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Abstract—Dynamic Spectrum Access allows using the spec-
trum opportunistically by identifying wireless technologies shar-
ing the same medium. However, detecting a given technology is,
most of the time, not enough to increase spectrum efficiency and
mitigate coexistence problems due to radio interference. As a
solution, recognizing traffic patterns may lead to select the best
time to access the shared spectrum optimally. To this extent,
we present a traffic recognition approach that, to the best of
our knowledge, is the first non-intrusive method to detect traffic
patterns directly from the radio spectrum, contrary to traditional
packet-based analysis methods. In particular, we designed a Deep
Learning (DL) architecture that differentiates between Trans-
mission Control Protocol (TCP) and User Datagram Protocol
(UDP) traffic, burst traffic with different duty cycles, and traffic
with varying rates of transmission. As input to these models,
we explore the use of images representing the spectrum in
time and time-frequency. Furthermore, we present a novel data
randomization approach to generate realistic synthetic data that
combines two state-of-the-art simulators. Finally, we show that
after training and testing our models in the generated dataset, we
achieve an accuracy of ≥ 96 % and outperform state-of-the-art
methods based on IP-packets with DL.

Index Terms—Traffic recognition, Cognitive Radio, Spectrum
Management, Deep Learning, Convolutional Neural Networks

I. INTRODUCTION

The number of connected devices has surpassed 18 billion

and will reach 28.5 billion by 2022 [1]. Similarly, the num-

ber of different available wireless technologies has already

increased significantly, and this growth will continue with

the releases of new IEEE 802.11 (Wi-Fi) standards (e.g.,

IEEE 802.11ax) and Long-Term Evolution (LTE) technolo-

gies (e.g., LTE-Unlicensed (LTE-U)) [2], [3]. These different

wireless technologies coexist next to each other at identical or

overlapping physical locations, often competing for the same

finite and limited radio spectrum resources. This situation,

combined with the increasing demands in the spectrum usage,

can potentially lead to significant Quality of Service (QoS)

degradation and performance loss [4]. This is, among others,

the case for LTE-U and Wi-Fi in the 5 GHz frequency band,

as well as for Wi-Fi, ZigBee, and Bluetooth in the 2.4 GHz

band. Consequently, there is a need for intelligent and more

efficient use of spectral resources [2], [5].

The principle of Cognitive Radio (CR) has been introduced

to allow the coexistence of different technologies and networks

over the same spectrum [5]. One of these mechanisms is

Dynamic Spectrum Access (DSA) [5], which uses the sensing

capability of the CR systems to identify if a, possibly un-

known, technology is accessing the same spectrum and then

take appropriate measures to mitigate performance degradation

due to interference. However, detecting a given technology

is often not enough to increase spectrum efficiency, as no

information is provided about the exact spectrum usage within

the transmitted signal of the technology in question.

One way to solve this problem is by complementing

the identification of technologies with information about the

network’s traffic patterns. Nonetheless, traffic identification

is traditionally performed by intrusive methods using traffic

analysis at packet level such as Deep Packet Inspection (DPI)

and IP packet traces [6], [7], which rely on having a mon-

itoring device that is part of the network. In contrast, we

believe that a better approach is to learn the traffic behaviour

of other networks directly by observing the spectrum and then

offload its traffic during the interference-free time-slots given

the learned pattern. This allows us to significantly increase

spectrum efficiency, especially in places with a dense and

overlapping presence of wireless networks.

To this extent, we present a Deep Learning-based approach

that is capable of detecting different transport protocols, traffic

patterns, and different Transmission (TX) rates. To the best of

our knowledge, this is the first approach that performs traffic

recognition directly using spectral data. The contributions of

this paper are fourfold. First, we propose a novel data ran-

domization approach to generate large amounts of (synthetic)

data, by combining two state-of-the-art simulators, namely

the NS-3 network simulator and the WLAN Matlab toolbox.

This allows us to generate large realistic datasets efficiently,

which can be used to train more robust models capable of

coping with the uniqueness of different wireless environments.

Second, we present three different models, which are based

on a Convolutional Neural Network (CNN) architecture, to

recognize i) TCP and UDP traffic, ii)burst traffic with different

duty cycles, and iii) different types of TX rates. Third, we

explore and compare two different approaches to represent

the sensed spectrum as the input of our models: time and

time-frequency image representations. Finally, we compare our

proposal with a state-of-the-art DL-based approach using raw

IP-packet.

The remainder of this paper is structured as follows. We

present the related works in Section II. The data collection

framework is introduced in Section III, and our CNN architec-

ture and traffic recognition models are presented in Section IV.

Finally, we show the evaluation results of the different models

in Section V and conclusions are drawn in Section VI.



II. RELATED WORK

Traditionally, traffic recognition takes place at gateways

or routers in a network aiming to identify individual traffic

streams entering or exiting the controlled network environ-

ment. The typical use cases are network management (e.g.,

providing QoS or billing) by Internet Service Providers (ISPs)

and intrusion detection in the area of network security. Two

typical approaches exist: DPI and methods that are based on

Internet Protocol (IP) packet traces. Historically, DPI has long

been the default approach where information is extracted from

the headers and payload of individual packets, typically in

a rule-based system. While DPI methods are very accurate,

they require much computational power, are very intrusive

(i.e., towards privacy), and often require manual signature

maintenance, and can not always cope with the encryption

of many advanced end-to-end services [6].

As an alternative to DPI, new methods based on statistical

and Machine Learning (ML) have been proposed. These meth-

ods do not require packet inspections but are based on captured

packet traces, typically at the IP level [7]. They are based on

feature selection of traffic flow statistics like packet sizes, flow

duration, inter-packet times, source and destination ports, and

IP addresses. Lately, also DL approaches have been proposed.

For instance, authors in [8] propose a combination of a stacked

Autoencoder, which uses byte representation of the IP packets

as input, to identify applications with an accuracy of 98 % and

traffic characteristics with a precision of 93 %. However, these

approaches do not capture the time-dependent features of the

traffic, require a large amount of data for training, and the

input data pre-processing adds a considerable overhead that

makes these approaches not feasible for real-time systems.

Within the domain of CR, the detection and classification

of wireless radio signals are important to optimize spectrum

usage. Recently, DL techniques are mostly applied to identify

different modulation schemes and radio technologies (e.g.,

through their channel access methods). To this extent, Schmidt

et al. use a CNN architecture to discriminate, with an accuracy

of 95 %, between 19 different variants of modulation types and

symbol rates within the 2.4 GHz band [9]. Similarly, Kulin

et al. and Camelo et al. have shown how CNNs significantly

outperform expert learning systems for the task of classifying

both known [10] and unknown radio technologies [11] using

raw In-phase and Quadrature (IQ) samples.

Finally, in the domain of data generation to support machine

learning applications for cognitive radio, Davaslioglu et at.

have shown the capabilities of generating additional synthetic

training data to improve classifier accuracy via data augmen-

tation and domain adaptation using Generative Adversarial

Networks (GANs) [12]. As a result, the use of augmented

training data increased the classifier accuracy significantly and

provided robustness under spectrum conditions changes.

III. DATA GENERATION FRAMEWORK

In Section II, we have mentioned how traditional traffic

recognition approaches are typically operating with wired

packet data. As CR approaches are focusing on technology

and modulation recognition, no accurately labelled datasets for

traffic recognition in the wireless spectrum are currently avail-

able. Furthermore, as the characteristics of wireless networks

(e.g., interference, latency) tend to differ significantly across

different environments, training a model in a general fashion

is not straightforward and requires large volumes of training

data. However, recent breakthroughs in robotics have shown

how models trained purely with synthetic data are still able to

be deployed in a real-life setting with very high accuracy.

While simulators do not perfectly resemble the complex

real-world, they do allow collecting massive amounts of data

in an easy, safe, and reliable manner. By using a persevering

form of randomization, it has been proved that this so-called

reality-gap can be bridged. This technique, called Domain

Randomization, allows training learning models based only on

the simulated data by randomizing all non-essential aspects of

the simulation [13]. Besides, as no simulator currently exists

that extensively covers all aspects of wireless devices, we

opt for two state-of-the-art solutions, each covering different

parts of the network stack. We use the discrete-event network

simulator NS-3 (ver. 3.29) to include the higher layers of the

stack. Regarding the lower layers, we consider the WLAN

toolbox (ver. 2.0) integrated with Matlab R2018b, in particular,

to address the physical layer, as the toolbox can generate

wireless signals and Radio Frequency (RF) spectrograms.

The overall architecture of the framework is depicted in

Figure 1. As can be seen, there are three main components.

First, the experiment generator receives as input a scenario

description file in JSON format. This file contains, for sev-

eral selected parameters, a list of values to be used in the

simulations. The considered parameters are network topology

(number of the nodes, their locations, and mobility patterns),

traffic descriptions (number of flows, transport protocol, traffic

patterns, and rates), and Wi-Fi related parameters (Modulation

and Coding Scheme (MCS), channel width, standard, and

guard interval). The experiment generator (1) generates an

experiment setup for each unique combination of parameter

values. Next, the NS-3 simulator (2) executes each con-

figuration individually and creates a log file containing all

transmitted packets and the information needed to generate

the transmitted waveform in Matlab. This log can be seen as a

regular packet dump (PCAP), but augmented with the specific

type of packet (e.g., beacon, association request, data), the

technology depended on information (e.g., for Wi-Fi: STBC,

PSDU length, AMPDU), and the MCS value.

Afterwards, Matlab (3) performs the following steps: first,

one MAC packet is generated per each line of the trace

file in combination with the information provided by the

scenario description file. This MAC packet is used to create

a waveform, i.e. the IQ samples, that is compliant with the

802.11 standard. After each packet generation, the IQ samples

are stored in binary format in a file. Second, the captured

IQ samples are augmented by passing them through both a

modelled fading channel (according to the 802.11 standard)

and an Additive White Gaussian Noise (AWGN) channel. The

latter adds white Gaussian noise to the signal, with a signal to



Fig. 1. Architectural overview of data generation framework

noise ratio (SNR) varying from 0dB to 30dB in steps of +3dB,

as such creating different circumstances for each IQ sample,

i.e. randomizing the spectrum conditions.

One of the main properties of traffic recognition using

spectral data is that traffic features are visible in periods

longer than hundreds of milliseconds. This contrast to other

related tasks, i.e. technology and modulation identification,

where features used to discriminate between classes are visible

in shorter periods (at most hundred of microseconds) [10].

For example, the modulation recognition can have an input

of 128 IQ samples and represents 128 us of the signal at a

sampling rate of 1 MSamp/sec [14]. At the same sampling rate,

representing 0.5 ms of spectrum data for traffic recognition

would require 0.5 M of IQ samples. However, this input size

makes impossible the implementation of ML models due to the

enormous computational requirements to train and run them.

To have a broader view of the spectrum in time, while

providing a small representation of the input data, we perform

the following transformation: given a time window w and raw

spectrum data as input, the data collected during w seconds

is plotted in time (amplitude of the IQ samples), and time-

frequency (by applying the Short-Time Fourier Transform

(STFT) on the IQ samples) and saved as images. In this

paper, we capture spectrum data during w = 0.5s, which

generates 10 M floating points at a sampling rate of 20 Msps,

and these points are interpolated to get 256 values with a

magnitude in the range [0, 1] in steps of 0.0052 units (192

values). We perform this interpolation using the compression-

filtering algorithm of png graphics file-format. Each resulting

image requires between 3.3 KB and 114 KB of storage, which

is around 1% of the required storage for the raw IQ samples.

To generate the labels of the input data, we focus on the

recognition of 3 different properties of the generated traffic:

the transport protocol (TCP versus UDP), the traffic pattern

(constant versus three types of burst traffic with a duty cycle of,

respectively, 25, 50, or 75 %), and the transmission rate of the

generated traffic (100 Kbps, 1 Mbps, 10 Mbps, or 50 Mbps).

IV. TRAFFIC RECOGNITION MODELS

Let X =
{

x1, . . . , xN

}

and Y =
{

y1, . . . , yN
}

be the sets

of N examples and their corresponding labels, respectively,

where xi ∈ X and yi ∈ Y for all i ∈ [N ] :=
{

1, 2, . . . , N
}

.

In Supervised Learning (SL), the goal is to learn a mapping

from X to Y given a training set of pairs
(

xi, yi
)

, where yi is

the label of the ith example xi. In other words, given the sets

X and Y , SL tries to find a function f such that y = f(x).
In traffic recognition using spectrum data, the problem is to

find a function f that given a representation of the spectrum

xi ∈ X (e.g. raw IQ samples or STFT of the IQ samples)

it is able to predict yi ∈ Y . In this case, Y is a set of

labels that represent properties of the traffic, such as the

transport protocol, traffic pattern of the application, or the

transmission rate. In this paper, we use DL architectures,

and specifically Deep Neural Network (DNN) models to

build f by a combination of many simpler functions that are

connected in a hierarchically way. In this section, we give a

brief description of the employed approaches to recognize the

generated synthetic data obtained by the framework described

in section III.

A. Image-based Deep CNN architecture for traffic recognition

using spectral data

To exploit the new representation of the input data as an

image, we design and implement three DL models based

on a CNN architecture. Under this assumption, the forward

function, i.e., moving the data from input to output through

the neural network, is more efficient and its computational

complexity for learning is lower than traditionally DNN based

on fully-connected layers. Note that these kinds of DNNs

have been shown to perform well in tasks such as modulation

recognition with either raw data of the spectrum as input (e.g.,

IQ or Fast Fourier transform (FFT) samples) or the image

representation of that raw data [14], [15].

We design a baseline architecture that is shared by all the

three models. It is composed of three Convolutional (Conv)

layers with Rectified Linear Unit (ReLU) activation function,

each one followed by a Maxpooling, batch normalization, and

a Dropout layer for regularization. After the Conv layers,

two final fully-connected layers, one with ReLU and the

final one with a soft-max activation function, were added for

classification. Figure 2 shows an overview of the resulting

architecture and Table I and Table II the parameters used in

each layer per model.

Some specific parameters for the optimizer, e.g., the type of

optimizer, learning rate and batch size, and for each layer, e.g.,

the number of filters, pool size, and dropout rate, and optimizer

training, were determined using hyperparameter swapping. In

total, the CNN models have 25.2 million trainable parameters.

We trained the models during 100 epochs using the Adam

optimizer with a learning rate of 0.0005, cross-entropy loss

function [16], and mini-batches of 128 RGB images, which

were re-sized to [height,width] = [196,256] pixels due to

memory constraints in the GPU. We implemented our model

using the Keras library and TensorFlow as the back-end.



Fig. 2. Image-based CNN architecture for traffic recognition

TABLE I
SHARED HYPERPARAMETERS AMONG ALL THE MODELS

Source Model Domain Task Filters Kernel Size
Pool Size

(all MaxPool layers)

Dense 1

Neurons

Dense 2

Neurons

Dense 3

Neurons

This paper

CNN 1 Time
Traffic Pattern

Conv 1 : 16

Conv 2 : 32

Conv 3 : 64

Conv 1 : 5 x 5

Conv 2 : 5 x 5

Conv 3 : 5 x 5
2 x 2

512

4

N/A

CNN 2 Time-Frequency

CNN 3 Time
Transport Protocol 2

CNN 4 Time-Frequency

CNN 5 Time
Transmission Rate 4

CNN 6 Time-Frequency

Lotfollahi et al. [8]

CNN 7 Packet Traffic Pattern
Conv 1: 200

Conv 2 : 200

Conv 1 : 4 x 4

Conv 2 : 5 x 5
200 100 50CNN 8 Packet Transport Protocol

CNN 9 Packet Transmission Rate

TABLE II
SPECIFIC DROPOUT RATE PER IMAGE-BASED MODEL

Dropout

Rate
CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 CNN 6

Layer 1 0,1 0,6 0,7 0,6 0,7 0,5

Layer 2 0,3 0,5 0,5 0,3 0,4 0,4

Layer 3 0,6 0,5 0,5 0,3 0,4 0,4

Layer 4 0,6 0,3 0,3 0,1 0,2 0,2

B. Deep CNN for traffic recognition using raw IP packets

As mentioned in Section II, traditional approaches on traffic

recognition are based on packet inspection. However, those

techniques are invasive and do not cope well with encrypted

traffic. Thus, following a more traditional approach, the au-

thors of [8] propose a state-of-the-art CNN that performs

identification of real-life network traffic. In this paper, we use

their proposed architecture to implement a packet-based model

as a baseline for our novel spectral-based model. The model

consists of two consecutive Conv layers, followed by a pooling

layer. Then, the resulting output is supported by a 3-layered

fully connected network. Batch normalization combined with

dropout layers (0.05) were used after each Conv and fully-

connected layer, ReLU was used as the activation function.

Lastly, a softmax classifier is used.

The CNN architecture is summarized in Table I. The model

was trained during 300 epochs using Adam optimizer with

a learning rate (0.001) and categorical cross-entropy as loss

function with the PCAPs that were generated in the second

phase of the framework described in Section III.

V. RESULTS AND DISCUSSION

In this section, we present and analyze the performance of

our two proposed image-based DL models (CNN 1-6), and we

compare them against the state-of-the-art DL model based on

raw IP packets (CNN 7-9).

A. Dataset description

To evaluate the designed models, we use the data collection

framework presented in Section III to generate the training,

validation, and test datasets used for all experiments presented

in this section. As a topology, we assumed one station con-

nected to a Wi-Fi access point (AP) at a distance of 5 m. A

single flow of traffic was transmitted for 5 s between the two

devices with the varying rate (100 Kbps,1 Mbps,10 Mbps, and

50 Mbps), transport protocol (TCP,UDP), and transmission

pattern of a so-called On-Off application (with 25, 50, 75,

100 % duty cycle). Furthermore, we varied the following Wi-Fi

parameters: the standard and frequency (802.11n on 2.4 GHz,

802.11n on 5 GHz, 802.11ac on 5 GHz), the channel width

(20 GHz, 40 GHz), and guard interval (short, long), while

assuming the presence of the dynamic Minstrel Rate control

algorithm.

Based on the previous parameters, 384 unique experiments

were constructed and augmented, leading to over 800 GB of

IQ samples. As discussed in Section III, these samples are

processed into two image datasets, time and time-frequency

domain, each one composed of 49920 images and requiring

around 6 GB of storage. This transformation reduces the

storage requirement to less than 1% of that needed for the

raw IQ dataset. Regarding the PCAP files used by the packet-

based approach, 527389 packets were obtained. Finally, each

domain dataset was randomly split to create the training (80%),

validation (10%), and test (10%) datasets. In the remainder

of this, we compare the performance of the three traffic

recognition models using the image and packet-based datasets.

B. Recognition of different burst traffic patterns

To solve this task, we design and train models to recognize

4 types of burst traffic with 25 (low), 50 (medium), 75 (high),

100 (constant) % duty cycle. Table III shows that both models,
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Fig. 3. Test dataset normalized confusion matrices using time (Top) and time-frequency domain images (Middle), and raw IP packet (Bottom)

TABLE III
MODEL ACCURACY USING TRAINING, VALIDATION AND TEST DATASETS

Model
Accuracy

Train Validation Test

CNN 1
Traffic

Pattern

Time 0.999 0.962 0.962

CNN 2 Time-Frequency 0.999 0.991 0.990

CNN 7 Packet 0.443 0.449 0.438

CNN 3
Transport

Protocol

Time 0.995 0.965 0.968

CNN 4 Time-Frequency 0.999 0.998 0.997

CNN 8 Packet 1.0 1.0 1.0

CNN 5
TX

Rate

Time 0.987 0.979 0.978

CNN 6 Time-Frequency 0.999 0.999 0.998

CNN 9 Packet 0.836 0.821 0.811

time and time-frequency, achieved above 96 % accuracy in

validation and test, but the higher accuracy is obtained using

time-frequency images. Regarding the packet-based model,

higher accuracy (82.3%) was only achieved when detecting

low traffic patterns. Similar to other studies [10], the better

performance in time-frequency images than only-time ones is

expected since high noise together with fading channel effects

have a bigger impact in images representing time domain.

Additionally, the effects mentioned above cannot be seen in

the packet domain, giving the worst performance of this model

of the three tasks (≤ 43%). Therefore, information about time

dependence is not taken into account during classification.

According to the confusion matrix shown in Figure 3(a),

the medium and high traffic patterns were the hardest to

discriminate, and some of the examples were miss-classified

as constant traffic. This behaviour can be explained due to

the MCS algorithm. Given a fixed TX rate and a fixed time

window w to create the images, If the transmission of a signal

is using a low MCS, then more spectrum will be used in

comparison to the same signal using a higher MCS.

C. Recognition of TCP and UDP traffic

In this task, the created models were trained to recognize

two different transport protocols (UDP and TCP). According

to the results shown in Table III, we can see how all models

have accuracy above 96 % in validation and test, and even

obtain an accuracy of above 99 % using time-frequency images

and packets. The confusion matrix for this task, as shown in

Figure 3(b), also indicates that the miss-classification distri-

bution among the two classes is similar. This result, in both

time and time-frequency domains, is due to the spectrum being

highly occupied in high TX rates and duty cycles, causing the

resulting images to look more similar for both protocols. It can

also be observed how easy it is for the packet-based model

to discriminate between UDP and TCP due to the evident

differences in the transport header for these two protocols.



D. Recognition of different traffic rates

Finally, we also designed and trained models for recognizing

the TX rate used to transmit the signals. The results in Table III

and Figure 3(c) show that it is possible to discriminate between

different TX rates using images accurately. Furthermore, most

of the miss-classification of the data was in the dataset contain-

ing signals generated at 10 Mbps in both domains, which were

miss-classified as signals generated at 50 Mbps. Similar to the

results of the previous two classification tasks, a combination

of a high TX rate and a high duty cycle can generate examples

that may look similar in the spectrum, especially if they

are augmented with fading effects and noise, and therefore

confusing the classifier. However, these kinds of examples are

also responsible for providing a better generalization capacity

to the DL models to learn and generalize to unseen data better.

This is also verified given the high accuracy in both validation

and test datasets. Note that classifying traffic patterns and

traffic rates can be replaced by regression models to predict

the continues values of these datasets.

The packet-based model achieved a surprising high-

accuracy on this classification task. However, this performance

was not because the model found time relationships between

packets, as there was no timestamp information in the packet

headers, but due to an efficient function that the CNN learned

based on the IP identification (IP-id) field of the packets

generated by NS-3 on each experiment. In each experiment,

NS-3 initializes the IP-id field with a zero value, and each new

packet will increase the IP-id by one if there is no IP packet

fragmentation (as in our experiments).

Roughly speaking, we generate 40 packets for the 5-seconds

experiments with 100 Kbps TX rate, 400 for 1 Mbps, 4000 for

10 Mbps, and 20000 for 50 Mbps. The packet-based model

creates boundaries between the different TX-rates by using

only the range of values in the IP-id header. For example,

the IP-id range between 0-40 is optimally mapped to the

label 100 Kbps to maximize the accuracy of this class, we

got 0.991%, while miss-classifying other traffic as this one

has a limited negative impact (≤ 15% in 1 Mbps traffic and

≤ 1.5% in 10 Mbps). Note that 10 Mbps traffic has the worst

classification accuracy, which was ≤ 70%. This is a direct

consequence of having 10% of their IP-ids in the 1 Mbps traffic

and using 20% of the IP-ids of the 50 Mbps traffic.

VI. CONCLUSIONS

In this paper, we have shown that it is possible to perform

traffic classification at the spectral level accurately. We have

presented three classification tasks: the recognition of different

1) transport protocols, 2) traffic patterns, and 3) traffic rates,

that were solved using a CNN based architecture. Based on a

novel data randomization approach, we have created datasets

for these tasks in different domains, namely the time, time-

frequency and packet domain. Using the datasets from the time

and time-frequency domain, we design and train six different

models that each achieve a classification accuracy of above

96% using time-domain data, or above 99%, when using time-

frequency domain data in all three tasks. Compared to a state-

of-the-art packet-based approach, our models outperformed

it on the recognition of traffic patterns and TX rate tasks,

while achieving similar performance on the transport protocol

task. These results show how our approach learns and uses

time-dependent features to recognize data traffic patterns in a

non-intrusive manner. In contrast, state-of-the-art packet-based

methods failed to do it, and they are limited only to identify

static features such as the differences between the TCP and

UDP packet headers. Future work includes, among others, the

validation of our models with real-life data and to investigate

the use of regression models to predict continues values of TX

rate and traffic patterns.
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