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Abstract 

Prognostic prediction of traumatic brain injury (TBI) patients is crucial in clinical decision 

and health care policy making. This study aimed to develop and validate prediction models 

for in-hospital mortality after severe traumatic brain injury (sTBI). We developed and 

validated logistic regression (LR), LASSO regression, and Machine Learning (ML) algorithms 

including support vector machines (SVM) and XGBoost models. Fifty four candidate 

predictors were included. Model performance was expressed in terms of discrimination (C-

statistic) and calibration (intercept and slope). For model development, 2804 sTBI patients 

in CENTER-TBI China Registry study were included. External validation was performed in 

1113 sTBI patients in CENTER-TBI European registry study. XGBoost achieved high 

discrimination in mortality prediction, and outperformed Logistic and LASSO regression. 

The XGBoost model established in this study also outperformed prediction models 

currently available, including IMPACT core and CRASH basic models. When including 54 

variables, XGBoost and SVM reached C-statistics of 0.87 (95% CI: 0.81-0.92) and 0.85 (95% 

CI: 0.79-0.90) at internal validation, and 0.88 (95% CI: 0.87-0.88) and 0.86 (95% CI: 0.85-

0.87) at external validation, respectively. A simplified version of XGBoost and SVM using 26 

variables selected by recursive feature elimination (RFE) reached C-statistics of 0.87 (95% 

CI: 0.82-0.92) and 0.86 (95% CI: 0.80-0.91) at internal validation, respectively, and 0.87 

(95% CI: 0.87-0.88) and 0.87 (95% CI: 0.86-0.87) at external validation, respectively. 

However, when the number of variables included decreased, the difference between ML 

and LR diminished. All the prediction models can be accessed via a web-based calculator. 

GCS, age, pupillary light reflex, ISS for brain region and the presence of acute subdural 

hematoma were the 5 strongest predictors for mortality prediction. The study showed that 

machine learning techniques such as XGBoost may capture information hidden in 

demographic and clinical predictors of patients with sTBI and yield more precise 

predictions compared to logistic regression approaches. 

Key words: Traumatic brain injury; Prognostic model; Logistic regression; Machine 

learning; Extreme gradient boosting 
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Introduction 

Traumatic brain injury (TBI) is the main cause of death and disability in young adults 

worldwide, and is regarded as one of the conditions with the greatest healthcare and 

economic impact in society
1
. Prediction of outcome in patients after TBI is crucial in clinical 

decision making and health-care policy making. Patients with TBI differ in demographic 

characteristics, pre-injury health, cause of injury, injury severity, clinical severity and 

treatments, and their outcomes are highly variable. The high heterogeneity of TBI poses 

challenges to outcome prediction. 

Much efforts have been made in prediction modeling in patients with TBI. A majority of 

previous models use traditional statistical analyses, such as logistic regression (LR). The 

two most widely validated prediction models in TBI are the CRASH and IMPACT models
2
. 

These models focused on modeling a limited set of key predictors. However, they only 

explain approximately 35% of variance in outcome
3
.  

To improve the performance of the current models, machine learning (ML) algorithms may 

be useful. ML is a branch of artificial intelligence and is entering the realm of clinical 

research at an increasing pace because of the data explosion and increasing computational 

power
4-7

. It enables computer algorithms to learn from experience, without explicitly being 

guided by humans 
8
. ML techniques provide new opportunities for better prediction

9-12
. 

However, when applied to patients with TBI, no improvements were noted
13,14

. 

Explanations may include that a rather limited set of key predictors was studied, while ML 

methods require large numbers of potential predictors in large data sets to benefit from 

their greater flexibility than traditional methods. 

In this study we aim to develop and validate models to predict in-hospital mortality of 

patients with severe traumatic brain injury. We compare the performance of two 

commonly used ML models: support vector machine (SVM) and extreme gradient boosting 

(XGBoost) to traditional LR modeling.  
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Materials and Methods 

Study population 

This study included clinical data of 2804 patients with severe TBI (sTBI, initial GCS≤8) from 

the CENTER-TBI China Registry and 1113 patients with severe TBI from CENTER-TBI Europe 

Registry. In total, 13138 TBI patients were recruited from 52 centers across China between 

22nd, Dec, 2014, and 1st, Aug, 2017 in the China Registry, and 22849 TBI patients were 

recruited from 65 centers in 19 countries between 19th Dec, 2014, and 17th Dec, 2017 in 

the European Registry
15,16

. Both registries were prospective longitudinal observational 

studies. Data was collected for patients with a clinical diagnosis of TBI and an indication for 

Computed Tomography (CT). The study protocol was approved by the ethics committees 

of participating centres, who waived the need for informed consent as only routinely 

collected clinical data were recorded. The CENTER-TBI study was registered with 

ClinicalTrials.gov (NCT02210221). 

Information was collected using a web-based electronic case report form (eCRF) and 

managed by the QuesGen data management platform. Data were coded in accordance 

with the Common Data Elements (CDE) scheme 

(https://www.commondataelements.ninds.nih.gov). During the data uploading process, 

the system ran data validation checks. All study data in the database were de-identified 

and stored securely under the supervision of Karolinska Institutet International 

Neuroinformatics Coordinating Facility (KI-INCF). 

Outcome and predictors  

The primary outcome was mortality before discharge. A total of 54 variables were 

available in the database, which were included to predict in-hospital mortality, including 

baseline demographic characteristics, injury-related characteristics, clinical severity, 

radiological findings and clinical interventions (Table S1). Baseline, injury-related 

characteristics, clinical severity and radiological findings were assessed at arrival, and 

clinical interventions, immediately performed as emergency procedures upon admission, 

were recorded at discharge. Missing data were imputed with mean value. The rate of 
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missing data was 0.63% in training and internal validation set, and 1.15% in external 

validation set.  

Model development 

Regression techniques 

Standard LR and LASSO regression (a logistic regression with LASSO penalization) were 

used. Standard LR is prone to overfitting, while LASSO is expected to improve the 

performance of logistic regression models by shrinking some coefficients to zero
17,18

. No 

non-linear or interaction terms were included in the regression models. 

Machine learning algorithms 

Two machine learning tools were applied: XGBoost and SVM
19,20

. These are widely used in 

medical research 
5,6,9-11,20

. To simplify the XGBoost model, recursive feature elimination 

(RFE) was applied for feature selection
21

. Briefly, this method removes the weakest 

features until the specified number of features is reached. Ten-fold cross-validation was 

used to find the optimal feature number, by scoring and selecting the best feature subsets, 

and to evaluate performance. Moreover, bayesian optimization was use to finetune the 

parameters automatically for each of the machine learning models. Traditional tuning is 

often a “black art” requiring expert experience, rules of thumb, or sometimes brute force 

search. Instead, we consider this problem through the framework of Bayesian optimization 

which is therefore great appeal for automatic approaches that can optimize the 

performance of any given learning algorithm to the problem. All participants with sTBI 

were randomly divided into 10 subsets. Models were trained in all but one subset (Figure 

1). The 10-fold cross validation was repeated 10 times with change in the randomization. 

Sample weighting was added to solve label imbalances. The codes of model training and 

hyperparameters of final models were available in Github.  

Shapley Additive exPlanations (SHAP) method was applied for better interpretability of 

XGBoost prediction results. SHAP is a method to explain individual predictions. The effect 

of each feature on outcome prediction is summed in each patient according to the 
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nonlinear XGBoost model. The impact of each feature on the outcome can hence be 

interpreted from the SHAP values. 

Internal and external validation procedures 

During 10-fold cross validation, the one subset that was not included in the model training 

served as the internal validation set. This process was repeated 10 times until each subset 

was used to test the accuracy of the model, and the performance was averaged. To 

capture the distributional performance of trained models, the 10-fold cross validation was 

repeated 10 times with change in the randomization. The hyperparameters were tuned for 

the best discriminating power in internal validation sets. 

Data of 1,113 patients with sTBI from CENTER-TBI European Registry were used for 

external validation. The two studies used for data development and external validation 

included the same variables. The performance of prediction model was tested via the C-

statistic, calibration slope and intercept. 

Model performance at external validation set was also compared to that of CRASH basic 

model and IMPACT core modeles
22,23

. 

Statistical analysis 

Continuous variables were reported as median and IQRs, and categorical data as numbers 

and percentages. A two-tailed p value of 0.05 or less was used to define statistical 

significance. DeLong method was used to compare C-statistics between models. A total of 

5 comparison were made in multiple comparison among XGBoost vs. SVM, XGBoost vs. 

LASSO, XGBoost vs. naïve LR, SVM vs. LASSO, and SVM vs. naïve LR, and the p value was 

adjusted to 0.01 according to Bonferroni correction. 

All the model training and validation were performed using “scikit-learn” module, and 

XGboost package in Python (version 3.5). The hyperparameters and coding of model 

training and testing are available at GitHub repository 

(https://github.com/Yuyoo/Mortality-prediction-in-sTBI). The statistical analyses (including 

statistical description and performance comparison) were performed using R (version 
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3.5.0) statistical software, with RStudio (version 1.1.447) used as the implementation IDE. 

Delong test was performed using “roc.test” function of pROC package (version 1.18.0). 

Modeling results were reported in accordance with the TRIPOD guidelines (Supplement). 

To allow further validation, the XGBoost and SVM can be accessed using a web-based 

calculator at http://101.89.95.81:8654/. 

Results 

Study population 

In total, 2,804 patients with severe TBI (sTBI) (GCS ≤ 8) were included for model 

development and internal validation, of whom 552 (20%) had died at discharge (figure S1). 

Among them, 79% were male. The median age was 49 (IQR: 36-61) years. Most of the sTBI 

occurred on the streets or highways (n=1731; 62%), and 18% (n=511) got injured at home. 

The median GCS was 6 (IQR: 4-7) and the median Injury Severity Score (ISS) was 25 (IQR: 

17-32), respectively. 39% of patients had at least one-side pupillary light reflex absent and 

2,785 (99%) showed abnormal CT results. A Total of 1,113 sTBI patients were included in 

the external validation dataset, of whom 372 (33%) had died at discharge. Compared to 

the training set, patients in the external validation set were slightly older, had lower GCS, 

and more patients got injured at home (Table 1). 

Prediction model construction using logistic and LASSO regression 

We considered 54 candidate predictors for model development, including, age, gender, 

pre-injury status, ISS, GCS, injury causes, injury places, pupillary reflex, SpO2, blood 

pressure, CT results, ICU admission and emergency interventions (table S1). The LR model 

demonstrated overfitting when including a total of 54 variables, with an average C-statistic 

of 0.88 (95% CI: 0.86-0.90) in training sets, 0.83 (95% CI: 0.79-0.86) in internal validation 

sets and 0.79 (95% CI: 0.76-0.82) in the external validation set. The calibration intercept 

and slope were -0.05 and 0.15 respectively at external validation (figure 2a). A simplified 

LR model included 36 variables which showed significance (p<0.05). This model had a 

higher C-statistic at external validation (0.84, 95% CI: 0.81-0.86, table S2). Further 

simplification using 8 variables and 6 variables (table S3 and S4) showing significance in the 
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previous models demonstrated better performance with a C-statistic of 0.85 (95% CI: 0.82-

0.87) and 0.84 (95% CI: 0.82-0.87) at external validation, respectively.  

With 54 candidate variables, LASSO Regression performed better than LR without 

penalization. The LASSO model shrunk variables to zero, leaving 36 predictors in the 

model. It reached a C-statistic of 0.85 (95%CI: 0.81-0.88) at internal validation and 0.86 

(95%CI: 0.83-0.88) at external validation. The calibration intercept and slope were -0.48 

and 1.03 respectively at external validation (figure 2b). A simplified model with 36, 8 and 6 

candidate variables showed similar C-statistics of 0.86 (95%CI: 0.83-0.88), 0.85 (95%: 0.83-

0.88) and 0.85 (95%: 0.83-0.88) at external validation respectively. 

Prediction model construction using ML algorithms 

When including all 54 predictors, the support vector machine (SVM) model reached an 

average C-statistic of 0.85 (95% CI: 0.79-0.90) in internal validation sets, and 0.86 (95% CI: 

0.85-0.87) in the external validation set. Both SVM and XGBoost achieved better 

calibration performance than regression models. The calibration intercept and slope were 

-0.21 and 1.19 respectively at external validation (figure 2c). XGBoost performed slightly 

better compared to SVM, and achieved 0.87 (95% CI: 0.81-0.92) in internal validation sets, 

and 0.88 (95% CI: 0.87-0.88) in the external validation set. Calibration intercept and slope 

were -0.10 and 1.34 respectively at external validation (figure 2d). The emphasis on 

sensitivity and specificity will be determined by the users. At a cutoff value of 0.27, the 

XGBoost model had a sensitivity of 90% and a specificity of 62%, at a cutoff value of 0.57, 

the model had a sensitivity of 64% and a specificity of 90%. 

After RFE, which removed the weakest features until the optimal number was reached, a 

simplified ML model was built using the 26 variables selected by RFE (table S5), which 

reached similar performance compared with all 54 variables. The average C-statistic was 

0.87 (95% CI: 0.82-0.92) in internal and 0.87 (95% CI: 0.87-0.88) in external validation set 

for XGBoost, and 0.86 (95% CI: 0.80-0.91) in internal and 0.87 (95% CI: 0.86-0.87) in 

external validation set for SVM. Calibration intercept for external validation was -0.33 for 

XGBoost and -0.52 for SVM. Calibration slope for external validation was 1.22 for XGBoost 

and 1.06 for SVM (figure S2). 
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SHAP analysis for the XGBoost model revealed that the 5 strongest predictors for mortality 

were: low GCS Score, elder age, absent pupillary light reflex, high ISS for brain region 

(which is the quadratic of brain AIS, with a max of 75 assigned when brain AIS was 6) and 

presence of acute subdural hematoma. Other important features included low oxygen 

saturation, high total ISS, midline shift over 5 mm, presence of contusions, needs for 

intensive care, too low or too high systolic blood pressure, low GCS motor score. 

Secondary referral and CSF drainage was associated with a lower mortality rate (Figure 3 

and Figure S3). 

Interaction analysis suggested that the impact of age on outcome decreased at low GCS. 

Besides, whether GCS is low or high, the younger age (<48) tended to decreased mortality, 

and the elder age (>48) tended to increased mortality. It was also found that the impact of 

brain injury ISS increased at low GCS. In other words, when GCS was low, brain ISS can give 

us extra information about mortality (figure S4). 

Besides, SHAP model can better interpret XGBoost model, which, unlike logistic regression, 

is difficult to explain due to its non-linearity. Its application in explaining outcome 

prediction of two individuals was demonstrated in figure S5. In the first case, the predicted 

mortality was above average because severe comorbidity, severe injury with ISS of 75 and 

GCS of 3, low oxygen saturation at scene, and mass subdural hematoma increased the 

mortality, although normal pupillary light reflex and CSF drainage lowered the mortality. In 

the second case, the predicted mortality was below average because this patient needed 

no ICU treatment, the brain ISS was relatively low, the initial CT only showed the minor 

contusion without midline shift or subdural hematoma, although the age was high and the 

oxygen saturation was relatively low. 

Comparison between Linear regression, LASSO regression and Machine Learning 

algorithms  

When including a total of 54 candidate variables, XGBoost outperformed naïve LR and 

LASSO regression in c-statistic (P<0.0001 and P<0.001, respectively, Figure 4 and Figure 

S6), and SVM outperformed naïve LR (P<0.0001). As the selected features reduced to 26, 

the performance of LR increased, but XGBoost still performed better than naïve LR and 
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LASSO regression (P<0.0001 and P=0.0016, respectively), and SVM still outperformed naïve 

LR (P=0.00019). However, when the number of features was further reduced, the 

performance of both SVM and XGBoost reduced significantly and showed similar 

discriminating power with naïve LR (P=0.23 and 0.20, respectively) and LASSO regression 

(P=0.24 and 0.22, respectively) when it only included 6 variables. XGBoost showed high 

robustness and the best performance in discriminating hospital mortality throughout 

different numbers of variables included. The comparison of performance between each 

model was presented in Table S6 and Table S7, and the detailed performance of 10 

randomization repetition were shown in Figure S7. 

Comparison with IMPACT and CRASH models 

The XGBoost model (both original and simplified version) outperformed the currently 

widely accepted IMPACT core and CRASH basic prognostic models. In the external 

validation set, the CRASH basic model achieved C-statistics of 0.82 (95%CI: 0.79-0.84) and 

IMPACT core model reached 0.80 (95%: 0.78-0.83). Calibration slopes were 0.92 and 1.17 

for CRASH and IMPACT models respectively, and calibration intercepts were -0.49 and -

0.02 for CRASH and IMPACT models respectively. Due to limitation of database, variables 

required for IMPACT core+CT and CRASH-CT model were not available. 

Model presentation 

To facilitate external validation by independent researches, all models including XGBoost, 

SVM and LR can be accessed using a web-based calculator at http://101.89.95.81:8654/. 

Both the 54-variable model and the simplified versions are available online by clicking 

corresponding labels (figure S8). The risk percentage calculated implies the predicted 

mortality rate at discharge. 

Discussion 

The current study developed and compared strategies for prediction modeling of in-

hospital mortality in patients after sTBI based on commonly available demographic and 

clinical data. A total of 2804 patients after sTBI in the CENTER-TBI China Registry were 

included in model development and 1113 in the CENTER-TBI European Registry were used 
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for external validation. The XGBoost model achieved high discrimination and calibration 

performance in predicting in-hospital mortality, and outperformed established prediction 

models for outcome prediction in TBI. 

Compared to other ML algorithms, the current model included more clinical scales and 

medical interventions
13

. It did not require laboratory indicators, including serum glucose 

level, C-reactive protein, sodium level, etc. 
13,24,25

. Thus, the model might be used for early 

prediction in the emergency room. 

Since 20% of patients with sTBI died before discharge, early determination of prognosis is a 

priority for both the physicians and relatives involved
15,26

. Reliable assessment of prognosis 

in patients with TBI is critical for clinical decision making, health-care policy making, family 

counseling, allocation of resources, research and assessment of the quality of health care
3
. 

Of note, this model included emergency clinical interventions, so it is specific to current 

practice and indications for starting these interventions. The effectiveness of the 

treatments, however, cannot be derived from the current modeling and requires further 

study. 

To predict the outcome of patients with TBI, many prediction models have been 

developed. Some of the prediction models have been validated and showed high accuracy, 

e.g., the International Mission for Prognosis and Clinical Trials in Traumatic Brain Injury 

(IMPACT) prognostic models and the Corticosteroid Randomization after Significant Head 

Injury (CRASH) prognostic models
27-29

. Most predictors identified in the current model 

were in line with established models including IMPACT and CRASH models. The IMPACT 

model includes age, GCS motor score, pupil reactivity hypoxia, hypotension and CT findings 

to predict mortality or unfavorable outcome at 6 months
23

. The CRASH model includes 

age, GCS score, pupil reactivity, major extracranial injury and CT findings to predict 

mortality at 14 days or unfavorable outcome at 6 months
22

. Compared with these 

established models, the current XGBoost model achieved higher discriminative accuracy. 

Consistent with previous studies, the current XGBoost model revealed that low GCS Score, 

elder age, absent pupillary light reflex and presence of acute subdural hematoma were 

among the most important features for mortality. However, this study found a non-linear 
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association between some variables (e.g. GCS, age and ISS) and outcome. In addition, 

some predictors including head ISS, secondary referral and emergency interventions were 

found relevant for prediction of in-hospital mortality by XGBoost and were rarely explored 

in previous models. This may underlie the performance improvement of the XGBoost 

model. 

Currently, ML is ubiquitous and indispensable for solving complex problems of 

unstructured data in most sciences, due to its ability to handle large numbers of 

predictors
12

. However, only a few studies investigated the application of ML in outcome 

prediction of TBI, and achieved quite contradictory conclusions. Gravesteijn and colleagues 

found that ML may not outperform logistic regression for outcome prediction after 

moderate or sTBI
13

. While studies by Matsuo, Lu, Feng and their colleagues indicated a 

relatively good predictive performance of modern ML for TBI outcome compared with 

regression approach
24,25,30

. The current study indicated that one source of contradiction 

may be the numbers and types of predictors included in each model, and the balance of 

large numbers of predictors to large sample size. 

The result of our study revealed that the number of variables affected the performance of 

ML and LR conversely in TBI prognostic prediction. When including only a small number of 

predictors, ML didn’t show better performance compared to LR, and some ML algorithms 

even perform more poorly than LR. As the included number of variables increased, the 

performance of XGBoost and SVM improved, and reached higher discrimination and 

calibration performance than regression models, because more information, including 

signals and noises, were contained in the predictors, and ML can eliminate redundant 

noise and better capture features of the patient before making predictions. The LR 

performance decreased when including more predictors, indicating low robustness for 

high-dimensional settings. LR is more suitable for low-dimensional data, while ML shows 

more potential in large-scale, multi-modality settings. Currently, continuous long-term 

multi-modality monitoring is commonly applied in critical care patients, and together with 

increasing biomarkers and radiological images, it may promote the use of ML for TBI 

outcome prediction. 
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The main strengths of this study are the large scale of the cohort, the prospective 

recording of patient data, and the external validation of models in the CENTER-TBI EU 

registry study with an identical data collection protocol to CENTER-TBI China. A limitation 

of this study included lack of lab and detailed radiological findings. The limited number of 

features included may hamper the performance of ML algorithms and led to a minimal 

increase in discrimination power compared with traditional regression algorithms. Further 

studies are needed to provide any clinically meaningful decision. Besides, there is no fixed 

time for outcome evaluation (death). 

Conclusions 

In conclusion, we developed and compared prediction models for in-hospital mortality in 

patients after sTBI based on demographic and clinical data in the CENTER-TBI China and EU 

Registries. The result demonstrated that the simplified XGBoost model achieved both 

accuracy and clinical usability. Besides, XGBoost was promising as a machine learning tool, 

which revealed superior performance by capturing information hidden in demographic and 

clinical predictors in large datasets of patients after sTBI. 
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Table 1. Baseline of patients included in the CENTER TBI China Registry and CENTER TBI EU 

Registry  

 

China Registry sTBI 

n=2804 

EU  Registry sTBI 

n=1113 

Male Gender 2223 (79%) 810 (73%) 

Age 49 (36-61) 50 (30-68) 

Pre-injury ASA-PS   

  ASA Ⅰ 2190 (78%) 461 (41%) 

  ASA Ⅱ 439 (16%) 290 (26%) 

  ASA Ⅲ 111 (4%) 234 (21%) 

  ASA Ⅳ 36 (1%) 23 (2%) 

  Unknown 28 (1%) 105 (9%) 

Injury Place   

  Street/highway 1731 (62%) 466 (42%) 

  Home 511 (18%) 381 (34%) 

  Public location (eg. bar, station, nightclub) 264 (9%) 48 (4%) 

  Work/school 18 (1%) 16 (1%) 

  Sport/recreation 266 (9%) 141 (13%) 

  Other 12 (0%) 34 (3%) 

  Unknown 2 (0%) 27 (2%) 

GCS Score 6 (4-7) 3 (3-6) 

Total ISS 25 (17-32) 29 (24-50) 

Pupillary Reflex   

  Both Exist 1703 (61%) 681 (61%) 

  One Absent 370 (13%) 144 (13%) 

  Both Absent 731 (26%) 288 (26%) 

CT Result   

  Normal 19 (1%) 152 (14%) 
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  Abnorm
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2785 (99%
) 

961 (86%
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Systolic BP (m
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  ≤90 m
m

Hg
 

161 (5.7%
) 
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