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Abstract  1 

 The application of trans-vaginal ovum pick up (OPU) and intracytoplasmic sperm injection 2 

(ICSI) is well established for commercial in vitro embryo production in horses. These assisted 3 

reproductive techniques are especially applied during the non-breeding season of the mare. However, 4 

little is known about how the health of the oocyte donor may affect the biochemical composition of 5 

the follicular fluid (FF) in small and medium-sized follicles routinely aspirated during OPU. This study 6 

aimed to investigate associations between systemic and FF concentrations of interleukin-6 (IL-6), total 7 

cholesterol, triglycerides, non-esterified fatty acids (NEFA), reactive oxygen metabolites (d-ROMs), 8 

biological antioxidant potential (BAP), and oxidative stress index (OSI) during the non-breeding 9 

season in mares. At the slaughterhouse, serum and FF of small (5-10 mm in diameter), medium (>10-10 

20 mm in diameter), and large (>20-30 mm in diameter) follicles were sampled from 12 healthy mares. 11 

There was a strong positive association (P<0.01) between the concentration of IL-6 in serum and those 12 

measured in small (r= 0.846), medium (r= 0.999), and large (r= 0.996) follicles. Serum concentrations 13 

of NEFA were positively correlated (P<0.05) with those  measured in small (r= 0.726), medium (r= 14 

0.720), and large (r= 0.974) follicles. Values of total cholesterol and OSI in serum and medium 15 

follicles were significantly associated (r= 0.736 and r= 0.696, respectively). The serum concentrations 16 

of all lipid metabolites were markedly higher than those measured in FF of small- and medium-sized 17 

follicles. Values of IL-6 and OSI did not change significantly between serum and all follicle classes 18 

(P≥0.05). To conclude, changes in the blood composition associated with inflammation, oxidative 19 

stress, and disturbed lipid metabolism of mares may lead to an inadequate oocyte microenvironment, 20 

which could affect oocyte quality and the success rate of OPU/ICSI programs. Further research should 21 

indicate whether these changes may ultimately affect in vitro oocyte developmental capacity and 22 

subsequent embryo quality.  23 

 24 
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Introduction  33 

The in vitro embryo production (IVP) via ovum pick-up (OPU) and intracytoplasmic sperm 34 

injection (ICSI) has been commonly used in warmblood mares (Galli et al. 2014, Claes et al. 2018). 35 

The OPU/ICSI program allows breeders to produce relatively high numbers of embryos from 36 

genetically valuable mares of old age, diminished fertility, and even after death (Hinrichs, 2010). This 37 

program can be efficiently conducted, irrespective of follicular health, size, and composition, all year 38 

round, but OPU/ICSI is most extensively performed during the non-breeding season (Lazzari et al. 39 

2020). Under these conditions, the percentages of freezable embryos typically range between 16-20% 40 

in warmblood mares (Lazzari et al. 2020). Several mare related factors such as the total number of 41 

recovered oocytes (Cuervo-Arango et al. 2019), maternal age and breed (Lazzari et al. 2020; Claes and 42 

Stout, 2022), and the serum concentrations of anti-Müllerian hormone of the donor mare during OPU 43 

(Papas et al. 2021) may affect the success rate of embryo production by IVP. 44 

The crosstalk between the mare’s health, the follicular microenvironment, and the oocyte quality 45 

has been scarcely investigated. In obese mares, there was a marked increase in serum concentrations 46 

of inflammatory cytokines (Sessions-Bresnahan and Carnevale, 2014) and lipid metabolites (Sessions-47 

Bresnahan et al. 2016), which was directly associated with their concentrations in the preovulatory 48 

follicle. Ageing in mares affects follicular fluid (FF) exosomal microRNAs and granulosa cell 49 

transforming growth factor β during follicle development (de Silveira et al. 2015). The follicular 50 

microenvironment is further affected by follicular size. All year round, the maturation rate of equine 51 

oocytes was directly correlated with follicle size (Hinrichs and Schmidt, 2000). The follicular 52 

development in mares influences the follicular metabolites, electrolytes (Satué et al. 2019) and steroid 53 

hormones (Satué et al. 2020). Interestingly, FF components, related to the oocytes developmental 54 

competence, have been clearly described  in cows (Annes et al. 2019), camels (El-Shahat et al. 2018), 55 

goats (Junior et al. 2018), and sows (Bertoldo et al. 2013). However, so far, this concept remains 56 

underexplored in mares.  57 
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Optimal conditions to support the developmental competence of the oocyte rely on a delicate 58 

balance between the supportive effect of lipids, cytokines and energy metabolites, and the detrimental 59 

influence of excessive concentrations of these components in the follicular environment. Lipid 60 

metabolites are crucial during oocyte maturation (Liu et al. 2022), as fatty acids are supplying oocytes 61 

with energy and as cholesterol is the precursor of steroid hormones (Dunning et al. 2014). On the other 62 

hand, maternal obesity (Sessions-Bresnahan et al. 2016) and dietary fat composition (Catandi et al. 63 

2022) alters the lipid content of equine oocytes, which deteriorates their developmental competence. 64 

High concentrations of free fatty acids in bovine (Leroy et al. 2005), murine (Wu et al. 2010), and 65 

human follicles (Jungheim et al. 2011), as well as high cholesterol concentrations (Yesilaltay et al. 66 

2014), also affected the oocytes’ developmental competence. 67 

Interleukin (IL)-6 is an intraovarian regulatory cytokine that promotes steroidogenesis and 68 

follicular rupture (Field et al. 2014, Adamczak et al. 2021). On the other hand, high FF concentrations 69 

of IL-6 have been associated with a dysregulated expression of genes related to oocyte maturation and 70 

cumulus expansion in mares (Sessions-Bresnahan and Carnevale, 2014). In vitro, excess IL-6 has been 71 

associated with decreased estradiol synthesis and aromatase activity in granulosa cells of women 72 

(Deura et al. 2005) and with inhibited expression of luteinizing hormone receptor mRNA during the 73 

maturation and differentiation of cultured rat granulosa cells (Tamura et al. 2001). 74 

Cumulus-oocytes complexes with optimal number of mitochondria, sufficient levels of ATP, 75 

and proper reactive oxygen species (ROS) neutralization produce higher quality blastocysts in women 76 

(Assou et al. 2006) and cows (Marei et al. 2019). Accordingly, an oxidative imbalance in FF is 77 

associated with mitochondrial malfunctions, and DNA fragmentation in oocytes (Chaube et al. 2005, 78 

Zhang et al. 2006). The evaluation of serum and intrafollicular oxidative stress index (OSI), measured 79 

by reactive oxygen metabolites (d-ROMs; marker for oxidative stress) and biological antioxidant 80 

potential (BAP; marker for antioxidant defense status) has been well established in women (Luti et al. 81 

2021), but not in mares. Interestingly, the balance between d-ROMs and BAP in FF (Terao et al. 2019) 82 
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and serum (Di Rosa et al. 2016) at the time of oocyte retrieval is important in the processes of 83 

fertilization and embryo growth in women (Terao et al. 2019). 84 

There is a lack of knowledge concerning the concentrations of lipid metabolites (total 85 

cholesterol, triglycerides and total non-esterified fatty acids; NEFA), inflammatory status (IL-6), and 86 

oxidative stress markers (d-ROMs, BAP, and OSI) within the FF of mares during the non-breeding 87 

season. In this study, the hypothesis that the concentrations of FF components may be associated with 88 

their serum concentrations was tested. These insights are of crucial importance as they may impact the 89 

success rate of OPU/ICSI programs in horses. Therefore, the aims of the current study were (1) to 90 

measure the intrafollicular concentrations of total cholesterol, triglycerides, total NEFA, IL-6, d-91 

ROMs, BAP, and oxidative stress index in different-sized follicles during the non-breeding season (the 92 

intense period of OPU/ICSI program) in mares and (2) to correlate these values with their serum 93 

concentrations. 94 

Materials and methods 95 

Animals and sampling 96 

Samples were collected from 12 nonpregnant mares (warmblood), aged between 12 and 26 y 97 

during the non-breeding season (January and February 2022) in the abattoir of Anderlecht, Belgium 98 

(50°50'37.7"N 4°19'40.3"E). Only healthy mares were selected, with a body condition score between 99 

5 and 6 (Henneke et al. 1983) and normal reproductive tracts upon macroscopical examination after 100 

slaughter. During exsanguination, blood samples were placed into serum clot activator tubes (10 ml) 101 

without separating gel to allow coagulation. Immediately after evisceration, ovaries were collected, 102 

and cooled to 4° C. Finally, both ovaries and coagulated blood samples were allocated per mare and 103 

transported on ice (4 °C) to the laboratory within 2 h after slaughtering.  104 

Ovaries were washed two times with normal saline (NaCl 0.9%) and blotted dry. A 105 

conventional caliper was used to measure the follicles and  FF was collected from three different 106 

follicle categories; small follicles (5-10 mm, n=10), medium follicles (>10-20 mm, n=11) and large 107 
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follicles (>20-30 mm, n=4). FF was aspirated by an 18 G needle and a 10 ml syringe and pooled per 108 

follicle class per mare. A different needle and syringe were used for each follicle class per mare. To 109 

avoid blood contamination, the needle was inserted within the follicular antrum, and the aspiration was 110 

stopped before the complete collapse of the follicle. A cooled centrifuge (4 °C) was used to remove 111 

the cellular pellets from FF (1500 × g for 10 min) and coagulated blood samples (2460 × g for 20 min). 112 

Supernatants of serum and FF samples were aliquoted into sterile 1.5 ml Eppendorf tubes and stored 113 

at –80 °C until further laboratory analysis. As a preliminary validation of our sampling protocol, the 114 

FF concentrations of all the studied variables were not different between the samples which were 115 

collected before transportation (in the slaughterhouse) and those aspirated after transportation (in the 116 

laboratory). 117 

Biochemical analyses 118 

Total cholesterol, triglycerides, and NEFA 119 

 Concentrations of cholesterol, triglycerides, and NEFA in serum and FF were measured once 120 

by Roche Cobas chemistry analyzers (c501 module; Modular, Roche Diagnostics, Mannheim, 121 

Germany). According to the manufacturer guidelines, enzymatic-colorimetric assays were used 122 

(CHOL2 and TRIGL kits; Roche Diagnostics, Germany) to assess the concentrations of cholesterol 123 

and triglycerides, respectively, both at 700/505 nm bichromatic absorbance. For NEFA concentrations 124 

an enzymatic-end point method was performed, using the NEFA FS kit (DiSys Diagnostic Systems 125 

GmbH, Holzheim, Germany) at 546/600 nm bichromatic absorbance. The intra-assay coefficients of 126 

variation at the lowest, medium, and highest concentrations were 0.7, 1, and 1.1% for cholesterol, 0.7, 127 

0.85, and 1.1% for triglycerides and 0.95, 1.05, and 1.1% for NEFA, respectively. The lowest limits 128 

of detection were 3.86 mg/dL, 8.85 mg/dL, and 0.18 mg/dL for total cholesterol, triglycerides, and 129 

NEFA, respectively. 130 

IL-6 assay 131 
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The concentration of IL-6 in serum and FF was measured in duplicate using a commercial 132 

ELISA kit (Nori® equine IL-6 kit, Genorise Scientific, USA) according to the manufacturer’s 133 

procedures without any modifications. The optical density was determined twice at 450 and 540 nm 134 

by Multiskan GO spectrophotometer (Thermo Fisher Scientific, Finland; room temperature), and the 135 

values at 540 nm were subtracted from the values at 450 nm for wavelength correction. A standard 136 

curve was created using excel software equipped with MyCurveFit® tool to generate a four-parameter 137 

logistic curve-fit. The intra-assay coefficient of variation at the lowest, medium, and highest 138 

concentration was 7.28, 8.35, and 4.90%, respectively. The lowest detection limit was 16 pg/mL, with 139 

a < 0.5% cross-reactivity. 140 

Determination of d-ROMs, BAP, and OSI  141 

 Serum and FF concentratons of d-ROMs and BAP were measured in duplicate using the 142 

photometric Diacron® kits (Diacron International, Italy) according to the manufacturer’s instructions. 143 

For both kits, the photometric readings were determined at 505 nm using a Multiskan GO 144 

spectrophotometer (Thermo Fisher Scientific, Finland; at 37° C). The coefficients of variation at the 145 

lowest, medium, and highest concentrations were 0.55, 2.78, and 5.94% for d-ROMs and 8.76, 6.55, 146 

and 0.03% for BAP, respectively. Analytical sensitivity for d-ROMs and BAP was 11 UCARR and 147 

150 µmol/L, respectively. As described by Shono et al. (2020), the OSI was calculated using the 148 

formula (d-ROMs / BAP ×100).  149 

Statistical analysis 150 

A Kolmogorov Smirnov test was applied to check the distribution of data. Pearson’s correlation 151 

coefficients between serum and intrafollicular concentrations for each follicle class were tested. Within 152 

the same mares, a paired samples t-test was conducted to compare the concentration of each variable 153 

in serum and those measured in small (n=10), medium (n= 11), and large (n= 4) follicles. The data 154 

were analyzed using the Statistical Package for Social Science SPSS® (SPSS Inc., version 16.0, 155 
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Chicago, IL. USA), and a P- value <0.05 was considered significant. Results are shown as mean ±SEM 156 

for all studied variables in serum and FF from the different categories.       157 

Results   158 

For each variable, the relationships between systemic and intrafollicular values of small, medium, 159 

and large follicles are presented in Table 1. There was a significant positive (P < 0.05) association 160 

between NEFA concentrations in serum and FF of all follicle categories. Concentrations of IL-6 in 161 

serum were positively associated with those found in  all follicle classes (P < 0.01). Values of 162 

cholesterol and OSI in serum were positively correlated (P < 0.05) with those measured in medium 163 

follicles.  164 

As shown in Table 2, concentrations of lipid metabolites were significantly higher in serum 165 

compared to those found in FF of small and medium-sized follicles (P < 0.05). Concentrations of IL-166 

6 did not show any significant differences between systemic and intrafollicular levels. The average 167 

serum concentrations of IL-6 in two mares (mare 4 and mare 8, respectively; Fig. 1. d) were 168 

approximately 8- and 39-folds higher than the other 10 mares, which was associated with an increase 169 

in the average of their FF values in small (67-folds), medium (97-folds), and large (878-folds) follicles. 170 

Average and range serum and FF concentrations of all studied variables for individual mares are 171 

depicted in the Supplementary Material. 172 

The serum concentration of d-ROMs (Table 2) was significantly higher than those measured in all 173 

follicle classes (P < 0.05). Biological antioxidant potential values were significantly higher in serum 174 

compared to the FF of medium follicles. For all metabolites, no significant differences were detected 175 

between the differently sized follicle classes.  176 

Discussion  177 

In this study, the hypothesis that there is an association between the serum and FF concentrations 178 

of lipid metabolites (cholesterol, triglycerides and NEFA), a pro-inflammatory cytokine (IL-6), and 179 
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oxidative stress markers (d-ROMs, BAP and OSI) during the intense period of OPU/ICSI program 180 

(non-breeding season) was tested. The results confirm that the concentrations of NEFA and IL-6 in all 181 

follicle classes and the values of cholesterol and OSI in medium-sized follicles were correlated with 182 

those in serum. These findings may indicate that a disturbance in the maternal health related to 183 

inflammatory conditions, oxidative stress, or lipid metabolism is reflected in the micro-environment 184 

of the oocyte. 185 

An optimal follicular environment during oocyte maturation should guarantee a proper nuclear and 186 

cytoplasmic maturation to secure the developmental capacity (Hatirnaz et al. 2018). Knowledge of the 187 

in vivo composition of FF can be used to predict the competence of oocytes derived from particular 188 

follicles or to improve conditions for in vitro maturation of the equine oocyte. This study is the first 189 

report showing the biochemical composition for differently-sized follicles during the non-breeding 190 

season in mares, follicles which are routinely aspirated during OPU to collect the oocytes used for 191 

commercial IVP (Lazzari et al. 2020).  192 

In agreement with our findings, systemic lipid metabolites were mirrored in FF and the 193 

concentrations of triglycerides and cholesterol (Sessions-Bresnahan et al. 2016) as well as fatty acids 194 

(Catandi et al. 2022) were significantly higher in plasma compared to FF of the preovulatory follicle. 195 

An increase in FF triglycerides and cholesterol is found in obese mares and alters the expression of 196 

granulosa cells’ genes related to endoplasmic reticulum and oxidative stress (Sessions-Bresnahan et 197 

al. 2016) and embryonic marker genes related to inflammation and lipid metabolism (Sessions-198 

Bresnahan et al. 2018). Moreover, the plasma, follicular, and oocyte lipid concentrations are influenced 199 

by the composition of polyunsaturated fatty acids in diet, which determine the oocyte's developmental 200 

competence in mares (Catandi et al. 2022). This effect of high NEFA levels on the oocyte’s 201 

developmental capacity has also been noticed in women (Valckx et al. 2014a), mice (Valckx et al. 202 

2014b), and cows (Leroy et al. 2005). 203 
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Concentrations of IL-6 showed a strong positive correlation between serum and FF of all follicle 204 

classes. Sessions-Bresnahan and Carnevale (2014) also found that concentrations of IL-6 were highly 205 

correlated in serum and FF of preovulatory follicle in mares with equine metabolic syndrome. In 206 

addition, the minimum and maximum concentrations of follicular IL-6 were extremely different 207 

between individual mares. Only two mares in our study caused this difference (Fig. 1d). Similarly, the 208 

range of FF IL-6 concentration in women was also highly different and seems to be influenced by 209 

health conditions (Chen et al. 2000), but not by age or follicle size (Piccinni et al. 2021). Also in the 210 

horse, the concentration of IL-6 in serum can be severely affected by the mares’ health status (Burton 211 

et al. 2009; Ibrahim et al. 2021). Unfortunately, the lack of clinical history of the mares in the present 212 

study prevented us from expecting the definite cause of this extreme concentrations of IL-6 in serum 213 

and FF. Nevertheless, it will be highly interesting to check if these higher concentrations would have 214 

a carryover effect on oocyte developmental competence. The average concentration of IL-6 in serum 215 

and FF in our study was lower than those measured in equine preovulatory follicles (Sessions-216 

Bresnahan and Carnevale, 2014) and higher than those measured in serum of Arabian mares (Ibrahim 217 

et al. 2022). These variations may be due to the differences in breeds, season, and the used protocol of 218 

analysis.  219 

In the present study, oxidative stress and antioxidant capacity in the FF of mares was 220 

determined for the first time. A positive association between the values of OSI in serum and FF of 221 

medium follicles was found. It is known that excessive exposure to oxidative stress may lead to oocyte 222 

chromosomal segregation, and damage of cellular components (Tarin et al. 1996) which may hamper 223 

subsequent embryonic development (Lin et al. 2021). In women, higher concentrations of d-ROMs in 224 

serum significantly reduced the success rate of clinical pregnancy (Di Rosa et al. 2016). Lower values 225 

of d-ROMs and OSI in FF of women were associated with better fertilization rates and production of 226 

more good quality embryos when compared to higher concentrations of both oxidative stress markers 227 

(Terao et al. 2019). In agreement with our results, there were no associations between systemic and 228 
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intrafollicular concentrations of BAP in women undergoing ART cycles (Di Rosa et al. 2016). More 229 

studies are necessary to further explore the influence of oxidative stress index, measured in serum and 230 

FF, on the OPU/ICSI outcomes in horses. 231 

Taken together, this study investigated the biochemical characterization of FF from differently 232 

sized follicles outside the breeding season, similar to the clinical OPU-conditions. For several 233 

parameters of lipid metabolism, inflammation and oxidative stress, follicular concentrations were 234 

correlated with those in serum. As such, our study generated new insights into the physiological 235 

concentrations of these metabolites in the horse and provides a solid basis for further research on the 236 

determination of their effect on the developmental competence of equine oocytes. Moreover, the 237 

correlations between serum and FF highlight the potential impact of the mare’s health and metabolism 238 

on the composition of the FF and thus on oocyte quality as has been shown previously in other species. 239 
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Table 1. Correlation coefficients between serum and intrafollicular values of lipid metabolites (cholesterol, triglycerides, and NEFA), inflammatory cytokine (IL-6), and markers 

of oxidative stress (d-ROMs, BAP, and OSI) in small (SF; n= 10), medium (MF; n=11), and large (LF; n=4) follicles of warmblood mares. 

 

 

 

 

 

 

 

 

NEFA= non-esterified fatty acids; IL-6= interleukin 6; d-ROMs= reactive oxygen metabolites; BAP= biological antioxidant potential; OSI= oxidative stress index 

 

* = Significant at 5% level. ** = Significant at 1% level. 

 

 

 

 

 

 

 

 

 

 

  

Cholesterol 

 

Triglycerides 

 

NEFA 

 

IL-6 

 

d-ROMs 

 

BAP 

 

OSI 

 

Serum × small follicles 

0.376 -0.125 0.726* 0.846** 0.234 -0.174 0.089 

 

Serum × medium follicles 

0.736** -0.141 0.720* 0.999** 0.600 0.561 0.696* 

 

Serum × large follicles 

0.456 0.521 0.974* 0.996** 0.276 0.882 0.274 



Table 2. Mean ± S.E.M of lipid metabolites (total cholesterol, triglycerides, and NEFA), inflammatory biomarker (IL-6), and oxidative stress markers (d-ROMs, BAP, and 

OSI) in serum and follicular fluid of small (SF; n= 10), medium (MF; n=11), and large (LF; n=4) follicles in warmblood mares. 

 

 

 

 

S= serum; FF= follicular fluid; NEFA= non-esterified fatty acids; IL-6= interleukin 6; d-ROMs= reactive oxygen metabolites; BAP= biological antioxidant potential; OSI= 

oxidative stress index. 

Superscript *: Serum concentration of the corresponding variable differ significantly (P < 0.05) from its concentration in the follicular fluid. 

 

Category Cholesterol 

(mg/dL) 

Triglycerides 

(mg/dL) 

NEFA 

(mg/dL) 

IL-6 

(pg/mL) 

d-ROMs 

(UCARR) 

BAP 

(µmol/mL) 

OSI 

 S FF S FF S FF S FF S FF S FF S FF 

SF 96.00±6.60*  

 

 

67.00±7.95 41.10±5.06* 19.30±1.93 10.97±1.93* 5.31±0.47 333.37±230.17 1029.10±640.46 140.42±10.55* 57.67±7.13 5726.30±647.16 4658..10±1116.10 2.88±0.48 2.11±0.77 

MF 93.27±6.27* 46.10±2.95 46.27±6.03* 15.50±1.49 15.78±3.80* 6.22±0.55 99.06±38.34 693.49±628.50 141.24±9.25* 63.05±8.79 5295.90±608.22* 2521.90±464.44 3.15±0.47 3.47±0.73 

LF 91.25±11.88* 44.75±4.27 29.25±5.34 16.75±1.65 18.85±9.71 6.85±1.20 742.38±551.71 26394.00±19635.00 132.88±7.66* 42.09±11.25 5319.00±1521.30 244.60±563.92 3.14±1.07 2.20±0.71 



Fig. 1. Mean serum and follicular fluid concentrations of lipid metabolites (a: cholesterol, b: 

triglycerides, and c: NEFA), inflammatory cytokine (d: IL-6), and markers of oxidative stress (e: d-

ROMs, f: BAP, and g: OSI) for individual mares. 
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