
This item is the archived peer-reviewed author-version of:

Energy harvesting for wireless IoT use cases : a generic feasibility model and trade-off study

Reference:
Van Leemput Dries, Sabovic Adnan, Hammoud Khodr, Famaey Jeroen, Pollin Sofie, De Poorter Eli.- Energy harvesting for wireless IoT use cases : a generic

feasibility model and trade-off study

IEEE internet of things journal - ISSN 2327-4662 - (2023), p. 1-19 

Full text (Publisher's DOI): https://doi.org/10.1109/JIOT.2023.3263543 

To cite this reference: https://hdl.handle.net/10067/1959010151162165141

Institutional repository IRUA



CITATION INFORMATION: DOI 10.1109/JIOT.2023.3263543 1

Energy Harvesting for Wireless IoT Use Cases:

a Generic Feasibility Model and Trade-off Study
Dries Van Leemput, Adnan Sabovic, Khodr Hammoud, Jeroen Famaey, Senior Member, IEEE,

Sofie Pollin, Senior Member, IEEE, and Eli De Poorter

Abstract—A battery-less Internet of Things (IoT) offers a
sustainable alternative to battery-powered IoT devices, which
produce billions of dead batteries every year. Devices are instead
powered by a small supercapacitor, which is recharged by a
renewable energy source. However, since IoT devices are often
characterized by intermittent periods of high energy consumption
followed by periods of reduced activity, conventional average
energy consumption models can not be used to assess if an
IoT devices can be powered by energy harvesters. Therefore,
this paper presents an alternative feasibility evaluation approach
that focuses on modeling the worst-case periods with peak
energy consumption and short idle times, which pose the highest
constraints on the capacitor’s behavior. This approach simplifies
the characterization of the wireless technology energy consump-
tion as these worst-case periods can be determined by a few
parameters. The methodology is then applied to combinations of
popular IoT technologies (LoRaWAN, BLE Mesh, and 6TiSCH)
and energy sources (solar, kinetic, and radio frequency energy)
for two common IoT use cases. We show that the proposed
parameters can be successfully extracted with power measure-
ments for different network configurations and that the Power
Management Unit configuration has a non-negligible impact on
the communication requirements. Finally, we discuss how to
apply the model to other technologies and other use cases.

Index Terms—Energy Harvesting, IoT, Feasibility Study, Lo-
RaWAN, BLE, 6TiSCH

I. INTRODUCTION

THE Internet of Things (IoT) enables the connection of

billions of devices to the internet and perform sensing,

actuating, communication, and localization operations. Due to

their relatively low power consumption and because of the

desired use cases, these devices are often battery-powered.

However, batteries are hazardous, bulky, expensive, sensitive

to temperature changes, and last at most a few years, even

when rechargeable. Therefore, disposing of billions of dead

batteries per year is both economically and ecologically un-

acceptable [1]. In addition, some use cases require devices to

be deployed in remote or hard-to-reach environments, which

makes the replacement of batteries expensive and dangerous,

if not impossible. Therefore, there has been a significant recent

interest in developing battery-less and perpetual IoT devices by

using energy harvesting techniques. These devices generally
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consist of an MicroController Unit (MCU), radio chip, one or

more sensors or actuators, Power Management Unit (PMU),

and a supercapacitor. The PMU charges the capacitor using

an energy source, which can be solar, kinetic, thermal, Radio

Frequency (RF) energy, etc. As the energy source harvests

energy from its environment, the type of energy source is

highly dependent on this environment.

However, IoT devices are used for a wide range of use cases:

transport systems, hazardous environment sensing, healthcare,

smart meters, asset tracking, infrastructure monitoring, etc.

Each of these use cases has different requirements and en-

tails various deployment environments, which in turn provide

varying opportunities to harvest energy. Additionally, plenty

of wireless technologies offer IoT connectivity with divergent

communication capabilities. Therefore, the correct choice of

wireless technology and energy source for a specific use

case might prove to be difficult and the wrong choice could

result in a waste of time and resources. It is, therefore,

essential to know which combinations of wireless technologies

and energy sources are feasible for a particular use and

to identify the boundaries of the use case requirements for

these combinations. Although a comparison of the average

power consumption of the wireless technology and harvested

power by the energy source allows for an initial sense of the

feasibility, it does not take the nature of IoT use cases and

wireless technologies into account, nor does it consider the

(dis)charge behavior of a capacitor. IoT devices usually reside

most of the time in a sleep state and wake up to perform a task,

resulting in a current peak. Due to their sparse energy density

compared to batteries, supercapacitors are able to supply a

limited amount of energy during current peaks but need to

be recharged during idle periods. Therefore, the scheduling of

these current peaks has a major influence on the feasibility

of the system. However, it is often impossible to characterize

the entire operation of a wireless technology and evaluate the

capacitor’s behavior for the complete operational lifetime.

To that end, this paper presents a generic model to analyze

the feasibility of energy harvesting for IoT use cases, which

considers the nature of these use cases, wireless technologies,

and the (dis)charge behavior of capacitors. To avoid a complete

characterization of the wireless technology, we propose three

well-chosen parameters that specify the worst-case scheduling

period for the (dis)charge behavior of the capacitor. As a result,

it suffices to only evaluate this worst-case scheduling period,

as other moments impose more lenient requirements on the

capacitor. Furthermore, due to abstracting the operation of

the wireless technology by three parameters that specify the

worst-cast scheduling period, any technology can be quickly
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evaluated. These parameters can be obtained by examining the

wireless technology for a certain configuration, through sim-

ulations, power measurements, standard specifications, data

sheets, etc. As an example, we apply the model to three

popular wireless technologies: LoRaWAN, BLE Mesh, and

6TiSCH using three common energy sources: solar, kinetic,

and RF energy. This allows for a feasibility study of two of

the most prominent IoT use cases: long-range asset tracking

and dense building automation, for different combinations of

the aforementioned wireless technologies and energy sources.

These were selected based on market studies and a preliminary

study featuring 21 companies involved in IoT.

In summary, the main contributions of this article are:

• A generic feasibility model to analyze the feasibility of

energy harvesting for IoT use cases, considering differ-

ent combinations of wireless technologies and energy

sources. The model takes the nature of IoT use cases

and wireless technologies into account, and their impact

on the (dis)charge behavior of supercapacitors. By identi-

fying the worst-case scheduling period, a complete char-

acterization of the wireless technology is not required,

facilitating the evaluation of any technology. The Python

code of the model is available as open-source code online

and can be extended to include additional energy sources,

wireless technologies, and IoT use cases [2].

• Characterization of the worst-case energy consumption

period in terms of energy harvesting for three commonly

used wireless technologies (LoRaWAN, BLE Mesh, and

6TiSCH). This is in contrast to already existing energy

models, which calculate the average energy consumption.

• Feasibility and trade-off analysis of two prominent IoT

use cases (long-range asset tracking and dense building

automation) for a combination of the selected wireless

technologies and energy sources to identify promising

combinations for future research.

The rest of this paper is structured as follows. First, Section

II presents an overview of related work on the feasibility

of energy harvesting for IoT. Next, Section III describes the

results of the preliminary industry study to select the evaluated

wireless technologies, energy sources, and IoT use cases.

The details of the worst-case energy consumption model are

explained in Section IV, including the necessary assumptions

to employ the model. Next, Section V lists some typical values

of the harvested power for the selected energy sources, and

Section VI characterizes the necessary energy parameters and

boundaries of the wireless technologies. The results of these

sections are then used in Section VII to perform a feasibility

and trade-off analysis and suggestions are presented to extend

the model toward other use cases. Finally, Section VIII ends

the paper with a conclusion.

II. RELATED WORK

Table I gives an overview of existing literature on the

feasibility of energy harvesting for Wireless Sensor Nodes

(WSNs). For each work, the considered wireless technology,

energy source, energy storage type, and evaluated use cases

are indicated. While other works include alternative wireless

technologies or energy sources, we highlight the most widely

used and focus on the ones examined in this paper to evaluate

the differences and analogies to our work.

The feasibility of energy harvesting for Long Range Wide

Area Network (LoRaWAN) networks has been studied ex-

tensively in the literature. Sherazi et al. [3] present a model

to evaluate the lifetime of battery-powered LoRaWAN nodes

and the possibility of using renewable energy sources to feed

the nodes in industrial environments. The authors consider a

combination of indoor light, thermoelectric, and RF energy

sources. Malbon et al. [4] propose a generic optimization

methodology to dimension the energy storage elements of

an autonomous node and perform an experimental validation

on a LoRaWAN platform. They assume a supercapacitor in

combination with a battery, which provides power during

periods without light harvesting. Delgado et al. present a

battery-less LoRaWAN device model, including a superca-

pacitor, a voltage source, and variable load resistance in [5].

They evaluate the required capacitor and minimum voltage,

and the impact of the turn-on threshold on the reliability. The

authors extend their model in [6] with a current source and

non-ideal supercapacitor. In addition, they present a Markov

model to characterize the performance of a LoRaWAN Class

A device and evaluate the capacitor size, feasible transmission

interval, and optimal turn-on threshold assuming a continuous

harvesting power. The authors in [7] define an optimization

problem to determine the optimal supercapacitor voltage to

perform and schedule application tasks, using the model

presented in [5]. They measure the execution time and energy

consumption of a LoRaWAN device for constant harvesting

power. Finally, Finnegan et al. [8] explore the boundaries

of powering a LoRaWAN device with ambient RF energy

sources, using an analytical LoRaWAN device model and RF

energy data found in the literature. The authors estimate the

capacitance for multiple data rates and analyze the impact

of leakage current, sleep current, and PMU efficiency on the

required harvesting power.

Energy harvesting for Bluetooth Low Energy (BLE) net-

works is studied in [9]. Relevant technologies in RF energy

harvesting mechanisms are discussed and an investigation of

RF energy harvesting using two proof-of-concept systems is

performed, of which one employs BLE advertising messages.

The authors point out the impact of the distance to the energy

source, the amount of transferred data, and the leakage current

of supercapacitors. Sultania et al. [10] propose an analytical

model for the performance of a battery-less BLE Mesh Low-

Power Node (LPN) as a function of downlink latency and re-

liability. They measure the energy consumption and execution

time of a BLE Mesh LPN and analyze different capacitor sizes

and continuous harvested power values for network-specific

parameters, including friend queue size, receive delay, and

packet size.

Xhafa et al. [11] investigate the possibility of powering

nodes in a Time-Slotted Channel Hopping (TSCH) network

with solar energy. They compare the average consumed power

with the average harvested power for both the default and an

enhanced TSCH layer and conclude that both options draw

more power than a solar panel can provide. To that end,
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Das et al. [12] propose a hierarchical network management

scheme and an asynchronous communication scheme to in-

clude energy-harvesting devices in TSCH networks using me-

chanical vibration energy. The authors evaluate the solutions in

terms of management efficiency and energy consumption, and

show that they are feasible for an automotive manufacturing

and railway transport use case. Chew et al. [13] focus on the

TSCH joining process and present a duty-cycle joining process

that enables battery-less nodes to join the network with less

energy wastage. They show that a capacitor can be recharged

within a reasonable time to power the node during network

joining while using a kinetic energy harvester. In that light,

Kalita et al. [14] also enable a faster formation process with

reduced energy consumption by proposing a channel condition

based dynamic beacon interval. Finally, Vilajosana et al. [15]

propose an energy consumption model for TSCH network.

They calculate the average energy consumption and duty cycle,

and discuss network configuration choices. However, both [14]

and [15] do not evaluate the feasibility of energy harvesting.

As shown in Table I, we do not focus on one specific

wireless technology or energy source, but present a feasibility

analysis including different combinations of wireless tech-

nologies (LoRaWAN, BLE, and 6TiSCH) and energy sources

(solar, kinetic, and RF) for IoT use cases. Moreover, our

generic model is not restricted to the considered combinations

but allows us to include any wireless technology and ambient

energy source.

Several works do consider multiple wireless technologies in

their feasibility analysis. Van Herbruggen et al. [16] investigate

the possibility of using the vibrational energy at a horse’s

leg to power a perpetual monitoring device. Based on an

existing model, they study the average delivered power for four

natural gaits of the horse. The authors consider six wireless

technologies (WiFi, BLE, Ultra-WideBand (UWB), LoRa,

SigFox and IEEE 802.15.4) in their feasibility analysis for

which they derive the power consumption during transmission

and various sleep states. Based on the average delivered power

and power consumption, the achievable duty cycle of the

device is calculated for each wireless technology when using

a battery as a storage element. However, the leakage current

of the battery, the Medium Access Control (MAC) operation,

and the time for switching between states are ignored. The

authors in [17] developed an energy-aware system model

to establish a battery-less operation of devices with multi-

ple wireless technologies (Wi-Fi, Bluetooth, LoRa, SigFox,

and LTE-M) and designed a solar-powered energy harvesting

system. The system model includes a network model, IoT

node model, energy harvesting model, energy storage model,

and power management model. The authors consider an ideal

supercapacitor, neglecting charge redistribution and leakage

current. Through simulations, based on a probabilistic sensing

model, they evaluate how the proposed method influences

the energy efficiency of the network. Finally, Saavedra et al.

[18] perform a feasibility analysis of different IoT wireless

technologies (SigFox, LoRaWAN, NarrowBand IoT (NB-IoT),

WiFi, and BLE) in combination with solar, RF, and magnetic

induction energy for a smart metering use case. Based on

experimental measurements, they analyze the power consump-

tion of the wireless technologies as a function of data size,

connection establishment, and transmission time. They assess

which combinations are feasible, by comparing the average

power consumption to the average harvested power.

In contrast, we analyze the feasibility of energy harvesting

from a different perspective than existing works. Instead of cal-

culating the average power consumption or modeling the com-

plete wireless technology operation, we consider the worst-

case scheduling scenario of the wireless technology from an

energy harvesting perspective and include control traffic. As

such, the intermittent nature of wireless IoT technologies and

the behavior of the capacitor is taken into account. Further-

more, we assume a non-ideal storage element by considering a

realistic capacitor charging model, including leakage current,

and considering the energy conversion efficiency.

III. ENERGY HARVESTING IN IOT

To gain insight into the needs and expectations of the

industry regarding the use of energy harvesting in IoT, we

present the results of a survey featuring 21 companies involved

in IoT and interested in deploying energy harvesting solutions.

The companies are located in Flanders, Belgium and are active

in smart utilities, smart buildings, industry 4.0, logistics, and

e-health. To capture a representative view, they were chosen

based on different core activities, such as hardware design, IoT

and private network operators, healthcare wearables, freight

tracking systems, building and industrial valve monitoring,

IoT service providers, groundworks, logistics, drink water

providers, etc. These results allow us to identify promising IoT

use cases, energy harvesting sources, and wireless technologies

from an industry perspective.

Fig. 1 lists ten use cases for energy harvesting systems and

shows the number of interested companies. As can be seen,

dense building automation and long-range asset tracking are

most relevant as sixteen out of 21 companies are interested.

This is in line with current market trends: the applications

with the largest share in the IoT energy harvesting market

are expected to be building & home automation, industry 4.0,

logistics, and consumer electronics in the near future [19],

[20]. Therefore, we selected these use cases to be evaluated in

the feasibility and trade-off analysis presented in Section VII.

Table II lists typical requirements of these use cases based on

the feedback from the involved companies and requirements

found in scientific literature [12], [21]. Latency, transmission

interval, data size, and range are considered since they have the

most profound impact on the energy consumption of the IoT

device. Additionally, mobility and location are also included

as they can influence the choice of wireless technology and

energy harvesting source, respectively.

Fig. 2 depicts the currently employed wireless technologies

by the companies. A wide range of technologies is available,

such as LoRa(WAN), BLE, IEEE 802.11-based technologies

(e.g., Wi-Fi HaLow), NB-IoT, IEEE 802.15.4-based technolo-

gies (e.g., Zigbee, 6TiSCH, WirelessHART, ISA100.11a), etc.

[21]–[23]. Based on the survey results, BLE, LoRa(WAN),

IEEE 802.11-based technologies, SigFox, and NB-IoT all

prove to be popular among the involved companies. We have
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TABLE I: Comparison of related works to our work

Work
Wireless technology Energy source Storage element Use Cases

LoRaWAN BLE 6TiSCH NB-IoT SigFox Solar Kinetic RF Thermal Capacitor Battery

[3] ✓ ✕ ✕ ✕ ✕ ✓ ✕ ✓ ✓ ✕ ✓ Industry 4.0

[4] ✓ ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ Env. monitoring

[5], [6] ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ -

[7] ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ Env. monitoring

[8] ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ ✓ ✕ -

[9] ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ Env. monitoring

[10] ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ Logistics

[11] ✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✓ -

[12] ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓
Manufacturing,

railway transport

[13] ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✓ ✕ Industry 4.0

[16] ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✕ ✕ ✕ ✓ Horse monitoring

[17] ✓ ✓ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✕ -

[18] ✓ ✓ ✕ ✓ ✓ ✓ ✕ ✓ ✕ ✕ ✕ Smart metering

Our work ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✓ ✕
Asset tracking,

building automation

5 6 7 8 9 16

Dense building automation

Long-range asset tracking

Long-lifetime wearables

Smart meters

Hazardous environment sensing

Dense smart city monitoring

Pipeline leakage detection

Off-shore networks

Smart textiles

Transport systems

Interested companies

Fig. 1: Common IoT use cases eligible for energy harvesting. For each
application, the number of interested companies, out of 21, is given. Based
on the interest, long-range asset tracking and dense building automation were
selected for the feasibility and trade-off analysis.

TABLE II: Typical requirements for two IoT use cases, based on literature
reviews [12], [21] and survey results.

Long-range

asset tracking

Dense building

automation

Latency > 1 s 10ms - 1 s

Transmission interval 15min - 24h 1 s - 24h

Data size 4 - 40B 20 - 200B

Range 100 - 1000m 10 - 200m

Mobility Mobile Static

Location outdoor / indoor indoor

chosen BLE and LoRaWAN as suitable technologies for the

feasibility and trade-off analysis because of their popularity,

their employment of Industrial, Scientific, and Medical (ISM)

frequency bands, and divergent communication capabilities.

LoRaWAN aims to provide long-range communication over

multiple kilometers using sub-GHz frequencies with a rela-

tively high latency compared to BLE, which has a shorter

range over a single hop, due to using 2.4GHz frequencies,

but can achieve greater distances with BLE Long Range or

multi-hop BLE Mesh. Moreover, both technologies offer low-

energy consumption configurations (i.e. LoRaWAN Class A

1 3 4 6 7

BLE

LoRa(WAN)

IEEE 802.11-based

SigFox

NB-IoT

Zigbee

Satellite

Employed by companies

Fig. 2: Wireless technologies currently used by the involved companies. BLE
and LoRaWAN were selected for the feasibility and trade-off analysis.

and BLE Mesh Low-Power Node), making them particularly

suitable for energy harvesting use cases. In terms of asset

tracking, the market share of LoRaWAN is expected to grow

due to the capability of handling a high device density, whereas

the increasing integration of Bluetooth with IoT applications

contributes to its own market growth [24]. Moreover, Blue-

tooth is also popular for building automation use cases, due to

its short-range communication capabilities in commercial and

industrial environments [25]. In addition, IPv6 over the TSCH

mode of IEEE 802.15.4e (6TiSCH) is also considered in the

feasibility and trade-off analysis because of its high interest in

the research community, fitness for industrial environments,

and low energy consumption. Moreover, both sub-GHz and

2.4GHz ISM bands can be used to deploy 6TiSCH, trading

range for energy consumption. The details and operation of

the chosen wireless technologies are discussed in Section VI.

Common sources of energy harvesting for IoT include solar,

thermal, kinetic, and RF energy [19], [20], [26], [27]. Fig. 3

depicts the number of companies that are interested in using

these sources for their IoT use cases. Due to their relevance for

the industry, solar, RF, and kinetic energy are evaluated in the

feasibility and trade-off analysis as possible energy harvesting

sources. For each source, two types of energy harvesting can

be considered: ambient and intentional harvesting. The former

uses ambient sources of energy (e.g. machine vibrations, RF

signals from neighboring base stations, outdoor or indoor
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1 6 9 13

Solar energy

RF energy

Kinetic energy

Thermal energy

Wind energy

Interested companies

Fig. 3: Energy harvesting sources relevant for the involved companies. Kinetic,
RF, and solar energy were selected as suitable harvesting sources for the
feasibility and trade-off analysis.

sunlight, etc.), and the latter harvests energy originating from

an intentional event (e.g. movement of the device, Wireless

Power Transfer (WPT) or backscattering, intentional artificial

light, etc.). Although intentional sources can be seen as a

promising solution for powering IoT devices, they are not

considered in the feasibility and trade-off analysis due to

their high degree of variability, making it hard to predict the

available energy during a certain period. Ambient sources,

however, also experience variability since the available energy

highly depends on their environment (location, orientation,

time of day, etc.). This unpredictability can be a severe draw-

back, especially in industrial settings with strict availability

requirements. Nonetheless, the fact that they do not require

the setup of dedicated external infrastructure (in contrast to

e.g. wireless power transfer) makes these energy sources very

popular for energy harvesting. In Section V, some common

values for ambient solar, kinetic, and RF energy harvesting

sources are listed for different environments and scenarios.

Based on the results of the preliminary study, reflecting the

needs and expectations of the industry, we have selected two

relevant IoT use cases (long-range asset tracking and dense

building automation), three suitable wireless technologies

(LoRaWAN, BLE, and 6TiSCH), and three promising sources

of ambient energy harvesting (solar, kinetic, and RF energy)

to perform a feasibility and trade-off analysis, presented in

Section VII.

IV. WORST-CASE ENERGY CONSUMPTION MODEL

This section describes the proposed model to analyze the

feasibility of energy harvesting for IoT use cases. Fig. 4

depicts an overview of our model, which represents a typ-

ical energy harvesting system, including an energy source,

wireless technology, supercapacitor, and PMU. In order to

perform a fair comparison of the energy sources and wireless

technologies, several assumptions for the different elements

are defined. Then, we describe how to estimate the harvested

power of the ambient energy source and the worst-case energy

consumption of the wireless technology, using the require-

ments and environment of the IoT use case. Based on the

worst-case energy consumption, the minimal required capac-

itance can be estimated. Finally, we calculate the charging

time, using the harvested power and idle power consumption,

while accounting for energy conversion losses by the PMU and

leakage current of the supercapacitor. Comparing the recharge

time with the required idle time allows analyzing the feasibility

of the system.

Wireless
technology

IoT 
use case

Ambient energy
source

Capacitor

ηPMU 

fPMU

Epeak

Tidle

Pidle

Pleak

PharvEnvironment scenario

Communication
requrements

Fig. 4: Methodology for evaluating the feasibility of IoT use cases with
energy harvesting. The required input and output for each building block
can be provided by (a combination of) simulations, real-life experiments,
mathematical models, machine learning, and technical specifications.

A. Assumptions

To perform a fair comparison between different combina-

tions of wireless technologies and ambient energy sources, and

for simplicity, we define several assumptions:

A 1. The storage element is a supercapacitor always operating

between Vmin (turn-off voltage) and Vmax (maximum volt-

age). Therefore, for the system to be feasible, the load is never

forced to turn off due to a lack of energy. However, the load

can be turned off to limit energy consumption as part of the

wireless technology operation. The supercapacitor experiences

a leakage current Ileak, which is assumed to be constant over

Vmax. As a result, the leakage power is Pleak = Ileak×Vmax.

A 2. A PMU takes care of the energy conversion between

the energy source and supercapacitor, and between the su-

percapacitor and load. Therefore, we assume both the load

and harvester operate at an equalized constant voltage Vref .

This also results in the operating range of the supercapacitor

[Vmin,Vmax] not depending on the operating range of the load,

allowing for a fair comparison between devices. To account

for energy conversion losses and the power consumption of

the PMU, the PMU can be configured with variable efficien-

cies ηPMU,h from the energy source to supercapacitor and

ηPMU,l from super capacitor to load, according to (1) and (2)

respectively.

P ′

harv = ηPMU,h × Pharv (1)

P ′

cons =
Pcons

ηPMU,l

(2)

A 3. The energy harvesting node is part of a stable network,

which implies the network joining process of the node is

finished, nodes do not require to re-join, and re-transmissions

are ignored. While the energy consumption is generally higher

during initialization, this only constitutes a fraction of the

operational lifetime of the device. Therefore, the joining

process is ignored in the model, but Section VII-D describes

the required extensions to include initialization, in addition to

a motivation on why re-transmissions can be ignored for the

considered wireless technologies.
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A 4. We only consider uplink traffic from the energy harvest-

ing node towards a network gateway, which is in line with

most sensing applications. Including downlink traffic is seen

as an extension to this model (Section VII-D). In addition, the

latency is considered between the end of the sensing operation

and the end of the sensor data reception by the network

gateway. While further delays may be introduced by, e.g., the

network backbone, such delays are not considered as they are

implementation-specific.

B. Ambient Energy Source

The ambient energy source provides a continuous harvesting

power Pharv , which is determined by the use case’s envi-

ronment. While a constant harvesting power generally does

not reflect a realistic scenario, a practical variable harvesting

power can be transformed into a constant one. The obvious

choice is to average out the variable harvesting power over

the considered time interval. However, smaller time intervals

can be considered which requires a feasibility and trade-off

analysis for each time interval. Alternatively, the complete

range or the bounds of the possible harvested power can

be evaluated. For each energy source, we, therefore, define

several environmental scenarios for which a fixed value or

range of Pharv is determined. In this work, the values of the

available harvesting power, reflecting the various scenarios, are

obtained through a literature review, as discussed in Section V.

However, measurements or existing data sets for the targeted

deployment location can also be used in case a more in-depth

analysis is required.

C. Worst-case Wireless Technology Scheduling

Due to the nature of wireless IoT technologies and the

characteristics of a supercapacitor, evaluating the average

power consumption and the harvested power is not sufficient

to analyze the feasibility of the system. After all, IoT devices

reside most of their operational lifetime in an idle state, during

which they consume little power, or are completely turned off.

In contrast, the radio is the most power-hungry element of

the IoT device, resulting in a current peak when activated.

Therefore, long periods with low power consumption are

alternated with short power peaks. Supercapacitors are able

to deliver a high amount of power for a short time period,

which is beneficial during short radio bursts. However, the

energy density of a supercapacitor is much lower compared

to that of a battery. As a result, the supercapacitor requires to

be recharged during idle periods in order to deliver sufficient

energy for the next radio burst.

Fig. 5 shows an example of a wireless sensor node’s

schedule at the bottom, where idle periods are alternated with

three tasks, which we define as a sequence of operations

that belong together and originate from a certain action. For

example, a sensor reads a new value and transmits it to a

server, which consequently replies with an acknowledgment.

The reading of the sensor value, transmission to the server, and

reception of the acknowledgment constitute a single task of

the device. Tasks can be either periodical or event-based, and

their scheduling depends on the configuration of the wireless

technology and the communication requirements of the use

case. The top of Fig. 5 shows the associated voltage level of

the capacitor, which is being recharged during idle periods and

discharged during the execution of tasks. As described in A1,

Vmin and Vmax represent the minimum and maximum voltage

of the capacitor, respectively.

Instead of evaluating the feasibility of the energy harvesting

system for the complete lifetime of the node during different

periods, we identify the worst-case scheduling period of the

wireless technology. This simplifies the evaluation as only one

period should be assessed: if the capacitor is able to handle

this worst-case period, all other periods are also feasible.

The worst-case scheduling period in Fig. 5 is shown at the

beginning of the schedule. It starts with the execution of the

frequent task, which is the task with the lowest interval t1.

This can be the transmission/reception of a periodical control

frame, a sense and transmit task, or any other frequently occur-

ring task. At the end of the task, the capacitor is discharged to

Vmin. The worst-case scheduling period coincides ends with

the highest possible energy consumption peak of the device,

which is called the peak sequence and is represented by

Tpeak in Fig. 5. As can be seen, the peak sequence comprises

all possible tasks of the wireless technology scheduled right

after each other, thereby consuming the maximum amount of

energy. Note that the frequent task is scheduled at the end of

the peak sequence, which results in the shortest idle period

Tidle in between the frequent task and the peak sequence.

This scheduling scenario is regarded as the worst-case for

an energy harvesting device for three reasons. First, Tidle has a

minimal duration by scheduling the frequent task at the end of

the peak sequence, hence limiting the allowed time to recharge

the capacitor. Secondly, the peak sequence sets a lower bound

on the capacitance as the capacitor should at least be able

to store Epeak. This leads to a lower limit to recharge the

capacitor, as a higher capacitance increases the recharge time.

Finally, we assume the voltage over the capacitor is equal

to Vmin at the beginning of Tidle, resulting in the maximal

required energy that needs to be harvested within Tidle. While

this worst-case scenario might not occur frequently, the energy

harvesting device should be able to cope with said scenario

as it can possibly take place. Therefore, it suffices to only

focus on this particular scenario to analyze the feasibility

of the energy harvesting system. Additionally, only three

parameters need to be extracted from the wireless technology

in order to assess the feasibility: Epeak, Tidle, and Pidle. This

makes the model generic as every wireless technology may

be evaluated, provided these three parameters are known. In

Section VI, we provide three examples of how to estimate

these parameters for the selected wireless technologies, using

existing measurements of off-the-shelf devices.

It must be noted that irrespective of the energy source

and storage element, each wireless technology imposes limits

on the achievable communication requirements of the use

case. Therefore, before analyzing the feasibility of the energy

harvesting system, it is crucial to identify the boundaries of the

communication requirements for which the wireless technol-

ogy is feasible. Naturally, it makes sense to only evaluate the

energy harvesting system between these boundaries. Section
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T1T3T2 T1 T1T3 T3T2T1

Tidle Tpeak

t1 = 1/ffreq t3 t2

Epeak

Vmax

Vmin

Fig. 5: Example of the worst-case scheduling period of an energy harvesting device. The schedule includes three tasks and is depicted at the bottom, with the
associated capacitor voltage at the top. The capacitor is charged during idle periods and discharged during the execution of tasks. T1 is selected as the frequent

task and the peak sequence comprises the concatenation of all possible tasks, requiring the highest possible energy consumption and thereby imposing a
minimal restriction of the capacitance. As the frequent task is scheduled at the end of the peak sequence, the idle period to recharge the capacitor is minimal.
Therefore, this scenario is considered worst-case since the capacitor needs to be fully recharged to its maximum value in a minimal amount of time.

VI therefore also covers the estimation of the latency and

transmission interval boundaries for each wireless technology,

as a function of other wireless technology parameters.

D. Minimal Capacitance Estimation

As mentioned previously, the peak sequence sets a lower

limit to the capacitor size, which should be able to supply

enough energy to the load to perform the peak sequence.

The remaining energy in a capacitor can be calculated by

E = C∗V 2

2
, where V represents the current voltage level.

As a realistic capacitor operates between two voltage levels,

defined as Vmin and Vmax in A1, the total available energy

of that capacitor can be approximated by (3) [28].

Estored ≈
C

2

(

V 2

max − V 2

min

)

(3)

The required energy to perform the peak sequence, in

absence of harvesting, is calculated in (4). The PMU efficiency

is taken into account by ηPMU,l and the leaked energy during

the execution of the task is equal to PleakTpeak. This is

according to A1 and A2 respectively.

Ereq =
Epeak

ηPMU,l

+ PleakTpeak (4)

Combining (3) and (4), the minimal required capacitance

Cmin to perform the peak sequence in the absence of energy

harvesting, is calculated in (5). The capacitor is fully charged

before the task and reaches its minimum voltage level Vmin

when the task is completed. Therefore, the load is not required

to turn off, as per A1.

Cmin ≈
2(

Epeak

ηPMU,l
+ PleakTpeak)

V 2
max − V 2

min

(5)

E. Recharge Time Calculation

To perform a feasibility and trade-off analysis for the system

in Fig. 4, the idle time and required time to charge the

capacitor should be calculated. Tidle can be calculated using

ffreq and Tpeak, as shown in (6).

Tidle =
1

ffreq
− Tpeak (6)

To calculate Tcharge, we make use of the capacitor model

in [7], which builds on the model introduced in [5]. Instead

of using a harvested and consumed current, we use P ′

harv ,

calculated in (1), as harvesting power and Pcons, calculated in

(7), as consumed power. By using (1) and (7), the capacitor

leakage and PMU efficiencies are taken into account in (8).

Pcons =
Pidle

ηPMU,l

+ Pleak (7)

Tcharge = −
V 2

ref

Pcons

Cmin ln





Vmax −
VrefP

′

harv

Pcons

Vmin −
VrefP

′

harv

Pcons



 (8)

Using the above equations, the combination of energy

source and wireless technology can be considered feasible if

the idle time is sufficient to recharge the capacitor (Tcharge ≤

Tidle). In contrast, if Tcharge > Tidle, the harvested power

is not sufficient to recharge the capacitor in time. However,

relaxing the communication requirements, wireless technology

settings, or PMU configuration might increase Tidle. For

that reason, although the combination is not feasible for the

selected communication requirements and settings, it is labeled

plausible. Finally, if the recharge time is negative, Pharv

is insufficient compared to Pcons to charge the capacitor.

Therefore, the selected combination is infeasible.

V. TYPICAL HARVESTED POWER FOR COMMON AMBIENT

ENERGY SOURCES

This section includes some common values for the selected

ambient energy sources, obtained from measurements, litera-

ture models, and technical reports. For each energy source,

a range of possible DC power is given for multiple envi-

ronmental scenarios. The considered energy harvesters and

environmental scenarios for each energy source are chosen

based on their relevance for dense building automation and

long-range asset tracking use cases. However, other harvesters

could be included for additional use cases and environments.
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TABLE III: Harvested solar power (MPP) for an indoor and outdoor solar
panel of 54 cm2

Scenario
Illuminance/

irradiance
Indoor [29] Outdoor [30]

Warehouse, coffee room 200 lx 0.289mW N.A.

Regular office
400 lx ∼ 0.75mW N.A.

600 lx ∼ 1.24mW N.A.

Mechanical workshop,
office window

800 lx ∼ 1.76mW N.A.

1000 lx 1.899mW N.A.

Clear sky 1000W/m2 N.A. 240mW

Cloudy sky 250W/m2 N.A. 54mW

TABLE IV: Harvested kinetic power for a vibrating machine and moving
railway car

Scenario DC power

Machine vibrations @50Hz [31] 80-150 µW

Railway car @80 km/h [32] 100-250mW

Table III lists the available Maximum Power Point (MPP)

for two off-the-shelf indoor and outdoor solar panels of

54 cm2, and for multiple indoor and outdoor environmental

scenarios. Indoor environments include a warehouse or coffee

room, a regular office, and a mechanical workshop or an office

window. In outdoor scenarios, we consider a clear and cloudy

sky. We used the PowerFilm Solar ©LL200-2.4-75 [29] and

MPT4.8-75 [30] solar panels and obtained the MPP values

from their technical documentation. However, as the technical

documentation of the indoor solar panel only provides values

for an illuminance of 200 lx and 1000 lx, the intermediate

values were obtained using an LTSpice model1.

Although solar energy provides a high energy density and

is considered a very promising energy source, not all envi-

ronments experience sufficient light. Therefore, kinetic energy

harvesters, of which piezoelectric, electrostatic, triboelectric,

and electromagnetic transduction are the most commonly used

types of harvesters, provide a suitable alternative. In this paper,

we consider piezoelectric harvesters because of their high

energy density and easily tuned resonant frequency [31]. Table

IV lists typical values of piezoelectric harvesters that may be

deployed in industrial environments. A harvester connected

to a vibrating machine with resonance frequency 50Hz [31]

and a moving railway car at 80 km/h [32] is considered.

The available DC power equals 80-150 µW and 100-250mW
respectively.

For ambient RF harvesting, we make use of the measure-

ments carried out in [33]. The authors measured the received

ambient RF power from 350MHz to 16GHz using an 410 cm2

Archimedean spiral antenna in an indoor and outdoor scenario

at the Universidad Politécnica de Madrid. LTE-800 and GSM-

900 proved to be the most interesting frequency bands since

they contained 82% of the total power. Table V lists the

received power for each frequency band and location. As the

achievable DC power is not mentioned, we provide an estimate

in Table V based on their measured rectifier efficiency at

870MHz. The rectifier efficiencies are approximated based on

1Although Simulink-Matlab would provide more accurate results, we in-
tended to get an approximation of the values using free software. The values
of the PhotoVoltaic (PV) were deduced from measurements.

TABLE V: Harvested ambient RF power for an indoor and outdoor scenario
[33]

Scenario
Received

power

Rectifier

efficiency
DC power2

LTE800 indoor −5.80dBm ∼ 18% ∼ 50 µW

GSM900 indoor −9.21dBm ∼ 9% ∼ 10 µW

LTE800 outdoor −1.46dBm ∼ 27% ∼ 190 µW

GSM900 outdoor −2.34dBm ∼ 26% ∼ 150 µW

Fig. 15 in [33] and the DC power is calculated by multiplying

the received power by the associated rectifier efficiency.

It should be noted that the values of Table V reflect an

example scenario for a specific location and that the available

ambient RF power is dependent on the deployment location.

An overview of ambient RF energy densities across the world

can be found in [34], in addition to measurements carried out

in Montreal. Similarly, the values of Tables III and IV reflect

example scenarios for our considered use cases but can be

replaced by values for other use cases or environments.

VI. CHARACTERIZATION OF ENERGY PARAMETERS AND

BOUNDARIES OF WIRELESS TECHNOLOGIES

The energy parameters of wireless technologies identified

in Section IV allow for a generic model applicable to any

wireless technology. However, the operation and scheduling

of the technology need to be explored to obtain the values of

these parameters. Nonetheless, measurements of an existing

network deployment may also be used to acquire the energy

parameters. In what follows, we calculate Epeak, Tidle, and

Pidle as a function of parameters inherent to the selected

wireless technologies (LoRaWAN, BLE Mesh, and 6TiSCH),

using existing current consumption and time measurements of

off-the-shelf devices. In addition, we determine boundaries for

the guaranteed latency and transmission interval based on the

wireless technology parameters.

A. LoRaWAN Class A

As discussed in Section III, LoRaWAN provides long-range

communication over multiple kilometers by using sub-GHz

frequencies. LoRaWAN devices use the Long Range (LoRa)

PHYsical layer (PHY) while the upper layers are defined in the

LoRaWAN specification [35]. Depending on the functionality

and energy consumption requirements, three classes of end

devices can be chosen: LoRaWAN Class A, B, or C. As

LoRaWAN Class A provides the lowest energy consumption, it

is best suited for energy-harvesting applications and therefore

we only consider this class. Fig. 6 depicts the scheduling of a

LoRaWAN Class A device; after an optional sensing operation,

the device transmits (sensor) data to a LoRaWAN Gateway

and waits for TRX1 before listening for downlink data. If

nothing was received, the device listens a second time at TRX2

after the end of transmission. Subsequently, the device enters

a sleep mode until the new uplink data is available. Because

a LoRaWAN Class A device does not require any additional

2Estimation based on the measured efficiency at 870MHz, exact values
not mentioned in paper.
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TX RX RX
idle idle sleepsense

TRX1

TRX2

Tfreq = Tpeak

Fig. 6: LoRaWAN Class A scheduling. Since sense and transmit is the only
task, it is considered as the peak sequence and frequent task.

TABLE VI: Current consumption and time values of LoRaWAN Class A
device on SODAQ ExpLoRer board [7]

State Current consumption Duration

Start-up 13mA 13 s

TX 49.61mA TTX

Idle 1 17.13mA 0.92 s

RX 1 27.57mA 0.09 s

Idle 2 17.12mA 0.92 s

RX 2 27.73mA 0.27 s

Idle 3 16.92mA 1.18 s

Sleep 3.44mA Tidle

Off 0.0004mA Tidle

control traffic, only a single task can be defined, starting at the

sensing operation and ending after the last reception window.

As a result, this task can be considered as the frequent task

and the peak sequence (Efreq = Epeak).

To calculate the energy consumption during the sense and

transmit task, we make use of the current consumption and

time measurements carried out in [7] for a LoRaWAN Class

A device on a SODAQ ExpLoRer board, listed in Table VI.

The measurements were performed at a voltage Vref = 2.7V,

assuming a TX power of 14 dBm and only uplink traffic

(A4). Instead of using a fixed payload (8B) and LoRaWAN

configuration, we consider these to be configurable. This way,

the communication requirements of multiple IoT use cases

can be evaluated. The number of transmitted symbols for

a given payload and LoRaWAN configuration is calculated

according to the LoRaWAN specification [35] in (9), where

npr represents the number of preamble symbols, PL the

payload in bytes, SF the Spreading Factor (SF), and CR the

coding rate. Furthermore, IH determines if an explicit header

is disabled and DE if the low data rate optimization is enabled.

The SF determines the amount of spreading and can range

from 7 to 12, where a higher SF results in a longer range and

longer transmission time, with increased energy consumption

and latency as a result.

STX = npr + 4.25 + 8

+max

(⌈

8PL− 4SF + 44− 20IH

4(SF − 2DE)

⌉

(CR+ 4), 0

)

(9)

Using (9), the duration of a LoRaWAN transmission is

given by (10), where BW indicates the bandwidth. However,

depending on the chosen LoRaWAN configuration and the re-

gional specification, a different maximum payload is specified,

ranging from 11B to 222B [35]. As a result, multiple frames

might be required to transmit the complete data size.

TTX = STX

2SF

BW
(10)

Notice that in Table VI, both a sleep and off state is given

for Tidle. Therefore, one can choose to switch the device into

sleep mode or turn the device off to save power. However, in

case the device is powered off during Tidle, an additional start-

up of 13 s is required. We calculate the energy consumption

of a sense and transmit task in (11) using the values in Table

VI, where Esense represents the required energy to complete

the sensing task, Estart−up the required energy to start-up

the radio (if any), and TTX,i the duration of the ith frame

out of Nf frames required to transmit the complete data size.

Estart−up equals 456mJ for an off idle state and zero for a

sleep idle state.

Epeak = Esense + Estart−up

+

Nf−1
∑

i=0

(166mJ + 134mW ∗ TTX,i)
(11)

Similarly, Tidle is given in (12) (making use of (6)),

where Tsense indicates the sensing time, TTI the transmission

interval, and Tstart−up the start-up duration (if any). The

power consumption during these idle states are 9.29mW and

1.08 µW.

Tidle = TTI−Tstart−up−

Nf−1
∑

i=0

(2.2 s+TTX,i)−Tsense (12)

Eq. (12) immediately imposes a restriction on the transmis-

sion interval and latency. That is, the transmission interval may

not be smaller than the peak sequence, which is simply the

sense and transmit task in the case of LoRaWAN Class A. This

lower-bound is given in (13) and depends on the payload and

LoRaWAN configuration ((10) and (9)). The lower bound on

the guaranteed latency is given in (14). Note that this is merely

the guaranteed latency because of A3. In case interference

would be considered resulting in possible retransmissions, no

guaranteed latency can be identified and (14) provides a lower

bound on the achievable latency. More on that in Section VII.

TTI ≥ Tstart−up +

Nf−1
∑

i=0

(2.2 s + TTX,i) + Tsense (13)

Tlat ≥ Tstart−up +

Nf−1
∑

i=0

(2.2 s + TTX,i) (14)

B. BLE Mesh Low-Power Node

Because of its low energy consumption, low cost, and

support for mesh topologies, BLE has become an impor-

tant wireless technology for IoT use cases. Compared to

LoRaWAN, BLE has a shorter range but can extend this range

over multiple hops by using BLE Mesh [36]. A BLE Mesh

node can support four optional roles: relay, proxy, LPN, and

Friend Node (FN). LPNs are nodes with a limited energy
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idleCC CC

TRD TRW

TX TX TX
CC CCsense

sleep

sleep sense
TX

Poll

TPI

TTI

Tpoll

Tsense,tx

...

...

Fig. 7: BLE Mesh Low-Power Node scheduling. The top shows a periodic poll
task with period TPI to poll for any incoming downlink data. The bottom
depicts a sense and transmit task, with a period equal to the transmission
interval TTI .

supply, making them suitable for energy harvesting use cases.

An LPN is connected to a FN, which is part of the mesh

network. To refrain LPNs from listening for incoming frames,

the FN buffers incoming downlink frames3. The LPN polls the

FN periodically for buffered frames and enters a sleep or off

state in between polls. In case the LPN wants to transmit an

uplink frame, it can do so anytime to its FN. Therefore, polling

for buffered frames and transmitting uplink frames (including

a possible sensing operation) are considered two independent

tasks.

Fig. 7 depicts the scheduling of a LPN for a poll task (top),

and a sense and transmit task (bottom). The polling task starts

with advertising a poll message on every advertising channel,

requiring a channel change in between poll transmissions,

portrayed as CC in Fig. 7. After the final poll message,

the LPN waits for a receive delay TRD, before listening for

any updates from its FN during receive window TRW . Both

durations can be configured up to a maximum of 255ms.
The polling interval TPI is also configurable up to 96 h. In

case the FN indicates it has buffered frames, the LPN may

initiate a new polling task without having to wait for TPI .

Nonetheless, as per A4, we do not consider downlink traffic.

The sense and transmit task is similar to the polling task, as the

uplink frame is advertised on the three advertisement channels,

with a channel change in between transmissions. However, the

receive window is absent and an optional sensing operation

precedes the first transmission.

The selection of the frequent task depends on the net-

work configuration and the communication requirements. If

TPI < TTI , the polling task is executed more frequently and

is therefore selected as the frequent task. In contrast, sense and

transmit becomes the frequent task if TTI < TPI . However,

if both values are equal (TTI = TPI ), the combination of

both tasks is regarded as the frequent task. Regardless of the

frequent task choice, the peak sequence contains both tasks.

The energy consumption calculations for each task are based

on current consumption and time measurements performed in

[10], listed in Table VII. The authors consider a BLE Mesh

3Although we only consider uplink traffic, we also include the interaction
with a FN to significantly reduce the amount of effort to extend the model
with downlink traffic.

TABLE VII: Current consumption and duration at 1.8V of BLE Mesh LPN
device on Nordic nRF52840 BLE devkit [10]

State Current consumption Duration

Wake-up TX 0.587mA 2.940ms

TX 9.09mA TTX

CC 7.78mA 0.029ms

Radio off TX 6.60mA 0.034ms

Processing 2.17mA 0.420ms

Cool down 0.006 53mA 20.820ms

Idle 0.008 96mA TRD

Wake-up RX 1.13mA 1.910ms

Listen 8.68mA TRW

Radio off RX 4.69mA 0.389ms

Processing 0.006 19mA 23.410ms

and cool down

Sleep 0.008 96mA Tidle

Length Type Payload Pad.Adv.
Address

Adv.  
Header CRCAccess

AddressPreamble

1B 4B 2B 6B 1B 1B var. var. 3B

Fig. 8: BLE link layer frame structure for an advertising frame. The payload
is appended with Advertisement Data structure, non-connectable and non-
scannable, advertising, and link layer headers. The total header overhead
equals 18B.

LPN implementation on a Nordic nRF52840 BLE devkit,

using a reference voltage of Vref = 1.8V and TX power of

4 dBm. The top section of Table VII includes all states of a

transmit task and the top and middle sections are the states of

a poll task. Since no downlink traffic is considered, the radio

is in listen state for the duration of the receive window TRW .

In order to determine the duration of a BLE transmission,

Fig. 8 depicts the link layer frame structure for an advertising

frame. The frame includes headers of an Advertisement Data

structure, a non-connectable and non-scannable Protocol Data

Unit (PDU), an Advertising PDU, and link layer headers and

footer [36], which results in a total overhead of 18B. As

a result, the transmission time for a BLE advertising frame

equals (15), where R equals the data rate, which can be

either 1 or 2Mbit/s. In contrast to LoRaWAN, we do not

assume multiple transmissions because BLE offers a maximum

payload of 251B, which is above the considered data size

range of [4, 200B] according to Table II.

TTX =
8(PL+ 18)

R
(15)

The energy consumption of a sense and transmit task is

calculated in (16), using the values in Table VII. Similarly,

the energy consumption of a polling task is calculated in (17).

TTX,d and TTX,p indicate the transmission time for a data

frame and polling frame respectively. Combining (16) and

(17), results in a total peak energy consumption given in (18).

Esense,tx = Esense + 6.2 µJ + 16.4mW ∗ 3TTX,d (16)

Epoll = 28.2 µJ + 16.4mW ∗ 3TTX,p

+ 16.1 µW ∗ TRD + 15.6mW ∗ TRW

(17)
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Epeak = Esense,tx + Epoll (18)

The idle period in between the frequent task and the peak

sequence is given by (19), using (6). Note that 1

ffreq
depends

on which task is most frequent. Pidle is calculated using the

values in Table VII, and equals 16 µW.

Tidle = min (TTI , TPI)

− (74ms + TTX,p + TTX,d + TRD + TRW )
(19)

The lower bounds on the transmission interval and guaran-

teed latency are specified in (20) and (21) respectively. The

former is similar to (13), except that the advertisement frame is

transmitted three times. As for the minimal guaranteed latency,

this equals the time between the radio wake-up and the last

transmission. If, however, the frame must be forwarded over

multiple hops (Nhops), the latency increases with a transmis-

sion task for each hop. As with LoRaWAN, no guaranteed

latency can be defined if interference from other nodes or

networks is considered. In that case, (21) merely represents

the minimal achievable latency.

TTI ≥ 24.3ms + 3 ∗ TTX + Tsense (20)

Tlat ≥ Twake−up + 3TTX + 2TCC + (Nhops − 1)Ttx (21)

C. 6TiSCH Leaf Node

6TiSCH was proposed by the Internet Engineering Task

Force (IETF) 6TiSCH working group and offers a protocol

stack to enable low-power IPv6 networks in industrial en-

vironments. It is based on the TSCH MAC mode of the

IEEE 802.15.4-2015 standard [37] to offer reliable and energy

efficient communication in the 2.4GHz or sub-GHz ISM

bands. A self-organizing, multi-hop network is established by

the Routing Protocol for Low-power and lossy networks (RPL)

routing layer and IPv6 communication is enabled through

an IPv6 over Low-power Wireless Personal Area Networks

(6LoWPAN) adaptation layer. Additionally, the Constrained

Application Protocol (CoAP) provides a secure join process

and RESTful interaction at the application layer. In what

follows, we assume the reader has some knowledge about

the operation of TSCH, RPL, and 6LoWPAN. For a detailed

description of the 6TiSCH protocol stack, the reader is referred

to [38] or to the individual technical documents of TSCH [37],

RPL [39], and 6LoWPAN [40].

As the IEEE 802.15.4 standard does not define how to

schedule timeslots and slotframes, we use the autonomous and

decentralized Orchestra TSCH scheduler [41] because of its

popularity and decentralized nature. More specifically, we opt

for the lowest energy consumption Received-Based Schedule

(RBS), consisting of three slotframes: an EB Slotframe (EBS),

a Receiver-Based Unicast Slotframe (RBUS), and a Broadcast

Slotframe (BS). In the EBS, each node is assigned one TX

and one RX slot to transmit its own Enhanced Beacons (EBs)

and listen for incoming EBs respectively. An RBUS is used for

unicast frames (i.e. data and Destination Advertisement Object

(DAO) frames), where a single RX slot and one TX slot for

each neighbor are dedicated to each node. The BS includes

a single shared slot during which nodes contend to transmit

and listen for broadcast frames (i.e., a DODAG Information

Object (DIO) frame). The size of the individual slotframes is

configurable, where a smaller size increases the available rate

of transmitted and received frames, but inevitably increases

the average energy consumption as well. As a result, to limit

energy consumption, slotframes should be chosen as long as

possible, while still providing sufficient slots to transmit the

required data or control traffic. This configuration results in

an EBS duration similar to the EB period (TEBS ∼ TEB)

and a BS duration close to the DIO period divided by the

number of neighbors (TBS ∼ TDIO/Nnb). The duration of

an RBUS (TRBUS), however, depends on the communication

requirements of the considered use case.

Fig. 9 depicts an example of an Orchestra RBS corre-

sponding to the worst-case scenario for an energy harvesting

node. Red slots represent active slots and white slots idle

slots. Note that idle RX slots are also regarded as active

slots since the radio is activated for a short period of time to

listen for incoming frames, resulting in non-negligible energy

consumption. Idle TX slots, however, are regarded as similar

to non-active slots because the radio is not activated. As shown

in Fig. 9, the three slotframes repeat independently and nodes

can only enter their idle state if none of the slotframes contain

an active slot. Possible active slots include TX EB, RX EB,

and RX idle for EBS, TX DIO, RX DIO, and RX idle for

BS, and TX data, TX DAO, and RX idle for RBUS. RX data

and RX DAO are not considered since we only assume uplink

traffic (A4), and leaf nodes do not receive any DAOs.

To identify the tasks of a 6TiSCH leaf node, all slots are

regarded as separate tasks except for a sense and TX task,

which includes a sensing operation and TX data slot. The

frequent task depends on the slotframe durations, the rate of

control traffic, and data traffic rate. In a stable network, the

EB interval will be the lowest of all control traffic. Therefore,

either the EBS or RBUS will contain the most frequent task

(slot). If the shortest slotframe contains slots with an equal

period, the slot with the highest energy consumption is chosen

as the frequent task since it is consequently part of the peak

sequence (at the end). As a result, if TEBS < TRBUS , the

frequent task will be TX EB, since EBS (∼ Teb) will be

the shortest and TX EB is the slot with the highest energy

consumption. Alternatively, if TRBUS < TEBS , either sense

and TX data or RX idle will be selected as the frequent

task. Which task will occur more frequently depends on the

allowed network latency, because this directly impacts the size

of TRBUS (as explained later in this section). In the example

of Fig. 9, TRBUS is smaller than TEBS , and the RX idle

period is smaller than the sense and TX task period (equal to

the transmission interval TTI ). Therefore, the RX idle slot is

selected as the frequent task for this particular example. The

peak sequence contains all possible tasks, i.e., a sense and TX

data, TX EB, TX DIO, RX EB, and RX idle task. RX DIO

is not included because it uses the same shared slot as TX

DIO, but has a lower energy consumption (assuming the RX

power consumption is lower than the TX power consumption,
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TEBS ~ TEB

TRBUS = 1 / Ffreq

TX EB RX EB

TX DIO

RX idle TX data RX idlesense TX idle TX datasense

RX DIO

TX EB RX EB

RX idle

TBS ~ TDIO / N

TTI

TpeakTidle

sleep sleep

EBS

BS

RBUS

Fig. 9: 6TiSCH worst-case scheduling using Orchestra Receiver-Based Schedule. Active slots are shown in red and idle slots are in white. The schedule
includes an Enhanced Beacon slotframe (top), a Broadcast slotframe (middle), and Receiver-Based Unicast slotframe (bottom). The node enters its idle state
if all slotframes schedule an idle slot. The frequent task equals an RX idle frame and the peak sequence includes a sense and TX task, a TX EB, TX DIO,
RX EB, and RX idle slot. Note that the sense and TX task may be replaced by a DAO TX slot in case the energy consumption of the latter is higher.

which is generally the case). Similarly, TX DAO uses the same

slot as sense and TX data but is assumed to have a lower

energy consumption (Etx,DAO < Esense,tx). If, however,

Etx,DAO > Esense,tx, the TX DAO slot should be included

instead.

The energy consumption calculations for each slot are based

on current consumption and time measurements performed

in [42] on a dual-band OpenMote device, using a 2.4GHz
CC2538 and 868MHz CC1200 radio. The authors propose a

model and performed measurements for multiple slot types,

including a unicast TX and RX slot, a broadcast TX and RX

slot, an idle TX and RX slot, and an idle slot. The current

consumption and time values of a unicast TX slot for both

radios are listed in Table VIII, where STX indicates the MAC

Protocol Data Unit (MPDU). The left column lists all the

different radio states that make up a single unicast TX slot.

Both radios use a data rate of 250 kbit/s resulting in a slot

duration of 15ms. Using the values of Table VIII, the energy

consumption for a sense and TX task is calculated in (22) and

(23) for the 2.4GHz and 868MHz radio respectively.

ECC2538

sense,tx = Esense + 336.5 µJ + 0.174 µJ ∗ STX (22)

ECC1200

sense,tx = Esense + 682.1 µJ + 1.873 µJ ∗ STX (23)

In order to determine STX , the MPDU structure of a

6TiSCH data uplink frame sent by a leaf node is depicted in

Fig. 10. The frame includes an IEEE 802.15.4 MAC header

and footer, a 6LoWPAN header, and a CoAP header. To

limit header overhead, we assume the leaf node is part of

a single Personal Area Network (PAN) and RPL Instance,

and that optional headers are elided. In that case, the total

header overhead equals 38B for a single-hop message and

46B for a multi-hop message, since for the latter an additional

IPv6 destination address is included. Regarding the size of the

control messages, we assume a fixed MPDU of 37B for an EB

and 96B for a DIO and DAO. With these MPDU lengths, the

values of Table VIII, and the measurements for the other slot

types in [42], the energy consumption of the peak sequence

is calculated in (24) and (25) for the 2.4GHz and 868MHz
radio respectively. In case Etx,DAO > Esense,tx, Esense,tx

TABLE VIII: Current consumption and duration at 3.3 V of 6TiSCH device
unicast TX slot on OpenMote dual-band hardware [42]

State
Duration [µs] Current [mA]

CC2538 CC1200 CC2538 CC1200

Data offset start 105 105 13.97 15.06

Data offset 1515 1454 0.00156 0.270

Data prepare
60+ 738+

13.97 17.49
0.875 ∗ STX 8.152 ∗ STX

Data ready
1954− 1276−

0.00156 2.64
0.875 ∗ STX 8.152 ∗ STX

Delay start 17 58 13.97 17.49

Data delay 349 369 27.55 50.24

Data start 16 16 31.47 54.26

TX data 32 ∗ (3 + STX)− 16 27.55 50.24

ACK offset start 32 75 13.97 17.49

ACK offset 3769 3116 0.00156 2.64

ACK prepare 38 587 13.97 17.49

ACK ready 267 328 0.00156 2.64

ACK listen start 17 58 13.97 17.49

ACK listen 483 442 27.18 36.18

ACK start 16 15 26.94 50.63

RX ACK 880 881 23.16 46.73

TX process 225 619 13.97 15.06

Sleep
5177− 4783−

0.00156 2.64
32 ∗ STX 32 ∗ STX

802.15.4 MAC 6LoWPAN Payload

21 B 10/18 B

CRC

2 B

CoAP

5 B var.

Fig. 10: 6TiSCH leaf node MPDU structure. The leaf node is part of a single
PAN and RPL Instance and optional headers are elided. The total header
overhead equals 38B for a single-hop message and 46B for a multi-hop
message.

should be replaced with Etx,DAO, which equals 45.9 µJ for

the 2.4GHz radio and 95.9 µJ for the 868MHz radio.

ECC2538

peak,tx = 970.6 µJ + ECC2538

sense,tx (24)

ECC1200

peak,tx = 188.4 µJ + ECC2538

sense,tx (25)

The idle power consumption Pidle is calculated based on

an idle slot with an energy consumption of 2.70 µJ (2.4GHz)
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and 16.15 µJ (868MHz). As the slot size is 15ms, the idle

power consumption equals 180 µW and 1076 µW respectively.

The idle duration Tidle is given in (26), where TTS equals the

timeslot length, presuming the sensing operation is part of

the peak sequence. Otherwise, Tsense should be left out of

(26). Note that (26) depends on the relative size of TEBS and

TRBUS : the slotframe with the smallest size will determine

the frequent task and, as a result, the idle duration.

Tidle = min (TRBUS , TEBS)− 4× TTS − Tsense (26)

Because of the synchronized MAC, 6TiSCH provides a de-

terministic, guaranteed latency, irrespective of A3. The lower-

and upper-bounds of the latency are specified in (27). The

lower bound takes place when the TX slot of the sensing

device occurs right after the sensing operation, following the

TX slots of any consecutive hops. In the upper bound, the first

term accounts for the worst possible scheduling of the device’s

TX slot, i.e., right before the sensing operation, whereas

(Nh − 1)TRBUS assumes the TX slot of any consecutive

hops is scheduled right before the TX slot of the previous

hop. In the final term, Nf represents the number of required

fragments to send a frame. An extra TRBUS is required for

each additional frame, for each hop. The upper-bound can

therefore be regarded as the guaranteed latency. The minimal

achievable transmission interval is specified in (28) and equals

TRBUS multiplied by the number of fragments.

Tlat ≥ TTS ×Nh

Tlat ≤ (TRBUS − Tsense) + (Nh − 1)TRBUS

+Nh(Nf − 1)TRBUS

(27)

TTI ≥ NfTRBUS (28)

Note that, by examining (12)-(14), (19)-(21), and (26)-(28),

the interval between two frequent tasks for a 6TiSCH leaf

node ( 1

ffreq
= TRBUS) not only depends on the transmission

interval TTI , but also on the latency since the guaranteed

latency is a function of TRBUS . This contrasts LoRaWAN and

BLE Mesh, where the interval between two frequent tasks is

either equal to the transmission interval or to the period of a

control frame. Therefore, the harvested power will determine

both the latency and transmission interval of a feasible energy

harvesting system, whereas, for LoRaWAN and BLE Mesh,

only the transmission interval is affected.

VII. FEASIBILITY AND TRADE-OFF ANALYSIS

Now that we have identified the harvested power of com-

mon ambient energy sources in Section V and characterized

the energy parameters and boundaries of three widely used

low-power wireless technologies in Section VI, we use our

proposed model of Section IV to study the feasibility of

energy harvesting for the use cases selected in Section III.

To that end, the equations in Sections IV and VI were

implemented in a Python script to determine the impact of

network parameters, PMU configuration, and harvested power

on the communication requirements, i.e., the required latency

and transmission interval. The minimal (or guaranteed) latency

is first evaluated for each wireless technology, using the lower-

bounds (or upper-bounds) derived in Section VI. The resulting

values are compared with the latency requirements for long-

range asset tracking and building automation, presented in

Table II, to assess which network configurations are feasible

for each use case. Next, using a well-informed (set of) network

configuration(s) following the latency evaluation, the minimal

feasible transmission interval (for which Tidle < Tcharge) is

calculated as a function of the harvested power and PMU con-

figuration. By comparing the feasible interval with the interval

requirements of the selected use cases, and by comparing the

associated feasible harvested power with the power values

of ambient energy sources, it is possible to determine which

energy sources are suited for which use case.

To establish a fair comparison between wireless technolo-

gies, we assume a fixed sensing operation of 10ms and

50mJ, a capacitor range of Vmin = 2.8V to Vmax = 4.5V,

and a leakage current of 10 µA. These values align with

typical values for sensing operations [7], [9], an off-the-shelf

PMUs [10], and existing supercapacitors [8], [9]. However,

the parameters can be easily altered in our Python script to

evaluate other values.

A. LoRaWAN Class A

Fig. 11 depicts the minimal achievable latency (presuming

A3) of a LoRaWAN Class A device versus the data size

in bytes for the off idle state (dotted) and sleep idle state

(full). Three different SFs are considered (7 in blue, 9 in

black, and 12 in red) as the SF has the highest impact on the

transmission time (and latency) and is directly related to the

achievable range. In terms of the other LoRaWAN parameters,

the preamble size equals 8, the bandwidth 125 kHz, code

rate 0.8, there is a physical header present, but no low data

rate optimization. Similar to the sensing, PMU, and leakage

parameters, the values of the LoRaWAN parameters can be

altered in our Python script. Fig. 11 also shows the allowed

range in terms of data size and latency for long-range asset

tracking in pink (4 - 40B and > 1 s) and for dense building

automation in yellow (20 - 200B and < 10ms - 1 s), according

to the typical requirements of Table II. Using the European

regional specification in the 868MHz ISM band, the maximum

payload size of a LoRaWAN frame for SFs 7, 9, and 12 equals

211, 115, and 51B respectively [35].

As expected, the minimal latency increases with data size

and SF, whereas the sudden jumps in latency for SF 12 at

multiples of 51B and for SF 9 at 112B reflect multiple

required transmissions (Nf > 1). Furthermore, the off idle

state obligates a start-up period of 13 s, justifying the offset

to the sleep idle state. As can be seen in Fig. 11, both idle

states and all spreading factors are feasible for long-range asset

tracking, merely since there is no upper-bound (> 1 s). If,

however, 1 s is selected as upper-bound, only the sleep idle

state provides an adequate minimal latency. SF 7 and 9 can

be used for all data sizes, whereas the data size of SF 12 is

limited to 15B. The 1 s upper-bound coincides with the highest

latency limit for dense building automation. Therefore, again

only the sleep idle state results in a sufficient latency. However,
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Fig. 11: Minimal achievable LoRaWAN Class A latency as a function of data
size, spreading factor, and idle state. The range of allowed latency and data
size requirements (Table II) are highlighted in pink and yellow for long-range
asset tracking and dense building automation respectively. Blue, black and
red lines correspond with SF 7, 9, and 12. Dotted lines represent the off idle
state is used, whereas full lines indicate a sleep idle state.

only data sizes below 115B are feasible with SF 9 due to

multiple required transmissions, in contrast to SF 7, which is

applicable for the complete data size range. Nevertheless, a

SF 7 will do for most (if not all) dense building automation

use cases since they do not require a long range. For the

10ms lower limit on the latency, none of the LoRaWAN

configurations are suitable.

The minimal feasible interval for a LoRaWAN Class A

device versus the harvested power, for SF 9 and 12 (blue

and red respectively), and PMU efficiencies of 50%, 75%,

and 100% (reflecting different line types), is depicted in Fig.

12. Fig. 12a represents an off idle period, whereas Fig. 12b

indicates a sleep idle period. The data size was chosen to be

20B, as this falls within the data size range of both use cases.

Again, other data sizes could be evaluated, although the impact

of data size on the feasible interval is minimal compared to

the impact on the latency. This is also the case for the SF, as

can be seen in Fig. 12. The PMU efficiency, however, does

have a non-negligible impact on the feasible interval. In the

simulations of Fig. 12 we assumed both PMU efficiencies to

be equal (ηPMU,h = ηPMU,l).

Fig. 12 also shows the range of available power for solar,

kinetic, and RF energy sources (orange, pink, and yellow

respectively), and the typical required transmission interval for

long-range asset tracking (15min - 24 h) and dense building

automation (1 s - 24 h). For long-range asset tracking, if the

interval should be lower than 24 h, almost all ambient energy

sources are feasible with the off idle period, except for indoor

RF. In that case, either a high PMU efficiency is required

or a high harvested power for indoor RF. However, if the

interval needs to be below 15min, only outdoor solar or the

kinetic energy on a train is sufficient to power the energy

harvesting system. Indoor solar energy might be possible,

albeit a perfect PMU and high light availability is required.

None of the configurations for the off idle period are feasible

given the 1 s interval restriction of dense building automation.

Then again, the dense building automation requirements were

already too strict in terms of latency for the off idle period

(Fig. 11).

As shown in Fig. 12b, a sleep idle period for LoRaWAN

devices is feasible for outdoor solar and kinetic train energy

sources (Pharv ≥ 9.3mW), provided the minimal transmis-

sion interval is 15min, which coincides with the minimum

of long-range asset tracking. Therefore, both use cases are

feasible for these energy sources, although the minimal 1 s
restriction of dense building automation is not fulfilled.

B. BLE Mesh LPN

The minimal latency (assuming A3) for a BLE Mesh LPN

is depicted in Fig. 13 as a function of data size, data rate

(blue for 1Mbit/s and red for 2Mbit/s), and the number of

hops to the network gateway (represented by different line

types). The receive window Trw and receive delay Trd both

equal their maximal value of 255ms, but these values can be

configured. Lowering these values would results in a shorter

listening time, thereby reducing the peak energy consumption.

As in Fig. 11, the range of communication requirements in

terms of latency and data size are shown for both use cases.

The latency increases with data size and decreases with data

rate, although these parameters do not affect the latency as

much as in LoRaWAN. This is mainly due to the cool-down

state in Table VII, which takes 20.82ms. In contrast, the time

on air for transmitting three advertisement frames with a 200B
data size and the lowest data rate of 1Mbit/s, equals 5.23ms.
However, the number of hops does have a large effect on the

latency since the complete transmit task needs to be repeated

(by another node, that is). If only a single hop is required

(meaning the FN of the LPN is the network gateway), both

strict and relaxed latency requirements of both use cases are

satisfied. Both use cases will most likely require multiple

hops, especially long-range asset tracking. However, the 1 s
strict requirement for long-range asset tracking and relaxed

for dense building automation are also fulfilled for two and

three hops.

Fig. 14 shows the feasible transmission interval versus the

harvested power, PMU efficiencies, and receive window/delay.

For these calculations, the size of a polling frame is 37B. As

in Fig. 12, different PMU efficiencies are distinguished by

different line types and the available power for the various

energy sources is indicated, as are the transmission interval

requirements for both use cases. The receive window is chosen

equal to the receive delay, of which the blue lines represent

10ms and red lines 255ms. Other values could be equally well

evaluated. For a feasible interval below 24 h, almost all energy

sources are suitable (Pharv ≥ 17 µW), except for indoor RF,

which is only feasible for high PMU efficiencies and a high

available indoor RF power. Below 15min, representing the

strict long-range asset tracking requirement, indoor/outdoor

solar and kinetic train energy are adequate to power the device

for all considered PMU efficiencies, except for very low indoor

light levels and efficiencies of 50%. If the PMU efficiencies

are increased, outdoor RF and kinetic machine energy may
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(a) Off idle period (b) Sleep idle period

Fig. 12: Minimal feasible LoRaWAN Class A interval as a function of harvested power, spreading factor, and PMU efficiencies for an off idle period (12a)
and sleep idle period (12b). The available power range for solar, kinetic, and RF energy sources is highlighted in orange, pink, and yellow respectively. Red
lines indicate SF 12, blue lines SF 7, and different line types represent different PMU efficiencies.

Fig. 13: Minimal achievable latency of a BLE Mesh LPN as a function of
data size, data rate, and the number of hops. Blue and red lines correspond
with 1Mbit/s and 2Mbit/s. The line type specifies the number of hops.
Long-range asset tracking and dense building automation requirements are
highlighted in pink and yellow, respectively (Table II).

also be feasible. The 1 s strict requirement for dense building

automation only seems feasible with a high PMU efficiency,

a receive window/delay of 10ms, and outdoor solar or kinetic

train. However, these energy sources are not applicable to

dense building automation use cases, in which devices are

deployed mostly indoors.

C. 6TiSCH Leaf Node

As was discussed in Section VI, the guaranteed latency

of 6TiSCH is also affected by the harvested power, in con-

trast to the minimal latency of LoRaWAN and BLE Mesh.

Additionally, the lower bound on the feasible transmission

interval (28) equals the guaranteed latency (27) for a single

hop, aside from an offset Tsense. For that reason, Fig. 15

shows the guaranteed latency and minimum interval as a

Fig. 14: Minimal feasible BLE Mesh LPN interval as a function of harvested
power, receive window and delay, and PMU efficiencies. Blue lines indicate
Trw, Trd = 10ms, red lines Trw, Trd = 255ms, and different line types
represent different PMU efficiencies.

function of the harvested power, for the CC2538 2.4GHz radio

(15a) and CC1200 868MHz radio (15b). For all simulations,

Teb = 16 s, TDIO = 16min, and TDAO = 15min, which

coincide with commonly used values for a typical 6TiSCH

network. For the CC2538 radio, the impact of the number

of hops is shown, as this radio will most likely require

multiple hops because of the 2.4GHz frequency. Red lines

indicate the single hop guaranteed latency, as well as an

approximation of the minimal interval (ignoring the Tsense

offset). Blue and black lines reflect two and three hops

respectively. The impact of the PMU efficiencies is also shown,

although multiple hops are only considered for efficiencies

of 50% to accommodate a clear graph. A latency below 1 s
is feasible only for high power values of an outdoor solar

and kinetic train, and for high PMU efficiencies. The strict

latency requirement of dense building automation (10ms) is

feasible for none of the configurations, which makes sense as
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the timeslot duration is 15ms. Therefore, in terms of latency,

6TiSCH only seems feasible for the long-range asset tracking

use case. The strict interval requirement of 15min can also

be achieved for outdoor solar, trains, and indoor solar, albeit

for the latter energy source this depends on the available light

and the network/PMU configuration (Pharv ≥ 181 µW). Long-

range asset tracking use cases can therefore be regarded as

feasible for outdoor solar, trains, and potentially indoor solar.

Note that increasing the transmission interval any further does

not result in a significant reduction of the required harvested

power, because the harvested power at a 15min interval is

close to its feasibility limit. That is, Pidle equals 180 µW and

Pharv should at least be higher than Pidle.

While the impact of the number of hops is shown for the

CC2538 radio in Fig. 15a, Fig. 15b shows the effect of the

data size for the CC1200 radio. These calculations assume

a single hop, such that the guaranteed latency approximately

equals the minimal interval. Since the 6TiSCH overhead is

38B and the Maximum Transmission Unit (MTU) 127B, a

data size below 79B results in Nf = 1, between 79 and

168B in Nf = 2, and data sizes higher than 168B require

three fragments. Comparing Fig. 15a and 15b, the number of

required fragments has a similar impact to the number of hops,

which is logical when studying (27). Whereas the CC2538

radio was potentially feasible with indoor solar energy for

long-range asset tracking use cases, the use of a CC1200 radio

does not seem feasible, except for a perfect PMU and a very

high light intensity (Pharv ≥ 1077 µW). However, outdoor

solar and trains remain feasible, irrespective of the employed

radio.

D. Extensions towards other use cases

Although we cover a large combination of important tech-

nologies, use cases, and energy sources, other combinations

could also be explored. However, the total number of combina-

tions increases exponentially when adding other technologies,

use cases, and energy sources. Nonetheless, our approach can

be easily extended, mainly because of the limited amount

of required parameters. Therefore, we list several possible

extensions to our open-source model and feasibility and trade-

off analysis, including our vision on how to include said

extensions.

1) Network (re-)joining and re-transmissions: For the con-

sidered wireless technologies, we assume a stable network

without taking the (re-)joining process and re-transmissions

into account, according to A3. For LoRaWAN Class A and

BLE Mesh LPN devices, the joining process involves a couple

of message exchanges between the device and the gateway/FN.

However, the joining process of 6TiSCH networks requires

a substantial number of energy and message exchanges, as

highlighted in [13], [14]. Nonetheless, the joining process is

only a small part of the device’s operational lifetime. For this

reason, we propose treating the joining process separately from

the stable operation, which we have included in our model. To

achieve this, we suggest two recommendations for joining the

network. First, the network should be formed gradually, allow-

ing each node to join the network individually to spread out the

network formation cost over a longer duration, and to reduce

energy losses due to interference from other joining nodes.

Once the network has stabilized, a new node is allowed to join.

Second, we propose using a separate energy storage element,

such as a rechargeable battery or a larger supercapacitor, to

supply sufficient energy for joining the network. In the case of

a supercapacitor, the energy source charges it until the device

can join the network, after which stable operation occurs with

the minimal capacitor. By following these recommendations,

energy harvesting nodes in 6TiSCH can join the network while

our feasibility model remains valid during stable operation.

For some use cases, external factors such as variable elec-

tromagnetic properties of the environment and interference

may affect the link quality. This might require nodes to

change the network gateway or to re-transmit frames. For

a LoRaWAN Class A device, ACK requests are optional to

reduce the energy consumption of the device. As a result,

when disabled, LoRaWAN Class A devices will be ignorant of

the channel conditions and continue to transmit uplink traffic

to the gateway, without re-transmissions. If ACK requests

are enabled, (11)-(14) already include the effect of multiple

transmissions, although a back-off is not considered. These

equations could be extended with a back-off, but an evaluation

is needed on the number of required re-transmissions, given a

certain network density. Therefore, in case of ACK requests,

we propose to include a scalability analysis as part of the

feasibility and trade-off study, which is already covered in

existing literature [43]. BLE Mesh LPNs neither expect ACKs

and sufficient redundancy is foreseen by advertising frames

on three different channels, which allows us to ignore re-

transmissions. For 6TiSCH, intra-network interference is less

of an issue due to the synchronized network protocol. This

doesn’t avoid interference from outside sources. However,

TSCH uses channel hopping, which does help with avoiding

interference. Furthermore, in case a re-transmission should

occur when using Orchestra, it would not be part of the peak

sequence due to the combination of superframes. However,

mobility in 6TiSCH networks would result in very high energy

consumption since the number of control messages would

skyrocket. Although some work has been done to establish

mobility in 6TiSCH networks [44], this is inherent to the

protocol design.

2) Downlink traffic: As discussed in A4, we only consider

uplink traffic in the feasibility and trade-off study, as this is in

line with most sensing applications. Especially when using en-

ergy harvesting, since the functionality of the devices needs to

be kept minimal to reduce energy consumption. Nonetheless,

the considered wireless technologies can be easily extended

with downlink traffic, since the required MAC functionality

is available: the LoRaWAN Class A schedule provides two

reception slots, and the BLE Mesh LPN schedule also en-

ables the reception of downlink traffic through the polling

mechanism. Finally, 6TiSCH leaf nodes are able to receive

frames during unicast RX slots. As a result, the only additional

information that is required to include downlink traffic for

these technologies is the timing and energy consumption of a

downlink frame reception.
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(a) CC2538 2.4GHz radio (b) CC1200 868MHz radio

Fig. 15: Guaranteed latency and minimal feasible interval for a 6TiSCH node as a function of harvested power, number of hops, data size, and PMU efficiencies.
15a shows the impact of multiple hops for a CC2538 2.4GHz radio and 15b the impact of data size for a CC1200 868MHz radio. The guaranteed latency
for a single hop and the minimal interval are shown on the same lines as they are approximately equal.

3) Additional technologies, energy sources, and use cases:

Finally, the feasibility and trade-off study can be extended with

additional technologies, energy sources, and use cases. Apart

from LoRaWAN, BLE Mesh, and 6TiSCH, other wireless

technologies are suited for energy harvesting applications,

such as NB-IoT, SigFox, Zigbee, etc. The characterization of

the energy parameters and boundaries in Section VI for our

selected technologies can be seen as an example for other

technologies. By defining only three energy parameters, the

threshold to include a wireless technology in the feasibility

model is significantly reduced. A detailed knowledge of the

wireless technology operation is not required to perform a

quick feasibility analysis. After all, the peak energy consump-

tion sequence, frequent task, and idle period can be equally

well identified by analyzing the power consumption of an

off-the-shelf device during a sufficiently long time interval.

Alternatively, the energy parameters can also be collected

by using high-end network simulators in the same manner.

Furthermore, we only consider typical values of three common

ambient energy sources, but other energy sources could be

included as well. On top of technologies and energy sources,

the feasibility and trade-off analysis can be performed for other

use cases, assuming different requirements than Table II. For

example, the authors in [21] list requirements of other use

cases.

VIII. CONCLUSIONS

In this article, we have presented a novel, generic model

for analyzing the feasibility of energy harvesting for IoT

use cases. The model uses a different approach compared to

prior work. Existing models focus on calculating the average

energy consumption of IoT devices, but these models do

not capture the intermittent nature of wireless IoT use cases

and technologies, and are hence not suitable to evaluate the

capacitor’s discharging behavior. Instead, our model focuses

on periods with peak energy consumption and short idle

times, as these pose the highest constraints on the capacitor

recharging capability. We showed that the behavior of a

wireless IoT device can be abstracted by a model with a

limited number of well-chosen parameters that reflect such

periods: frequent task interval, idle power consumption, and

peak energy consumption. We applied this methodology to

three common wireless technologies (LoRaWAN, BLE Mesh,

and 6TiSCH) and were able to determine these parameters

for different network configurations through power measure-

ments of off-the-shelf devices and by making use of standard

specifications. The abstraction to these parameters facilitates

the inclusion of other wireless technologies as well since

the parameters can be equally well determined by power

analysis or by existing network simulators, without the need

for detailed knowledge of the technology. Moreover, as the

capacitor and PMU are fully configurable as well, we were

able to show that efficiency has a significant impact on the

achievable transmission interval.

Furthermore, we employed our model to analyze the fea-

sibility in terms of latency and transmission interval of two

prominent IoT use cases for energy harvesting: long-range

asset tracking and dense building automation. LoRaWAN

seems the most obvious choice for the former due to its long-

range capabilities. Combined with outdoor solar or kinetic

train energy, all requirements are fulfilled. A BLE Mesh LPN

requires a lower harvested power but might need multiple hops

for long-range communication. Therefore, it is the best choice

for dense building automation, although strict communication

requirements will require a high harvested power. 6TiSCH

could also be used, although the inherent control traffic poses

restrictions on the achievable idle time between tasks. More-

over, an energy-intensive joining process and limited mobility

may severely impact feasibility.

We hope this work can serve as an alternative method

to analyze the feasibility of energy harvesting use cases

and provides insights into which parameters are important

when evaluating wireless technologies and energy sources.

The model can aid researchers and developers in their design
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choices for perpetual IoT devices and compare combinations

of wireless technology and energy sources.
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P. Padilla, D. Marcos, M. Sierra-Castañer, and J. Esteban, “RF Energy
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