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Abstract

Natural deep eutectic solvents (NADES) show great promise as media for enzymatic reac-

tions in areas where (bio)compatibility with natural or medicinal products is a must. While in

theory they can be tailored to the intended reaction to ensure optimized yields, the knowledge

to date is predominantly empirical, with some mechanistic reports providing a fragmented

view at best. Therefore, it is not easy to explain experimental observations, let alone make

predictions. The aim of this study was to develop a structured, holistic understanding of the

e�ects of NADES media on enzymatic reactions, distinguishing between e�ects on solubility,

solvation, viscosity, inhibition and denaturation.

Experimental and computational chemistry methods were combined to separately study the

interactions between enzyme, substrate, and NADES as reaction media. The initial enzyme

activity and the �nal conversion of vinyl laurate transesteri�cation by immobilized Candida

antarctica lipase were studied experimentally. The direct e�ect of NADES on the same

enzyme was modeled by molecular dynamics simulation. The e�ect of solubility was studied

by both experimental and computational methods. To predict the solubility and viscosity of

NADES, data-driven models were developed by combining group contribution and machine

learning methods, based on the accumulated experimental knowledge on NADES found in

the literature. Finally, the composed relationships and prediction models were applied to the

practical example of deacetylation of mannosylerythritol lipids (MELs).

The experimental �ndings show that the chosen NADES system has a signi�cant e�ect on

both the apparent initial activity and the �nal conversion. However, in the simulations, the

enzyme retains its original structure; moreover, NADES has an additional stabilizing e�ect

on the enzyme. In addition, changes in the molar ratio of the compounds in NADES do

not show a signi�cant e�ect on the stability of the enzyme. These results indicate that the

main e�ect of NADES on the reaction is mainly related to the substrate-solvent interactions

(solvation energy) and the viscosity of the system. On the other hand, the experimental

results only con�rmed the signi�cance of solvation, viscosity did not show a clear correlation

with the studied reaction parameters. The machine learning models built for solubility and

viscosity gave quantitative predictions of these properties. The accumulated knowledge was

used to optimize the yield in the deacetylation reaction of MELs.

The combination of these methods provides fundamental knowledge about the e�ect of

NADES on biocatalysis, but the results are also applicable to other uses of NADES.
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Samenvating

Natuurlijke diepe eutectische oplosmiddelen (NADES) zijn veelbelovend als medium voor

enzymatische reacties op gebieden waar (bio)compatibiliteit met natuurlijke of medicinale

producten een must is. Hoewel zij in theorie kunnen worden afgestemd op de beoogde

reactie om een optimaal rendement te garanderen, is de kennis tot dusver overwegend

empirisch, waarbij sommige mechanistische rapporten in het beste geval een gefragmenteerd

beeld geven. Daarom is het niet eenvoudig experimentele waarnemingen te verklaren, laat

staan voorspellingen te doen. Het doel van deze studie was een gestructureerd, holistisch

begrip te ontwikkelen van de e�ecten van NADES-media op enzymatische reacties, waarbij

onderscheid wordt gemaakt tussen e�ecten op oplosbaarheid, solvatie, viscositeit, remming

en denaturatie.

Experimentele en computationele scheikundige methoden werden gecombineerd om de inter-

acties tussen enzym, substraat en NADES als reactiemedium afzonderlijk te bestuderen. De

initi�ele enzymactiviteit en de uiteindelijke omzetting van vinyllauraattranssesteri�catie door

ge��mmobiliseerd lipase van Candida antarctica werden experimenteel bestudeerd. Het directe

e�ect van NADES op hetzelfde enzym werd gemodelleerd door moleculaire dynamicasimu-

latie. Het e�ect van de oplosbaarheid werd bestudeerd met zowel experimentele als compu-

tationele methoden. Om de oplosbaarheid en viscositeit van NADES te voorspellen werden

datagestuurde modellen ontwikkeld door een combinatie van groepsbijdrage en machine-

learning methoden, gebaseerd op de verzamelde experimentele kennis over NADES uit de

literatuur. Tenslotte werden de samengestelde relaties en voorspellingsmodellen toegepast

op het praktijkvoorbeeld van deacetylering van mannosylerythritol lipiden (MEL's).

Uit de experimentele bevindingen blijkt dat het gekozen NADES-systeem een signi�cant

e�ect heeft op zowel de schijnbare beginactiviteit als de uiteindelijke omzetting. In de sim-

ulaties behoudt het enzym echter zijn oorspronkelijke structuur; bovendien heeft NADES

een extra stabiliserend e�ect op het enzym. Bovendien hebben veranderingen in de molaire

verhouding van de verbindingen in NADES geen signi�cant e�ect op de stabiliteit van het

enzym. Deze resultaten wijzen erop dat het belangrijkste e�ect van NADES op de reactie

voornamelijk verband houdt met de substraat-oplossingsinteracties (solvatie-energie) en de

viscositeit van het systeem. Anderzijds bevestigden de experimentele resultaten alleen het

belang van solvatie, viscositeit vertoonde geen duidelijke correlatie met de bestudeerde re-

actieparameters. De voor oplosbaarheid en viscositeit gebouwde machine-learning modellen

gaven kwantitatieve voorspellingen van deze eigenschappen. De verzamelde kennis werd

gebruikt om het rendement van de deacetyleringsreactie van MEL's te optimaliseren.

De combinatie van deze methoden levert fundamentele kennis op over het e�ect van NADES

op biokatalyse, maar de resultaten zijn ook toepasbaar op andere toepassingen van NADES.

3



4 CONTENTS



Chapter 1111111111111111111111111111111111111111111111111111111111111111111111111
Introduction

"A beginning is the time for taking the most delicate care that the balances are correct."

Frank Herbert, Dune

In the summer of 2018, our research group began to wonder how to utilize hydrophobic

deep eutectic solvents for the deacetylation reaction of mannosylerythritol lipids. From this

question, a long and winding road led to the proposal of a complete methodology for solvent

selection. I'm sure that this elaboration is also re
ected in the thesis. For this reason, I

provide a preface to each chapter, explaining how its content relates to the larger picture.

(You are reading one of these.) Many elements of this thesis have already been published

as peer-reviewed articles. So as not to disrupt the 
ow of thought in them, these papers

are included unaltered. However, to make it easier to relate to the overall work, I have also

added summaries at the end of each chapter, where I explain how the results of the given

article relate to the main research questions and overall goals of the thesis.

This chapter provides a brief overview of NADES, their properties and applications, and

existing knowledge gaps to help the reader put the research into context. This is followed

by an outline of the research, the questions and hypotheses that will be investigated, along

with the objectives, scope, planned deliverables, and their limitations. The chapter concludes

with an overview of how the rest of the dissertation will be structured and how previously

published results will be incorporated.

A �nal note on the Introduction: since the full literature review is in the next chapter,

some of the methodological choices may not be clear from the brief introduction of NADES

presented here. I ask the reader to bear with me until the full review of the topic in Chapter

2.

5



6 CHAPTER 1. INTRODUCTION

1.1 Context

Deep eutectic solvents/systems are multicomponent mixtures that exhibit melting signi�-

cantly below the ideal eutectic temperature [1]. In this thesis this is further restricted towards

organic compounds, typically quaternary ammonium salts, and metal chlorides or hydrogen

bond donors (HBD) [2]. Although the de�nition of "how deep is deep" is still debated in

the scienti�c community [3], "deviation from such 'ideal-solution' behavior 1, which creates

low-temperature melting materials and provides unexpected liquid environments" is the gen-

eral consideration [4]. The mixtures of practical interest are those with melting point close

to or even below room temperature [5]. For example, one of the most commonly studied

systems, the 1 to 2 molar ratio mixture of choline chloride and urea, has a melting point of

17 �C [6]. In comparison, solid choline chloride decomposes at 305 �C [7] and urea melts at

132.7 �C [8]. This decrease in melting point is attributed to the strong interactions between

the compounds, which includes the formation of an intermolecular hydrogen bonding net-

work through the whole system [9, 10]. The hydrogen bonding network stabilizes the liquid

state of the mixture and facilitates its use as a solvent [11]. Natural deep eutectic solvents

(NADES) are the subgroup containing naturally derived chemicals 2 [12], usually quaternary

ammonium salts and hydrogen bond donating compounds such as organic acids or polyols

[13]. NADES are a green alternative to common organic solvents, due to their more benign

properties [14, 15].

DES as solvents have many advantageous properties. Since DES are mostly ionic solutions,

they have many properties similar to ionic liquids, but with additional advantages. Compared

to commonly used organic solvents, DES are non-
ammable, have low vapor pressure and

low toxicity, providing a better alternative from both environmental and occupational safety

perspectives [16, 17]. DES are "designer solvents", meaning that their required physico-

chemical properties can in theory be tailored to the task at hand [18]. The interactions

between the salt and HBD groups de�ne the behavior of the mixture [1]. By exploiting this

behavior, the desired properties of the mixture can be optimized by changing the compo-

nents and their molar ratio [19]. Compared to ionic liquids, DES are cheaper to produce

and less sensitive to impurities, facilitating their use on a large scale [5]. NADES o�er

additional advantages because they are based on primary metabolites (organic acids, amino

acids, amines, and sugars) that can be obtained from the waste streams of other processes

[20]. As a result, they have good biodegradability, low production costs and are consistent

with circular economy principles [21].

Non-
ammability, low volatility, low toxicity and low price make NADES attractive candidates

for many �elds. Due to their novelty, practical applications are limited to date, including

mostly electrochemistry [22, 23] and separation/extraction processes [24]. Nevertheless,

treatment of waste streams [25, 26], biomass valorization (e.g., cellulose processing [27,

28, 29] or biodiesel production [30]), gas capture [31, 32], metallurgy [33, 34, 35], medical

applications [36, 37, 38, 39] and media for biocatalysis [40, 41, 42, 43] are also considered.

Due to their biodegradability and possible biocompatibility, NADES are likely to be applied in

1'Ideal-solution' behavior implies that the change in interaction energies between di�erent compounds

and the same compounds is small and the decrease in melting temperature is determined by the entropy of

mixing
2Although these compounds can be produced from natural sources (e.g., agricultural waste streams),

currently most of the compounds come from the petrochemical industry
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the pharmaceutical, food and feed sectors, where these properties are highly necessary [44,

4]. In this respect, NADES are suitable media for biocatalytic reactions, which emphasizes

their potential in the aforementioned biochemistry-related �elds.

Their benign properties make NADES a green alternative to commonly used solvents in bio-

catalysis. Due to their tailorable properties, NADES may even outperform organic solvents.

However, these tailorable properties also pose the greatest challenge to their e�ective use,

as knowledge of their structure-property relationships is severely lacking. Simply put, we

do not understand how changes in the compounds used and their molar composition a�ect

the physicochemical properties and behavior of NADES. In biocatalysis, NADES have been

shown to in
uence enzymatic reactions, but the pathway of this in
uence remains unclear.

A general knowledge gap in the �eld is that the in
uence of NADES on enzymatic reac-

tions is poorly understood and their e�ect in biocatalysis cannot be easily described. This in

turn inhibits their current applicability as tailored reaction media for biocatalysis. The more

speci�c knowledge gap is the lack of a generic design methodology for NADES due to the

lack of predictive models of their properties. Both experimental and computational studies

have been published, but the available information is highly fragmented and does not allow

the establishment of a generic predictive model, even if their e�ect on biocatalysis would be

understood. This signi�cantly hinders the application of NADES as designer solvents (even

outside of biocatalysis).

1.2 Research outline

The fundamental problem with the application of (NA)DES is that we do not understand the

relationship between the composition and the behavior of the solvent well enough to guide

its design. In particular, the e�ect of NADES on enzymatic reactions is poorly described and

therefore the e�ect of a novel eutectic system on an enzymatic reaction is unpredictable.

This hinders the task-speci�c design of NADES for enzymatic reactions, as trial-and-error

or design of experiments approaches are time consuming. Therefore, the purpose of this

research is to describe the mechanism of how NADES a�ect the enzymatic reaction and

to propose a framework for predicting it in a way that enables the design of task-speci�c

NADES for enzymatic reactions.

The solve this problem, the following research questions have to be answered:

Q1 How do NADES in
uence enzymatic reactions?

Q2 How can these e�ects be expressed by discrete and quantitative properties?

Q3 How can the e�ect of NADES on biocatalysis be predicted in a structured way?

Q4 How to minimize the amount of empirical data required for the predictions?

Based on the information available in the literature, the following hypotheses are formed:

H1 It is clear from the literature that NADES compounds and other actors in the mix-

ture interact with each other primarily though hydrogen bonds and the intermolecular
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hydrogen bonding network present in the media. As a simple model, we consider the

interactions between the NADES compounds, between the NADES and the substrates

of the reaction, and between the NADES and the enzyme. The latter can be further

distinguished based on the nature of the interaction. Stabilization/denaturation of

the enzyme is possible as well as changes in the active sites leading to altered enzyme

activity. Finally, side reactions with the media itself may occur.

H2 The direct interactions between the various actors in the mixture can be expressed

by quantitatively measurable and predictable properties that are independent of each

other. The interaction between NADES compounds is characterized by their viscos-

ity. Viscosity also plays a signi�cant role in the behavior of NADES, as mass transfer

limitation is considered a major issue in these highly viscous media. The solubility and

solvation energies of the substrates characterize the interaction between the media and

the reactants. In addition, good solubility is a must for solvents. Finally, changes in

enzyme activity can be calculated from reaction experiments (or assays) and changes

in enzyme structure can be determined from computer simulations. These three types

of interactions are independent, but their separate e�ect on reaction performance is

di�cult to determine experimentally because their e�ects add up. Separate determi-

nation requires careful experimental design.

H3 Predicting these properties requires a multi-scale and multi-step modeling approach.

While the interactions between the enzyme and the NADES require a molecular-scale

model, the bulk properties of the media can be predicted by macroscale or data-driven

(quantitative structure-property relationship) approaches. Prediction of the behavior

of novel systems is possible without experimental measurements, based only on the

structure of the novel system.

H4 Data-driven methods require a comprehensive and structured database of available

experimental data (from the literature). In addition, these data are also necessary for

the validation of the predictions. By analyzing the experimental data and their struc-

tural variety used for the built model, the performance of the model for novel systems

can be estimated. For the molecular and macroscale models, parameterization, usually

based on experimental data, is also required (e.g. force �elds for molecular dynamics

simulations).

Investigating these questions and testing the hypotheses will provide a structured method-

ology for natural deep eutectic solvent selection and formulation for enzymatic reactions.

The hypotheses are summarized in Figure 1.1 and in Figure 1.2.

These hypotheses divide the research into two distinct parts: First, describing the hypothe-

sized e�ects of NADES and determining whether this approach provides su�cient informa-

tion about the e�ect of NADES on the enzymatic reaction. Second, to develop predictive

models of the descriptive properties of NADES and to determine how much data is needed

to accurately predict them.

To achieve these aims a twofold combined methodological framework is formed (Figure 1.3):

In the descriptive part, experimental measurements and molecular dynamics simulations are

combined to determine how well the proposed properties of NADES explain the changes in
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Figure 1.1: Hypotheses 1 and 2: a) The speci�c behavior of NADES is related to the strong

hydrogen bonding in the system (here represented by the choline chloride and urea system).

b) The e�ect of NADES on biocatalysis can be described by the speci�c interactions be-

tween NADES-substrate (S in the �gure), NADES-NADES and NADES-enzyme. c) These

interactions can be related to substrate solubility/solvation, media viscosity and changes in

enzyme structure, respectively.

Figure 1.2: Hypotheses 3 and 4: The relevant properties can be predicted by a multiscale

model combining molecular, macroscale and data-driven modeling approaches. The cur-

rently available application and the amount of additional data required can be determined

by analyzing the model accuracy and the database.
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biocatalysis (testing H1-H2). The monitored enzymatic reaction parameters are the con-

version and the initial reaction activity. These are measured experimentally for the selected

biocatalytic reactions. In these experiments, possible side reactions are also investigated.

The overall stability/denaturation of the selected enzyme is studied both experimentally and

by MD simulations. Structural changes of the enzyme are monitored in these MD simula-

tions. Solubility and viscosity values of NADES and the solutes of interest are determined

experimentally.

In the predictive part, data-driven and macroscale models are applied to predict the properties

of NADES (i.e., solubility and viscosity) that describe their e�ect on biocatalysis (testing

H3). These methods are based on machine learning with combination of group contribution

methods, where predictive models are built based on literature data of NADES. For solubility

prediction, machine learning density prediction is combined with PC-SAFT equation-of-state

modeling. By analyzing the error of the models based on the amount of data applied and

the type of NADES compounds predicted, the amount of additional data needed to increase

accuracy can also be determined (testing H4).

Finally, the overall framework will be tested on a practical example to develop a task-speci�c

NADES system for a biocatalytic reaction. This is the enzymatic deacetylation reaction of

mannosylerythritol lipids, which is the initiating question of the whole project.

Figure 1.3: Methodological framework of the research project

The number of NADES combinations and possible biocatalytic reactions makes it impossible

to give a general description of all possibilities within a single study. Therefore, the scope

of this research is limited to a few selected systems and serves as a proof of concept.

Nevertheless, the insights can later be extended to other systems. In this research only

lipase enzymes were considered, more speci�cally the Candida antarctica lipase B. In the

experimental part, two enzymatic reactions were studied, the transesteri�cation of vinyl lau-

rate to butyl laurate and the deacetylation of mannosylerythritol lipids. For the experiments

and MD simulations, NADES systems containing choline chloride with either urea, ethylene

glycol or glycerol were considered. In addition to the composition, the e�ect of the molar
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ratio was also investigated. In the MD simulation, the focus was on simulating the structure

of NADES and the enzyme. Therefore, the force �eld for the simulation was taken from the

literature (see Chapter 4). The enzymatic reaction was monitored by calculating the �nal

conversion and the initial reaction activity. For predictive modeling, supervised regression

machine learning models were considered. The database for machine learning was based on

literature data, the sources used are listed in Chapter 5.

This research provides a theoretical framework for describing and predicting the e�ect of

NADES on enzymatic reactions. The modeled systems described in the scope are used

to gather information for the descriptive part and to validate the framework for predicting

properties. The analysis of the existing data is an important feature of this research. Since

the framework of the proposed prediction methods can be implemented on novel systems,

these elements represent a versatile solution. Although this research will not create an

o�-the-shelf solution for generic NADES application problems, the results are applicable for

decision support in real-life NADES applications. However, this research does not attempt to

provide a generic solution applicable to any NADES and enzyme with quantitative output,

as molecular dynamics simulation is a bottleneck in the recommended framework. The

discussed PC-SAFT solubility model (detailed description will follow in Section 2.5.2.2) is

well established in the literature, but this work focuses only on the implementation of data-

driven methods.

1.3 Thesis outline

The discussion of the research is divided into 7 chapters (the structure is shown in Figure

1.4). After the overview in this chapter, the detailed background of NADES and methods

to predict their properties are discussed in detail in Chapter 2. Here, after discussing the

general properties and application of NADES, the di�erent modeling techniques of NADES

are introduced, together with the related methodological choices of this research. Chapter

3 covers the investigation of enzyme kinetic experiments of vinyl laurate transesteri�cation,

which reveals the role of solubility, viscosity and experimental studies on the denaturation

of the enzyme, together with the possible side reactions of the studied systems. Chapter

4 discusses the molecular dynamics simulations and the changes in the enzyme structure,

together with the experimental measurements of the viscosities of NADES. Chapters 3 and

4 together cover the descriptive part of the study. In the following Chapter 5 the results

of the predictive part are described. The �rst part of Chapter 5 describes the density and

viscosity modeling e�orts, including a discussion of data sources, capabilities, and limitations

of the models developed. The second part covers the combination of the density model with

the PC-SAFT method for the prediction of solubility in NADES. In Chapter 6, the developed

framework is applied to optimize the deacetylation of mannosylerithritol lipids in NADES.

Finally, in Chapter 7, the �ndings are summarized along with the research lines that were

not fully explored and additional considerations that arose during the project.

This thesis is largely organized around previously published or submitted papers and con-

ference presentations. These papers form the core of each chapter. Figure 1.4 shows the

structure of the thesis along with the included papers. The already published papers are:
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Figure 1.4: Outline of the thesis

Paper 1: Modeling the Physicochemical Properties of Natural Deep Eutectic Solvents - A Re-

view (ChemSusChem 2020, 13, 3789{3804, DOI:10.1002/cssc.202000286). A review

of the possible methods for modeling and predicting the properties of DES. This paper

gives the main part of the literature review.

Paper 2: E�ect of natural deep eutectic solvents of non-eutectic compositions on enzyme stabil-

ity (Journal of Molecular Liquids 366 (2022) 120180, DOI: 10.1016/j.molliq.2022.120180)

This paper discusses the �ndings of the molecular dynamics simulation and gives the

main part of Chapter 4.

The submitted papers are:

Paper 3: Biocatalyzed vinyl laurate transesteri�cation in natural deep eutectic solvents (submit-

ted to Waste and Biomass Valorization). This paper discusses the e�ect of NADES

on the biocatalyzed vinyl laurate transesteri�cation. This research gives the core of

Chapter 3.

Paper 4: Deacetylation of mannosylerythritol lipids in hydrophobic natural deep eutectic solvents

(submitted to Applied Microbiology and Biotechnology). This paper discusses the

application of the developed framework of NADES selection on the example of the

deacetylation of mannosylerithritol lipids. This work gives the main part of Chapter 6.

The last paper is still in preparation:

Paper 5: Combining group contribution with machine learning to predict the density of deep

eutectic solvents. This paper contains the �ndings of the predictive modeling of the

density of deep eutectic solvents, discussed in Chapter 5.

The content of these publications is used in the following chapters. They are included

without change in their content, but with annotations to link their �ndings to the overall

research objectives and questions.

The conference contributions, which are also part of this thesis, are as follows:
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Conference 1: Enzymatic Conversion Of Mannosylerythritol Lipids In Natural Deep Eutectic Solvents.

27th European Biomass Conference & Exhibition (2019). In this presentation, the

concept of using natural deep eutectic solvents as reaction media for biocatalysis was

presented using the deacetylation of mannosylerithritol lipids as an example. The

results presented are also part of Chapter 6.

Conference 2: Enzymatic Conversion Of Mannosylerythritol Lipids In Natural Deep Eutectic Solvents.

1st International meeting on Deep Eutectic Systems (2019). This presentation cov-

ered the preliminary e�orts of biocatalytic deacetylation of mannosylerithritol lipids.

The results presented are also part of Chapter 6.

Conference 3: Towards the mechanistic understanding of natural deep eutectic solvents e�ect on

enzyme catalyzed reactions. 1st GREENERING International Conference (2021). This

presentation covered the preliminary �ndings of molecular dynamics modeling of the

CALB enzyme in NADES. The results presented are also part of Chapter 4.

Conference 4: Towards the mechanistic understanding of natural deep eutectic solvents e�ect on

enzyme catalyzed reactions. 2nd International meeting on Deep Eutectic Systems

(2021). This presentation covered the �ndings of molecular dynamics modeling of the

CALB enzyme in NADES. The results presented are also part of Chapter 4.

Conference 5: Predicting the density of natural deep eutectic solvents by the combination of a group-

contribution method and arti�cial neural networks. 32nd European Symposium on

Computer Aided Process Engineering (2022). This presentation covered the pre-

liminary results of the data-driven approach to predict the density of deep eutectic

solvents. The results presented are also part of Chapter 5.

Conference 6: Understanding biocatalysis in natural deep eutectic solvents: transesteri�cations with

Candida antarctica lipase B in various solvents. 9th International Conference on En-

gineering for Waste and Biomass Valorisation (2021). This presentation covered the

�ndings on how to describe the e�ect of NADES on biocatalysis via their e�ect on

the enzyme, their viscosity and the solubility of the substrate. The results presented

are also part of Chapter 3.
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Chapter 2222222222222222222222222222222222222222222222222222222222222222222222222
Literature review: NADES and their

modeling approaches

"You are now about to witness the strength of street knowledge"

NWA

2.1 Preface

The interest in deep eutectic solvents and the number of related publications are still growing

year by year. The annual published research on DES has been over a thousand papers in

the last three years. Because of that I focus my review on a very selected section of the

domain.

I hypothesize that the e�ect of NADES on enzymatic reactions can be described by certain

physicochemical properties, namely the solubility of the substrates, the viscosity of the media,

and the structural changes of the enzyme induced by the media. Furthermore, I assume

that these properties can be modeled and predicted by the modeling methods available in

the literature. This leads to the second related hypothesis, that the existing methods can be

combined into a complex model that describes the holistic behavior of NADES in enzymatic

reactions. However, to decide if this approach is feasible and to choose which models to

include, I �rst review the NADES modeling methods available in the literature.

To this end, this chapter reviews the available modeling techniques of NADES properties,

along with their general characteristics and potential applications. The distinction between

micro-, macro- and data-driven levels of modeling is made here, and the review already

discusses the available methods in this structure.

This review has already been published in the journal ChemSusChem with the title "Modeling

the Physicochemical Properties of Natural Deep Eutectic Solvents" [11]. Co-authors of this

paper are Erik C. Neyts, Iris Cornet, Marc Wijnants and Pieter Billen, whose contributions

include supervision of the project and review and editing in the writing process. In addition,

Pieter Billen acquired the �nancial support for the project.

15
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CHAPTER 2. LITERATURE REVIEW: NADES AND THEIR MODELING

APPROACHES

2.2 Abstract

Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with

a signi�cantly decreased melting point due to the speci�c interactions among the con-

stituents. NADES have benign properties (low volatility, 
ammability, toxicity, cost) and

tailorable physicochemical properties (by altering the type and molar ratio of constituents),

hence they are often considered as a green alternative to common organic solvents. Mod-

eling the relation between their composition and properties is crucial though, both for un-

derstanding and predicting their behavior. Several e�orts were done to this end, yet this

review aims at structuring the present knowledge as an outline for future research. First,

we reviewed the key properties of NADES and relate them to their structure based on the

available experimental data. Second, we reviewed available modeling methods applicable

to NADES. At the molecular level, density functional theory and molecular dynamics al-

low interpreting density di�erences and vibrational spectra, and computation of interaction

energies. Additionally, properties at the level of the bulk media can be explained and pre-

dicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation

of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models

based on group contribution methods and machine learning. A combination of bulk me-

dia and dataset modeling allows qualitative prediction and interpretation of phase equilibria

properties on the one hand, and quantitative prediction of melting point, density, viscosity,

surface tension and refractive indices on the other hand. In our view, multi-scale modeling,

combining the molecular and macro-scale methods, will strongly enhance the predictability

of NADES properties and their interaction with solutes, yielding truly tailorable solvents to

accommodate (bio)chemical reactions.

2.3 Introduction

Deep eutectic solvents (DES) were �rst reported in 2001, as novel solvent class based on

eutectic systems and potential alternative to ionic liquids, when Abbot et al. observed signif-

icant decrease in the melting point of metal chlorides and quaternary ammonium salts [45].

These DES showed many common characteristics with ionic liquids (IL) and their melting

point was below room temperature in some cases. Although the term DES was introduced in

2003, no clear agreement was made upon its de�nition. The formerly published articles set

up di�erent requirements for DES: Zhang et al. described DES as the composition of two

or more components, which are interacting through a hydrogen bond interaction, forming a

eutectic mixture [5]. Francisco et al. connected the lowered melting point to the lowered

entropic di�erence of the phase transition [18]. Smith et al. de�ned the components as

Lewis or Br�nsted acids and bases [1]. Paiva et al. only set the requirement of the signif-

icantly lowered melting point, compared to the melting point of the individual components

[14]. Due to the unclear de�nition, we introduce only their general characteristics. DES are

a mixture of two or more compounds which are associating through hydrogen bonding. The

most frequently studied DES are formed by a quaternary ammonium salt and a metal salt

or a hydrogen bond donor (HBD) component. The salt components in DES typically have

low lattice energy. The components form a hydrogen bonding network, which increases the

system's stability and in case of ionic constituents, allows the charge delocalization. The
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decreased melting point is the result of these e�ects. Figure 2.1 illustrates the hydrogen

bonding interactions on the most commonly studied DES, the mixture of choline chloride

and urea.

Figure 2.1: Deep eutectic solvent preparation from choline chloride (hydrogen bond acceptor

component) and urea (hydrogen bond donor component). The dashed circle represents the

complex hydrogen bonding formed between the constituents.

Natural deep eutectic solvents (NADES) were reported in 2011 by Choi et al., as a subclass

of DES [13]. NADES are composed of naturally derived components, such as the primary

metabolites, carboxylic and amino acids, choline chloride, sugars or urea. Choi et al. dis-

cussed the possibility of NADES presence in living organisms as a third liquid phase next

to water and lipids, what could rationalize the biosynthesis of poorly water soluble macro-

molecules in cells that are otherwise aqueous environments, or the survival of organisms

in arid environments. Changing common organic solvents to NADES have many bene�ts,

as the latter ones are often non-volatile and non-
ammable [14]. Compared to ionic liq-

uids, NADES are cheaper with better biodegradability and lower toxicity. NADES can be

manufactured with 100% atom economy and they are less sensitive to impurities than ILs.

The potential of NADES was already proven in organic reactions, extraction processes and

electrochemistry applications [5]. The most promising �eld for NADES is the biochemical

industry, as NADES not only provide a green medium for enzymatic reactions, but can also

increase the e�ciency of certain biocatalytic reactions. [41]. The eutectic mixtures seem to

modify both the reactivity and stability of enzymes compared to conventional media. The

growing interest in NADES is also re
ected by the number of academic publications and

citations (See Figure 2.2).

The biggest potential of DES and NADES is their application as designer solvents [18].

Designer solvents are systems of which the properties can be tailored according to the

application. In DES, the hydrogen bonding network between the components de�nes the

behavior of the given mixture to a large extent. Therefore the desired properties can be

achieved by changing the components used and their molar ratio. Currently, the relation

between the composition and the properties of NADES is not described adequately and the

development of new systems done through trial-and-error. Given the lack of generic design

methodology to predict the relevant properties of novel NADES systems, such as viscosity,

surface tension or solubility, these eutectics cannot be used as \designer solvents". The

relation between NADES structure, properties and the possible application is conceptually

illustrated in Fig. 2.3. Recognizing the importance of the subject various studies investigated

the possibility of modeling NADES behavior, both in view of a better understanding of

structure-property relations, and in order to predict the properties of these systems. Despite

the high number of publications related to this �eld, to the best of our knowledge, no review

structuring the recent advances in the modeling of NADES' behavior was reported.
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Figure 2.2: Number of yearly publications (right vertical axis), and yearly citations (left

vertical axis), using the keywords \natural deep eutectic solvent" OR " natural deep eutectic

solvents" OR \NADES" (Source: Web of Science; date of search: 2023.03.14).

Figure 2.3: Structure-properties-application relation (Interaction energy of choline chloride

and urea by Zhu et al.[9]

The aim of this review is therefore to introduce the current state of understanding on the

structure-property relations of NADES and the advances in its modeling. This paper gives a

general overview of the available methods to researchers and developers, who are new to the

�eld of modeling physicochemical properties. First, we discuss the relevant physicochemical

properties of NADES, their relation to the composition and general considerations to tailor

the properties of systems that were explored thus far. In the second part, we introduce the

available methods to model NADES behavior, starting at the level of molecular interactions,

with subsequently the prediction of bulk properties of NADES such as density or viscosity,

and �nally the analysis of larger datasets with machine learning methods.

2.4 Structure-property relations of NADES

The characteristic properties of NADES (e.g., decreased melting point, high viscosity) are

the result of the intermolecular hydrogen bonding system among the components. The
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strength of this interaction determines to a large extent the physicochemical properties of

the eutectic mixture, which are relevant in their application as solvents (discussed below)

and it depends on the structure and ratio of the components in the mixture. To design the

properties of NADES, the relation between the properties and composition of the mixture

has to be known. For a given application, the tailored medium has to possess good solvation,

transport properties and its use should be safe. Nonetheless, the additional e�ects of NADES

on the reaction (e.g., side reactions, inhibition, catalytic e�ect) have to be considered as

well. During development, there are many relevant properties to take into account, such as

melting point, density, viscosity, polarity, ionic conductivity, acidity or alkalinity, and surface

tension. The solubility of di�erent chemicals in the mixture is for obvious reasons also a

key aspect. The water content of the eutectics has a signi�cant e�ect on all the properties,

therefore it will be discussed in more detail, along with the e�ect of NADES on (bio)catalytic

reactions as a major application domain.

2.4.1 Melting point

The application potential of a eutectic system is determined by the eutectic point (the lowest

melting point of the system and its associated composition), i.e. the mixture can be used as

a solvent only in the temperature ranges where it forms a stable liquid phase. However, the

temperature of a speci�c application determines an allowed composition range for potential

use of a given NADES (See Fig. 2.4). Although many NADES were reported in the literature

[5, 6, 33, 46, 47, 48, 49], systems with a melting point below room temperature are still

scarce. NADES containing amides, carboxylic acids and sugar-derived polyols with organic

salts, often have melting points below room temperature.

Figure 2.4: T-x phase diagram of simple eutectic behavior: the diagram shows the change

of the system's melting point (T ) as the function of molar ratio of constituent B (xB) in

a binary mixture of A and B. Tmp;A, Tmp;B are the melting points of the pure A and B

constituents, Tapp is the temperature of the given application, L is the liquid phase, while

SA and SB are the solid phases of constituent A and B. (xB;T )eutectic indicates the eutectic

composition and temperature of the mixture.
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Zhang et al. comprehensively studied the empirically observed relation between structure and

melting point.[5] HDB components with lower molecular weight yields a larger melting point

depression. The asymmetry of the cation decreases the melting point (due to smaller lattice

energies), while the increasing electron a�nity of the anion also has a decreasing e�ect on

melting point (as this yields stronger hydrogen bonds between the two constituents). The

addition of a ternary component to the system can also lead to a decrease of the melting

point.[48, 49] By comparing the eutectic points of mixtures with organic salts and mono- or

dicarboxylic acids, it was found that the complexation of the anion requires two molecular

carboxyl groups.[5] These observations are in line with the general assumption that stronger

interactions between the components result in a greater decrease of the melting point.

In the NADES of choline chloride and carboxylic acids, the lattice energies of the HBD does

not show a correlation with the melting point depression, but the HBD with the lowest

molecular weight is associated to the largest melting point depression.[5] From this obser-

vation, Abbott et al. one can assume that the lattice energy of the HBD only relates to

the HBD-anion interaction, therefore the melting point depression is related to the mixing

entropy only.[6] Consequently, in a �rst approximation the melting point depression is a mea-

sure of the entropy change, i.e., the magnitude of the depression relates to the increase of

entropy change during mixing.

In this view, we suggest an approach based on the method of Krossing et al. (which was

developed to rationalize the low melting points of ionic liquids) to describe the relation

between molecular interactions of constituents and the change of the melting point.[50]

During the melting (fusion) of the NADES constituents, both the enthalpy (H) and the

entropy (S) of the system change. These changes can be described by the change of Gibbs

free energy at a phase transition:

�fusG = �fusH�T ��fusS (2.1)

At the melting temperature, so also at the eutectic point, the �G of melting (fusion) is

zero:

�fusG
tot = 0 (2.2)

At other temperatures, the value of �fusG indicates, whether the solid (�fusG > 0) or the

liquid (�fusG < 0) state is the thermodynamically preferred phase state (See Fig 2.5).

The change of Gibbs free energy during melting can be described as a Born-Fajans-Haber

cycle of the fusion, lattice and solvation energies of the components (See Figure 2.6).

By that, the change of Gibbs free energy during melting:

�fusG
tot = �fusG

salt
lattice +�fusG

HBD
lattice��fusG

HBD
solvation��fusG

Anion
solvation��fusG

Cation
solvation (2.3)

The �Glattice contains the lattice enthalpy (�Hlattice) and the entropy change of forming ionic

lattice from in�nitely separated gaseous ions (�Slattice):
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Figure 2.5: The change in Gibbs free energy of melting at di�erent temperatures at eutectic

composition: Teutectic is the melting point of the eutectic mixture, L is the liquid phase SA
and SB is the solid phase of constituent A and B.

�Glattice = �Hlattice�T ��Slattice (2.4)

The lattice enthalpy can be described as the function of lattice potential energy and the

change in molar volume (�Vlattice):

�Hlattice = �Ulattice�p ��Vlattice (2.5)

We can assume that contribution of molar volume change is smaller for such less ordered,

bulky compounds, what also contribute to lower melting points. When these expressions

(Eq. 2.3-2.5) are implemented in the equation of the change of Gibbs free energy during

melting, and isolating the eutectic temperature, we can identify the e�ects altering the

melting point:

�Teutectic =


�Usalt

lattice +p ��V salt +�UHBD
lattice +p ��V HBD

��HHBD
solvation��HAnion

solvation��HCation
solvation

�Ssalt
lattice +�SHBD

lattice��SHBD
solvation��SAnion

solvation��SCation
solvation

 (2.6)

The equation implies that smaller lattice energies, stronger interactions between the con-

stituents and a higher change in entropy during solvation results in a decrease of the melting
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Figure 2.6: Born-Fajans-Haber cycle of NADES melting, lattice and solvation energies.

temperature. This means that weaker crystalline structure, bulky ions and stronger inter-

action between the constituents yield a lower melting point. These relations are in line

with the general observations. However, solving these equations requires extensive modeling

to determine the lattice and solvation enthalpies, potential energies and changes in molar

volume.[50]

2.4.2 Density, viscosity and surface tension

Most NADES have densities higher than that of water (between 1.1 and 1.4 g/cm) [24] and

signi�cantly higher viscosities than common (organic) solvents (e.g., the viscosity of water

and toluene is 0.89 mPa �s and 0.56 mPa �s at 25 �C, respectively, while that of the eutectic
mixture of choline chloride and urea is 750 mPa �s at 25 �C) [51]. The surface tension of eu-
tectic solvents is also larger than that of most molecular solvents and similar to imidazolium-

based ILs [5]. High viscosity entails signi�cant limitations to the mass and energy transfer

during chemical reactions, therefore limiting the viscosity of NADES is necessary by select-

ing smaller constituent molecules with fewer hydrogen bond donating/accepting groups and

weaker interaction. However, strong intermolecular forces contribute to low melting points

and good solubility, which results in a trade-o� between transport and solvation properties.

Density, viscosity and surface tension are mostly discussed together, as they show a similar

relation to the intermolecular interaction energy and temperature (See Fig 2.7). Higher

interaction energy increases all three properties [47, 5, 52], while higher temperature results

in a decrease of these properties [47, 53, 54, 55]. The relation of these properties to the

temperature can best be described by non-linear functions, but the e�ect of the structure of

the constituents is only vaguely described. The density showed a quadratic relationship with

the temperature [54], while the viscosity-temperature relation follows an Arrhenius equation

(see Fig 2.7. a)) [55]. Increasing interaction between the components yields a higher density

[5]. Comparing the viscosity of sugar derivatives, ethylene glycol and glycerol based NADES,

viscosity shows an increase with the hydrogen bonding ability of these constituents (more

hydrogen group donating group in sugars) [5]. Strong hydrogen bonding seems to hinder

the mobility in the NADES. The comparison of choline chloride-urea and choline chloride-

ethylene glycol mixtures suggests a higher surface tension with the increasing strength of
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the hydrogen bonds in the �rst instance [52]. The disruption of the hydrogen bond network

decreases all three values (e. g., the addition of a quaternary component) [47, 5].

(a) (b)

(c)

Figure 2.7: Relation between the composition and properties of the NADES of choline

chloride - glycerol. (Taken from the work of Abbot et al.[47]) The di�erent markings on a)

and b) indicate the choline chloride ratio in the mixture (0.05-0.33 molar ratio). a) Viscosity

of the NADES as function of temperature and composition, b) Surface tension of NADES

as the function of temperature and composition, c) Density of the NADES as the function

of composition.

To rationalize the observed relations, the hole theory was considered [33, 56]. This phe-

nomenological model describes ionic liquids as an ensemble of particles and vacancies with

variable size (See Fig 2.8.) [57]. Its application was suggested due to the analogies between

NADES and ILs. The average hole size can be calculated from experimental measurements

of the surface tension, and can subsequently be used for calculation of other properties of

the system. The increase of viscosity is interpreted in the model as a result of a decreased

average hole diameter (due to stronger interactions). Abbot et al. studied the design of

low viscosity NADES by application of this hole theory, but the model did not prove to be

su�ciently accurate [56].
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Figure 2.8: The hole theory with randomly located and variable-sized holes in the liquid.

The model describes the structure of liquid salts, as they would have \tiny volume elements,

varying in size from the subatomic to about six ions, which are empty and constantly 
uc-

tuating in size [57]."

2.4.3 Polarity, ionic conductivity and pH

The polarity, ionic conductivity and the acidity/alkalinity of NADES received little attention

thus far, although these properties are relevant for many applications in electrochemistry.

The polarity of choline chloride and glycerol mixtures shows similar values to RNH+
3 X

�,

R2NH
+
2 X

� and imidazolium-based ILs and it increases linearly with the salt concentration

[47]. Due to their high viscosities, NADES typically show poor conductivity [47]. An in-

crease in temperature (as it decreases the viscosity) increases the conductivity. The molar

ratio of constituents also a�ects the conductivity through its e�ect on the viscosity. An

increased concentration of charge carrying species (salts) has a positive e�ect on conduc-

tivity [48]. The nature of the HBD strongly a�ects the acidity/alkalinity of NADES. The

choline chloride-urea eutectic mixture shows weak alkalinity [58], while sugar derived polyols

as HBD yield NADES with neutral pH [49]. The alkalinity makes the absorption of acidic

gases, such as CO2, preferable.

2.4.4 Water content

Many NADES are susceptible to water uptake, as water can take part in the hydrogen bond-

ing network and quaternary ammonium salts are highly hygroscopic. The incorporation of

water into the hydrogen bonding system and its altering e�ect was demonstrated by both

NMR spectroscopy [24] and molecular simulations [59]. Consequently the water content

a�ects all of the other properties signi�cantly. 5w=w% of water absorption decreases the

melting point of the choline chloride-urea mixture from 25�C to 15�C [60], while the vis-

cosity decreased by 83% [61]. The absorbed water disrupts the interaction between the

components, yielding a decrease in density and viscosity. This sensitivity calls for special

care during the characterization of physicochemical properties, as the water intake during

the measurements itself yields signi�cant deviation in the results [59]. On the other hand,

by controlled addition of water, the properties of NADES can be �ne-tuned.
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2.4.5 Solubility

Solvation is a complex process, as the solubility and solvation energy depend on many factors.

In thermodynamic terms of view, stronger hydrogen bonding among the NADES constituents

should decrease the enthalpy of the solvation and therefore increasing the dissolution, but

the available information in the literature is limited.

NADES as solvent were studied mainly in three distinctive �elds: the dissolution of CO2,

metal oxides and drugs. The dissolution of metal oxides in NADES for the separation and

recycling of metals can be a green process in electrochemistry. Abbot et al. demonstrated

�rst the solubility of metal oxides in NADES [33]. The solvation of the metals and metal

oxides occurs via their complexation with the NADES molecules, therefore the structure

of the applied constituents has a signi�cant e�ect on the solubility, e.g. metal oxides with

more covalent character (such as TiO2) are poorly soluble [5]. Elevated temperature also

increases the solubility. Quantum chemical simulations showed that the hydrogen network

forms an open cluster and the solvation accompanied by proton transfer [62].

The application of NADES for CO2 is intensively studied. The solubility of CO2 depends on

three factors, viz. the partial pressure of CO2, the temperature and the molar ratio of the

NADES components [63]. Higher pressures and lower temperatures increase the solubility

of CO2, while the NADES with eutectic molar composition yield higher CO2 solubility than

NADES with excess of either HBA or HBD constituents. Increasing the water content has

a negative e�ect on the solubility, since water acts as an antisolvent for CO2 in the eutectic

mixture of choline chloride and urea [64].

As the hydrogen bonding network can form strong interactions, even with larger molecules,

the solubilization of otherwise poorly soluble drugs might be done in NADES. Morrison

et al. reported the increased solubility of poorly water soluble molecules in NADES and

NADES/water mixtures [65]. The solubility of rutin also showed improvements in urea,

sugar, organic acid and choline chloride based NADES, compared to water [66]. In latter

case, the presence of basic sites in the NADES lead to an increased solubility due to the

acidic properties of the rutin [67].

2.4.6 E�ect on enzymatic reactions

NADES provide not only green media for enzymatic reactions, but they modify the kinetic

parameters and yields of reactions compared to conventional media [41]. Strong hydrogen

bond donors such as urea were beforehand expected to denature proteins, but enzymes

remained stable in the eutectic mixture in earlier reports. The study of Monhemi et al.

showed, that the intermolecular hydrogen bonding network decreases the denaturing e�ect

of the individual NADES constituents, by preventing the NADES constituents from di�usion

into the protein chain and disrupting its secondary structure [68].

In case of the aminolysis of ethyl valerate with lipase B from Candida antarctica in a choline

chloride-glycerol mixture, an increase of 13 % in enzyme activity was reported, compared

to toluene as solvent [69]. The choline chloride-urea mixture increased the half-life of
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horseradish peroxidase enzyme from 50 minutes (in phosphate bu�er) up to 350 minutes

[70]. The latter observation was related to the stabilization e�ect of the hydrogen bonding

network in NADES.

The reports show that NADES may in
uence both the conversion and kinetics of enzymatic

reactions. The thermodynamic stability of substrates and products is altered by solvation,

while the viscosity a�ects the mass transfer of all the reactants (substrate, product, cat-

alyst). The enzyme/NADES interaction could lead to the stabilization or denaturation of

the enzyme, but also change in enzyme's active site, secondary or tertiary structure. These

phenomena are the result of the hydrogen bonding interactions between the constituents of

the NADES and/or the actors of the enzymatic reaction. Moreover, competing reactions of

the NADES constituents with the enzyme and/or the substrates are also possible. However,

the available information is highly fragmented and the relationship between these e�ects

and the structure of NADES is still unclear, even on qualitative level. As we will discuss

in the later sections, qualitative relations between the NADES structure and its e�ect on

enzymatic reactions can be elucidated by computational methods.

2.5 Modeling the properties of NADES

In the former section we reviewed the relevant physicochemical properties and phenomena

of NADES, which have to be taken into account during of the solvent design for new

applications. By modeling eutectic mixtures, we can better understand and even predict the

behavior of these systems. As mentioned earlier, no comprehensive model of such systems

was created yet. However, many di�erent methods are available to describe certain distinct

characteristics of given eutectics. While introducing these characteristics, we will proceed

from the modeling of intermolecular interactions to the direction of bulk systems. First, the

molecular scale models will be discussed; predominantly based on density functional theory

and molecular dynamics. Thereafter we discuss macroscale models that may calculate the

properties of the bulk material (solubility, density, viscosity). Lastly, we discuss methods

based on large amount of experimental data, like group contribution methods and machine

learning algorithms. Overall, this section focuses on the theoretical background of the

methods, their �eld of application along with the advantages and drawbacks, case studied

of actual applications and future challenges.

2.5.1 Molecular scale modeling

The aim in computational chemistry is to understand the properties of and the interactions in

the investigated system and to apply the acquired information in the design of the system.

Computational methods permit observation of processes at time and length scales that

are not accessible through experimental methods. Additionally, computational methods can

complement experimental results, and thereby provide a deeper understanding of the system.

In both density functional theory (DFT) and classical molecular dynamics (MD), the model

system is described by the interaction between the atoms (or particles) of the system, from

which the distance, spatial distribution, strength of the interaction between the constituents,
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etc., can be determined accurately. However, the two methods are based on a di�erent theo-

retical framework. DFT is a �rst principles method where the interaction energy is expressed

as a functional of the electron density. DFT does therefore not require empirical parameters,

although it does require the application of a functional which is only an approximation to

the "true" functional (e.g., the functional of exchange and correlation energies among the

electrons are not known exactly, therefore approximations are used). DFT typically has a

high computational intensity, which limits the system size (up to few hundred atoms). In

classical MD on the other hand, the atoms interact through a (semi-)empirical force �eld

or interaction potential. While this allows the computation of much bigger systems (up to

107� 1011 atoms), it does not allow the calculation of electronic or magnetic properties

such as band gaps or magnetic moments.

Molecular scale methods are useful for the rationalization of intermolecular interactions in

NADES, which are assumed to be the main reason of their outstanding properties. As DFT

and MD can obtain information at a resolution and length scale currently inaccessible to

experiments, they can help the interpretation of chemical reactions in NADES, e.g. enzy-

matic catalysis or electrochemical treatment of surfaces. These methods may also aid in the

rationalization of macroscale NADES properties. However, the direct interpretation of the

results at the macroscale is limited by the size and length of the simulation, i.e., investigated

attribute does not reach its equilibrium within a feasible calculation time and the correlation

length of some attributes could exceed the size limitation of the model. For example, in

MD simulations of NADES the calculated physicochemical properties, such as density and

surface tension showed good agreement with experimental data, but the calculated trans-

port properties had signi�cant error. DFT calculations are also the basis of the COSMO-RS

continuum model, which will be discussed later.

2.5.1.1 Density functional theory

DFT simulations of NADES describe the conformation of the components and the strength

of interaction between them. The evaluation of site-site distances identi�es the hydro-

gen bonding interactions among the molecules. In case of hydrogen bonding the distances

become smaller than the sum of the van der Waals radius of the constituents. The sim-

ulation describes the electronic behavior of the components. The electrostatic potential

analysis (ESP) determines the spatial distribution of electrostatic potential, which provides

information about the electrostatic interactions in the system. Meanwhile, reduced density

gradient analysis (RDG) is also an useful tool to describe the non-covalent interactions in

the system. From DFT results, vibrational spectra can be calculated. The vibrational spec-

tra of NADES are typically di�cult to evaluate due to the complex interactions, hence the

computed spectra facilitate their interpretation.

The disadvantage of the DFT methods is the absence of London dispersion forces in the

model. NADES often contain alkyl side chains and aromatic moieties, therefore dispersion

forces have a signi�cant contribution to non-covalent interaction energies. Also, the dis-

persion forces may signi�cantly in
uence ionic interactions. This issue can be handled by

the application of dispersion corrected functionals. Although this correction does not have

a signi�cant e�ect on the vibrational spectra (dispersion forces can be detected only in

the far infrared region), in structure optimization it results in a signi�cant di�erence. The
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application of DFT simulation for gas phase molecular structures results in a good agree-

ment between the calculated spectra and experimental results. However, the simulation of

NADES' physicochemical properties requires the simulation in liquid phase.

In the available literature two main application domains of DFT are distinguished; the de-

scription of molecular structures and intermolecular interactions between the NADES con-

stituents on the one hand, and the rationalization of NADES applications by computational

simulations on the other hand. Garcia et al. combined the DFT calculations with the

topological analysis of the NADES electronic density [71]. By this, they set up a relation

between the melting temperature and structure of the hydrogen bonding network of the

NADES. The structure was described by the AIM (Atoms in Molecules) approach (Method

for the topological analysis on the electronic density of the system). Others applied charge

decomposition analysis (method for determination of direction and extent of charge transfer

between the constituents) to correlate the strength of interactions in the system to the

melting temperatures [72]. The DFT simulation of Stefanovic et al. revealed fundamentally

di�erent hydrogen bond network structures with di�erent constituents which rationalized

the signi�cantly di�erent melting point changes to some extent [73]. Zhu et al. used the

DFT simulations to calculate the vibrational spectra of the NADES and identi�ed the peaks

of the experimental spectra [9]. Rimsza et al. studied the application of NADES in surface

etching of copper [62]. The DFT simulation described the ionic character of the urea during

the interaction with elemental and ionic copper. That was done by comparing the di�erent

binding energies between neutral and anionic form of urea and elemental copper and copper

oxide. In another study, the simulation explained the electrochemical deposition process of

magnesium metal in the mixture of choline chloride and magnesium chloride hexahydrate

[10]. The most likely reactions near the cathode were determined by identifying the cationic

species in the system. The CO2 capturing ability of DES was also studied by DFT calcula-

tions: the hydrogen bonding interaction in the system was calculated before and after the

addition of CO2 to the system (new NADES-CO2 interactions) [74].

In the future, DFT simulation will remain a key method for the investigation of molecular

interactions, charge transfer and thermodynamic changes associated with the formation of

NADES. Such simulations will be also useful to rationalize novel applications of NADES.

The experience of simulations of IL could be a useful starting point for these studies, e.g.,

the process of cellulose dissolution in NADES is assumed to be similar to the dissolution in

IL, which is already described in the literature. However, the size and time limitations of

the method require its combined application with experimental methods or simulation of the

extended system by e.g. molecular dynamics.

2.5.1.2 Molecular dynamics

MD considers either atoms or groups of atoms as the basic particles of the system; sim-

ulations are done by integrating the relevant equations of motion through discretization of

time. New positions, velocities and accelerations are obtained from atomic forces which

are obtained as the negative gradient of some empirically derived force �eld. These force

�elds are typically built on some functional form determined by the type of system to be

studied, and then parameterized for the speci�c system. MD methods can simulate larger

systems and are able to calculate physical chemical parameters, like density or viscosity.
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MD is also applicable to study the structural characteristics of the system. This latter is

done by calculating the radial distribution function (RDF) and spatial distribution function

(SDF). The �rst describes the density function of the distance between selected particles.

The second is the visualization of the spatial distribution of the constituent particles around

a selected molecule. With these methods the hydrogen bonding interaction of the system

can be studied. As the solvation dynamics are too fast to be monitored by experimental

methods, MD simulations constitute a solid complementary method for such studies. The

simulation of larger systems allows applying MD for the investigation of the microstructural

properties of enzymes in NADES and rationalize experimental results.

Although MD can simulate bigger systems, the accuracy of the method depends on the

applied force �eld and its proper parametrization. As this method doesn't say anything about

the electrons and their interaction in the system, MD is not applicable for the determination

of electrical properties (therefore the calculation of vibrational spectrum) or the molecular

structure optimization, what is required for the determination of the equilibrium structure

(unlike DFT). Therefore MD calculations are often amended by DFT calculations to �nd

the optimal molecular structure.

Similarly to DFT, the reported applications of MD mainly consider the rationalization of

NADES behavior and their practical applications (e.g., CO2 absorption), but the simulation

of macromolecular system and selection of proper force �eld for the calculations is also

discussed. The investigation of applied force �eld parameters showed the signi�cant e�ect

of applied charge schemes regarding the calculated properties and intermolecular interactions

of the system [75]. The right method for the determination of charge assignment is vital

for accurate simulation. Doherty et al. developed new force �eld potentials for choline

chloride based DES (non-polarizable force �eld, OPLS (Optimized Potentials for Liquid

Simulations) -DES) [76]. The simulations with this force �eld gave good agreement with

the experimental results of density, viscosity, heat capacity and surface tension. However,

the quantitative simulation of self-di�usion coe�cients proved to be a challenge with the

presented potentials. Sun et al. simulated the structural characteristics of choline chloride-

urea system and determined the relation between the molar composition and interactions

energies of the system [77]. The simulation also revealed a long range ordered structure

among the ionic compounds of the system and yielded information about the strength and

lifetime of hydrogen bonding interactions between speci�c sites. Another study used MD to

calculate density, heat capacity and self-di�usion coe�cient of the simulated system [78].

Although MD is not able to reproduce vibrational spectra, the structural and hydrogen bond

analysis of the system was applied to rationalize the experimental spectrum. Das et al.

combined MD simulations with steady state 
uorescence emission measurement to study

the relaxation dynamics, spatial and dynamic heterogeneity aspects of eutectic solvents

[79]. The simulation of particle displacement during the relaxation of the system proved its

homogeneity. Monhemi et al. studied the microstructural properties of a macromolecule, i.e.

Candida antarctica lipase B in NADES [68]. The simulations described the enzyme-NADES

interactions and the potential di�usion of the constituents inside the macromolecule. The

comparison of these processes in water to an aqueous solution of the NADES constituents

on the one hand and to the pure NADES on the other hand rationalized the stabilizing

e�ect of NADES on macromolecules. Ullah et al. studied NADES for CO2 capturing along

with their physical chemical properties by MD simulations [74]. The method described the

hydrogen bonding network in the system and its change during the absorption of CO2. The
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a�nity between the solvent and CO2 was determined in the gas-liquid interfacial region to

rationalize the absorption and migration of the CO2 molecules toward the bulk 
uid region.

As NADES can be used as green solvent in the �eld of food, feed and pharma industries,

it is imperative to better understand their interaction with proteins and polymers. This

also covers the application of NADES to host enzymatic reactions. As MD methods are

appropriate for the modeling such systems, they may be vital in the development of these

novel applications.

2.5.2 Macroscale modeling

We refer to macroscale modeling as all methods aiming to model NADES properties in the

bulk rather via the direct intermolecular interactions among the constituents. The targeted

parameters include their physicochemical properties as density, viscosity, which gives some

overlapping with the earlier discussed methods, but also solvation energies and thermody-

namic equilibrium properties of liquids properties, which are relevant to practical applications.

Although such macroscale models still incorporate theoretical considerations, they mostly

rely on input data from empirical observations or on the results of other calculation methods.

2.5.2.1 COSMO-RS

Conductor-like screening model for a real solvent (COSMO-RS) is a method to describe the

thermodynamic properties of pure compounds and mixtures of compounds based on the uni-

molecular quantum chemical calculations of constituents. COSMO-RS combines quantum

chemical calculations with statistical thermodynamic approaches to overcome the limita-

tions of dielectric continuum solvation models (in these models the solvent is modeled as a

polarizable continuum to decrease the computational intensity). Klamt gave a comprehen-

sive overview of the model,[80] therefore we only give a short description about its working

principle (See Fig. 2.9.). The model uses the output of quantum chemical calculations such

as the charge density surface of the molecule (�-surface). The model transforms this into

discrete surface segments with an area and screening density charge. Here the contribu-

tion of hydrogen bonding, electrostatic mis�t (the deviation of the electrostatic interaction

energy from the idealized contact of same charges with di�erent polarities) and van der

Waals interactions are taken into account. Next, the model calculates the sigma pro�le:

the screening density charge distribution of the molecule surface. The sigma pro�le of the

complete system is the sum of the individual sigma pro�les weighted with the molar ratio of

the compounds. The chemical potential is calculated by an iterative function of the sigma

pro�le of the system. This chemical potential is the basis for the computation of other

thermodynamic properties. The model calculates the thermodynamic properties of liquid

mixtures including solubility, partition coe�cient and the liquid-liquid equilibria.

Since the method does not need experimental data of the studied system, it is appropriate

for preliminary screening and rationalization of structural characteristics (i.e., the probability

distribution of charge density can be used for the interpretation of molecular interactions).

The drawback of this technique is the unknown composition and dissociation state of the in-

vestigated ionic compounds (when such are present), which has to be determined separately.
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Figure 2.9: Determination of sigma pro�le of water based on the results of DFT simulation.

(Taken from COSMO-RS theory, The Basics.[81])

Although the simplicity of the model's algorithm makes its application easy, the necessity of

preliminary quantum chemical calculations could be a di�culty for novel compounds.

COSMO-RS was primarily applied in screening of DES for applications where the liquid-

liquid equilibria are relevant (i.e. liquid-liquid separation, chromatography). Mulyono et al.

investigated the liquid-liquid extraction of BTEX aromatics from n-octane by using DES

[82]. They used COSMO-RS to predict the ternary liquid-liquid equilibria diagram of the

studied systems, where the method showed only qualitative agreement with the experimental

results. Also the calculated sigma pro�les were used to describe the interactions between

the DES and the solute compounds. Another research screened DES for use in extractive

denitri�cation of diesel [83]. The activity coe�cient of nitrogen compounds in DES was

predicted and it was used for the calculation of selectivity, capacity and performance index

of the DES. Based on the results, they also set up assumptions regarding the relations of

the strength of interaction to the structure of the compounds. However, due to the lack of

experimental validation of these results, it is possible that the screened liquid eutectic systems

do not exist in reality. Gouveia et al. also tested DES for the separation of aromatic and

aliphatic hydrocarbons via liquid-liquid extraction [84]. They used COSMO-RS to predict

the phase behavior and tie lines of the ternary mixtures with small relative error. The

method was also able to describe the trend of distribution ratio and selectivity of di�erent

DES. A di�erent research group used the COSMO-RS to predict the interaction mechanism

between the constituents of DES [85]. They compared the sigma pro�les of the pure

constituents and the formed DES. They also found good agreement between the predicted

and experimental density. Bezold et al. assessed the application of COSMO-RS in model for

the calculation of thermodynamic properties of DES in liquid-liquid chromatography [86].
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They found qualitative agreement between the activity coe�cients, liquid-liquid equilibria

data and partition coe�cients taken from experimental measurements and literature data.

They found the overall prediction quality to be su�cient for pre-screening procedure in

solvent system selection. Jeli�nski et al. used the COSMO-RS methodology for the screening

of DES for the solvation of rutin by predicting the solubility [67]. Their applied model

also took into consideration the possible ionic and neutral form of the HBA. They used

their �ndings to describe relation between the structural properties of the NADES and the

solubility values. Finally, COSMO-RS was also used as a screening tool to predict the

thermodynamic properties of sugar based, ternary DES [87]. The comparison of predicted

and measured eutectic point showed good agreement.

Due to its capabilities, COSMO-RS will remain a valuable method for pre-screening tasks

in the future for applications related to the liquid equilibria properties of NADES and their

solutes. However, the experimental validation of the results cannot be omitted, as the

predictions thus far often yielded only qualitative agreement with the actual results. This also

raises the question, to which extent can the results of the calculations (without experimental

validation) be used in the investigation of the general structure-property relation of NADES.

2.5.2.2 PC-SAFT

Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) is an advanced equation

of state model. PC-SAFT is a thermodynamic model for phase equilibrium calculations: it

describes the relation between energy, volume, pressure, temperature and composition in

the 
uid region. It is also an association model, which means it also describes the e�ects of

hydrogen bonding between the compounds of the system. To calculate the total energy of

the hydrogen bonding, the model uses a perturbation theory: they approximate the solution

of a complex problem with the solution of a simpler problem, then they use perturbation parts

to incorporate the di�erences. The detailed theoretical background of the method can be

found elsewhere [88], here we give only a short description of the main considerations. In this

model molecules of a reference 
uid are constituted by the addition of equal sized spherical

segments into a hard chain (See Fig. 2.10). The total interaction energy is expressed as the

sum energy of the ideal gas system and the residual energy of the interactions (See Eq. 2.7.).

The residual energy contains the contribution of the interaction in the hard-chain reference,

the dispersion interactions among the chains and the speci�c site-site hydrogen bonding

interactions in the system (See Eq. 2.8). The equation is usually expressed in Helmholtz

free energy as most thermodynamic properties can be obtained by its di�erentiation.

atotal = aideal +aresidual (2.7)

aresidual = ahard�chain+adispersion+aassociation (2.8)

Each compound in the model requires characterization by �ve pure component parameters:

the number of segments, the diameter of segments, energy of the segment, volume of asso-

ciation and energy of association. Empirical binary interaction parameters can be also added

to the model. This increases the accuracy of the model by incorporating the interactions
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among the constituent and solutes. These parameters have to be determined experimentally

by regression on the vapour pressure and liquid density data of the pure components or by

group contribution methods (if available).

Figure 2.10: Schematic representation of PC-SAFT theory: the equal-sized spherical seg-

ments (a) connected by covalent bonds, forming the hard-chain reference 
uid. (b) The

speci�c interactions among the chains are described by the perturbation parts. (c)

The accurate prediction of the thermodynamic properties is the main advantage of the

method. The calculated behavior of vapor-liquid, liquid-liquid and solid-liquid phase equi-

libria show quantitative agreement with the experimental results in many cases. Therefore

solubility, separation properties, gas absorption (e.g., CO2) and the melting point can be

predicted by this method. More complex properties can be determined by coupling PC-

SAFT with additional models, where the calculated thermodynamic properties are the input

for further steps (see work of Haghbaksh et al. in the next paragraph). On the other hand,

the determination of the pure component parameters can be di�cult. Their determination

based on experimental dataset requires a signi�cant amount of extra work. The pure com-

ponent parameters of NADES raises another question: the mixture of the compounds can

be described as one pseudo-pure component or individually. The second approach yields a

more general model, but the determination of individual parameters is not always feasible.

In case of NADES, where solid constituents are applied, the determination of vapor pres-

sure and liquid density data is not feasible. To overcome this issue, the parameters can be

determined from the aqueous solutions of the constituents, however that is not feasible in

case of hydrophobic constituents.

Similar to COSMO-RS, PC-SAFT can also be used for solubility calculations. Verevkin et al.

applied PC-SAFT to calculate the limiting activity coe�cients of aliphatic and aromatic or-

ganic compounds in DES [89]. The comparison of calculated and experimental values showed

agreement at the order of magnitude. Moreover, the predicted temperature dependency fol-

lowed the trend of experimental results. Gas absorption capabilities can be investigated by

the determination of liquid-vapor equilibria. Zubier et al. applied a PC-SAFT model to

investigate CO2 capture in DES [90]. They determined the phase behavior of the eutectic

systems with CO2. They applied both of the above-mentioned strategies for the determina-

tion of pure component parameters. Although both strategies yielded accurate predictions

on phase behavior, the individual-component approach yielded more versatile parameters:

with pseudo-pure approach not just the pure component parameters were DES-speci�c (as

they were determined for given DES), but also the binary interaction parameters became

ratio speci�c. An additional research group investigated the CO2 solubility of DES with

constituents, that were hydrophobic and solid at room temperature, therefore they could

only use pseudo-pure parameters for their calculations [91]. Still, the calculations predicted
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CO2 solubility with reasonable accuracy, even without the application of binary interaction

parameters. PC-SAFT is also useful for the determination of the melting point in eutec-

tic systems. Pontes et al. applied PC-SAFT to describe the solid-liquid phase diagrams

of 15 quaternary ammonium and fatty acid based DES [92]. Based on the experimental

results they connected the increasing chain length with increasing molecular interaction and

lower melting point as consequence. They incorporated that e�ect in the binary interaction

parameter of the thermodynamic modeling. The predicted melting point showed good agree-

ment with the experimental data (around 7K average absolute deviation). As we mentioned

earlier the PC-SAFT can be coupled with additional models. Haghbaksh et al. combined

PC-SAFT and Cubic plus Association models with free volume theory to create a predictive

viscosity model for DES. The equation of state models provided the density of the system,

which is a required parameter for the viscosity calculations by the free volume theory [93].

The viscosity calculation with PC-SAFT yielded accurate predictions (with 2:7% average

deviation). In their second work, they combined the same equation of state models with

the frictional theory to build an additional viscosity model [93]. Here PC-SAFT was used

to determine the repulsive and attractive pressure values, which are the input parameters

of the frictional theory. The �nal model showed reasonable predictive accuracy with 4:4%

average deviation.

PC-SAFT has a future potential in the determination of thermodynamic properties of the

NADES systems. As more and more data become available about eutectic systems, the

pure component parameter determination will become easier, making the method application

more straightforward. The coupling of the equation with additional models on both input

and output side is still a relatively unexploited area, where the initial results are promising.

2.5.3 Group contribution and machine learning methods

The methods we discuss in this section focus on the description of the structure-property

relationship in DES systems. It is common in the group contribution and machine learning

methods, that the aim is not the general understanding anymore, but rather the quantitative

prediction of the systems properties. To achieve this, these methods use large datasets to

describe the relation between the structural properties and the behavior of the investigated

systems. Rather than theoretical considerations, these methods work with empirical models

relying on heavy parametrization. In case of machine learning black box models are often

used, were the model does not yield minimal information about the rationale of the described

relation. The quantitative agreement between the predicted and experimental data can be

achieved, however the amount of required data is often the bottleneck of such methods.

2.5.3.1 Group contribution methods

Group contribution methods calculate the properties of chemical compounds based on their

structure. In principle the method assigns contributions of the groups to a given property,

that describes how the chemical compound is built. The property of the whole compound

is the added contributions of the consisting groups. By that, large number of di�erent

compounds can be characterized with the small amount of information on the group con-
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tributions. The application of such contribution method reduces the required data and

computational intensity of the calculations. Still, the determination of the group contribu-

tions require a large experimental dataset (e.g., Hansen et al. applied around 1200 data

points for their software to predict the Hansen solubility parameters [94]). One common

example is the Lydersen-Joback-Reid method, where the thermodynamic properties of the

chemicals is determined based on their structural composition.

The main advantage of group contribution methods is the simplicity of the calculations,

which only require the structure as input. The method can yield quantitative accuracy,

multiple physicochemical properties were determined with an average error lower than 5:0%.

On the other hand quality of the estimation depends on the limitations of the method itself

and the structural domain covered. The development of the contribution dataset is also

labor intensive, but available system can be enhanced subsequently.

For the determination of solvation properties, Hansen solubility parameters are usually de-

termined through group contribution methods (e.g., Hoftyzer and van Krevelen method).

However, their implementation for NADES due to the special hydrogen bonding interactions

and the presence of ionic compounds is not straightforward. Still, Lee et al. used the group

contribution methods of van Krevelen of Hansen solubility parameters to predict the melting

point decrease of DES [95]. They take into account the di�erence in polar and hydrogen

bonding parameters of the HBD component to compose the regression model of melting

point depression of choline chloride based DES. The regression model gave 0.738 as coe�-

cient of determination. The other frequently used method for DES is the earlier mentioned

Lydersen-Joback-Reid group contribution, usually coupled with other calculations where the

group contribution gives the input values. Shahbaz et al. developed a predictive model for

the density of DES [96]. They used the Modi�ed Lydersen-Joback-Reid method for the

determination of the critical properties of molecules. They combined the results with Lee-

Kesler mixing rules and the modi�ed Rackett equation to calculate the liquid density. The

error of the predicted densities was 1:9%. In their other study, they used the same method

for the evaluation of additional DES and to compare the method to arti�cial neural network

based estimations [53]. The group contribution based method yielded a 2:03% error in that

case. Shahbaz et al. also used the group contribution method of Knotts et al. for the

prediction of parachor values of DES [97]. The parachor value links the surface tension,

density and structure of the compound and they used the group contribution method for

the determination of surface tension and density. Additionally, they combined the results

with the Othmer equation to describe the temperature dependency of the surface tension

of the investigated DES. The experimental and predicted surface tension and density values

showed good agreement with 6:4% and 1:61% average error, respectively. The predicted

temperature dependency of the surface tension also gave good correlation with 2:57% av-

erage error. The method of Wildman and Crippen for the prediction of refractive indices

was the third method investigated for the prediction of DES behavior [98]. They calcu-

lated the molar refraction values, and then they used the Lorentz-Lorenz equation for the

determination of refractive indices and the density. The error of the refractive indices were

0:56%, while it was 1:43% in the case of density calculations. Mjalli et al. compared the

Modi�ed Lydersen-Joback-Reid group contribution and E�otvos method for the calculation

of critical temperatures of DES systems and the application of these for the prediction of

density and surface tension values of the DESs. For the latter, they combined the Rackett

and Guggenheim empirical equations. As the E�otvos and Guggenheim methods based on



36

CHAPTER 2. LITERATURE REVIEW: NADES AND THEIR MODELING

APPROACHES

the experimental values of density and surface tension, it gave better results than group

contribution method, especially in the higher temperature range. Finally, Mirza et al. used

the combination of modi�ed Lydersen-Joback-Reid group contribution method with the Lee-

Kesler mixing rules to determine the critical properties of a large number of DES [99]. For

validation, they used the Rackett-equation to calculate densities and compare with experi-

mental values. The average deviation of the density values was 4:9%. However, the DESs

containing aromatic groups had a bigger deviation, probably due to the stronger interaction

forces in the system.

The main issue with the currently used group contribution methods is that they do not

include the strong secondary interactions (hydrogen bonding) and often do not include ionic

compounds, therefore they are not applicable to many deep eutectic systems. With the in-

crease of available data on eutectics, group contribution methods directly for NADES can be

developed. These speci�c systems would be useful for DES{based application development,

due to their simplicity and predictive accuracy.

2.5.3.2 Machine learning methods

Machine learning is the process of computer systems performing speci�c tasks based on pat-

terns and inference instead of explicit instructions. In the description of structure-property

relations this usually means a supervised learning task: the machine is a mathematical func-

tion, an algorithm that maps the relation between the output variable and the possible input

variables. Training datasets with known input-output pairs are used for the development.

After this step, the trained algorithm can be evaluated and preferably used for the deter-

mination of the unknown output values of novel cases. In case of DES the main method

used is arti�cial neural networks. A neural network (see Fig. 2.11.) is made up of neurons.

Neurons are some non-linear functions (e.g., sigmoid, binary, hyperbolic tangent) that sums

up the values of the di�erent input signals (from other neurons or input variables). The

neurons are connected to each other and mainly aggregated into layers. The inputs are the

signals from the input variables or the output of other neurons. The connections between

neurons have weights adjusting the strength of the input signal. The learning process is

based on the adjustment of these weights during the training.

If proper datasets are available machine learning methods can yield good quantitative accu-

racy, even in the case of complex relations. On the other hand, the quality and the size of

the available dataset is vital for accurate models. During the training process, the applied

training data will determine to what extent of structural variability will be covered and what

precision is possible. By applying a model for vastly di�erent compounds than it was trained

for, it becomes less accurate. The intention of machine learning is primarily the prediction

of properties. Therefore the �nal model is often hard to interpret regarding the underlying

structural relations (black box model).

Despite its potential, published studies on machine learning with NADES are scarce. Shah-

baz et al. used machine-learning methods to predict the density of di�erent DES system

based on their composition and the temperature [53]. They used a feed forward backpropa-

gation neural network and compared its e�ciency to the earlier discussed group contribution

method. The method had a 0:14% error and resulted in better predictions especially at higher



2.5. MODELING THE PROPERTIES OF NADES 37

Figure 2.11: Arti�cial neural network with one hidden layer, three input variables and one

outcome, The four nodes in the hidden layer use sigmoid functions for signal processing, one

of the commonly applied non-linear function in neural networks.

temperatures compared to group contribution methods. Bagh et al. used a similar feed for-

ward backpropagation neural network to predict the electrical conductivity of DES based

on the temperature and the molar composition [100]. The predicted values showed good

correlation with the experimental results with a regression coe�cient of 0.9988. Adeyemi

et al. used both feed forward backpropagation neural networks and bagging neural networks

to predict the density and conductivity of multiple amine based DES systems [101]. The

bagging method yielded a signi�cant increase in the prediction quality of these properties

with 2:799 � 10�7 and 5:820 � 10�4 values of normalized mean square of errors in case of

density and conductivity, respectively.

Similarly to group contribution methods, as more and more data become available on DES,

more complex machine learning methods will be possible for modeling di�erent properties

of such systems. On the other hand, good quality data is imperative for proper model

development. In our experience, composing high-quality datasets based on literature is

challenging to date.
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2.6 Summary and outlook

Compared to common organic solvents and ionic liquids, the application of NADES may o�er

an economic and ecological alternative due to the cheap constituents, e�cient synthesis,

low toxicity and volatility. The possibility to design NADES properties through the structure

of the constituents and their molar ratio in the mixture means both potential and challenge.

Their application as designer solvent requires a good understanding of the structure-property

relationships of these systems.

The earlier studies on the physical chemical properties of NADES showed that these are

strongly related to the strength of hydrogen bonding in the system. Therefore changes

of properties such as density, viscosity, surface tension or phase equilibria can be qualita-

tively described by the changes of the hydrogen bonding's strength. The strength of the

hydrogen bonding changes with the structure of the components and their molar ratio. In

the �rst case the number of hydrogen bond donor and acceptor sites on the molecule are

determinative, but also the size and the electron a�nity has e�ect as other intermolecu-

lar interactions are signi�cant. The molar ratio is relevant with respect to the number of

hydrogen bonds between the constituents: in the eutectic composition the ratio facilitates

the maximal hydrogen bonding interaction between the constituents, leading to maximal

interaction energy. This results minimal melting point, but also maximal viscosity in the

eutectic point. However, the quantitative description of the structure-property relationship

requires in depth modeling of these phenomena.

We discussed the models of DES in three separate sections. The molecular scale covers

models based on density functional theories and molecular dynamics based methods, where

the primary goal is to describe the steric con�guration of the molecules in the eutectic

system and the actual interaction energies between the constituents. These methods help

rationalizing the behavior of DES and also the feasibility of biocatalytic reactions in strongly

hygroscopic environment. In macroscale modeling the aim is to describe the properties of

the bulk solution, based on semi-empirical methods instead of the actual intermolecular

background. The two main methods were COSMO-RS and PC-SAFT. Both are applicable

for the determination of equilibria phase properties. The third section discussed empirical

models based on a large amount of data. Group contribution and machine learning models

can yield quantitative precision, but their application requires large amount of experimental

data.

In the following �gure (Fig. 2.12.) we compared the di�erent aspects of the investigated

methods. While the molecular and macroscale methods can aid the interpretation of the

already experienced phenomena, the macroscale, group contribution and machine learning

models can predict the outcome of novel cases. While the macroscale methods yield mostly

qualitative results, with group contribution and machine learning methods one can acquire

quantitative predictions. The published studies determined the vibrational spectra, density,

viscosity and di�usion properties with the aid of molecular scale properties. With macroscale

models the phase equilibria properties like liquid-liquid, solid-liquid and vapor-liquid equilibria

and solubility were calculated. Group contribution and machine learning methods predicted

the density, viscosity, surface tension, electric conductivity and refractive indices di�erent

NADES systems.
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Figure 2.12: Di�erent methods and their capabilities for modeling the properties of NADES.

2.7 Linking results to hypotheses

In this chapter, I have reviewed the available methods for modeling NADES properties and

behavior. The available methods are divided into molecular level, macro level and data driven

approaches. Molecular level models describe the direct interactions between the di�erent

actors in the system, they can e.g., determine the interaction energies, the vibrational spectra

or the density of the system. The methods discussed here are density functional theory

and molecular dynamics simulations (ab initio and classical). Macroscale models consist

of PC-SAFT and COSMO-RS modeling. These methods are suitable to determine the

physicochemical properties of the bulk media and also the dissolution in NADES. Data-

driven methods, such as group contribution and machine learning modeling, also predict the

physicochemical properties of the media, but they are based on large amounts of experimental

data instead of semi-empirical relationships.

Based on the reviewed models, it is possible to describe and predict the properties of NADES

that I am interested in (Q3 and H3). This review con�rms that all models necessary for

a holistic modeling approach are available. For the physicochemical properties density and

viscosity, I choose machine learning modeling. The results of the density predictions will be

used in combination with PC-SAFT modeling to determine the solubility of the substrates.

To study the e�ect of NADES on the enzyme structure, I choose classical molecular dynamics

simulation.

However, the review also shows many gaps in the currently available models. Although many

di�erent approaches are discussed in the literature, holistic methods that aim at predicting

complex e�ects of NADES are still missing. With this research I try to bridge this gap.

Most of the current machine learning approaches are still too rudimentary in their features

(input variables) and have insu�cient accuracy to generically predict the properties of novel

NADES systems. This problem can be addressed in the future by building larger databases of
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NADES. This will happen as the �eld develops, but because it is a labor-intensive process,

I do not include screening of large numbers of novel systems in this work. Instead, in

Chapter 5, I present an analysis of the currently available data to provide an overview of

the current capabilities in terms of modeling accuracy and structural application domain.

Molecular dynamics simulations require an accurate force �eld to produce reliable results.

The reviewed works have shown that proper force �elds are rarely available for NADES and

they strongly in
uence the �nal results. Force �eld optimization is not a straightforward

process, and obtaining them for novel NADES systems can be a bottleneck in modeling

e�orts.
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Biocatalytic transesteri�cation of vinyl

laurate in NADES

"The most exciting phrase to hear in science, the one that heralds new discoveries, is not

"Eureka" but "That's funny...""

Isaac Asimov

3.1 Preface

Many studies describe enzymatic reactions in NADES, and they usually include some com-

parison of reaction performance (e.g., �nal conversion or initial reaction rate) in relation to

the NADES used. Rarely, however, is a relationship established between the properties of

the NADES and the reaction performance that would abstract from the speci�c compounds

in the given NADES. Therefore, before trying to predict the presumably relevant proper-

ties, I check if changes in these properties can really explain the changes in the reaction

performance.

I hypothesize that the NADES in
uence the enzymatic reaction through the strong secondary

interactions between substrate, media and enzyme. Furthermore, I hypothesize that these

interactions can be described by measurable and predictable properties, namely solubility

(substrate-NADES interaction), viscosity (NADES-NADES interaction). I try to interpret

changes in reaction performance and select the optimal solvent based on these properties.

In this chapter I discuss the results of the enzymatic transesteri�cation of vinyl laurate in

di�erent NADES, where I investigate the e�ect of the NADES through the above mentioned

properties. To do this, I measure the viscosity of the NADES, the solubility of the substrate,

the conversion over time, and monitor side reactions. From this, I will determine how the

changes in reaction performance are related to the investigated properties and what is the

relative weight of these properties in the e�ect of NADES on the reaction.

The content of this chapter has also been submitted to the journal Waste and Biomass

Valorization with the title "Biocatalyzed vinyl laurate transesteri�cation in natural deep

41
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eutectic solvents". The co-authors of this paper are Nathalie Janssens, Miguel Mielants,

Erik Neyts, Iris Cornet and Pieter Billen. Nathalie Janssens and Miguel Mielants contributed

to the development of the methodology, the formal analysis of the results and the writing of

the original draft. Erik Neyts, Iris Cornet, and Pieter Billen contributed to the supervision

of the project and to the review and editing in the writing process. In addition, Pieter Billen

acquired �nancial support for the project.
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3.2 Abstract

Natural deep eutectic solvents (NADES) represent a green alternative as reaction media,

o�ering more benign properties compared to conventional organic solvents. Their appli-

cation is being considered in the treatment of waste streams and biomass (e.g., cellulose

processing), and as media for biocatalysis. To e�ciently design NADES for biocatalysis,

a better understanding of their e�ect on these reactions is needed. We hypothesize that

this e�ect can be described by separately considering (1) the solvent interactions with the

substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES.

We investigated the e�ect of substrate solvation, the e�ect of NADES on enzyme stability

and the e�ect of NADES' viscosity on mass transfer limitation of the substrate. To this

end, we monitored the conversion over time of the transesteri�cation of vinyl laurate with

1-butanol by the lipase enzyme Candida antarctica B in NADES of di�erent compounds

and molar ratios. The studied NADES are composed of choline chloride with urea, ethylene

glycol and glycerol. The e�ect of solubility and enzyme incubation on the reaction rate was

also investigated in a selection of abovementioned systems. Oversaturated solutions were

used to study the dissolution of the substrate in NADES and to determine the phase in

which the reaction takes place.

The catalytic reaction takes place in most of the NADES and, despite their higher viscosities,

the initial reaction rate is often higher than in the reference n-hexane system. We found no

correlation between viscosity and reaction rate, implying that viscosity has only a marginal

e�ect on the reaction. The reaction proceeded in the time frame of 2-24 hours, showing

that the enzyme retains at least some of its activity after the �rst 2 hours of reaction. The

reactions in the saturated CCEG12 system indicate that the reaction proceeds well in the

NADES phase. Enzyme incubation in CCEG12 prior to the reaction resulted in a reduced

reaction rate which may be due either to an almost complete inactivation of the enzyme or

to the slow dissolution and high viscosity of NADES, or to both phenomena.

Many of the studied NADES systems are suitable media for the transesteri�cation reaction of

vinyl laurate, and the proposed framework of solvation-viscosity-enzyme stabilization proves

suitable for describing the e�ect of NADES on the enzymatic reaction. The plateau we

experienced in the conversion of CCEG systems and the slow reaction rate of the incubated

enzyme in CCEG12 system are most likely the combined e�ect of enzyme denaturation,

limited solubility of the substrate, and limited access to the enzyme due to high viscosity.

3.3 Novelty statement

In this study, we report the use of NADES as reaction media in biocatalysis. To our knowl-

edge, the systematic use of non-eutectic NADES has not been reported in the literature.

Furthermore, this is the �rst time that a mechanistic framework is reported that proposes

to describe the e�ect of NADES on enzymatic reactions via the media-media (viscosity),

media-substrate (solvation), and media-enzyme (changes in enzyme structure) interactions.

The experimental results are discussed within this framework.
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3.4 Introduction

Natural deep eutectic solvents (NADES) are a novel class of reaction media that o�er

more benign properties than conventional organic solvents [14]. Deep eutectic solvents

(DES) consist of a mixture of organic compounds, typically quaternary ammonium salts with

metal chlorides or hydrogen bond donors (HBD) [5]. The term deep eutectic refers to the

signi�cantly decreased melting point of the mixture, compared to the pure compounds [33].

Although the de�nition of deep is still debated in the scienti�c community [102], mixtures

of practical interest have a melting point close to or even below room temperature [5]. For

example, the typical "case study" of DES, i.e., the mixture of 1 to 2 molar ratio of choline

chloride and urea has a melting point of 17 �C, while solid choline chloride decomposes

at 305 �C and urea melts at 132.7 �C [6]. This eutectic behavior is attributed to the

strong secondary interactions between the compounds, in particular the formation of an

intermolecular hydrogen bonding network throughout the system [9, 10]. This network

stabilizes the mixture in a liquid state [11], allowing the use of DES as a solvent. NADES

are a subset of DES that contain naturally derived compounds, usually quaternary ammonium

salts and hydrogen bond donating components such as organic acids or polyols [13].

Since NADES are mostly ionic solutions, they have similar physicochemical properties to

ionic liquids, but o�er additional advantages. Compared to volatile organic compounds,

NADES are often non-
ammable, have low vapor pressure and low toxicity, making them a

better choice from both an environmental and occupational safety perspective [16, 17]. In

addition, NADES are considered "designer solvents", i.e. their physicochemical properties

can be tailored according to the task. The interactions between the salt and HBD groups

de�ne the behavior of the given mixture [1]. Therefore, in principle, the desired properties

can be achieved by appropriate selection of the components used and their molar ratio

[19]. Compared to ionic liquids, DES can be prepared with 100% atom economy and are

less susceptible to impurities, which facilitates their large-scale use [5]. Containing organic

acids, amino acids, amines and sugars, NADES o�er biodegradability, low production cost

and they are in line with the principles of circular economy [20].

Although non-
ammability, low volatility, low toxicity, and low price make NADES attractive

candidates for many �elds, practical applications to date include mainly electrochemistry [23]

and separation/extraction processes [24]. Treatment of waste streams and biomass (e.g.,

cellulose processing [103], biodiesel [104], and fatty acid ester production [105]) have also

been tested on a laboratory scale. Due to their biodegradability and possible biocompatibility,

NADES are likely to be applied in the pharmaceutical, food and feed sectors where these

properties are preferred [106]. In this respect, NADES are also suitable for certain enzyme-

catalyzed reactions [107, 108], underlining their future potential for the aforementioned

biochemistry-intensive industries.

The �rst biocatalytic reaction in NADES was described by Gorke et al. in 2008 [109] and

many other studies followed. Xu et al. published a review of the enzymatic reactions studied

in 2017 [41]. However, the varying e�ectiveness of NADES as media in these reactions is

rarely discussed. The available literature indicates that the intermolecular H-bonding network

of NADES is also the main way how they a�ect biocatalytic reactions [110, 111, 112]. First,

the intermolecular network helps protein structures to remain stable in NADES, although

these media often contain strong denaturing agents such as urea. A computational study
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of NADES showed that the intermolecular network prevents the di�usion of the denaturing

compound inside the enzyme structure [68]. Thus, the intramolecular interactions of the

protein remain intact and the enzyme remains active. In addition, NADES provide extra

stability to the enzyme: the half-life of horse radish peroxidase increased to 350 minutes in

choline chloride-urea mixture compared to 50 minutes in phosphate bu�er [70]. Simulations

suggest that this is due to strong secondary interactions between the eutectic constituents

and surface residues of the enzyme, which provide additional stability to the enzyme struc-

ture [110, 111]. NADES, as media, also in
uence the kinetics of the enzymatic reaction and

this e�ect can be either positive or negative. In the aminolysis of ethyl valerate by immobi-

lized Candida antarctica lipase B (iCALB), the mixture of choline chloride-urea and choline

chloride-glycerol outperformed ionic liquids in terms of �nal conversion and showed initial

reaction rates similar to toluene [109]. The reaction in a mixture of choline chloride and

acetamide yielded only one third of the conversion compared to toluene. Similar di�erences

in conversion rate were found in the case of lipase-catalyzed transesteri�cation [113] and

hydrolysis reactions [114].

The combination of their designer nature and biocompatibility makes NADES a green al-

ternative for biocatalytic media that may outperform conventional solvents due to their

tailorable properties. However, the tailorable properties of NADES also pose the greatest

challenge to their e�ective use, as knowledge of their structure-property relationships is

severely lacking. Simply put, we don't understand how changes in the compounds used

and their molar composition a�ect the physicochemical properties and behavior of NADES.

NADES have been shown to in
uence enzymatic reactions, but the exact mechanism behind

this in
uence remains unclear.

The observed di�erences in performance may be due to several phenomena. Di�erences

in the solvation energies of substrates and products can shift the reaction equilibrium and

also change the activation energy of the reaction. The high viscosity of NADES can lead to

mass transfer limitations. This is even more problematic in the case of immobilized enzymes,

where the reactants must di�use into the porous carrier beads. As mentioned above, the

media can have a stabilizing or denaturing e�ect on the enzyme itself, but side reactions

with the NADES compounds are also possible.

For biocatalytic applications of NADES, lipases are the most intensively studied group.

Firstly, they tolerate a wide range of temperatures and many di�erent solvents, making them

applicable to many synthetic and hydrolytic reactions [41, 107, 108, 109]. Secondly, lipases

are the most widely used enzymes in the food, pharmaceutical and cosmetic industries, as well

as in the synthesis of surfactants and the production of biodiesel [41, 104, 105, 107, 108].

To determine the activity of lipase enzymes, Goujard et al. developed a method based on

the transesteri�cation of vinyl laurate using UV-Vis spectrophotometry [115]. Later, the

same reaction was used by Durand et al. to study the initial reaction rate in NADES [113].

With their method, they determined the feasibility of lipase-catalyzed reactions in NADES

and compared the performance of di�erent NADES systems and common organic solvents.

This approach is a fast and e�ective way to determine enzyme activity by measuring the

conversion of vinyl laurate over time, compared to more time-consuming and expensive

chromatography methods [113].

At present, the designer property of NADES as solvents for biocatalysis is inaccessible be-
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cause we do not fully understand how the NADES a�ect the reaction. In this research, we

present a framework that mechanistically describes the e�ects of NADES on the enzymatic

reaction, which can then be related to the structure-property relationships of the NADES.

To achieve this, we need to know how to break down the complex e�ect that NADES have

on enzymatic reactions into elements that can be discussed separately. Since NADES exert

their speci�c behavior mainly through their strong secondary interactions, we hypothesize

that the separate discussion of media-substrate, media-media and media-enzyme interac-

tions would be expedient. This means the description of the solvation of the reactants, the

viscosity of the NADES systems and the direct e�ect of the NADES on the enzyme struc-

ture. This breakdown should provide enough information to understand the performance

di�erences between two or more NADES systems or even in comparison with volatile or-

ganic compounds. To test our hypothesis, we studied the transesteri�cation of vinyl laurate

in various NADES with di�erent compositions and molar ratios. To investigate the e�ect of

dissolution during the reaction, we also used supersaturated NADES solvents. We monitored

the initial reaction rate, the �nal conversion and possible side reactions. We determined the

viscosity of the media to study its e�ect on the reaction. We also studied the long-term

stability of the enzyme by incubating the lipase for 24 hours before starting the reaction,

and we studied the solubility of vinyl laurate in selected NADES systems. We compared the

initial reaction rate and �nal conversion in NADES with n-hexane, a volatile organic solvent,

as a reference system.

3.5 Materials and Methods

3.5.1 Materials

For the synthesis of NADES systems choline chloride (�99%, Across Organics), ethylene

glycol (�99%, Fisher Scienti�c) and glycerol (�99%, Fisher Scienti�c) were used. For the

water content measurement Hydranal-composite 5 (Honeywell Fluka) was used. For the

enzymatic reaction and the related chromatographic measurements vinyl laurate (�99.0%,

Sigma-Aldrich), 1-butanol (SLR, Fisher Scienti�c), butyl laurate (�99%, Fisher Scienti�c)

and methyl laurate (�98.0%, Sigma-Aldrich) were used. For the sample preparation and

as reference solvent n-hexane (�99%, HPLC grade, Chem-Lab) was used. For the cataly-

sis Immozyme CALB-T2-150XL immobilized lipase enzyme (Chiralvision) and concentrated

hydrochloric acid (37%, a.r., Chem-Lab) to prepare the stopping reagent were used.

3.5.2 Preparation and measurement of NADES

The salt and HBD compounds were weighted together according to the molar ratio of the

given NADES (made in batches of 200 grams). Table 3.1 shows the di�erent NADES

with their composition and molar ratio (along with the abbreviations used for the di�erent

NADES systems). CCUR samples with HBD ratio higher than 1:2 were not included in

the research, as these mixtures were not stable liquids at 60 �C. Since the physicochemical

properties of NADES are sensitive to their water content, the water uptake of the samples

was controlled and prevented. To protect the mixtures from atmospheric moisture, they
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were prepared and stored in sealed 
asks. The mixtures were heated to 80 �C and stirred

with a magnetic stirrer bar at 600 RPM for 2 hours, resulting in a colorless transparent liquid.

The water content of each mixture was monitored by Karl-Fischer titration (Mettler Toledo

V30 Volumetric KF Titrator) and only samples with less than 1 % water content by weight

were used for the reaction. The viscosities of the prepared NADES were determined using a

HAAKE RotoVisco 1 Controlled Rate rotational viscometer. For the viscosity measurements

a "PP60 Ti" 60 mm titanium sensor plate was used with a constant shear stress of 1 Pa

applied for 60 seconds.

Table 3.1: Prepared NADES systems. In the article we use the abbreviations that are de�ned

in column 'NADES'.

NADES HBA HBD Molar ratio

CCEG12 Choline chloride Ethylene glycol 1:2

CCEG13 Choline chloride Ethylene glycol 1:3

CCEG14 Choline chloride Ethylene glycol 1:4

CCGLY12 Choline chloride Glycerol 1:2

CCGLY13 Choline chloride Glycerol 1:3

CCGLY14 Choline chloride Glycerol 1:4

CCUR12 Choline chloride Urea 1:2

3.5.3 Transesteri�cation reaction

The transesteri�cation reaction (see Figure 3.1) was performed in 40 ml sealed glass vials in

a glycerol bath at 60 �C while stirring the mixture continuously at 300 rpm. The composition

of the reaction mixture was 5.00 ml NADES, 270 �l vinyl laurate (1.0 mmol), 550 �l 1-

butanol (6.0 mmol), and 5�0.5 mg iCALB enzyme. We grounded and sieved the immobilized

enzyme beads, using the size range of 75 �m to 355 �m for the reaction, as described by

Durand et al. [113]. The starting mixture contained the solvent, vinyl laurate and 1-butanol.

The solvents were oversaturated for vinyl laurate by used a concentration of approximately

45 mg/ml. For comparison, Durand et al. used about 9 mg/ml for similar NADES systems

[113]. After 5 minutes of temperature equilibration, the reaction was initiated by adding the

enzyme to the mixture. Due to the possible heterogeneity of the samples, the entire reaction

mixture was processed at each reaction time studied, rather than successive samples of the

same system. Therefore, each sampling of the reaction was a new single-point experiment,

as this resulted in higher repeatability. To stop the transesteri�cation at the selected time,

5.00 ml of 1M HCl was added to the reaction mixture and the vials were removed from the

glycerol bath.

To extract the vinyl laurate, 20.00 ml of hexane was added in a single step and the mixture

was vortexed. The hexane formed a separate phase which was �ltered through a 0.45 �m

PTFE syringe �lter. Reactions were carried out at 0, 5, 10, 15, 20, 30, 40, 60, 90 and 120

minutes and 24 hours. The various reactions were always performed in triplicate to monitor

the standard error and repeatability of the measurements.



48

CHAPTER 3. BIOCATALYTIC TRANSESTERIFICATION OF VINYL LAURATE IN

NADES

Figure 3.1: Transesteri�cation of vinyl laurate by iCALB with 1-butanol. The side product

vinyl alcohol tautomerizes into acetaldehyde and leaves the liquid phase.

3.5.4 Analysis of reaction

For the analysis of the vinyl laurate content of the sample we used the UV-Vis spectroscopy

method described by Goujard et al. [115] and Durand et al. [113] In this method we

follow the depletion of the vinyl laurate in the sample by measuring the absorption of the

vinyl group at 200 nm. The absorption-concentration calibration curve for vinyl laurate in

n-hexane was determined in the 20-100 �M range with an uncertainty of �3 �M for the

concentration of the sample (See Figure A.1). The n-hexane extract was sampled and diluted

500 times in two steps and �ltered with a 0.45 �m PTFE syringe �lter. All absorbances were

measured using quartz cuvettes (VWR European; Cat. Number 634-6018; 10 mm) with a

Thermo Scienti�c Genesys 10S UV-Vis spectrophotometer. We calculated the conversion

as the di�erence between the measured vinyl laurate concentration after the reaction and

the calculated initial concentration. To take into account the small amount of vinyl laurate

left in the polar phase, we also did the extraction steps on samples without reaction (zero

time measurement) and we adjusted the conversion in each NADES medium to zero, based

on the concentration di�erence determined in this step.

The products and substrates were identi�ed by gas chromatography (Shimadzu GC-2010 gas

chromatograph) using a non-polar column (Zebron ZB-5ms; length: 30 m; inner diameter:

0,25 mm; �lm thickness: 0,25 �m) coupled with a mass spectrometer (Shimadzu GCMS-

QP2010S gas chromatograph mass spectrometer) using helium as the carrier gas. The oven

temperature pro�le is shown in the supporting information (See Figure A.2). The n-hexane

extracts were diluted 20 times (so that each component was below 0.1 mass percent).

Measurements and analysis were performed using GCMSsolution software (Shimadzu) and

the NIST 11 Mass Spectral Library.

In addition, quantitative analysis of both vinyl laurate and butyl laurate was performed on an

Agilent 6890N Network Gas Chromatograph with a 
ame ionization detector using a column

with low polarity (DuraBond DB-5HT; length: 30 m; diameter: 0,320 mm; �lm thickness:

0,10 �m) with helium as the carrier gas. Methyl laurate was used as an internal standard.

Samples were diluted 20 times (so that each component is below 0.1 mass percent). The

oven temperature pro�le used is given in the supporting information (See Figure A.3).
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3.6 Results

3.6.1 Water content and viscosity of NADES

Since the presence of water signi�cantly alters the physicochemical properties of NADES

(e.g., viscosity and solubility) and may also induce undesirable side reactions, we controlled

the water content in the investigated systems. The water content was less than 0.5 weight%

in every system tested (see Table 3.2). According to Yadav et al. [61], this water content

causes a decrease of about 9 % in the viscosity of the CCUR system at 60 �C, which we

considered an acceptable uncertainty for our research objectives.

Table 3.2 and Figure 3.2 show that the viscosity of NADES is highly dependent on the

compounds used and their molar ratio. Our measurements at 60 �C show that CCUR12 has

the highest viscosity, followed by the CCGLY systems with slightly lower values and �nally

the CCEG systems with signi�cantly lower viscosities. In the CCEG systems the viscosity

also decreases with increasing HBD ratio. This is caused by the increasing molar ratio of

ethylene glycol and the weakening of the intermolecular interactions between the di�erent

compounds due to the deviation from the eutectic composition (1:2). The CCGLY systems

do not show this trend, possibly due to the higher viscosity of glycerol. As mentioned above,

the CCUR systems with higher urea content were unstable at 60 �C and were excluded from

further investigation.

Based on these results, we expect the reaction to be signi�cantly faster in the CCEG systems

because they are less viscous and impose less mass transfer limitations on the reaction

components. In addition, the molar composition should have a similar e�ect, although the

induced di�erence in viscosity is smaller.

Table 3.2: Water content and viscosity of NADES at 60 �C

NADES Viscosity [mPa � s] Water content [%]

Mean SD Mean SD

CCEG12 12.188 0.090 0.488 0.007

CCEG13 9.322 0.024 0.486 0.006

CCEG14 7.605 0.025 0.151 0.003

CCGLY12 52.451 0.600 0.428 0.003

CCGLY13 50.923 0.300 0.414 0.006

CCGLY14 54.200 0.150 0.424 0.006

CCUR12 70.106 0.160 0.434 0.011

3.6.2 Observations on the reaction setup

The addition of vinyl laurate to the NADES medium makes the mixture opaque, as the

medium, substrate and enzyme form an apparently heterogeneous mixture under magnetic

stirring. By adding aqueous hydrochloric acid and n-hexane as a stopping reagent and

extraction solvent, the mixture separates into two phases, a polar and an apolar phase. The
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Figure 3.2: Comparison of the viscosity of di�erent NADES systems. The error bars show

the standard error of three repeated measurements (See Table 3.1 for the applied abbrevi-

ations).

immobilized enzyme beads remain between the two phases. Analysis of the apolar phase

shows that the polar NADES compounds remain completely in the aqueous phase. On the

other hand, the recovery of vinyl laurate was not complete; a small part of it remained in

the polar phase. Therefore, the calculated conversions in di�erent NADES were adjusted

based on the measured concentrations in di�erent NADES at zero time measurements.

When the mixing was stopped after two hours, all samples showed the separation of vinyl

laurate and NADES, con�rming the oversaturation of the samples (as intended). The low

solubility was expected considering the di�erence in polarity between vinyl laurate and the

NADES used.

3.6.3 Conversion over time

In Figures 3.3, 3.4 and 3.5 we summarize the conversion of vinyl laurate over time based on

the UV-VIS measurement. Based on the amount of enzyme in the sample and the amount of

substrate converted in the linear range of the reaction (the �rst 5-15 minutes), we estimate

the enzyme activity. The results are plotted in Figure 3.6 as �moles of substrate converted

per mg of enzyme per minute by averaging the values of the three parallel reactions.

The reference results of the conversion in n-hexane are also plotted in Figures 3.3, 3.4 and

3.5 and these follow the expected trend. For the �rst 20 minutes (i.e., the initial reaction

phase in n-hexane) the conversion is linear. Thereafter, the conversion gradually converges

to a plateau at about 90 % conversion, as the mixture is depleted of the substrate after two

hours.
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Due to the higher viscosity of NADES and their stabilizing e�ect on the enzyme structure

through secondary interactions, one might expect the initial phase of the reaction to be

slower than in the reference solvents, but stable for a longer period of time. However, we

observe the opposite trend in our NADES systems. The initial phase is much faster and

after the �rst 30 minutes of reaction, it reaches a higher conversion than the reference n-

hexane system. The only exception is the CCUR12 system, where only a small (about 10%)

conversion was observed. This is in contradiction with previous reports where the same

enzyme in the CCUR12 system had a good reactivity even for the same reaction [109, 113].

On the other hand, in CCEG systems the initial phase is followed by a sudden plateau,

at a much lower �nal conversion than in n-hexane, while CCGLY systems reach an almost

complete conversion after one hour. The plateau at low conversions in CCUR and CCEG

systems may indicate the early denaturation of the enzyme.

The comparison of NADES with di�erent compounds in Figures 3.2 and 3.6 shows no clear

correlation between the viscosity and the reaction rate of the biocatalysis. The reaction

showed similar initial reaction rate in CCGLY and CCEG systems, both exceeding the activity

in n-hexane, while the viscosity di�erence between the two NADES is �vefold. In addition,

the NADES system of urea, where the viscosity is 35 % higher than in CCEG, the reaction

barely proceeded. The obtained initial reaction rates for di�erent molar ratios of the NADES

compounds are also surprising. In the CCEG systems, the reaction rate decreases with

decreasing viscosity (increasing ratio of HBD compound), while we expected the opposite

relationship. In the case of the CCGLY systems, there is no clear trend between the solvent

viscosity and the initial reaction rate. These results indicate that viscosity plays a lesser role

in the e�ect of NADES on biocatalysis than originally thought. Furthermore, contrary to

our expectations, viscosity does not seem to be the bottleneck in the selection of NADES

for (enzymatic) applications, as no mass transfer limitation was observed.

It is possible that the reaction rate decreases sharply at higher conversions, because the

undissolved vinyl laurate reacts �rst (in the more accessible separate phase) and the reaction

is not controlled by the viscosity of the NADES until the undissolved vinyl laurate is depleted.

This would also mean that the reaction provides little information about the interactions

between the substrate and the NADES medium in the initial phase, when the reaction is

only in
uenced by the enzyme activity. Previous work found that iCALB enzyme retains 45

% and 95 % of its activity in CCGLY12 and CCUR12 systems, respectively, after 5 hours

[113], arguing against complete inactivation of the enzyme in the time range of our study.

However, they also followed the reaction with only a single point measurement, and therefore

obtained less information about the evolution of the reaction over time.

To determine the �nal conversion of the transesteri�cation, we measured the conversion of

vinyl laurate in the di�erent NADES after 24 hours (see Figure 3.7). These measurements

show that after the apparent plateau at 2 hours (Figures 3.3, 3.4 and 3.5), still a signi�cant

amount of additional vinyl laurate reacts. The �nal conversion reached about 80-90% in

each NADES system tested, except for the CCUR12 system, where the conversion actually

remained unchanged after the �rst two hours. Our prior measurements showed no conversion

of vinyl laurate in the absence of the enzyme. This indicates that in the CCEG and CCGLY

systems the enzyme retains some of its activity after the �rst 2 hours of the reaction.

However, in the 2-24 hour time frame, the decrease in the enzyme activity and the depletion

of vinyl laurate in the system also play a signi�cant role in the decrease of the reaction rate.
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Figure 3.3: Conversion of vinyl laurate over time in CCEG based systems. The error bars

show the standard error of the three repeated measurements. The dashed curves are a visual

guide to the progress of the reaction.

Figure 3.4: Conversion of vinyl laurate over time in CCGLY based systems. The error bars

show the standard error of the three repeated measurements. The dashed curves are a visual

guide to the progress of the reaction.

3.6.4 Side reactions

Up to this point, conversions have been calculated based on vinyl laurate depletion followed

by UV spectroscopy. GC-FID and GC-MS measurements were also included to identify and

quantitatively measure the products and possible side reactions (see Figure 3.8). These

measurements reveal a signi�cant side reaction between the ethylene glycol and the vinyl

laurate in CCEG systems, resulting in 2-hydroxyethyl laurate, which accounts for about half

of the observed vinyl laurate conversion. The relative amount of side product increases

slightly with increasing molar ratio of the ethylene glycol, indicating that the more abundant

HBD compound is less a�ected by the intermolecular hydrogen bonding network and is more

likely to react. In addition, the proportion of butyl laurate in the product is constant over

the di�erent measurement times, indicating that the side reaction proceeds in parallel with

the main reaction and does not take place after the main reaction has �nished.
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Figure 3.5: Conversion of vinyl laurate over time in CCUR based systems. The error bars

show the standard error of the three repeated measurements. The dashed curves are a visual

guide to the progress of the reaction.

The results indicate that the good �nal conversion of the vinyl laurate does not always lead

to the desired product. In addition, NADES with di�erent molar ratios are suitable media

for enzymatic reactions, but we have to consider potential side reactions during application.

3.6.5 Solubility of vinyl laurate and stability of enzyme

To get a better insight into the solvation e�ect, we determined the solubility of vinyl laurate

in NADES CCEG12, since in this system the conversion reached a plateau around 60 %

conversion after the fast initial phase (see Figure 3.3). We measured a solubility of 11.6

mg/ml of vinyl laurate in CCEG12, while the previously applied concentration would have

been 45.3 mg/ml. This means that only 25 % of the vinyl laurate was dissolved. To see how

the initial phase of the reaction changes when the substrate is completely dissolved, we also

ran the reaction with saturated samples (i.e. 11.6 mg/ml). The results are compared with

the oversaturated CCEG12 system (see Figure 3.9). The initial phase of the reaction does

not change: the initial reaction rate is only slightly lower and the reaction reaches almost

complete conversion after 5 minutes. These results indicate that the main reason for the

slowdown of the reaction is not the depletion of the undissolved vinyl laurate in the separate

phase and the mass transfer limitation in the saturated solvent. The complete reaction for

the saturated solute indicates the importance of the solvation e�ect in the NADES behavior.

However, the plateau is not consistent with the ratio of the dissolved to not dissolved vinyl

laurate (i.e., the reaction does not slow down at the potential depletion of the undissolved

vinyl laurate or the NADES phase). Based on these results, the reaction proceeds well in the

NADES phase, but it is not clear whether the undissolved vinyl laurate also reacts directly

or the reaction proceeds exclusively via the NADES.

The long-term e�ect of NADES on the enzyme was also tested. We compared the behavior

of the enzyme in n-hexane and in CCEG12 after 24 hours of enzyme incubation at 60 �C

in these solvents. After incubation, the enzyme was used for the �rst 15 minutes of the

reaction. In Figure 3.10 we compare the conversion over time results of the n-hexane and

CCEG12 systems. While in n-hexane the reaction has maintained its original rate, yielding
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Figure 3.6: Initial reaction rate in di�erent NADES systems based on the linear range (�rst

5-15 minutes) of the reaction. The error bars show the standard error of the three repeated

measurements.

Figure 3.7: Comparison of 2 and 24 hours reaction conversions. The error bars show the

standard error of the three repeated measurements.

a similar 20 % conversion after 15 minutes, in the CCEG12 system the reaction rate has

dropped by a tenth, reaching only 5 % conversion compared to the original 60 % (cf. Figures

3.3 and 3.10).

While this demonstrates the long-term stability of the enzyme in the reference solvent, the

results of the CCEG12 system are less conclusive. Although there is still a conversion in the

NADES, the initial reaction rate is much lower than in the original setup. The decreased

reaction rate could indicate the almost complete denaturation of the enzyme by the medium.

However, in this setup the reaction is started by adding the substrate to the system, so the

results are not directly comparable to the original reaction setup, where the enzyme addition

started the reaction. This can also be interpreted as the higher viscosity of the media and

the resulting slower dissolution of the substrate causing the lower reaction rate, even with

partial inactivation of the enzyme. In connection with the solubility experiments, this would

also indicate that the reaction takes place mainly in the NADES phase. Nevertheless, the

present experimental setup is not �t to di�erentiate the weight of the di�erent e�ects in
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Figure 3.8: Ratio of butyl laurate to total product, showing the side product reactions in

di�erent solvents systems. All measurements are averaged over the �rst 120 minutes of the

reaction. The error bars show the standard error of the repeated measurements.

the �nal measurable conversion rate.

3.7 Discussion

We found that the conversion over time varied to a large extent between the di�erent

NADES (see Figure 3.3, 3.4 and 3.5). With the exception of CCUR12, we measured

higher initial enzyme activities in NADES than in n-hexane (see Figure 3.6). All reactions

reached a plateau after two hours, which can be related to the combined e�ect of substrate

depletion, enzyme inactivation and mass transfer limitation. The reactions show additional

conversion in the 2-24 hour period (see Figure 3.7), indicating that the enzyme retains

part of its activity in NADES after these two hours. Based on previous experimental and

computational �ndings [113, 111], the retained stability of the enzyme in NADES can be

expected. In all NADES except CCUR12, the �nal conversion is greater than 70% after 24

hours. In the case of CCGLY systems, it is over 95%. This indicates that certain NADES

are ideal candidates for the enzymatic reactions studied. The high conversions in eutectic

NADES are in agreement with the previous results of Gorke et al. [109] and Durand et

al. [113]. However, the suitability of non-eutectic compositions has not been previously

reported. Changing the molar ratio has only a small e�ect on the initial rate and the �nal

conversion of the reaction, providing another factor to tune the properties of the solvent

without hindering the reaction. The comparison of NADES viscosities and conversion over

time (cf. Figure 3.2 and 3.6) shows that the viscosities vary over a wide range, but they

show no correlation with the observed reaction rates. This suggests that the high viscosities

of NADES and potential mass transfer limitations have less of a role in the conversion rates

than originally thought and previously discussed in the literature. Additional analysis revealed

a signi�cant side reaction in the CCEG systems, resulting in 2-hydroxyethyl laurate as side

product. Solubility tests in the CCEG12 system showed that the reaction is fast in the

NADES media, but were inconclusive as to where the reaction is more likely to occur when

a separate vinyl laurate phase is present. Incubation of the enzyme in the solvent prior to the

reaction showed that the initial reaction rate remained essentially unchanged in n-hexane,
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Figure 3.9: Conversion over time in saturated vs. oversaturated CCEG12 solvent systems.

The error bars show the standard error of the three repeated measurements. The dashed

curves are a visual guide to the progress of the reaction.

but it showed a large decrease in the case of CCEG12. However, these results could indicate

both the inactivation of the enzyme in NADES and the importance of the solvation of the

substrate in NADES prior to the e�ective reaction. Separation of the latter two will require

a new experimental setup.

Our initial hypothesis was that the e�ect of NADES on the enzymatic reaction could be

described by the solubility of the reactants, the viscosity of the NADES, and the activity of

the enzyme in the given system. Based on the conversion over time (see Figure 3.3, 3.4

and 3.5), the di�erent viscosities of the NADES have no clear e�ect on the reaction rate in

the early phase of the reaction. Since the initial phase show no correlation with the NADES

viscosity; the conversion reached a plateau relatively quickly after the initial phase; and we

used the vinyl laurate in excess of its solubility limit; our �rst theory was that the reaction

rate is governed by the reaction of the undissolved substrate, which forms a separate phase

and is more accessible to the enzyme than the substrate dissolved in a viscous medium. The

second, slower stage of the reaction begins when the separate, more reactive vinyl laurate

phase is depleted. This stage would be governed by the mass transfer limitation of the

substrate and the continuously decreasing enzyme activity.

However, this theory was disproved by the solubility experiments. In the saturated CCEG12

media, almost full conversion was reached after 5 minutes of reaction, which is a comparable

reaction rate to thee original, supersaturated setup (see Figure 3.9). This proves that the

more viscous media does not limit the reaction rate. However, this experiment does not

reveal whether the reaction via the NADES media is more favorable than the direct reaction

in the pure vinyl laurate phase. Since more substrate was reacted in the supersaturated

setup than was present in the saturated CCEG12 sample, either the reaction occurred in

parallel in the pure vinyl laurate and the NADES or the NADES was replenished by the

dissolution of substrate from the pure vinyl laurate. In addition, the ratio of the dissolved to

undissolved vinyl laurate does not match the position of the plateau in the conversion over
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Figure 3.10: E�ect of enzyme incubation in n-hexane and CCEG12 on initial rate enzyme

activity. The error bars show the standard error of the three repeated measurements.

time. In both cases, the reaction was faster than in the n-hexane reference, emphasizing the

positive e�ect of NADES on the reaction and the lack of hindering e�ect of viscosity. Where

this additional rate comes from is currently unclear. Since the computational studies did

not reveal any structural changes in the enzyme itself that would indicate increased activity

[112], the most reasonable assumption is that a solvation layer is formed around the enzyme

by the NADES or that the interaction energies between the NADES and the substrate make

the catalytic reaction more favorable than in the conventional organic solvent.

The other potential reason for the slowing of the reaction is the continuously decreasing

activity of the enzyme. Again, the 24 hour measurements still showed a signi�cant conversion

in the 2-24 hour range. To gain more insight, we incubated the enzyme for 24 hours at 60 �C

in n-hexane and CCEG12 and then ran the reaction with the original amount of substrate.

However, due to the prior incubation, the reaction setup was changed. While originally,

the reaction was started by adding the enzyme to the equilibrated solvent-substrate system,

here the reaction was started by adding the substrate to the incubated enzyme. In both

cases, the co-substrate alcohol was added to the solvent prior to the reaction. In the case

of n-hexane, due to the good solubility of the substrate and the low viscosity of the organic

solvent, this did not make much di�erence, and accordingly we measured similar results to

the original setup, indicating very similar enzyme activities after 24 hours, compared to the

original setup. In the case of the CCEG12, the high viscosity and the limited solubility could

also hinder the reaction, so the severely hindered reaction rate could not be clearly linked

to the enzyme inactivation. Moreover, the almost complete denaturation would contradict

to previous experimental results. It is more likely, that we experienced here the combined

e�ect of enzyme denaturation, limited solubility of the substrate and limited access to the

enzyme due to the high viscosity. However, at this time we do not have conclusive evidence

of either enzyme inactivation or reaction limitation due to dissolution. Further investigation

of these e�ects will require a revised experimental setup.

The signi�cance of the side reaction is identi�ed. Of the NADES tested, the CCEG systems
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show signi�cant side reactions with the HBD compound forming a side product with the

substrate (see Figure 3.8). This is probably related to the interaction energies between the

NADES compounds, as the increasing HBD ratio (less bound ethylene glycol molecules)

results in a higher amount of side product.

Our results show that the e�ects included in the original hypothesis (solvation, viscosity,

enzyme stability and side reactions) can describe the e�ect of NADES on the biocatalytic

reaction. However, the original weights of the elements are di�erent. There are three

competing phenomena in the system that change the conversion rate over time: the original

activity of the enzyme in the given reaction and solvent, the transport rate of the substrate,

and the denaturation of the enzyme. Our results indicate that in this transesteri�cation

reaction and with the tested NADES, the limiting factor is not the viscosity induced mass

transfer limitation, but the solubility of the substrate. At the same time, the initial reaction

rates indicate a much higher apparent a�nity of the enzyme in NADES than in n-hexane.

The interaction to which this is related requires further investigation. The enzyme itself is

shown to be stable in each system, in agreement with previous simulations [68, 111, 110]

and experimental results [109, 113, 41]. However, with the applied experimental setup, we

could not prove the long-term stability of the enzyme in NADES. However, the formation of

the side product is an issue in certain systems. Interestingly, an earlier report on the same

reaction did not mention similar side reactions at lower concentrations [113].

The distinction of the solvation/enzyme activity e�ects requires further investigation in

the future, especially since previous computational studies have found a signi�cant role of

medium-substrate interactions in the outcome of the reaction [116, 62]. From a practical

point of view, solubility should be the primary consideration in application development. In

our reaction, the bottleneck is getting the substrate into the solvent and to the enzyme, not

the reaction itself. In light of these �ndings, fed-batch systems, for example, would not be

optimal. A two-step process could also be considered: �rst solubilization of the substrate,

then the reaction. Further studies are needed to better understand the role of solvation.

Here, molecular dynamics simulations of solvation free energies could give a better insight

[117], especially regarding the role of hydrogen bonding [118].

3.8 Conclusions

In this work, we discuss the performance of NADES as a solvent for biocatalysis based on

the solubility of the substrate, the viscosity of the media and the activity of the enzyme.

For this purpose, we studied the transesteri�cation reaction of vinyl laurate with 1-butanol

by the immobilized lipase enzyme Candida antarctica B in di�erent oversaturated NADES

media. The NADES consisted of choline chloride with either urea, ethylene glycol or glycerol;

in eutectic composition and with increased HBD ratio. We experimentally followed the

conversion over time using gas chromatography and UV spectrometry. From these data,

we determined the initial reaction rate and the �nal conversion achieved after 24 hours. In

addition, we compared the reaction rate in saturated and oversaturated solutions and the

e�ect of 24 hours of enzyme incubation in selected solvents.

With the exception of the urea-based system, good conversions were measured in the NADES
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systems. The initial reaction rate and �nal conversion were comparable and in many cases

higher than in n-hexane, which was used as a reference solvent. However, in CCEG systems

the reaction reached a plateau before full conversion was achieved. Our results showed no

correlation between the viscosity and the reaction rate, indicating that viscosity has little

e�ect on the reaction and that mass transfer limitation is not an issue. In addition, our

results indicate that NADES with increased HBD ratio are also suitable media for enzymatic

reactions. Side reactions were observed in the ethylene glycol based systems, with an in-

creasing amount at higher hydrogen bond donor ratios. The reaction proceeded in the time

frame of 2-24 hours, indicating that the enzyme retains some of its activity over the long

term. The reactions in the saturated CCEG12 system indicate that the reaction proceeds

well in the NADES phase, but it is not clear whether the undissolved vinyl laurate also reacts

directly or the reaction proceeds exclusively via the NADES. Incubation of the enzyme in

NADES for 24 hours prior to the reaction showed that the enzyme retains almost all of its

activity in n-hexane. The results in CCEG12 were inconclusive, as the initial reaction rate

decreased to one tenth of the original setup. However, this could be the result of either the

almost complete inactivation of the enzyme or the limitation of the reaction due to the slow

dissolution of the substrate and high viscosity of NADES.

It is more likely that the plateau we experienced in the conversion of CCEG systems and the

slow reaction rate of the incubated enzyme in CCEG12 system are the combined e�ect of

enzyme denaturation, limited solubility of the substrate, and limited access to the enzyme due

to high viscosity. However, the experimental setup presented in this study is not suitable for

a more in-depth study and separation of the underlying phenomenon. Further investigation

of these e�ects is needed.

Our results suggest that the most important e�ect of NADES is related to substrate-media

interactions. Molecular dynamics simulations of the solvation energies of the solutes in

NADES are a promising research direction to describe these interactions.
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3.9 Linking results to hypotheses

In this chapter, I studied the proposed solubility-viscosity enzyme activity framework for

describing the e�ect of NADES on biocatalysis. The case study for this work was the

enzymatic transesteri�cation of vinyl laurate by 1-butanol and iCALB enzyme. To determine

the relationship between NADES properties and reaction performance, we measured the

viscosity of the media, the solubility of the substrate, and the conversion of the substrate

over time during the reaction. From the latter, we also determined the initial reaction rate

and the �nal conversion. The tested NADES with di�erent compounds and molar ratios are

all e�ective media for the reaction. This demonstrates that the molar ratio is an additional

variable to tune the properties of NADES. Although mass transfer limitation was expected to

be a problem with highly viscous NADES, the reaction rate did not show any correlation with

the viscosity of the media. On the other hand, the dissolution of the substrate in the NADES

seems to be the most important factor. The substrate dissolved in the NADES reacts rapidly

and then the reaction slows down as it is sustained only by the additional substrate dissolved

from the separate phase. The slow dissolution of the additional vinyl laurate is the critical

step and bottleneck of the reaction. The enzyme retains some of its activity for the 24

hours of the reaction, but due to the combined e�ects of solvation, viscosity, and changes in

enzyme structure, we have not been able to determine experimentally how much of its activity

is lost. In addition, side reactions are observed with certain NADES, and their magnitude

increases with increasing molar ratio of the HBD compound. This calls for caution when

using non-eutectic compositions, as the hydrogen bond network responsible for the inertness

of certain compounds is weaker in these.

In this chapter I investigated the hypotheses that the e�ect of NADES can be described by

the speci�c interactions between NADES-substrate, NADES-NADES and NADES-enzyme;

and that the e�ect of NADES on enzymatic reactions can be related to substrate solubil-

ity/solvation, media viscosity and changes in enzyme structure. The results presented here

partially support these hypotheses. While viscosity shows no clear relationship to reaction

rate, solubility plays the major role in determining reaction rate. We could not determine

the role of enzyme activity, as it cannot be separately determined in the experiments.

In this study, the experimental design was not suitable for separately examining the di�erent

e�ects of NADES on activity. In the future, a better designed experimental setup would be

necessary. Alternatively, as discussed in the next chapter, molecular modeling can describe

the direct NADES-enzyme interactions, which also helps to interpret the results seen here.

It is now clear that solubility plays the major role in the e�ect of NADES on the reaction. In

the future, NADES with a wider range of polarity should be used to gain more insight into

this aspect. The role of viscosity seems to be less than we expected, since viscosity did not

show any correlation with the reaction rate. It is possible that mass transfer limitation will

not be a problem in practical applications, but this needs to be tested on a wider range of

reactions.
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"Seed is sown, I'm chippin' in

Roll the bones, I'm chippin' in

Embed the code, I'm chippin' in

Mayhem 
ows"

Samurai

4.1 Preface

In the previous chapter, I concluded that it is di�cult to study the e�ect of NADES on the

structure of the enzyme separately. However, understanding this e�ect is important because

potential interactions between the NADES and the enzyme may determine the stability of

the enzyme in the media. In addition, these interactions may also induce changes in the

active sites, which may lead to increased activity of the enzyme.

In this chapter, I further test the hypothesis that the e�ects of NADES on enzymatic

reactions can be related to substrate solubility/solvation, media viscosity, and changes in

enzyme structure, focusing on the role of direct enzyme-NADES interaction. In addition,

I begin to test my third hypothesis, namely that the relevant properties can be predicted

by a multiscale model involving the combination of molecular, macroscale, and data-driven

modeling approaches. Obviously, I focus here on the possibility of implementing molecular

dynamics simulation in the proposed multi-scale model to predict the e�ect of NADES on

the enzyme.

In this chapter I discuss the results of the molecular dynamics simulation of a single Candida

antarctica lipase B enzyme in NADES with di�erent compounds and molar compositions.

The computational cost of this method is high, so I limit the simulation to the initial phase,

the �rst 200 ns of the system. I monitor how the overall stability of the enzyme changes in the

di�erent media, together with the potential stabilizing e�ect of the NADES compounds in

the form of strong secondary interactions with the surface residues of the enzyme. Finally,

61
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I look for structural changes in the active site of the enzyme and whether the NADES

compounds di�use into the enzyme structure and form hydrogen bonds with the residues

there.

The content of this chapter is also published in the Journal of Molecular Liquids with the title

"E�ect of natural deep eutectic solvents of non-eutectic compositions on enzyme stability"

[112]. Co-authors of this paper are Maksudbek Yusupov, Iris Cornet, Pieter Billen and Erik

C. Neyts. Maksudbek Yusupov contributed to the development of the methodology, the

formal analysis of the results, and the writing of the original draft. Iris Cornet, Pieter Billen,

and Erik C. Neyts contributed to project supervision and review and editing during the writing

process. In addition, Pieter Billen obtained �nancial support for the project.
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4.2 Abstract

Natural deep eutectic solvents (NADES) represent a green alternative to common organic

solvents in the biochemical industry due to their benign behavior and tailorable properties,

in particular as media for enzymatic reactions. However, to fully exploit their potential in

enzymatic reactions, there is a need for a more fundamental understanding of how these

neoteric solvents in
uence the course of these reactions. Thus, the aim of this study is to

investigate the in
uence of NADES with various molar compositions on the stability and

structure of enzymes, applying molecular dynamics simulations. This can help to better

understand the e�ect of individual compounds of NADES, in addition to eutectic mixtures.

More speci�cally, we simulate the behavior of Candida antarctica lipase B (CALB) enzyme in

NADES composed of choline chloride with either urea, ethylene glycol or glycerol. Hereto,

we monitor the NADES microstructure, the general stability of the enzyme and changes in

the structure of its active sites and surface residues. Our simulations show that none of the

studied NADES systems signi�cantly disrupt the microstructure of the solvent or the stability

of the CALB enzyme within the time scales of the simulations. The enzyme preserves its

initial structure, size and intra-chain hydrogen bonds in all investigated compositions and, for

the �rst time reported, also in NADES with increased hydrogen bond donating compound

ratios. As the main novelty, our results indicate that, in addition to the composition, the

molar ratio can be an additional variable to �ne-tune the physicochemical properties of

NADES without altering the enzyme characteristics. These �ndings could facilitate the

development and application of task-tailored NADES media for biocatalytic processes.

4.3 Introduction

Deep eutectic solvents (DES) were described �rst by Abbot et al. in 2001 [45]. DES are

mostly ionic solvents, composed of Lewis and Br�nsted acids and bases [1]. The strong in-

teraction between the compounds forms a eutectic mixture with a signi�cantly lower melting

point than each constituting compound individually. In many cases the melting point is near

or even below room temperature, which makes their application as solvent possible.

Natural deep eutectic solvents (NADES) are a subgroup of DES, composed of naturally

derived (or derivable) compounds. However, there is no clear consensus on the de�nition

of NADES. Generally, they are mixtures of two or more naturally derived organic com-

pounds, that form a eutectic mixture through strong secondary interactions between the

actors. These interactions form an intermolecular hydrogen bonding network, accompanied

by charge delocalization in the system. These two processes stabilize the liquid state of

the mixture at lower temperatures, resulting in a decreased melting point [1]. Typically,

NADES are formed between quaternary ammonium salts (e.g., choline chloride) and hydro-

gen bond donating (or hydrogen bond donor (HBD)) compounds, like urea, polyols or organic

acids [5]. NADES were �rst reported in 2011, as a subgroup of regular DES, containing

metabolic products [13]. They are nonvolatile, non
ammable, biodegradable and less toxic

than conventional organic solvents. Compared to ionic liquids, NADES are less sensitive

to impurities, cheaper to manufacture and less toxic to the environment. NADES are con-

sidered as designer solvents: their behavior (e.g., melting point, viscosity, interaction with
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substrates) can vary in a wide range based on their composition. These bene�cial properties

make NADES good candidates as green reaction media in many applications. Despite their

novelty, NADES have already found applications in electrochemical processes, extractions,

biomass pretreatment and as organic synthesis media [5].

NADES provide biocompatibility, biodegradation with limited or no toxicity, which is often

required in biocatalytic processes. Thus, biocatalysis is one of the potential applications of

NADES, e.g., in cosmetics, food, feed and pharmaceuticals [14]. E�orts were already made

to test the applicability of NADES in biocatalysis: the �rst enzymatic reaction was described

by Gorke et al. [109] and a comprehensive review of the advances in this �eld was made

by Xu et al. in 2017 [41]. These investigations showed that NADES have a large e�ect

on the reaction rate and �nal conversion. For example, in the work of Gorke et al. [109],

in the aminolysis of ethyl valerate by immobilized Candida antarctica lipase B (iCALB),

the mixture of choline chloride-urea and choline chloride-glycerol outperformed ionic liquids

regarding the �nal conversion rate and showed similar initial reaction rate as in toluene.

Meanwhile, the reaction in the mixtures of choline chloride and acetamide yielded only one

third of the conversion as compared to that in toluene [109]. Di�erences in conversion rates

and initial reaction rates were also found in the case of vinyl laurate transesteri�cation using

iCALB [113], which is studied in our research as well.

These di�erences can be related to multiple phenomena, which are associated with the

strong secondary interactions in NADES. Firstly, such interactions play a role in the stability

of the enzyme. The intermolecular network prevents the di�usion of the denaturing NADES

compounds (like urea) inside the enzyme structure, which in turn leaves the intramolecu-

lar interactions of the protein intact and the enzyme active [68]. At the same time, the

solvent constituents bind on the enzyme surface with strong secondary interactions, provid-

ing additional stability to the enzyme's structure at elevated temperatures and during long

reactions [109]. For example, the half life of horseradish peroxidase increased to 350 min-

utes in choline chloride-urea mixture compared to 50 minutes in phosphate bu�er solution

[70]. Secondly, the NADES can also form strong interactions with the substrates, which

can a�ect the activation energy and the equilibrium of the reaction. Thirdly, the strong

interaction between the NADES compounds results in a high viscosity, which is typical for

NADES and may lower mass transfer. These e�ects can explain the di�erences observed in

biocatalytic reactions. However, the contribution of each e�ect to the �nal performance of

the enzymatic reactions is still unclear. To e�ectively design novel NADES and to �nd the

best solvent system for a given enzymatic application, this relation has to be understood.

Many studies related to this challenge have been published. These often include the use of

computational methods to describe the interactions and other properties of NADES [11].

In this respect, molecular dynamics (MD) simulation is a commonly used method [77, 76,

79, 74]. Classical MD simulations provide information about the structural characteristics of

NADES, such as the spatial distribution of speci�c groups or hydrogen bonding in the system,

but also about physicochemical properties like density and viscosity. For instance, Sun et al.

investigated the structural characteristics of choline chloride and urea-based NADES [77].

They determined the relationship between the molar composition and interaction energies,

but also revealed an extensive ordered structure among the compounds. Das et al. studied

the relaxation dynamics, spatial and dynamic heterogeneity of certain NADES systems [79].

Ullah et al. simulated the changes in the hydrogen bonding network upon the absorption of
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carbon dioxide [74]. The advantage of the MD method in the study of biocatalytic systems

is that it can handle relatively large systems compared to other computational chemistry

methods, like density functional theory [68, 110, 111]. This enables the investigation of

solvent-enzyme interactions by MD, which plays a central role in activity of the enzyme and

�nal conversion of the reaction. Yet, the literature on this subject (i.e., solvent-enzyme

interactions) is still very limited. The �rst study on this was conducted by Monhemi et

al. [68], where they investigated the di�usion of the NADES compound molecules into a

lipase enzyme structure and the interactions between the eutectic media and the di�erent

sites of the enzyme. Nian et al. studied which mechanism keeps the enzyme activated in

NADES [110]. They found that the medium has no e�ect on the binding pockets, but it is

possible that NADES increase the nucleophilic properties of the substrate, which promotes

the reaction [110]. Shehata et al. studied the e�ect of an increasing water content in

NADES on solvated thermoalkalophilic lipases and found that the mobility of the enzyme

residues increase together with the hydration level of NADES [111].

To achieve reliable results, MD simulations require accurate force �elds, which can be hard to

acquire for NADES [75, 76]. This is due to the novelty of the systems and the unusual, strong

secondary interaction between the compounds, as well as the required level of accuracy.

Garcia et al. found that di�erent charge assignment methods signi�cantly a�ect the accuracy

of the simulation [75]. Consequently, an optimization step before the application of an

existing force �eld is often necessary, including the proper validation of the modi�cations.

Doherty and Acevedo optimized the general OPLS-AA (Optimized Potentials for Liquid

Simulations - All Atom) force �eld for a set of choline chloride-based DES, which resulted in

good agreement with the experimental results of density, viscosity, heat capacity and surface

tension, but the calculated self-di�usivity coe�cient in the 298-328 K temperature range

yielded errors up to 31% [76].

Hitherto, numerous studies investigated the e�ect of NADES on biocatalysis employing both

experimental work and computer simulations. Still, our understanding is fragmented on how

NADES a�ect the enzyme's structure, stability and activity. In addition, when the design of

NADES is discussed, the emphasis is always on the use of di�erent compounds in eutectic

ratio. Deviation from the eutectic molar ratio, however, would be an equally important

aspect to study for two reasons. Firstly, considering the temperature of a given application,

there is a range of molar compositions in which the NADES remain liquid and hence a usable

medium. Consequently, the molar composition could be an additional parameter to �ne-tune

NADES properties, similar to the water content that is a more thoroughly discussed topic

[64, 61]. Secondly, by studying NADES with various molar ratios, we could acquire better

understanding of the e�ect of individual compounds on the mixture and additionally on the

enzyme itself. So far, research on NADES behavior in relation to composition only covered

the water content of the mixture [119, 120, 121, 122].

Thus, in this study we investigate how the stability of the enzyme changes in NADES con-

sisting of non-eutectic compositions and whether these solvent systems are applicable media

for biocatalysis. Based on the available knowledge, we expect that the enzyme remains sta-

ble in eutectic and close-to-eutectic NADES. However, when increasing the HBD compound

ratio, more intense interactions between the enzyme and solvent compounds are expected,

which eventually leads to the disruption of the enzyme structure and the loss of its stability.

In our study, we simulate CALB enzyme in NADES with eutectic compositions and increased



66

CHAPTER 4. EFFECT OF NADES WITH NON-EUTECTIC COMPOSITION ON

ENZYME STABILITY

HBD compound ratio to investigate this e�ect. As reference systems, we also perform addi-

tional simulations with water, n-hexane (as benchmark solvents where the enzyme remains

stable) and a concentrated aqueous urea solution to model the e�ect of a HBD compound

without the hydrogen bond donating network of NADES. We monitor the microstructure

of the NADES, the general stability of the enzyme and the changes in the structure of its

active sites and surface residues.

4.4 Simulation details

We performed MD simulations using model systems consisting of the CALB enzyme em-

bedded in NADES compositions. Speci�cally, we used three NADES structures that contain

either urea, ethylene glycol or glycerol as HBD compounds and choline chloride as the qua-

ternary ammonium salt (i.e., eutectic salt). Moreover, each NADES composition contained

the eutectic salt and HBD compound in ratios of 1:2, 1:3 and 1:4. Thus, we employed

nine model structures for CALB+NADES systems. We also simulated the reference solvent

structures as benchmark systems. Our reference solvents were water, n-hexane (as experi-

mentally applied solvents for lipase enzymes) and a 8 M concentrated aqueous solution of

urea as a model of free HBD compound (without the e�ect of the intermolecular hydro-

gen bonding network of NADES). For the simulations, we have chosen 333 K temperature.

Firstly, because the studied CALB enzyme is applied at this temperature in practice and we

are interested in the behavior of the NADES and the enzyme at this temperature. Secondly,

at elevated temperature, the equilibration of the model system is faster and thus the com-

putational costs are decreased, without inducing fundamental changes in the structure of

NADES or the enzyme. Every model system was simulated twice (including the benchmark

systems) with di�erent initial velocities of the molecules to check the consistency of the

results. The simulated model systems are summarized in Figure 4.1.

MD simulations and analyses were carried out in GROMACS (v2018.01) [123, 124, 125].

The initial model systems were created using PACKMOL [126]. Visualizations were made

in Visual Molecular Dynamics (VMD) [127]. The structure of the simulated enzyme CALB

was taken from the Protein Data Bank (PDB ID: 1TCA [128, 129]). For the enzyme, n-

hexane and aqueous urea systems, the OPLS-AA force �eld with Simple Point Charge water

model (SPC) was used [130]. The topology of urea was taken from [131]. The force �eld

parameters of n-hexane and urea were generated by LigParGen, a web-based application,

which provides OPLS-AA force �eld parameters for organic molecules [132]. For the NADES

compounds, the modi�ed OPLS-AA force �eld by Doherty and Acevedo was used [76].

The CALB+NADES systems were prepared in the following way: The CALB enzyme was

placed in a cubic box with dimensions 10Ö10Ö10 nm3 and periodic boundary conditions.

Subsequently, the box was �lled with 1500 solvent molecules (e.g., CCUR12 that contain

500 choline cations, 500 chloride anions and 1000 urea molecules) surrounding the enzyme.

The systems were then energy minimized for maximum 105 steps applying the steepest

descent algorithm. Subsequently, the equilibration of model systems was carried out in two

steps: 2 ns simulation was performed �rst applying the NVT ensemble (number of molecules,

volume and temperature are constant during the simulation), followed by 10 ns simulation

in the NPT ensemble (number of molecules, pressure and temperature are constant). The
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Figure 4.1: Simulated solvent systems and simulation setup. Here, the applied abbreviations

of NADES systems used throughout the article are summarized as well: �rst the composition

(choline chloride (CC), urea (UR), ethylene glycol (EG), glycerol (GLY)) and then the molar

ratio of the compounds (ration of quaternary ammonium salt to HBD 1 to 2 (12), 1 to 3

(13) or 1 to 4 (14)).

production run was then performed for 200 ns employing the NPT ensemble again. The

simulations were carried out at 333 K and 1 bar, applying the thermostat of Bussi et al.

[133] with a coupling constant of 0.1 ps and isotropic Parinello-Rahman barostat [134] with

a compressibility and coupling constant of 4:5 �10�5 bar�1 and 2.0 ps, respectively. During

the equilibration the time step of 2 fs was used, whereas during the production run the

time step was set to 1 fs. Note that this decrease in time step was necessary to prevent

unacceptably large forces that would result in a failure of the integrator. A 1.6 nm cuto�

was used for the electrostatic and Van der Waals interactions. The long range electrostatics

were treated by Particle-Mesh Ewald summation [135]. To prevent the deformation of the

enzyme residues before the production run (i.e., during the equilibration), restraints were

applied with a force constant of 103 kJ/mol � nm2 on the residues.

Since the optimized OPLS-AA force �eld was developed for eutectic NADES, we validated its

use for non-eutectic compositions by performing additional simulations of NADES without

the enzyme and compared the calculated density values with experimental results. The

same simulation approach as mentioned above was used here, the only di�erence was the

length of the runs: the NVT, NPT equilibration and production run were 1, 10 and 50

ns, respectively. As the model systems did not contain enzyme in these cases, a shorter

simulation was su�cient to reach equilibrium, thus we used the same simulation time as

Doherty and Acevedo [76].

To analyze the changes in the NADES microstructure and in the enzyme's overall stability, we



68

CHAPTER 4. EFFECT OF NADES WITH NON-EUTECTIC COMPOSITION ON

ENZYME STABILITY

calculated the radial distribution functions (RDFs) between certain atoms and compounds,

the root mean square deviation (RMSD) of the C� atoms of the enzyme, the radius of

gyration of the enzyme (Rg), the root mean square 
uctuation (RMSF) values of the enzyme

residues and the intra-main chain hydrogen bonds in the enzyme [136]. To investigate the

stability of the catalytic triad residues of the enzyme (i.e., serine 105 (SER105), aspartate

187 (ASP187) and histidine 224 (HIS224), see below) and the structural changes of speci�c

sites, we calculated pairwise distances between the atoms of the active site residues, the

solvent accessible surface area (SASA), the ratio of secondary structures in the enzyme, the

pairwise distance of residues in certain alpha-helices and the RDF of NADES compounds

and certain surface residues. As most of the calculated values have high deviations, we

always display 10 ns moving averages on our graphs to keep the changes observable.

The RDF is a measure of the probability of �nding a particle at a distance of r away from a

given reference particle, relative to that for an ideal gas.) RDF is de�ned by Equation 4.1:

gAB(r) =
h�B(r)i
h�Bilocal

=
1
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NA

NA

∑
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where h�B(r)i the particle density of type B at a distance r around particles A, and h�Bilocal
the particle density of type B averaged over all spheres around particle A with radius rmax .

The RMSD is the deviation of certain atomic positions in the protein compared to a reference

structure by least square �tting. RMSD is calculated from Equation 4.2:

RMSD(t1; t2) =

[
1

M

N

∑
i=1

mi

∥∥∥∥ri(t1)� ri(t2)

∥∥∥∥2]1=2 (4.2)

where M = ∑
1

n=1mi and ri(t1) is the position of atom i at time t [136].

This gives a measure of similarity between protein structures and quanti�es the possible

unfolding of the protein in time. A steady increase of the RMSD values indicates the dis-

ruption of the original structure. It thus gives information about the (possible) denaturation

of the protein and its mechanism. We calculated the RMSD values of the C� atoms of the

enzyme by utilizing the gmx rms tool of GROMACS [136]. Rg describes the dimensions of

the folded protein. Rg is calculated from Equation 4.3:

Rg =

(
∑i

∥∥ri∥∥2mi

∑imi

) 1

2

(4.3)

where mi is the mass of atom i and ri the position of atom i with respect to the center of

the molecule [136].

An increase in Rg indicates the unfolding of the enzyme and, by that, its denaturation. We

used the gmx gyrate tool of GROMACS to calculate the Rg values in our simulations [136].

RMSF is the average deviation of particle positions over time (with respect to the initial

reference position). RMSF is calculated from Equation 4.4:

RMSF =
1

N

N

∑
i=1

∣∣∣∣x(i)(t)�x(i)(0)

∣∣∣∣2 (4.4)
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where N is the number of particles to be averaged, vector x(i)(0) = x(i)0 is the reference

position on the i-th particle and vector x(i)(t) is the position of the i-th particle at time t

[137].

In our simulation, the calculation was done on the C� atoms of each residue and the reference

point was the initial position of the simulation. RMSF is an indicator of macromolecular


exibility. We used the gmx rmsf tool of GROMACS to identify the 
exible regions of the

enzyme in our simulations [136]. We considered a geometric criterion to identify hydrogen

bonds between the residues, viz. a distance between acceptor and donor smaller than 3.5
�A and the angle between hydrogen-donor and donor-acceptor smaller than 30� [123]. We

calculated the pairwise distances by gmx distance to determine structural changes in the

catalytic triad residues and between the residues of �-helices [136].

To identify possible changes in the structure of the surface residues of the enzyme, we

calculated the SASA as a function of time by gmx sasa tool of GROMACS [138]. To

investigate how the solvents a�ect the �-helices and �-sheets in the enzyme structure, we

used the DSSP program to calculate the changes in the secondary structure of the enzyme

over time [139, 140]. The DSSP program was run via the gmx do dssp tool of GROMACS.

4.5 Experimental details

Because experimental data are not available on non-eutectic compositions, we acquired these

as well. Thus, for the synthesis of NADES, we used choline chloride (Acros Organics, 99%),

ethylene glycol (Fischer Scienti�c, � 99%), glycerol (Fischer Scienti�c, � 99%) and urea

(Fischer Scienti�c, 99.5%). The mixtures were prepared by stirring (600 RPM) the samples

at 80 �C for at least 2 h until they became homogeneous. The water content of the NADES

was determined by Karl Fischer titration with a Mettler Toledo V30 Compact Volumetric

KF Titrator. The density measurements were performed on samples with water content

below 0.5 m%, with Quantachrome Ultrapyc 1200e Automatic Gas Pycnometer with a 10

cm3 sample cell with helium gas at 60 �C. The NADES samples were stored in a vacuum

desiccator with silica gel to prevent water uptake.

4.6 Results and discussion

4.6.1 Validation of the force �eld

Before the analysis of the simulation results, we checked the reliability of the applied force

�eld for the simulation of NADES systems used in this study. We compared our calculated

densities with our own experimental measurements and data from the literature. Table 4.1

summarizes the experimentally determined density values (measured by Yadav et al. [61]

and Leron et al. [141] and extended by our results) and simulation results (by Doherty and

Acevedo [76] and our results). Unfortunately, literature data were only available for eutectic

compositions for the temperature used in this study (i.e., 333 K).
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System

Results taken from literature Results of this study

Experiment [61, 141] Simulation [76] Experiment Simulation

Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.

CCUR12 1.177 0.000 1.129 NA 1.221 0.003 1.128 0.003

CCUR13 NA NA NA NA NA NA 1.135 0.003

CCUR14 NA NA NA NA NA NA 1.139 0.003

CCEG12 1.097 0.000 1.107 NA 1.140 0.008 1.082 0.003

CCEG13 NA NA NA NA 1.130 0.003 1.081 0.003

CCEG14 NA NA NA NA 1.129 0.008 1.081 0.003

CCGLY12 1.172 0.000 1.173 NA 1.221 0.003 1.172 0.003

CCGLY13 NA NA NA NA 1.228 0.004 1.188 0.003

CCGLY14 NA NA NA NA 1.240 0.005 1.198 0.003

Table 4.1: Densities [g/cm3] of NADES systems calculated from experiments and simula-

tions. The literature experimental density results are taken from the work of Yadav et al. for

CCUR12 [61] and Leron et al. for CCEG12 and CCGLY12 [141]. The literature simulation

results are from the work of Doherty and Acevedo [76]. Experimental results are missing for

CCUR13 and CCUR14 systems, because these were unstable at 60 �C.

The di�erences between our calculated and experimentally obtained densities (both ours and

literature) were below 5%. In comparison, the di�erence between the experimental values

and simulation results of Doherty and Acevedo were below 2%, whereas our measured

densities were higher than those found in literature by 4% in every case. This systematic

di�erence is believed to be related to the applied method. An error due to water uptake

is improbable as this would decrease the measured density. Nevertheless, when comparing

our experimental and simulation results, we observed similar trends. In case of CCEG, the

density decreased with increasing molar ratio of HBD, whereas it increased by increasing the

ratio of HBD in cases of CCUR and CCGLY (see Table 4.1). These �ndings are in line with

the work of Abbot et al., where they measured density as function of composition at room

temperature [56].

As density is a convoluted result of many factors, good agreement in densities alone does

not validate the force �eld. Because the development and full validation of the force �eld

are out of the scope of this research, we consider the density check su�cient at this point.

Based on the good agreement between the measured and simulated densities, we consider

the applied force �eld appropriate to simulate the non-eutectic NADES of our interest.

However, thorough validation in future work would include the comparison of viscosity, heat

capacity, enthalpy of vaporization and self-di�usivity coe�cients in addition to densities.

These properties, at this point, were only calculated for the eutectic compositions [76]. On

the other hand, the feasibility of force �eld re�ning was proven by Spittle et al., who recently

�tted and validated the AMBER force �eld for CCGLY systems with various molar ratios

[142]. Similarly, Zhang et al. reported on the re�nement of the GAFF force �eld for the

simulation of CCEG system with di�erent molar compositions [143].

In Table 4.1, measurements are missing on non-eutectic CCUR (namely CCUR13 and

CCUR14) samples, as these systems were already unstable upon preparation. This high-

lights the limitation of this approach: the simulation does not provide information about

the stability of the NADES system itself. This �nding emphasizes the necessity of thorough
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validation of simulation results.

4.6.2 Microstructure of NADES

To understand how changes in molar composition a�ect the biocatalysis, the �rst thing to

consider are the changes in the microstructure of NADES. Disruption of the interactions in

the solvent system can also lead to a change in the behavior of the solutes.

Thus, we �rst compared the center-of-mass (COM) radial distribution functions (RDF) of

the di�erent NADES systems. Figure 4.2a depicts the COM-RDF of the CCEG12 system.

There are strong and narrow peaks between the choline and chloride and between chloride

and ethylene glycol (HBD). In contrast, the peaks corresponding to interactions between

the same compounds with each other are wider and less intense. The interactions between

choline and ethylene glycol are similar in strength and width to the interactions between the

same compounds with each other. The weakest interaction is between chloride anions. The

obtained results indicate that the original structure of the pure compounds is largely lost.

Instead, in the NADES the two compounds (choline & ethylene glycol) interact through

the chloride anion and this interaction is highly stable (the distribution of their distance is

narrow, see Figure 4.2a). Meanwhile, choline and HBD (ethylene glycol) molecules interact

with themselves and each other in a more widely distributed way.

To evaluate the e�ect of the molar ratio on the NADES microstructure, we compared the

distance and intensity of interactions again by their RDFs. Figure 4.2b and 4.2c shows the

COM-RDF peaks of CCEG system in di�erent molar ratios (i.e., CCEG13 and CCEG14).

The position of the peaks did not change signi�cantly with the molar ratio. However, the

intensity of the peaks slightly changed with the composition (cf. Figure 4.2, a, b and

c). With increasing HBD ratio the interaction between choline-choline, choline-chloride and

chloride-chloride decreased, while every interaction involving HBD slightly increased. This

is reasonable: by increasing the concentration of HBD compound, all other constituents

interact more likely with it. The fact that the distances remained the same, but only the

intensity changed, indicates that the nature of interactions in NADES does not change

intrinsically in the studied composition range. The only change in the RDFs shape with

the molar ratio was the chloride-chloride interaction. The double peak in the chloride-

chloride RDF is related to their complex interaction with the choline and ethylene glycol

molecules. The choline-chloride RDF already has two distinctive peaks and chloride anions

simultaneously interact with the HBD and choline compounds. Shifting the molar ratio

results in a more dominant interaction with the HBD compounds, which relates to the more

distant peaks between the anions. Additionally, the decreased relative concentration of the

ionic compounds can also contribute to the slightly longer average distances. These results

are in line with earlier �ndings of Ferreira et al. [119] and Kaur et al. [121] on the e�ect

of water on NADES: a NADES can retain its structure even in mixtures with high water

content (up to 35%). It is reasonable that moderate changes in molar composition cause

less disruption in the NADES' microstructure than the formation of a ternary system with

water.

The other two compositions (i.e., CCUR12 and CCGLY12) gave similar results (Figure A.4,

A.5): the strongest interactions were formed between choline-chloride and HBD-chloride.
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Figure 4.2: Center-of-mass radial distribution function of (a) CCEG12, (b) CCEG13 and

(c) CCEG14 systems.
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This is followed by the wider peaks of choline-choline, HBD-HBD and HBD-choline inter-

actions. The only unexpected result is that in the intensity of the glycerol systems the

HBD-chloride peak remained relatively small and appeared at longer distance (Figure A.5a).

The possible causes could be the larger molecular volume of glycerol and its three hydroxyl

groups. Due to its larger volume, the neighboring molecules are located farther. This and

the three positions for hydrogen bonding result in a more 
exible interaction and wider dis-

tribution. Our �ndings are in line with the results of Monhemi et al. [68] and Nian et al.

[110], who found similar distributions in choline chloride-urea and choline chloride-glycerol

NADES. Thus, the results of the RDF showed that increasing the molar ratio of the HBD

compound leads to a stronger interaction of all other constituents with it and weaker inter-

action among the HBD molecules. However, the nature of the interaction does not change

fundamentally with the increase of HBD compound (cf. Figure 4.2 and A.5). As the CCUR

systems with increased HBD compound ratios were not stable in experimental work, they

will not be discussed.

To study the possible changes in the nature of the interactions between the constituents, we

calculated the atom-atom RDF of choline and HBD compounds relative to chloride anions.

Figure 4.3 shows the atom-atom RDF of the choline chloride-ethylene glycol 1:2 system.

The RDFs with lowest distances in the RDF plots of the two constituents are the hydroxyl

group of the choline and the two hydroxyl groups of the ethylene glycol. This indicates that

the compounds interact with the chloride anion through these functional groups. The nature

of the interacting groups and the length of the interactions indicate that the compounds

form hydrogen bonds. The observations are similar in the other two NADES systems: The

urea interacts with chloride through the hydrogens of the amine groups (see Figure A.6),

meanwhile, the glycerol interacts through all three of its hydroxyl groups (see Figure A.8a

and A.8d). The similar intensity of the interaction of the three hydroxyl groups of glycerol

is also in line with the wider distribution of its COM-RDF. These results indicate that all of

the examined NADES form strong hydrogen bonding interactions between the constituents

as the primary mode of interaction. These �ndings are in agreement with earlier results of

Monhemi et al. [68] and Shehata et al. [111] who described similar interactions between

urea and choline. In addition, we studied the direct interactions between the choline cation

and the HBD compound by calculating the atom-atom RDF between the hydroxyl group of

the choline and the HBD functional groups of the HDB compounds (see Figure A.9). The

results show peaks in the distance range of hydrogen bonding interaction in case of CCUR

(Figure A.9a) and CCEG (Figure A.9b, A.9c and A.9d) systems. However, these peaks are

smaller and at slightly longer distances than the RDF of the chloride anion. In the CCGLY

systems, ((Figure A.9e, A.9f and A.9g)) no distinctive peak was observed. Furthermore, the

intensity and location of the peaks do not show a relation to the molar ratio of the NADES.

These results indicate that the primary interaction occurs via the anion.

The e�ect of molar composition was similar to the COM-RDF results: the molar ratio did

not a�ect the position of peaks in the atom-atom RDF (cf. Figure 4.3, A.7 and A.8).

On the other hand, the intensity of the peaks changed slightly with the molar composition.

However, in this case the di�erent NADES follow di�erent trends. While in CCGLY systems

(Figure A.8) the intensities of choline peaks are increasing with increasing HBD ratio, in

CCEG (Figure 4.3 and A.7) systems the choline peaks are decreasing with increasing HBD

ratio. At the same time, the HBD is not a�ected by the altered molar ratio. By increasing

the concentration of HBD, a decrease in the choline-chloride interactions would be expected.
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(a)

(b)

Figure 4.3: Atom-atom RDF of (a) choline cation and (b) ethylene glycol relative to chloride

anion in CCEG12 system.
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The results of CCEG systems are in line with earlier studies, where upon addition of water,

the interaction between di�erent compounds was decreasing [111]. It is possible that the

CCGLY system is more sensitive to HBD surplus as the extra hydroxyl group and addition of

HBD promotes the interaction between choline and chloride instead of interaction between

the di�erent compounds. Moreover, Weng and Toner found that the addition of water to

the CCGLY12 system decreased the number of interactions through the chloride anion, but

the NADES preserved its unique properties in a wide range of hydration levels [144]. Again,

their �ndings support the conservation of the core NADES behavior in a wide composition

range.

Overall, the simulation did not indicate signi�cant changes due to changes in molar compo-

sition in the microstructure or the nature of interactions in the studied NADES. There are

small deviations in the interaction intensity among the constituents, but the distributions of

constituents are comparable to each other and the nature of the interactions remained the

same in every investigated system.

4.6.3 Enzyme stability

4.6.3.1 Root mean square deviation of atomic positions and radius of gyration

To evaluate the stability of the simulated enzyme, we �rst describe how much its structure

changes as a function of time (See the graphical representation of the enzyme structure

in the CCEG12 system in A.10). To describe this change, we calculated the root mean

square deviation (RMSD) of the C� atoms of the enzyme and the radius of gyration (Rg)

of the enzyme as a function of time. First, we evaluated the RMSD and Rg of the enzyme

in eutectic NADES (i.e., the NADES systems with molar ratio 1:2) and reference solvents.

Figure 4.4 displays the smoothed RMSD and Rg values (10 ns moving averages as mentioned

in simulation details) of the above mentioned systems.

As shown in Figure 4.4, all RMSD values of the C� atoms of the enzyme in the eutectic

NADES remain lower than those in water. Except for CCUR12 and 8 M aqueous urea,

the RMSD reached a stable value before the end of the simulation. Although the CCUR12

system did not show stability, the �nal value of RMSD is still below the equilibrium value

in water. In contrast, RMSD in 8 M aqueous urea quickly surpasses the values in water

and steadily increases until the end of simulation. The Rg displays similar trends: the

compactness of the enzyme did not change signi�cantly in most of the simulated systems.

The NADES Rg values remain below the values obtained in water. The two exceptions

are again the simulations of 8 M aqueous urea and CCUR12, where the �nal value of Rg

is still close to the value in water, but the increase is steady. However, our results do not

show complete denaturation in the aqueous urea system during the 200 ns simulation. Still,

these results are in line with earlier experimental results where the enzyme remained stable

in water and the simulated eutectic NADES, while 8M aqueous urea caused denaturation

[109].

At the same time, n-hexane showed unexpected results: the RMSD reached an equilibrium

value that was the highest of all studied systems. The compactness of the enzyme remained

the lowest among all. A possible reason for this may be the non-polar nature of the solvent.



76

CHAPTER 4. EFFECT OF NADES WITH NON-EUTECTIC COMPOSITION ON

ENZYME STABILITY

25 50 75 100 125 150 175 200
Time [ns]

0.10

0.15

0.20

0.25

0.30

0.35

RM
SD

 [n
m

]

CCUR12
CCEG12
CCUR12
Water
8 M aqueous urea
N-hexane

(a)

0 25 50 75 100 125 150 175 200
Time [ns]

1.80

1.82

1.84

1.86

1.88

1.90

R g
yr

at
io

n [
nm

]

CCUR12
CCEG12
CCUR12
Water
8 M aqueous urea
N-hexane

(b)

Figure 4.4: (a) RMSD of C� atoms and (b) radii of gyration in CALB during 200 ns

simulation: comparison of eutectic NADES and reference solvent systems.
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The small and apolar hexane molecules do not form strong interactions with each other

or the enzyme residues and therefore they can increase the observed 
uctuation of certain

residues (hence the high RMSD values), without disrupting the interaction between the

enzyme residues and by that the overall structure of the enzyme (viz. low Rg values).

Overall, none of the studied systems show clear denaturation, although, the 8 M aqueous

urea and CCUR12 systems show decreasing structural organization during the simulation.

These results are generally in line with earlier studies: simulations of eutectic CCEG [110] and

CCUR [68] systems showed agreement with our results in RMSD values. The calculated

RMSD values showed concurrence in many simulations of di�erent force �elds, namely

OPLS-AA [110], GROMOS96 [68], CHARM36-AA [111] and optimized OPLS-AA (used in

this work). Discrepancies (greater than 10% in RMSD values) appeared only in concentrated

aqueous solutions and at high simulation temperatures (373 K) [68, 111]. Results were

especially divergent for 8 M aqueous urea. While Monhemi et al. [68] measured a high

RMSD of 1.2 nm at 300 K after 50 ns, in the simulation of Shehata et al. [111] it was 0.2

nm at 373 K after 300 ns. The recent study of Monhemi on the comparison of force �elds

showed that the united atom force �eld exhibits a higher deviation of the protein structure

from the native state, suggesting that it requires more time for equilibration or a higher

temperature to reduce simulation time [145]. An earlier study attributed the similar 0.5 nm

RMSD value to the denaturation of the barnase enzyme in aqueous urea, which is a 50%

relative increase compared to the initial structure [146]. However, the RMSD reached these

extreme values (absolute or relative) in none of our simulations.

To study the e�ect of an increasing HBD ratio in our system, we also compared the RMSD

and Rg values in the non-eutectic NADES systems (i.e., CCEG13/14, CCUR13/14 and

CCGLY13/14). Results of the RMSD and Rg values of CCEG systems with di�erent HBD

ratios as a function of time are shown in Figure 4.5.

Our initial expectation was that the enzyme structure disrupts more heavily with the in-

creasing ratio of HBD. With increasing HBD ratio, we expected more interaction between

the HBD and the enzyme, which would result in stronger alterations in the enzyme and

consequently higher RMSD and Rg values. Interestingly, this happened in none of the stud-

ied systems. As is obvious from Figure 4.5, there is a minimal increase in RMSD with the

increase of HBD ratio in CCEG systems, but all three systems are still in the stable region.

The di�erence is even less clear for the Rg values and the 
uctuations within a single sim-

ulation are larger than the di�erences between various systems. We found similar results in

CCGLY systems (see Figure A.11). We conclude that based on these �ndings, the increase

of HBD compounds in the NADES mixture does not result in stronger interactions with the

enzyme nor in disruptive e�ects on its structure, at least in case of the studied NADES and

composition ranges.

Overall, we did not �nd evidence for denaturation of the enzyme in our simulations. The

enzyme showed stability, not just in NADES with various compositions, but also in increasing

HBD ratios, as the enzyme overall structure was not negatively a�ected.
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Figure 4.5: (a) RMSD of C� atoms and (b) radii of gyration in CALB during 200 ns

simulation: comparison of choline chloride-ethylene glycol (CCEG) systems with di�erent

molar ratios.
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4.6.3.2 Root mean square 
uctuations

The 
exible domains (with high RMSF value) are the most likely to change their structure

into an unfolded state. These are therefore the most probable starting points of the enzyme

denaturation. We determined the 
exible regions of CALB enzyme and how the 
exibility

changes with di�erent NADES.

Based on earlier studies we expected two main regions with high 
exibility:

� The �5 helix (residues 142-146) and the turns next to it (residues 132-141 and 147-

151)

� The �10 helix (residues 268-287) and the turn before it (residues 243-267)

These regions are suspected to form a 'lid' in the enzyme structure and thus control access

to the active site. Earlier MD studies also revealed the increased 
uctuations near the N

and C termini [68]. The residue 
uctuations in the enzyme are shown in Figure 4.6.

Based on our simulations of the reference solvents, the most mobile regions were indeed the

�5 and �10 helices and their neighboring residues. The increase in 
uctuations were visible

in both regions when the solvent was changed from water to 8 M aqueous urea (Figure

4.6a). However, compared to the results of Monhemi et al. [68], the disruptive e�ect of

urea was smaller in our simulations, possibly due to the lower temperature used. Comparison

of the results of water and eutectic NADES showed that no new 
exible region appeared

and, in general, 
uctuations were smaller in NADES (Figure 4.6b). Similarly, the molar ratio

of NADES compounds had little e�ect. Although in the region of the �5 helix there was a

small increase in the RMSF values with increasing molar ratio, the overall e�ect is negligible

and still below the 
uctuations measured in water (Figure 4.6c). In CCGLY systems the

increasing HBD ratio had a similarly small e�ect with little 
uctuation increase mostly in the

�5 helix, but without clear trend (see Figure A.12). However, the 
uctuations in all molar

ratios were below the values of water.

Furthermore, the results of Monhemi et al. [68] and Nian et al. [110] are in line with our

�ndings (regarding NADES of CCUR12 and CCGLY12). The only exception is in the 8 M

aqueous urea, where the 
uctuations in the 
exible helix sections were about twice compared

to our simulation (possibly due to the higher simulation temperature, i.e., 373 K) [68].

In summary, NADES show a dampening e�ect on the 
uctuation of enzyme residues. The

composition and molar ratio have some e�ect on the measured RMSF values, but the


uctuations in the 
exible regions remained below the values measured in water.

4.6.3.3 Intramolecular hydrogen bonds in the enzyme

The enzyme's secondary and tertiary structure is stabilized by hydrogen bonds between the

residues of the enzyme. Their breakdown would result in the deterioration of the enzyme

structure. We therefore monitored the number of intra-main chain hydrogen bonds in the

enzyme during our simulations. We expect that in systems where a HBD compound is
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Figure 4.6: Root mean square 
uctuation (RMSF) of enzyme residues: (a) in reference

solvents of water, 8 M aqueous urea and n-hexane, (b) in eutectic NADES of CCUR12,

CCEG12, CCGLY12 and water and (c) in three CCEG systems with increasing HBD ratios

of 1:2, 1:3 and 1:4. The grey area highlights the mobile region of the enzyme: the �5 helix

and its neighboring region (residue 132-151) and the �10 helix and its neighboring region

(residue 243-287).

abundant (like 8 M aqueous urea and NADES with increased HBD ratio) the number of

intra-main chain hydrogen bonds will signi�cantly decrease as new interactions are formed

with the more potent HBD compound. Earlier results support these expectations, where in

eutectic NADES hydrogen bonds in the enzyme remained stable, while in 8 M aqueous urea

the number of hydrogen bonds between enzyme residues decreased rapidly [68].

Figure 4.7 shows the number of intramolecular hydrogen bonds in the enzyme as a function

of time in the solvent for various compositions and molar ratios. Figure 4.7a shows that the

number of hydrogen bonds in the enzyme reaches a stable value within our simulation in all

reference solvents and eutectic NADES. The only unstable value, which kept decreasing, was

in 8 M aqueous urea. However, the decrease during our simulation was still relatively small

(around 10% of the initial hydrogen bonds in 200 ns) compared to earlier results (Monhemi

et al. described a nearly 50% loss in 50 ns [68]). The enzyme preserved its hydrogen bonds

best in eutectic NADES systems. In water and n-hexane the enzyme had a similar amount

of intermolecular hydrogen bonds, which were slightly lower than those in eutectic NADES.

However, this is an interesting result, taking into account the apolar nature of n-hexane.

In the latter case, the apolar solvent is unable to form strong secondary interactions with

the enzyme residues. Consequently, displacement by the solvent is not the cause of the

lower number of intra-main chain hydrogen bonds in the enzyme. Figure 4.7b displays the

di�erences in CCEG systems with increasing HBD ratio. As expected, an increased ratio of

HBD results in a small decrease in the number of intra-main chain hydrogen bonds in the

enzyme, but even with this decrease the value remains higher than in water. The di�erences

between CCGLY systems are even less pronounced (see Figure A.13).
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The qualitative results are also in line with earlier studies. In their simulation, Monhemi et

al. measured the number of intra-main chain hydrogen bonds in CCUR12 and 8 M aqueous

urea systems [68]. In CCUR12 this number decreased from the initial 125-145 range to

110-130 after 50 ns. In case of 8 M aquatic urea, the number decreased to 50-70 [68]. This

decrease relates possibly to the higher simulation temperature (373 K) used. Nian et al.

simulated CCGLY12 and betaine-xylitol systems at 333 K for 30 ns. In their simulation the

number of hydrogen bonds between NADES components remained stable, which suggests

no additional hydrogen bonding formed between the NADES and the enzyme [110]. Shehata

et al. also found that the number of hydrogen bonding interactions between solvent and

enzyme remained stable during their 300 ns simulation at 373 K (in CCUR12 system with

various water content) [111].

Our �ndings indicate that NADES have a less disruptive e�ect on the enzyme's intra-main

chain hydrogen bonding than water or n-hexane. The increase of HBD ratio had a small

e�ect, where an excess in HBD is more likely to interact with the enzyme. However, the

e�ect of increased HBD ratio does not surpass the disruptive e�ect of the simulated reference

solvents.

4.6.4 Changes in the enzyme structure

Based on the results so far, the general enzyme stability does not decrease signi�cantly.

The enzyme remains stable in every simulated NADES system in the timeframes studied,

including the ones with increased HBD ratio. The RMSD, Rg, RMSF and the number of

hydrogen bonds do not indicate the denaturation of the enzyme. However, it is possible that

NADES a�ect the active site of the enzyme. In that case the enzyme keeps its stability, but

its activity might change. It is also possible that strong secondary interactions of NADES

with the enzyme surface help to stabilize its structure at higher temperatures and in longer

reactions. (To study these possible e�ects, we investigated these speci�c interactions.)

4.6.4.1 Stability of the catalytic triad

The enzyme catalytic site includes three residues: serine 105 (SER105), aspartate 187

(ASP187) and histidine 224 (HIS224), i.e. the catalytic triad. In the enzymatic reaction,

the serine acts as a nucleophile and attacks the carbonyl carbon of the ester. The histi-

dine promotes this attack by accepting a proton from serine. Strong interactions between

SER105-HIS224 and ASP187-HIS224 are important to stabilize the transition state of the

reaction [147]. If the distance between these sites increases due to interactions with the

solvent system, they cannot promote the catalytic process and the enzyme loses its activity.

We therefore calculated two distances during our simulations, i.e., between the OH group of

aspartate and NH group of histidine, and the OH group of serine and NH group of histidine.

Based on earlier results, we expect that in the presence of a large amount of free HBD

compound (either in systems with increased HBD ratio or in 8 M aqueous urea) the catalytic

triad su�ers structural changes. Figure 4.8 shows the distance between the two catalytic

triad pairs as a function of time in solvent systems with di�erent compositions and molar

ratio.
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Figure 4.7: (a) Number of intramolecular hydrogen bonds in the enzyme as function of time

in eutectic NADES and reference solvents and (b) number of intramolecular hydrogen bonds

in the enzyme as function of time in CCEG with increasing HBD ratio.
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Figure 4.8: Distance between the catalytic triad residues in the enzyme as function of time in

eutectic NADES and reference solvents: (a) OH group of ASP187 and NH group of HIS224

and (b) OH group of SER105 and NH group of HIS224. In CCEG with increasing HBD

ratio: (c) OH group of ASP187 and NH group of HIS224 and (d) OH group of SER105

and NH group of HIS224.
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The comparison of reference systems and eutectic NADES (Figure 4.8a,4.8b)) shows that,

with the exception of 8 M aqueous urea, the distance remains stable between the residue

pairs. In case of ASP187-HIS224, the distance was within the 3.5-4 �A range with around 0.5
�A 
uctuation during the simulation. In case of SER105-HIS224, the distance was larger and

showed much higher deviation, but still 
uctuated around the initial value. The di�erences

between solvents were higher in this case and varied between 3-6 �A. The 
uctuation within

a single solvent system was also greater, reaching up to 2 �A. 8 M aqueous urea was the

only system where residue distances increased signi�cantly and rapidly. Here, the distances

between both residue pairs had a quick increase between 100 and 120 ns. This structural

change most probably diminished the enzyme's ability to catalyze transesteri�cation. On the

other hand, the increase of HBD ratio in the NADES did not a�ect the distance between

residue pairs neither in CCEG (Figure 4.8b) nor in CCGLY (Figure A.14)systems. The


uctuation and the mean value remained very close to the results for water.

Our results are in line with earlier �ndings of Monhemi et al. who measured 4.3 and 3.0
�A, for SER105-HIS224 and ASP187-HIS224 in CCUR12, respectively [68]. However, they

measured 17.7 and 16.6 �A in 8 M aqueous urea, respectively, which are much greater values

than we measured, i.e., in a shorter simulation time and at a lower temperature. This might

also be related to the di�erent force �eld and simulation setup they employed. Shehata et

al. did simulations on a di�erent, thermoalkalophilic enzyme, but with the same residues

in the catalytic triad [111]. They measured slightly higher absolute values for the residue

pair distances, but the trends were similar to our results: while in NADES the distances

remained stable, in 8 M aqueous urea the distance reached a higher value. In addition, they

studied NADES system with di�erent water content, but similar to our results they did not

�nd signi�cant di�erences due to changes in the compound ratios.

The study of the catalytic triad revealed the �rst process clearly responsible for the loss of

enzyme activity in 8 M aqueous urea. Although denaturation does not fully occur in the

simulated time frame, the disruption of the catalytic triad is clear. However, a similar e�ect

did not occur in NADES of any composition or molar ratio.

4.6.4.2 Stability of helices and surface residues

Apart from the catalytic triad, earlier studies identi�ed two structural elements where the

solvent-enzyme interactions can play a signi�cant role. Speci�cally, Uppenberg et al. found

that the �5 and �10 helices form a channel which provides access to the active site for

external molecules [128]. Moreover, Monhemi et al. identi�ed a number of enzyme residues

(GLN23, THR267, GLU269, LYS271, LYS308, THR316, PRO317) which are situated on

the surface of the enzyme and form strong secondary interactions with the NADES com-

pounds [68]. This provides additional stability to the enzyme and also a�ects the distribution

of the solvent molecules around the enzyme.

To investigate the e�ect of NADES on the channel formed by the helices, we calculated

the distance between them (namely, between GLY142 and LEU278 as well as ALA146 and

ALA287 residues which are part of these two helices) as a function of time. An increase

of these distances indicates the opening of the 'lid', which increases the accessibility to the

active site. Additionally, we determined the changes in the secondary structure of the enzyme
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during the simulation. This way, we monitor if the changes in the distances between the

helical residues are related only to the opening of the 'lid' or to a more fundamental change

in these structural elements. Lastly, we calculated the SASA to explore possible correlation

between the changes in the secondary structure and the accessibility of the enzyme by the

solvent.

If the solvent has a disruptive e�ect on the helices, we would expect a decrease in the number

of residues forming helices and an increased 
uctuation in the pair distances. These two

changes could also induce changes in the SASA.

Figure 4.9 shows the observed changes in the enzyme's secondary structure and SASA in the

eutectic NADES and reference systems. The number of residues that participate in helices

decreased in every simulated system (Figure 4.9a). This decrease was greater in hexane and

8 M aqueous urea, while in eutectic NADES it was similar to water. There is no clear trend

between the di�erent NADES compositions, just as there is also no clear trend between

the di�erent molar ratios (Figure A.15). The number of residues participating in �-sheet

structures remained stable during the simulation in every system, although the 
uctuation

is slightly larger in hexane (Figure A.15b and A.15d). Again, there was no clear trend in

NADES with di�erent molar ratios (Figure A.15).

In Figure 4.9b the distance between the residues in �5 and �10 helices showed great 
uctu-

ation. The distance between the residues decreased in most of the systems and it was more

signi�cant in non-eutectic compositions (Figure A.16). However, in hexane and CCGLY12

the distance remained stable (Figure 4.9b). Again, 8 M aqueous urea showed the largest


uctuations.

The results of SASA (Figure 4.9c) did show a little increase (below 10%) in every system.

While in CCUR12 and CCEG12 the SASA increases during the entire simulation, in other

systems it reached a plateau before the end. Interestingly, while 8 M aqueous urea had the

largest increase in SASA, the smallest measured value was found in hexane. There was no

clear trend related to di�erent molar ratios, but the di�erences were small (Figure A.17).

These results indicate that NADES a�ect the secondary structure of the enzyme and the

channel-forming helices, which leads to a change in the SASA of the enzyme. However, these

changes are also present in the reference systems and the e�ect of NADES is comparable

with water. None of the applied compounds and the molar ratios in NADES showed a

clear trend or signi�cant di�erences in the measured values. Nevertheless, the free HBD

compounds in the 8 M aqueous urea and also the apolar hexane had a more notable e�ect

on these metrics.

Lastly, we investigated the possible interactions between the surface residues and NADES

compounds. Figure 4.10 shows the RMSF values of earlier identi�ed surface residues by

Monhemi et al. [68]. In every NADES the 
uctuations of surface residues were equal or

below the values measured in water with the exception of PRO317. Neither the change of

applied compounds nor molar ratios showed clear trends (cf. Figure 4.10 and A.18).

We also calculated the COM RDF between selected residues and the NADES compounds

(cf. Figure A.19, A.20 and A.21). These measurements indicate that the hydrogen bonding

interactions are also present in non-eutectic compositions. However, the increased amount
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Figure 4.9: NADES e�ect on secondary structure and solvent accessibility: (a) number of

residues in �-helix structures, (b) distance between �5 and �10 helices based on residues

GLY142 and LEU278 and (c) solvent accessible surface area.
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of HBD compounds has more intense and broader peaks in these cases. This indicates that

with their increased concentration they have a larger role in enzyme-solvent interactions.

However, the COM RDFs of enzyme-HBD compound showed peaks around 1 nm distance

which indicates that the HBD compounds can di�use into the enzyme structure and the

interaction is not limited to the surface residues (cf. Figure A.22a, A.22b and A.22c). This

contradicts with earlier results of Monhemi et al. [68], who found peaks of urea at larger

distances in CCUR systems. In contrast, Nian et al. [110] described similar di�usion of

glycerol into the enzyme structure in CCGLY solvent. Interestingly, the distances of the

HBD peaks did not change with the applied compounds, not even with 8 M aqueous urea,

but they became shorter with the increase of the HBD ratio. This latter �nding is probably

related to the weaker interaction of the intermolecular hydrogen bonding network with the

excess HBD molecules. This supports the concept that NADES do prevent the free di�usion

of their compounds via the intermolecular hydrogen bonding network.

Overall, our results indicate that NADES have some disruptive e�ect on the secondary

structure of the enzyme and this leads to a small increase in the solvent accessible surface.

However, the magnitude of this e�ect is very similar in di�erent compositions and molar

ratios, thus the general behavior of NADES does not change with the molar ratio in the time

span of our simulations. Moreover, our results con�rm the presence of strong interactions

between the surface residues and NADES compounds, which might be the cause of the

experimentally described thermal stability of enzymes in NADES [113, 70]. However, we

also observed the di�usion of the HBD compounds into the enzyme structure, therefore the

interactions are not limited solely to the surface of the enzyme. Based on the enzyme-HBD

RDF, the increase of the HBD compound ratio facilitated further di�usion of the HBD

compounds into the enzyme. These two �ndings indicate that the intermolecular hydrogen

bonding network prevents the di�usion of NADES compounds into the enzyme to a limited

extent only.

4.7 Conclusions

We identi�ed a wide range of molar compositions of NADES where the microstructure of

NADES did not change signi�cantly. Our MD simulation showed that the NADES did

not alter the stability nor the active site of the lipase enzyme. The composition range,

where NADES preserve their characteristic behavior, while the physicochemical properties

are slightly modi�ed, provides an additional dimension to �ne-tune their properties.

However, these results do not explain the changes in long term thermal stability and initial

reaction activity of enzymes in NADES, observed in earlier experiments [109, 41, 113, 70].

Our current results suggest that the changes in reaction rate are related to solvent-substrate

interactions rather than to enzyme-solvent interactions. To the best of our knowledge this

the �rst study which discusses the behavior of NADES with non-eutectic compositions in

biocatalysis.

Future research in this �eld are the experimental validation of simulation results on enzyme

structure by Raman optical activity spectroscopy and the extension of simulation e�orts

towards the substrate-solvent interactions and solvation energies.
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Figure 4.10: (a) RMSF of surface residues of the enzyme in NADES and reference systems.

(b) RMSF of surface residues in CCEG system with increasing HBD ratio and in water as

reference system.
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4.8 Linking results to hypotheses

In this chapter, I studied the molecular dynamics simulation of the CALB enzyme in di�er-

ent NADES. I monitored the stability of the whole enzyme, the surface interactions between

the enzyme and the NADES compounds, the structural changes of the active site of the

enzyme, and the potential di�usion of the NADES compounds inside the three-dimensional

enzyme structure. I have simulated here the same NADES as discussed in the experimental

chapter (Chapter 3). The enzyme showed stability in all tested NADES systems. Surface

stabilization was observed by hydrogen bonding between surface residues and NADES com-

pounds. However, no changes in the active site were found, nor did the NADES compounds

di�use inside the enzyme. Therefore, it is unlikely that the e�ect of NADES on biocatalysis

is related to changes in enzyme activity. In addition, these results forecast the long-term

stability of the enzyme in NADES. Although the time frame of the simulation cannot prove

the long-term stability, the short-term simulation results on the enzyme stability are consis-

tent with the experimental results (see Chapter 3). Finally, the similar results of NADES

with di�erent molar compositions indicate that the physicochemical properties of NADES

can be tuned over a wide range without negative e�ects on the enzyme.

In this chapter, I tested the hypothesis that the e�ect of NADES on enzymatic reactions

can be related to substrate solubility/solvation, media viscosity, and changes in enzyme

structure. More speci�cally, I investigated whether the NADES induce changes in the enzyme

structure. In this context, I also investigated how molecular dynamics simulation can �t into

the holistic multiscale model to describe the e�ect of NADES on enzymatic reactions. My

results indicate that the NADES have a stabilizing e�ect on the enzyme. However, structural

changes that would alter the initial activity of the enzyme were not observed. Based on the

simulation and the experimental results, the activity change does not play a role in the

suspected ternary e�ect of NADES on the enzyme (i.e. stabilization/denaturation, activity

change and side reactions), at least in the studied reaction. Molecular dynamics simulation

is a suitable modeling technique for describing the direct e�ect of NADES on the enzyme,

provided that an appropriate force �eld and computational resources are available. However,

the e�ect of NADES on the enzyme activity is small and not related to the high initial rates

of the reaction measured experimentally.

Molecular dynamics simulation is a useful tool, but suitable force �elds for NADES are

scarce. This may change in the future as more work is done in this area. Otherwise, the

meticulous task of force �eld optimization has to be included in the simulation work. This,

together with the already high computational requirements, makes the cost-bene�t ratio of

the method questionable, especially in a screening process. In consideration, MD should

be implemented in a multiscale model in a consecutive step, preceded by a screening step

in which only selected systems are simulated. Alternatively, experimental validation could

replace the modeling step. So far, the number of tested/simulated enzymes in NADES is

limited, therefore it is possible that certain enzymes are more sensitive and NADES have a

more signi�cant e�ect on them. More diverse research is needed in this area in the future.

In addition, due to computational costs, only free enzymes can be simulated, whereas in

practice immobilized enzymes are usually used. As these are more resistant to structural

changes, the results of the simulations cannot be directly applied. Finally, the fact that some

NADES were not stable in reality, while the simulation showed no problems, emphasizes
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the importance of experimental validation. In fact, validation should be extended to other

physicochemical properties in future work.
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Modeling density, viscosity and
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Acceleration the new norm"

Die Krupps

5.1 Preface

In the review of modeling methods in Chapter 2, I pointed out that there are many approaches

to describe certain properties of NADES, but little e�ort has been made to integrate them

into a holistic system. For this purpose, data-driven methods seem to be the most useful

because of their general and predictive applicability (a model should give information about

many new systems with few or no experimental measurements). Although the application

of data-driven and machine-learning based methods to NADES is present in the literature,

the lack of su�ciently large datasets has prevented their straightforward application. (The

development of a model on the density values of 18 DES is not exactly data-driven [97].) In

recent years, however, the amount of information on these systems seems to have reached

a breakthrough threshold, even if it is a highly fragmented and methodologically incoherent

pile of data.

This chapter discusses two of the central questions of the thesis, how to predict the be-

havior of NADES in a structured way and how to minimize the necessary empirical data. I

hypothesize that the complex behavior of NADES can be described by a multiscale model.

For the bulk properties of the media, data-driven, machine learning-based methods are a

good �t. In the previous chapters, I concluded that viscosity and solubility play a signi�cant

role in the behavior of NADES, so I aim to predict these properties here. I hypothesize that

su�cient data are already available in the literature. This will be tested by analyzing the

learning curves and error distribution of the �nal models.

In this chapter, I discuss the results of combining machine learning methods with group

contribution to develop two models for predicting the density and viscosity of DES systems

93
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with di�erent structures, molar ratios, and temperatures, based on general descriptive struc-

tural parameters, namely the number of functional groups in the compounds. The data for

building these models are collected from the literature, which will limit the model capabil-

ities, but in the range of structural variety described, the models can be applied to novel

systems. Through analysis of the data set, I discuss these limitations. Commonly used

machine learning algorithms are compared and �ne-tuned to �nd the best candidates. The

data requirements of the di�erent models and their limitations are discussed by analyzing

the learning curve and the errors of the �nal models. This chapter provides practical models

of density and viscosity of DES, but the detailed analysis of the model also explains the

current limitations and future potential of this modeling approach.

Based on the contents of this chapter, a manuscript entitled "Combining group contribution

with machine learning to predict DES properties" has been written. The co-authors of this

manuscript are Berkay Ayan, Philippe Nimmegeers, Pieter Billen. Berkay Ayan composed

the initial data set and the initial density model. Philippe Nimmegeers and Pieter Billen

contributed to the supervision of the project and to the review and editing of the manuscript.

In addition, Pieter Billen acquired the �nancial support for the project.

5.2 Density prediction

5.2.1 Introduction

Deep eutectic solvents (DES) are a novel group of solvents with great potential to replace

volatile organic compounds in many chemical applications. DES are mixtures of two or more

compounds that exhibit a large decrease in melting point due to strong secondary interactions

between the compounds [1]. This decrease results in a liquid mixture at or near room

temperature, which facilitates their use in place of conventional organic solvents. Compared

to the latter, the advantages of DES are non-volatility, non-
ammability, very low toxicity and

good biodegradability (sometimes even biocompatibility) [14]. DES are generally formed by

hydrogen bond accepting (HBA, usually quaternary ammonium or phosphonium salts) and

hydrogen bond donating (HBD, e.g. amines, carboxylic acids or polyols) compounds [5].

Based on their composition, Smith et al. classi�ed DES into four types [1]. Since then,

however, new types of DES have been described [148]. In addition, the discovery of natural

deep eutectic solvents (NADES), which are formed by primary metabolites, added even more

variety to DES compositions [13].

The behavior of the mixture is primarily determined by the complex intermolecular hydro-

gen bonding network between the compounds. Furthermore, this intermolecular network

is determined by the compounds applied, making DES designer solvents. This means that

the properties of DES can be tailored or �ne-tuned by the variety of compounds and their

ratios to meet the requirements of a particular application. In addition, the variety of com-

pounds available allows for optimization across a wide range of physicochemical properties.

These properties make DES promising candidates for many applications. Although DES

are a novel class of solvents, practical applications already exist in electrochemistry [149],

separation processes [150], biodiesel production [151], and biochemistry [152], to name a

few.
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As mentioned earlier, DES are designer solvents, meaning that their properties can be tai-

lored to speci�c applications by changing their composition. However, the large number of

possible compounds and possible combinations makes the development of DES applications

by trial and error or experimental screening impractical. Therefore, modeling the relevant

physicochemical properties of NADES is important, not only to better understand their be-

havior and structure-property relationships, but also to predict the properties of novel DES

systems.

In our previous work, we gave a comprehensive overview of the available modeling method-

ologies of DES [11]. Here we focus on group contribution methods and machine learning

approaches for predicting the densities of DES. The general advantage of these approaches

is that they do not require much computing power and are therefore much faster than e.g.

molecular dynamics simulations. In addition, prior experimental information is not always

required for this type of modeling. This allows for high-throughput screening prior to the

start of time-consuming and costly experiments.

The evolution of the density modeling approach based on group contribution and machine

learning methods can be summarized in three major steps. The �rst works are based on

the corresponding state principle and the Lydersen-Joback-Reid group contribution method

[153, 154, 99] to calculate the critical properties of the pure compounds in the NADES.

Then Lee-Kesler mixing rules are used to determine the critical properties of the DES mixture

[155]. Finally, the density of the system is calculated using the Rackett equation [156].

Shahbaz et al. have made the most signi�cant contribution to this approach [96, 53, 97, 98].

The next step was the application of genetic algorithms [157] to optimize the density es-

timates. This was done either directly on the output variable (property of interest) or by

parameter optimization in a semi-empirical equation of the property. On this topic, Hagh-

bakhsh et al. published a series of papers [158, 159, 160]. The recent publications shift

from the optimization of existing equation-of-state models to machine learning based models

and the use of more complex independent variables, such as functional group contribution

parameters. This includes both the extension of existing group contribution methods with

additional parameters, as well as changes to purely chemical structural descriptors taken

from other quantitative structure-property relationship solutions. However, the change is

gradual, earlier applied genetic algorithms are still present [161], while multiple linear re-

gression [162], neural networks [96] and other more complex algorithms are also described

[163].

Shahbaz et al. reported the �rst implementation of the combination of the Lydersen-Joback-

Reid (LJR) group contribution method with the Lee-Kesler (LK) mixing rules and the Rack-

ett equation [96]. They modeled 9 DES in the temperature range of 298.15-368.1 K to

describe the temperature dependence of the density and achieved an average relative per-

centage error (ARPE) of 1.9 %. In their model, the precision was dependent on the DES

compounds used and the error increased with the absolute value of the density. Nevertheless,

they achieved an average absolute relative percentage error (ARPE) of 1.9 %. In their next

work, they considered the combination of LJR and LK methods with the Othmer equation

to predict the surface tension of DES [97]. On the data set of nine DES in this study, the

Othmer method gave an average absolute deviation (AARD) of 2.57 %. An alternative ap-

proach was the use of Wilderman and Grippen's atomic contribution method for calculating

molar refractive index in combination with the Lorentz-Lorenz equation [98]. Thus, they



96 CHAPTER 5. MODELING DENSITY, VISCOSITY AND SOLUBILITY IN NADES

established a relationship between molar refraction, refractive index and density to determine

the latter. In their work, they included 24 DES based on ammonium and phosphonium salts.

The prediction of the refractive index gave 0.56 % ARPA and 0.9822 coe�cient of determi-

nation. The prediction of the density gave 1.43 % and 0.9768 coe�cient of determination,

but the method systematically underestimated the density.

Similarly, Mjalli et al. used the modi�ed Rackett equation, optimized for ionic liquids,

to predict the molar volume as a function of composition and temperature [164]. They

introduced the optimization by genetic algorithm, which they applied to the compressibility

factor in the Rackett equation, using the molar volumes as the target parameter. The

optimization was performed on a set of 86 points from 12 DES, and they tested their

results on a set of 91 points from 6 DES. Compared to the LJR-LK method, their approach

reduced the average relative deviation (ARD) from 0.625 % to 0.211 %. However, they

found that the assumption of the Rackett equation (as the reduced temperature tends to

zero, ln(V=VC) equals the compressibility factor ZR) is not ful�lled in DES. Furthermore, the

temperature-molar volume relationship was linear, indicating that DES behaves as a single

compound.

In a di�erent approach, Hou et al. combined the LJR group contribution method with the

bonding group interaction contribution method [165] to account for the e�ect of strong

intermolecular interactions typical of DES [161]. They used two data sets, one with 3648

points on 645 binary DES and one with 174 points on 36 ternary DES. The model achieved

an average absolute relative deviation (AARD) of 1.56 % on the binary DES test set and

2.29 % on the ternary set.

Another approach to optimize the prediction of densities has been the application of genetic

algorithms [157]. In their �rst work, Haghbakhsh et al. combined the LJR-LK method

with a genetic algorithm to estimate the density of DES as a function of temperature and

composition [158]. They used the critical properties and the accentric factor from the

group contribution method as input variables, and the density was the output value of the

genetic algorithm. With this approach, they obtained 3.87 % AARD on a data set of

1239 data points and 149 DES. In their subsequent work, they used a similar approach

for predicting surface tension, where they added 6 customizable parameters to the surface

tension model of Escobedo and Mansoori and optimized the value of these parameters

by genetic algorithm [159]. This model achieved 13.9 % AARD based on a data set of

553 points from 112 di�erent DES. In their later work, Haghbakhsh et al. used the genetic

algorithm to optimize the group weights in the group contribution and atomistic contribution

methods for calculating the density, refractive index, heat capacity, sound velocity, and

surface tension of various DES [160]. The size of the database varied between 398 and 1239

data points depending on the property, and the AARD of the di�erent models varied between

0.37 and 9.33 %. Compared to the general models, both the group contribution and the

atomistic models outperformed all previous models. In general, the group contribution model

was more accurate, while the atomistic model was easier to compose due to the smaller

number of parameters. The authors believe that predictions based on group contributions

are better because they embed the real chemical structure of the compounds.

More recently, interest has shifted to solutions based on machine learning. The potential of

this approach is well demonstrated in the work of Afzal et al. [166]. They trained a deep

neural network based on a series of MD simulations of small organic molecules to determine
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their density. In their work, they ran 105 MD simulations of small organic molecules and

trained a deep neural network on them to predict their density. They applied the trained

model to 1.5 million additional generated data points, demonstrating the applicability of

the model for hyperscreening. They also analyzed the e�ciency of the neural network by

analyzing the learning curve of the algorithm and determined the data requirements of the

task.

Shahbaz et al. were the �rst to apply a machine learning approach to DES [53]. They used a

feed-forward back-propagation arti�cial neural network (ANN) to predict the density of DES

with the molar fractions of the applied compounds and temperature as input parameters.

The data set contained 270 instances from the combination of 18 DES and 15 temperatures.

ANN yielded a coe�cient of determination of 0.9995, while the LJR-LS Rackett method

yielded 0.9748 on the same dataset. In addition, the ANN was more accurate at higher

temperatures, but the accuracy depended on the groups used. Similarly, Adeyemi et al.

compared the accuracy of the LJR-LK Rackett method to ANN in predicting density and

conductivity [101]. Their data set contained 105 data points of 3 amine-based compounds

with 3 molar ratios in the temperature range of 293.15-353.15 K. They combined feed-

forward back-propagation multilayer ANN with bagging 1 to achieve higher accuracy, and

their best model reached 2:799 �10�7 normalized mean square error. In addition, the method
proved to be more accurate at higher temperatures than the group contribution method.

In comparison, Halder et al. applied a more general approach, using structural descriptors

from Dragon software as input variables with a sequential forward selection based multiple

linear model [162]. As a signi�cant novelty, they discarded the random train/test split

method and composed the two data sets based on omitting certain compounds or mixtures

from the training set. This prevents the model from being trained on all possible compounds

in the entire dataset, making the evaluation of predictive ability more realistic. They created

several individual models and then combined them using consensus learning. The best single

model yielded 2.589 % AARD. Similarly, Khajeh et al. implemented multiple linear regression

but added a neuro-fuzzy interface system to predict DES density [163]. Their density dataset

contained 2005 points and they generated more than 1500 molecular descriptors in Dragon

software from which they selected features by modi�ed particle swarm optimization. The

�nal model gave 0.993 coe�cient of determination and 1.56 % AARD.

To date, the combination of group contribution parameters with machine learning methods

has not been demonstrated. However, the use of group contribution parameters as input

variables would provide a more theoretical basis for the model than the often very abstract

structural descriptors described in previous publications [163, 162]. To prove the feasibility

of such an approach, three aspects need to be investigated:

� The functional groups as input parameters provide su�cient 
exibility to establish a

large domain of application.

� Su�cient data is available to train the machine learning model.

� The developed method is at least comparable in accuracy to other approaches.

1bootstrap aggregation: an ensemble learning method commonly used to reduce variance within a noisy

dataset by randomly selecting samples with replacement into training sets and aggregating the results of

trained models
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To investigate these aspects, we built a database based on the available experimental data on

binary DES densities in the literature. We developed two machine learning based approaches

for density prediction. The input variables were generated from the number of functional

groups in the two DES compounds and the dataset was divided into a training and a test

set. After initial testing, two models were selected, random forest and gradient boosting

regression ensembles. The accuracy of the developed models was compared with previously

published density prediction models. The application domain was investigated by statistical

analysis of prediction errors. The su�ciency of the data set was investigated by analyzing

the learning curve of our models by varying the train/test ratio.



5.2. DENSITY PREDICTION 99

5.2.2 Machine learning work
ow

Model Development Work
ow: The model development work
ow is summarized in Figure

5.1. The work is divided into four main steps: The �rst step is to assemble the data set

by collecting experimental data, generating the input variables, and cleaning the data set of

missing data points and outliers. (In machine learning projects, generating and selecting the

right input variables is often a central step. In our case, however, we decided in advance

to use the functional groups, so there was no need for extensive feature engineering and

selection). The second step is to explore preliminary machine learning models to �nd good

candidates that adequately describe the underlying relationship between the input and output

variables. The third step is to optimize the promising candidate models by tuning the

hyperparameters of the models to achieve the highest accuracy without over�tting the model.

The last step is to test the model on the test set and further analyze the model behavior.

Figure 5.1: Flowchart of the machine learning work
ow.

Assets of the model development: The code of the model is written in Python 3 language.

Pandas package is used for the database. Machine learning models are from scikit-learn pack-

age. For calculation of chemical properties and functional groups RDKit is used. Chemical

Identi�er Resolver is used to calculate the SMILES of the chemicals.

Composing the dataset: To compile the initial dataset, we reviewed the previously reported

experimental measurements of DES densities [160]. In our dataset, we included the HBA

and HBD compounds, their ratio, temperature, and measured density. The dataset contains

measurements only at atmospheric pressure, but most of the NADES have been measured

in a wide range of temperatures.

To calculate the input variables (aka features), we �rst used the Chemical Identi�er Resolver

to calculate the SMILES code of the chemicals from their names. Then we used RDKit

to calculate the molecular weight, the number of hydrogen bond accepting and donating

sites in both HBD and HBA compounds, and the number of di�erent functional groups in

the molecules. The functional groups included are listed in Figure 5.2. After calculating
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the number of functional groups, the missing functional groups as descriptors were removed

from the data set. We also removed the outlier data points that had a standard score of

z � 3:0.

Figure 5.2: Functional groups used as input variables. Functional groups present in aromatic

and non-aromatic structures are di�erentiated.

After cleaning the data set, it was divided into a training and a test set. Due to the small

number of instances, the training ratio was 0.9. The instances were randomly distributed.

In this way, certain compounds may be present in both the training and test sets. This can

lead to an overestimation of the accuracy of the �nal model, as the model learns about every

possible instance (i.e. data snooping). The small number of included DES makes random

selection necessary, but using the functional groups as input variables instead of descriptors

as the whole structure mitigates this problem.

Evaluating Preliminary Models: Model development was started by selecting a few can-

didate models and evaluating their initial performance prior to any optimization. For this

evaluation, 10-fold cross-validation was used. In this setup, the training data set was ran-

domly divided into 10 equal-sized groups, the model was trained on 9 of them, and then

evaluated by comparing the predictions and experimental densities in the last group. This

process was then repeated for all groups. Based on this, the mean and standard deviation

of the metrics were calculated. The following metrics were used for the evaluation:

� Root Mean Squared Error (RMSE): The RMSE is the aggregated measure of the

error in the predictions of all data points, and thus a good measure of accuracy to

compare the predictive power of di�erent models for a given data set. The equation

5.1 shows the calculation of the RMSE:

RMSE =

√
1

N
�N
i=1

(
yi �pi

)2
(5.1)

where yi is the experimental density of the ith instance, pi is the predicted density of

the ith instance and N is the number of instances.

� Average Absolute Relative Deviation (AARD): AARD is also a measure of the

prediction accuracy of a model, but because it expresses the relative error, di�erent
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results from di�erent data sets are comparable and thus give a better sense of the

magnitude of the error. The calculation of AARD is described in the equation 5.2:

AARD =
100%

N
�N
i=1

∣∣∣yi �pi
yi

∣∣∣ (5.2)

where yi is the experimental density of the ith instance, pi is the predicted density of

the ith instance and N is the number of instances.

� Coe�cient of Determination (R2): R2 measures how much of the variance of

the target is explained by the predictor variable. It is a dimensionless property, so

performance on di�erent data sets is comparable. The equation 5.3 describes the

calculation of R2:

R2 = 1� �N
i=1(yi �pi)

2

�N
i=1(yi � ŷ)2

(5.3)

where yi is the experimental density of the ith instance, pi is the predicted density of

the ith instance, ŷ is the average value of experimental density and N is the number

of instances.

Four commonly used machine learning models were selected for preliminary modeling:

� Decision Tree Regressor: Decision tree is a nonparametric supervised learning method

in which the model predicts the value of a target variable by learning simple decision

rules inferred from data features. (See a representation of decision tree regressors

and their predictions in Figure 5.3.) Decision trees are easy to interpret and visualize,

require little data preparation, and have low computational cost. Disadvantages of

decision trees are that they tend to over�t, so regularization (called pruning in this

case) is often necessary. In addition, since the predictions are not smooth in the case

of regression, they tend to extrapolate poorly.

� Random Forest Regressor: Random forest is an ensemble method based on decision

trees. In ensemble methods, several weak learners (e.g., individual decision trees) are

combined to jointly describe a complex problem. The group of learners is called an

ensemble. By aggregating the predictions of a group of predictors, the combined re-

sult is often better than the best individual predictor. The forest is random because

each tree is built on a random sample of the test set and may use a random subset

of the available features. This randomness reduces the variance of the forest estima-

tor, whereas individual decision trees typically have high variance and tend to over�t.

Random forests reduce variance by combining di�erent trees, which in practice often

results in a signi�cantly better model. This is a signi�cant advantage, even at the cost

of signi�cantly increased computational complexity.

� Gradient Boosting Regressor: Gradient boosting regressor is a boosting ensemble

method based on �tting the residual errors made by the individual predictors. A

boosting method is an ensemble method where the learners are trained sequentially,
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(a) A decision tree for regression

(b) Predictions of two Decision Tree regression models

Figure 5.3: Illustrating the working principle of decision tree regressor from the work of

Geron [167].

Figure 5.4: Illustrating the working principle of a random forest. Each tree in the random

forest ensemble is built from a sample drawn from the training set. Each tree makes its own

prediction then the average of those prediction are taken.
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Figure 5.5: Illustrating the working principle of gradient boosting from the work of Geron

[167]. The �rst predictor (top left) is trained normally, then each consecutive predictor

(middle left and lower left) is trained on the previous predictor's residuals; the right column

shows the resulting ensemble's predictions.
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Figure 5.6: Illustrating the working principle of multi-layer perceptron with one hidden layer.

and each tries to correct the previous iteration. In gradient boosting, the next learner

tries to minimize the residual error of the previous predictor (see Figure 5.5).

� Multilayer Perceptron (MLP) Regressor: Multilayer perceptron is an arti�cial neural

network supervised learning algorithm that can learn non-linear functions for both

classi�cation and regression. Between the input and output layers, which contain

the independent and dependent variables, there may be one or more nonlinear layers

called hidden layers. The leftmost layer, called the input layer, consists of a set of

neurons fxi jx1;x2; :::;xmg representing the input features. Each neuron in the hidden

layer transforms the values from the previous layer with a weighted linear summation

w1x1+w2x2+ :::+wmxm, followed by a nonlinear activation function g(_) : R! R -

like the hyperbolic tangent function. The output layer receives the values from the last

hidden layer and transforms them into output values. Multilayer perceptron regressors

are capable of learning non-linear relationships. Drawbacks are that MLPs have a non-

convex loss function and multiple local minima, they are sensitive to feature scaling,

and the large number of hyperparameters to scale. Therefore, both model training

and hyperparameter tuning are meticulous tasks.

Based on the evaluation metrics of the preliminary models, random forest regression and

gradient boosting regression performed best and were selected for optimization.

Optimizing the hyperparameters of the models: Hyperparameters are the parameters of

the model that are not directly �tted in the learning process. However, it is possible to

search for optimized hyperparameters by cross-validation on the training data. Once the

candidate model is selected, the parameter space, search method, cross-validation scheme,

and score function must be chosen. We used an exhaustive grid search with 10-fold cross-

validation, scored by the value of the coe�cient of determination. That is, each combination

of the proposed hyperparameters was applied and the mean and standard deviation of the

coe�cient of determination were calculated based on 10-fold cross validation. Finally, the
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best combination was selected. These parameters were selected in several iterative steps,

always in the neighborhood of the best parameters of the previous step, to �nd a model

where all the selected hyperparameters are intermediate values. In the case of random forest

regression, the number of estimators (individual trees), the maximum depth of each tree,

the minimum sample on a branch before splitting, and the minimum number of samples per

leaf were optimized in the ranges, 150-200, 12-18, 3-7, and 2-5, respectively. For gradient

boosting regression, the number of estimators, the maximum depth of each tree, the learning

rate, and the ratio of subsamples were optimized in the ranges 1-3, 100-300, 0.05-0.15, and

0.5-1.0, respectively.

Testing the optimized models and analyzing the predictions: After hyperparameter

optimization, the models were evaluated on the test dataset. The evaluation is based on

the same metrics (RMSE, AARD and R2) as the model development. The predictions of

the test set and the full dataset were compared using the relative deviation distribution to

check for potential di�erences between the two sets. The relative deviation distribution and

residue analysis were used to determine if certain functional groups were more prevalent in

the outliers. The latter includes analysis of the application domain. Finally, the accurate

incorporation of the temperature dependence of density in DES with the same compositions

but at di�erent temperatures was also checked by visual analysis.

5.2.3 Results and discussion

5.2.3.1 Dataset

The �rst thing is the preliminary analysis of the composed dataset. The data set has

been assembled from the experimental measurements available in the literature. First, the

histogram of the density values is drawn to see the distribution of the density and to check for

possible outliers. (See Figure 5.7.) This plot also shows the estimated normal distribution

based on the mean and standard deviation of the data set. The density of the data set

does not follow a perfect normal distribution, there are three main peaks around the mean.

However, the machine learning models applied are not linear regression models, and the

normal distribution of the target variable is not required. In addition, the data set has a few

high-density outliers. The small number of them does not allow a good generalization of

the model, and thus the trained model is not likely to predict well in this range. Therefore,

it was decided to remove these outliers from the dataset. This was done by calculating the

z-score of the density data and removing the absolute values greater than 3.0. This removes

about 0.3 % (5 data points) of the data, reducing the maximum value from 1.63 g=cm2 to

1.35 g=cm3 (for comparison, the third quartile is 1.21 g=cm3) (see Table 5.1). The density

distribution of the cleaned dataset is shown in Figure 5.7.

As mentioned earlier, instead of extensive feature engineering, functional group contributions

were chosen to generate the input variables. The considered features are summarized in

Table 5.2, together with their count in the database. A commonly used grouping of molecular

structures is used, with a distinction made between functional groups present in chain or

aromatic ring structures, and whether they are present in a HBA or HBD compound.

In addition to outliers, missing values in functional groups are also taken into account.
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Table 5.1: Statistics of the original and trimmed dataset. Trimming the 5 outliers did not

signi�cantly change the distribution.

Original dataset Trimmed dataset

Density [g/cm3] Temperature [�C] Density [g/cm3] Temperature [�C]

N 1426 1421

Mean 1.1484 48.85 1.1472 48.94

Std. 0.0896 20.01 0.0875 19.99

Min 0.8990 10.00 0.8990 10.00

25 % 1.0914 30.00 1.0910 30.00

50 % 1.1517 45.00 1.1512 45.00

75 % 1.2184 65.00 1.2173 65.00

Max 1.6300 100.00 1.3500 100.00

Since the data were collected from the literature, it is not guaranteed that all possible

functional groups are adequately represented. Table 5.2 counts the occurrences of di�erent

functional groups in the data set. While all functional groups in non-aromatic structures

are represented (with hydroxyl and methyl functions being the most common and ketones

the least common), many functionalities in aromatic groups are missing. This means that

the model cannot be trained to predict the properties of these groups and they should be

excluded from the model. This reduces the number of structural features to 30.

The last consideration is temperature. It is important to include the correct temperature

dependence of the density in the model, as this is required for later use in the more complex

prediction of solubilities. Again, the method presented here is based on the experimentally

available systems. This covers the range of 20-100 �C. However, this is not uniformly avail-

able for every DES, as melting and decomposition temperatures vary from compound to

compound. Since machine learning models, especially the tree-based models used here, per-

form poorly in extrapolation, good results are expected only in the range where experimental

data are available.

With this preliminary analysis of the data set, the following expectations for the models

Figure 5.7: a) Distribution of the original density dataset. b) Distribution of the density

dataset after removing the z � 3:0 outliers.
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can be made: The model should perform well in the density range of 0.89-1.35 g=cm3 and

temperature range of 20-100 �C on DES containing the available functional groups listed in

Table 5.2.

Table 5.2: Included functional groups and their count in the dataset. Red highlighting

indicates missing functional groups. While non-aromatic groups are well represented, most

aromatic structures are poorly described, except for simple rings.

Non-aromatic groups

HBA HBD

Group Count Group Count

CH3- 1373 CH3- 299

-OH 899 -OH 2573

-COOH 69 -COOH 397

-NH2 165 -NH2 111

HOC- 8 HOC- 158

-COO- (ester group) 740 -COO- 15

-COHN- (amide group) 16 -COHN- 12

-O- (ether group) 444 -O- 333

Aromatic groups

HBA HBD

Group Count Group Count

CH3- 2 CH3- 29

-OH 5 -OH 129

-COOH 0 -COOH 0

-NH2 0 -NH2 0

HOC- 0 HOC- 0

-COO- (ester group) 0 -COO- 0

-COHN- (amide group) 0 -COHN- 0

-O- (ether group) 0 -O- 105
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5.2.3.2 Preliminary models and model optimization

To develop an optimal density prediction model, preliminary models are tested. Four regres-

sion models are selected: decision tree, random forest, gradient boosting, and multilayer

perceptron. Models of increasing complexity are chosen because it is not known in advance

how complex the underlying problem is. In this way, an optimal model can be found that

describes the relationship between functional groups and density, but does not over�t the

data or consume too much computing power. The preliminary models are taken from the

Scikit-learn library with the default hyperparameters (except for the multi-layer perceptron).

For the multi-layer perceptron: 1000 maximum iterations, 3 hidden layers with 30 nodes

per layer and the limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer algorithm

are used, based on previous work in our group. The evaluation metrics of the preliminary

models are summarized in Table 5.3 and the �t of the predictions on the training dataset

with 10-fold cross validation is shown in Figure 5.8.

In addition to the mean of the 10-fold cross validation of the statistical metrics, the standard

deviation of the measurements is also taken into account. A higher standard deviation

indicates a higher di�erence of prediction in di�erent folds, which is a sign of over�tting of

the model.

The decision tree has the second lowest average error and the third highest average coef-

�cient of determination. On the other hand, it has the highest deviation of both from all

models, indicating a large di�erence between the performance in the di�erent folds and thus

over�tting. Figure 5.8a also shows a large number of outliers, even though the average error

is small. These results indicate that the decision tree may not have the 
exibility to describe

the diversity of possible DES structures, or at least to describe certain ranges.

The random forest has the lowest error and the highest coe�cient of determination among

all preliminary models. At the same time, the deviation of the prediction error is half that

of the single decision tree. This is reasonable because using simple decision trees in an

ensemble helps with over�tting. The same e�ect can be seen in Figure 5.8b: there are still

outliers, but the errors are smaller.

On average, gradient boosting has the highest error and the lowest coe�cient of determina-

tion. On the other hand, the deviation between the di�erent folds is the lowest. In addition,

Figure 5.8c shows that there are fewer outliers in the predictions and the error is slightly

higher but more evenly distributed. This indicates that the model is good at describing the

underlying relationship, but that the model needs to be optimized.

The multilayer perceptron has the second highest error and the second lowest coe�cient of

determination. The cross-validation error is also intermediate compared to other models.

This model also has relatively few outliers and the error pattern is similar to gradient boosting

(see 5.8d and 5.8c).

Based on these results, random forest and gradient boosting regression are selected for

hyperparameter optimization. As mentioned earlier, decision tree seems to over�t, and

instead of regularizing a single tree, it is simpler to use an ensemble model. Accordingly,

random forest has the best metrics. Although gradient boosting has the highest average

error, it has the second lowest deviation during cross-validation, and the simplicity of the
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model makes it a promising candidate. The multi-layer perceptron model had relatively good

results and is a versatile model, but due to the high computational cost and large number

of hyperparameters, it is discarded from further exploration.

Table 5.3: Evaluation metrics of the di�erent preliminary (non-optimized) machine learning

models: Means and standard deviations of 10-fold cross-validation. Random forest regres-

sion has the best mean accuracy. Gradient boosting regression has the smallest standard

deviation, indicating no over�tting.

Model RMSE AARD [%] R2

Mean Std. Mean Std. Mean Std.

Decision tree regression 0.01923 0.01384 0.59 0.22 0.927 0.090

Random forest regression 0.01412 0.00693 0.49 0.14 0.967 0.028

Gradient boosting regression 0.02546 0.00354 1.54 0.15 0.913 0.023

Multi-layer perceptron regression 0.02274 0.00475 1.25 0.21 0.929 0.028

Grid search is used to tune the hyperparameters of the two selected models. The selected

models have relatively low computational requirements and a small number of hyperpa-

rameters, so grid search is easier to use for optimization than random search of possible

hyperparameter combinations.

In the random forest model, the number of individual trees, the depth of individual trees, the

minimum number of samples in a branch to split, and the minimum number of samples in a

leaf are tuned. Since the last three have no constraints in the default model (no maximum

depth, one sample in the leaf), the hyperparameter tuning here is the regularization of the

model for better generalization without too much loss of accuracy. The hyperparameters are

regularized in a two-step grid search in the range of n estimators=150-250, max depth=12-

18, min samples split=3-7, min samples leaf=2-5. The two-step search is performed in such

a way that the selected values are the internal point of the already narrowed grid. The �nal

selected hyperparameters are: max depth=16, min samples leaf=2, min samples split=5,

n estimators=200. Based on Table 5.4, the regularization slightly decreased the accuracy

of the model, while the deviation in the cross-validation did not change. Figure 5.9a shows

no signi�cant changes in the outliers. This indicates that the hyperparameter tuning did not

signi�cantly improve the performance of the model. However, with the regularization of the

models, it will be less likely to over�t the test data.

In the gradient boosting model, the maximum depth of each tree, the number of trees, the

learning rate, and the subsampling ratio are tuned. By decreasing the maximum depth of

each tree, decreasing the subsample ratio, and increasing the number of estimators, the goal

is to better generalize the model. By increasing the learning rate, the goal is to speed up

model training without losing accuracy. Again, the grid search is performed in two iterative

steps to �nd internal values in the searched region. Such values are found for the ratio

of subsamples and learning rate. However, the maximum depth of the trees could not be

decreased without signi�cant loss of accuracy, and increasing the number of estimators after

a certain point did not signi�cantly increase the accuracy either. The �nal hyperparameters

are learning rate=0.25, n estimators=300, max depth=3 and subsample ratio=0.8. In the

table 5.4, the metrics slightly increased with the tuning of the hyperparameters, while the

deviation within the cross-validation decreased. Figure 5.9b shows that in general the resid-
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(a) Decision tree regression (b) Random forest regression

(c) Gradient boosting regression (d) Multi-layer perceptron regression

Figure 5.8: Predictions vs. experimental density values of the training set in the di�erent

preliminary (non-optimized) machine learning models. While decision tree and random forest

have lower average prediction error with more outliers, gradient boosting and multilayer

perceptron have higher average error but fewer outliers.

uals decreased slightly, but some outliers are still present. Overall, these results indicate

that the optimization improved the performance of the gradient boosting regression, which

now surpasses the results of the random forest on the training data.

5.2.3.3 Final models and prediction analysis

Table 5.5 shows the performance of the optimized models on the test and full data sets. The

random forest regression model has a relative error of about 0.5 % in predicting the test data

points, with a coe�cient of determination of 0.989. For the full data set, the relative error is

0.364 %, while the coe�cient of determination is 0.988. The gradient boosting regression

has a relative error of 0.386 % on the test with a coe�cient of determination of 0.991.

For the entire data set, the relative error is 0.279 % and the coe�cient of determination is

0.997. While the gradient boosting model performs slightly better, both models have good

accuracy with errors close to or below 0.5 %. Figure 5.10 shows that only a few outliers

remain in the �nal models, and even those have relatively small residual errors. It can also

be seen that the outliers are the same data points in both models.
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(a) Random forest regression (b) Gradient boosting regression

Figure 5.9: Predictions vs. experimental density values of the training set in the two hyper-

parameter optimized machine learning models. Both models have a low mean error and few

outliers.

Table 5.4: Evaluation metrics of the two hyperparameter optimized machine learning mod-

els. The random forest has the same metrics after hyperparameter optimization, indicating

regularization without losing much predictive power. In the case of gradient boosting, the

accuracy increased while the cross-validation error decreased.

Model RMSE AARD [%] R2

Mean Std. Mean Std. Mean Std.

Preliminary models

Random forest regression 0.00025 0.00021 0.49 0.14 0.967 0.028

Gradient boosting regression 0.00066 0.00018 1.54 0.15 0.913 0.023

Optimized models

Random forest regression 0.00028 0.00022 0.60 0.14 0.963 0.029

Gradient boosting regression 0.00020 0.00016 0.49 0.09 0.974 0.021

Table 5.5: Evaluation metrics of the two hyperparameter-optimized machine learning models

on the test set and on the full dataset. In addition to the overall good accuracy, the small

di�erence between the results of the full dataset and the test data shows minimal over�tting.

Model RMSE AARD [%] R2

Random forest regression - test set 9.25e-03 0.505 0.989

Random forest regression - all data 9.84e-03 0.364 0.988

Gradient boosting regression - test set 8.44e-03 0.386 0.991

Gradient boosting regression - all data 8.43e-03 0.279 0.997

Figure 5.11 shows the learning curves of the two optimized models. A learning curve is a

plot of the model performance (described by a loss function, in this case the RMSE) on the

training and validation sets (or in this case the test set) as a function of the training set

size. It is a tool to �nd out how much the model bene�ts from adding more training data

and whether the model su�ers from variance of bias error. As more data is added to the

training set, the error of the training prediction will initially increase as it becomes harder

to generalize the predictions. At the same time, the error of the test set decreases because
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(a) Random forest regression on test set (b) Random forest regression on all data

(c) Gradient boosting regression on test set (d) Gradient boosting regression on all data

Figure 5.10: Predictions vs. experimental density values of the test set and the full dataset

in the two hyperparameter optimized machine learning models. Each model has a small error

and few outliers. The outliers are present in the test data set.

the model generalizes better with more data. The two errors should merge as more data is

added (as we see in Figure 5.11), and both reach a plateau as the model reaches its limit. If

the error of the training set continuously decreases, it means that there is not enough data

to build a well generalized model. A large gap between the training and test curves indicates

over�tting of the model, as the model performs much better on the training data. If the gap

is small but the loss function is high, the model is under�tting and a more complex model

should be used.

In Figure 5.11, both models reach a plateau at a low loss function, and the train and

test curves also converge. This means that the models do not have signi�cant under- or

over�tting. In the case of the random forest model, the plateau is reached around an RMSE

value of 0.01 g=cm3 with between 800 and 900 included data points in the training set. In

the case of gradient boosting, the gap between the training and test RMSE is slightly larger,

indicating a slight over�tting, but the loss function at the plateau is slightly lower, around

0.0075 g=cm3 RMSE. The model reaches a plateau at a higher number of data points,

between 900 and 1000.

Overall, both models train su�ciently on the available database and are complex enough

to describe the underlying relationships between input and output parameters, while the

regularization introduced during hyperparameter optimization prevents over�tting.
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(a) Random forest regression (b) Gradient boosting regression

Figure 5.11: Learning curves of the two hyper-parameter optimized machine learning models.

The merging error of the training dataset (red curve) and the test dataset (blue curve)

indicates the su�cient size of the data.

Figure 5.12 shows the distribution of the relative error of the predictions in the train and

test set and the residual error of the predictions as a function of density. In both models, the

deviation follows a normal distribution around zero values with a small number of outliers.

There are no clusters at speci�c non-zero values that would indicate an artifact in the model.

In the random forest model, the largest relative error is 13.5 % and it belongs to a data

point in the training set. However, there are only 10 data points in the data set with a

relative error equal to or greater than 5.0 %. In the gradient boosting model, the error is

smaller; the highest relative error is -5.5 % and only 4 data points have equal or higher error

than 2.0 %. The outliers of the random forest and gradient boosting models are shown in

the Table 5.6 and 5.7.

Figures 5.12b and 5.12b show the residual error of the predictions as a function of density. In

both models, the residual error seems to be mostly independent of the value of the predicted

property. However, in the random forest model, some points show a negative correlation

with the density. Based on the structure and temperature of the outliers ( cf. Figures 5.12c

and 5.6) there is no indication that certain functional groups or compounds would cause

the error, as the outliers show a great variety in structure. However, the outliers are all low

temperature data points. This indicates that the random forest model has lower accuracy

for low temperature samples. This is reasonable since there are fewer DES stable in the

20-25 �C range and therefore the model is likely to be less accurate here. On the other

hand, the same trend is not present for the gradient boosting method, which generalizes

better even with smaller amounts of data.

Finally, the temperature dependence of the density is evaluated. 4 DES are selected: choline

chloride-urea (molar ratio 1:2), choline chloride-ethylene glycol (molar ratio 1:2), tetrahexy-

lammonium bromide-glycerol (molar ratio 1:2), and betaine lactic acid (molar ratio 1:2) in

the temperature range of 20 to 90 �C. The experimental and predicted densities as a function

of temperature are plotted in Figure 5.13. In this system, only the random forest prediction

of choline chloride-urea had a largely outlying value at 30 �C (see Figure 5.13a). The rest

of the predictions follow the experimental trend. Although gradient boosting generally has

smaller errors, in the case of choline chloride urea and the model has artifacts where the
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(a) Random forest regression -

relative deviation

(b) Gradient boosting regression -

relative deviation

(c) Random forest regression -

density vs. residue

(d) Gradient boosting regression -

density vs. residue

Figure 5.12: Relative deviation in the test set and all data and the residual vs. density

plot of all data of the two hyperparameter optimized machine learning models. There is

no grouping in the outliers, but in the random forest model the outliers show a negative

correlation with density.

density does not decrease with temperature (see Figures 5.13b and 5.13f), but forms a

plateau. This could be a problem when the model is combined with theory-based models

such as PC-SAFT, because con
icting physicochemical rules cause errors in the modeling.

This issue needs to be further investigated in the future. In addition, the errors tend to

increase at extreme temperatures. This is consistent with the �ndings on outlier data points

(cf. Tables 5.6, 5.7 and Figure 5.13). Since tree-based models tend to extrapolate poorly,

it is expected that predictions at the boundary of the feature space will be less accurate.

5.2.4 Conclusions

The goal of this work was to develop a density prediction model for deep eutectic solvents

by combining machine learning and group contribution methods.

A dataset of 1426 instances from the literature was combined and the number of di�erent

functional groups of the compounds was calculated. The input variables of the model are
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Table 5.6: Samples with a relative error greater than 5 % in the random forest model on

the full data set. There is no speci�c compound among the outliers, but all points belong

to low temperatures.

ID HBA HBD Temperature [�C] Relative error [%]

178 menthol decanoic acid 25.0 13,5

17 ethylammonium

chloride

acetamide 25.0 9,7

183 menthol thymol 25.0 6,8

11 choline chloride butanediol 20.0 6,7

181 lidocaine menthol 25.0 5,8

548 Choline chloride Acetamide 30.0 5,0

18 ethylammonium

chloride

2,2,2-

tri
uoroacetamide

25.0 -6,8

26 2-

(Diethylamino)ethanol

hydrochloride

2,2,2-

tri
uoroacetamide

40.0 -7,2

12 choline chloride 2,2,2-

tri
uoroacetamide

25.0 -8,3

176 tetra n-butyl am-

monium bromide

glycerol 25.0 -8,6

Table 5.7: Samples with relative error above 2 % in the gradient boosting model with the

full dataset. There is no speci�c compound among the outliers, but all points belong to low

temperatures.

ID HBA HBD Temperature [�C] Relative error [%]

174 tetra n-butyl am-

monium bromide

ethyleneglycol 25.0 3,0

44 choline chloride Fructose 25.0 2,3

29 choline chloride phenol 40.0 2,3

881 Choline chloride Oxalic acid 30.0 -5,5

the number of di�erent functional groups in the HBA and HBD compounds, the molar ratio

of the compounds and the temperature. After removing outliers, the dataset of 1421 data

points has information about 38 HBA and 71 HBD compounds, 132 combinations of them

in 229 di�erent molar ratios in the temperature range of 20-100 �C and about the density

range of 0.899-1.35 g=cm3. Due to the small data set, the randomly selected 90 % of the

data set was used for training and only 10 % for testing the built models.

For the machine learning task, simple decision tree, multi-layer perceptron, random forest,

and gradient boosting regression models were considered. After initial testing, the latter

two were selected for optimization as the �nal models. The random forest regression model

yielded a mean absolute relative deviation of 0.505 % and a coe�cient of determination

of 0.989 on the test set. The gradient boosting regression model yielded 0.386 % mean

absolute relative deviation and 0.991 coe�cient of determination on the test set. Based on

the learning curves, the size of the data set is su�cient to train these models. Based on

the residual errors of the predictions, there are no systematic errors in the model, but the

random forest model has a higher error at low temperatures (20-30 �C). The built models
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(a) Random forest regression - temper-

ature dependence of density

(b) Gradient boosting regression - tem-

perature dependence of density

(c) Random forest regression - temper-

ature dependence of density

(d) Gradient boosting regression - tem-

perature dependence of density

(e) Random forest regression - temper-

ature dependence of density

(f) Gradient boosting regression - tem-

perature dependence of density

(g) Random forest regression - temper-

ature dependence of density

(h) Gradient boosting regression - tem-

perature dependence of density

Figure 5.13: Temperature dependence of the density of selected DES systems in the two

hyper-parameterized machine learning models. The models incorporate the temperature

dependence well, with some deviations at the extremes.
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also describe the temperature dependence of the density well, but the gradient boosting

model has plateaus in the temperature-density relation at certain points. Correction of this

error will be necessary in the future to combine the proposed models with theory-based

models.



118 CHAPTER 5. MODELING DENSITY, VISCOSITY AND SOLUBILITY IN NADES

5.3 Viscosity prediction

5.3.1 Introduction

Viscosity is one of the most important properties of DES to model. Its accurate prediction

is necessary because it determines the utility of solvent candidates via the mass transfer and

energy dependence of the material 
ow. It's important from both the chemical and engineer-

ing feasibility aspects of the process. As with other properties of DES, the strong hydrogen

bonding interactions in
uence viscosity. DES typically have very high viscosity, which is

one of the limiting factors in their application. Accurate determination of liquid viscosity is

already di�cult due to the liquid phase momentum transfer mechanism in the system, but

exceptionally strong secondary interactions make modeling even more challenging.

Consequently, theoretical methods, although providing a sound theoretical background to the

underlying mechanism, often operate with very large errors [168, 169]. On the other hand,

simple correlations and semi-empirical methods often give better results [170, 171, 172].

Global correlation models are currently only available for ionic liquids [173, 174]. In viscosity

modeling of DES there are two main approaches: the application of IL models by param-

eterizing to DES and forming a global model in the form of e.g. reduced Arrhenius type

viscosity model or the development of complex theoretical models with the combination of

theoretical viscosity models with equation of state models.

Although simple models with general parameters would be needed for the large number of

possible DES, high accuracy global viscosity modeling is still a challenge. Modeling becomes

even more challenging when ternary and quaternary mixtures are considered.

The simple correlation approaches used in DES modeling come from work with ionic liquids.

Based on the correlation of Vogel [175] and the correlation of Daubert and Danner [176],

Haghbakhsh and Raessi proposed a simple empirical correlation method for ILs and their

aqueous mixtures [177]. The model for pure ILs, using 4 parameters and based on 245

viscosity measurements of 8 ILs, achieved an absolute average relative deviation (AARD) of

2.97 %. For aqueous mixtures, using 6 parameters on 512 data points, it reached 6.72 %

AARD. Later, Bakhtyari et al. used the same approach for DES by combining the Lydersen-

Joback-Reid group contribution method [153] [154] with the Lee-Kessler mixing rules [155]

to calculate and use critical pressure and temperature as input parameters. The correlation

part used 2 parameters as �tting constants. This model was applied to 1308 data points

from 156 DES and achieved 10.4 % AARD. The same group reported the application of

the Vogel-Fulcher-Tamman model [158] for viscosity calculation using 3 DES-speci�c �tting

constants. The latter method achieved 1.7 % AARD. In their recent work, Haghbakhsh et al.

investigated the application of di�erent empirical viscosity models (Arrhenius-like, Grunberg-

Nissan [178], Jouyban-Acree [179], McAllister [180] and Preferential Solvation [181]) to

choline chloride-ethylene glycol systems [160]. Many models were able to achieve good

accuracy, even for the mixtures of DES and alcohols, but all models required experimental

data to determine the model parameters. The problem with these models is that optimizing

the many parameters requires experimental data on the speci�c systems for high accuracy,

and using only global parameters results in poor accuracy. In addition, with component-

speci�c parameterization, they cannot be used to predict novel systems.
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The other approach is to combine theoretical viscosity models with Equation of State (EoS)

models. Here, EoS models are used to provide parameters to the viscosity model in order

to improve the accuracy of the latter. This approach was �rst applied to pure alcohols by

Parvaneh et al. [182]. They combined three theoretical viscosity models, the free volume

theory [183], Eyring's theory [184] and the friction theory [185] with four EoS, the Peng-

Robinson [186], Redlich-Kwong-Soave [187], Perturbed-Chain statistical associating 
uid

theory [188], and cubic plus association [189]. The parameters of the viscosity models were

partially calculated by EoS and the rest were �tted to viscosity measurements. The applied

data set contained information on 9 alcohols in the temperature and pressure range of 203-

373 K and 0.1-118 MPa with 1090 viscosity data points. Both the free volume theory and the

friction theory achieved good accuracy with the CPA and PC-SAFT EoS (AARD 1.70-2.75

%). However, the large number of parameters required many experimental measurements.

This method was implemented by Haghbakhsh et al. in two consecutive studies [93, 173].

In their �rst work, they combined the friction theory with CPA and PC-SAFT EoS to

calculate the viscosity of 27 DES [173]. In this approach they used the Lydersen-Joback-Reid

group contribution method [153, 154] with the Lee-Kesler mixing rules [155] to calculate the

critical properties and accentric factors. They used the two EoS to determine the attractive

and repulsive pressure parameters in the viscosity model. Experimental density measurements

were used to adjust the 5-5 parameters of the two EoS. Finally, the 5 adjustable parameters

of the friction theory were �tted to the experimental viscosity measurements. In their work,

they predicted the viscosity of 27 DES based on 590 density and 253 viscosity measurements

of these systems, achieving 4.4 % AARD with both EoS.

In their second paper, they used the same approach and data set, but used the free volume

theory as the viscosity model [93]. In this approach, the CPA and PC-SAFT are auxiliary

equations to calculate the density needed in the residual term in the viscosity equation. With

this approach, both combinations achieved an AARD of 2.7 %. These examples show that

the use of theoretical models provides accurate and theoretically sound predictions, but it

requires a large number of experimental measurements and its application to novel systems

is very limited.

To date, no global viscosity model has been proposed that can make accurate predictions

without prior experimental data on the system. Given the large number of possible DES and

the need for computational screening of their properties for e�ective design, their application

is severely hampered. In this chapter, I explore a similar approach that I have used e�ectively

for density modeling. To do so, I use the experimental dataset assembled by Bakhtyari et

al. for their viscosity model [190]. I set up a qualitative structure-property relationship

model by describing the DES structure by the numbers of di�erent functional groups in their

compounds instead of complicated feature generation steps. By using the general structure

as an input variable, novel systems become describable, which is a great advantage over

previous modeling e�orts.

5.3.2 Machine learning work
ow

The same work
ow and models were used for viscosity prediction as for density prediction.

There are only two di�erences compared to the density section. First, the viscosity data set
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was taken from the work of Bakhtyari et al. [190]. Second, the data set was not truncated

based on the standard deviation (z-score), but at a �xed value of 200 mPas.

5.3.3 Results and discussion

5.3.3.1 Dataset

The initial data set consists of 1306 data points from 22 previously published studies. The

dataset covers a viscosity range of 5.2-17645 mPaS and a temperature range of 4-95 �C (see

Table 5.8). However, the distribution of the data shows a strong tail at higher values (see

�gure 5.14). While 75 % of the data points are below 208 mPaS, the last 25 % cover the

range 208-17645 mPas. This means that the high viscosity range is heavily undersampled

and no accurate predictions can be expected here. (This has also been proven by preliminary

prediction experiments, which are not reported here.) Since the dataset does not follow

a normal distribution at all, trimming the dataset based on the standard deviation is not

an option (see Table 5.8: the average viscosity is 366 mPas with a standard deviation of

1263 mPas). To overcome this sampling problem, I dropped high viscosity data points by

excluding instances above 200 mPas. This reduced the number of data points from 1306

to 971. The average density decreased from 366 mPas to 32 mPas, while the standard

deviation decreased from 1263 mPas to 45 mPas, see table 5.8. This is still not a normal

distribution, but the models used do not require normality. On the other hand, this trimming

results in a much better described range of viscosity (see �gure 5.14).

As with density modeling, the temperature dependence of viscosity is an important consid-

eration to include in the model. Similarly, the available data depend on the melting and

decomposition temperatures of DES, so the information available is di�erent for each sys-

tem. Fortunately, trimming does not a�ect the described temperature range or temperature

distribution. Both the original and the trimmed dataset describe instances in the temperature

range 4-95 �C (see Table 5.8). This indicates that the high viscosity instances are related

to the included compounds rather than lower temperatures. As a result, information about

the structural diversity is lost with the trimming rather than the temperature described.

Table 5.8: Statistics of the original and trimmed viscosity data sets. There are signi�cant

changes in both the size and distribution of the data set.

Original dataset Trimmed dataset

Viscosity [mPas] Temperature [�C] Viscosity [mPas] Temperature [�C]

N 1306 971

Mean 365.92 43.28 31.93 44.49

Std. 1262.84 18.09 44.83 18.82

Min 5.20 4.00 5.20 4.00

25 % 33.89 30.00 28.07 30.00

50 % 70.00 40.00 47.60 45.00

75 % 208.00 55.00 84.85 60.00

Max 17645.50 95.00 197.60 95.00
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Figure 5.14: a) Distribution of the original viscosity data set. b) Distribution of the vis-

cosity data set after trimming at 200 mPas. The original data set does not have a normal

distribution, so in order to have a usable data set, the high values are trimmed at a �xed

point.

The same feature engineering is used as for density modeling. The functional groups present

in the DES compounds are taken into account to generate the input variables of the model. A

commonly used grouping of molecular structures is used, di�erentiating between functional

groups present in chain or aromatic ring structures, and whether it is in a HBA or HBD

compound. The functional groups considered and their abundance in the database are

summarized in Table 5.9.

Besides the available viscosity values, the available functional groups are the main limitation

of the model (the model cannot predict DES with functional groups for which it has no

information, for which it is not trained). Since the data are taken from the literature, not

every functional group is adequately represented. Table 5.9 shows that many considered

functional groups are not present in the database at all, and the limitations are even greater

for groups in aromatic rings. While most functional groups in non-aromatic structures are

represented, with the exception of aldehyde and amide groups in HBAs and aldehyde and

ester groups in HBDs, most functionalities in aromatic structures are missing. Carboxyl,

amine, ester, and amide groups present on aromatic groups are completely missing from the

database. In addition, data on aromatic ether and hydroxyl groups are also very limited.

These groups are excluded from model development and the model will not have predictive

capabilities for novel systems containing these groups. This reduced the number of structural

features to 22.

After this pre-processing of the data set, the model will provide information in the following

range: Prediction can be made in the viscosity range of 5.2-197.6 mPas and temperature

range of 4-95 �C for DES containing functional groups listed in Table 5.9.
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Table 5.9: Included functional groups and their count in the dataset. Red highlighting

indicates missing functional groups. Many functional groups are missing from the viscosity

database, limiting the application domain of predictive models.

Non-aromatic groups

HBA HBD

Group Count Group Count

CH3- 286 CH3- 182

-OH 548 -OH 264

-COOH 4 -COOH 130

-NH2 19 -NH2 66

HOC- 0 HOC- 0

-COO- (ester group) 56 -COO- (ester group) 0

-COHN- (amide group) 0 -COHN- (amide group) 6

-O- (ether group) 56 -O- (ether group) 123

Aromatic groups

HBA HBD

Group Count Group Count

CH3- 2 CH3- 9

-OH 5 -OH 59

-COOH 0 -COOH 0

-NH2 0 -NH2 0

HOC- 0 HOC- 0

-COO- (ester group) 0 -COO- (ester group) 0

-COHN- (amide group) 0 -COHN- (amide group) 0

-O- (ether group) 3 -O- (ether group) 17

5.3.3.2 Preliminary models and model optimization

The model training is done in two steps: �rst, a number of preliminary models are tested,

then the best candidates are optimized by hyperparameter tuning. For preliminary training,

the same four regression models are selected as for density modeling: decision tree, random

forest, gradient boosting, and multilayer perceptron. Models of increasing complexity are

chosen because it is not known in advance how complex the underlying problem is. This

allows us to �nd an optimal model that describes the relationship between functional groups

and density, but does not over�t the data or consume too much computing power. The

preliminary models are taken from the Scikit-learn library with the default hyperparameters

(except for the multi-layer perceptron). For the multi-layer perceptron, 1000 maximum

iterations, 3 hidden layers with 30 nodes per layer, and the limited-memory Broyden-Fletcher-

Goldfarb-Shanno optimizer algorithm are used, based on preliminary experiments in our

group. The evaluation metrics of the preliminary models are summarized in Table 5.10 and

the �t of the predictions from the training data set with 10-fold cross validation is shown in

Figure 5.15.

In addition to the mean of the 10-fold cross validation of the statistical metrics, the standard

deviation of the measurements is also taken into account. A higher standard deviation
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indicates a higher di�erence of prediction in di�erent folds, which is a sign of over�tting of

the model.

The decision tree had the highest average error and the lowest average coe�cient of de-

termination. In addition, the standard deviation of both metrics was the highest among the

tested models, indicating a large di�erence between cross-validation and over�tting.

Figure 5.15a also shows that the error increases with viscosity. This could be due to less data

at higher viscosity values. These results suggest that the decision tree may not be 
exible

enough to describe the variety of possible DES structures, especially at higher viscosity

values.

The random forest has the second lowest error and the second highest coe�cient of deter-

mination among all preliminary models. At the same time, the deviations of the prediction

error and the coe�cient of determination are the lowest of all tested models. This indicates

that the ensemble method helps with over�tting (as expected). The improvement is also

visible in Figure 5.15b: the error decreases at higher viscosity values. This is reasonable, as

using simple decision trees in an ensemble helps with over�tting.

On average, gradient boosting has the second highest error and the second lowest coe�cient

of determination. The deviation of both metrics is slightly higher than for random forest and

multi-layer perceptron. Figure 5.15c shows a systematic underprediction of viscosity values

at higher viscosity values.

The multi-layer perceptron has the lowest error and the highest coe�cient of determination.

In addition, the cross-validation error of both is the smallest of all tested models. This model

has more outliers than previous models, but the error pattern shows no systematic error (see

Figure 5.15d).

Based on these results, random forest regression and multilayer perceptron regression are

selected for hyperparameter optimization. As mentioned earlier, decision tree seems to

over�t and instead of regularizing a single tree, it is simpler to use an ensemble model.

Accordingly, random forest has the second best metrics. Interestingly, gradient boosting

underperforms compared to random forest. Although both models use an ensemble of trees,

the gradient boosting model works through iterations, which can be a drawback on smaller

datasets. The multilayer perceptron model had the best metrics. The fact that it was

the best for viscosity and not for density may be due to the more complex nature of the

underlying problem.



124 CHAPTER 5. MODELING DENSITY, VISCOSITY AND SOLUBILITY IN NADES

Table 5.10: Evaluation metrics of the various preliminary (non-optimized) machine learning

models. Large errors are observed for each model. Random forest and multilayer perceptron

have the best accuracy and consistency between cross-validations.

Model RMSE AARD [%] R2

Mean Std. Mean Std. Mean Std.

Decision tree re-

gression

726.64 165.25 28.6 6.4 0.639 0.067

Random forest re-

gression

540.70 125.48 25.9 4.9 0.732 0.049

Gradient boosting

regression

617.40 135.97 34.8 4.1 0.693 0.055

Multi-layer percep-

tron regression

412.80 125.37 20.6 0.1 0.796 0.056

(a) Decision tree regression (b) Random forest regression

(c) Gradient boosting regression (d) Multi-layer perceptron regression

Figure 5.15: Predictions vs. experimental viscosity values of the training set in the di�erent

preliminary (non-optimized) machine learning models. Random forest regression and mul-

tilayer perceptron have lower error, but the error appears to increase with viscosity in each

model.

Grid search is used to tune the hyperparameters of the two selected models. While the

random forest has relatively low computational requirements, the multi-layer perceptron has

many adjustable parameters and is computationally demanding. Therefore, I used a grid
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search in both cases. For the random forest, I tried many combinations for optimization.

For the multi-layer perceptron, I only tried a handful of combinations close to the expected

optimum based on my preliminary models.

In the random forest model, the number of individual trees, the depth of individual trees, the

minimum number of samples in a branch to split, and the minimum number of samples in a

leaf are tuned. Since the last three have no constraints in the default model (no maximum

depth, one sample in the leaf), the hyperparameter tuning here is the regularization of the

model for better generalization without losing too much accuracy. The hyperparameters are

regularized in a two-step grid search in the range of n estimators=150-250, max depth=12-

17, min samples split=3-7, min samples leaf=2-5. The search is done in such a way that the

selected values are the internal point of the already narrowed grid. The �nal selected hyperpa-

rameters are: max depth=15, min samples leaf=2, min samples split=3, n estimators=250.

Based on the Table 5.11, the regularization slightly decreased the accuracy of the model,

while the deviation in the cross-validation slightly decreased. Figure 5.16a shows no sig-

ni�cant changes in the outliers. This indicates that the hyperparameter tuning did not

signi�cantly improve the performance of the model. However, with the regularization of the

models, it will be less likely to over�t the test data.

In the multi-layer perceptron, the activation function, the solver, the number of hidden layers,

and the number of neurons per layer are tuned. Due to the large number of parameters,

the goal is not only regularization of the model, but also accuracy. In the �rst step, the

activation function and the solver are selected in a model with 3 hidden layers and 30 nodes

per layer. In this step, logistic, hyperbolic tangent, and recti�ed linear activation functions

are tested. For solvers, the limited-memory Broyden-Fletcher-Goldfarb-Shanno, Adam, and

stochastic gradient descent algorithms are tested. After the initial screening, recti�ed linear

activation functions and limited-memory Broyden-Fletcher-Goldfarb-Shanno are selected for

further modeling. The number of hidden layers in the range of 1-8 and the number of nodes

per layer in the range of 1-60 are tested in multiple iterative steps until a stable value is

reached with the internal values of the test set. The nodes in the hidden layers are kept the

same in each layer, as previous studies have not found a signi�cant di�erence in accuracy

by varying the layout of the neurons in this way. The �nal layout is a 3 hidden layer neural

network with 20 neurons per layer. The results of the �nal model on the training set with 10-

fold cross validation are shown in Table 5.11 and Figure 5.16b. The accuracy of the model

increased slightly with the hyperparameter tuning. At the same time, the cross-validation

error also increased, indicating an over�tting of the model.

In general, both models still perform poorly after optimization compared to the density

model and previous e�orts in the �eld. Table 5.11 shows that the optimized random forest

regressor has an AARD of 28.7 % and a coe�cient of determination of only 0.715 based

on the average of 10-fold cross validation. Similarly, the multilayer perceptron model has

an AARD of 18.4 % and a coe�cient of determination of 0.807. These results indicate

that the recommended models will perform poorly. Since the optimization does not help the

accuracy, this is probably due to the insu�cient size and quality of the applied dataset.
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(a) Random forest regression (b) Multi-layer perceptron regression

Figure 5.16: Predictions vs. experimental viscosity values of the training set in the two

hyperparameter optimized machine learning models. The error decreased, but still higher

deviation at high viscosities

Table 5.11: Evaluation metrics of the two hyperparameter optimized machine learning mod-

els. Hyperparameter tuning did not improve the accuracy of the models.

Model RMSE AARD [%] R2

Mean Std. Mean Std. Mean Std.

Preliminary models

Random forest re-

gression

540.70 125.48 25.9 4.9 0.732 0.049

Multi-layer percep-

tron regression

412.80 125.37 20.6 0.1 0.796 0.056

Optimized models

Random forest re-

gression

572.05 124.87 28.7 4.9 0.715 0.055

Multi-layer percep-

tron regression

398.11 218.91 18.4 3.4 0.807 0.093

5.3.3.3 Final models and prediction analysis

Table 5.12 shows the performance of the optimized models on the test and full data sets.

The random forest regression model has a relative error of about 27 % in predicting the

test data points with a coe�cient of determination of 0.760. For the full data set, the

relative error is 17.81 %, while the coe�cient of determination is 0.886. These metrics

clearly indicate that the model is not suitable for quantitative predictions. In addition, the

di�erence between the results on the full dataset and the test dataset indicates the over�tting

of the model. The di�erence in accuracy between the train and test sets after regularization

indicates that the size of the dataset is also insu�cient to generalize the model. In addition,

Figure 5.17a and Figure 5.17a show that the outliers also primarily belong to the test set.

The multilayer perceptron had higher accuracy (see Table 5.12). The model on the test

set has 14.94 % AARD and 0.886 coe�cient of determination. On all data, the model has

12.23 % AARD and 0.939 coe�cient of determination. Although there is some over�tting,
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the multilayer perceptron performs much better than the random forest. Figure 5.17d shows

that the outliers are also more evenly distributed between the training and test sets, which

also indicates the smaller over�tting. Nevertheless, this means that the reason for the low

accuracy of the second model is also the insu�cient size of the data. Again, this model can

still be considered as qualitatively accurate.

Table 5.12: Evaluation metrics of the two hyperparameter optimized machine learning mod-

els on the test set and on the full dataset. The model performs signi�cantly worse on the

test dataset, indicating over�tting.

Model RMSE AARD [%] R2

Random forest regression - test set 21.74 26.8 0.760

Random forest regression - all data 15.70 17.8 0.886

Multi-layer perceptron - test set 14.49 14.9 0.886

Multi-layer perceptron - all data 11.04 12.2 0.939

(a) Random forest regression on test set (b) Random forest regression on all data

(c) Multi-layer perceptron regression on test set (d) Multi-layer perceptron regression on all data

Figure 5.17: Predicted vs. experimental viscosity values of the test set and the full data set

in the two hyperparameter optimized machine learning models. The �nal models still have

large errors, especially at higher viscosity values.
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Figure 5.18 shows the learning curves of the two optimized models. For both models, the

loss function (RMSE) of the test set decreases as the size of the training set increases and

approaches the loss function of the training set, but the error does not reach a plateau

before all the data is used up. The di�erence in the loss function is greater for the random

forest model than for the multilayer perceptron, suggesting greater over�tting in the former,

which is consistent with previous �ndings. The fact that the models did not reach a stable

error using all the training data means that the model is not properly trained due to the small

data set. This means that the model could include more complexity that better describes

the underlying relationship, but there is not enough data to represent it. This can only

be corrected by including more data points. In the case of the random forest, the RMSE

decreases steadily until all the training data is used up and reaches about 22 mPas RMSE.

In the case of the multi-layer perceptron, the decrease of the loss function is also steady

until the complete test set is reached, and the �nal RMSE is around 15 mPas (ignoring the


uctuation of the loss function of the test set). For the random forest, the �nal di�erence

between the training and test RMSE is about 8 mPas, indicating over�tting. For the multi-

layer perceptron, this di�erence is about 3 mPas, indicating a small over�tting. Overall, both

models train poorly on the available database. The models are believed to be su�ciently

complex to describe the underlying relationships between input and output parameters, but

with the small dataset, proper regularization was not possible, resulting in over�tting. More

data would be needed to further develop the models.

(a) Random forest regression (b) Multi-layer perceptron regression

Figure 5.18: Learning curves of the two hyperparameter optimized machine learning models.

The merging error of the training dataset (red curve) and the test dataset (blue curve)

indicates that the size of the dataset is not su�cient to train the models.

Due to the high error of the models and the clearly insu�cient amount of data, no further

analysis is performed. Since the models are not properly trained and only qualitative predic-

tions are possible at this point, it does not make sense to analyze either the model errors

or the temperature dependence of the viscosity predictions (i.e., the density error is larger

than the temperature e�ect).
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5.3.4 Conclusions

In this section, I investigated the predictive modeling of DES viscosities by combining the

group contribution method with machine learning. A dataset of 1308 viscosity measure-

ments was taken from the literature and the number of di�erent functional groups in the

compounds was calculated and used as input parameters. Additional input parameters were

the molar ratio of the HBA and HBD compounds and the temperature. The �nal data set

contained 971 points in the viscosity range of 5.2-197.6 mPas and the temperature range

of 4-95 �C. Due to the small dataset, the randomly selected 90 % of the dataset was used

for training and only 10 % for testing the built models. For the machine learning task, sim-

ple decision tree, multi-layer perceptron, random forest, and gradient boosting regression

models were considered. After initial testing, the multi-layer perceptron was selected as the

best performing model for optimization as the �nal predictor. The �nal multilayer percep-

tron model yielded an absolute average relative deviation of 12.23 % and a coe�cient of

determination of 0.939. The learning curve analysis indicates that the large error is caused

by the insu�cient size of the data set.
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5.4 Solubility prediction

The solubility of the actors of the reaction determines the applicability of certain solvents,

therefore a robust and accurate solubility model is necessary to design applications in DES.

In addition, it is clear from the experimental work in Chapter 3 that the solvation of the

reactants has the greatest e�ect on reaction performance in enzymatic reactions. The

problem is that due to the strong hydrogen bonding in DES and the presence of salts in the

solvent itself, currently available models (e.g. the Hansen solubility parameters) do not give

correct predictions of solubility in DES.

Research on modeling solubility in DES has been rather limited. Since DES are considered

to be a good candidate for CO2 absorption, most studies have focused on this topic [90, 63,

31, 99, 91]. Dissolution of active pharmaceutical ingredients or other complex molecules is

less discussed in the literature [35, 191, 28].

The main challenge in using a data-driven model for solubility, as with density and viscosity,

is the lack of available experimental data. The lack of data is twofold. First, much less e�ort

is put into collecting high quality and extensive data on di�erent NADES and substrates.

(Screening substrate solubilities in high-viscosity NADES is meticulous work due to slow

equilibration). Second, a substrate-NADES system is at least ternary, which means that the

dimensions of the feature space are higher. (The amount of data required to achieve the

same resolution grows exponentially with the dimension of the feature space). Therefore,

purely data-driven solubility prediction methods won't be feasible in the near future.

This led to the idea of combining a data-driven technique with a theoretical model to take

advantage of both. Since PC-SAFT has been used in the past to e�ectively predict the

solubility of ternary and quaternary DES systems [88, 89, 92], and the PC-SAFT parameters

of the DES can be optimized based on the density values of the DES [93, 192]. In addition,

an accurate and widely applicable DES density model is already available, and the two can be

combined to determine the solubility in a DES system. More speci�cally, the density model

could be used to determine the parameters of the DES in the PC-SAFT model, which is

then used to determine the solid-liquid equilibria of the substrate-NADES system.

The detailed basics of PC-SAFT EoS are described by Gross and Sadowski [88, 188]. To

summarize the basics of PC-SAFT: The PC-SAFT model is an EoS that models the ther-

modynamic behavior of complex 
uids. It is an extension of the SAFT EoS, which was

developed to model the thermodynamics of simple 
uids such as gases and liquids [193].

The PC-SAFT model was developed to address some of the limitations of the SAFT equation

of state. One of the major limitations of SAFT is its inability to accurately model the behavior

of 
uids with non-spherical molecules, such as polymers. This is because SAFT is based on

the idea of treating a 
uid as a collection of "hard spheres" that interact through a pair

potential. This approach is not well suited for modeling the interactions of non-spherical

molecules.

The PC-SAFT model overcomes this limitation by using the perturbation theory to describe

the interactions between molecules. This allows the model to more accurately capture the

behavior of non-spherical molecules, and to better predict the thermodynamic properties of

complex 
uids over a wide range of temperatures and pressures. This makes it a useful tool
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for a variety of applications, including the design of chemical processes and the prediction

of the performance of materials in di�erent environments.

The calculation of solubility by PC-SAFT is nicely summarized in the work of Orellana et

al. [194]. The equation of state is organized into terms that account for di�erent types of

intermolecular interactions:

� the hard chain reference

� dispersion

� association

The EoS is expressed in terms of the Helmholtz residual energy ( Equation 5.4) because

other thermodynamic properties can be derived from this.

ares = a hc +a disp+a assoc (5.4)

where ahc represents the Helmholtz energy related to the hard chain contribution, adisp is

related to the dispersive attraction of the nonspherical molecule contribution, and aassoc is

related to the association contributions. The ahc hard chain contribution has two param-

eters: the segment diameter (�i) and the number of segments per chain (mi). The adisp

dispersive contribution has one parameter, the dispersion energy parameter (ui=k). Two

additional parameters are needed for the associative contribution: the associating energy

(�Ai ;Bi ) and the e�ective associating volume (�Ai ;Bi ). These parameters can be determined

by �tting density and vapor pressure data.

Cross-interactions between two molecules i and j are calculated using the conventional

Berthelot-Lorenz combination rules (Equations 5.5 and 5.6):

�i j = 1=2(�i +�j) (5.5)

ui j =
p
uiuj(1��i j) (5.6)

where ki j is an adjustable binary interaction parameter. In associating compounds, the cross-

associating interactions are expressed by Equations 5.7 and 5.8, proposed by Wolbach and

Sandler [195]:

�Ai ;Bj =
�Ai ;Bi + �Aj ;Bj

2
(5.7)

�Ai ;Bj =
√
�Ai ;Bi�Aj ;Bj

( p
�i i�j j

1
2(�i i +�j j)

)3
(5.8)

The solubility of the substrate in the solvent can be described by the solid-liquid equilibrium

relationship (Equation 5.9), assuming a pure solid phase and neglecting the in
uence of the

di�erent heat capacities of the pure solid and the liquid:

xLi =
'L
0i

'L
0i

exp
{
��hSL0i

RT

(
(1� T

TSL
0i

)}
(5.9)
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where 'L
0i is the fugacity coe�cient of the pure substrate and 'L

0i is the fugacity coe�cient

of the substrate in the mixture, �hSL0i is the enthalpy of the pure substrate TSL
0i is the melting

point of the substrate and T is the temperature of the system. These melting properties of

the substrate have to be determined experimentally or estimated by other modeling methods.

For example, Orellana et al. used both experimental results [196] and group contribution

based estimates [197] to determine gallic acid properties [194]. The PC-SAFT method is

used to calculate the required fugacity coe�cients by Equation 5.10:

RT ln'i =
{�nares

�ni

}
T;V;nk 6=i

�RT lnZ (5.10)

where ni is the moles of component i, n is the total moles in the mixture, R is the universal

gas constant and Z is the compressibility factor. The compressibility factor is also calculated

by PC-SAFT according to Equation 5.11:

Z = 1+�
(�(ares=RT )

��

)
T;ni

(5.11)

where � is the density at the given pressure and temperature.

With the DES density model, the parameters for the solvent itself can be calculated based

on the predictions. Solute parameters must also be determined. Fortunately, these are more

readily available than for DES, since the experimental data for common compounds are more

extensive.

The applicability of the solubility model overlaps with the applicability of the density model,

but the available information on the solute itself must also be taken into account. Based

on previous publications, the relative deviation of the PC-SAFT model from experimental

values can reach up to 10 % [93, 192, 194]. Combined with the uncertainty of the density

model, this can lead to error propagation. However, since the error in density prediction is

an order of magnitude smaller than the error in PC-SAFT, this propagation should not be

a primary concern.
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5.5 Linking results to hypotheses

In this chapter, I explored the application of machine learning combined with group contri-

bution methods to model the density and viscosity models for predicting DES behavior. In

addition, I provided recommendations on how to combine the density model with PC-SAFT

to predict the solubility of substrates in DES solvents. The two recommended density mod-

els, a random forest and a gradient boosting regressor, achieved good accuracy on a density

data set of 1426 points. They can predict density values over a wide range of structures and

temperatures with a relative error of 0.5 %. Learning curves and error analysis show that

there is no systematic error in the system or reduced accuracy for certain functional groups,

and the data was su�cient for optimal training of the proposed models. The viscosity model

was also feasible with the available data. A random forest and a multi-layer perceptron re-

gressor were built on a data set of 1306 points. However, the accuracy of the model was

much lower, with a relative error of 12 %. The learning curve of the �nal model indicates

that the available data is not su�cient to build more accurate models. This is consistent

with the high number of missing functional groups in the original viscosity data set and the

wide distribution of viscosity values. The proposed density model can also describe the pa-

rameters of the PC-SAFT method. The possible bottleneck of the process is the accuracy

of the PC-SAFT model rather than the density model.

In this chapter, I explored how to predict NADES behavior in a structured way and how to

minimize the amount of empirical data required to do so. My hypothesis was that data-

driven, machine learning-based methods can be used to predict the density and viscosity of

bulk media, and that there is su�cient data available in the literature to develop accurate

models. My results indicate that the assumptions were correct in the case of density mod-

eling. I was able to develop a practical density model for various DES. In the case of the

viscosity, the proposed model has high error, however, the analysis of the error and learning

curves shows that the problem is the insu�cient amount of data rather the approach itself.

In its current form, the model can serve as a qualitative predictor for DES in the lower

viscosity range and with moderate structural limitations. The method of solubility modeling

by combining the density machine learning model with PC-SAFT has also been proposed,

but no practical application has been demonstrated.

As data-driven methods are proposed, the data that drive the models is the biggest limitation.

The density model is well trained in the available feature space (the variety of functional

groups for which we have information), but it is not applicable to novel functional groups

(see table 5.2). The same is true for viscosity models, but the accuracy is low even for

known groups. In machine learning, "bigger is always better": the only way to increase

accuracy is to increase the viscosity data set. As DES is an intensively researched �eld,

this problem will be solved in the future. The proposed combined solubility model should

also be put into practice. The methodology proposed in this chapter could be applied to

any physicochemical property of (NA)DES, provided that su�cient data are available. The

combination of theoretical and data-driven methods expands the possibilities even further,

as the example of solubility modeling shows.
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Chapter 6666666666666666666666666666666666666666666666666666666666666666666666666
Case study: deacetylation of

mannosylerythritol lipids in NADES

"All sorts of things can happen when you're open to new ideas and playing around with

things."

Stephanie Kwolek

6.1 Preface

As mentioned in the Introduction, this research started with the idea of enzymatic deacety-

lation of mannosylerythritol lipids in NADES. A water-free medium was needed because

water induces side reactions in the system. MELs are biosurfactants; therefore, a benign

medium would also be bene�cial. However, the �rst attempts with commonly used NADES

were not successful for the reaction, so a selection method was needed. Now, although the

predictive models still lack accuracy, the framework can be used to select from the known

NADES. Solubility is the most important selection criterion. Low viscosity is advantageous

but not a priority. Based on the simulation results of Chapter 4, I expect a stable enzyme

and normal activity in most of the available systems. With these conditions, I test a few

selected systems for practical application.

In this work, I test my �rst and second hypotheses once again. I show that the e�ect of

NADES can be described by the speci�c interactions between NADES-substrate, NADES-

NADES and NADES-enzyme and that the e�ects of NADES on enzymatic reactions can be

related to substrate solubility/solvation, media viscosity and changes in enzyme structure.

Previously, I concluded that solubility plays the primary role, and while low viscosity is optimal

(from a process point of view), no mass transfer limitation is observed in viscous systems.

In addition, based on the results of Chapters 3 and 4, side reactions are more likely than

changes in activity due to enzyme-NADES interactions.

In this chapter I discuss the results of enzymatic deacetylation of mannosylerythrithol lipids in

di�erent NADES systems. I compare the performance of hydrophilic and hydrophobic, acid-

containing and not containing NADES and two selected reference solvents to �nd an optimal
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CHAPTER 6. CASE STUDY: DEACETYLATION OF MANNOSYLERYTHRITOL

LIPIDS IN NADES

solvent for the reaction. Performance is measured by the output of the most valuable, fully

deacetylated MEL compound. In addition to optimal yield, cost and environmental aspects

of the solvent are discussed.

The content of this chapter has also been submitted to Applied Microbiology and Biotech-

nology with the title "Deacetylation of mannosylerythritol lipids in hydrophobic natural deep

eutectic solvents". Co-authors of the paper are Jonas Cassimon, Iris Cornet, Erik C. Neyts

and Pieter Billen. Jonas Cassimon contributed to the development of the methodology, the

formal analysis of the results and the writing of the original draft. Iris Cornet, Erik C. Neyts,

and Pieter Billen contributed to the supervision of the project and to the review and editing

in the writing process. In addition, Pieter Billen obtained �nancial support for the project.
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6.2 Abstract

Mannosylerythritol lipids (MELs) are a promising group of biosurfactants due to their high

fermentation yield, self assembling properties and biological activities. During the fermen-

tation, a mixture of MELs with di�erent levels of acylation is formed. From this mixture,

the fully deacetylated form (MEL-D) is the most valuable. To decrease the environmental

impact of the deacetylation and to exclude toxic contaminants, an enzymatic process with

natural deep eutectic solvents (NADES) was developed in this study.

We tested the deacetylation of a puri�ed MELs mixture with immobilized Candida antarc-

tica lipase B enzyme and 2-ethylhexanol as co-substrate in 140 hours long reactions. As

solvent, we compared four NADES, both hydrophilic (choline chloride-ethylene glycol) and

hydrophobic (menthol-octanoic acid, thymol{menthol and thymol{coumarin), and as refer-

ence, pure 2-ethylhexanol (the co-substrate) and toluene (a commonly used volatile organic

compound). We monitored the change in concentrations of the di�erent MEL compounds

by normal phase high performance liquid chromatography coupled with evaporative light

scattering detector.

We reached the highest yield of MEL-D in the pure 2-ethylhexanol as solvent. However,

the toluene and hydrophobic NADES systems had similar yields after 140 hours. In the

hydrophilic NADES no conversion was observed and in menthol{octanoic acid we experienced

a side reaction which led to the formation of triacylated MELs. The pathway of the reaction

was the same in every system: MEL-A converted into MEL-C and then into MEL-D, while

MEL-B directly converted into MEL-D. The main di�erence between the systems was the

speed of turning MEL-A into MEL-C, which also determined the remaining amount of A

and C compounds at the end of the reaction in the di�erent solvents.

Our results indicate that deacetylation of MELs mixtures in NADES as solvent is possible

with comparable yields to common organic solvents and even to pure co-substrate. Hy-

drophobic NADES without carboxylic acid compounds facilitate the reaction the most. This

method has a lower cost than using pure co-substrate as solvent and is environmentally less

harmful than toluene, yet it has comparable yield of the target product.

6.3 Introduction

6.3.1 Mannosylerythritol lipids

Mannosylerythritol lipids (MELs) are a promising class of biosurfactants [198]. They rep-

resent a green and circular alternative as they are produced from renewable resources by

microorganisms [199]. MELs are composed of a 4-O-�-D-mannopyranosyl-erythritol hy-

drophilic head and one or more fatty acid chains as hydrophobic tails. They are produced

by fungi from the genus Ustilago or yeasts form the genus Pseudozyma in the fermentation

of vegetable oils with high yields of over 100 g/L [200]. The MEL class consists of many

similar molecules. The class is divided on their degree of acetylation, on the amount of fatty

acid chains and sometimes on their chirality [201]. The term MEL is often used for the



138

CHAPTER 6. CASE STUDY: DEACETYLATION OF MANNOSYLERYTHRITOL

LIPIDS IN NADES

commonly produced diacetylated MEL. These MELs are named MEL-A, MEL-B, MEL-C or

MEL-D according to their degree of acetylation at C6' and C4' (See Figure 6.1).

Figure 6.1: General structure of mannosylerythritol lipids (MELs). MEL-A: R1 = R2 = Ac;

MEL-B: R1 = Ac, R2 = H; MEL-C: R1 = H, R2 = Ac; MEL-D: R1 = R2 = H.

MELs are a subject of interest due to their excellent interfacial properties, highly biodegrad-

able structure and non-toxicity [202]. On top of this, MELs exhibit biomedical e�ects, such

as skin care properties, repair of damaged hair and anti-in
ammatory properties [203, 204,

200]. Because of these properties, MELs have potential applications in cosmetics, food,

pharmaceutical and environmental protection. For most applications, the fully deacetylated

MEL-D is the most suitable, because of its higher solubility in water, its excellent interfacial

activity even at lower concentrations and, most importantly, because it cannot be deacety-

lated further [205]. The other MELs have the potential to lose an acetyl group and release

acetic acid in the product. This is to not only to be avoided because of the change in

interfacial properties and polarity, but also due to the strong smell of acetic acid.

The amount of MEL-D produced by the yeasts or fungi is very low compared to the amount

of other MELs. For this reason, a method was developed by Fukuoka et al. in 2011

to produce MEL-D from the other MELs via a deacetylation reaction [205]. This method

utilizes immobilized Candida antarctica lipase B (iCALB) enzyme as a biocatalyst and ethanol

as solvent for the alcoholysis reaction. Fukuoka et al. managed to convert more than 99%

of MEL-B into MEL-D after seven days and saw a partial conversion of MEL-A into MEL-

C. Goossens and Wijnants optimized this enzymatic reaction in 2019 by testing di�erent

organic solvents (C2-C8 alcohols) and their water content [206]. They discovered that

water has a negative e�ect on the reaction and that the chirality of the erythritol has a large

impact on the reaction. They demonstrated that the alcohol substrate has an e�ect on the

reaction rate of speci�c deacetylations. The conversion of MEL-A into MEL-C is the fastest

in 2-ethylhexanol, whereas MEL-C converts the fastest into MEL-D in isomyl alcohol. The

overall yield of MEL-D starting from a mixture of the four types of MELs was highest using

2-ethylhexanol.

6.3.2 Natural deep eutectic solvents

NADES emerged in the recent years as a green alternative of common organic solvents due

to their benign properties [14]. NADES are the mixture of two or more naturally derived
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compounds (like primary metabolites or resources from waste streams, such as quaternary

ammonium salts, amines, sugars, organic and amino acids) [13], which form strong secondary

interactions in the form of an intermolecular hydrogen bonding network [11]. This results in

the stabilization of the mixture in the liquid state (with the minimum freezing temperature

at the eutectic composition), facilitating its use as solvent. NADES have a low toxicity,

they are non-volatile, non-
ammable, biodegradable and often biocompatible [16, 17]. One

drawback of NADES is their often high viscosity (due to the strong secondary interactions

in the system), which may induce mass transfer limitation in applications [61]. Additionally,

NADES are considered as designer solvents, which means that their properties can be tailored

to the speci�c application by changing the constituents and their ratio in the mixture [1, 19].

Due to their bene�cial properties and versatility, the application of NADES is considered in

many �elds. The possible �elds of application were reviewed by Zhang et al [5]. In practice,

NADES are currently used in electrochemistry [23] and separation processes [24]. However,

their use in biochemistry is also considered. The �rst enzymatic reaction was described

by Gorke et al. in 2008 [109], but since then many experimental and simulation studies

were conducted on the subject [107, 108, 105, 106]. Recently Xu et al. wrote a review

about the experimental research of the �eld [41]. Two main concerns about conducting

enzymatic reactions in NADES are the enzyme-solvent interactions (changes in enzyme

structure or complete denaturation) [112] and the viscosity of the solvent [54]. As many

applied NADES have constituents which can form strong interactions with the enzyme

residues (e.g., urea or carboxylic acids), their use can change the behavior of the catalyst.

However, experimental studies observed similar or, in some cases, even higher activities of

the enzyme than in common organic solvents [113, 109, 70]. Additionally, simulations also

con�rmed the stability of the enzyme structure in NADES [111, 110, 68, 112]. The other

possible issue is the viscosity, as many NADES have signi�cantly higher viscosities than

common solvents [61, 54]. Nevertheless, experimental researches did not report on mass

transfer limitations in NADES [113, 109, 70].

In the production of biosurfactants it would be reasonable to also make the production pro-

cess more environmental friendly and the product free from organic solvent traces. NADES

would be a possible pathway for that, as this group of green solvents was already applied

in other enzymatic reactions. However, to date no research was reported on the deacety-

lation of MELs in NADES. We investigate if NADES can be an alternative of common

organic solvents in the process of deacetylation. In addition, we compare how the reac-

tion rates change with the di�erent solvents. As benchmark, we compared the results of

2-ethylhexanol (co-substrate) and toluene (commonly used organic solvent in lipase catal-

ysis) as solvents to NADES. As NADES, we considered choline chloride-ethylene glycol as

an often studied hydrophilic NADES and three hydrophobic NADES (thymol-octanoic acid,

thymol-menthol and menthol-coumarin). We did this di�erentiation as we did not know how

well the biosurfactants will dissolve in the systems of di�erent polarity.
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6.4 Methods and Materials

6.4.1 Materials

Choline chloride (99 %, Thermo scienti�c, China), ethylene glycol (Laboratory reagent

grade, � 99%, Fisher chemical, USA), DL-menthol (99 %, Janssens Chimica, Belgium),

octanoic acid (99 %, Acros organics, Germany), thymol (Laboratory reagent grade, Fisher

chemical, India) and coumarin (� 99%, Thermo scienti�c, France) were used for the prepa-

ration of the NADES systems. We used 2-ethylhexanol (99%, Acros organics, Germany)

and Immozyme CALB-T2-150XL immobilized lipase enzyme (Chiralvision) for the catalytic

reaction. Toluene (Laboratory reagent grade, � 99%, Fisher chemical, UK) was used as

a reference solvent for the deacetylation reactions. For the preparatory 
ash chromatog-

raphy and analytical HPLC we used methanol (HPLC grade � 99:8%, Fisher chemical,

UK), isopropanol (HPLC grade, � 99:8%, Chem-Lab NV, Belgium), acetone (HPLC grade,

� 99:8%, Fisher chemical, UK), dichloromethane (HPLC grade, � 99:8%, Fisher chemi-

cal, Germany) and formic acid (� 98%, Acros organics, Germany). For the water content

measurement we used Hydranal-composite 5 (Honeywell Fluka)

6.4.2 Production of MELs

To obtain a concentrated MEL mixture, we used the product of Goossens et al. [201]. The

detailed fermentation and isolation procedure is discussed in their work [201]. In our research

we obtained the concentrated MEL-enriched phase together with some yeast cells and water

residue. This mixture was �rst dissolved in ethyl acetate and dried by anhydrous Na2SO4.

The solution was �ltered through a Whatman paper �lter. The ethyl acetate solvent was

removed by rotary evaporation at 60 � and 300 mbar. This resulted a brown viscous liquid,

still containing vegetable oil and free fatty acids from the fermentation. To remove these,

the mixture was dissolved in an n-hexane:methanol:water 1:6:3 (v:v:v) mixture. The aqueous

bottom phase was collected and washed twice with n-hexane. The water and methanol were

again evaporated using a rotary evaporator, resulting once more in a brown viscous liquid.

This concentrated crude MEL mixture still contained a small amounts of residual free fatty

acids, residual oil and triacylated MELs. To purify the samples from these residues, the

mixture was separated by 
ash chromatography. For that we used a 
ash chromatogra-

phy system (BUCHI Pure C-815 Flash with an ELSD detector) with a 25 g silica column

(Chromabond® Flash RS 25 SiOH, 40 { 63 �m). As eluents, dichloromehtane, isopropanol

and methanol were used. The separation method is in the supplementary information (See

Figure A.23 in the Appendix). To acquire pure MEL samples, the 
ash chromatography

appropriate samples of the above mentioned method were combined. For the pure samples

of MEL-A and MEL-B, an additional puri�cation step was made on the combined MEL-

A-MEL-B samples, described in the supplementary of information (See Figure A.24 in the

Appendix).
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6.4.3 HPLC quanti�cation

To quantitatively determine the concentration of each type of MEL, an HPLC method is

developed. 20 �L of sample diluted with dichloromethane to 1000 ppm (all MELs combined)

was injected in a Nova Pak® silica column (Waters, 60 �A, 4 �m, 3.9 mm x 150 mm)

protected with a �PorasilTM guard column (Waters, 10 �m, 3.9 mm x 20 mm). As eluents,

dichloromehtane and isopropanol were used, both spiked with 0.16% of formic acid. The

detailed HPLC method is described in the supplementary information (See Figure A.25 in

the Appendix). An Agilent 1260 in�nity II HPLC system was coupled with an Agilent 1260

in�nity II ELDS with the nebulizer. The ELSD temperature was set to 30 �, the evaporator

chamber temperature to 30 � and the carrier gas 
owrate to 1.3 standard liters per minute

(SLM). An example of the obtained chromatogram is shown in Fig. 6.2.

To determine the concentration and retention of each type of MEL in a mixture, the HPLC

system with ELSD was calibrated using a standard of each type of MEL, described in the

earlier section. The concentration of the MELs was calibrated in the range of 50-400 ppm.
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Figure 6.2: Example of a HPLC chromatogram from a MEL separation.

6.4.4 Preparation of NADES

The components of the NADES are weighed to get the required molar ratio and put together

in an Erlenmeyer 
ask. The Erlenmeyer 
ask is sealed with a glass stopper to limit the

amount of water from the air that dissolves in the NADES. The sealed 
ask was heated

to 80 � in a glycerol bath and held at this temperature while stirring until a clear liquid

was obtained. After cooling to room temperature, the water content of the NADES was

measured with a Karl-Fischer titration (Mettler Toledo V30 Volumetric KF Titrator) to

make sure it is below 1%.
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6.4.5 Deacetylation reaction

The goal of this reaction is to deacetylate MEL-A, MEL-B and MEL-C to produce MEL-

D. The simpli�ed reaction scheme is shown in Figure 6.3 with iCALB as enzyme and 2-

ethylhexanol as alcohol substrate. The following reaction setup and conditions were used.

The reactions were done in glass vials that were placed in a glycerol bath and held at a

constant temperature of 60 � throughout the reaction. The reaction mixture contained 5

g of solvent (reference solvent or NADES), 300 mg of 2-ethylhexanol and 300 mg of crude

MEL mixture. The vials were put in the glycerol bath and stirred for �ve minutes to let the

reaction mixture reach the reaction temperature. The reaction was started by adding 30 mg

of enzyme to the mixture The immobilized enzyme was crushed with a mortar and pestle to

increase the accessible surface of the beads before the reaction. The crushed enzyme was

sieved, and the particles collected between 75 �m and 355 �m were used for the reaction.

The reaction was sampled by taking 100 �L from the reaction mixture by an auto-pipette

and the samples were diluted with 4 ml of dichloromethane. To stop the reaction, the

dichloromethane was preliminary cooled to -17 � and the diluted samples were �ltered with

a 45 �m PTFE syringe �lter to remove the enzyme from the mixture. The samples were

analyzed by HPLC and the concentration of each type of MEL was calculated.

MEL

O

O
EnzymeOH+ MEL OH +

Enzyme

O

O

ROH
EnzymeOH

R

O

O
+

Figure 6.3: Reaction mechanism of MELs deacetylation.

6.5 Results

The performance of the di�erent solvents were compared by the conversion of di�erent

MEL compounds and the �nal yield of the main product, MEL-D. First, we plotted the

relative amount of the di�erent compounds in the mixture as the function of time. From

that we calculated the initial reaction rate, assuming �rst order reaction, and the yield of the

di�erent compounds after 40 and 140 hours. According to Goossens [207], MEL-A reacts

into MEL-C, while MEL-B and MEL-C react into MEL-D and there is no direct conversion

of MEL-A into MEL-B. Our results indicate a similar pathway in every tested solvent system.

This is supported by the fact that MEL-B got depleted relatively early in every solvent, while

MEL-C showed di�erent changes in the relative concentration, depending on the conversion

rate of MEL-A in the di�erent solvent systems. Therefore, we also assume that there was

no direct conversion of MEL-A into MEL-B. This is possibly related to the steric hindrance

of the C4 carbon in the ring, shielding the carboxyl group until the same group is available

at the more accessible C6 group (See Figure 6.4).
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Figure 6.4: Reaction pathways of the enzymatic deacetylation of a MEL mixture with 2-

ethylhexanol.

6.5.1 Deacetylation in reference solvents

First we tested the conversion of MELs in 2-ethylhexanol. As we use the cosubstrate in

large excess here, we expect the fastest conversion and the highest yield from all the tested

systems. This assumption is correct, the depletion of MEL-A and MEL-B are the fastest,

while the �nal yield of MEL-D was the highest (52.7 % relative concentration in all MELs)

among all the tested systems (See Figure 6.5). The reaction of MEL-B in 2-ethylhexanol

�nishes relatively early, after 40 hours no more MEL-B is observable in the mixture. The

conversion of MEL-A is also fast, after 80 hours only 10 % remains in the system. However,

the conversion of MEL-C into MEL-D is slower, which leads to the increase of MEL-C

relative concentration in the system (from the initial 10% up to 42% by the end of the

reaction). Together with the calculated reaction rates, this means that the conversion of the

C compounds goes much slower than the conversion of the B compound. Only about 5% of

the MEL-C is converted further to MEL-D. The reason behind this is the better accessibility

of the acetyl group on the C6 atom, which facilitates the much faster conversion of MEL-B

into D and MEL-A into C (in line with the �ndings of Fukuoka et al. [205]).

Toluene was chosen as a second solvent because it is a commonly used volatile organic

compound in lipase reactions. It usually has good yields and reaction rates as it has low

viscosity and immobilized enzymes preserve their activity well in toluene. According to our

expectations, we get good conversion rates and similar �nal yield of MEL-D to 2-ethylhexanol

(See Figure 6.6). The �nal yield of MEL-D is slightly below the value in 2-ethylhexanol

(cf. 51.7% vs. 52.7%). Additionally, the conversion of MEL-A to MEL-C is slower and

the relative concentration of MEL-C remains constant during the reaction. The reaction

rates are all lower than in the pure co-substrate but that was expected, due to the lower

concentration of the 2-etyhlhexanol. Although the reaction is overall slower in the beginning,

in this system the MEL-C seems to be more reactive. This is possibly due to the changed

interaction between the solvent and the substrate.



144

CHAPTER 6. CASE STUDY: DEACETYLATION OF MANNOSYLERYTHRITOL

LIPIDS IN NADES

0 25 50 75 100 125 150 175 200
Time (h)

0

10

20

30

40

50

Re
la

tiv
e 

am
ou

nt
 o

f M
EL

 (%
)

MEL-A MEL-B MEL-C MEL-D

Figure 6.5: Conversion of each type of MEL in 2-ethylhexanol.

6.5.2 Deacetylation in NADES

The �rst NADES we tested was the choline chloride-ethylene glycol in eutectic composition

(1:2 molar ratio). This system is already used successfully in lipase reactions, providing

long thermal stability to the enzyme [68, 113]. However, due to the high viscosity of the

system (49 mPa � s at 25 �C), we expect slower reaction due to the possible mass transfer

limitation. Against our expectations, there is no visible conversion in the system. Therefore,

after 40 hours, the sampling was stopped. As the reaction actors and the solvent form a

heterogeneous system, we assume that the reaction does not occur because the actors are

present in di�erent phases. This leads us to focus on more apolar NADES which might

be a better solvent for the substrates. The possible denaturation of the enzyme was also

considered, but discarded as other studies show the activity of the same enzyme in this

NADES [113].

To handle the issue of solubility, we considered hydrophobic NADES next. The �rst system

was the eutectic ratio (3:2 molar ratio) of menthol and octanoic acid. This system has

a lower viscosity than the choline chloride-ethylene glycol system (15 mPas at 25 �C),

which also makes it a better �t for the reaction. However, the ratio of the di�erent MEL

compounds did not change over time. Moreover, the absolute amount of the four MEL

compounds decreased during the reaction, while the peak related to the triacetylated MELs

increased (See Figure A.26). This happens, because the presence of carboxylic acid induces
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Figure 6.6: Conversion of each type of MEL in toluene.

the inverse reaction, i.e., esteri�cation of the mannosyl hydroxyl group, which results in

triacetylated MELs (See Figure A.27). This phenomenon is already described by Recke et

al. [208].

Since the carboxylic acid compound induced side reactions, we tested a system without

acid constituents. The �rst system was the 1:1 molar ratio mixture of thymol-menthol.

This system has a relatively high viscosity of 53 mPas at 25 �C, which is higher than the

choline chloride-ethylene glycol system (49 mPas) at the same temperature. Nevertheless,

in this system we observed comparable yields and reaction rates than in toluene (See Figure

6.7). While the �nal yield stays slightly below the level in toluene (49.6 % vs. 51.7 %),

we observe a faster conversion of MEL-A into MEL-C. However, the conversion rate of

MEL-C into MEL-D is lower than in toluene or in 2-ethylhexanol, what increases the relative

concentration of the MEL-C during the reaction. The conversion of MEL-B into MEL-D

is also slightly slower and the system reaches a full depletion only after 100 hours. This is

possibly due to the higher viscosity of the system.

The �nal system we tested was the 1:1 molar ratio of thymol-coumarin. This system has

a lower viscosity (29 mPa � s at 25 �C). With this we expect higher initial reaction rate.

The results (See Figure 6.8) partially con�rm our expectations, as the depletion of MEL-B

is faster. As in MEL-B the acetyl group is in a more accessible position on the C6 atom,

the lower viscosity has a greater e�ect on the conversion rate. Faster reaction rates are

measured also in the conversion of MEL-A into MEL-C and MEL-C into MEL-D. However,



146

CHAPTER 6. CASE STUDY: DEACETYLATION OF MANNOSYLERYTHRITOL

LIPIDS IN NADES

0 20 40 60 80 100 120 140
Time (h)

0

10

20

30

40

50

Re
la

tiv
e 

am
ou

nt
 o

f M
EL

 (%
)

MEL-A MEL-B MEL-C MEL-D

Figure 6.7: Conversion of each type of MEL in thymol-menthol NADES.

the �nal yields do not change signi�cantly. MEL-D reaches a 49.9 % relative concentration,

while the amount of MEL-C slightly increases to 19.5 %. Overall, from all the tested eutectic

systems this last NADES has the highest conversion yield of MEL-D and also the highest

reaction rates . Moreover, it also has higher initial reaction rates than toluene. Despite

the higher rates, the thymol-coumarin system does not reach a higher yield of MEL-D than

toluene.

6.6 Discussion

6.6.1 Feasibility of the deacetylation in NADES

In this study we compare the deacetylation of MELs mixture with iCALB and 2-ethylhexanol

in various NADES and reference solvents. Among the tested solvent systems there are

hydrophilic and hydrophobic NADES, containing a quaternary ammonium salt (choline chlo-

ride), diol (ethylene glycol), carboxylic acid (octanoic acid), terpenes (menthol and thymol)

and coumarin. From these systems, the hydrophilic NADES formed by choline chloride and

ethylene glycol and the hydrophobic menthol-octanoic acid proved to be ine�cient. The

former one due to the lack of solubility of the substrates and the latter due to reverse re-

action induced by the presence of the carboxylic acid. However, the thymol-menthol and
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Figure 6.8: Conversion of each type of MEL in thymol{coumarin NADES.

thymol-coumarin systems are appropriate media for the e�ective and selective production of

the deacetylated MEL compound. The best results are achieved with the thymol-coumarin

system, which has a comparable yield to the toluene reference and even higher initial reaction

rates than in toluene. These results prove that NADES can be appropriate reaction media

for processing MEL biosurfactants.

6.6.2 Di�erence in initial reaction rate and �nal yields

In Table 6.1 we compare the �nal yields and initial reaction rates of the solvents, which

facilitated the target reaction. Our hypothesis was that the high viscosity of the NADES

will play a major role in the reaction rates. However, the measured reaction rates do not

show a correlation with the viscosity, the two and three fold changes in viscosity (cf. 49,

53 and 29 mPa � s at 25 �C viscosity of choline chloride-urea, thymol-menhtol and thymol-

coumarin systems, respectively) only result in marginal changes in the initial reaction rates

(See Table 6.1). The solubility seems to have a much larger e�ect. In the case of the

hydrophilic NADES, the lack of solubility of the substrates completely blocks the reaction.

Similarly, the slightly polar NADES systems have a positive e�ect on the conversion of MEL

A into MEL-C, but makes the reaction of MEL-C into MEL-D slower. This is possibly

due to the better accessibility of the acetyl group on the C4 atom of the mannosyl group

in the more apolar solvent, and better accessibility of the C6 acetyl group in a polar one



148

CHAPTER 6. CASE STUDY: DEACETYLATION OF MANNOSYLERYTHRITOL

LIPIDS IN NADES

(cf. Figure 6.4 and Table 6.1). The selection of the optimal NADES system will require

additional research, as here we only examined a few commonly applied NADES.

The plateau at the end of the reaction will also need further investigation. The reaction stops

after 140 hours, however, 50 % of the substrate is still available. This could indicate the

denaturation of the enzyme. Although earlier studies reported the general long-term stability

of enzymes in NADES systems even at elevated temperatures [113, 68], the eutectic solvents

applied in this study were not investigated for the thermal stability of the enzyme.

Table 6.1: Reaction rate and summary of the deacetylation reaction in di�erent solvents.

Concentration 0 hour MEL-A [%] MEL-B [%] MEL-C [%] MEL-D [%]

2-ethylhexanol 47.8 25.1 11.4 15.8

Toluene 46.9 25.5 11.0 16.6

Thymol-Menthol 46.8 26.1 11.0 16.0

Thymol-Coumarin 46.7 26.3 10.8 16.1

Concentration 140 hours MEL-A [%] MEL-B [%] MEL-C [%] MEL-D [%]

2-ethylhexanol 5.0 0.0 42.3 52.7

Toluene 36.2 0.0 12.1 51.7

Thymol-Menthol 30.4 0.0 20.1 49.6

Thymol-Coumarin 30.6 0.0 19.5 49.9

Reaction rate (%/h) A!C B!D C!D Overall D

2-ethylhexanol -1.148 -3.191 -0.343 3.533

Toluene -0.259 -1.661 -0.252 1.914

Thymol-Menthol -0.301 -1.431 -0.194 1.625

Thymol-Coumarin -0.358 -2.140 -0.219 2.359

6.6.3 Economy and utilization

Compared to the reaction in pure co-substrate, the yield in NADES systems decreases only

slightly. Two reasons to use the co-substrate only in stoichiometric amounts are the toxicity

and economic feasibility. Although 2-ethylhexanol has low toxicity, it oxidizes into 2-hexanoic

acid, which has teratogenic e�ect [209]. Additionally, the price of 2-ethylhexanol is 2495

USD/ton [210], while toluene is 1016 USD/ton [211]. In comparison, the material cost of

the thymol-menthol system is 1457 USD/ton and in case of thymol-coumarin, it is 1473

USD/ton [212, 213, 214]. From that aspect the use of NADES could be the middle ground

between economic considerations and environmental safety.

Due to the high viscosity of NADES and their strong interaction with the substrates, sepa-

ration of the end product is an important aspect. This separation step is not in the scope of

this paper. However, the literature discusses many feasible methods for the product recovery.

For example, the review of [4] lists the recovery of various products, including biochemical

products. Applicable strategies for the recovery of biosurfactants are solid phase [215] and

liquid-liquid extraction [216], supercritical CO2 extraction or anti solvents [217, 218]. We

note that these methods are tested on the lab scale, and therefore the best method for

economically relevant scales are still to be determined. Considering the low water solubil-
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ity of the �nal thymol-menthol and thymol-coumarin systems and the amphiphilic nature

of the MEL compounds, after the reaction a simple water extraction could be the most

straightforward method. Again, this is yet to be tested.



150

CHAPTER 6. CASE STUDY: DEACETYLATION OF MANNOSYLERYTHRITOL

LIPIDS IN NADES

6.7 Linking results to hypotheses

In this chapter, I studied the enzymatic deacetylation of mannosylerythritol lipids in di�erent

NADES. Following the selection framework, I selected four NADES and evaluated their

performance based on the yield of the fully deacetylated MEL-D compound. Some NADES

had comparable yields to the reference organic solvent, but at lower cost and with less

environmental impact. The NADES had minor di�erences in performance, but viscosity

showed no correlation with yield over time. However, side reactions were observed in the

acidic NADES system.

I investigated the hypothesis that the e�ects of NADES on enzymatic reactions can be

linked to substrate solubility/solvation, viscosity of the media and changes in the enzyme

structure. Based on previous results, solubility and potential side reactions appeared to

be the most important factors. The results in Section 6.5.2 support these considerations.

Comparing the results of hydrophobic and hydrophilic NADES, solubility indeed had the

largest e�ect. Viscosity did not show any correlation to the reaction rate, in the two e�ective

NADES system, thymol-coumarin (�=29 mPas) and thymol-menthol (�=53 mPas), the

initial reaction rate was twice as high in the more viscous system. In the thymol-octanoic

acid system a side reaction was observed between the MELs and the acid compound. These

results support that solubility and side reactions are the most relevant properties to consider

in solvent selection. These �ndings are in line with the vinyl laurate transesteri�cation results

in Chapter 3. Additionally, the amount of MEL-A and MEL-C compounds at the end of the

reaction was signi�cantly di�erent in NADES and in reference solvents. This indicates that

the accessibility of the two acetyl groups changes with the solvent.

The changing conversion rates of the MEL compounds in di�erent NADES suggest that

the interaction between the media and the substrate also alters the accessibility of the

di�erent sites of the substrate. (See the di�erence in MEL-A and MEL-C compounds

at the end of the reaction in the NADES and reference solvents.) This suggests that a

single value, such as solubility, is not su�cient to describe the changes in reaction rate

associated with enzyme-NADES interactions. Nevertheless, the �nal conversion of MEL-D

was not signi�cantly di�erent in the cases investigated, but in other reactions the yield of the

product may also change. Related to this, the exact solubility values of the di�erent MEL

compounds were not determined in this research. However, these solubility values would

provide a better understanding of the solvation e�ect of NADES. Further research on the

speci�c interactions will be necessary in the future.
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Conclusions and Outlook

\There's only one thing that can save a man from madness and that's uncertainty."

Dmitry Glukhovsky

7.1 Conclusion

7.1.1 Summary of the research

To realize the potential of NADES as green, economical and designer solvents in biochem-

istry, it is necessary to predict their e�ect on biocatalysis with as little experimental e�ort

as possible. This is necessary to select the right media for speci�c applications. The aim

of this research was to develop a framework for predicting the behavior of NADES via their

descriptive properties and to provide a proof of concept for the prediction of these properties.

Due to the high number of potential NADES and enzymes, this research is limited to the

study of Candida antarctica lipase B enzyme and few selected NADES for the experimental

part. This limitation is rationalized by two considerations. First, the available literature

showed very similar results for di�erent enzymes in NADES and the general behavior of

NADES is de�ned at the molecular level (the hydrogen bonding), so the speci�c systems

studied are less important. Second, the scope of this research is to provide a proof of

concept, for which the study of a selected system is su�cient. Obviously, considering the

large number of possible NADES systems, the potential wider application in the future would

require additional investigation. Due to the large number of potential NADES systems, it was

necessary to include previous experimental systems. The density database used here is from

the work of Haghbakhsh et al. [160]. The viscosity database is from the work of Bakhtyari

et al. [190]. The optimized force �elds for the molecular dynamics simulation are taken

from the work of Doherty and Acevedo [76]. These works are proven but time-consuming

steps of the necessary data acquisition.

This research aimed to develop a structured methodology for natural deep eutectic sol-

vent selection and formulation for enzymatic reactions. To outline the development of a
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holistic model, I examined the interactions of NADES with other actors, the relationship

of NADES behavior to reaction outcome, and many di�erent modeling techniques and ap-

proaches to describe these phenomena. In short, to describe such a methodology, I had to

answer how NADES primarily a�ect the enzymatic reactions; how to describe these e�ects

quantitatively; what methods are necessary to predict these quantitative values; and how

much experimental data are needed for these predictions. In the previous chapters, I explored

these questions, often in parallel, and drew conclusions about several hypotheses in the same

chapter. Therefore, before giving my recommendation for a holistic approach, I will review

the original research questions and my answers to them at the end of my investigation.

Q1 How do NADES in
uence enzymatic reactions?

H1 The e�ect of NADES on biocatalysis can be described by the speci�c interactions

between NADES-substrate, NADES-NADES and NADES-enzyme.

It is clear from the literature that NADES compounds and other actors in the mix-

ture interact primarily through hydrogen bonding and that an intermolecular hydrogen

bonding network exists in the media. As a simple model of the e�ect of NADES

on biocatalysis, the interactions between NADES compounds, between NADES and

substrates of the reaction, and between NADES and the enzyme are considered. The

latter can be further distinguished based on the nature of the interaction. Stabi-

lization/denaturation of the enzyme is possible as well as changes in the active sites

leading to altered enzyme activity. Finally, side reactions with the medium itself can

occur.

Together with H2 (where we linked these interactions to quantitative properties), this

framework seemed appropriate to describe the e�ect of NADES on the enzymatic

reactions (see Chapter 3). However, the results showed that the mass transfer lim-

itation induced by the strong NADES-NADES interactions (i.e., viscosity) played a

smaller role than expected based on the high viscosity of NADES (see Chapters 3

and 6). Similarly, NADES-enzyme interactions have a small e�ect on the outcome of

the reaction. In the experiments, it was di�cult to distinguish the e�ect of solvation

from that of enzyme denaturation (see Chapter 3). In molecular dynamics simulations,

while the previously described surface stabilization was observed, there was no clear

evidence of changes in the active sites of the enzyme (see Chapter 4). Interestingly,

changing the molar ratio of the NADES did not signi�cantly a�ect the structure of

the NADES, nor did it induce stronger interactions with the enzyme (see Chapter

4). Overall, all simulations and experimental results were interpreted in terms of the

proposed interactions.

Based on simulations and experimental results, the speci�c interactions between

NADES-substrate, NADES-NADES and NADES-enzyme are su�cient to discuss

the e�ects of NADES on the enzymatic reactions. At the same time, only small

e�ects of NADES-NADES and NADES-enzyme interactions were observed in

the systems tested. Apparently, the NADES-substrate interactions primarily

determined the outcome of the enzymatic reactions tested.

Q2 How can these e�ects be expressed by discrete and quantitative properties?

H2 The e�ects of NADES on enzymatic reactions can be linked to substrate solu-

bility/solvation, viscosity of the media and changes in the enzyme structure.
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The direct interactions between the various actors in the mixture can be described

by quantitatively measurable and predictable properties that are independent of each

other. The interactions between NADES compounds are characterized by the viscosity

of the solvents. Viscosity was expected to play a signi�cant role in the behavior of

NADES, since mass transfer limitation is considered a major problem of these highly

viscous media. However, the results in Chapters 3 and 6 indicate that the viscosity

of the solvent has little e�ect on the reaction. The solubility or solvation energies of

the substrates characterize the interaction between the media and the reaction actors.

Of course, good solubility of the substrate in the solvent is a fundamental require-

ment anyway. Finally, changes in active sites and enzyme activity can be measured

experimentally and by computer simulation. These e�ects are considered to be in-

dependently determinable, but the determination can be di�cult due to overlapping

e�ects in the experiments or due to complex simulation methods.

Separating the various e�ects on the experimental results of biocatalysis (e.g., initial

rate activity or yield) can be di�cult (see Chapter 3), again because of the overlapping

e�ects. The viscosity and solubility of NADES and NADES-substrate systems are

measurable and quantitatively predictable (see Chapters 3 and 5). However, accurate

experimental determination of solubility is di�cult because the viscous NADES system

requires long equilibration times. With MD simulation it is possible to separate the

e�ect of the NADES itself on the enzyme (see Chapter 4).

Two elements of the hypothesis require further investigation. First, the e�ect of

NADES on the enzyme is di�cult to summarize in a single predictable and quantitative

metric. The structural changes of the enzyme can be simulated and described in detail,

but the parameters used (e.g. RMSD, distance of active site residues) are di�cult to

interpret and compare between di�erent enzymes. Second, describing the qualitative

relationship between the system properties (viscosity, solubility) and the experimental

metrics of the biocatalytic reaction (e.g., initial rate activity of the reaction) is di�cult

and has not been demonstrated in this research. At this point, only a qualitative

prediction of the reaction performance based on the NADES behavior is possible.

Linking the e�ects of NADES on enzymatic reactions to solvation, viscosity,

and changes in enzyme structure provides a holistic framework. All three can

be measured experimentally and predicted by models. The NADES e�ect on

the enzyme can be simulated with high accuracy, but at this point the results

cannot be expressed in a single, quantitative and easily predictable metric. How-

ever, experimentally relating their contribution to the outcome of the reaction

is di�cult because they mask each other's e�ect on the enzymatic reaction. In

addition, solubility was found to be the most important aspect, with viscosity

and enzyme-solvent interactions having little e�ect.

Q3 How can the e�ect of NADES on biocatalysis be predicted in a structured way?

H3 The relevant properties (solubility, viscosity, structural changes of the enzyme)

can be predicted by a multiscale model combining molecular, macroscale and

data-driven modeling approaches.

The various elements mentioned above can be predicted separately in a multi-scale

and multi-step modeling approach. While the interactions between the enzyme and

the NADES require a molecular-scale model, the bulk properties of the solvent can be
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predicted by macroscale or data-driven approaches. The latter also requires a compre-

hensive and structured database of available experimental data (from the literature).

In addition, these data are necessary for the validation of the predictions.

Many models have been proposed to predict the properties of NADES and their in-

teractions with other compounds (see Chapter 2). Here, a data-driven method, a

combination of a machine learning with a group contribution method, is selected for

predicting the density of NADES. The developed model is capable of predicting den-

sities with an average relative error of less than 0.5 %. The predicted densities are

used in a PC-SAFT (macroscale model) as input for model parameter �tting, and

then the PC-SAFT model itself can be used for solubility prediction (see chapters 2

and 5). Unfortunately, the solubility model was not feasible within the time frame of

this project, but the methodology is already available for selected substrate-NADES

systems (see Chapter 5). A viscosity model of NADES was also built using a similar

data-driven approach. However, the predictions in its current state are less accurate

(average relative error of 15 %) and for this property the lack of experimental data is

still an issue, as shown by the learning curve of the �nal model (see Chapter 5). The

stabilizing and activating e�ect of NADES on the enzyme itself is also simulated by

molecular dynamics for the very early stage of the system (�rst 200 ns) (see Chapter

4). However, this method is too computationally expensive for screening large num-

bers of systems. In addition, optimized force �elds for NADES are hardly available.

It is reasonable to check the enzyme stability in NADES after viscosity and solubility

screening only for the selected candidate systems.

In this research, a multi-scale model is proposed to describe the e�ects of NADES

on enzymatic reactions. Machine learning models are combined with PC-SAFT

and molecular dynamics simulations. The machine learning models use existing

databases of experimental density and viscosity values to predict the densities

and viscosities of novel systems. The predicted densities are used to �t the

parameters of the PC-SAFT model, which after parameterization can calculate

the phase equilibrium, i.e. the solubility of di�erent substrates in the NADES.

The molecular dynamics simulation uses force �elds optimized for NADES to

determine the structural changes of the enzyme induced by the NADES. At this

point, however, the viscosity model provides quantitative accuracy at best, and

the PC-SAFT model has yet to be integrated into the framework. In addition,

the rationality of molecular dynamics simulation over experimental screening is

not established at this stage, given the computational resources required.

Q4 How to minimize the amount of empirical data required for the predictions?

H4 In the data-driven submodels, analysis of the database, model accuracy, and

prediction error can be used to determine the currently available application

domain and the amount of additional data needed.

The designer nature and vast number of possible NADES systems make building a

comprehensive model very challenging. Determining the limitations and potential of

the models is equally challenging. The amount of data required depends on the ex-

pected domain and the accuracy required. Since model development is limited by the

available data, it is more useful at this point to reverse the question and examine what

the currently available data is su�cient for. For data-driven models, the analysis of

the structural diversity in the available database describes the domain in which the
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model can be expected to be accurate. In the real application domain, the required

accuracy can be determined by error and outlier analysis of the predictions. In the case

of machine learning models, large data sets are required to train the model. In Chapter

5, the accuracy of the �nal models and the calculated learning curves show that the

current size of the dataset is su�cient to make qualitatively accurate predictions only

in the case of density. Nevertheless, the proposed viscosity model has the potential

to become an accurate qualitative prediction tool, but more data and possibly more

�ne-tuning of the model will be necessary (see Chapter 5).

Unfortunately, the data-driven density model was not combined with the PC-SAFT

solubility prediction, but the good accuracy of the density model (Chapter 5) and

previous work of PC-SAFT (Chapter 2) suggest qualitative accuracy. In previous

work, PC-SAFT had an order of magnitude higher error than our proposed density

model, so our model should not cause any limitations. In addition, PC-SAFT also

requires the parameterization of the solute. This step is not covered in this work, but

data are more readily available for commonly used chemicals than for NADES (see

Chapter 2).

The parameterization of the molecular and macroscopic models also requires exper-

imental data (e.g., force �elds for molecular dynamics simulations), but the analysis

of the data requirements of these models is beyond the scope of this research. In

molecular dynamics simulations, it is important to have an accurately parameterized

force �eld, since standard force �elds do not include the strong secondary interactions

that are characteristic of NADES (see Chapter 4). Even then, experimental validation

is required to see if the simulation gives good agreement with the experiments (or to

see if the modeled system is stable in reality) (see Chapter 4). Since these simula-

tions are already computationally intensive and therefore time-consuming, obtaining

experimental data for certain systems may be an alternative.

The proposed molecular dynamics simulation and machine learning models are

capable of making accurate predictions. In the case of molecular dynamics, a

parameterized force �eld is required, which requires experimental data on the

system of interest. In the case of machine learning models, there is currently

only enough data for accurate density predictions. In the case of viscosity, only

qualitative predictions are possible. The prior analysis of the data set and the

posterior analysis (learning curve and prediction error) of the data driven models

describe the (accurately predictable) domain of the models. The analysis shows

that the limiting factor of the viscosity model is the insu�cient data. Neverthe-

less, the feasibility of the models is demonstrated and the accuracy will increase

with future data.

7.1.2 Proposed structured methodology

The recommended methodology is shown in Figure 7.1. The framework is divided into three

distinct steps: screening properties, checking enzyme stability and validation.

� Screening
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Figure 7.1: Proposed multi-scale screening model for selecting NADES for enzymatic reac-

tions.

In the screening step, the solubility of the substrates in NADES and the viscosity of

NADES can be determined. Since the methods proposed here use relatively small

computational resources, these models can be applied to a large number of instances

(i.e. screening). These models are based on data-driven and macroscale approaches.

The screening steps can be applied without prior experimental measurements, since

the structures of the applied NADES are described by the model (see Chapter 5) and

physicochemical data of the solutes are available for the parameterization of the PC-

SAFT component (or the parameters of the solutes are already available from other

sources). Currently, the models do not have a graphical user interface, but with basic

knowledge of Python and Jupyter Notebook, the user can directly use the code.

{ Solubility prediction

For the solubility prediction, the user needs the chemical structure and molar

composition of the NADES and either the PC-SAFT parameters of the solute

or the density and enthalpy of vaporization of the substrate to �t the PC-SAFT

parameters. The user must examine the structure of the NADES to see if the

proposed density model covers each functional group present. If it does, the

user can use the algorithm in the proposed model to decompose the NADES

compounds into functional number counts, which are the input variables to the

model. The temperature input variable is set to predict densities in the range

of 20 to 100 °C. The trained machine learning algorithm can then be applied to

the instance to predict the density of the systems. The predicted densities at

di�erent temperatures are used to �t the parameters of the PC-SAFT method

for the given NADES. Then, with the parameters of the NADES and the sub-

strate, the solid-liquid equilibria can be calculated and from that the solubility

at a given temperature. Currently, pressure dependence is not included because

most NADES data are available at atmospheric pressure.
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{ Viscosity prediction

The viscosity prediction works similarly. For viscosity prediction, the user needs

the chemical structure and molar composition of the NADES. The user must

check the structure of the NADES to see if the proposed viscosity model covers

each functional group present. If this is the case, the user can use the algorithm

in the proposed model to decompose the NADES compounds into functional

number counts, which are the input variables of the model. The user also needs

to set a temperature, but at this point the model cannot consistently predict the

temperature dependence of viscosity. The trained machine learning algorithm

can then be applied to the instances to predict the viscosity of the systems.

� Enzyme stability

The enzyme stability determination is based on molecular dynamics simulation. In

theory, enzyme stability determination does not require any experimental work. The

user needs the structural data of the applied NADES, optimized force �eld parameters

of the NADES and the structure of the enzyme. If optimized force �eld parameters

are not available, the user can use the general force �eld parameters directly or param-

eterize the force �eld by approximate quantum mechanical calculations or empirical

modi�cation of potentials to �t physicochemical properties (e.g. density, viscosity,

heat of vaporization) if the latter are available. Force �eld optimization is beyond

the scope of this proposed model. However, if an optimized and validated force �eld

is not available, the user will need experimental data from the NADES at least for

the validation of a generic force �eld. Assuming that all elements are available, the

user must follow the methodology described in Chapter 4. For the calculations, the

user will also need access to su�cient computing power. The exact requirements will

depend on the size and length of the simulation, the hardware available, and the time

available. (Although a direct comparison is not meaningful, for a sense of proportion,

the �nal production simulations in Chapter 4 were run on an Intel Xeon E5-2680 v4

2.40GHz with 28 threads at a speed of 19,190 ns/day).

Alternatively, the user can determine enzyme stability experimentally using the method-

ology presented in Chapter 3 or other enzyme assays available in the literature. Ex-

perimental measurements allow the study of enzyme behavior on the time scale of

seconds, minutes, and hours, which is often more relevant to practical applications.

Experimental screening is also easier when the exact mechanism of the enzyme-NADES

interaction is not of interest. To get a complete picture of enzyme behavior in NADES

and their interactions, simulation and experimental work should be done in parallel.

� Validation

As the NADES candidates are selected based on the computational results (both

screening and enzyme stability), the physicochemical properties and behavior of the

enzyme need to be experimentally validated. In addition to validation, the collected

experimental data can be used to expand the database and thus train the data-driven

models. The PC-SAFT method requires parameterization data for the NADES and

substrate compounds, and molecular dynamics force �elds must also be adapted to

NADES based on experimental results. Given the small size of the current data sets,

the modeling process is iterative. As new experimental data are acquired, the accuracy

of various model elements can be increased in the future. The connection of the models

with the di�erent databases is present in each step, which is also shown in �gure 7.1.
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7.2 Further considerations

In the methodology described above, all considerations of the initial hypotheses have been

successfully implemented. The e�ect of NADES on biocatalysis is approached from the

aspect of the hydrogen-bond network; the e�ect of the network is described by speci�c

properties of the system; these properties are predicted with multi-scale modeling and min-

imal experimental work. This has certain limitations and consequent shortcomings that

should be addressed in future research. In addition, there are some open questions that

could be explored in future studies. The following issues require further work in this area:

� Complexity of the model:

For more accurate predictions, the complexity of the solubility part of the model

should be increased. At the same time, for faster and more applicable results,

the enzyme-NADES interaction part of the model should be simpli�ed.

In the second hypothesis, I assumed that the interactions between the NADES com-

pounds and other actors in the system could be described in a simpli�ed way by con-

sidering only separate, quantitatively measurable physicochemical properties. This

simpli�cation kept the model manageable in terms of computational requirements and

necessary data input (which is rather limited at this point). Basically, it is a trade-o�

between accuracy and speed/feasibility of the model. On the one hand, the accuracy

of the model is reduced and important interaction schemes between the actors may be

overlooked. For the latter, the changes induced by the NADES-substrate interactions

are the best example. The di�erent initial reaction rates of vinyl laurate transesteri-

�cation in Chapter 3 and the di�erent �nal ratio of MEL-C and MEL-A compounds

in Chapter 6 are related to the changed interaction strength and sites between the

NADES and the substrate, but a single metric like solubility does not describe these

important di�erences. Unfortunately, there is currently not enough data on NADES

solvation to apply a more complex approach. One possibility would be to determine the

solvation energies of the substrates by molecular dynamics simulation and to analyze

the results directly or to incorporate the results into a predictive model. Alternatively,

if enough data is available, machine learning models could be built and analyzed to

determine the major interaction sites of the system.

A similar complexity problem is the structural change of the enzyme during the reac-

tion. Molecular dynamics simulations provide accurate information about the enzyme

structure, but at a high computational cost, and their results cannot be summarized in

a single metric. How to incorporate the results of these simulations into decision mak-

ing remains an open question. Therefore, from a practical point of view, experimental

work provides more concrete information at this stage. Currently, only a handful of

papers discuss the e�ect of NADES on enzyme structures, and only for a few enzymes

and a small set of NADES. In the future, a more general model of NADES-enzyme

interaction will be needed for predictive screening, but this will require more data and

better understanding. Molecular dynamics simulation will continue to be a useful tool

to achieve the latter. So far, the results point in the direction that NADES cannot

penetrate the enzyme structure [68, 110, 111, 112]. If this could be veri�ed as a gen-

eral behavior, the model could be greatly simpli�ed by abandoning detailed structural

modeling of the protein and focusing on surface interactions.
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� Accuracy and domain of machine learning models:

For an accurate viscosity model, more experimental data are needed. The ap-

plication of additional feature generation approaches should be considered.

The accuracy and the application domain of machine learning models are primarily

determined by the available data and the design choices regarding the input variables

(consequently, the feature generation). In this work, both were determined at the be-

ginning of the project. We used the data available in the literature and we used group

contribution based feature generation. This setup worked well for density prediction

(our model uses a simpler algorithm but has similar accuracy to the best one in the lit-

erature [159]). In the case of viscosity, theoretical models based on experimental data

(e.g., the work of Bakhtyari et al. [190]) still greatly exceed our model in accuracy.

(By experimentally based, I mean that the model requires experimental results on the

speci�c NADES it is trying to predict, and is therefore not applicable for predicting

novel systems). The learning curve analysis of our viscosity model showed that the

main problem is the lack of data. As more data becomes available with the advance-

ment of the �eld, the accuracy of the model will increase. In addition, the outlier

analysis shows that there are no speci�c functional groups with outstanding errors in

either the density or the viscosity model, although certain functional groups, especially

functional groups in aromatic rings, are often underrepresented or completely missing

from the database. Again, additional data on these functional groups will solve this

problem.

The use of the group contribution approach in feature engineering has been tentatively

established for this study. On the one hand, it provides an explicable and 
exible model.

With the functional groups, any novel system can be predicted and their contribution

to hydrogen bonding can also be described. On the other hand, many groups are

poorly described and consequently the accuracy of the associated NADES will be low.

Excluding such groups also reduces the versatility of the model. From this point

of view, the revision of the feature engineering and the use of more fundamental

descriptors should be considered in the future. More generic feature engineering has

already been presented (e.g. the work of Halder et al. [162]).

� Combining machine learning with PC-SAFT:

An accurate density model is available for PC-SAFT, the model must be inte-

grated, and substrate data is also required.

The PC-SAFT method can predict solubility with high accuracy when parameterized

with experimental data, but when combined with machine learning results, error prop-

agation must be considered. Our current model has a coe�cient of determination of

0.997 and an average relative error of 0.28 %. In the work of Orellana et al.[194],

the error of the PC-SAFT model for solubility in aqueous DES was 5.65 %, which is

an order of magnitude larger than our density model. From this point of view, error

propagation should not be a problem. Nevertheless, the density and solubility models

need to be integrated in the future.

In addition, the PC-SAFT model needs to be applied to the substrate. For this purpose,

PC-SAFT parameters must also be obtained for these compounds. For the relevant

compounds (e.g. pharmaceutical compounds, food additives), physicochemical data

are more readily available or PC-SAFT parameters are already determined. Thus,

compilation of the necessary substrate data set will be less di�cult than for NADES.
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� Molecular dynamics:

The role of molecular dynamics simulation should shift from direct structural

prediction to a design tool for modeling enzyme structural changes and solvation.

The role of molecular dynamics simulation in the framework needs to be changed.

As it was already mentioned in the 'Complexity of the model' section, the currently

available studies do not suggest signi�cant changes around the active site of the

enzyme [68, 110, 111, 112]. Molecular dynamics simulation is also computationally too

demanding and requires too much system-speci�c preparation to be used for screening,

at least at the current price of computational power. The role of molecular dynamics

simulation should be reconsidered in the following two cases. First, when unexpected

results arise from experiments, it would be reasonable to perform a simulation to reveal

possible changes in the enzyme structure. Second, molecular dynamics simulation still

plays an important role in understanding the behavior of NADES at the molecular

level. Based on this understanding, simpli�ed models can be built. In addition to the

enzyme structure, molecular dynamics can also be used to simulate solvation processes.

Therefore, in the future, simulations should be used to calculate the solvation free

energies of the systems and to develop a (possibly data-driven) model based on the

information obtained. Such applications in ionic liquids have been reviewed by Varela

et al. [219].

� Handling structural data:

A more structured, curated database would be needed. Structural data of

NADES compounds should be included in a way that incorporates the stere-

ochemistry of the molecules and explicitly counts ionic species.

Since predictive models are largely based on experimental data, managing the available

data is an important step in making accurate predictions. How the data is measured,

collected and processed has the greatest impact on the accuracy of the model. From

this perspective, a structured and curated database is necessary. In our models, we

used a relatively small database of about 2000 data points collected from the literature.

However, the current dataset does not take into account the means of measurement

and the integrity of the data. In addition, the dataset was compiled in 2021, the most

recent reports are not included, and the dataset is not kept up to date.

The other consideration is the encoding of the structure of the compounds. In the

current models, the structures are expressed by SMILES codes. However, this does

not take into account the stereochemistry of the chemicals. Both from the literature

and from our results in Chapters 3 and 6 regarding solvation e�ects, it is clear that

the sites of interactions play a role in the outcome of the reaction. Consequently, the

inclusion of stereochemistry is necessary for more accurate results. In addition, current

feature generation does not account for ionic compounds. Many group contribution

methods have problems incorporating ionic compounds, but salts play an important

role in NADES, so the functional groups should be expanded in the future. Moreover,

other research groups are already working on such di�erentiation (e.g. the machine

learning work of [220] or the extension of Hansen solubility parameters by [221]).
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7.3 Outlook

In addition to unresolved issues, there are considerations that arose during the research and

therefore are not included in the originally proposed methodology. Based on the �ndings

discussed above, the following topics could be considered to further advance the prediction

of NADES behavior:

� Accessible and maintained DES database:

An online accessible and maintained database would not only accelerate the

development of data-driven models, but would also connect experimentalists

and theoreticians from di�erent �elds.

One of the biggest challenges of this project was accessing and validating information

about DES. The information currently available on DES is very fragmented. Data

can be collected from di�erent papers reported in the literature, but this doesn't

guarantee coverage of the whole �eld, and it can also lead to con
icting data, partly

due to measurement error and partly due to di�erent measurement methods (e.g.

some researchers report water content along with density or viscosity values, others

do not). This is true not only for experimental physicochemical data, but also for

DES-optimized force �elds. There are review articles on certain aspects of the �eld,

but they su�er from the same problems described above. At the same time, DES show

a large variety in structure. Considering the applicable compounds (e.g., variations of

quaternary ammonium salts, polyols, organic and amino acids), widely varying molar

ratios, ternary and quaternary mixtures with di�erent water contents, the number of

possible compositions is likely in the range of 106 [1]. Currently, data sets are only

available in separate studies, such as the work of Zhang [5], Smith [1], or Raessi [160].

Therefore, the creation of an online database of DES should be considered, similar

to initiatives in other �elds, such as PoLyInfo for polymeric materials or Protein Data

Bank for large biological molecules. Such a database would help both experimentalists

to share data and achieve higher utilization, and modelers to access traceable, uni�ed,

and comparable data to improve their models. As discussed in earlier chapters, PC-

SAFT and MD simulations also rely on experimental data for parameterization and

validation, so such a database would not only bene�t research on data-driven methods.

A database would also make results and measurement techniques comparable for prop-

erties such as density, viscosity, solubility (CO2, metal oxides, drugs), surface tension,

ionic, freezing point, ionic conductivity as a function of water content, temperature,

and pressure. As the �eld of DES is developing rapidly, it would also be necessary

to keep the database up to date. As a personal opinion, the most suitable research

group to maintain such a database would be the Des.solve research group [222]. They

have already published databases in their articles, have an extensive international net-

work of DES research groups, and are themselves doing fundamental research on the

properties and behavior of NADES.

� Expanding molecular dynamics simulation

As computational resources increase, molecular dynamics simulations may be-

come available for screening processes. Developments in force �eld optimization
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may also lead to more widespread use of this type of simulation. Molecular dy-

namics could be used to study the process of solvation and the reaction itself.

Molecular dynamics simulations require computational resources that are not readily

available for screening. Enzymatic simulations, especially in NADES systems that

require long equilibration times, require lengthy simulations of large systems. The

necessary computing power is available at Tier 1 and Tier 2 facilities for a single

NADES system. Testing hundreds or thousands of systems would be di�cult to

prioritize. However, with the decrease in the price of computing power (i.e., Moore's

Law), the required computing power will be available in lower tier equipment in the

near future.

The other limiting factor for the widespread application of molecular dynamics simu-

lation for NADES is the lack of accurate force �eld for various NADES compounds.

Conventional force �elds require further optimization given the highly non-ideal be-

havior of NADES, the asymmetry of their components, and the complexity of their

molecular electrostatic interactions. The optimization of the force �elds uses ap-

proximate quantum mechanical calculations, often in the gas phase, or the empir-

ical modi�cation of potentials to match experimental properties. The optimization

protocols are not always reproducible, and semi-automation often results in incon-

sistent and unreliable parameters. Nevertheless, recent work has reported successful

optimization of OPLS force �elds using both empirical and algorithmic approaches

[76, 142, 223, 224]. Doherty et al. and Spittle et al. demonstrated the optimization

of the force �eld by scaling the atomic charges to �t the bulk phase physical properties

of NADES [76, 142]. Zhong et al. optimized an OPLS-based force �eld to simulate

the NADES system using a genetic algorithm [223]. Velez and Acevedo discuss the

combination of arti�cial neural networks with ab initio molecular dynamics to generate

high precision force �elds by training the machine learning algorithm on the simulation

trajectories [224].

With an adequate force �eld, it would also be possible to calculate the solvation

energies of the substrate. Methods such as thermodynamic integration or Bennett

Acceptance Ratio are suitable for calculating the solvation free energy of a given com-

pound and media, but these methods have not yet been applied to DES. Published

results focus on the speci�c interaction sites rather than solvation free energy calcula-

tions [225]. The simulation of interaction sites and interaction energies would help to

develop better predictive models, either by applying the results at the theoretical level

or by using the simulation data as training for the models. The reaction process itself

could also be studied by molecular dynamics simulation via the application of reactive

fore �elds, however such research has not yet been published in relation to NADES or

enzymes [226].
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A.1 Biocatalytic transesteri�cation of vinyl laurate in NADES

The supporting information contains 3 �gures.
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Figure A.1: Calibration curve of the absorbance of vinyl laurate in relation to the concen-

tration with the �tted linear equation and the coe�cient of determination.
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Figure A.2: Oven temperature of the gas chromatograph for the used method for the GC-

MS.
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Figure A.3: Oven temperature of the gas chromatograph for the used method for the GC-

FID.
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A.2 E�ect of NADES with non-eutectic composition on

enzyme stability

The supporting information contains 19 �gures. These give additional information about

center-of-mass (COM) and atom-atom radial distribution functions (RDF) of the NADES

systems, graphical representation of the enzyme structure in NADES, the root-mean-square

deviation (RMSD) of atomic positions and root-mean-square 
uctuation of atomic positions

(RMSF) of enzyme residues, the changes in the secondary structure of the enzyme, the

changes in distance between �5 and �10 helices and COM RDF of the HBD compounds

around a selected group of surface residues of the enzyme and the whole enzyme.
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Figure A.4: COM RDF of CCUR12 system
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Figure A.5: COM RDF of (a) CCGLY12 , (b) CCGLY13 and (c) CCGLY14 NADES systems
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Figure A.6: Atom-atom RDFs of CCUR12 system: (a) HBA and (b) HBD
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Figure A.7: Atom-atom RDFs of (a) CCEG13 HBA, (b) CCEG14 HBA, (c) CCEG13 HBD

and (d) CCEG14 HBD
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Figure A.8: Atom-atom RDFs of (a) CCGLY12 HBA, (b) CCGLY13 HBA, (c) CCGLY14

HBA , (d) CCGLY12 HBD, (e) CCGLY13 HBA and (f) CCGLY14 HBD
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Figure A.9: Atom-atom RDFs between the oxygen of the hydroxyl group in choline and the

nitrogen atoms of the amine groups in urea in (a) CCUR12, the oxygen atoms of hydroxyl

groups in ethylene glycol in (b) CCEG12, (c) CCEG13 and (d) CCEG12 and the oxygen

atoms of hydroxyl groups in glycerol in (e) CCGLY12, (f) CCGLY13 and (g) CCGLY14

systems. The RDF of the chloride anion was also plotted to compare the compounds direct

interactions and the interactions via the anion.
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Figure A.10: Graphical representation of the CALB enzyme structure in CCEG12 after 200

ns proudction run. The color coding shows the di�erent structural parts of the enzyme:

�-helix (purple), �-sheet (yellow) and random coil (cyan).
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Figure A.11: (a) RMSD and (b) Rg values of CCGLY systems
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Figure A.12: RMSF values of CCGLY systems
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Figure A.13: Number of intra-main chain hydrogen bonds in the enzyme in CCGLY systems
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Figure A.14: Catalytic triad distances in CCGLY systems: (a) ASP187-HIS224 and (b)

HIS224-SER105
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Figure A.15: Changes of secondary structure of the enzyme in CCEG and CCGLY systems:

(a) number of residues in �-helix in CCEG, (b) number of residues in �-sheet in CCEG, (c)

number of residues in �-helix in CCGLY and (d) number of residues in �-sheet in CCGLY
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Figure A.16: Changes of helical distances between �5 and �10 helices of the enzyme in

CCEG and CCGLY systems: (a) distance between residues GLY142 and LEU278 in CCEG,

(b) distance between residues ALA146 and ALA287 in CCEG, (c) distance between residues

GLY142 and LEU278 in CCGLY and (d) distance between residues ALA146 and ALA287 in

CCEG
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Figure A.17: SASA in (a) CCEG and (b) CCGLY systems
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Figure A.18: RMSF of surface residues in CCGLY systems



188 APPENDIX A. SUPPLEMENTARY INFORMATION

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distance [nm]

0

1

2

RD
F 

[-] CCUR12

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distance [nm]

0

1

RD
F 

[-] CCEG12
CCEG13
CCEG14

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distance [nm]

0

1

2

RD
F 

[-] CCGLY12
CCGLY13
CCGLY14

(c)

Figure A.19: Center-of-mass RDF of surface residue GLN23 and HBD molecules in (a)

CCUR, (b) CCEG and (c) CCGLY systems
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Figure A.20: Center-of-mass RDF of surface residue LYS271 and HBD molecules in (a)

CCUR, (b) CCEG and (c) CCGLY systems
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Figure A.21: Center-of-mass RDF of surface residue LYS308 and HBD molecules in (a)

CCUR, (b) CCEG and (c) CCGLY systems
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Figure A.22: Center-of-mass RDF of the enzyme and HBD molecules in (a) CCUR, (b)

CCEG and (c) CCGLY and reference systems
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A.3 Case study: deacetylation of mannosylerythritol lipids

in NADES

Figure A.23: Obtained chromatogram from the 
ash separation of a crude MEL mixture

with the modi�ed method. Fractions: A: Residual oil; B: Free fatty acids; C: Tri-acylated

MELs; D: MEL-A; E: MEL-B; F: MEL-C; G: MEL-D; H: Residue.



A.3. CASE STUDY: DEACETYLATION OF MANNOSYLERYTHRITOL LIPIDS IN

NADES 193

Figure A.24: Flash chromatogram obtained from the separation of MEL A and MEL B.

Fractions: A: tri acylated MELs; B: MEL A; C: MEL B.

Figure A.25: Obtained chromatogram by injecting a mixture of MEL-A, MEL-B, MEL-C

and MEL-D using the modi�ed method with spiked eluent. Blue = ELSD signal; Red =

gradient: % isopropanol. Peaks: 2.5 min: plastic residue; 4.5min: MEL-A; 6.2min: MEL-B;

8.5min: MEL-C; 10min: MEL-D.
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Figure A.26: Decrease of the original MEL content in the menthol { octanoic acid NADES.

Figure A.27: Reaction of octanoic acid with MEL compounds and formation of triacylated

compounds.



Appendix BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Personal information

"Well, I am a dilettante. It's only in England that dilettantism is considered a bad thing. In

other countries it's called interdisciplinary research."

Brian Eno

B.1 Education

Budapest University of Technology and Economics, Bachelor's Degree, Chemical Engineer-

ing, 2011-2015, Grade: Good, Bachelor thesis: Preparation and characterization of thin

chitosan-gelatin coatings

Budapest University of Technology and Economics, Master's Degree, Chemical Engineering,

2015-2017, Grade: Degree with honour, Master thesis: Investigation of the interactions

between active ingredients and polymer stabilizers in nanodispersions

University of Antwerp, PhD, Applied Engineering, 2019-2022, Thesis: A structured method-

ology for NADES selection and formulation for enzymatic reactions

B.2 Experience

InnoStudio Inc., Budapest, Hungary, Intern-Research fellow, Formulation of polymer stabi-

lized nanodispersions by 
ow chemistry, 2014-2017

Polinvent Ltd., Gy�al, Hungary, Research and Development Chemical engineer, Development

of UV-cured methacrylate resin systems, 2017-2018

University of Antwerp, Antwerp, Belgium, Research fellow, Development of structured meth-

dology for NADES selection and formulation for enzymatic reactions, 2018-2022
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B.3 Conference contributions

1. events in Flanders Focusing on Engineering and Chemical Technology, second cycle

(eFFECT2), 2019, national conference, poster presentation: The green solvents of

tomorrow: Natural deep eutectic solvents in biocatalytic reactions

2. 31st European Biomass Conference & Exhibit (EUBCE), 2019, Lisbon, Portugal, in-

ternational conference, oral presentation: Enzymatic conversion of mannosylerythritol

lipids in natural deep eutectic solvents

3. 1st International Meeting on Deep Eutectic Systems (IMDES), 2019, Lisbon, Portugal,

international conference, poster presentation: Enzymatic Conversion Of Mannosylery-

thritol Lipids In Natural Deep Eutectic Solvents

4. 1st International GREENERING Conference, 2021, Costa de Caparica, Portugal, on-

line international conference, poster presentation: Towards the mechanistic under-

standing of natural deep eutectic solvents e�ect on enzyme catalyzed reactions

5. 2nd International Meeting on Deep Eutectic Systems (IMDES), 2021, Lisbon, Por-

tugal, online international conference, oral presentation: Towards the mechanistic

understanding of natural deep eutectic solvents e�ect on enzyme catalyzed reactions

6. 32nd European Symposium on Computer Aided Process Engineering (ESCAPE-32),

2022, Toulouse, France, international conference, oral presentation: Predicting the

density of natural deep eutectic solvents by the combination of a group-contribution

method and arti�cial neural networks

7. 9th International Conference on Engineering for Waste and Biomass Valorisation

(WasteEng), 2022, Copenhagen, Denmark, international conference, oral presenta-

tion: Understanding Biocatalysis in Natural Deep Eutectic Solvents: Transesteri�ca-

tions with Candida Antarctica Lipase B in Various Solvents

B.4 Publications

1. Kov�acs, A., Neyts, E.C., Cornet, I., Wijnants, M., Billen, P., 2020. Modeling the

Physicochemical Properties of Natural Deep Eutectic Solvents. ChemSusChem 13,

3789{3804. https://doi.org/10.1002/cssc.202000286

2. Kov�acs, A., Yusupov, M., Cornet, I., Billen, P., Neyts, E.C., 2022. E�ect of natural

deep eutectic solvents of non-eutectic compositions on enzyme stability. Journal of

Molecular Liquids 366, 120180. https://doi.org/10.1016/j.molliq.2022.120180

3. Sztancs, G., Kov�acs, A., Toth, A.J., Mizsey, P., Billen, P., Fozer, D., 2021. Cat-

alytic hydrothermal carbonization of microalgae biomass for low-carbon emission power

generation: the environmental impacts of hydrochar co-�ring. Fuel 300, 120927.

https://doi.org/10.1016/j.fuel.2021.120927
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