Hepat. 2017;24(7):599-607.
520	13.	Van Hees S, Bourgeois S, Van Vlierberghe H, et al. Stopping nucleos(t)ide analogue
521		treatment in Caucasian hepatitis B patients after HBeAg seroconversion is associated with
522		high relapse rates and fatal outcomes. Aliment Pharmacol Ther. 2018;47(8):1170-1180.
523	14.	Chen CH, Hung CH, Wang JH, Lu SN, Hu TH, Lee CM. Long-term incidence and
524		predictors of hepatitis B surface antigen loss after discontinuing nucleoside analogues in
525		noncirrhotic chronic hepatitis B patients. Clin Microbiol Infect. 2018;24(9):997-1003.
526	15.	Agarwal K, Lok J, Carey I, et al. A case of HBV-induced liver failure in the REEF-2
527		phase II trial: Implications for finite treatment strategies in HBV 'cure.' J Hepatol.
528		2022;77(1):245-248.
529	16.	Jeng WJ, Chen YC, Chien RN, Sheen IS, Liaw YF. Incidence and predictors of hepatitis B
530		surface antigen seroclearance after cessation of nucleos(t)ide analogue therapy in hepatitis
531		B e antigen-negative chronic hepatitis B. Hepatology. 2018;68(2):425-434.
532	17.	Papatheodoridi M, Su TH, Hadziyannis E, et al. Hepatocellular carcinoma after treatment
533		cessation in non-cirrhotic HBeAg-negative chronic hepatitis B: A multicentre cohort
534		study. Liver Int. 2022;42(3):541-550.

535	18.	Zhang H, Giang E, Bao F, et al. Virus Reactivation in a Non-Cirrhotic HBV Patient
536		Requiring Liver Transplantation After Cessation of Nucleoside Analogue Therapy.
537		<i>Hepatology</i> . 2020;72(1):522A.
538	19.	Hirode G, Hansen B, Chen CH, et al. Hepatic decompensation and hepatocellular
539		carcinoma after stopping nucleos (t)ide analogue therapy: Results from a large, global,
540		multi-ethnic cohort of patients with chronic hepatitis B (RETRACT-B study). J Hepatol.
541		2021;75(2):\$749-750.
542	20.	Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and
543		treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology.
544		2018;67(4):1560-1599.
545	21.	Liem KS, Fung S, Wong DK, et al. Limited sustained response after stopping
546		nucleos(t)ide analogues in patients with chronic hepatitis B: Results from a randomised
547		controlled trial (Toronto STOP study). Gut. 2019;68(12):2206-2213.
548	22.	Berg T, Simon KG, Mauss S, et al. Long-term response after stopping tenofovir disoproxil
549		fumarate in non-cirrhotic HBeAg-negative patients – FINITE study. J Hepatol.
550		2017;67(5):918-924.
551	23.	Papatheodoridis G, Vlachogiannakos I, Cholongitas E, et al. Discontinuation of oral
552		antivirals in chronic hepatitis B: A systematic review. <i>Hepatology</i> . 2016;63(5):1481-1492.
553	24.	Lampertico P, Berg T. Less can be more: A finite treatment approach for HBeAg-negative
554		chronic hepatitis B. Hepatology. 2018;68(2):397-400.
555	25.	Hadziyannis SJ, Sevastianos V, Rapti I, Vassilopoulos D, Hadziyannis E. Sustained

- responses and loss of HBsAg in HBeAg-negative patients with chronic hepatitis B who
- stop long-term treatment with adefovir. *Gastroenterology*. 2012;143(3):629-636.e1.

558	26.	Chen CH, Hsu YC, Lu SN, et al. The incidence and predictors of HBV relapse after
559		cessation of tenofovir therapy in chronic hepatitis B patients. J Viral Hepat.
560		2018;25(5):590-597.
561	27.	Zhang Q, Peng H, Liu X, et al. Chronic Hepatitis B Infection with Low Level Viremia
562		Correlates with the Progression of the Liver Disease. J Clin Transl Hepatol. Published
563		online 2021.
564	28.	Sonneveld MJ, Chiu SM, Park JY, et al. Probability of HBsAg loss after nucleo(s)tide
565		analogue withdrawal depends on HBV genotype and viral antigen levels. J Hepatol.
566		Published online 2022.
567	29.	Höner Zu Siederdissen C, Rinker F, Maasoumy B, et al. Viral and host responses after
568		stopping long-term Nucleos(t)ide analogue therapy in HBeAg-negative chronic Hepatitis
569		B. J Infect Dis. 2016;214(10):1492-1497.
570	30.	García-López M, Lens S, Pallett LJ, et al. Viral and immune factors associated with
571		successful treatment withdrawal in HBeAg-negative chronic hepatitis B patients. J
572		Hepatol. Published online 2020:1-11.
573	31.	Fan R, Zhou B, Xu M, et al. Association Between Negative Results From Tests for HBV
574		DNA and RNA and Durability of Response After Discontinuation of Nucles(t)ide
575		Analogue Therapy. Clin Gastroenterol Hepatol. 2020;18(3):719-727.e7.
576	32.	Seto WK, Liu KSH, Mak LY, et al. Role of serum HBV RNA and hepatitis B surface
577		antigen levels in identifying Asian patients with chronic hepatitis B suitable for entecavir
578		cessation. Gut. 2021;70(4):775-783.
579	33.	Sonneveld MJ, Park JY, Kaewdech A, et al. Prediction of Sustained Response After

Nucleo(s)tide Analogue Cessation Using HBsAg and HBcrAg Levels: A Multicenter 580

581 Study (CREATE). *Clin Gastroenterol Hepatol*. 2022;20(4):e784-e793.

- 58234.Brakenhoff SM, de Man RA, Boonstra A, et al. Hepatitis B virus RNA decline without
- 583 concomitant viral antigen decrease is associated with a low probability of sustained
- response and hepatitis B surface antigen loss. *Aliment Pharmacol Ther*. 2021;53(2):314-
- 585 320.
- 35. Hsu YC, Nguyen MH, Mo LR, et al. Combining hepatitis B core-related and surface
 antigens at end of nucleos(t)ide analogue treatment to predict off-therapy relapse risk. *Aliment Pharmacol Ther.* 2018;49(1):1-9.
- 589 36. Liaw YF. Hepatitis B Flare After Cessation of Nucleos(t)ide Analogue Therapy in
- HBeAg-Negative Chronic Hepatitis B: To Retreat or Not to Retreat. *Hepatology*.
 2021;73(2):843-852.
- 592 37. van Bömmel F, Berg T. Risks and Benefits of Discontinuation of Nucleos(t)ide Analogue
 593 Treatment: A Treatment Concept for Patients With HBeAg-Negative Chronic Hepatitis B.
- 594 *Hepatol Commun.* 2021;0(0):1-17.
- 595
- 596 Author names in bold designate shared co-first authorship.
- 597
- 598
- 599
- . -
- 600
- 601
- 602
- 603

604	Figure Legends
605	
606	Figure 1. Flowchart of patient selection.
607	
608	Figure 2. Cumulative incidence of hepatic decompensation among the total cohort and the
609	subgroup.
610	
611	Figure 3. Additional off-therapy events among patients who developed hepatic decompensation
612	among the subgroup. Clinical relapse was defined as virological relapse (HBV DNA \geq 2000
613	IU/mL) and biochemical relapse (ALT \ge 2x ULN). ALT flare was defined as ALT \ge 5x ULN.
614	One patient experienced a clinical relapse, 1 patient developed hepatic decompensation, and 1
615	patient died after 24 months off-therapy and thus, these events are not depicted in Figure A.

Figure 1. Flowchart of patient selection. NA, Nucleos(t)ide analogue.

Figure 2. Cumulative incidence of hepatic decompensation among the total cohort and the subgroup. NA, Nucleos(t)ide analogue.

Figure 3. Additional off-therapy events among patients who developed hepatic decompensation among the subgroup. Clinical relapse was defined as virological relapse (HBV DNA \geq 2000 IU/mL) and biochemical relapse (ALT \geq 2x ULN). ALT flare was defined as ALT \geq 5x ULN. One patient experienced a clinical relapse, 1 patient developed hepatic decompensation, and 1 patient died after 24 months off-therapy and thus, these events are not depicted in Figure A. ALT, Alanine aminotransferase; ULN, Upper limit of normal.

Table 1. Characteristics of the total	cohort and those who d	developed hepatic decom	pensation.
---------------------------------------	------------------------	-------------------------	------------

	Overall	Hepatic decompensation
	(N = 1,557)	(N = 20)
Age at end of therapy, <i>years</i> , mean \pm SD	52.9 ± 11.3	57.0 ± 13.1
Male sex, n (%)	1,125 (72.3)	15 (75.0)
Asian race/ethnicity, n (%)	1,363 (87.5)	18 (90.0)
HBV genotype, n (%)		
А	9 (0.6)	0 (0)
В	666 (42.8)	10 (50.0)
С	170 (10.9)	3 (15.0)
D	45 (2.9)	1 (5.0)
Unavailable	667 (42.8)	6 (30.0)
NA withdrawn, n (%)		
Entecavir	985 (63.3)	11 (55.0)
Tenofovir	454 (29.2)	9 (45.0)
Other	118 (7.6)	0 (0)
Duration of continuous NA therapy, years, median (IQR)	3.0 (3.0 – 4.0)	3.1 (3.0 – 6.9)
Duration of consolidation therapy, years		
<1	90 (5.8)	3 (15.0)
1 to <2	563 (36.2)	4 (20.0)
2 to <3	564 (36.2)	11 (55.0)
≥3	339 (21.8)	2 (10.0)
Prior NA therapy, n (%)	270 (17.3)	5 (25.0)
Prior interferon therapy, n (%)	134 (8.6)	1 (5.0)
Cirrhosis, n (%)	184 (11.8)	8 (40.0)
HBeAg negative at start of therapy, n (%)	1,311 (84.2)	10 (50.0)
HBsAg at end of therapy, $log_{10} IU/mL$, mean \pm SD	2.6 ± 0.8	2.5 ± 0.7
ALT x ULN at end of therapy, median (IQR)	0.6(0.4-0.8)	0.5(0.4-0.7)
Number of off-therapy visits, median (IQR)	6 (3 - 9)	4 (3 – 5.5)
Mean time between off-therapy visits, months, median (IQR)	2.8 (2.0 – 5.0)	2.2 (1.6 – 3.8)
Total off-therapy time, <i>months</i> , median (IQR)	19.3 (8.0 - 39.5)	9.5 (5.7 – 14.6)

ALT, Alanine aminotransferase; HBeAg, Hepatitis B e antigen; HBsAg, Hepatitis B surface antigen; HBV, Hepatitis B virus; IQR, Interquartile range; NA, Nucleos(t)ide analogue; SD, Standard deviation; ULN, Upper limit of normal.

	Overall	Hepatic decompensation
	(N = 1,289)	(N = 10)
Age at end of therapy, <i>years</i> , mean ± SD	53.0 ± 11.0	55.1 ± 13.5
Male sex, n (%)	929 (72.1)	6 (60)
Asian race/ethnicity, n (%)	1,125 (87.3)	10 (100)
HBV genotype, n (%)		
A	6 (0.5)	0 (0)
В	554 (43.0)	5 (50.0)
С	131 (10.2)	3 (30.0)
D	42 (3.3)	0 (0)
Unavailable	556 (43.1)	2 (20.0)
NA withdrawn, n (%)		
Entecavir	830 (64.4)	6 (60.0)
Tenofovir	396 (30.7)	4 (40.0)
Other	63 (4.9)	0 (0)
Duration of continuous NA therapy, <i>years</i> , median (IQR)	3.0 (3.0 – 3.9)	3.0 (3.0 – 3.1)
Duration of consolidation therapy, years		
1 to <2	501 (38.9)	3 (30.0)
2 to <3	495 (38.4)	7 (70.0)
≥3	293 (22.7)	0 (0)
Prior NA therapy, n (%)	215 (16.7)	3 (30.0)
Prior interferon therapy, n (%)	111 (8.6)	0 (0)
HBeAg negative at start of therapy, n (%)	1,125 (87.3)	4 (40.0)
HBsAg at end of therapy, $log_{10} IU/mL$, mean \pm SD	2.6 ± 0.8	2.5 ± 0.9
ALT x ULN at end of therapy, median (IQR)	0.6(0.4-0.8)	0.4 (0.3 – 0.6)
Number of off-therapy visits, median (IQR)	6 (3 – 9)	4 (4 – 5)
Mean time between off-therapy visits, <i>months</i> , median (IQR)	2.8 (2.0 – 4.7)	2.2 (1.7 – 3.6)
Total off-therapy time, <i>months</i> , median (IQR)	19.6 (7.8 - 38.0)	9.0 (6.0 - 14.5)

Table 2. Characteristics of the subgroup of patients and those who developed hepatic decompensation.

ALT, Alanine aminotransferase; HBeAg, Hepatitis B e antigen; HBsAg, Hepatitis B surface antigen; HBV, Hepatitis B virus; IQR, Interquartile range; NA, Nucleos(t)ide analogue; SD, Standard deviation; ULN, Upper limit of normal.

	Total		Subgroup	
	Hazard Ratio (95% CI)	Р	Hazard Ratio (95% CI)	Р
Age at end of therapy, years				
Sex	1.04 (1.00 - 1.08)	0.08	1.02 (0.96 - 1.08)	0.51
Female	1.00 (reference)		1.00 (reference)	
Male	1.14 (0.41 – 3.14)	0.80	0.57 (0.16 – 2.01)	0.38
Race/ethnicity				
Non-Asian	1.00 (reference)			
Asian	1.07 (0.25 - 4.64)	0.92		
NA withdrawn				
Entecavir	1.00 (reference)		1.00 (reference)	
Tenofovir	1.83 (0.76 – 4.41)	0.18	1.46 (0.41 – 5.17)	0.56
Duration of continuous NA therapy, years	1.11 (0.97 – 1.26)	0.14	0.99 (0.75 - 1.30)	0.92
Duration of consolidation therapy, years	0.87 (0.64 - 1.19)	0.38	0.44 (0.18 - 1.05)	0.06
Prior NA therapy				
No	1.00 (reference)		1.00 (reference)	
Yes	1.71 (0.62 – 4.70)	0.30	2.38 (0.61 - 9.20)	0.21
Prior interferon therapy				
No	1.00 (reference)			
Yes	0.56 (0.08 - 4.22)	0.58		
Cirrhosis				
No	1.00 (reference)			
Yes	5.08 (2.08 - 12.4)	< 0.001		
HBeAg status at start of therapy				
Negative	1.00 (reference)		1.00 (reference)	
Positive	5.23 (2.18 - 12.6)	< 0.001	10.5 (2.95 - 37.2)	< 0.001
HBsAg at end of therapy, <i>log</i> ₁₀ <i>IU/mL</i>	0.88 (0.52 - 1.48)	0.62	0.86(0.44 - 1.67)	0.66
ALT x ULN at end of therapy	$0.\overline{44} (0.09 - 2.17)$	0.31	0.01 (0.00 - 0.65)	0.03

 Table 3. Univariate Cox regression models for hepatic decompensation.

ALT, Alanine aminotransferase; HBeAg, Hepatitis B e antigen; HBsAg, Hepatitis B surface antigen; NA, Nucleos(t)ide analogue; ULN, Upper limit of normal.

Supplemental Figure 1. Cumulative incidence of hepatic decompensation by patient characteristics among the total cohort.

Supplemental Figure 2. Cumulative incidence of hepatic decompensation by patient characteristics among the subgroup.