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Self-correcting Algorithm for Estimated Time of
Arrival of Emergency Responders on the Highway

Rreze Halili, Faqir Zarrar Yousaf, Member, IEEE, Nina Slamnik-Krijestorac, Girma M. Yilma, Marco Liebsch,

Rafael Berkvens, Member, IEEE, Maarten Weyn, Member, IEEE

Abstract—Edge computing is one of the key features of the 5G
technology-scape that is realizing new and enhanced automotive
use cases for improving road safety and emergency response
management. Back Situation Awareness (BSA) is such a use
case that provides an advance notification to the vehicles of
an arriving emergency vehicle (EmV). This paper presents an
algorithm for enhancing the accuracy of the advanced Estimated
Time of Arrival (ETA) notification of an approaching EmV
towards the other vehicles on the highway. The notification is
expected to ensure timely reaction by the vehicles to create a clear
corridor for the EmV to pass through unhindered, thereby saving
critical time to reach the emergency event in a safe manner. The
main features of the presented solution are i) the self-correcting
algorithm, ii) adaptive and dynamic dissemination areas size
allocation, as a response to traffic changes, and iii) the evaluation
of the ETA estimation accuracy.

We have used the real travel time data measurements collected
on the E313 highway (Antwerp, Belgium), to evaluate the
performance of the algorithm. The performance is evaluated
and compared in terms of accuracy and run-time complexity,
using different methods such as Kalman filter, Filter-less method,
Moving Average, and Exponential Moving Average filters. It is
observed that the Kalman filter provides better accuracy on the
ETA estimation, thereby reducing the estimation error by around
14% on average.

Index Terms—5G, C-ITS, C-V2X, ETA, MEC.

I. INTRODUCTION

The latest advances in 5G technology enablers, such as Net-
work Function Virtualization (NFV), Software Defined Net-
working (SDN), and Multi-Access Edge Computing (MEC)
[1], are leveraged by vehicular networks in ways not per-
ceivable before. These advances are expected to improve
public safety in terms of avoidance of traffic accidents and
improvement of emergency response time, considered as a
lifesaving factor.

There is a significant research conducted to find a mean-
ingful relationship between the emergency response time and
the probability of fatal outcomes, and the results prove that
the reduction of the overall response time plays a critical
role in emergency situations [2–5]. For example, according
to Sánchez-Mangas et al. [3], a 10 min reduction in the
emergency response time decreases the probability of death
by one-third. Although the regulatory requirements of some
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developed countries call for less than 10 minutes reaction time
to life-threatening incidents, it becomes difficult to achieve
especially during heavy traffic conditions.

The drivers mostly get informed about the presence of an
approaching Emergency Vehicle (EmV) (e.g., an ambulance,
a police vehicle, or a fire brigade) through blaring sirens and
flashing lights. Since the drivers get alerted only when the
EmVs are within their audio/visual range, they usually have a
quite limited time and space to react and manoeuvre away
from the path of the EmV in a timely, calm, coordinated,
and safe manner. Creating a clear corridor for the EmV
becomes more difficult and time consuming when there is
high traffic density. This situation not only causes delays in
emergency services response time but can also cause accidents.
According to the report published by the National Highway
Traffic Safety Administration (NHTSA) office of Emergency
Medical System (EMS), 70% of all ambulance crashes occur
while operating in an emergency mode [6], while Donoughe
et al. [7] report that 66% of firetruck crashes occur when the
truck is being used during an emergency.

To address the aforementioned challenges, a lot of research
work has been done on modelling and optimizing the am-
bulance response time. As we discuss in Section II, most of
the solutions propose methods calling for route optimization
that enables the circumvention or avoidance of congested
locations in order to ensure the timely arrival of the EmV to
the intended destination. However, such solutions are limited,
as they depend on the country, time of the day/year, weather,
traffic conditions, and limited route options.

Given such limitations, we present a more universal Vehicle-
to-Everything (V2X) method that leverages the MEC systems
to generate and disseminate customized notifications on the
EmV’s arrival. The reason for proposing a Vehicle-to-Network
(V2N) solution is the limited communication range of Vehicle-
to-Vehicle (V2V) systems. In particular, the short-range com-
munication generally refers to the distance below 1km, where
V2V coverage is up to 300 meters [8], which is not enough for
providing the drivers with the required time to calmly inter-
coordinate between themselves and free the lane to create
a safety corridor for the fast approaching EmV. Thus, our
proposed Back-Situation Awareness (BSA) method enables an
early notification of the Estimated Time of Arrival (ETA) of
an approaching EmV, while it is still out of the audio visual
range of the vehicles along its route-path.

As illustrated in Fig. 1, the BSA service instantiated within
the MEC system [9] is able to parse the received ETSI
Cooperative Intelligent Transport System (C-ITS) Cooperative
Awareness Message (CAM) [10] notifications such as speed,
location, direction, and destination of the EmV. Based on these
parameters, the BSA service application derives the values of
ETA from the EmV’s current location with reference to the
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Fig. 1: Back Situation Awareness Overview.

respective Way-Points (WPs) specified by the BSA service
application along the designated route-path of the EmV up
until the EmV’s destination. The values of ETA (displayed as
ETA-1, ETA-2, ETA-3, and ETA-4, in Fig. 1) are encoded
in the ETSI C-ITS Decentralized Environment Notification
Message (DENM) [11] and disseminated to the vehicles within
the respective dissemination areas. The areas, i.e., Dissemi-
nation Area 1, Dissemination Area 2, Dissemination Area 3,
and Dissemination Area 4, are defined using the consecutive
way-points referred to as WP-1, WP-2, WP-3, and WP-4,
respectively.

This work extends our previous work [12] where a basic
version of the BSA algorithm was implemented using Kalman
filter [13] and analyzed using fixed dissemination areas. The
analysis showed that the prediction accuracy of the ETA values
is intrinsically linked with the size of dissemination areas,
as well as the speed impacted by the traffic density in each
dissemination area. The challenge, therefore, was to develop a
BSA algorithm that is able to dynamically self-correct, taking
into consideration the estimation errors values caused by the
forecasting technique and dissemination area size, and the
speed of the EmV, to predict accurate ETA values.

For this purpose, the scope of our research has been
expanded beyond [12], which resulted in extending the BSA
algorithm to take into account the prevailing traffic conditions
and estimation errors when determining the optimal size of the
dissemination areas that will give an accurate prediction of the
ETA. This way, the algorithm is able to dynamically resize
the dissemination areas in order to enhance the prediction
accuracy. In addition, we perform a comparative analysis of
accuracy and run-time complexity of different filtering meth-
ods to determine the one that gives more accurate prediction
of ETA values, while using fewer processing steps. We also
observe and discuss the impact that the frequency of the EmV
input data has on the prediction accuracy when deriving ETA
values.

The significance of this paper includes the development
of a novel algorithmic solution to enable BSA service by
leveraging the 5G MEC infrastructure. The proposed algorithm
calculates the ETA of emergency vehicles and disseminates
it among surrounding vehicles in the traffic. In addition,
the proposed solution is a self-correcting algorithm that can

identify and measure the prediction error and reconsider this
for prediction accuracy improvement for the next steps. Fur-
thermore, the proposed algorithm is able to dynamically resize
the dissemination areas in order to enhance the prediction
accuracy. The solution is expected not only to improve the
road safety standards but also to enhance the mission success
and response time of emergency responders.

For our analysis, we compare our results with the ex-
perimental data measurements reflecting the Actual Time of
Arrival (ATA) obtained on the Smart Highway testbed1 placed
on the E313 highway in Antwerp, Belgium.

The rest of the paper is organized as follows. Section II
provides Related work, followed by Section III presenting
the use case of the BSA scenario and providing a system’s
perspective. Section IV gives details about the dynamic self-
correcting algorithm for accurate ETA prediction and related
concepts together with the filtering techniques. The analysis
and performance evaluation of the ETA algorithm within the
BSA application in terms of accurate calculation and dynamic
dissemination of the ETA is provided in Section V, followed
by Section VI concluding the paper.

II. RELATED WORK

Along with the growing needs for transportation, the ever-
increasing number of vehicles causes numerous issues on
the roads and highways such as traffic jams, car crashes,
fatalities, etc. Thus, most of the research efforts on the
situation awareness in vehicular scenarios tend to analyze the
methods that support the Emergency Management Systems
towards reducing patient mortality, preventing disability, and
improving chances of recovery [14]. One of the key factors
for achieving these objectives is the emergency response time,
which is considered as crucial for saving people’s life. Thus,
the relationship between the emergency response time and the
survival rate has been part of different research works and
some of them are presented in Table I and discussed as follows.

According to Nicholl et al. [15] a 10km increase in straight-
line distance is associated with around a 1% absolute increase
in mortality, while Pell et al. [16] concluded that reducing
ambulance response times to 5 minutes could almost double

1Smart Highway: https://www.fed4fire.eu/testbeds/smart-highway/
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TABLE I: Overview of related work.

Research direction Works

non-V2X concepts
evaluation of the EMS
performance

[15–18]

prediction of the EmV’s
travel time

[19–21]

V2X concepts
V2V [22–30]
V2I [31]
V2N [32]

the survival rate for cardiac arrests not witnessed by ambulance
crews.

Different predictive models, filters, routing, and navigation
systems are used together with large historical datasets col-
lected on different cities to optimize the route which the EmV
should follow to avoid traffic, to have an accurate time of
arrival estimation for the body expecting at the emergency
units, and to have an efficient way of utilizing emergency
services and resources. The proposed solutions depend on the
countries and also on the time of the day, year, weather, and
traffic condition.

To optimize the configuration and operation of the emer-
gency response time, Iannoni et al. [17] provide an extension
of the hypercube model, combined with the hybrid genetic
algorithms. The aforementioned study suggests the relocation
of the ambulance bases and their area of work, as a way
to reduce i) the average user response time, ii) imbalance
of the ambulances’ workloads, and iii) the fraction of calls
not serviced within a predetermined threshold. Furthermore,
Poulton et al. [18] present an application of a data-driven
methodology for route selection and the estimation of arrival
times of ambulances travelling with blue lights and sirens on.
This methodology recognizes only historical data collected
internally by the emergency ambulance services, thereby not
considering any real-time information, traffic, or related con-
text information retrieved from the external systems (e.g.,
traffic management systems, and cellular network services).

Regarding the communication technology, most of the re-
search effort in enhancing situation awareness on the roads is
focused on the Vehicle-to-Vehicle (V2V) technology (Table
I), despite the disadvantage of the short-range emergency
notifications. Among these works, an extensive effort has
been conducted so far to reduce the delay of operation for
emergency responders [22,23,31]. In their survey on urban
traffic management system using wireless sensor networks
[22], Nellore and Hancke recognize the schemes for prioritiz-
ing EmVs, as well as the congestion avoidance by decreasing
the average waiting time for vehicles at the intersection, as
a foundation for the future research. Tackling the intersection
assistance systems, Joerer et al. [24] show that the current
state-of-the-art congestion control mechanisms are not able
to support the intersection assistance adequately, due to the
lack of fine-grained prioritization among vehicles. Since these
existing congestion control mechanisms provide an equal share
of communication opportunities to all vehicles, not considering
the difference of road traffic situations or individual vehicles
such as an EmV, the exchange of the traffic information
cannot be done in a timely manner. Therefore, Joerer et
al. [24] propose an improvement, which allows vehicles in
critical situations at intersections to be temporarily exempted
from congestion control, enabling them to communicate with
possible collision candidates more frequently, through the so-
called beaconing solutions that rely on one-hop broadcasting

and 802.11p technology [24].
One of the interesting features of broadcasting awareness

messages is the dissemination of Time of Arrival (ToA) of
emergency vehicles. This way, the surrounding civilian cars
can anticipate at which moment they should clear the lane.
Senart et al. [26] study a reliable mechanism for transmitting
information about EmV’s ToA, using a wireless medium, and
a feedback system. In their work [26], Senart et al. proposed
a method to disseminate information on EmV’s arrival and
to provide real-time feedback to EmV in case the quality
of the communication is degraded. In this kind of scenario,
the EmV will be informed that certain vehicles may not have
been warned, thus receiving a recommendation to slow down.
Other approaches for disseminating information about EmV
are presented by Kapileswar et al. [27], Johnson [28], Metzner
and Wickramarathne [30], and Hadiwardoyo et al. [29]. These
studies rely on V2V connection to disseminate information
on the location and the route path of EmVs in real time, in
order to provide vehicles in a closer proximity with the EmV’s
arrival times, so that vehicles can adjust the driving decisions
by considering the incoming alerts.

Nevertheless, as already mentioned, a drawback of the V2V
communication is its short range (below 1km), which is not
sufficient for the drivers to timely react and clear the lane for
the approaching EmV. Thus, an attempt to utilize Vehicle-
to-Infrastructure (V2I) communication is presented by Moroi
and Takami [31]. To significantly decrease the travel time for
EmVs, Moroi and Takami [31] proposed utilizing the Roadside
Units (RSUs) that support EmVs by notifying other vehicles
about the EmV’s route.

The network infrastructure and vehicles need to react with
the latency below 100ms [32] to achieve higher safety levels
by being less dependent on the driver’s actions. This of
course requires service availability in the edges close to the
vehicles. Due to a still limited range that they cover, most
of the operational requirements for vehicular applications
cannot be fulfilled by RSUs [33]. On the other hand, cellular
technologies successfully cope with this challenge since base
stations usually cover larger regions than the short range
gateways (e.g., RSUs) [34]. Therefore, 5G systems supported
by MEC are expected to improve the current support for V2X
use cases [33,35], with the opportunity to significantly extend
the notification range, and to decrease the delay by deploying
vehicular applications at the network edge. By utilizing the cel-
lular infrastructure, the management and orchestration entities,
network controllers, and application services, are all fed with
global information that helps them to notify civilian vehicles
about emergency situations in extended regions, unlike in
the case of short range communications where the local
information in each vehicle does not include a broad view
of the overall network.

It is in view of the above observations and shortcomings that
we propose the BSA service the details of which are described
in the subsequent sections.

III. BACK SITUATION AWARENESS (BSA) SOLUTION

A. BSA Use Case

As indicated above, the main objective of the BSA service
is to improve the emergency response time, which is achieved
by early notification/dissemination of the EmV’s ETA to the
vehicles, allowing them enough time to create a clear corridor
for the EmV to pass through unhindered.
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Fig. 2: Emergency response process with respective operations.

There are different definitions of the emergency response
time. A general overview found in many standards defines the
emergency response time as the overall time being comprised
of four unique time intervals, which include the activation,
response or preparation, on scene, and transport intervals
[36,37].

As shown in Fig. 2, when the Emergency center is notified
about an emergency event, we consider this as the activation
time. Afterwards, the time which is required to dispatch an
EmV to the emergency case is known as the preparation time.
The time spend on the way to reach the destination is the travel
time. The time spent on the event is the on-scene interval, and
finally, the time spent from the ambulance departure to the
hospital is the travel time. In each emergency response time
interval, our BSA application running on the MEC system
has its role, and uses its components and operations to initiate
the algorithm, to calculate the ETA, to disseminate it on the
upcoming route-path, and at the end to terminate the use of
the ETA algorithm (see Fig. 2).

A high-level overview of the BSA use case is illustrated in
Fig. 1. The event information is first received by an Emergency
Management Entity (EME), such as 112 or 911 Headquarter
(HQ), which dispatches an EmV providing it with the event
location addresses or destination, the route-path to follow, and
the IP address of the BSA service. While heading towards
the destination, it will periodically start sending CAM via
the mobile network infrastructure towards the BSA service
instance, which is instantiated as a MEC application [9]. All
the vehicles that are on the route-path of the EmV will process
the received DENM notifications to extract the ETA values.

B. BSA Service Application Design

Fig. 1 gives the design overview of the BSA service
application, which is envisaged to run as a Virtual Applica-
tion Function (VAF) deployed and instantiated on the MEC
system. Fig. 3 shows the functional elements that are chained
to deliver the BSA service. In Fig. 3, we also depict the
required interfaces enabling the BSA application to connect
with the external entities. The interfaces A, B, and C are
designed in a respective order to: i) receive upstream CAMs
originating from the EmV with a specified frequency in Hz,
ii) dispatch a DENM containing the derived ETA value for
a specific dissemination area, and iii) maintain connectivity
with a peering BSA application instance that may be running
in another edge domain belonging to a different operator.

The EmV, after receiving the IP address of the MEC host
where the BSA service application is instantiated from the
EME, will start to transmit the CAMs periodically towards
the BSA service on the MEC host. These messages will be
received via the interface A, to be processed by the ITS
protocol stack. In our case, this stack is provided by Vanetza,
an open-source implementation of the ETSI C-ITS protocol
suite [38]. The decoding function, which is a simple helper
function supporting Vanetza, will parse, extract and filter the
information relevant for the BSA algorithm from the CAM
notification, and prepare an input parameters for the BSA
algorithm, which are: i) the identification of EmV (EmV ID),
ii) the speed of the EmV, iii) the current location of the EmV,
iv) its destination, and v) direction of the EmV.

The BSA algorithm, marked in red in Fig. 3, is at the heart
of the BSA service and the main contribution of this paper. It
will calculate the ETA values for the respective dissemination
area(s) each time it receives the CAM notification and will
evaluate the estimation error, based on which it will take
corrective actions for error minimization by readjusting the
size of the dissemination areas. The details of the BSA
algorithm are presented in Section IV while its performance
analysis can be found in the Section V-B.

Along with the ETA calculation operations, the BSA al-
gorithm stores the state of the application that refers to the
information on the EmV’s speed, location, and destination, in
the state database (State DB in Fig. 3). The state database
plays a significant role in the communication between two
peering BSA service application instances running in two edge
domains, thereby allowing them to share the EmV-specific
meta information from one edge domain to the other via
interface C (Fig. 3) or sharing data between different operators
with different MEC systems. However, the coverage of multi-
operator domains is out of the scope of this paper.

Furthermore, the output of the BSA algorithm, i.e., mainly
the ETA values for respective dissemination areas is being pro-
cessed by the ITS protocol stack, referred to as the Encoding
Function in Fig. 3. This function has the task to prepare ETA
notifications for the different dissemination areas by passing
the information on: i) EmV ID, ii) calculated ETA value, and
iii) dissemination area, to the transmit function of the Vanetza
ITS protocol stack. The ITS protocol stack will encode this
information in the DENM notification message, and dispatch it
towards the mobile network infrastructure via interface B. This
DENM notification is then disseminated (e.g., via broadcast)
in the respective Dissemination Areas by the Dissemination
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Fig. 3: BSA operation overview.

Fig. 4: BSA Service in the context of MEC system.

Service.

Each of the functional components within the BSA ser-
vice is implemented as a visualized MEC service or MEC
application, and thus instantiated on a MEC system. Fig.
4 gives the overview of the BSA service in the context
of the standard ETSI MEC system architecture [9]. While
BSA Application contains the logic of assigning WPs on the
route-path and computing ETA values, C-ITS Protocol Service
is used for decoding/parsing/encoding C-ITS CAM/DENM
notification messages. Further, Map Service is used for getting
geospatial information related to the route-path the EmV is
traveling on, and State DB is proposed to store the meta-
data/state-information of the EmV decoded/parsed/encoded
CAMs/DENMs. Dissemination Service is used to broadcast
the EmV’s ETA information to the vehicles in front of the
EmV within the relevant geo-casted dissemination areas.

The other functional elements shown in Fig. 4 are specified
in the ETSI GS MEC 003 v2.1.1 standard [9] and are used for
the management and orchestration of the BSA related MEC
applications and MEC services. It should be noted that the
EME is able to access the BSA system via the Customer
Facing Service (CFS) interface. The details of the design of
the BSA service components along with the details of the
service orchestration and life-cycle management have already
been described in our previous work [12].

IV. ESTIMATED TIME OF ARRIVAL ALGORITHM

A. ETA algorithm workflow

As described above, the BSA algorithm takes as inputs the
location, speed, ID, direction, and destination (i.e., the location
of emergency event) of the EmV for the calculation of the ETA
values with reference to multiple WPs along the EmV’s route
path (see Fig. 3).

The workflow of the algorithm is shown in Algorithm 1. The
BSA application is continuously listening to potential input
information. In the case of the first received CAM, the message
will be decoded and delivered to the BSA algorithm, which
then analyzes the collected input data. The first step is to define
the current geo-location of the reference object, which in our
case is an emergency vehicle. Then, the algorithm checks
the required destination and uses a Map Service to determine
the route-path that EmV should follow while heading to this
destination. Considering the route path determined by the way-
points, the algorithm will derive the ETAs for all dissemination
areas, and create an ETA vector that will be broadcasted to
the vehicles in front of the EmV, using DENM and 5G mobile
network infrastructure.

Depending on the frequency of input CAMs, which can be
1Hz, 2Hz, or 10Hz, the algorithm is obtaining the updated
information every second, 500ms, and 100ms, respectively.
With each upcoming CAM notification, the algorithm checks
the position of the EmV, as well as the timestamp at which this
position was recorded. We consider this value as the Actual
Time of Arrival (ATA), which is further used to check the
accuracy of the previously recorded and transmitted ETA. The
difference between ATA and ETA for the considered location
is presented as the estimation error, and is considered as a
performance indicator, which is used as a feedback correction
index for the following calculation of the ETA. Depending on
the ATA value and the actual speed of the EmV, the algorithm
determines the size of the dissemination areas, and the number
of reference WPs. Note that the so-called estimation error can
result in a different sign. It will be positive if the ATA > ETA
and vice versa.

The algorithm will continue updating ETA values for the
(re-)defined dissemination areas until the EmV arrives at the
destination. Once EmV reaches its destination, the whole
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application, including the algorithm, will terminate and release
the allocated MEC resources.

Algorithm 1: Workflow of the traffic signal for the
main algorithm.

Result: Estimated Time of Arrival (ETA)
Start;
ǫ = 0sec ; step 1; while EMV Not arrived at

Destination do
Listen to arrival of CAM Notification;
Get current geo-location of EmV;
if EmV moved from previous position then

Determine the Actual time of Arrival (ATA);
ETA−ATA = ζ;
if ζ 6= ǫ then

Go to step x;
else

Re-evaluate the number and size of
dissemination areas and ETA values per
dissemination areas; ETAP = ATA;

Derive/Adjust coordinates for each
dissemination area;

Go to step 1;
end

else
Derive the ETA for all dissemination areas, and

Create an ETA Vector;
Disseminate the ETA Vector in each sector

towards dissemination areas;
if (EmV arrived) then

Clear/Delete the previous dissemination
area; Stop;

end
end

end

The reference scenario shown in Fig. 1 and Fig. 3 is
modeled as a graph that consists of the route and the WPs.
The sequence of the WPs (i.e., WP1, WP2,...WPi) defines the
size and the edges of the dissemination areas, and it represents
the route-path that the EmV should follow.

Estimating time of arrival for different dissemination areas
is based on the EmV’s current location with reference to each
WP (i.e., WPi), and it is denoted as ETAi. The sum of
all travel times of consecutive WPs is considered to be the
total time of travel. However, predicting the travel time is
not straightforward, since the travel time in an urban traffic
environment is highly dynamic, uncertain, stochastic, and
time-dependant. Various factors such as random fluctuations
in travel demands, weather conditions, interruptions caused by
traffic control devices, incidents, etc., have an impact on the
travel time [21,39]. Therefore, each WPi is characterized with
a distribution of ETAi values, which implies an uncertainty
on the total time of travel. According to Min et al. [21],
this uncertainty is presented using a mean value µ(ti) and
a variance (σ(ti))

2 of the ETAi, as depicted in equations (1)
and (2), respectively.

µ(tji ) =

∫

∞

t1

tF i
j(t)dt (1)

(

σ(tji )
)2

=

∫

∞

t1

t2F
j
i (t)dt−

(

∫

∞

t1

t2F
j
i (t)dt

)2

(2)

The time t1 in equation (1) represents the starting time of

the trip, while F
j
i (t) denotes the Probability Density Function

(PDF) followed by the arriving time at the considered WPi.
The route-path that is followed by the EmV is indicated using
j, however, in our case, the route path to the destination
is determined by the MEC Map service, so we exclude it
from the following expressions since j is a known pre-defined
path. The uncertainty caused by the distribution of the ETAi

at any WPi has an impact on the whole ETA calculation
since it always depends on the distribution of the previous
ETAi−1. As denoted in equation (3) (see [21]), the ETA (ti+1)
distribution with reference from EmV’s current position to a
specific WP (WPi+1), depends on i) the distribution of the
ETA (ti) for the previous WP, (WPi), ii) the average speed
of the EmV (svi,vi+1

(ti)), as well as iii) the distance between
two successive WPs (Li,i+1).

ti+1 = ti +
Li,i+1

svi,vi+1
(ti)

. (3)

The distance is a constant parameter that depends on the
route-path that the EmV selects to reach the destination. In
our case, it is calculated using the WPs obtained from the
MEC Map service (see Fig. 3) along the selected route-path.
Following this approach, we assume that the variance of the
ETA depends only on the variance of the average speed of the
EmV. This approach emphasizes the importance of monitoring
the variation of speed, which is directly impacted by the traffic
conditions on the selected route-path.

Therefore, the uncertainty and time-dependent distribution
- PDF of the speed, has an impact on the Fi(t) calculation,
which is used for calculating ETA. One example of performing
the analytical relation of the PDF of ETA and the PDF of speed
can be found in [21]. In this work ( [21]) the information about
the mean and variance calculated in equation (1) and equation
(2) are used to select the shortest path to the destination by
minimizing the mean and the variance of ETAi [21]. Also,
different studies [40–42] use mean and variance to investigate
reliable routing optimizations. This approach is considered
complex and time-consuming for real implementation [21],
thus we propose a system that overcomes such a challenge
in the following way. The BSA service is being constantly
updated with the real-time speed and position information
from the EmV, which ensures the accurate and real-time
observation of speed and travel times. Also, the BSA service
ensures in-advance notifications of the EmV’s arrival time,
thereby expecting from the vehicles in front to free the
required lane for the EmV. In this situation, the proposed
system can always select the shortest path, regardless of the
traffic conditions, time of day/year, or other impact factors.
Therefore, the average speed of the EmV, i.e., svi,vi+1

(ti),
refers to the value of speed maintained between the two
successive WPs, i.e., WPi+1 and WPi, and it is obtained
from the periodic real-time CAMs, as well as the historical
data collected during the previous traveling experiences on
the same route-path.

In this study, we use real-time data for travel time prediction.
Compared to different potential simulated models, this exper-
imental approach is developed based on real dynamic travel
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time data, which is a very important feature of this work. For
this, we utilized the dataset that is collected from the field
measurements of the vehicle driving on the Smart Highway
testbed that is installed on the E313 highway in Antwerp,
Belgium [43]. More details on the testbed are provided in
Section V.

In particular, an important parameter such as the periodic
real-time value of the speed is obtained from a Global Naviga-
tion Satellite System (GNSS) device that reports on the EmV’s
position, speed, and time. The values of speed are updated
while the vehicle is driving on the selected path with the
transmission frequency of 1 Hz. According to our analysis,
this frequency of CAMs can be considered as high enough
to enable our algorithm to derive values of ETA within the
acceptable bounds of the ETA estimation error. More details
on the error bounds are provided in Section V-B.

The considered historical data set is collected from the
recorded journeys performed on the selected highway. As this
data have the position, the speed, and the time, from the
moment when this sample data was recorded, we created a
matrix of data for the considered segment of the road. This
matrix contains the estimated values for the average speed, and
the travel times for the respective route segment, depending
on the time of the day. Similar approaches are presented
in different studies [18,44]. However, in the aforementioned
studies, methods that are employed to estimate the speed and
the travel require access to large capacity historical datasets
from the emergency medical institutions to predict arrival
times of ambulances in different parts of the cities/urban/rural
areas. In our proposed solution, the matrix of the data is
being constantly updated using the received CAMs from the
EmV. Therefore, we expect that the matrix will contain timely
updated accurate average speed values for 24 hours of the day,
thus identifying rush hours, busy areas within cities, weather
conditions, congestion, and ridership.

In our previous work [12], we used Kalman filter to estimate
ETAs, utilizing the historical records of the measured values
for the average, and the real-time speed received from CAMs.
In this work, we enriched our experimentation with more
measurements, and analyzed the three additional approaches,
which filter the speed parameter for ETA estimation. We
use i) the Filter-less method, ii) the Simple Moving Average
Filter, and iii) the Exponential Moving Average Filter. The key
objective of adding and assessing these three simple filtering
methods is to analyze if we can obtain the required accuracy
with the reduced costs and complexity of the algorithm,
compared to the Kalman Filter.

B. Overview of the reference methods

To compare and assess the resulting ETA accuracy, four
different forecasting methods are used.

1) Filter-less method: When using the filter-less method, a
speed value (v[n]) obtained from a single CAM notification
(without taking into consideration the previous speed data), is
considered to calculate the ETA.

In case of the ETA defined in the equation (3), the average
speed svi,vi+1

(ti), can be obtained via a discretized method
(equation 4).

s[n] = v[n]. (4)

This way, anytime the BSA application receives a new CAM
notification, it will consider the reported speed vi(ti) (or v[n]),

and calculate the ETA value for the upcoming way-points on
the highway while the EmV is heading towards the emergency
case.

2) Simple Moving Average Filter: The Simple Moving
Average, as the name indicates, is an average that moves. The
average is created using older data in combination with the
newly available data, causing this parameter to move along
the time scale.

When using this method, the speed parameter s[n] is formed
by computing the average speed of the EmV over a specific
period, which we define as a window size. In our case, we
have considered a window size (N) equal to 5, which means
that the average speed svi,vi+1

(ti) in equation (3) is calculated
based on the last five values of speed reported by the EmV.

s[n] =
1

N

N−1
∑

i=0

v[n− i] (5)

As shown in the equation (5), if the Simple Moving Average
filter is used, the average speed is derived from the sum of the
values divided by the number of values.

3) Exponential Moving Average Filter: Same as in the
case of the Simple Moving Average, the Exponential Moving
Average filter follows the logic of moving average. However,
in this case, the resulted average speed depends on the previous
average and the current speed value. The filter is called
exponential, because it uses an exponentially smoothing factor
α to include the weight of the previous input speed values
(equation 6).

s[n] = α

N
∑

i=0

(1− α)iv[n− i] (6)

4) Kalman filter: As reflected in the literature
[19,20,39,45–47], Kalman filter has been extensively used in
numerous traffic-related studies that have investigated travel
time estimation for different practical applications. Different
studies reveal that Kalman filter can perform a highly accurate
estimation and performance analysis of the estimators, due to
its performance and its effectiveness in continuously updating
the state variable - prediction with real-time measurements.
Furthermore, the ability of the filter to combine the effects
of noise of both the process and measurements, in addition
to its computational approach, has made it very popular in
many research fields [45]. The study provided by Chien and
Kuchipudi [39] reveals that Kalman filter performs better
compared to various time series models and artificial neural
network models. Although the aforementioned prediction
methodologies use speed, volume, and occupancy data, as an
input, the results show that they are most-likely site-specific,
which makes them inapplicable to more generic scenarios.
Thus, using the same methods on another site or with other
traffic conditions lead to decreased accuracy in prediction.
On the other side, Kalman filter combines the use of historic
path-based data and continuously updates on the traffic
behavior. This provides better accuracy especially during
peak hours due to smaller travel-time variance, and the
larger sample size [39]. Same conclusions are found also in
[19], where Kalman filter is developed to predict the traffic
flow. According to Emami et al. [19], Kalman filter has an
acceptable accuracy to predict the traffic flow even in the
presence of abrupt changes in traffic conditions. In [45],
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Shalaby and Farhan show that Kalman filter outperforms
other traditional models (i.e., regression and neural network
models) in terms of accuracy, demonstrating the dynamic
ability to update itself based on new data that reflects the
changing characteristics of the operating environment.

In this study, we use Kalman filter to estimate the travel
time, as this type of filter enables combining the prediction of
the ETA with the real-time arrival times observations obtained
from the periodic real-time CAM messages. In addition, the
historical data on the travel time, collected for the studied route
paths, are included to improve this estimation.

This filter consists of the initialization, prediction, and
correction steps, for every input value, and it uses linear
stochastic difference equations to estimate values of interest
[48].

The considered state and measurement models are also
presented in our previous work [12], where in the equation
(7), xk is the state variable, which is in our case the ETA for
the respective WPi. Then, A is the state transition constant,
which relates the present state xk of the ETA to its previous
state xk−1, calculated for the previous WPi−1. Since ETA is
a one-dimensional value, A is equal to 1.

xk = Axk−1 +Buk−1. (7)

Furthermore, the parameter B associates the control input
parameter u to the ETA value of the step k (xk). Since the
input u is the time interval added to the ETA of the step
k−1 (xk−1), this input parameter is one dimensional as well,
thus B=1. The control input u is calculated considering the
segment’s length L between WPi and WPi−1 found on the
the pre-selected route-path obtained from the mapping system,
divided by the input speed parameter received continuously
using CAM message. In order to include the impact of the
process noise, we use covariance Q, thereby obtaining the
covariance matrix Pk.

P k = AP k−1A
T +Q. (8)

For the correction step, we consider the real data measure-
ments and follow the equations (9)-(11). In our case study,
the real-time CAM messages, as well as the historical data
measurements, are used to obtain the vector of the ETA mea-
surement values expressed as zk, for the respective segments
of the highway. The transformation matrix H is equal to 1 in
our case, and xk is obtained using equation (7). The obtained
measurements include noise or uncertainty, whose variance
is R [12]. The Kalman gain K, expressed in equation (9),
determines to what extent the predictions should be corrected
in time step k. This estimation/prediction error is the difference
between the predicted value and the actual measurement.
Depending on the value of variance measurement noise R,
this gain gives weight to the predicted or the measured value.
A large value of R results in the small K, which means that
the predicted value does not reflect the measured one. On the
contrary, if R is small, it means that the measurements for
the specific area are approximated with an insignificant error
value.

Kk = PkH
T (HP kH

T +R)−1. (9)

xk = xk +K(zk −Hxk). (10)
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Pk = (I −KkH)P k. (11)

C. Dissemination area size determination

As described in Section III, the BSA service determines
the EmV’s ETAs with reference to different WPs along the
route-path, and then disseminates the calculated ETA values in
respective dissemination areas. A dissemination area is defined
as a region between two specific WPs, and the ETA is derived
with reference to the WP marking the beginning of each
dissemination area. Thus, all vehicles within the respective
dissemination area will receive the same ETA value. As a
result, besides the prediction error which is an outcome of
the above mentioned forecasting techniques, the ETA value
will be impacted by another estimation error (e(ti)) within a
dissemination area (i), which depends on the size (i.e., road-
length) of the dissemination area (Li).

In our previous work [12], we provided an empirical evi-
dence of the effect of dissemination area size (i.e., L) on the
estimation error (i.e., ei). From the obtained results, we could
see that the maximum estimation error of 62.22s was obtained
for L=250m as compared to 92.10s observed for L=500m,
and the maximum value of the estimation error, i.e., 118.08s,
observed for L=1000m [12].

Thus, the larger the size of a dissemination area is, the larger
the estimation error. The error behavior and its dependency on
the dissemination area size are used to model, predict, and to
limit it under a defined threshold suitable for an emergency
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situation. In this regard, our analysis and observations of
the data acquired from the real experimental drives, show a
relation between the estimation error (e(ti)) of the ETA value,
the dissemination area size (i.e., road-length) (L(ti)), the speed
of the EmV (v(ti)), and the index (n(ti)) that is expressed
in equation (12). The index n reflects the traffic conditions,
weather conditions, time of the day/year, and other parameters
that may impact the speed of the EmV.

e(ti) = f(L(ti), n(ti), v(ti)). (12)

Fig. 5 illustrates the impact of the size of the dissemination
area (Li) on the estimation error, where the dissemination area
is defined between WP-1 and WP-2. The figure shows that
the magnitude of error value is proportional to the size of the
dissemination-area DA − 1, DA − 2, DA − 3, characterized
by a linear increase in the estimation error as the size of
the dissemination area increases from L1, through L2, to L3,
respectively. The slope of the estimation error is positive, and
is defined by the change in the ATA parameter divided by
the corresponding change in the distance parameter between
two distinct points on the highway segment. As illustrated in
in Fig. 5, the ETA error will be higher for vehicles that are
farther away from the reference WP (i.e., WP1 in Fig. 5).

According to our analysis and observations of the data
acquired from the real experimental drives, the index n has
a mean value of 1.07, minimum 0.01, maximum 1.41, and
a maximum standard deviation of 0.47. Furthermore, this
index has a tendency to exhibit very small changes between
two successive calculations of ETA, thus it has a negligible
effect on the two successive errors estimations. This makes it
possible to use the previous value of the estimation error index
n(ti) for the proceeding estimation error index n(ti+1).

Therefore, for each newly received CAM, we use the
relation between ATAi, speed of the vehicle v(ti), and the
distance di, obtained at the time ti, as represented in equation
(13), to forecast the index n for the upcoming time ti+1.

n(ti+1) = ATAi

v(ti)

di
. (13)

The dynamically changing index n from every newly re-
ceived CAM is used to dynamically adjust the dissemination
areas sizes L(ti+1) (see equation (14)), so that the estimation
error caused by this size stays under a defined threshold
(emax

i+1 )

Lmax
i+1 <= emax(ti+1)

v(ti)

n(ti+1)
. (14)

The numerical value of the threshold emax(ti+1) is the
maximum estimation error, which is allowed at the end of
the generated dissemination area (i.e., numerical value of e1
if L1 is selected, or e2 for L2, or e3 for L3, in Fig. 5).

V. PERFORMANCE EVALUATION

We evaluated the performance of the BSA algorithm using a
the case study presented in Section III, thereby including the
four studied reference methods. The performance evaluation
is made by measuring the accuracy of the ETA estimation,
thus analyzing the parameters that impact this accuracy, with
reference to the real data measurements presented in Section
V-A.

Fig. 6: The segment of the two way E313 highway in Antwerp,
Belgium. © 2020 Google.

Fig. 7: The OBU Roof Unit placed on the vehicle roof and the
OBU Car Unit placed inside of vehicle.

A. Experimental testbed for reference data collection

In order to analyze the performance of the four reference
methods in terms of accurate calculation of ETA, a real dataset
was used as a reference. This dataset consists of the test
data that has been acquired by driving a test vehicle on the
selected segment of the E313 highway in Antwerp, Belgium
(see Fig. 6), where the Smart Highway Testbed is installed.
Besides parameters such as location and speed, the test data
captures also the ATA of the test vehicle.

The testbed infrastructure, which is part of the Smart
Highway, consists of the following interconnected hardware
entities: a vehicle equipped with an Onboard Unit (OBU), the
backbone, the testbed management software platform, and the
optical fiber ring along the E313 highway.

As shown in Fig. 7, one part of the OBU is placed on the
roof of the vehicle (1.8 m from the ground), and it contains an
accurate GNSS module AsteRx-m2a with Real-time kinematic
positioning (RTK) correction, and two GNSS PolaNt-x MF
antennas. The second part of the OBU is placed inside of the
vehicle, and it contains a processing unit with an independent
power system, which can power the OBU for several hours.
This device records the position of the vehicle expressed by
its latitude and longitude with a predetermined frequency of
updates, the time-stamp when this position is obtained, the
precise and reliable heading information, and the vehicle’s
speed. These parameters are identified using an ID and are
stored for post-processing.

The data measurements are obtained at different hours of
the day, months, and years, making us able to evaluate the
ETA performance under diverse traffic conditions. The travel-
time data are collected in November 2020, (2020-11-19, 14:00
to 17:00 CET), June 2019 (2019-06-18, 14:00 - 15:00 CET),
and July 2019, (2019-07-17, 12:00 to 14:00 CET).

Fig. 8 shows the sample of the 10 test drives, including
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Fig. 8: Real measured travel time, referred as Actual Time of
Arrival of the OBU while driving on the E313 Highway.

the time-stamp for each recorded position, which is then used
as the ATA of the vehicle in our algorithms and analysis.
As it can be seen in Fig. 8, the speed of the OBU changes,
thereby resulting in different arrival times in different sections
or distances from the starting point.

B. Results and Analysis

The main goal of this work is to evaluate the performance
of the BSA algorithm in terms of the following key objectives:

1) Comparing the performance of the four reference meth-
ods in terms of their accuracy.

2) Determining the dissemination area size in order to
obtain ETA estimation errors under an acceptable limit.

3) Analyzing the impact of the CAM input frequency on
the ETA estimation error.

4) Comparing the performance of the four reference meth-
ods in terms of their complexity.

Thus, in the following sections, we present and discuss
the obtained results, thereby pursuing the aforementioned
objectives.

1) Accuracy of filtering methods: To analyze the accuracy,
we use KPIs such as minimum/maximum/average/standard
deviation of the estimation error. To compare the predicted
values of ETA with the measured values (i.e., ATA), we use
the following KPIs: Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Square
Error (RMSE).

In our analysis, MAE is used for obtaining the natural
average magnitude of the absolute estimation errors by giving
the same importance to each error. Furthermore, MAPE is used
to express the accuracy as a percentage of the error, i.e., as the
sum of the individual absolute estimation errors divided by the
respective ATAs. Finally, the RMSE gives more importance to
more significant estimation errors, i.e., higher deviations from
the measured values. Thus, by considering these three KPIs,
we have a complete picture of the estimation error distribution.

The datasets that are obtained from the field tests and
described in the Section V-A, are used to analyze the difference
between the measured values of ATA, and the values of
ETA that are calculated using the four reference methods. In
particular, to collect the measurements for the ATA values, we
have used one of the OBU drives shown in the Fig. 8.

As already explained, the algorithm is generating new ETA
values with every CAM that is received from the EmV. In
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Fig. 9: Comparison of the real measured travel time ATA and the
ETA values derived using four reference methods and information

received from the first CAM notification only.

particular, Fig. 9 presents the initial ETA values that are
generated for all points on the selected path (i.e., starting
from the EmV’s initial position to its destination), taking into
account the position, speed, and heading, of the EmV, which
are stated in the first received CAM. In Fig. 9, we compare the
predicted values (i.e., ETAs) derived using the four reference
methods with the real time of arrivals (i.e., ATAs) recorded by
the GNSS receiver, when the EmV is located at the starting
point of the journey, and has a long distance in-front toward
the destination.

We can see in Fig. 9 that the estimation error increases
with distance, as the ETA diverges more and more from the
ATA. As it can be seen, all methods are overestimating the
arrival time of the EmV for the areas that are more than
600m away from the EmV’s current location. In this case,
the EmV will reach the vehicles at the front much earlier
than the ETA notification stated, thus giving drivers limited
opportunity to safely maneuver away from the EmV’s path.
Our solution prevents such scenario, since our algorithm is
being constantly updated with the CAM notifications, thereby
ensuring the update of ETA values along the path as well.

Furthermore, Fig. 9 shows that Kalman filter is deriving
ETA values more accurately, i.e., the derived ETA values are
closer to the measured ATA values, compared to the other three
reference methods. Here we can clearly see the importance of
the adaptive and self-correcting feature of the Kalman filtering
that adjusts itself during the drive, whereas such feature is not
present in the other three reference methods.

The difference between the measured ATAs and the gen-
erated ETAs can be observed as a vector with a certain
distribution of the estimation error. Thus, in Fig. 10, we
show how the maximum, the minimum, the average, and the
standard deviation, of the estimation error change during the
entire journey (from the EmV’s starting point until it reaches
the destination), in case Kalman filter is used for predicting
ETA. In this case, the algorithm is being updated with the new
input data every second, but the results are plotted every two
seconds to achieve better visibility.

For every box plot representing the resulted vector in Fig.
10, we can see the peaks of estimation errors (both positive
and negative). These peak values of the estimation error are
obtained for the locations/distances that are far in-front from



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 0, NO. 0, SEPTEMBER 2021 11

TABLE II: Comparison of the estimation error obtained at d0, d1, d2, d3 using different techniques and different performance criterion.

Distance traveled di,
Dissemination area size L

Prediction
Technique

Min STD Max Average RMSE MAE MAPE (%)

d0=9.5m, L=1000m Kalman Filtering 0.072 21.94 54.46 9.38 23.86 19.55 41
Filter less method 0.009 47.02 147.57 -27.15 54.30 44.77 62

Simple Moving Average 0.009 47.02 147.57 -27.15 54.30 44.77 62
Exponential Moving Average 0.009 47.02 147.57 -27.18 54.30 44.77 62

d1=710m, L=335m Kalman Filtering 0.086 7.00 28.90 11.33 13.32 11.38 20
Filter less method 0.009 9.50 37.48 16.98 18.42 16.04 31

Simple Moving Average 0.015 9.16 37.92 -27.15 18.68 16.28 33
Exponential Moving Average 0.004 8.91 36.99 15.77 18.12 15.77 33

d2=1598m, L=380m Kalman Filtering 0.012 6.44 24.64 12.15 13.75 12.36 25
Filter less method 0.010 6.44 24.55 12.10 13.71 12.10 33

Simple Moving Average 0.040 6.64 26.43 -27.15 14.66 13.07 35
Exponential Moving Average 0.035 6.60 26.11 12.90 14.49 12.90 34

d3=2361m, L=375m Kalman Filtering 0.061 6.40 22.15 11.57 13.22 11.57 29
Filter less method 0.014 6.38 22.05 11.03 12.74 11.03 35

Simple Moving Average 0.071 6.41 22.39 -27.15 13.34 11.70 37
Exponential Moving Average 0.06 6.40 22.13 11.65 13.22 11.66 36
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Fig. 10: Estimation errors obtained on different locations/distances
toward the emergency case when using Kalman filtering.

the EmV’s current location (as shown in Fig. 9). When using
Kalman filtering technique, the accuracy of the algorithm is
high for shorter distances, i.e., for those areas that are less
than one km away from the Emv’s starting point). When
the distance increases above 1km, the estimation error also
increases (as shown in Fig. 9). However, this does not affect
the overall prediction accuracy, as the ETA values are being
re-calculated every second with each new CAM notification,
which in the end results in an improved accuracy. This is the
first advantage of our solution compared to existing systems.

Also, while the EmV is moving toward the destination, the
prediction distance decreases, therefore the estimation error
decreases as well. This is reflected in Fig. 10, where we
can also see that at the end of the journey the range of the
estimation errors gets smaller (especially in the last area, i.e.,
when the journey time is between 150s and 180s).

Furthermore, Fig. 11 shows the comparison of the esti-
mation error vectors obtained using all four methods, i.e.,
Kalman filtering, Filter-less method, Simple Moving Average
Filter, and Exponential Moving Average Filter. The KPIs such
as maximum estimation error, MAE, and RMSE, shown in
Figures 11a, 11b, and 11c, respectively, are calculated for
the entire distance, i.e., the entire journey time that the EmV
travels toward the intended destination. The results show that
the prediction accuracy of all methods increases as the distance
from the destination drops, also confirming that the Kalman

filter performs better in case of long distance predictions,
compared to the other three reference techniques.

Same observation is shown in Table II, where we present the
detailed numerical results for all four considered techniques,
defining four different scenarios with reference to the EmV’s
distance from the starting point. Thus, the KPIs listed in
Table II (i.e., standard deviation, mean, minimum , maximum,
RMSE, MAE, and MAPE), describe the estimation error vec-
tor obtained when the EmV is located at the certain distance
(i.e., d0, d1, d2, and d3) from the starting point. In particular,
MAPE is reflecting how the algorithm performs in general
when the EmV is at the certain distance from the starting
point, by considering all vectors of estimation errors that are
obtained while the EmV is heading towards the designated
locations (d0-d3).

When the EmV sends the first CAM notification at the
start of its journey, i.e., at the position d0, the maximum
estimation error is 54.46s for Kalman filtering, and 147.57s
for other three methods. As it can be seen from the Table II,
in case of d0, MAPE is 41% for the Kalman filter, and 62%
for other techniques, which shows that Kalman filter achieves
21% lower estimation error than the other methods. Consider-
ing other distances, Kalman filter keeps outperforming other
methods, thereby achieving (11-13)%, (8-10)%, and (6-8)%,
lower MAPE in case of d1, d2, and d3, respectively.

2) Optimal size of dissemination areas: Moving to the
second objective of this work, it is important to stress that
in addition to the estimation errors inherently caused by the
considered filtering methods, the size of dissemination area
has an impact on the magnitude of the estimation error as
well.

Given that we share a single ETA value for all vehicles
located within a single dissemination area, it is intuitive that
the estimation error is the lowest at the beginning of the
dissemination area. This error increases for those vehicles that
are farther from the start of the designated dissemination area,
i.e., the closer they are to the end of the area, the larger the
estimation error is.

In the very first step, our algorithm sets 1000m to be the
default value of the size for each dissemination area, and then
it dynamically changes the size with reference to i) the EmV’s
speed, which is extracted from the periodic CAM notifications,
and ii) the upper error threshold (see eq. 14). With such
approach, the dynamic definition of sizes with each newly
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(a) Maximum estimation error values.
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(b) Mean Absolute Error values.
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(c) Root Mean Square Error values.

Fig. 11: Comparison of the estimation errors obtained on different
locations/distances toward the emergency case for the considered

techniques and for the entire journey.

received CAM notification results in an increased estimation
accuracy. Referring to Kalman filtering results shown in Fig.
11, the minimum estimation error after receiving the second
CAM notification tends to be zero, while the maximum error
is around 18s at the end of the first dissemination area
(determined or limited by the threshold value), and 47s at the
end of the journey (in our case more than 3km far from the
current EmV location). Although the error is 47s for the end
point of the journey, each new derivation of ETA will improve
the accuracy, thereby updating the civilian cars with newly
calculated values of ETA for their respective dissemination
areas.
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(a) e, d0 = 9.5m, L = 1000m.
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(b) e, d1 = 710m, L = 335m.
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(c) e, d2 = 1598m, L = 380m.
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(d) e, d3 = 2361m, L = 375m.

Fig. 12: Comparison of the estimation errors for different
dissemination areas size.
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Therefore, as concluded in Section IV-C, the estimation
error is a function of dissemination area size L, speed v, and
the n index, which allows us to predict, to control, and to
bound, this error by adjusting the aforementioned parameters
(eq. 12). To better showcase the aforementioned, in Fig. 12
we present the behavior of the estimation error depending on
the size of dissemination area at the four considered reference
locations, i.e., d0, d1, d2, d3. In each of these cases, Fig. 12
and Table II show how the estimation error changes for all
four reference methods with the change in the size of the
dissemination area L.

In Fig. 12a, when the EmV is located at the d0 distance
from the starting point, the size of the dissemination area has
a default value, i.e., 1000m. In this case, the RMSE for the
Kalman filtering is 23.86s, while it obtains values of 54.30s
for the other three techniques. Afterwards, when the EmV
moves and reaches the d1 (travelling 710m from the starting
point), Fig. 12b shows that our algorithm adjusted the size of
dissemination area in order to decrease the estimation error.
The new size becomes 335m, yielding the RMSE of 13.32s,
18.42s, 18.68s, and 18.12s, in case of Kalman filtering, Filter-
less method, Simple Moving Average Filter, and Exponential
Moving Average Filter, respectively. Results in Fig. 12c and
Fig. 12d follow the same trend.

This clearly shows that the correcting behavior or our
algorithm is continuously decreasing the estimation error by
dynamically adjusting the area size. With the dynamic ad-
justments of dissemination area sizes, applied by extracting
the EmV’s speed from the received CAM, as well as the
maximum allowed error (threshold), our algorithm is capable
of providing more accurate ETA estimations. This is the
second advantage of our solution compared to the existing
systems.

In addition to the previous analysis, we explored how the
estimation error changes for the Moving Average filter (eq.
5) and the Exponential Moving Average filter (eq. 6), in case
the window size changes. We observed the three values of
the window size, i.e., 5s, 10s, and 50s, and the results show
no improvement compared to the Kalman filtering. On the
contrary, for some locations in the case study, averaging speed
values for longer intervals produced an underestimation of the
EmV arrival time.

It is also important to recall that in our proposed solution,
vehicles will receive early notifications of an approaching
EmV, which will provide them with sufficient time to clear
the required lane. In such a solution, the EmV can always
select the shortest path or/and the path where it can drive at
the maximum allowed speed for emergency systems. Thus,
there is no need for collecting long time speed data history to
provide an accurate ETA calculation. This is considered as the
third advantage of our solution compared to existing systems.

3) Update frequency of CAM notifications: To achieve
the third objective of this work, here we present the results
we obtained when changing the update frequency of CAM
notifications. If we take a look at Fig. 13, it is evident that the
estimation error changes with the update frequency of CAMs.
However, we need to consider more carefully how significant
is the exact difference in estimation error (Fig. 13). The CAM
periods shown in Fig. 13, change from 0.1s to 1s, 2s, and
3s, respectively. The respective average MAE values change
i) 10.16s, 10.11s, 10.24s, and 10.30s, when using the Kalman
filter, ii) 13.33s, 13.17s, 13.33s, and 13.40s, for the Filter-less
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Fig. 13: Comparison of the MAE maximum values obtained for the
whole journey of the EmV using different period T for CAM

notifications.

method, iii) 13.41s, 13.89s, 14.67s, and 15.14, for the Simple
Moving Average, and finally iv) 13.40s, 13.81s, 14.48s, and
14.93s, in case of the Exponential Moving Average.

We can see that the difference in average MAE values is
always lower than 2s. In our particular case, such value is
considered small as it does not affect the performance of BSA
operation, since the MEC service sends periodic updates to
the vehicles in a timely manner, i.e., early enough to clear
the lane. For example, if a notification for a civilian vehicle
indicates that an EmV is approaching in 2min (which is
an ETA value), and EmV arrives in 2min and 2s, or 1min
and 58s, such difference in the received ETA will not affect
the driver’s decision to clear the lane. In addition, the study
provided by Toledo and Zohar [49], states that the average
duration of lane change on the highways is 5.8s, which means
that the driver will need to make a plan on the lane change
upfront, and 2s will clearly not play a significant role in this
decision. Thus, we can conclude that changing the update
frequency of CAM notifications will not significantly affect the
estimation accuracy, which means that our algorithm does not
require more frequent reception of CAM updates to produce
relevant and sufficiently accurate ETA values. If this was not
the case, BSA service would be expected to process more
messages, thereby consuming more computational resources.
Such benefit is essential for deploying BSA service on the
MEC platforms, which are usually not resourceful as cloud
environments.

4) Complexity of filtering methods: One of the goals of
performing the cross-analysis of different reference methods,
i.e., the Filter-less method, the Moving Average filter, and
the Exponential Moving Average filter, is also to investigate
whether a sufficient estimation accuracy can be obtained by
using methods with lower complexity and costs compared
to the Kalman filter. Thus, by using the Big-O notation, we
performed the comparative analysis of the computational time
while considering the upper bound of the running time of the
algorithms. The results show that all three methods run in
O(n) time, where n depends on the number of the considered
way-points toward the destination. Regardless of the method
type, a longer distance from the destination implies more
computational steps, i.e., the linear increase in computational
time. On the other side, Kalman Filter is performing the
following three steps for each newly received CAM (initial-
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ization, prediction, and correction), as it is characterized by a
recursive nature, thereby using the output as an input for the
next calculation. As expected, this increases the computational
time compared to the other three methods. However, despite
the increased complexity, Kalman filter provides better results,
especially for longer-time predictions. Also, it sustains better
stability in the accuracy compared to other methods when
the update frequency of CAM notifications changes (Fig. 13).
Hence, the complexity vs. accuracy trade-off needs to be
carefully studied for any type of application. In our particular
case, the computational time is the time needed for our
algorithm to re-calculate ETA values for the dynamically
defined dissemination areas based on the newly received CAM.
The update frequency of CAMs, which can be 1Hz, enables
our algorithm to achieve a sufficient level of accuracy (as
shown in Fig. 13) and affords it with at least 1s to perform
the calculation before new CAM notification arrives. Thus, as
such a time gap is sufficient even for the Kalman filtering
method, a better prediction accuracy plays a more significant
role, making Kalman filtering the most suitable method for
our approach.

In addition, it is important to note that the presented analysis
is performed considering the highway scenarios. However, we
think that the proposed solution can give the same results
also when employed within scenarios with non-linear paths in
crowded cities, or other urban and rural areas, in view of its
reliance on periodic CAM notifications and the self-correcting
property of the algorithm. As long as the areas are covered by
the 5G mobile network infrastructure, with the MEC system
hosting the BSA service, the vehicles encountered on the
selected route path will be notified about the arrival of an
EmV. Therefore, the vehicles will have enough time to free the
required lane. Also, the BSA is being constantly updated with
the speed and location of the EmV, while it is heading toward
the destination. This real-time speed/location information will
be used by the application to evaluate the EmV’s progress
toward the destination, thus defining new values of ETA,
and disseminating accurate results independently of the path
linearity. In addition, the application will save and process the
location and time information of the EmV for the respective
segments, and use this data to update the required parameters
in the historical database. As such data shows the behavior of
EmVs at different times/days, the BSA application will be able
to perform a corresponding statistical analysis to improve the
accuracy of the ETA calculation. This advantage makes our
solution applicable to any road traffic and scenario.

The dissemination of the ETAs in crowded cities will
be performed using smaller cells and smaller dissemination
areas size. The vehicles which are covered by this, but are
found outside of the selected route path, will filter the ETA
information considering the route they are located. A more
detailed analysis on this is part of our future work.

VI. CONCLUSION

In this paper, we introduced the BSA application for pro-
viding an early notification of the ETA of an approaching
EmV. The ETA is calculated by the BSA service placed within
the MEC system. As the ETA algorithm provides the main
logic to the BSA application, the performance of this self-
correcting algorithm has been analyzed and evaluated in terms
of accuracy of ETA estimation. To this end, we incorporated
the dynamic definition of the dissemination area size, and

we used different forecasting techniques. The real field data
measurements obtained in a realistic environment, such as
the Smart Highway testbed in Antwerp, Belgium, are used
for developing the model, as well as for required analysis,
evaluation, and comparison.

First, the developed algorithm is being periodically updated
with the EmV speed and location information, to follow the
flow and fast changes in the traffic, and it uses these input
values for its self-correcting behavior towards improving the
ETA accuracy.

Second, the developed algorithm analyzes the dependency
between the estimation error, the dissemination area size, and
the EmV speed, while heading to the emergency case. As a
result, the algorithm dynamically allocates the dissemination
areas, and adjusts their size. This newly added feature to our
proposed BSA algorithm maintains the estimation error under
a defined threshold, required for an emergency situation.

To study the accuracy of the ETA estimation achieved by
different methods, we made a comparison between i) Kalman
filter, ii) one-step speed values from CAM referred to as
Filter-less method, iii) the average speed values using Moving
Average filter, and iv) the Exponential Moving Average filter.
According to our results, the Kalman filter proved to produce
the most optimal result by providing the highest estimation
accuracy, compared to the other prediction methods. This
Kalman accuracy gain becomes even more relevant when the
algorithm needs to predict ETA values for longer distances.

Although the computational complexity of the Kalman
Filter is higher compared to other methods because of its
recursive nature, our experimentation has shown that the
computational time of Kalman filter has the same order of
magnitude as in case of the other methods, resulting in an
increase in time that not significant. In addition, we can reduce
the CAM input frequency (increase CAM period from 1s to
2s, or 3s), and still, Kalman filter sustains better stability in
the accuracy compared to other methods.

With such BSA system, when the ETA notification is
beyond the audio and visual range of the EmV, drivers have
enough time to take the required actions and clear the lane.
At the same time, the EmV can always select the shortest
path toward the destination and drive at the maximum allowed
speed for emergency systems. As a result, the proposed
solution is expected to not only improve the road safety, but
also to enhance the mission success and response time of
emergency responders.
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