

DEPARTMENT OF ENGINEERING MANAGEMENT

A demand-responsive feeder service

with a maximum headway at mandatory stops

Bryan David Galarza Montenegro, Kenneth Sörensen & Pieter Vansteenwegen

UNIVERSITY OF ANTWERP
Faculty of Business and Economics
City Campus

Prinsstraat 13

B-2000 Antwerp

www.uantwerpen.be

http://www.uantwerpen.be/

FACULTY OF BUSINESS AND ECONOMICS

DEPARTMENT OF ENGINEERING MANAGEMENT

A demand-responsive feeder service

with a maximum headway at mandatory stops

Bryan David Galarza Montenegro, Kenneth Sörensen & Pieter Vansteenwegen

RESEARCH PAPER 2023-001
FEBRUARY 2023

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium

Research Administration

e-mail: joeri.nys@uantwerpen.be

The research papers from the Faculty of Business and Economics

are also available at www.repec.org

(Research Papers in Economics - RePEc)

D/2023/1169/001

mailto:joeri.nys@uantwerpen.be
http://www.repec.org/

A demand-responsive feeder service with a maximum headway at
mandatory stops

Bryan David Galarza Montenegro*
Department of Engineering Management (ENM), University of Antwerp

bryan.galarzamontenegro@uantwerpen.be

Kenneth Sörensen
Department of Engineering Management (ENM), University of Antwerp

kenneth.sorensen@uantwerpen.be

Pieter Vansteenwegen
KU Leuven Institute for Mobility - CIB, KU Leuven

pieter.vansteenwegen@kuleuven.be

Data availability statement
The authors confirm that the data supporting the findings of this study are available within the

article and its supplementary materials.

Funding statement
This project was supported by the FWO (Research Foundation Flanders) project G.0759.19N.

A demand-responsive feeder service with a maximum headway at
mandatory stops

Bryan David Galarza Montenegroa, Kenneth Sörensena , Pieter Vansteenwegenb

aDepartment of Engineering Management (ENM) University of Antwerp, Prinsstraat
13, Antwerp, 2000, Antwerp, Belgium

bKU Leuven Institute for Mobility - CIB, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Vlaams-Brabant, Belgium

Abstract

Public transportation out of suburban or rural areas is crucial. Feeder transportation services
offer a solution by transporting passengers to areas where more options for public transport are
available. On one hand, fully flexible demand-responsive feeder services efficiently tailor their
service to the needs of the passengers. On the other hand, traditional feeder services provide
predictability and easier cost control. In this paper, a semi-flexible demand-responsive feeder
service is considered, which combines positive characteristics of both traditional services as well as
fully flexible services. This feeder service has two types of bus stops: mandatory bus stops and
optional bus stops. Mandatory bus stops are guaranteed to be visited by a bus within a certain
time interval. Optional stops are only visited when there is demand for transportation nearby. The
performance of this feeder service is optimized with the use of a heuristic that combines elements
of different metaheuristic frameworks. Experimental results on small benchmark instances indicate
that the heuristic performs on average 12.42% better than LocalSolver, a commercial optimization
solver, with an average runtime of 2.1s. Larger instances can also be solved, typically within two
minutes.
Keywords: meta-heuristics, public bus transport, feeder service, demand-responsive
transportation

1. Introduction
In 2015, 243 billion public transport journeys were made around the world, an 18% increase over
the previous 15 years (Saeidizand, 2017). Mobility is essential for the development of societies
since it enables accessibility to social activities, goods and services. An efficient and adequate
public transport service is thus crucial in reducing social exclusion and poverty (Hine and Mitchell,
2001, Agatz et al., 2021). Furthermore, public transportation can have a positive impact in the
urbanization and infrastructure planning of cities (Agatz et al., 2021). Although the use of public
transport has increased over the years, there is still a preference for private transport over the use of
public transport (Handy et al., 2005). This has led to increased pollution, congestion and overfull
parking lots. In order to make public transport a more attractive option, the service quality of
transportation services must increase. For secluded areas in particular, like residential areas and
suburbs, a feeder service enables connectivity to major transit networks. Passengers from typically
sparsely populated areas are transported to areas with a high demand for transportation or to
transportation hubs, where they can continue their journey. These services can be an answer to
the problem of overfull parking lots at transportation hubs and congestion in the surrounding area.

In a feeder service, all passengers have the same destination but different origins. The bus line
in the feeder service with mandatory stops (FSMS) considered in this paper serves two sets of
predetermined bus stops: mandatory stops and clustered optional stops. The mandatory stops are

Preprint submitted to Networks February 23, 2023

visited by each bus in the bus line and have a maximum allowable headway, i.e., these stops are
visited by a bus within a certain time interval. The optional stops are only visited by a bus when a
passenger nearby makes a request for transportation. Passengers make a request for transportation
to the transportation hub, by stating their current location and the time they wish to depart or
their desired arrival time at the hub. Passengers are assigned to a departure bus stop, where they
have to walk to. It is assumed that passenger requests are known before a certain deadline. After
this deadline, the operation of the service for the planning horizon is determined and cannot be
modified further. In other words, all passenger demand is assumed to be static. However, this
means that the routes and the timetables of the buses are not completely fixed but can be modified
according to the received requests.

In order to optimize the performance of the service, a heuristic is developed. This is a greedy ran-
domized heuristic that constructs different solutions based on randomized construction parameters.
Simulated annealing is utilized to find the best construction parameters, i.e., the parameters that
lead to the best solution that is possible to find with this heuristic. Elements of other metaheuris-
tics, such as the pilot method, are also part of this heuristic.

The main contribution of this paper is the design of a new semi-flexible demand-responsive feeder
service. The FSMS can be a good alternative to both traditional transportation services and fully
flexible transportation services because it offers positive characteristics of both types of services.
The mandatory stops are a good way to meet demand that did not made an explicit request for
transportation and provide a sense of predictability for all passengers (both passengers with and
without a reservation). Optional stops and online requests offer a more customized experience to
passengers that have explicitly made a request. Furthermore, Beirão and Sarsfield Cabral (2007)
show that rather than waiting time, the uncertain arrival time of transport is of most importance,
i.e., the reliability of the service. Attributes such as comfort and arrival time at the destination
are also highly valued by passengers. These are attributes that the FSMS is designed to improve
upon, which means that the FSMS can be a viable alternative to private transport. This paper
also introduces an efficient heuristic that aims to optimize the performance of this service under
different circumstances. The results obtained by the heuristic prove that good quality solutions are
obtained within relatively small runtimes.

In the next section, a literature review on public transport feeder services is presented. In Section 3,
we present a detailed description of the FSMS and a mathematical model to optimize the service.
Section 4 presents the heuristic that is developed to solve the optimization problem. Section 5
analyses the performance of the heuristic in order to fine-tune its parameters. In Section 6, the
results for several instances, obtained by solving the problem using the heuristic, are presented
and discussed. In Section 7, the influence of different instance parameters on the service quality
is analyzed and discussed. The last section concludes the paper and discusses plans for future
research.

2. Literature Review
The feeder service with mandatory stops (FSMS) that is presented in this paper is an extension
of the demand-responsive feeder service (DRFS) presented in Galarza Montenegro et al. (2021)
and Galarza Montenegro et al. (2022). In the DRFS, a fleet of buses transports passengers from a
suburban area to an area with high demand for transportation, such as a train station. The DRFS
receives requests from passengers until a certain deadline before the first bus is dispatched. Each
request states the passenger’s location and desired arrival time at the destination. There are two
sets of bus stops. Mandatory stops are always visited by each bus, while optional stops are visited

2

if there is a demand for transportation nearby. Galarza Montenegro et al. (2021) solve larger in-
stances with a Large Neighborhood Search (LNS) heuristic, while Galarza Montenegro et al. (2022)
solve smaller instances with an exact method. The main contributions of the FSMS, with respect
to the DRFS in Galarza Montenegro et al. (2021) and Galarza Montenegro et al. (2022), are as
follows: the service now needs to guarantee that a bus departs from each mandatory stop within a
certain time interval, the return trip of the buses is now explicitly considered and passengers can
now state a desired departure time as well. These additions make the optimization of the service
substantially more complex and improve the quality of the service. To the best of our knowledge, no
other research has studied the FSMS presented in this paper or the DRFS in Galarza Montenegro
et al. (2021) and Galarza Montenegro et al. (2022). Nevertheless, closely-related types of services
have been considered in the literature and will be discussed in this section.

Traditional feeder services (TFS) have predetermined stops, routes, and timetables. In these TFS,
the demand is considered to be known and is often derived from historical data. As such, these
services result in feeder lines that perform well in terms of satisfaction of demand, and waiting
time. The Feeder Bus Network Design Problem (FBNDP) is often tackled for TFS. The FBNDP
determines the design of a set of feeder bus routes, as well as the service frequency of each route for
a period of time (Martins and Pato, 1998). Ciaffi et al. (2012) solve the FBNDP using a heuristic
algorithm to generate routes, together with a genetic algorithm to find the best possible network
of routes and their frequencies. This solution approach is implemented for the networks of Win-
nipeg and Rome. Lin and Wong (2014) present a multi-objective programming approach to solve
the FBNDP. In this study, the route length and the maximum route travel time are minimized,
while the service coverage is maximized simultaneously. This model is used for a case study of a
metro station in Taichung City, Taiwan. Mohaymany and Gholami (2010) consider a FBNDP with
multiple transportation modes, each mode with different capacities and performances. Ant colony
optimization is used to solve the optimization model. Zheng et al. (2020) introduce a “demand
coefficient” to quantify the feeder demand and use a tabu search algorithm to optimize the design
of the feeder network. The optimization approach is implemented in a downtown area of Suzhou,
China. Often, the main objective while optimizing these services is to minimize travel times of
passengers and transfer times to the main transit. Shrivastava and O’Mahony (2007) use a genetic
algorithm combined with a specialized heuristic to optimize the routes and the timetables of a TFS.
In a different study, Shrivastava and O’Mahony (2006) use a genetic algorithm to optimize both
the routes and the timetables simultaneously.

Traditional feeder services have clear shortcomings, such as lack of accessibility and flexibility. In
these services, it is difficult to accommodate the different needs of the passengers, such as de-
sired arrival time or departure time. Furthermore, it is inconvenient for some passengers, such
as children, disabled, or senior passengers to reach one of the limited number of bus stops served
by traditional feeder lines (Mistretta et al., 2009). These limitations have contributed to the rise
of demand-responsive transportation services (DRTS). DRTS are bus services that do not op-
erate using fixed routes and timetables, and take into consideration the individual demand for
transportation. Consequently these services are better able to deal with sparse and ever-changing
demand (Alonso-González et al., 2018). DRTS usually require passengers to make explicit requests
for transportation in order to gain information about their needs. Some well-known DRTS are
the Dial-A-Ride (DAR) problem (Wilson, 1971), the Mobility Allowance Shuttle Transit Service
(MAST) (Quadrifoglio and Dessouky, 2004), the Demand-Responsive Connector (DRC) (Li, 2009)
and the Customized Bus (CB) (Liu and Ceder, 2015). The DAR service improves the accessibility
of transit services by offering a door-to-door service to passengers that make a request with their
desired pickup and drop-off locations. Sun et al. (2018) present a mixed-integer linear programming
model for a demand-responsive feeder service similar to a DAR problem. The model is solved using

3

a heuristic algorithm and is used in a case study in Nanjing City, China. In a MAST service,
vehicles have a fixed set of bus stops that they always need to visit, e.g. a fixed path, and these
stops also have fixed timetables. However, the vehicles may deviate from the fixed path. The
customers that are served outside of the fixed path are served at their desired location and need to
be within a certain radius from the fixed path in a so-called “zone”. This service combines the high
flexibility of door-to-door services with a fixed main route. This concept has been applied to feeder
services as well. Lu et al. (2015) developed a three-stage heuristic algorithm to optimize such a
problem, together with a bus assignment sub-problem. Furthermore, Qiu et al. (2015) analyzed a
feeder service similar to a MAST service, which has been implemented in Salt Lake city in the USA.
In the DRC, no mandatory stops are considered and buses transport passengers from their origin
location to transfer hubs within a predefined service area. Quadrifoglio and Li (2009) and Li and
Quadrifoglio (2010a) both present analytical and simulation models to help service providers choose
between a fixed feeder service and a DRC, depending on operational circumstances. Passengers
are able to notify their presence by means of a phone or Internet booking service. Immediately
before the beginning of each trip, waiting customers are scheduled and the route for the trip in the
service area is constructed. In the CB, an origin area is connected to a destination area with an
express service and mostly dedicated lanes. However, the routes inside both areas are flexible. Guo
et al. (2019) develop a CB service, and use an exact model with time windows similar to the DAR
problem. The solution includes intermediate stops where passengers can transfer to other lines
and systems. The model is implemented in a case study in Beijing, China. The study compares
the branch-and-cut results with a genetic algorithm (GA) and a tabu search (TS) algorithm. A
different type of service is presented in Crainic et al. (2005) and Crainic et al. (2012). The service
in both studies is a stop-based transportation system which they refer to as a class of demand-
adaptive systems (DAS). In these systems, flexible routes are created for passengers that make a
request for transportation, while the buses still serve mandatory stops at fixed schedules. At first,
a master scheduling partially defines routes and time windows. Later, the actual schedule of each
service is built to include optional stops. Requests can be rejected if they make the tour infeasible
or unprofitable.

DRTS typically have more success in low demand areas with a sparse population, while TFS thrive
in high-demand and densely populated areas. When and where to use which feeder service is further
discussed by Li and Quadrifoglio (2010b). The study shows that flexible feeder services perform
better with lower demand rates and become progressively preferred when more importance is given
to the walking time of the passengers.

Vansteenwegen et al. (2022) present a recent and extensive survey and categorize DRTS into differ-
ent groups. The transportation services are divided based on the degree of responsiveness; “static”
when the planning is determined before a certain deadline and no changes are possible afterwards,
and “dynamic” when the planning can be modified when new incoming requests are received. An
example of static planning is the service in Lee and Savelsbergh (2017). The study considers a
DRC to minimize operator costs, considering the time window for pickups and drop-offs. The
authors consider the train frequency at the station and use these time windows as parameters of
the operation. This allows the service providers to select the best operation period for servicing
passengers. The authors use both a heuristic and an exact model to optimize the service before
the start of operation, after which the planning is fixed. An example of dynamic planning is the
service presented in Fu and Liu (2003). The authors implement a real-time scheduling model with
dynamic stop skipping. The model optimizes the schedule of the vehicles just before departure from
the depot. This makes modifications to the planning possible before the dispatching of the vehicles
but not after. Vansteenwegen et al. (2022) denote this responsiveness as “dynamic offline”. More
responsiveness can be found in the service presented by Pratelli et al. (2018). The service starts

4

from a standard route and deviates from it when a request is made. Each route has a minimum
and maximum number of deviating stops. Requests are received in real-time and each bus can
change its planning at any time, even after the start of operation. This type of responsiveness
is denoted as “dynamic online”. The services are further distinguished by the level of flexibility.
On one hand, “fully flexible” services have no fixed routes or timetables. Services like the DRC
or a DAR service are fully flexible because there is no aspect that remains constant regardless of
the demand. On the other hand, “semi-flexible” services have predetermined planning that can be
modified in order to meet the needs of the passengers. Services such as the MAST service or the
Customized Bus are semi-flexible. For example the MAST service has a main route that all buses
need to visit regardless of the demand, but buses can deviate from it to pick-up passengers. Our
FSMS is classified as a static semi-flexible feeder service.

Vansteenwegen et al. (2022) review 151 papers related to DRTS, out of which 43 papers study a
feeder service. It was concluded that many feeder services operate using small vehicle capacities;
many papers use a vehicle capacity of 10 passengers or less, and only a few use a capacity of 40
passengers or more. Almost half of the papers that study flexible feeder services do not consider
a limited vehicle capacity at all. Moreover, excluding the DRFS, only three papers consider semi-
flexible feeder services with a limited capacity (Kim and Schonfeld, 2013, 2014, Lakatos et al.,
2020). In all three papers the capacity is 19 passengers or less.

Furthermore, the planning of flexible feeder services is often optimized with metaheuristic frame-
works or other simple heuristics (Vansteenwegen et al., 2022). There are papers that utilize exact
techniques, however, these methods are only used to find optimal solutions to be used as bench-
marks for evaluating heuristic solution approaches. The only papers that solely use exact methods
are Pratelli et al. (2018), Chien et al. (2001), Melachrinoudis et al. (2007), Wang et al. (2018),
Zheng et al. (2018), Lakatos et al. (2020) and Mehran et al. (2020). In these cases, the instances
are considered relatively small.

The optimization model of the FSMS is also somewhat similar to the Vehicle Routing Problem with
Time Windows (VRPTW). In the more general Vehicle Routing Problem (VRP), a set of customers,
who are geographically dispersed, are served by a set of vehicles. The vehicles often have a limited
capacity and are dispatched from a central depot. The goal is to find the optimal routes to serve all
customers with the available vehicles (Clarke and Wright, 1964). In VRPTW, customers are only
available during a certain time period, which imposes time window constraints for arrivals at the
customers’ location. Braekers et al. (2016) review 277 papers that study a version of the VRP. It
is concluded that the vast majority, namely 71.3%, of the papers optimize the VRP with the use of
metaheuristics. Exact methods are utilized for 17.1% of the models. The remainder of the models
are solved with other solution methods. It was also found that 90.5% of the papers consider a lim-
ited vehicle capacity and 37.9% study a VRPTW. Most of the VRPTW are solved with the use of
heuristics. El-Sherbeny (2010) and Dixit et al. (2019) give an overview of the literature on VRPTW.

The vehicles in the VRPTW visit a node that is the location of a customer, while passengers can-
not decide on the bus stop they are assigned to in the FSMS. The optimization algorithm of the
FSMS, which takes into account a maximum walking duration, determines this. Furthermore, all
nodes in the VRPTW are bound by a departure time window. This is not always the case with the
FSMS, because some passenger requests specify a preferred arrival time at the destination, impos-
ing only a time window constraint at the final node of the route. In the FSMS, the itinerary is also
partially predetermined. The FSMS also has a maximum headway at mandatory stops, which in-
fluences vehicle scheduling and routing even more. This headway constraint also makes routes and
timetables of different bus trips interdependent, which complicates the search for a feasible solution.

5

The FSMS resembles the feeder service variant of the MAST service and the DAS the most. Our
feeder service has a fixed route where it can deviate from, just as in MAST and DAS services. The
main difference is that MAST services provide a door-to-door service to some customers within a
certain radius, while our service assigns and groups passengers at a limited number of bus stops.
DAS work with bus stops, but there is no bus stop assignment involved and the walking times of the
passengers are not considered. Bus stop assignment increases the efficiency of the bus assignment
and the routing. The timetable for the fixed route is also preset and cannot be changed in MAST.
In DAS, buses must depart from the stops in the fixed route within certain time windows. This
limits the time the buses in DAS or MAST can devote to deviating from the main route. Our
service is more flexible, while still guaranteeing that at least one bus departs from mandatory bus
stops within a certain time frame. Furthermore, the difficulty of satisfying the preset timetable
at the mandatory stops in DAS and MAST is alleviated by allowing requests to be rejected. In
our service, all requests must be accepted. This makes it more difficult to find feasible solutions.
Finally, DAS and MAST are mostly optimized on small scale instances or the problem is divided
into subproblems to reduce the complexity of the optimization model, which can lead to optimal
solutions of lesser quality. Very few papers aim to solve MAST or DAS as an integrated problem
as we will do in this paper.

3. Problem Description
In this section, the feeder service with mandatory stops (FSMS) is described in detail. First,
the service is explained and the setting of the problem is determined. Next, a mathematical
optimization model is defined in more formal terms.

3.1. Description of the feeder service with mandatory stops (FSMS)
The FSMS is situated in an area with low demand for transportation, such as a suburban area. The
bus lines of this service are designated shuttle buses that bring the inhabitants of this low demand
area to a transportation hub or to a nearby city center, i.e., the destination for all passengers is
the same. In the rest of this paper, a single bus line is considered because all bus lines in the
FSMS are operated independently, assuming they each have their own area to cover and no bus
stops are shared by different lines. The bus line is operated by a fleet of vehicles, i.e., there are
multiple buses with different schedules that travel along the same line. The buses serve two types
of bus stops: mandatory stops and optional stops. Each bus visits all mandatory stops and these
stops have a maximum allowable headway, i.e., at least one bus must depart from each mandatory
stop within a certain time interval after the previous bus. This means that passengers that did not
make a formal request for transportation, waiting at mandatory stops do not need to wait longer
than a certain amount of time for a bus. It should be noted that this is more strict than having a
certain number of buses per hour. The optional stops are only visited when demand is assigned.
Passengers are assigned to a departure stop that they have to walk to. This assignment takes into
consideration a maximum walking time for each passenger. The mandatory stops can, for example,
be placed along a main road. The optional stops are grouped into different clusters. Typically, the
optional stops in a cluster will be relatively close to each other and scattered across a small town
or neighborhood close to the main road on which the mandatory stops are located. Each cluster
is located between two mandatory stops. The buses always start at the first mandatory stop and
end at the last mandatory stop, this is denoted as a “trip”. A bus route can deviate from the route
along the mandatory stops and visit some optional stops in a cluster. From a cluster, the bus can
travel to the next mandatory stop, to an optional stop in the same cluster, or to an optional stop in
a next cluster. After a bus has reached the last mandatory stop, it goes back to the first mandatory

6

stop following the shortest path without serving any stops. Afterwards, this bus can be reused for
the next trip.

The service must serve a certain number of passengers during a planning horizon, which is typi-
cally a few hours. A passenger demands a ride online, through a website or a phone application,
in which they state their starting location and their desired arrival time or their desired departure
time. For a feeder service it might be more likely that passengers request a desired arrival time,
however, there might also be passengers who prefer a desired departure time. Therefore, the ad-
ditional option to request a desired departure time makes the service more complete. Passengers
immediately get a reply that their request will be scheduled and that they will soon receive more
details (departure stop and time), so they can start walking towards their departure stop well in
time. The service receives requests until a certain deadline, for example, one or two hours before
the first bus is dispatched. After all requests are received, the route of each bus is optimized for
the whole trajectory and the passengers are notified regarding the departure time of their bus and
which bus stop they should go to for their journey. After the planning is determined, the timetable
of the buses at the mandatory and optional stops is known and shared publicly. Passengers that
did not make a request, but that are aware of this timetable information, can catch a bus at the
mandatory stops or the optional stops being serviced. Passengers that are not aware of the re-
quest service or the timetable information can still catch a bus at the mandatory stops with a
guaranteed (low) maximum waiting time. Passengers that did not make an explicit reservation
before the deadline cannot make a request afterwards. Therefore, these passengers are not explic-
itly considered in the optimization procedure, which only takes requests into account. However,
these passengers can still go to a mandatory stop to board a bus, without the need for a reservation.

A small example of the FSMS is shown in Figure 1. In this example, a single bus is utilized for
two trips, i.e., bus trip A and bus trip B, to serve 13 passengers. Each passenger needs to arrive at
the destination or depart from a bus stop within a certain time window. Bus trip A serves eight
passengers, while bus trip B serves five passengers. There are six mandatory stops, labeled m0 to
m5. The first mandatory stop is the start of the route of each bus trip, while the last mandatory
stop is the destination. Between two mandatory stops there is a cluster containing six optional
stops. The clusters are labeled c1 to c5. The positions of both the mandatory and optional stops
is predetermined. Whether or not an optional stop is visited depends on demand nearby. The
main route, i.e., the fastest route from the start to the destination that solely visits the mandatory
stops, is shown as a dashed line. The bus deviates from the main route to pick up passengers. If
an optional stop is visited by a bus to pick up a passenger, it is colored black. Otherwise it is
shown as a white circle. Passengers are assigned to a bus trip and to a bus stop. This assignment
is shown as a dotted line between a passenger and a bus stop visited by a bus on a trip. In cluster
c4 on bus trip B, it can be seen that two passengers are assigned to the same optional stop, even
though that bus stop is not the closest stop to them both. This is done to reduce the travel time of
the passengers onboard the bus on trip B in order to reduce the objective function further and/or
to make the solution feasible. After all, a solution can become infeasible if a passenger does not
arrive at the destination within their desired time window. This can occur, for example, because
their bus visits too many stops and takes longer to reach the destination. After the bus on trip A
reaches the destination, it is sent back to the start in order to be reused again for the subsequent
trip, i.e., bus trip B. Figure 1 also shows the timetable of the buses on the mandatory stops. This
timetable is not fixed but depends on the demand for transportation. For example, the bus on trip
A takes longer to travel from m1 to m2 than from m2 to m3 because it needs to pick up passengers
in cluster c2. By comparing the departure times of both bus trips it is clear that a bus departs
at each mandatory stop in a time-interval of 30 minutes or less. In this example, the maximum
headway or the maximum time interval between bus departures at mandatory stops is 30 minutes,

7

c1 c2

c3
c4

c5

Start Destination

m0 m1 m2 m3 m4 m5

Legend

Mandatory stop

Optional stop (visited)

Optional stop (not visited)

Passenger

Bus trip A

Bus trip B

Cluster

Main route

Bus trip BBus trip ABus stop
m0

m1

m2

m3

m4

m5

10:00
10:04
10:10
10:12
10:17
10:20

10:30
10:34
10:37
10:39
10:42
10:46

Timetable

Figure 1: Example of the FSMS

which makes this solution feasible. Furthermore, it needs to be noted that after the bus arrives
at the last mandatory stop on trip A, the bus needs 10 minutes to reach the first mandatory stop
to start trip B. The time it takes for the bus to return to be reused for the next trip needs to be
considered to obtain a feasible solution.

3.2. Assumptions
To simplify the problem to some extent, the following assumptions are made. Passengers are as-
sumed to be traveling alone. A group of passengers that want to travel together can make a set of
identical requests, i.e., the same origin location and desired arrival time or departure time. How-
ever, it is not guaranteed that all passengers will be assigned to the same bus.

The DRFS is designed for a single bus route, assuming that none of these bus stops are shared across
bus lines and transfers between bus lines are not considered, as is customary for feeder services. We
assume the service is used to transport passengers from a rural or suburban area to a high demand
area. In such cases, only a limited number of bus lines are present. In the case of multiple lines,
a passenger located between two lines could easily be assigned first to one of the lines by a simple
algorithm, and afterwards, the planning of the line can be determined. The service provider could
also let the passenger choose which line is better suited. Furthermore, Vansteenwegen et al. (2022)
show that the majority of studies concerning feeder services solely optimize one bus line at a time.
For example, Wei et al. (2020) optimize a fully flexible feeder service and apply this to a real life
case in Chongqing China, where a single transportation hub is fed by three different neighborhoods.

The assumption that the requests are known beforehand is not far-fetched since services have been

8

implemented under these conditions before. An example of such a service is the “Belbus” from De
Lijn (the Flemish regional transportation company) in Belgium (DeLijn, 2021), a DAR service that
allows passengers to make a request for transportation until one day before operation. Another
example is the flexible feeder service in Salt lake city in the USA (Qiu et al., 2015) that requires a
request for transportation before the service starts. Depending on the circumstances, a service that
accepts real-time requests can be preferable, but the planning of such a service is left for future
research.

It is possible that the service can be overcrowded in the case that there are too many passengers
without a reservation. Capacity constraints for passengers with a reservation help to control the
crowding of these passengers, which can alleviate crowding in general. Furthermore, crowding can
be controlled by using “artificial capacities”, which are smaller capacities than the actual capacity,
in order to limit the number of reservations for a certain time period in the case we expect a larger
number of passengers without a reservation. The number of passengers without a reservation at
each mandatory stop can be estimated with the use of historical data. A probability distribution
for the arrival of passengers without a reservation at mandatory stops can be defined with the use
of this data. Part of the capacity that is reserved for passengers without a reservation can then be
defined as the mean value plus a certain number of standard deviations. This is the same principle
that is used in inventory control in warehouses, where certain storage remains unused for a period
of time with the expectation that inventory levels will rise in the future. An alternative would be to
give priority to passengers that make a reservation and only allow passengers without a reservation
if it is sure that passengers with a reservation can have a place on the bus.

Furthermore, it needs to be noted that the planning is considered “static” but not “fixed”. This
means that the routes and timetables of the buses are determined before the first bus starts, for a
certain period of time. However, the routes and timetables will vary from period to period based on
requests in each period. It also needs to be noted that a scenario where passengers leave from the
same place but have different destinations, can be optimized as well with the methods presented
in this paper without a larger amount of effort. However, we opted to focus on the opposite sce-
nario for this paper instead, i.e., where all passengers have the same destination but different origins.

Later on, we also make the optimization problem subject to a constraint that ensures all passenger
requests are accepted. It should be emphasized that the constraint of accepting all requests is
introduced to make the algorithm more efficient. The alternative would be to work with a penalty,
which is not evident since the value of this penalty is difficult to determine. In practice, the service
requires that requests are submitted by a specific deadline. If a certain number of requests result
in insufficient capacity, service providers have time to increase the number of dispatched buses in
order to still provide a feasible solution. If expanding the fleet size is not possible, the algorithm
must be run without the most recent requests, which implies these requests are rejected. Requests
could then be prioritized in a First Come First Serve manner.

3.3. Mathematical optimization model
In this section, we discuss the mathematical optimization model of the FSMS. Table 1 gives an
overview of the variables, parameters and sets that are used to describe the mathematical model.
The reasoning behind the parameter and variable notation is as follows. All variables and param-
eters are written in italics. Variables are in lower case, whereas parameters are in upper case.
The superscript refers to a descriptive characteristic of the parameter or variable and is written in
standard text format (not italic). The indices are referred to by the subscript.

The objective z of the mathematical model is to minimize a weighted sum of different components

9

Sets
B Set of buses
J Set of all possible trips of a bus
O Set of optional bus stops
F Set of mandatory bus stops
S Set of all bus stops: S = F ∪O
P1 Set of passengers with a desired arrival time
P2 Set of passengers with a desired departure time
P Set of all passengers using the service during the planning horizon: P = P1 ∪ P2

Parameters
Kc Number of optional bus stops in cluster c
M Number of clusters
T t
ij Travel time from bus stop i ∈ S to bus stop j ∈ S

Tw
pi Walking time of passenger p ∈ P to departure bus stop i ∈ S

T arr
p Desired arrival time of passenger p ∈ P1 at the destination bus stop m|F |−1

T dep
p Desired departure time of passenger p ∈ P2 at their assigned departure stop
T sr Amount of time needed to travel from m0 to m|F |−1

T ph Planning horizon for optimization
Df Maximum headway at the mandatory stops
Dw Maximum value for individual walking time
Dla Maximum value for arriving late
Dea Maximum value for arriving early
Dld Maximum value for departing late
Ded Maximum value for departing early
C Capacity of the buses
Wi Relative weight given to objective function component i

Decision Variables

xbtij
0-1 variables determining if bus b ∈ B, on his tth trip, visits bus stop j ∈ S immediately
after visiting bus stop i ∈ S

ypbti
0-1 assignment variables which assume value 1 if passenger p ∈ P is assigned to
bus b ∈ B, on his tth trip, and to departure bus stop i ∈ S

ap Arrival time of passenger p ∈ P at destination bus stop m|F |−1

dp Departure time of passenger p ∈ P at their assigned departure stop
ds
bti Departure time of bus b ∈ B, on its tth trip, at stop i ∈ S

alate
p ap − T arr

p when passenger p ∈ P1 is late
aearly
p T arr

p − ap when passenger p ∈ P1 is early
dlate
p dp − T dep

p when passenger p ∈ P2 is late
dearly
p T dep

p − dp when passenger p ∈ P2 is early
tdbt Time at which bus b ∈ B, on its tth trip, is available for departure at stop m0

δbti
Difference between the departure time of bus b ∈ B on its tth trip at stop i ∈ F
and the departure time of the next bus

Table 1: Notation for the MIP

10

related to the service quality. The parameters Wi are weights given to each component of the
objective function and can be determined by the user. The first component (1) calculates the
onboard travel time of all passengers. The second component (2) minimizes the walking time of
each passenger from their origin location to their assigned departure bus stop. It needs to be
noted that passengers are not always assigned to their closest bus stop. The passenger-bus-stop
assignment determines which bus stops are chosen for the passengers in order to reduce the overall
objective function value. For example, the travel times of the buses can increase significantly if all
passengers are assigned to their closest bus stop. In that case, it might be more efficient to group
passengers and assign some passengers to their second or third closest bus stop. The remaining
components (3) determine the differences between the desired arrival and departure times and the
actual arrival and departure times of the passengers.

Min

z = W1

∑
p∈P

(ap − dp)

 (1)

+W2

∑
b∈B

∑
t∈J

∑
i∈S

∑
p∈P

Tw
piypbti

 (2)

+
∑
p∈P1

(
W3a

late
p +W4a

early
p +

)
+

∑
p∈P2

(
W5d

late
p +W6d

early
p

)
(3)

The first group of constraints deals with the routing of the buses. Constraints (4) ensure that, for
the mandatory stops, exactly one arc enters or leaves. Constraints (5) ensure that, for all other
bus stops, at most one arc enters or leaves any stop. If an arc enters the stop, there must be an
arc leaving the stop and vice versa (6). The only exceptions are m0, where exactly one arc leaves
and none enter, and m|F |−1, where exactly one arc enters and none leave. Constraints (7) and
constraints (8) ensure that no bus ever has stop m0 as a successor or stop m|F |−1 as a predecessor.

∑
j∈S

xbtij = 1 ∀ i ∈ F, b ∈ B, t ∈ J (4)

∑
j∈S

xbtij ≤ 1 ∀ i ∈ O b ∈ B, t ∈ J (5)

∑
l∈S

xbtil =
∑
l∈S

xbtli ∀ i ∈ S0,N−1, b ∈ B, t ∈ J (6)∑
i∈S

xbti0 = 0 ∀ b ∈ B, t ∈ J (7)∑
i∈S

xbtN−1i = 0 ∀ b ∈ B, t ∈ J (8)

A second group of constraints deals with capacities or threshold values. Constraints (9) ensure that
no passenger needs to walk for a longer time than a predefined maximum value Dw, this is important
for the passenger-stop assignment. Similarly, constraints (10) ensure that any optional stop that is
farther away than a mandatory stop to a passenger, is not considered as a possible departure stop
for that passenger. It needs to be noted that both sets of constraints can be dealt with as an input,
i.e., if Tw

pi > min
(
Dw,mink∈F Tw

pk

)
then ypbti = 0, ∀ p ∈ P, i ∈ S, b ∈ B and t ∈ J . Constraints

(11) regulate the number of passengers on each bus, so that buses cannot transport more passengers
than a given capacity. Constraints (12) to (13) ensure that all passengers arrive and depart within

11

the required time window. It must be noted that parameters Dld, Ded, Dla and Dea can be chosen
by the service provider. Setting one of these parameters to a value of zero transforms the desired
arrival/departure time of the passengers into the earliest or latest arrival/departure time.

Tw
piypbti ≤ Dw ∀ p ∈ P, i ∈ S, b ∈ B, t ∈ J (9)

Tw
piypbti ≤ min

k∈F
Tw
pk ∀ p ∈ P, i ∈ O, b ∈ B, t ∈ J (10)∑

p∈P

∑
i∈S

ypbti ≤ C ∀ b ∈ B, t ∈ J (11)

alate
p ≤ Dla, aearly

p ≤ Dea ∀ p ∈ P1 (12)
dlate
p ≤ Dld, dearly

p ≤ Ded ∀ p ∈ P2 (13)

Constraints (14) and (15) define the decision variables aearly
p , alate

p , dearly
p and dlate

p as positive
deviations between the actual arrival or departure time and the desired arrival or departure time
of the passengers. Given the objective function, in each set of constraints, one of the two variables
will be zero for each passenger p in the optimal solution.

T arr
p − ap + alate

p − aearly
p = 0 ∀ p ∈ P1 (14)

T dep
p − dp + dlate

p − dearly
p = 0 ∀ p ∈ P2 (15)

Constraints (16) and (17) define the variables dp and ap, the departure time and the arrival time
of a passenger p, respectively.

If ypbti = 1 then dp = ds
bti ∀ i ∈ S, b ∈ B, t ∈ J, p ∈ P2 (16)

If
∑
i∈S

ypbti = 1 then ap = ds
bt|F |−1 ∀ b ∈ B, t ∈ J, p ∈ P1 (17)

Constraints (18) to (20) define the variables ds
bti and tdbt. Furthermore, buses are not allowed to

depart from the first mandatory stop, on any trip t, before their available departure time tdbt. These
constraints ensure that a bus stop is not served later in time than a following bus stop in the route.
This makes subtour elimination constraints unnecessary.

ds
bt0 ≥ tdbt ∀ b ∈ B, t ∈ J0 (18)

tdbt = ds
bt−1N−1 + T sr ∀ b ∈ B, t ∈ J0 (19)

If xbtij = 1 then ds
btj = ds

bti + T t
ij ∀ i ∈ S|F |−1, j ∈ S0, b ∈ B, t ∈ J (20)

Constraints (21) to (22) ensure the amount of time between two consecutive buses departing from
a mandatory stop does not exceed Df. These constraints model the maximum allowable headway
at the mandatory stops. We denote them as the headway constraints from now on.

δbti ≤ ds
ldi − ds

bti ∀ l ̸= b ∈ B, d ̸= t ∈ J, b ∈ B|B|, t ∈ J|J |, i ∈ F (21)
δbti ≤ Df ∀ b ∈ B|B|, t ∈ J|J |, i ∈ F (22)

Lastly, constraints (23) ensure that every passenger is assigned to exactly one bus on a trip and
one departure bus stop.∑
b∈B

∑
t∈J

∑
i∈S

ypbti = 1 ∀ p ∈ P (23)

12

Constraints (24) ensure that optional stops are visited when there is at least one passenger assigned
to the optional stop.

If
∑
p∈P

ypbti > 0 then
∑
l∈S

xbitl = 1 ∀ i ∈ O, b ∈ B, t ∈ T (24)

The remaining constraints determine the domains of the variables.

ypbti ∈ {0, 1} ∀ b ∈ B, t ∈ J, b ∈ B, p ∈ P (25)
xbtij ∈ {0, 1} ∀ b ∈ B, t ∈ J, i ∈ S, j ∈ S (26)
ds
bti, δbti ∈ ℜ+ ∀ b ∈ B, t ∈ J, i ∈ S (27)

tdbt ∈ ℜ+ ∀ b ∈ B, , t ∈ J (28)
ap, a

late
p , aearly

p ∈ ℜ+ ∀ p ∈ P1 (29)
dp, d

late
p , dearly

p ∈ ℜ+ ∀ p ∈ P2 (30)

The number of possible trips |J | can be calculated as follows. The maximum number of round trips
one bus is able to perform, assuming it only visits the mandatory stops, is the planning horizon
T ph divided by the time needed to make such a round trip, i.e., 2T sr. The maximum number of
trips each bus can make is then:

|J |=
⌈
T ph

2T sr

⌉
(31)

The linearized version of constraints (16), (17), (20) and (24) are given in Appendix A.

4. Solution approach
In this section, solution methods to solve the optimization model of the feeder service with manda-
tory stops (FSMS) are described. First, the model is solved using a commercial solver, namely
LocalSolver. Then, a metaheuristic is presented.

4.1. Commercial solver
In order to provide a benchmark for the results that are presented in Section 6, the optimization
model is solved with a commercial solver, namely with LocalSolver. This solver makes use of local
search heuristics and exact optimization techniques to solve the mathematical optimization model
defined in Section 3.3. This means that the solutions that are given by this solver are not guaran-
teed to be optimal. However, solutions obtained by LocalSolver are expected to be of good quality.
These benchmark solutions are subsequently used to assess the quality of the solutions obtained by
the heuristic described in Section 4.2.

LocalSolver is chosen over an exact solver such as CPLEX or Gurobi because the heuristic local
search techniques allow it to find good quality feasible solutions in a relatively short time. This is
crucial for a problem as complex as the optimization problem of the FSMS. The performance of
LocalSolver has been tested against Gurobi for the optimization of the Capacitated Vehicle Rout-
ing Problem with Time Windows (CVRPTW), a relatively similar optimization problem to the
FSMS (Blandamour, 2022). It is found LocalSolver consistently outperforms Gurobi, especially in
instances of a larger scale. Therefore, it can be expected that the results of LocalSolver will be of
good quality for the FSMS as well.

13

Additionally, in order to model the problem in LocalSolver, some constraints are implemented
differently compared to the model presented in Section 3.3. Preliminary results indicated that
this implementation in LocalSolver leads to the best solutions. The solver allows us to model list-
variables, which are arrays that can have a variable length. Each route of each bus on a certain trip
can be modeled as an ordered set of non-identical bus stops with an undetermined length, i.e., a
route is a list variable. This improves the speed of finding good feasible solutions significantly with
the use of LocalSolver. Furthermore, no big-M constraints are needed since LocalSolver allows us
to model “if-else” constraints directly.

4.2. Heuristic
In this section, the heuristic that is used to optimize the operations of the FSMS is explained. The
main outline of the heuristic is explained first. This is followed by a more detailed explanation of
the different components of the heuristic, namely the construction algorithm of a complete solution,
the construction parameters and the local search algorithm.

The heuristic that is presented in this paper does not strictly follow the framework of an existing
metaheuristic, but can be described as a greedy constructive heuristic. The reason why this heuristic
is developed is because the optimization problem of the FSMS is quite complex. We also consider
this type of heuristic as a methodological contribution that may serve to inspire others. The
optimization of the FSMS involves different interdependent decisions. This problem can be viewed
as an integration of a vehicle routing problem, an assignment problem, and a highly constrained
timetabling problem. All passengers are assigned to a bus and to a departure bus stop, taking into
account the maximum walking time and their preferred departure or arrival time. The routing of
each bus needs to be determined based on the optional bus stops that are assigned to passengers
and that are selected for each bus. Furthermore, a bus must arrive within a time interval at each
mandatory stop and buses need time to return to the first mandatory stop in order to be reused for a
next trip. All these decisions are intertwined and affect one another. In particular, bus trips cannot
be determined independently from each other since the headway constraints can only be respected
by determining the timetable of all bus trips. All these complexities make it very difficult to find
feasible solutions. By iteratively constructing new solutions from scratch, the heuristic overcomes
the complexity of the interdependency of bus trips. The semi-randomness of the heuristic offers a
good way to bring variability in the construction of bus trips and increases the chance of finding
more feasible solutions and higher quality solutions.

4.2.1. Main outline of the heuristic

The outline of the heuristic is shown in Algorithm 1. The heuristic constructs a complete solution
in each of its iterations i, which we denote as construction iterations. A complete solution serves all
passengers and consists of a set of buses that make a number of trips. A bus trip corresponds to the
journey of a bus from the starting point to the destination. Since buses return to the starting point
to be reused, a single bus can have several trips. The construction of a complete solution in each
construction iteration i is denoted as Construct_Solution in Algorithm 1. Construct_Solution
contains, among others, the generation of many bus trips. The generation of a single bus trip con-
sists of assigning passengers to a bus b on a certain trip t and constructing its route and timetable.
The generation of a bus trip is denoted as a trip generation. This trip generation is explained in
more detail in Section 4.2.2. When no more bus trips can be scheduled within a certain planning
horizon, the solution is complete and Construct_Solution ends.

14

Algorithm 1: Main outline of the heuristic
1 i = 1
2 while i ≤ N stop do
3 if no feasible solution found then
4 Search randomly for feasible construction parameters rc1, ..., rcm; // See 4.2.3
5 Incumbent solution = Construct_Solution(rc1, ..., rcm) ; // See 4.2.2
6 Incumbent construction parameters rb1, ..., rbm ← rc1, ..., rcm

7 else
8 Sample construction parameters rc1, ..., rcm in the neigborhood of the incumbent

construction parameters rb1, ..., rbm ; // See 4.2.4
9 Candidate solution = Construct_Solution(rc1, ..., rcm) ; // See 4.2.2

10 if new solution is feasible then
11 ∆E = objective function value candidate solution - objective function value

incumbent solution
12 if ∆E < 0 then
13 Incumbent solution ← candidate solution
14 rb1, ..., rbm ← rc1, ..., rcm ; // See 4.2.4
15 else if exp(−∆E

T) ≥ Uniform(0,1) then
16 Incumbent solution ← candidate solution
17 rb1, ..., rbm ← rc1, ..., rcm ; // See 4.2.4
18 end
19 Update temperature T according to a cooling schedule ; // See 4.2.4
20 i++

21 end
22 end
23 end
24 Return incumbent solution
The construction algorithm Construct_Solution, in iteration i, is greedy because it aims to con-
struct the best routes, timetables and assignments for one bus trip at a time regardless of the next
bus trips. This means that there are instances where the resulting solution is infeasible because
not all passengers are assigned to a bus. Due to the tight constraints of the optimization model,
infeasible solutions can often not be restored to feasibility without constructing the solution from
scratch again. For this reason, these infeasible solutions are discarded. The heuristic executes N stop

construction iterations, after which the best solution, i.e., the solution with the lowest objective
function value, is kept. If no feasible solutions are found after N stop construction iterations, the
instance itself is considered to be infeasible.

To bring more variance into the construction of the solutions, construction parameters are intro-
duced. These parameters guide Construct_Solution and bring a balance between the greediness
and the feasibility of the construction algorithm by determining whether or not a certain passenger
is assigned to a bus trip. This allows the algorithm to find more solutions with a better objective
value or to find more feasible solutions for “difficult instances”, i.e., instances where it is difficult to
find feasible solutions due to strict constraints. The mechanism of these construction parameters
is further explained in Section 4.2.3.

The values of the construction parameters are randomly sampled until values that lead to a feasible
solution are found. Afterwards, these values are changed for each construction iteration i, which
leads to different solutions in each construction iteration i. The goal of the heuristic is then to
find the best values of the construction parameters. This is done with local search, and more

15

specifically with Simulated Annealing (SA). As a result, the different construction iterations are
not independent, since valuable information about the construction of a good solution is used to
construct the next solution. The local search is further explained in Section 4.2.4. The local
search is also used to automatically fine-tune the parameters of the underlying greedy construction
algorithm. Therefore, the heuristic as a whole can be viewed as an automatic parameter fine-
tuning procedure. This is similar to the i-race procedure, which uses machine learning techniques
to automatically fine-tune parameters of optimization algorithms (López-Ibáñez et al., 2016). The
difference is that our heuristic uses local search rather than machine learning to automatically
fine-tune the parameters of a greedy construction algorithm.

4.2.2. Construction algorithm of one construction iteration

The pseudo-code for the construction algorithm Construct_Solution is given in Algorithm 2 in
Appendix B, together with the pseudo-code of the associated functions.

Preprocessing Before the start of the construction algorithm, the best route BR in case all bus
stops are visited by a bus is determined. This route is constructed in order to insert additional
optional stops in the best possible position in existing routes later on in the construction algorithm.
First, an initial feasible route is constructed and afterwards it is improved with a 2-opt procedure.
The initial route is constructed by adding all the mandatory stops first and then arbitrarily adding
optional stops between the mandatory stops. The 2-opt algorithm implemented here is a first-
improvement algorithm, and selects two edges of the existing route and swaps them if and only if
the objective function value is lowered by this swap. This procedure is done once before the start
of the first construction iteration.

Initialization In the first step of a construction algorithm, the passengers with a desired arrival
time T arr

p are placed in a queue Qa and are sorted according to their T arr
p . Passengers with a desired

departure time T dep
p are placed in a queue Qd and are sorted as well. Later on, passengers are

considered for a bus assignment in the order of queues Qa or Qd. The queues are sorted according
to the desired arrival or departure times of the passengers because passengers with comparable
desired arrival and departure times are more likely to benefit from being assigned to the same bus.
The first available departure times tdb of each bus b are set to the start of the planning horizon in
order to have initial feasible departure times.

Loop of trip generations In the second step, the construction algorithm enters a loop, in which
bus trips are generated. We denote each iteration of this loop as a trip generation. In each trip
generation, the earliest available bus b, i.e., the bus with the lowest tdb , is considered. The variable
tdb is dynamically updated in each trip generation. This means a different bus is considered in
each trip generation. The number of trip generations is not known beforehand and depends on the
parameters of the instance, such as the number of passengers or the fleet size.

In each trip generation u, that considers bus b on trip t, an initial route for bus b is created, in
which all the mandatory stops are visited. An initial timetable is constructed as well, in which the
bus leaves as soon as possible, i.e., at time tdb . This route and timetable are subsequently updated
as a passenger p is assigned to bus b on trip t. For each trip generation u, the passengers in either
Qa or Qd are considered. To determine which queue is considered, the earliest desired arrival time
T a of Qa and the earliest expected arrival time T d of Qd are determined. The latter is calculated
as the smallest T dep

p plus the time it would take to go from m0 to m|F |−1 by only visiting the
mandatory stops. If T a ≤ T d and Qa is not empty, the passengers from Qa are considered first.
Otherwise, if T a > T d and Qd is not empty, the passengers from Qd are considered first. This is

16

done in order to address the most urgent requests first. In both cases, passengers are iteratively
added to the bus trip as long as capacity constraints are still feasible and while the queue is not
empty. After the timetable and the route of bus b on trip t is determined, the timetable can be
modified to accommodate additional passengers from both queue Qa and queue Qd. This is done
with three construction parameters and is explained in more detail in Section 4.2.3. When no more
passengers from a queue can be assigned to bus b on trip t, the trip generation u ends and the next
bus is considered.

In case Qa is considered, the function Best_Stop_a is used to determine the best possible de-
parture stop s for the current passenger p from queue Qa. This is done in a manner similar to
the Pilot Method metaheuristic framework (Voß et al., 2005), where better solutions are found by
looking ahead to see which possible choice worsens the objective the least. In our heuristic, the
best departure stop s is determined by calculating the additional cost of each feasible departure
stop and choosing the departure stop with the lowest cost. The additional cost is the sum of two
factors: the additional travel time that the bus needs to travel to reach the bus stop, and the
walking time of the passenger walking to the bus stop. A bus stop is feasible if it is within Dw

walking time. Furthermore, if adding a departure stop to the route makes the headway constraints
or the desired arrival time window constraints infeasible, the bus stop is not feasible either. If there
are no feasible bus stops available, the passenger is not assigned to the bus. If there exists a feasi-
ble departure stop, then the best feasible departure stop is assigned to passenger p on bus b on trip t.

Afterwards, if the departure stop is not part of the route already, the route of the bus is up-
dated with function Update_route. This is done with the help of the route BR, the highly ef-
ficient route that visits all bus stops, determined during preprocessing. The departure bus stop
s is inserted in the current route depending on where s is placed in BR. For example, if BR is
[m0, o0, o1,m1, o2, o3,m2], the current route is [m0,m1,m2] and we wish to insert bus stop o2 in
the current route, then it should be inserted between m1 and m2 because that is the most similar
placement of o2 in BR. By updating the route in this manner, we can assure that the route remains
efficient, without the need to perform heavy time consuming improvements on it. Since part of the
route is fixed, this method of updating the route yields good results.

After the route is updated, the timetable is updated with Update_timetable. Since the differ-
ence in the desired arrival time T arr and the actual arrival time, i.e., the departure time d|F |−1

at mandatory stop m|F |−1, is a sum of absolute deviations, the median, in this case the median
of the desired arrival times of the passengers onboard the bus, minimizes this sum. However,
an additional constraint is that the solution must be within the interval [LBb, UBb], which is de-
pendent on the desired arrival times. Whenever the median is larger than UBb, the arrival time
will be set to UBb. When the median is smaller than LBb, the arrival time will be set to LBb.
The correction of the arrival time still gives the best possible solution since

∑
p|T arr

p − d|F |−1| is
a convex function of d|F |−1. If the resulting departure times of the bus at the mandatory stops
make the headway constraints infeasible, the arrival time can be adjusted in order to satisfy the
constraints. If it is still not possible to satisfy both the passenger time window constraints and
the headway constraints, the passenger is not assigned to the bus. If the arrival time adjustment
results in the bus leaving the first mandatory stop before the bus is available for departure, the
arrival time can be corrected as well. In case this is in conflict with the other constraints, the
passenger is not assigned to the bus either. Whether or not these last two timetable adjustments
take place depends on the construction parameters, this is explained in more detail in Section 4.2.3.

In case Qd is considered, the function Best_Stop_d is used to determine the best possible de-
parture stop for the current passenger. This function determines the best stop in the same way as

17

Best_Stop_a, however, the difference in desired and actual departure time of the passenger is also
added to the additional cost of the potential passenger-bus stop assignment. This is done because
for passengers in Qd, the departure stop affects the difference in departure times. Moreover, there
are additional restrictions present. Bus stops cannot be visited before the previously inserted bus
stop in the current route. This is because the passengers are added to the bus according to an
ascending T dep

p , which means that each subsequent passenger wishes to depart at a later time. For
example, assume that passenger p1 wishes to depart at a later time than passenger p0, but p1 is
assigned to a bus stop that is visited before the departure stop of p0 in the current route. The
bus is then forced to pick up passenger p0 before passenger p1 due to the departure time window
constraints. However, the departure bus stop of p1 is visited before the departure time of p0, which
makes this passenger-bus assignment inefficient due to backtracking or even infeasible in most cases.
In some cases, such an assignment might be possible. For example, if the departure bus stops of
both passengers are close to each other and the maximum allowable time to depart earlier than
the desired departure time is large enough for the bus to drive from one stop to another. How-
ever, this is not a likely scenario and such an assignment is quite inefficient, thus it is not considered.

If the bus cannot possibly arrive at a bus stop within the desired departure time window of the
passenger, the bus stop is infeasible for this passenger-bus assignment. The headway constraints
and the bus departure constraints from the first mandatory stop are taken into account in the same
manner as in the function Best_Stop_a. If there are no feasible bus stops available, the passenger
is not assigned to the bus. If there are feasible bus stops, the route and the timetable are updated
with Update_route and Update_timetable. The function Update_timetable determines the me-
dian of the T dep

p of the passengers onboard.

The loop with all trip generations stops only if the departure time of the current bus at the last
mandatory stop is outside of the planning horizon or if all passengers have been assigned to a bus
trip.

Initialization for the next construction After all possible passengers are added to the bus,
the bus becomes available for the next trip and the earliest available time tdb of the bus is updated.
The new tdb is calculated as the arrival time at m|F |−1 plus the time T r that the bus needs to reach
the first mandatory stop again. If no passengers are assigned to a bus, the bus will be empty and
it will visit all mandatory stops in order to fulfill the headway constraints.

4.2.3. Construction parameters

The construction algorithm in Section 4.2.2 is greedy, which makes infeasible solutions possible.
The construction algorithm can be too greedy by, for example, optimizing the routes and timeta-
bles of the first 20 passengers without taking into account the remaining requests. As a result,
passengers that are already processed in the algorithm are provided with a good service. However,
the remaining requests cannot be processed anymore, for example, because there are no more buses
available at the right time. Therefore there is a need to balance the search for a feasible solution and
the greediness of the construction. With this goal in mind, several sets of construction parameters
are introduced.

An overview of the construction parameters is shown in Table 2. This table shows what each
construction parameter determines and when in the algorithm this takes place. The table also
shows the range of values each parameter can take. Two of these parameters are used during the
generation of a bus trip, while the others are used after each bus trip generation. These parameters
are further explained in more detail.

18

Parameter Range Determines When?
rd
u [0.5, 1.0] Maximum headway for bus trip generation u During the generation

of a bus triprf
u [0.0, 1.0] Maximum timetable adjustment for feasibility

rw
u [0.0, 1.0] Maximum walking time for additional passengers After the generation

of a bus triprsf
u [0.0, 1.0] Maximum forward timetable shift

rsp
u [0.0, 1.0] Maximum backward timetable shift

Table 2: Overview of construction parameters

The construction parameters have an index u, which refers to a trip generation. This is the trip
generation where the current bus b is dispatched on trip t and for which the construction algorithm
is determining the planning. For example, u = 1 can refer to bus b = 0 on trip t = 1 and u = 2
refers to the next bus that is dispatched, e.g., bus b = 5 on trip t = 0. Each set of construction
parameters has N rd number of elements. This number corresponds with the number of bus trips
that are needed in each construction iteration and depends on how the solution is constructed. In
each construction of a complete solution each set is unique. To illustrate this, the values of rf for
two different construction iterations i and i + 1 are shown in Figure 2. Each bar in the figures
corresponds to the construction parameter rf

u, of the set rf, on trip generation u. It can be seen
that in construction iteration i, the set rf has N rd = 20 elements while in construction iteration
i+1 it has 21 elements. Furthermore, the values of each element in each set fluctuate from bus trip
to bus trip. These parameters can be viewed as variables of a function that constructs a complete
solution and the variables that lead to the best solution need to be determined.

0 5 10 15 20

rf

0

20

40

60

80

100

V
al
u
e
(%

)

(a) Values for rf on construction iteration i

0 5 10 15 20

rf

0

20

40

60

80

100

V
al
u
e
(%

)

(b) Values for rf on construction iteration i+ 1

Figure 2: Values of the set rf for two different construction iterations

The construction parameter rd
u is used to determine the maximum allowable time Df

bt between the
departure of bus b on trip t and the previous bus at any mandatory stop. This is simply done
by multiplying the maximum allowable time Df with rd

u, the resulting product is then Df
bt. The

parameter rd
u can take values between 0.5 and 1.0. This means that Df

bt ≤ Df for all buses and
trips, and Df

bt is unique for each bus trip. Limiting the headway constraint further to a different
extent for each bus separately allows the construction algorithm to increase the number of different
solutions it can create by bringing more variability to the construction.

With each passenger-bus assignment there is a choice to adjust the timetable to either make the
headway constraints feasible or to make the departure times feasible or both. Whether or not these

19

adjustments take place depends on the construction parameter rf
u. The construction parameter rf

u

can take any value between 0 and 1. The feasibility ratio Rf is the percentage between the ideal cost
increase of adding passenger p to bus b on trip t, e.g., the cost increase if there were no headway
constraints or passenger departure time window constraints, and the current feasible cost increase.
If rf

u is smaller than feasibility ratio Rf, the passenger is not assigned to the bus. In the case the
passenger is not accepted for this assignment, the passenger is still considered for an assignment
in the next bus trip generation. If there are no more bus trips available, the passenger is accepted
regardless of the feasibility ratio. This is a way to balance the feasibility and the greediness of the
construction. Since rf

u is different in each construction iteration, this can lead to different solutions
in each construction of a complete solution.

During the trip generation both the route and timetable are gradually constructed from scratch.
After a trip generation, only the timetable can be modified to accommodate additional passengers
from both queue Qa and queue Qd. This is done with the last three construction parameters rsp

u , rsf
u

and rw
u . To accommodate more passengers, the maximum amount of time Dsp that the buses can

depart earlier in time than originally planned, or the maximum amount Dsf that buses can depart
later in time, is determined. The desired arrival or departure times of the passengers onboard
and the headway constraints together create feasible time windows for the departure of the bus at
each bus stop. We can then create two lists Ll and Lu, containing the differences in time between
the current departure time of bus b and respectively the lower and upper bound of the feasible
time window of each visited stop. The parameters Dsp and Dsf are then the minimum values of
respectively Ll and Lu. Adding an additional passenger p, makes the timetable shift T s

p amount of
time in order to make the assignment feasible. Here, T s

p can be negative or positive. A passenger p
is assigned to the bus if the following conditions are satisfied. Firstly, if T s

p is negative, the absolute
value needs to be lower than rsp

u Dsp. Secondly, if T s
p is positive, then it needs to be lower than

rsf
uD

sf. Lastly, the passenger cannot walk more than rw
uD

w amount of time to their assigned bus
stop and their assigned bus stop must already be part of the route. The parameters rsp

u , rsf
u and

rw
u are construction parameters and can take values between 0 and 1. These parameters limit the

number of additional passengers that are added to a bus, i.e., passengers added after the trip is
generated. This increases the greediness of the construction by only accepting assignments with
a certain ideal level of quality. Reducing the maximum walking time, for example, leads to more
greedy solutions since we only accept the more ideal assignments that lead to less walking time.
This provides more variability in the construction of a complete solution, which leads to better
solutions and a larger number of feasible solutions.

4.2.4. Local Search for construction parameters

In the previous section, various construction parameters are used in order to guide the construction
of a single complete solution. In this section, the local search algorithm that is implemented to find
the best values for these parameters is discussed. For the remainder of this section, we refer to the
construction parameters rd, rf, rsp, rsf and rw as variables and a set of values for these variables
as a solution.

The local search framework that is used in this paper is the framework of Simulated Annealing
(SA). The main idea behind SA is allowing occasional uphill moves to avoid entrapment in poor
local optima. The search starts from an initial feasible solution, i.e., an initial value for each
construction parameter. Each solution has a specific objective function value. A small change in
one or several variables can generate a neighboring solution with a different objective value. The
neighboring solution is generated by randomly sampling different variables in the neighborhood
of the incumbent solution. If the cost value of the candidate solution is better than that of the
incumbent solution, a move to the candidate solution is made. However, if the candidate does not

20

improve the incumbent solution, there is still a chance of transition. The probability of accepting
such an uphill moves is modeled with the Boltzmann distribution exp

(−∆E
T

)
, with ∆E the difference

in objective function value between the candidate and the incumbent solution and T the current
temperature. In practice, if a randomly chosen number between zero and one is smaller than this
Boltzmann factor, an uphill move is accepted. The temperature typically is given a high value at the
start of the search, in order to move out of local minima. Afterwards, the temperature is decreased
according to a cooling schedule, which decreases the probability of accepting an uphill move as the
algorithm continues. In the literature, there are several types of cooling schedules, categorized into
classes such as monotonic schedules, adaptive schedules, geometric schedules and quadratic cooling
schedules. In this paper, we consider the cooling schedule presented by Azizi and Zolfaghari (2004).
A traditional cooling schedule, such as the geometric decrease of the temperature, is useful if the
local minima are near the start point. However, this may not lead to a near optimal solution if
some local minima are encountered at a relatively low temperature towards the end of the search.
Azizi and Zolfaghari (2004) propose an adaptive SA method that takes into consideration the
characteristics of the search trajectory. In this method, the temperature can be increased and
decreased depending on the trajectory of the search. The following temperature control function is
used:

Ti = Tmin + λ ln (1 + δi) (32)

Here, λ is a coefficient that controls the rate of temperature rise, Tmin is the minimum value that the
temperature can take and δi is the number of consecutive upward moves at construction iteration
i. The initial value of δi is zero, thus the initial temperature T0 = Tmin. More concretely, δi is
given by:

δi =

δi−1 + 1 ∆E > 0

δi−1 ∆E = 0

0 ∆E < 0

(33)

The rationale behind this approach is that downhill moves are more common in the beginning of
the search, which means that there is less need for a high temperature to push the search out of
local minima. However, as the search continues, the chance of getting trapped in a local minimum
increases. Therefore, a high temperature that could move the search out of local minima is needed.
Another benefit of this method is that the search continues for a predetermined number of con-
struction iterations N stop and does not freeze if the computational time is extended. In our case,
N stop refers to the number of feasible construction iterations.

The variables that are used to construct the first feasible solution are randomly sampled until a
feasible solution is found. The consecutive candidate solutions are sampled in the neighborhood of
the incumbent solution. Each element of each set of the candidate variables is sampled with a normal
distribution with a mean value µ equal to the current variable value, and with standard deviation
σ. The latter is a parameter of the SA local search and determines the size of the neighborhood
we look for candidate solutions. Furthermore, there are many possible solution compositions since
there are many variables that constitute a solution. The local search may require a large number
of construction iterations to provide good quality solutions because a large portion of the solution
space needs to be explored. In order to limit the generation of infeasible solutions, we do not re-
sample all variables in each construction iteration of the heuristic. Instead, a subset of the variables
remains the same, i.e., the values of these variables remain the same as in the previous construction
iteration. For example, the sampling of a candidate variable rc,fu , i.e., the new value of rf

u, in the
next construction iteration, in trip generation u, is then given by:

rc,fu =

{
Normal

(
rb,fu , σ

)
rc,fu ∈ Rc

rb,fu otherwise
(34)

21

With Rc the set of variables randomly chosen to be changed and rb,fu the incumbent variable of rf
u.

It needs to be noted that sampling the variables with a normal distribution can lead to instances
where the variables take invalid values. In such cases, the value of the variable is reset to the
closest valid value. The number of variables |Rc| that are changed in each construction iteration,
the neighborhood size σ, the coefficient λ and the minimum temperature Tmin, are parameters of
the SA and need to be fine tuned. This is done in Section 5.

5. Experimental set-up
In this section, the instances that will be used to evaluate the performance of the heuristic are
discussed. Afterwards, the best parameters for the local search are determined. The heuristic is
run on a computer with a Windows 10 Enterprise operating system, an Intel CoreTM i7-8850H,
2.60Ghz CPU and 16 GB of RAM.

5.1. Instances
To test the heuristic, different instances are used. Instances I1 to I15 are benchmark instances that
are solved with LocalSolver as well. The positions of the mandatory stops are chosen arbitrarily
and are equidistant. The optional stops are scattered around a location between the mandatory
stops. The positions of the passengers are randomly chosen within a certain radius of the bus stops.
The passenger desired arrival or departure times are randomly sampled in alternating time-intervals
within a planning horizon of four hours. All instances are listed in Table 3. The instances have
different attributes, such as the number of buses |B|, requests |P | and bus stops |S|. There is one
cluster between two mandatory stops, so there are M = |F |−1 clusters. Furthermore, without loss
of generality, each cluster has the same number of bus stops K. The first half of the |P | passenger
requests have a desired arrival times and the other half have a desired departure times. All the
objective weights Wi are given equal value, in order to give each component of the objective function
equal importance. A detailed study of the effect of the weight values on the solutions is beyond
the scope of this paper. The details of the parameters of the instances, as well as the solutions
discussed in this paper are available in detail online: https://www.mech.kuleuven.be/en/cib/
drbp/mainpage#section-8.

5.2. Fine-tuning local search parameters
The parameters of the local search need to be fine-tuned in order to ensure that the heuristic gives
good quality results consistently within a short amount of time. For the remainder of this section,
a representative subset TSa of 15 of these instances is selected. These instances are indicated in
bold in Table 3.

For each of the instances in TSa, the heuristic is run with different values of each local search
parameter. To reiterate, the local search parameters are: the number of variables |Rc| that are
changed in each construction iteration, the neighborhood size σ, the coefficient λ and the minimum
temperature Tmin. Different local search parameter values result in different objective function val-
ues and different runtimes. Only one parameter is changed at a time, in order to isolate their effect
on the results. However, even with the same set of parameter values, different objective values may
result from the heuristic, due to the randomness of the algorithm. To obtain an adequate estimate
of the objective function value, the heuristic is run 30 times for each set of local search parameter
values for each instance. The algorithm runs for N stop = 30000 feasible construction iterations on
each run.

22

https://www.mech.kuleuven.be/en/cib/drbp/mainpage#section-8
https://www.mech.kuleuven.be/en/cib/drbp/mainpage#section-8

Instance |B| |F| K |S| |P| Df C

I1 2 4 5 19 10 20 20
I2 3 4 5 19 10 20 20
I3 2 4 5 19 12 20 20
I4 3 4 5 19 12 20 20
I5 2 4 5 19 16 20 20
I6 3 4 5 19 16 20 20
I7 3 4 5 19 18 20 20
I8 4 4 5 19 18 20 20
I9 4 4 5 19 20 20 20
I10 3 5 5 25 10 20 20
I11 3 5 5 25 16 20 20
I12 4 5 5 25 20 20 20
I13 3 6 5 31 10 20 20
I14 4 6 5 31 16 20 20
I15 4 6 5 31 20 20 20
I16 3 4 5 19 20 20 20
I17 3 5 5 25 20 20 20
I18 5 6 5 31 48 20 20
I19 6 6 5 31 48 20 20
I20 7 6 5 31 48 20 20
I21 8 6 5 31 48 20 20
I22 12 6 8 46 20 20 20
I23 12 6 8 46 48 20 20
I24 10 5 8 37 90 20 20
I25 10 6 8 46 90 20 20
I26 10 7 8 55 90 20 20
I27 12 6 8 46 90 20 20
I28 11 6 5 31 162 20 20
I29 12 6 5 31 162 20 20
I30 12 6 8 46 162 20 20
I31 12 5 8 37 162 20 20
I32 12 7 8 55 162 20 20
I33 12 8 8 64 162 20 20
I34 12 6 3 21 162 20 20
I35 12 6 10 56 162 20 20
I36 6 5 8 37 90 20 5
I37 6 5 8 37 90 20 10
I38 6 5 8 37 90 20 20
I39 6 5 8 37 90 20 30
I40 6 5 8 37 90 15 20
I41 6 5 8 37 90 25 20
I42 6 5 8 37 90 30 20

Table 3: List of test instances

23

10000

10500

11000

11500
O
b
je
ct
iv
e
va
lu
e
(s
)

0.025 0.05 0.1 0.15 0.2
σ

1

2

3

4

R
u
nt
im

e
(s
)

(a) Parameter σ on instance I17

10100

10150

10200

10250

10300

O
b
je
ct
iv
e
va
lu
e
(s
)

5 10 50 100 500
λ

10

12

14

16

18

R
u
nt
im

e
(s
)

(b) Parameter on λ instance I17

Figure 3: Influence of local search parameters λ and σ on instance I17

Both the resulting mean value of the objective values and the runtimes are considered in the choice
of these parameters. Generally, it is found that values that increase the runtime also improve the
quality of the solutions. Choosing a larger neighborhood coefficient σ leads to better solutions on
one hand because a larger part of the solution space is explored. On the other hand, choosing a
larger neighborhood results in longer runtimes because there are more infeasible solutions found
and discarded. Choosing to re-sample a larger number |Rc| of variables leads to better solutions
and a longer runtime as well. Similarly, when more variables are re-sampled, there is a higher
chance to encounter infeasible solutions, with the trade-off of exploring more of the solution space.
Choosing smaller values for λ or Tmin leads to better results and slightly higher runtimes in some
instances. Lower values for these parameters result in a slower temperature change, which helps to
escape local minima. The runtime likely increases in some instances due to the fact that at lower
temperatures, the algorithm is near local minima and no uphill moves are allowed often. These
instances may have a small number of feasible solutions near the local optima, which prolongs the
search. In some cases, the decrease in objective value is not significant compared to the increase
in runtime. For example, figure 3 shows the influence of the λ and σ parameters for instance I17.
It is clear that the objective does not improve by much for σ > 0.15 or for λ < 10. This is thus a
good criteria to determine the best parameter values.

From these experiments and with these criteria in mind, it is concluded to set σ = 0.125, λ = 10,
|Rc| = 10 and Tmin = 0.01. These are the values that gave the best range of objective values in the
shortest times for all of the instances from TSa.

6. Performance of the algorithm
In this section, the results for all the instances that are discussed in Section 5 are presented. In
the previous section, the parameters of the Simulated Annealing (SA) algorithm were determined
on a training set of instances. First, the performance of the heuristic on a small set of instances
is discussed. These instance are run several times in order to gain insight on the behavior of the
heuristic. Afterwards, we compare the results of using three different local search methodologies to
find the best construction parameters. Finally, all instances are evaluated. To test the heuristic,

24

each instance was run 10 times. The best solution and the mean value of these runs are reported
in Table 4.

6.1. Behavior of the heuristic
Figure 4 shows the (a) accepted and the (b) improving feasible solutions that are found during an
individual run on instance I19. Each dot in this figure represents an objective function value that
corresponds with a feasible solution found by the heuristic during the construction iterations.

The heuristic makes most of its improvements at the start, within the first seconds. Within these
first seconds of runtime, the first feasible solution is found. It can be seen that afterwards the
heuristic accepts solutions with a higher objective function value in order to escape possible local
minima. After a certain point in time, approximately after two seconds, the heuristic is not able to
find better solutions so easily. This is likely due to the presence of an isolated local minima, i.e., a
local minima that is difficult to escape from. However, with the SA procedure the heuristic is able
to escape this local minima to reach a lower objective function value. After approximately 8s, the
heuristic seems to not find any feasible solution at all for some time. It is possible that the feasible
solution space is quite narrow around the incumbent solution. This means that infeasible solutions
are found more often and more construction iterations with different parameters are needed to
find something feasible again. The total runtime of the heuristic on instance I19 is 12.4s, while
the last improvement is found after approximately 7s. This means that a significant portion of
the runtime is devoted to reaching the stopping criterion: 30000 construction iterations that yield
feasible solutions. In other words, the algorithm can sometimes yield good results even when the
required number of construction iterations is lowered.

0.0 2.5 5.0 7.5 10.0 12.5

Runtime (s)

21500

22000

22500

23000

23500

24000

24500

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(s
)

(a) Accepted solutions

0 2 4 6

Runtime (s)

21500

22000

22500

23000

23500

24000

24500

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e
(s
)

(b) Improving solutions

Figure 4: Feasible solutions found by the heuristic

It needs to be noted that the time it takes to find the first feasible solution is dependent on the
instance. In general, in most instances, the heuristic finds a feasible solution within the first second
of runtime. Some instances which are more difficult to solve, such as instances I18, I33, I36 and
I40, take a relatively longer time to find the first feasible instance (up to a few seconds). These
instances are characterized by having more stringent constraints, such as a low number of buses
compared to the number of requests, low vehicle capacities, etc. Furthermore, the same instance
may take longer to find feasible solutions on one run compared to another. The time it takes to

25

find feasible solutions is also determined by the stream of random numbers.

Instances I19, I20, I24, I25, I29 and I30 are run 100 times to observe the different objective function
values that the heuristic produces when different streams of random numbers are utilized. Figure
5 shows a box-plot of the results that are obtained from the 100 runs. The gap, with respect to
the lowest value that is observed, is reported rather than the absolute objective function value in
order to compare the results of the different instances directly. Although the lowest values are not
obtained often, the algorithm still guarantees solutions of good quality. For the smaller instances,
solutions with gaps of 1.5% to 3.5% are observed the most. For the largest instances this goes
up to the 3.5%-5% range. Smaller instances, i.e., instances with less decision variables seem to
perform relatively better. This is expected since a smaller portion of the solution space of these
instances can be explored with the same number of feasible construction iterations. Increasing
the number of feasible constructions iterations for the stopping criterion can improve the overall
quality of the solutions, albeit at the cost of longer runtimes. The objective function values are also
quite consistent, with a relative standard deviation of 0.02 or less for all instances. Furthermore,
finding lower objective function values generally does not require a longer runtime. The runtime
seems to be independent from the objective function value. This means that a single better quality
solution is obtained when the stream of random numbers is favorable and not necessarily when
more feasible construction cycles are performed. More construction cycles, however, may improve
the consistency of finding good quality solutions.

I19 I20 I24 I25 I29 I30

0.00

0.02

0.04

0.06

G
ap

w
.r
.t
.
m
in
im

u
m

va
lu
e

Figure 5: Box-plot of obtained solutions after 100 heuristic runs

6.2. Local search methodologies
Construction parameters guide the construction of a solution. Different configurations of these
parameters lead to different, and oftentimes better, solutions. Therefore, as previously stated,
finding the best construction parameters is essential. The best values for these parameters are found
with the use of local search, namely with Simulated Annealing (SA). The question arises whether
or not the use of local search techniques is needed to obtain better quality results. We conduct
the following experiments to justify the use of SA. We choose instance I18 for these experiments
since its a mid-size instance that is more difficult to solve, i.e., an instance with more stringent
constraints. The instance is optimized with the SA local search, a Steepest Descent (SD) method
and with a random search method. The SD method works similarly to the SA method, with
the difference being that in SD only downhill moves are allowed, i.e., only solutions with a lower
objective function value are accepted. In the random method, the construction parameters are
randomly sampled in each construction iteration. Instance I18 is optimized with all three methods
for 50 runs. All methods have a stopping criterion of 30000 construction iterations. Figure 6 shows
the results as box-plots.

26

Simulated
Annealing

Steepest
Decent

Random
Search

23000

23500

24000

24500

25000

25500

26000

26500

O
b
je
ct
iv
e
va
lu
e
(s
)

Figure 6: Box-plot of solutions of I18 obtained by three different local search methodologies

It can be seen that SA is the best performing methodology, followed by SD and then the random
method. Both the median values and the minimum values of SA are lower than all values in both SD
and the random method. Furthermore, the range of values obtained by the SA method is smaller
than both the SD method and the random method, which indicates that there is less variability
in the results. This indicates that SA is an appropriate method for the search of construction
parameters. The reason why SA outperforms SD is likely because SA also allows uphill moves, which
make it possible to escape local minima. Both SD and SA outperform the random methods because,
unlike the random search, both of these methods utilize information of the previous construction
iteration to find better quality solutions.

6.3. Experimental results
The heuristic is used to solve all of the instances that are described in Section 5. The results are
summarized in Table 4. Here, the best (lowest) objective function value and the mean objective
value of 10 runs are given. For the first 15 instances, the problem is solved with LocalSolver as
well in order to assess the quality of the solutions. These instances are run for one hour with the
commercial optimization solver. This allows us to determine the gap between the values obtained
by our heuristic and the values obtained by LocalSolver. The minimum and mean gaps from the
10 runs, i.e., the gap between the values obtained by LocalSolver and the best observed and the
mean values of the heuristic respectively, are also presented in Table 4. The 16th row of Table 4
shows the mean value µ̄I1-I15 of the gaps and the runtimes of instances I1 to I15 as well.

The mean runtime of the 10 runs is given as well. One of the most time consuming aspects of
this heuristic is the fact that, depending on the instance, many infeasible solutions can be pro-
duced. Since the heuristic only stops after a certain number of feasible solutions is found, these
construction iterations only increase the total runtime. However, the framework of the heuristic
allows us to implement it in parallel as well. To do this, each semi-random greedy construction
iteration is executed on a different thread, until a feasible solution is obtained. Once a feasible
solution is found, the candidate and the incumbent solution are evaluated and the heuristic moves
on to the next construction iteration of the local search. This means that the algorithm is sped up
because feasible solutions are found in a shorter time. The runtimes of the serial and the parallel
implementation with 12 threads of the heuristic are given in Table 4.

It can be seen that the heuristic consistently obtains better results than LocalSolver. For some
instances, the difference can be as large as 21%. The runtimes of the heuristic are also a fraction
of the allowable runtime that is given to LocalSolver. It needs to be noted, however, that Local-

27

Solver uses 12 threads to solve the mathematical model, while the serial heuristic only uses one. A
comparison between the runtimes of the heuristic that is implemented in parallel is a fairer com-
parison. On average, the heuristic delivers solutions with objective function values that are 12.4%
lower compared to the solutions obtained by LocalSolver, in 0.06% of the runtime. The remaining,
larger instances show consistent results within reasonable runtimes. The instances that are more
difficult to solve, such as instance I18, have a higher runtime because there are more construction
iterations that yield infeasible solutions. This means that there are more construction iterations
needed in total in order to reach the stopping criterion. If the instance becomes larger as well, i.e.,
there are more variables, the runtime increases as well. This is because each construction cycle
takes longer to complete. However, this increase in runtime is not as significant as the previously
discussed increase. Furthermore, by comparing the runtimes between the serial and the parallel
implementation we can see that the runtime can be decreased with a factor of up 5.11 for some
instances. On average, the runtimes decrease by a factor of 2.6. It is likely possible to further
optimize the code to make the parallel implementation more scalable to the number of threads.

7. Service analysis
A comparison between the demand-responsive feeder service (DRFS) and a traditional feeder service
is previously discussed by Galarza Montenegro et al. (2021). It is found that the DRFS performs
significantly better than its traditional counterpart. Since the FSMS is an extension of the DRFS,
we can expect similar results. Furthermore, in the FSMS fewer buses are needed to serve the same
demand because the buses now return to the start to be reused. Moreover, passengers without a
reservation are guaranteed a maximum waiting time at the mandatory stops. For this reason we
opt not to include a comparison with a traditional service. The influence of the different instance
parameters on the service quality and on the runtime are discussed instead.

Several experiments are conducted in which four instances are solved with the heuristic. Each set
of instances has the same set of parameters except for the parameter in question, which varies from
instance to instance in order to isolate the influence of said parameter. Each set of instances is
a subset of the instances shown in Table 3. The instance parameters that are discussed are: the
number of passengers per hour, the number of buses, the number of mandatory stops, the number
of optional stops per cluster, the bus capacity and the maximum allowable headway at mandatory
stops Df. The results are presented in Table 5. In this table, both the objective function value
per passenger and the runtime are shown. Other service quality metrics are given as well. The
average travel time and walking time per passenger is given in columns five and six respectively.
The average difference in desired and actual arrival time per passenger and the average difference
in desired and actual departure time per passenger are given in the last two columns. Since each
instance is run 10 times, we consider the best observed solution for the objective function value
and the service quality metrics. The runtime in Table 5 is the average runtime of the 10 runs. The
average runtime is chosen because it is more representative; depending on the stream of random
numbers runtimes can vary.

We further discuss the influence of the passengers without a reservation on the operation of the
FSMS. The demand for transportation of these passengers is stochastic in nature. Therefore we limit
ourselves to a descriptive analysis. A more in-depth analysis would require much more research,
which we consider outside of the scope of this study.

28

Objective function value (s) Runtime (s)

Instance Heuristic
mean

Heuristic
min

Local
Solver

Gap
mean

Gap
min

Local
Solver

Heuristic
Parallel

Heuristic
Serial

I1 4278 4242 4420 -3.22% -4.03% 3600 1.93 3.53
I2 3762 3760 4055 -7.22% -7.26% 3600 0.75 1.76
I3 5491 5414 5993 -8.38% -9.66% 3600 2.33 3.71
I4 4758 4689 5858 -18.8% -20.0% 3600 1.48 2.88
I5 5597 5597 6951 -20.0% -20.0% 3600 5.82 7.14
I6 5305 5243 5952 -11.9% -11.9% 3600 1.35 3.43
I7 6756 6684 8456 -20.1% -21.0% 3600 3.04 5.15
I8 6643 6384 7829 -15.2% -18.5% 3600 0.82 2.28
I9 7499 7332 8546 -12.3% -14.2% 3600 0.80 2.39
I10 4597 4597 5079 -9.51% -9.51% 3600 0.90 2.04
I11 6708 6655 8203 -18.2% -18.9% 3600 3.53 4.31
I12 9417 9212 10897 -13.6% -15.5% 3600 1.59 3.42
I13 5409 5409 5641 -4.12% -4.12% 3600 2.20 3.49
I14 7813 7672 8884 -12.1% -13.6% 3600 3.30 4.50
I15 10762 10762 12412 -13.3% -13.3% 3600 1.90 3.17

µ̄I1-I15 -12.4% -13.4% 3600 2.12 3.55
I16 7958 7817 2.45 3.81
I17 10133 10093 7.10 6.14
I18 23244 22598 63.7 120
I19 21843 21543 17.3 37.0
I20 21092 20641 6.09 13.9
I21 20963 20601 2.63 8.93
I22 10580 10493 0.61 2.07
I23 20451 19850 1.92 8.47
I24 39332 38511 5.08 17.2
I25 45375 44138 7.46 23.4
I26 52698 51736 12.5 35.8
I27 46315 45662 4.50 17.6
I28 89538 88258 21.8 53.0
I29 88840 87008 15.3 34.8
I30 87844 86904 17.0 42.3
I31 75270 73346 9.20 33.3
I32 99643 98145 55.3 88.9
I33 112392 110486 126 204
I34 90195 87817 14.6 31.1
I35 89018 86742 16.4 42.0
I36 40535 39912 83.8 323
I37 40129 39328 52.7 201
I38 39900 39518 40.9 158
I39 40756 39950 43.7 160
I40 40395 39608 83.3 224
I41 40166 39567 30.8 153
I42 40158 39567 29.1 150

Table 4: Results of all instances

29

7.1. Number of passenger requests per hour
Out of all of the instance parameters, the number of passenger requests per hour affects the objective
function value the most. As expected, the difference in departure times and the difference in arrival
times increase the most. When there are more requests and the vehicle fleet remains the same, it
is more difficult to provide a customized service to each passenger, i.e., a service more reminiscent
of a taxi service where passengers picked up or dropped off at their desired times. More requests
consequently also leads to higher travel times and walking times because the buses need to drive
longer routes. However, the increase in all metrics diminishes as more passengers are served. After
a certain point, the passengers are more easily serviced in groups, which makes the service more
efficient. The runtime increases exponentially with the number of passengers. This is because
infeasible solutions are produced more often when there are more passenger requests to satisfy.
This increases the total number of construction iterations and thus also the runtime. On top of
this, each construction iteration takes longer as well because the number of possible assignments
increases.

7.2. Number of buses
It is clear that the objective function value decreases when more buses are utilized. The decrease
is linear but seems to be less significant when a larger number of buses is used. All performance
metrics seem to decrease with the use of more buses. However, the most significant decreases are
the difference in arrival times and the difference in departure times. The second most significant
decrease is the walking time. This is expected as more buses allow for a more tailored service for
each passenger; more available buses allow for more customized routes and timetables. The runtime
decreases exponentially with the use of more buses. This is likely due to the fact that it becomes
easier to find feasible solutions and in turn, the heuristic needs less construction iterations to reach
the stopping criterion.

7.3. Number of mandatory stops
The objective function value increases linearly with the number of mandatory stops. Clearly,
the biggest performance metric increase is the travel time of the passengers. This is because the
travel distance to the destination automatically increases when there are more mandatory stops.
The difference in arrival times and the difference in departure times are the second most significant
increases. If the overall travel time of the buses increases, the buses need more time to return to the
first mandatory stop for their next trip and thus have less time to pick up or drop off passengers at
their desired times. The walking time slightly increases as well. This is likely because the algorithm
prioritizes the efficiency of the routes over the bus stop assignment in order to decrease the objective
function value further. The runtime increases exponentially. The longer travel times of the buses
make it more difficult to satisfy the headway constraints and other scheduling constraints, which
leads to more infeasible solutions and thus a longer runtime.

7.4. Number of optional stops per cluster
An increasing number of optional stops per cluster has a small effect on the objective function
value. The objective decreases slightly when more optional stops are used. The decrease diminishes
as more optional stops are utilized. Evidently, the walking of the passengers decreases the most
because passengers have more options for a departure stop. However, the trade-off for the decreased
walking time is an increase in onboard travel time because the route becomes longer in order to
visit more optional stops. On one hand, the longer travel times of the buses lead to an increase
in the difference of arrival times because it becomes more difficult to schedule their arrivals at the
destination. On the other hand, the departure time difference decreases since it becomes easier

30

to schedule the departure of the buses according to the passengers’ needs because there are more
possibilities for departure stops. There is a slight increase in runtime when more optional stops are
used. This is because each construction iteration takes slightly longer to complete since there are
more possibilities for the passenger-stop assignment and the routing of the buses.

7.5. Vehicle capacity
The bus capacity has a smaller influence on the service quality. Generally, a larger capacity de-
creases the objective function value slightly. The walking times increase slightly. This is because
with higher vehicle capacities, passengers are able to be grouped more in order to decrease the
other performance metrics. For the same reason, the arrival times difference increases as well. The
difference in departure times decreases the most when the capacity is higher. Buses with a low
capacity can only pick up a limited number of passengers, which means that passengers are often
not assigned to a bus that has similar departure times compared to their desired departure time.
When the capacity is higher, these assignments are more often possible. The travel times of the
passengers are virtually unaffected, although they decrease very slightly with a higher capacity.
This is likely the trade-off with the increase in walking times. The runtime seems to decrease
slightly when the capacity is higher. The higher capacity makes it easier to find feasible solutions
since the constraints are less tight. This leads to a lower number of construction iterations and
thus to shorter runtimes.

7.6. Maximum headway at mandatory stops Df

The maximum headway at mandatory stops Df has little to no influence on the objectives. When
Df is too low, the difference in arrival times increases because the stricter scheduling constraints
make it more difficult to schedule the arrival of the buses. The other performance metrics decrease
slightly to compensate for this increase. The runtime increases when Df is lower because the stricter
scheduling constraints make it more difficult to find feasible solutions.

7.7. Impact of passengers without a reservation
We assume that passengers communicate their needs by making a transportation request. The
quality of service for passengers who do not make a request cannot be measured directly since
we do not know what their demands are. Their demand for transportation is more stochastic in
nature. However, we can indirectly estimate the service quality of these passengers.

The heuristic optimizes the objective function value, which consists of minimizing the onboard
travel time of passengers with a reservation. This, in turn, reduces the travel time of the buses,
which also decreases the onboard travel time of passengers without reservation. Therefore, having
more buses available, i.e., a larger fleet size, indirectly increases the service quality of passengers
without a reservation. Furthermore, when there are less passenger requests per hour, the onboard
travel times of passengers with a reservation decrease as well. This implies that passengers without
a reservation also benefit when there are less requests for transportation, since the bus travel times
will decrease as well.

In the FSMS, bus departures must have a maximum headway Df. This means that a bus cannot
depart more than Df seconds after the previous bus departure at any mandatory stop. However,
departing earlier than Df seconds after the previous bus departure is allowed. This, in turn, imposes
a maximum waiting time for passengers without a reservation who are waiting to board a bus at a
mandatory stop. Therefore, by decreasing the maximum headway Df, we decrease the maximum
waiting time and consequently increase the service quality of passengers without a reservation. As

31

Inst. Parameter Objective
Value (s)

Runtime
(s)

Travel
time (s)

Walking
time (s)

∣∣Tarr
p − ap

∣∣
(s)

∣∣∣Tdep
p − dp

∣∣∣
(s)

Passengers
per hour

I22 5 293 0.61 602 265 72 12
I23 12 414 1.92 788 359 119 67
I27 23 507 4.50 921 425 238 128
I30 41 536 17.0 965 474 224 138

Buses
I18 5 471 63.7 825 443 207 120
I19 6 449 17.3 817 402 177 100
I20 7 430 6.09 795 415 150 60
I21 8 429 2.63 793 390 167 53

Mandatory
stops

I31 5 453 9.20 733 473 200 112
I30 6 536 17.0 965 474 224 138
I32 7 606 55.3 1144 482 228 176
I33 8 682 126 1368 495 238 142

Optional stops
per cluster

I34 3 542 14.6 958 520 186 125
I29 5 537 15.3 985 478 207 118
I30 8 536 17.0 965 474 224 138
I35 10 535 16.3 951 484 243 116

Bus
capacity

I36 5 443 83.8 741 417 208 158
I37 10 437 52.7 697 450 240 117
I38 20 439 40.9 695 444 254 104
I39 30 444 44.6 701 444 243 118

Df (min)
I40 15 440 83.3 690 443 260 104
I38 20 439 40.9 695 444 254 104
I41 25 439 35.3 695 444 254 104
I42 30 439 35.3 695 444 254 104

Table 5: Results for the analysis of the FSMS

32

it was stated in the previous section, decreasing Df does not influence the objective function value,
i.e., the service quality of the passengers with a reservation, by much. Only when Df is too low,
the runtime of the heuristic increases significantly.

Furthermore, passengers without a reservation who are waiting for a bus at a mandatory stop that
is closer to the destination are more likely to wait longer for a bus when compared to passengers
waiting in previous mandatory stops. The buses are more likely to be at capacity in the later
mandatory stops. This means that passengers without a reservation might not be able to board
the bus but have to wait for the next departure instead. As a trade-off, these passengers spend less
time onboard the bus, since these mandatory stops are closer to the destination.

8. Conclusion
The feeder service with mandatory stops (FSMS) has been introduced in this paper. The FSMS
works with two types of bus stops: optional stops are only visited when there is demand for trans-
portation, while mandatory stops need to be visited by a bus within a certain time frame. The
FSMS is a semi-flexible demand-responsive transportation service (DRTS) that incorporates pos-
itive characteristics of both traditional transport services (TTS) and fully flexible DRTS. On one
hand, the service has flexibility in selecting which of the clustered optional bus stops are visited,
based on online passenger requests. On the other hand, there is predictability in the mandatory
bus stops. If online requests are not made, it is still possible to catch a bus in a mandatory bus
stop. This will likely improve service quality.

In order to optimize the performance of the FSMS, a heuristic algorithm is developed. The algo-
rithm incorporates different aspects of multiple heuristic frameworks. Solutions are constructed in
a semi-random greedy manner in each construction iteration of the heuristic. In each construc-
tion iteration, the passenger-stop assignment is determined by making use of the pilot method
framework. Randomized construction parameters create a balance between random and greedy
constructions. This leads to a high variability in the solutions that are generated, which allows
the heuristic to find feasible solutions on more strictly constrained instances. The heuristic uses
local search, more specifically simulated annealing (SA), to find the best values for these construc-
tion parameters. The parameters of the SA local search are fine-tuned to obtain good results for
any kind of instance. This approach yields high quality results in short runtimes for 42 different
instances. The first 15 instances are solved with the commercial optimization solver LocalSolver
(LS) with a runtime of one hour. The solutions obtained with LS are used as benchmarks to assess
the quality of the solution. It is found that our heuristic yields 12.42% better results on average,
within a few seconds, when compared to solutions obtained by LS. The remaining larger instances
are typically solved within two minutes.

The influence of different instance parameters on the service quality and the runtime of the opti-
mization of the service are discussed as well. Instance parameters such as passenger density, fleet
size, number of stops, vehicle capacity and maximum allowable headway at the mandatory stops
are considered. When more passengers make a request during the planing horizon, the service qual-
ity worsens as well. This is because passengers are forced to be grouped more, making the service
less tailored to each customer. Following this logic, a larger fleet size improves the service quality.
Using more optional stops also improves the service quality with a small increase in runtime. This
is expected since more optional stops increase the level of flexibility in the service. More mandatory
stops decrease the service quality because the main route becomes larger, making onboard travel
times longer and increasing the time between bus trips. The vehicle capacity and the maximum
headway have a limited influence on the service quality. However, a very small headway can result

33

in large objective values. Therefore, headways larger than 15 minutes are recommended. Obviously
the runtime increases with the size of the instances. However, it can be concluded that the runtime
is influenced the most by how difficult an instance is, i.e., how difficult it is to find feasible solutions.
It is found that the passenger density, followed by the fleet size, have the largest influence on both
the runtime and the service quality.

Further research could focus on optimizing the service in real-time. This will make the problem
considerably more complex because it needs to modify routes and timetables to accommodate
new requests, while still satisfying all constraints and trying to provide the best service. The
heuristic presented in this work can be used as a starting point for the solution method of such a
service. Quantifying how well the FSMS can serve the passengers that do not make a request for
transportation is an interesting next step as well.

Acknowledgments
This project was supported by the FWO (Research Foundation Flanders) project G.0759.19N.

References
Agatz, N., Hewitt, M., and Thomas, B. W. (2021). “make no little plans”: Impactful research to

solve the next generation of transportation problems. Networks, 77(2):269–286.

Alonso-González, M. J., Liu, T., Cats, O., Van Oort, N., and Hoogendoorn, S. (2018). The Poten-
tial of Demand-Responsive Transport as a Complement to Public Transport: An Assessment
Framework and an Empirical Evaluation. Transportation Research Record, 2672(8):879–889.

Azizi, N. and Zolfaghari, S. (2004). Adaptive temperature control for simulated annealing: a
comparative study. Computers & Operations Research, 31(14):2439–2451.

Beirão, G. and Sarsfield Cabral, J. A. (2007). Understanding attitudes towards public transport
and private car: A qualitative study. Transport Policy, 14(6):478–489.

Blandamour, N. (2022). LocalSolver vs Gurobi on the Capacitated Vehicle Routing Problem with
Time Windows (CVRPTW).

Braekers, K., Ramaekers, K., and Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State
of the art classification and review. Computers & Industrial Engineering, 99:300–313.

Chien, S. I., Spasovic, L. N., Elefsiniotis, S. S., and Chhonkar, R. S. (2001). Evaluation of feeder bus
systems with probabilistic time-varying demands and nonadditive time costs. Transportation
research record, 1760(1):47–55.

Ciaffi, F., Cipriani, E., and Petrelli, M. (2012). Feeder Bus Network Design Problem: a New
Metaheuristic Procedure and Real Size Applications. Procedia - Social and Behavioral Sciences,
54:798–807.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4):568–581.

Crainic, T. G., Errico, F., Malucelli, F., and Nonato, M. (2012). Designing the master schedule for
demand-adaptive transit systems. Annals of Operations Research, 194(1):151–166.

Crainic, T. G., Malucelli, F., Nonato, M., and Guertin, F. (2005). Meta-heuristics for a class of
demand-responsive transit systems. INFORMS Journal on Computing, 17(1):10–24.

34

DeLijn (2021). DIAL-A-BUS A SOLUTION FOR YOUR JOURNEY?

Dixit, A., Mishra, A., and Shukla, A. (2019). Vehicle routing problem with time windows using
meta-heuristic algorithms: A survey. In Yadav, N., Yadav, A., Bansal, J. C., Deep, K., and
Kim, J. H., editors, Harmony Search and Nature Inspired Optimization Algorithms, pages
539–546. Springer Singapore.

El-Sherbeny, N. A. (2010). Vehicle routing with time windows: An overview of exact, heuristic and
metaheuristic methods. Journal of King Saud University - Science, 22(3):123–131.

Fu, L. and Liu, Q. (2003). Real-Time Optimization Model for Dynamic Scheduling of Transit
Operations. Transportation Research Record, 1(1857):48–55.

Galarza Montenegro, B. D., Sörensen, K., and Vansteenwegen, P. (2021). A large neighborhood
search algorithm to optimize a demand-responsive feeder service. Transportation Research Part
C: Emerging Technologies, 127:103102.

Galarza Montenegro, B. D., Sörensen, K., and Vansteenwegen, P. (2022). A column generation
algorithm for the demand-responsive feeder service with mandatory and optional, clustered
bus-stops. Networks, 80(3):274–296.

Guo, R., Guan, W., Zhang, W., Meng, F., and Zhang, Z. (2019). Customized bus routing problem
with time window restrictions: model and case study. Transportmetrica A: Transport Science,
15(2):1804–1824.

Handy, S., Weston, L., and Mokhtarian, P. L. (2005). Driving by choice or necessity? Transportation
Research Part A: Policy and Practice, 39:183–203.

Hine, J. and Mitchell, F. (2001). Better for everyone? Travel experiences and transport exclusion.
Urban Studies, 38(2):319–332.

Kim, M. and Schonfeld, P. (2014). Integration of conventional and flexible bus services with timed
transfers. Transportation Research Part B: Methodological, 68(2014):76–97.

Kim, M. E. and Schonfeld, P. (2013). Integrating bus services with mixed fleets. Transportation
Research Part B: Methodological, 55:227–244.

Lakatos, A., Tóth, J., and Mándoki, P. (2020). Demand responsive transport service of ‘dead-end
villages’ in interurban traffic. Sustainability, 12(9):Article ID 3820.

Lee, A. and Savelsbergh, M. (2017). An extended demand responsive connector. EURO Journal
on Transportation and Logistics, 6(1):25–50.

Li, X. (2009). Optimal design of demand-responsive feeder transit services. PhD thesis, Texas A&M
University.

Li, X. and Quadrifoglio, L. (2010a). Feeder transit services: Choosing between fixed and demand
responsive policy. Transportation Research Part C: Emerging Technologies, 18(5):770–780.

Li, X. and Quadrifoglio, L. (2010b). Feeder transit services: Choosing between fixed and demand
responsive policy. Transportation Research Part C: Emerging Technologies, 18(5):770–780.

Lin, J. J. and Wong, H. I. (2014). Optimization of a feeder-bus route design by using a multiobjective
programming approach. Transportation Planning and Technology, 37(5):430–449.

Liu, T. and Ceder, A. A. (2015). Analysis of a new public-transport-service concept: Customized
bus in china. Transport Policy, 39:63–76.

35

Lu, X., Yu, J., Yang, X., Pan, S., and Zou, N. (2015). Flexible feeder transit route design to enhance
service accessibility in urban area. Journal of Advanced Transportation, 50(4):507–521.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., and Stützle, T. (2016). The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58.

Martins, C. L. and Pato, M. V. (1998). Search strategies for the feeder bus network design problem.
European Journal of Operational Research, 106:425–440.

Mehran, B., Yang, Y., and Mishra, S. (2020). Analytical models for comparing operational costs
of regular bus and semi-flexible transit services. Public Transport, 12(1):147–169.

Melachrinoudis, E., Ilhan, A. B., and Min, H. (2007). A dial-a-ride problem for client transportation
in a health-care organization. Computers and Operations Research, 34(3):742–759.

Mistretta, M., Goodwill, J. A., Gregg, R., and DeAnnuntis, C. (2009). Best Practices in Transit Ser-
vice Planning. Final Report No. BD549-38. Technical report, Center for Urban Transportation
Research for the Florida Department of Transportation.

Mohaymany, A. S. and Gholami, A. (2010). Multimodal feeder network design problem: Ant colony
optimization approach. Journal of Transportation Engineering, 136(4):323–331.

Pratelli, A., Lupi, M., Farina, A., and Pratelli, C. (2018). Comparing route deviation bus operation
with respect to dial-a-ride service for a low-demand residential area. DATA ANALYTICS 2018,
page Article ID 151.

Qiu, F., Li, W., and Haghani, A. (2015). An exploration of the demand limit for flex-route as
feeder transit services: a case study in Salt Lake City. Public Transport, 7(2):259–276.

Quadrifoglio, L. and Dessouky, M. M. (2004). Mobility allowance shuttle transit (mast) services:
formulation and simulation comparison with conventional fixed route bus services. In Mod-
elling, simulation, and optimization Á Proceedings of the 4th IASTED international conference.
Kauai, HI, USA, 17Á19 August. Calgary: Acta Press, 6pp.

Quadrifoglio, L. and Li, X. (2009). A methodology to derive the critical demand density for de-
signing and operating feeder transit services. Transportation Research Part B: Methodological,
43(10):922–935.

Saeidizand, P. (2017). Urban public transport in the 21st century. Report, Advancing Public
transport.

Shrivastava, P. and O’Mahony, M. (2006). A model for development of optimized feeder routes and
coordinated schedules — A genetic algorithms approach. Transport Policy, 13:413–425.

Shrivastava, P. and O’Mahony, M. (2007). Design of Feeder Route Network Using Combined Genetic
Algorithm and Specialized Repair Heuristic. Journal of Public Transportation, 10(2):109–133.

Sun, B., Wei, M., and Zhu, S. (2018). Optimal design of demand-responsive feeder transit services
with passengers’ multiple time windows and satisfaction. Future Internet, 10(3).

Vansteenwegen, P., Melis, L., Aktaş, D., Galarza Montenegro, B. D., Veiera, F., and Sörensen, K.
(2022). A survey on demand-responsive public bus systems. Transportation Research Part C:
Emerging Technologies, 137:103573.

Voß, S., Fink, A., and Duin, C. (2005). Looking ahead with the pilot method. Annals of Operations
Research, 136(1):285–302.

36

Wang, L., Wirasinghe, S., Kattan, L., and Saidi, S. (2018). Optimization of demand-responsive
transit systems using zonal strategy. International Journal of Urban Sciences, 22(3):366–381.

Wei, M., Liu, T., Sun, B., and Jing, B. (2020). Optimal Integrated Model for Feeder Transit Route
Design and Frequency-Setting Problem with Stop Selection. Journal of Advanced Transporta-
tion, 2020:1–12.

Wilson, N. (1971). Scheduling Algorithms for a Dial-a-ride System. PB 201 808. Massachusetts
Institute of Technology, Urban Systems Laboratory.

Zheng, M., Zhou, R., Liu, S., Liu, F., and Guo, X. (2020). Route Design Model of Multiple Feeder
Bus Service Based on Existing Bus Lines. Journal of Advanced Transportation, 2020.

Zheng, Y., Li, W., and Qiu, F. (2018). A methodology for choosing between route deviation
and point deviation policies for flexible transit services. Journal of Advanced Transportation,
2018:Article ID 6292410.

37

Appendix A. Linearized constraints of the mathematical model
Linear version of constraints (16):

ds
bti − (1− ypbti)M ≤ dp ≤ ds

bti + (1− ypbti)M ∀ i ∈ S, b ∈ B, t ∈ J, p ∈ P2 (A.1)

Linear version of constraints (17):

ds
bt|F |−1 − (1− ypbti)M ≤ ap ≤ ds

bt|F |−1 + (1− ypbti)M ∀ b ∈ B, t ∈ J, p ∈ P1 (A.2)

Linear version of constraints (20):

ds
bti + T t

ij − (1− xbtij)M ≤ ds
btj ≤ ds

bti + T t
ij + (1− xbtij)M ∀ i ∈ S|F |−1, j ∈ S0, b ∈ B, t ∈ J

(A.3)

Linear version of constraints (24):

∑
p∈P

ypbti ≤M
∑
l∈S

xbitl ∀ i ∈ O, b ∈ B, t ∈ T (A.4)

With M representing sufficiently large numbers.

38

Appendix B. Pseudo-code of the construction algorithm
Algorithm 2: Construction algorithm outline

1 Determine optimal route BR visiting all stops
2 Determine travel time T r to visit all mandatory stops
3 Sort passengers p ∈ P in ascending T arr

p and T dep
p

4 Place passengers with a T arr
p in queue Qa, passengers with T dep

p in queue Qd

5 tdb = start time optimization ∀b ∈ B
6 it = 0
7 while Qa not empty and Qd not empty do
8 Df

bt = Dfrd
u

9 Next bus b = earliest available bus
10 Make route Rb visiting all mandatory stops.
11 Timetable of bus b: d0 = tdb , di = di−1 + T t

(i−1)i

12 Number of passengers onboard bus b, Np
b = 0

13 T a = min
p∈Qa

T arr
p , T d = min

p∈Qd
T dep
p + T r

14 if T a < T d and Qa not empty then
15 while Np

b < C and Qa not empty do
16 s=Best_Stop_a(p1, b, t,rf

u)
17 if s ̸= −1 then
18 Assign p1 in Qa to stop s and to bus b on trip t
19 Remove p1 from Qa

20 Update_route(BR, s, Rb)
21 Update_timetable(m|F |−1, p1, Dla, Dea, Df

bt)
22 Np

b ++

23 else
24 Stop adding passengers
25 end
26 end
27 end
28 if T a > T d and Qd not empty then
29 while Qd not empty and Np

b < C do
30 s=Best_Stop_d(p2, b, t, T dep

p2 , Dld,rf
u)

31 if s ̸= −1 then
32 Assign passenger p2 to s and to bus b on trip t

33 Remove p2 from Qd

34 Update_route(BR, s, Rb)
35 Update_timetable(s, p2, Dld, Ded, Df

bt)
36 Np

b ++

37 else
38 Stop adding passengers
39 end
40 end
41 end
42 if bus b is empty then Timetable of bus b: d0 = tdb +Df, di = di−1 + T t

(i−1)i;
43 else
44 Calculate Dsp and Dsf

45 for all remaing passengers p do
46 Calculate T s

p for passenger p

47 for all bus stops s already part of the route do
48 Calculate walking time Tw

ps for passenger p to stop s

49 if Tw
ps < rw

uD
w and

∣∣T s
p

∣∣ < rsp
u Dsp and

∣∣T s
p

∣∣ < rsf
uD

sf then
50 Assign passenger p to bus b on trip t
51 Modify timetable with T s

p

52 Recalculate Dsp and Dsf

53 end
54 end
55 end
56 end
57 Add a trip to bus b

58 Update tdb and sort buses again
59 it++
60 end

39

Algorithm 3: Function for choosing best departure stop for p1 ∈ Qa

1 Function Best_Stop_a(p1, b, t, rf
u):

2 BestCost =∞
3 BestStop = −1
4 for all stops s ∈ S within walking disance of passenger p1 do
5 cost=walking time of p1 to s
6 if s is not part of the route already then
7 Determine the extra time T extra it will take to go to s
8 if T extra is too large to maintain departure time interval constraints then

cost=∞ ;
9 else cost=cost+T extra;

10 end
11 Determine departure time T ds at stop s

12 if T ds makes arrival constraints infeasible or rf
u < Rf then

13 BestCost =∞
14 end
15 if BestCost > cost then
16 BestCost = cost
17 BestStop = s

18 end
19 end
20 if BestCost =∞ then
21 Adding p1 to bus b is infeasible
22 return -1
23 else
24 return BestStop
25 end

Algorithm 4: Function for updating a timetable
1 Function Update_timetable(s, p, Dl, De, Df

bt):
2 DT= T dep or T arr of all passengers boarding or alighting in s
3 M t= median(DT)
4 Et = min (DT)
5 Lt = max (DT)

6 if M t > min
(
Et +Dl, Lt) then

7 M t = min
(
Et +Dl, Lt)

8 else if M t < max
(
Lt −De, Et) then

9 M t = max
(
Lt −De, Et)

10 end
11 Calculate max difference Mx in departure times in mandatory stops
12 if Mx > 0 then M t = M t − (Df

bt −Mx);
13 Departure time at stop s is M t

14 Adjust other departure times accordingly

Algorithm 5: Function for updating a route
1 Function Update_route(BR, s, Rb):
2 if s ̸∈ Rb then
3 Determine closest stop sb ∈ Rb that is visited before s in BR

4 Insert s after sb in Rb

5 end

40

Algorithm 6: Function for choosing best departure stop for p2 ∈ Qd

1 Function Best_Stop_d(p2, b, t, T dep
p2 , Dld, rf

u):
2 BestCost =∞
3 BestStop = −1
4 for all stops s ∈ S within walking distance of passenger p2 do
5 if s is inserted in Rb before the previously inserted stop in the route then
6 cost=∞
7 else
8 cost=walking time of p2 to s
9 Determine time of arrival T as at s

10 if T as > T dep
p2 −Dld then

11 cost=∞
12 else
13 if s is not part of the route already then
14 Determine the extra time T extra it will take to go to s
15 if T extra is too large to maintain the departure time interval constraints

or rf
u < Rf then

16 cost=∞
17 else
18 Determine best feasible (T dep constraints) departure time T ds at s

19 Determine difference ∆ = T ds − T as of arrival time and a feasible
departure time

20 cost=cost+T extra+∆

21 end
22 else
23 Determine latest feasible departure time T lf at s

24 if T as > T lf or rf
u < Rf then

25 cost=∞
26 else
27 Determine best feasible (T dep constraints and departure time interval

constraints) departure time T ds at s
28 Determine difference ∆ = T ds − T as of arrival time and a feasible

departure time
29 cost=cost+T extra+∆

30 end
31 end
32 if BestCost > cost then
33 BestCost = cost
34 BestStop = s

35 end
36 end
37 end
38 end
39 if BestCost =∞ then
40 Adding p2 to bus b is infeasible
41 return -1
42 else
43 return BestStop
44 end

41

	Introduction
	Literature Review
	Problem Description
	Description of the feeder service with mandatory stops (FSMS)
	Assumptions
	Mathematical optimization model

	Solution approach
	Commercial solver
	Heuristic
	Main outline of the heuristic
	Construction algorithm of one construction iteration
	Construction parameters
	Local Search for construction parameters

	Experimental set-up
	Instances
	Fine-tuning local search parameters

	Performance of the algorithm
	Behavior of the heuristic
	Local search methodologies
	Experimental results

	Service analysis
	Number of passenger requests per hour
	Number of buses
	Number of mandatory stops
	Number of optional stops per cluster
	Vehicle capacity
	Maximum headway at mandatory stops D^f
	Impact of passengers without a reservation

	Conclusion
	Linearized constraints of the mathematical model
	Pseudo-code of the construction algorithm

