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ABSTRACT 

Lately, the interest in lignin valorization has notably grown within the scientific community. In the last 
decade, the number of publications focusing on lignin as an alternative to fossil-based resources has 
exponentially increased. Different strategies have been employed to valorize lignin as a source of 
renewable fuel and building blocks for chemicals and materials development. Of these strategies, 
lignin depolymerization producing lignin oils (bio-oils) has been recently explored on laboratory and 
pilot scale. The produced bio-oil exhibits unique chemical and physical properties that depend on the 
type of lignin with regard to the nature of parent biomass and can be further tailored by both the 
isolation and the depolymerization process conditions. This review aims to group the work done on 
the production and valorization of bio-oils to provide a common description of the depolymerized 
lignin oils. This work proposes reporting guidelines of bio-oil properties required to bridge the gap 
between the depolymerization techniques and chemicals/ materials development using the bio-oils 
properties. 
 
Graphical Abstract 

 
 

1. Introduction 
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Lignocellulosic biomass, being the most abundant organic raw material in the world, will play a central 
role in the future when it comes to the production of fuels, chemicals and materials. From the three 
components of lignocellulose, namely lignin, hemicellulose and cellulose, especially the latter, is 
currently valorized.[1–3] Sadly, less than 3% of the produced lignin is further valorized.[4] However, 
for a sustainable and profitable biorefinery, the valorization of all three fractions is crucial.[5,6] Thus, 
the use of lignin (figure 1) as a source of aromatic bio-based building blocks is a must towards a circular 
and sustainable chemical industry. In this regard, the production of chemicals from lignin has attracted 
great attention within the scientific community in the last years.[7–11] In fact, the papers mentioning 
the word lignin underwent a sharp increase in the last thirty years as shown in figure 2.  

 
Figure 1. Representative lignin structure, the three monolignols and most frequent interunit linkages. 

 
Figure 2. Left: Papers mentioning the word lignin; Right: Papers mentioning lignin oil in the last thirty 
years. Source: Sci-Finder. (Retrieved of the 1st of April 2022)  
 
It is estimated that around 100 million tons of lignin are produced every year by the pulp and paper 
industry as a by-product and most of it is burned to provide energy.[12] The small part that escapes 
the flames is mostly used in low added-value applications such as dispersants, fillers or 
adsorbents.[13–15] The only exception is the production of vanillin.[16] However, 85% of commercial 
vanillin is still produced from petroleum, being one of the reasons of this market dominance the 
premium paid for the “biobased” vanillin.[17] One of the limitations of the lignin-to-vanillin process is 
the several steps of the process and the low yield, usually ≈5%. [18] Especially needed to purify the 
mixture obtained after lignin depolymerization. If the process starts from KL the typical yields of 
vanillin are around 10%.[19] The valorization of industrial (technical) lignins such as Kraft and 
lignosulfonates is challenging due to their physical and chemical properties e.g., high molecular 
weight, low functionality, poor solubility in organic solvents and complex molecular structure.[8] 



Furthermore, organosolv lignin that results from milder biomass pre-treatment methods, can also 
engender partially condensed lignin, if strong acids are employed.[20] Accordingly, the 
depolymerization of isolated lignins is partial and results in low monomer yields and complex product 
mixtures.[21]  
On the contrary, when the biomass fractionation and depolymerization of native lignin are combined 
in one step, condensation is prevented to a large extent and a narrower product distribution as well 
as an increased monomeric yield are obtained. After the extraction of the sugar derivatives using liquid 
extraction, the resultant product is an oil typically formed of aromatic monomers, dimers and 
oligomers.[22] However, there is no clear definition of lignin oil. In fact, in some publications the term 
lignin oil refers to the outcome of the lignin depolymerization as such while in others this term 
accounts for fractionated and in situ depolymerized lignin from the original biomass. In many papers 
dealing with lignin depolymerization, lignin oil is frequently a solvent-based solution. Therefore, many 
questions remain unanswered; does the bio-oil have an upper Mw limit? Is it able to flow as such or 
is it also considered a bio-oil when it is diluted in a solvent? If so, is there a limited concentration of 
the bio-oil in the solvent? Accordingly, it seems crucial to provide a common definition of the lignin 
oil, relying on common physical and chemical properties.  
 
In fact, hundreds of papers and several reviews on lignin depolymerization methods target lignin oils 
with a focus on process conditions optimization to maximize the conversion or the monomer yield.[23] 
Nonetheless, researchers usually report different parameters to describe the outcome of the reaction. 
For example, the comparison between product yield, oil yield and lignin conversion are difficult. 
Additionally, monomer yield is a common parameter, yet, monomers only represent one part of the 
bio-oils, and in most cases the minor one. Nonetheless, only few papers, mainly focusing on polymer 
synthesis, were interested in the determination of the physical and chemical properties of the oils.[24] 
In fact, the use of lignin derived chemicals in the polymer industry has gained much attention in the 
last years to reach sustainability and circularity goals. Here, the use of depolymerized lignin oil 
surpasses technical lignin in terms of compatibility and performance. A full characterization of the 
physical and chemical properties of the lignin oils is therefore a must in the polymer industry. 
 
A more precise definition of the bio-oils will then be elucidated based on common physico-chemical 
properties. We believe that these properties are a need to bridge the gap between the 
depolymerization conditions and the potential applications. The latter were classified under fuels, 
materials, bulk chemicals, solvents and specialty chemicals. It is to be noted that this work does not 
cover the upgrading of lignin bio-oils to saturated (cyclo)alkane compounds by means of 
hydrodeoxygenation (HDO) process. 
 

2. Depolymerization process used for lignin bio-oil production 

 
The interest in lignin depolymerization technologies to produce bio-oils has witnessed an impressive 
growth in the last 15 years (figure 2). Many depolymerization processes enable the generation of lignin 
oils, among which, the most developed in terms of technology readiness level (TRL) are: acid catalyzed 
depolymerization (ACD), base catalyzed depolymerization (BCD), solvolysis, reductive catalytic 
depolymerization (RCD) and pyrolysis.  
 
The following sub-sections provide an overview related to the most promising depolymerization 
technologies used to produce lignin oils.  



 
 
 
Figure 3. Selection of dep. technology by a product-application approach  

 

2.1 Acid/base catalyzed 

Lignins can be depolymerized using acid (ACD)[25,26,35–41,27–34] or base catalysts (BCD) [42,43,52–
60,44–51] in aqueous or organic solvents. These depolymerization reactions using both acid (typically 

at 140 - 400 oC for 0.5 - 6 hours) and base catalysts (usually at 120 – 330 oC for 0.25 - 8 hours) target 

the cleavage of C-O and C-C interunit lignin bonds leading to monomeric/oligomeric fragments. BCD 

is usually performed in the presence of soluble base (NaOH) or solid catalysts such as MgO. The 

monomer yields oscillate from 1 to 35 wt%. ACD is performed in the presence of soluble acid (HCOOH, 

H2SO4) or solid catalyst with monomer yields varying from 3 to 60 wt%. 

Unfortunately, these methods promote condensation or repolymerization, especially in the presence 

of water. The use of hydrogen donor solvents like methanol or ethanol can reduce the condensation 

reactions and, in this way, generate more stable lignin fragments.[61] 

Acid and base catalysts have been combined with strong oxidative or reductive conditions seeking an 

improvement of monomeric yield.[62] 

 

2.2 Metal catalyzed 
Hundreds of papers have been published in the last years regarding RCD,[63,64,73–82,65,83–
92,66,93–102,67,103–112,68,113–122,69,123–132,70,133–142,71,143–152,72,153,154][155] which 
became a popular technology. RCD targets cleavable β-O-4 and α-O-4 bonds present in lignin chains 
although the process conditions also affect side-chain hydroxyl groups. In this process, hydrolysis of 
cleavable ether bonds is achieved. An advantage of RCD is that repolymerization is avoided, at least 
to a larger extent, in contrast to what happens in ACD or BCD processes. Since the most common 
redox catalysts are not able to cleave the C-C bonds under the applied relatively mild T/P conditions, 
the limitation of this technology is fixed to the available amount of cleavable ether bonds.  
Technically, the reduction is done by a redox metal catalyst and a hydrogen donor, usually hydrogen 
but it can also be a solvent or chemical.  
Lignin powder, wood chips, or even agricultural residues, such as corn stalk or sugarcane bagasse, can 
be used as feedstock. When lignocellulosic biomass is used, the process is known as lignin First.[22] 
Several factors play a role in the success of this depolymerization technology, and the chemical 
substances obtained.[156,157] Usually, the reactor is pressurized although some examples have been 
reported at atmospheric pressure.[158] A relevant work discussing the influence of process 
parameters towards the upscaling of this technology has been published recently.[156]  



Alkylphenols and hydroxyalkylphenols are the commonly obtained monomers. Guaiacols/syringols 
ratio depends on the botanical origin of the biomass feedstock.  
It is important to highlight the increase interest in the aldehyde assisted fractionation developed by 
Luterbacher and co-workers at EPFL. This approach is applied on biomass prior to depolymerization 
and permits to improve significantly the total monomer content.[159–161] 
 

2.3 Solvolysis  
Solvolysis using either a pure solvent or a solvent mixture is characterized by its simplicity compared 
with other methods. The appropriate selection of an effective solvent, reaction time and temperature 
(180 to 350 oC) are the most important parameters to control.[162,163,172,164–171] The monomer 
yields range from 3 to 24 wt%, however, yields around 50 wt% have been reported for organsolv[173] 
and kraft lignins.[174] A large variety of monomers are obtained including methoxy phenols, catechols 
and cresols.  
 

 
Figure 4. Main products of discussed depolymerization technologies 
 

2.4 Pyrolysis 
Typically, pyrolysis is a thermochemical process performed at high temperatures form 400 to 700 °C 
in the absence of oxygen or air. The process conditions more specifically heating and cooling rates, 
temperatures, and vapor contact times, have considerable influence on the formation of the bio-oil. 
In the case of lignin pyrolysis , the bio-oil mainly contains alkoxy-phenols and oxygenated aromatics. 
In addition, some gases, such as carbon dioxide, carbon monoxide, and methane, as well as solids 
(char), are also produced in lignin pyrolysis. [23,175–178] 
 
The choice of a depolymerization technology depends mainly on application. For instance, if biomass 
feedstock is to be used to produce bio-based fuels, a fast (catalytic) pyrolysis strategy[178–181] or 
HDO upgrading process[182,183] may be a good choice. When the production of high added value 
chemicals such as vanillin or propyl guaiacol (PG) is targeted, a RCD or an electrochemical oxidative 
depolymerization strategy would be preferred options.[16] If the aim is to make polymers or materials 
using hydroxyl functions or phenolic synthons, RCD might be the most promising strategy since it 
permits a retention of the reactive hydroxyl groups. Maintaining the chemical functionality after 
depolymerization, is crucial for the replacement of phenol derived building blocks by bio-oils in 
functional materials.[184] Another aspect of technology selection is related to the technoeconomic 
assessment (TEA), and the environmental impact evaluated through a life cycle assessment (LCA). 
Techno-economic, environmental and policy analysis of lignin oils obtained from pyrolysis[185] and 
RCF[186] have been recently published. 
 

3. Lignin bio-oil properties 

 
The analytical techniques that are frequently used nowadays to analyze lignin structure and 
functionality are: gel permeation chromatography (GPC), gas chromatography coupled with mass 
spectrometry (GC-MS) or with flame ionization detector (FID), gravimetry, calorimetry, elemental 
analysis, 2D NMR 1H-13C HSQC. However, many of them are performed without a standardized 
protocol that enables comparison.[187] On other hand, other relevant analyses for applications such 
as viscosity, density or Karl Fischer determination and even 31P NMR, which is often used to 



characterize lignins, are scarcely found for the characterization of the bio-oils in the available literature 
despite their great importance for the further use of such lignin oils. 
As mentioned before, both chemical and physical properties of lignin bio-oils are key elements 
towards full lignocellulosic biomass valorization. Most of the studies dealing with depolymerization of 
lignin only report the properties and composition of the monomer fraction while neglecting the 
oligomeric. However, since the oligomeric fraction usually constitutes a significant part in mass of the 
original lignin feedstock its characterization is crucial when the bio-oils are used in materials 
development. Recently, some efforts have been made in this sense, a collaboration between 
KULeuven, UGent and NREL, reported a detailed determination and quantification of oligomers in RCF 
of pine wood by GCxGC-FID/MS[188] which is in line with their previous work.[189]  
Other properties such as viscosity and density are very important parameters for the industrial 
application of lignin oils, and these are rare to find in the state of the art. For instance, if the lignin oil 
has a low viscosity and therefore a good flow without adding any extra solvent the energy for mixing 
and pumping would be reduced. Nonetheless, the impact of the viscosity has to be assessed based on 
the chosen application.  
Some selected parameters reported in the state of the art were plotted and compared in order to get 
a clear picture of the available data as per the physico-chemical analysis of lignin oils.  
From the analytics performed in many published papers concerning those depolymerization 
technologies (figure 5), it is clear that monomers are the most characterized part of the oil. Indeed, 
>70% of the papers contain data about abundance and ratios of monomers in the lignin oil. The total 
lignin bio-oil yield is reported less, which seems quite surprising, accounting for around 60-50% of the 
papers discussed. Weight average molar mass (Mw) of the monomer or lignin oil is reported even to 
a lesser extent, which is kind of expected given that some groups only focus on monomers analyses. 
Elemental composition, which is also a parameter that gives important information about the 
aromaticity of the fractions, is only reported in 20 to 40% of the works. Higher Heating Value (HHV), 
which is useful for fuels applications, is given in less than 20% of the papers, except in case of solvolysis 
which goes up to 40%. HHV is a parameter often determined in lignin pyrolysis studies. Finally, 
hydroxyl (OH) value is almost never reported even though it is quite important for material 
developments or further upgrading-chemical modification of the lignin oil fractions. Viscosity and 
density were never reported in the papers analyzed.  



 
Figure 5. % of reported properties in lignin depolymerization papers. 
 
Table 1. Average values and ranges of the lignin oils composition 

 
ACD BCD Solvolysis RCD 

  Average Range Average Range Average Range Average Range 

Monomers (%) 20 3 to 60 13 3 to 21 19 3 to 48 26 5 to 81 

bio-oil yield (%) 68 28-90 47 13-78 56 15-87 71 31-98 

Mw (Da) 866 500-1500 1031 300-2600 962 300-1600 636 220-1881 

HHV (MJ/Kg) 30,9 29-34 27,9 26-29 28,4 31-25 32,2 22-39 

OH (mmol/g) - - - - 6,5 6,5 7,8 9,3-6,3 

 
 
On other hand, the stability of the bio-oils during storage, transportation and handling is also a crucial 
factor for their use in larger volumes.[190] In this concern, Zhu and co-workers recently reported a 
study dealing with the aging of pyrolysis oil from walnut shells[191] by monitoring the variation of 
some physico-chemical parameters for 75 days. Recently, a study focusing on the modeling of the 
aging kinetics of pyrolysis lignin oil has shown to be more accurate[192] and could be very useful to 
predict the behavior of other lignin oils. Concerning RCD (or RCF) technology, G. Beckham group 
recently described a storage-stability test of the solvolysis oil of lignin from biomass prior to its 
depolymerization, being those shelf-stable for 3 months.[193] 
However, to the best of our knowledge there is no study on the aging of lignin oils produced using 
other technologies. This means that efforts must be made in this concern while progress on the further 
upscaling and use of depolymerized lignin bio-oils in industry are made. 
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4. Conclusions, gaps and future challenges 

We therefore propose to define lignin oil as the depolymerized outcome as such, with a solvent if 
used, without any further fractionation or upgrading. This bio-oil might be composed of a mixture of 
monomers, dimers, and oligomers, regardless of the depolymerization technology. The data obtained 
from the literature show a lot of variations with reference to key parameters that would permit a 
more specific definition of the bio-oils nevertheless, one can say that in average a bio-oil would have 
20 wt% monomers, a Mw < 1000 Da and a HHV of 30 MJ/Kg. It is of great importance to retrieve as 
much information as possible of the lignin bio-oils to provide a link between the depolymerization 
conditions and the potentially viable applications. This is still not very well established due to the lack 
of adequate characterization. Accordingly, and based on the analyzed data we suggest preliminary 
guidelines for lignin bio-oil characterization. Characterization guidelines include the determination of 
monomer content, total bio-oil yield, molecular weight distribution, S/G/H composition and remaining 
β-O-4 an other interlinkages (by 2D 1H-13C HSQC NMR) representing mainly the oligomeric fraction of 
the bio-oil, OH and COOH content, elemental composition, viscosity and for fuel application HHV. To 
finish, techno-economic assessment (TEA) and life cycle assessment (LCA) studies should be 
performed to evaluate the economic viability and environmental impact of the different technologies 
towards different applications for their potential implementation. Last but not least, there is a very 
important need for the worldwide spread lignin community not only to agree on the properties of the 
lignin oils that should be measured but also on the standardization of the methods to analyze them to 
allow a fair comparison between the many reported publications in the field. 
 

 
Figure 6. Reasoning and properties to be reported 
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