
This item is the archived peer-reviewed author-version of:

An ML-driven framework for edge orchestration in a vehicular NFV MANO environment

Reference:
Slamnik-Krijestorac Nina, Camelo Miguel, Cominardi Luca, Latré Steven, Marquez-Barja Johann.- An ML-driven framework for edge orchestration in a vehicular

NFV MANO environment

Consumer Communications and Networking Conference, CCNC IEEE - ISSN 2331-9852 - IEEE, 2023, p. 728-733 

Full text (Publisher's DOI): https://doi.org/10.1109/CCNC51644.2023.10060659 

To cite this reference: https://hdl.handle.net/10067/1966450151162165141

Institutional repository IRUA



An ML-driven framework for edge orchestration in a
vehicular NFV MANO environment

Nina Slamnik-Kriještorac∗, Miguel Camelo Botero∗, Luca Cominardi†, Steven Latré∗, Johann M. Marquez-Barja∗
∗ University of Antwerp - imec, IDLab - Faculty of Applied Engineering, Belgium

† ZettaScale, France

Abstract—To properly orchestrate challenging services such as
those deployed for Vehicle-to-Everything (V2X) use cases, MANO
systems need to be intelligent and automated. Network Function
Virtualization (NFV) and Machine Learning (ML) provide oppor-
tunities for automating MANO operations, and this paper presents
our Ml-enhAnced Edge Service orchesTRatiOn (MAESTRO)
algorithm that makes proactive ML-driven decisions for edge
service relocation to ensure Quality of Service (QoS) guarantees
for V2X services. Moreover, to validate the effectiveness of our
proposed solution, we have performed the experimentation using
real-life testbeds for high computing and smart mobility i.e.,
Smart Highway and Virtual Wall, located in Antwerp and Gent,
Belgium. The contribution of our paper is two-fold: i) we study
the interrelation between the Key Performance Indicators (KPIs)
measured at the vehicle client side, and the infrastructure metrics
at the edge computing nodes and ii) we propose and evaluate an
ML-based quality-aware algorithm that automates edge service
orchestration to decrease average latency while guaranteeing high
service availability and reliability.

Index Terms—management and orchestration, NFV, MEC, ML,
zenoh, testbeds, experimentation, vehicular services

I. INTRODUCTION AND MOTIVATION

Despite the benefits of ultra-low latency, ultra-high band-
width, and ultra-high reliability, for an increased set of use
cases (e.g., autonomous vehicles, smart transport and logistics,
immersive reality), 5G and beyond networks consist of a
complex set of decentralized and heterogeneous devices and
resources that must be integrated to provide a seamless service.
This imposes challenges towards traditional MANagement and
Orchestration (MANO) systems, which are manual, or closed-
loop but slow, and do not scale well with service diversity
and increased service usage in 5G [1]. Thus, MANO systems
need support from Network Function Virtualization (NFV)
and Machine Learning (ML) to automate their operations, and
to make them intelligent enough to cope with the increased
network complexity.

Due to a boosted demand for vehicular use cases that
bring more safety in automotive operations, the Vehicle-to-
Everything (V2X) services created and deployed on the net-
work edge, i.e., leveraging Multi-Access Edge Computing
(MEC), to realize the aforementioned goal require extensive
broadband, efficiency, and resiliency. The automation and in-
telligence of NFV MANO operations of such services will
enable constant monitoring of network and service performance
metrics, thereby automatically translating them to decisions that
result in fast service re-configurations. There are some works
that study integrating ML techniques to NFV MANO opera-
tions, with the goal to enforce operations and to automate them
[2–5]. Nevertheless, there is still much to be investigated when
it comes to realistic experimentation and testing the true impact
of ML on the optimization of NFV MANO operations, as state-
of-the-art work is either based on other optimization techniques
(Lyapunov optimization techniques [6]) that might be complex

Edge-level
orchestrator

centralized
orchestrator

Edge-level
orchestrator

Edge-level
orchestrator

Edge-level
orchestrator

Edge-level
orchestrator

Edge-level
orchestrator

Vi
rtu

al
 W

al
l

(G
he

nt
)

Sm
ar

t H
ig

hw
ay

(A
nt

we
rp

)

Virtual
Wall

(Ghent)

Smart
Highway
(Antwerp)

Fig. 1: The multi-domain ML-driven management and orchestration
system for V2X use cases.

and lengthy for service management in V2X systems, or
their evaluation is based on the simulations [3,5]. To this
end, in this paper we present our Ml-enhAnced Edge Service
orchesTRatiOn (MAESTRO) algorithm that makes proactive
ML-driven decisions for edge service relocation in order to
ensure Quality of Service (QoS) guarantees for V2X services,
thereby automating edge service orchestration. To assess the
performance evaluation of this algorithm and the overall NFV
MANO system, and validate it in a dynamic vehicular NFV
MANO environment, we utilize the high-performance real-life
testbeds, such as Smart Highway1 and Virtual Wall2.

In Fig. 1, we illustrate the deployment of ML-driven MANO
system for V2X services, with cloud and edge orchestration
layers, which are enabled to autonomously operate, but also to
collaborate and balance their operations towards achieving the
desired Key Performance Indicators (KPIs). The MAESTRO
algorithm we created is a hybrid edge service relocation al-
gorithm, which is a Multi-Criteria Decision-Making (MCDM)
algorithm based on The Technique for Order of Preference
(TOPSIS) [7] and Support Vector Regression (SVR) [8]. The

1Smart Highway: https://www.fed4fire.eu/testbeds/smart-highway/
2Virtual Wall: https://www.fed4fire.eu/testbeds/virtual-wall/



SVR model is trained at the edge orchestration layer, and
it uses collected data to learn the interrelation between the
infrastructure and service performance metrics, and to predict
the average response time of a V2X service running on the edge
computing node (e.g., Roadside Unit (RSU) in our Proof-of-
Concept (PoC) deployment illustrated in Fig. 1). Further, the
model is used by the cloud orchestrator to proactively decide
on whether the service relocation should be performed from
one edge to another, in order to avoid service disruptions due
to mobility and low service performance.

With the performance analysis we conducted using this
realistic testbed setup, the contribution of our paper is two-
fold: i) we study the interrelation between MEC infrastructure
(measured at NFV Infrastructure (NFVI)) and service perfor-
mance metrics that are being monitored by the cloud and
edge orchestrators (measured at client side), and ii) we pro-
pose and evaluate an ML-based quality aware algorithm, i.e.,
MAESTRO, to automate edge service orchestration, thereby
minimizing average service response time, while ensuring high
service availability and reliability.

II. INTELLIGENT AND AUTOMATED EDGE ORCHESTRATION

A. AI-enhanced NFV MANO framework

Our NFV MANO framework consists of two layers, i.e.,
cloud and edge, which perform autonomous MANO opera-
tions, but enforce an interplay between them for managing
orchestration decisions, or for retrieving data from distributed
data engineering pipelines available in all edge domains. To
enable the cooperation between different orchestration entities,
certain management-level agreements need to be ensured, and
more information about this type of agreement can be found
in our previous work [9]. Each edge domain that consists of
one or multiple edge nodes (i.e., MEC hosts) is governed
by one edge orchestrator, which is, following ETSI NFV
MANO framework, in charge of lifecycle management (e.g.,
instantiation, scaling, termination) of all MEC applications.
On the other hand, the cloud orchestrator is rather in charge
of global optimization in the system, thereby making less-
granular decisions depending on the e.g., locations and density
of vehicles on the roads for our particular real-life use case.
One particular example of these decisions is service relocation
from one edge domain to another, triggered by higher density
of vehicles (i.e., edge service consumers) in one edge domain,
mobility, or by need for optimization of CPU/memory/energy
consumption in MEC hosts across edge domains.

Two MANO layers communicate with each other in the
two following ways: i) via Edge-Cloud reference point, which
is used to either offload decision-making tasks between two
orchestrators or to pass the already taken decision, and ii) via
message brokers, which exchange data in a controlled way
depending on the type of ML technique that has been applied in
the system, thereby using that data to either perform training or
model adjustments and online learning. Thus, depending on the
time-scales of optimization (global or local, i.e., edge-specific),
it is required that MEC hosts can connect data to ML models
in a transparent and efficient way.

This intelligent NFV MANO framework is suitable for or-
chestrating edge deployments of V2X services that require low-
latency and high-reliability (e.g., service continuity enforced
from the orchestration layer), as decision-making process is
distributed, taking into account KPIs measured at the user’s
side. One example of edge application that might benefit from
intelligent orchestration is a Back-Situation Awareness (BSA),

Algorithm 1: MAESTRO algorithm.

Result: Edge node selected for V2X application
deployment

Edge application Ai deployed at the edge node Nk,
orchestrated by Edge orchestrator Ej Start;

step 1; while V2X application Ai is active do
Read KPI measurements for all edge nodes;
Retrieve SVR model updates from Edge

orchestrator Oj ;
Prepare CPU data for prediction of average

response time;
Predict t of Ai for all edge nodes Ek,
k ∈ (1, . . . NE);

if t during ∆T > tmax then
Apply MCDM TOPSIS to make final decision
for application relocation;

Get decision;
if Application Ai is already deployed on the
selected Ek then

go to step 1
else

Send notification about relocation to the
source Edge orchestrator Oj ;

if Edge orchestrator Oj accepts the decision
then

Edge orchestrator Oj sends request for
proactive application deployment to
Oj+1;

if Oj+1 accepts the decision then
Deployment on Ek+1 starts;
The state/metadata is being
transferred;
Oj generates notification for vehicle
edge client to reconnect from edge
Ek to edge Ek+1

else
go to step 1, add flag to Oj+1

end
else

go to step 1, add flag to Oj

end
end

else
go to step 1

end
end

used in our performance evaluation presented in Section IV.
The BSA type of edge V2X application is a containerized ap-
plication used for creating topological in-advance area-specific
notifications for vehicles based on the events that occurred
behind them [10]. The notifications are disseminated to differ-
ent topological areas, and they contain instructions/warnings
for the vehicles, while requiring some action from them to
improve the driving conditions on the road, such as to clear
the lane, to increase/decrease the speed, or to exit highway.
These events can be either reported to edge application by
specialized vehicles (e.g., emergency vehicles), or detected and
reported by infrastructure sensors. In particular, applying ML to
the orchestration of such V2X application enables i) optimized
service instantiation, ii) learning utilization patterns for compu-



TABLE I: Parameters.

Parameter Definition
Ai V2X Application, i ∈ {1, . . . NA}
NA Number of deployed V2X applications
Oj Edge orchestrator, j ∈ {1, . . . NO}
NO Number of Edge orchestrators
Ek Edge node, k ∈ {1, NE}
NE Number of edge nodes
t Response time

t Average response time
tmax maximum tolerable response time

Data
statistics

Data sources

Ed
ge

 in
fra

st
ru

ct
ur

e
UE

 K
PI

s

CPU
utilization

RAM
utilization

St
re

am
in

g
& 

ba
tc

h
St

re
am

in
g

& 
ba

tc
h

Vehicle client 1
Vehicle client 2

Vehicle client N
Power

utilization

Latency

Raw data
Edge 1

Edge 2
Edge M

Processed
data

Processed
data

Validation

Testing

Training

Cloud 
orchestrator

Edge 
orchestrator

Data
ingestion

Data pre-
processing

Data
consumers

Fig. 2: Data engineering pipeline in our PoC setup.

tational resources of virtualized network services, iii) prediction
models for proactive resource allocation/relocation, and iv)
optimized service relocation. However, ML techniques impose
some additional challenges that need to be taken into account,
such as vulnerabilities in terms of i) security, scalability, and
transferability, ii) high computation power (not available in
resource constrained edge nodes), and iii) need for quality data
to train the ML algorithms, as their performance on making
decisions will depend on how close was the training data (e.g.,
synthetic), to the actual data used in production environments.
With respect to this last point, this work aims to provide
initial insights from the design, development, deployment, and
experimental validation of ML-based algorithms for MANO
in V2X use cases using data from real infrastructure. In this
way, we can close the gap between the data generated for
training and the one used for the production environments.
A crucial step towards enabling intelligence and automation
is a robust data collection, which is then used for training,
testing, and validation purposes, and in Fig. 2 we illustrate the
data engineering pipeline in our PoC deployment. The pipeline
includes the following types of data sources i) infrastructure
metrics, i.e., CPU, memory, and power, utilization, and ii)
network-related metrics, such as latency and bandwidth. Data
is being ingested into message broker instances in each edge
node, and then processed by specialized helper services, i.e.,
MEC value-added services that perform data pre-processing,
thereby making it suitable for further use.

As illustrated in Fig. 2, processed data is made available
for retrieving data statistics, which might be of interest for the
cloud orchestrator (data consumer) to get insights into edge
infrastructure and edge service performance. Importantly, data
is also exposed for training, testing, and validation, so that
edge orchestrators (data consumers) can consume the generated
datasets to train their local ML models. This is especially
important in distributed environments where data privacy is
fundamental, so the training is performed locally.

B. MAESTRO algorithm

Here we briefly describe our hybrid edge application reloca-
tion algorithm, MAESTRO algorithm (Algorithm 1, parameters
described in Table I), which performs selection of a new target
node to which the observed edge V2X application deployment
should be relocated in order to maintain/achieve the required
service response time. It works in an automated and intelligent
way thanks to the MCDM mechanism that takes into account
various metrics, such as CPU, memory, and power, utilization,
as well as the predicted average response time for a vehicle
client. The prediction is based on the SVR model that is
trained at the edge orchestrator level. We use the TOPSIS
class of MCDM algorithms, which is based on the comparison
between all the alternatives included in the problem statement,
and it is often used in solving large-scale decision-making
problems in automotive industry [7]. On the other hand, we
apply SVR, as a supervised learning technique, to find a
function that approximates mapping from an input CPU load to
average response time based on the training sample. Since edge
orchestrators do not collect data from the other edge domains
due to the security reasons, they cannot make decisions based
on an extended perception that includes NFV infrastructure
managed by other edge orchestrators. Therefore, the local SVR
model, trained at the edge orchestrator level by using locally
collected data, is then shared with the cloud orchestrator.

The cloud orchestrator predicts the average response time
of edge V2X application for the next period of time ∆T . If
predicted average response time does not exceed the tmax,
which is the maximum tolerable response time for the edge
application to provide a meaningful response (e.g., a credible
record about the location and estimated time of arrival of the
firetruck from behind) to the vehicle client, there is no need for
relocation. The treshold tmax can be defined per application
type, or even network slice type, so that orchestrators can
correspondingly adjust their criteria. Also, this value should
be low enough to enable proactive relocation, meaning that the
average response time will not be degraded in the meantime
while relocation is being performed. Such an automated and
proactive approach is in line with the level 3/4 of autonomous
networks proposed by European Telecommunications Stan-
dards Institute (ETSI) in [1], which refer to automated dis-
tinction between different kinds of services, thereby analyzing
the service performance and (proactively) adjusting the service
based on the changing conditions in network and infrastructure.
If the decision is to relocate the edge application, the cloud
orchestrator applies MCDM mechanism using the predicted
value of average response time based on the CPU load for
all edge domains (more details in Section IV), as well as other
collected metrics (memory, power), in order to avoid relocating
edge application to an edge node that e.g., experiences a
high power consumption. Thus, at the same time, the cloud
orchestrator is making a quality-aware decision, and trying to
optimize the resource usage in all edge domains.

Following the steps provided in Algorithm 1, once the cloud
orchestrator selects the edge orchestrator to be in charge of
deploying relocated application instance, it sends the decision
to the source edge orchestrator and triggers the relocation. If the
edge orchestrator accepts this decision, it starts to proactively
relocate the application to the selected target edge orchestrator.
In case of stateful applications, whenever application instance
is available at the target edge node, the transfer of state also
needs to be performed before vehicle reconnects to it. This
can be done by applying the container checkpoint and restore



training SVR
 model

Edge-Cloud 

V2X apps

API

Kubernetes master

Kubernetes worker node(s)

Memory

Power

CPU

Data manager

Subscribe

Publish

Publish/Subscribe

CPU

AI-enhanced Cloud orchestrator 

AI-enhanced
Edge

orchestrator 1

PowerMemory

Latency

Edge 1
Edge 2

AI/ML models

SVR
 model MCDM

Edge-Cloud 

Fig. 3: PoC: The intelligent and automated management and
orchestration system mapped to the real-life testbed environment.

technique [4], which involves service downtime. Otherwise, if
there is no state, but a certain metadata (e.g., location and speed
of the firetruck) that will be used to configure the application,
then it also needs to be transferred. Once the context and/or
metadata are transferred, source edge orchestrator is sending
notification to the vehicle client (as described in our previous
work [11]) to change the endpoint of the edge application. The
client on the vehicle side needs to be configured in the way to
automatically process the notification from orchestrators, and
to apply the rule of configuring service endpoints. Afterwards,
vehicle is reconnected to the target edge application instance,
which is orchestrated by the target edge orchestrators. Finally,
in case any of the edge orchestrators do not accept the decision
made by the cloud orchestrator (as described in Algorithm 1), it
adds certain flags to those edge orchestrators. Such flags should
be further studied by the cloud orchestrator to learn about the
reasons for rejecting the decisions, which should also help to
retrain and reconfigure ML models. This management of ML
models is out of scope of this paper, but part of our future
work.

III. PROOF-OF-CONCEPT DEPLOYMENT

In Fig. 3, we illustrate the PoC that we built for conducting
realistic experimentation with automated and intelligent edge
orchestration of V2X services on the Smart Highway testbed,
which is built along the E313 highway (Antwerp, Belgium). To
build an edge network, we provide the NFVI by virtualizing
computational resources in RSUs, with the help of Kubernetes
(K8s). These computational resources are used for deploying
V2X services, and for performing their lifecycle management.
The edge orchestrator is realized as an enhanced version of a
K8s master, because i) it supports cross domain operations, i.e.,
edge-cloud and edge-edge interaction, and ii) it is capable of
training and using ML models for making intelligent decisions
in an automated way. The cloud orchestrator is running on the
bare metal of the Virtual Wall testbed (Ghent, Belgium). It is

realized as a web server capable of i) collecting CPU, memory,
and power consumption data, from edge nodes, ii) running
ML models trained by the edge orchestrators, and iii) injecting
decisions on the north-bound interface of edge orchestrators to
instruct them to proactively migrate/relocate services from one
edge to another.

To realize a data engineering pipeline we use Zenoh frame-
work, which deals with data in motion (e.g., real-time stream
of location/speed/destination of vehicles) and data at rest (e.g.,
historic data for computational resource utilization and energy
consumption of vehicles and edge nodes). With its minimal
network overhead (5B) and footprint (60kB), Zenoh is suitable
for publishing data from edge nodes and vehicle clients in
a transparent way, so that it can be used for training and
online learning. To mimic the scenario with an increased edge
service consumption, which is used in performance evaluation
in Section IV, we run Locust stress test inside the vehicle.
This tool is stressing the load on the edge computing node by
generating REpresentational State Transfer (REST) requests to
retrieve warnings/notifications from a BSA V2X application,
and mimics an increase in the number of vehicles.

Finally, to realize the vehicle client that connects to edge
V2X applications, we deploy the client application in the On-
board Unit (OBU) of the vehicle, which utilizes a long-range
4G to exchange messages with edge services.

IV. PERFORMANCE EXPERIMENTS

A. Collecting and analyzing training data

To collect training data, we utilized the PoC described in
Section III, and we gradually stressed the edge V2X deploy-
ment on the RSU Edge 1. While performing the stress test at
Edge 1, we have been collecting the response time measured
at the client application in vehicle. The overall response
time consists of communication (uplink and downlink) and
processing/computational delay. If the average response time
presented in Fig. 4a is observed, we can see how much are
communication and computational delays contributing to the
overall edge service response time. Samples indicate 20 batches
of successive measurements, where each of the measurements
lasted for one minute, and is represented by the mean value.
The stress test in our scenario caused an increase in average
response time, and as we can see in Fig. 4a, communication
latency remains stable despite the stress test, thus, the compu-
tational latency on the edge node is affected.

In Fig. 4b, we show the average values of CPU load, RAM
load, and power consumption, in the Kubernetes cluster at the
Edge 1. Samples of measurements correspond to the samples
of edge service response time in Fig. 4a. Given that scenario
indicates a sporadic stress test from sample 1 to sample 20,
in Fig. 4b we can notice the changes in the CPU load.
Therefore, the goal is to explore the dependency of service
quality experienced by user (i.e., vehicle) on the infrastructure
metrics, such as CPU load. Based on the results of this data
exploration on the collected metrics, we further exploit the
dependency between the CPU load and the average response
time to improve the service quality experienced by user (i.e.,
vehicle). Other collected metrics such as memory and power
consumption will be still used by the MCDM algorithm to
improve the final relocation (e.g., avoiding to use an edge node
with high power consumption).

As we collect both input (average CPU load) and output
(average response time) data, we can apply any suitable super-
vised learning technique to determine the function of mapping



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Samples

0

20

40

60

80

100

120

L
at
en
cy

(m
s)

Average response time

Average ping delay

(a) Ping delay vs. Response time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Samples

0

10

20

30

40

50

60

70

T
ra
in
in
g
d
at
a

Average CPU (%)

Average RAM (%)

Average power consumption (mW)

(b) Training data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Samples

0

20

40

60

80

100

A
ve
ra
ge

re
sp
on

se
ti
m
e
(m

s)

Predicted: SVR (RBF kernel)

Measured

(c) Prediction based on testing data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Samples

0

20

40

60

80

100

120

A
ve
ra
ge

re
sp
on

se
ti
m
e
(m

s)

Predicted: SVR (RBF)

Measured

Predicted: SVR (Linear)

(d) Prediction based on training data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Samples

0

20

40

60

80

100

120

140

A
ve
ra
ge

re
sp
on

se
ti
m
e
(m

s)

Rule-based

MAESTRO

Edge 1

Edge 2

(e) Gain achieved by relocation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el
ia
b
il
it
y

10 UEs

50 UEs

80 UEs

100 UEs

(f) Reliability.

Fig. 4: Results.

TABLE II: Results.

Model R-squared Mean Squared Error (MSE)
Average difference between
predicted and
measured data

Standard deviation
p-value in Kruskal
Wallis test

SVR (RBF Kernel) 0.9979 2.64471 0.6651ms 1.484ms 0.9784
SVR (Linear Kernel) 0.8277 221.8706 9.985ms 11.7372ms 0.7251

input data to the expected output. In this experimentation setup,
we used python3 to apply two types of SVR depending on the
kernel, i.e., Radial Basis Function (RBF) and Linear. Finally,
we create two datasets, one for training, and another for testing.

B. Performance results and discussion

The performance results are shown in Fig. 4, where Fig.
4d shows the prediction of an average response time based
on the training data, and Fig. 4c the prediction based on the
testing data. As we notice that SVR with RBF kernel produces
larger R-squared value4 (better fits the input to output), and
lower MSE (determines the accuracy of our model), this model
is further used and applied in our algorithm for selecting the
edge deployment. As it can be noticed in Table II, the SVR
model achieves a high value of R-squared, i.e., 0.9979, and
produces an MSE of 2.64471. The aforementioned result can
be considered as a satisfactory level of prediction accuracy,
given that average difference between predicted and measured
data is less than 1ms (0.6651ms), which can be considered as
negligible even for V2X applications such as BSA one that

3For this work, we have used the implementation of the SVR
algorithm provided by the python library scikit-learn: https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVR.html

4R-squared is a coefficient of determination, a statistical measure that
represents the proportion of the variance for a dependent variable that’s
explained by an independent variable or variables in a regression model:
https://www.investopedia.com/terms/r/r-squared.asp

we used in this performance analysis, and described in Section
II-A.

In case vehicle is moving, tmax is a tolerable latency for
retrieving important warnings, and as it depends on the type
of the use case and the average speed, tmax should be defined
as a functional requirement (e.g., by use case developers). For
the type of V2X use cases where notifications/warnings are
generated and collected from edge services (as a result of
processing data from sensors and other vehicles), to extend the
contextual perception of a vehicle, the result we obtained can be
considered as satisfactory due to the following reasons. In case
the average speed of the vehicle is 80km/h, we can define tmax

to be 15ms, as vehicle moves only 0.33m until it gets a new
notification. This functional requirement needs to be studied
with a more prominent attention in case of autonomous driving,
or teleoperation of a vehicle, for which more ML models need
to be studied and compared against each other to determine the
satisfactory level of prediction accuracy. In Table II, we also
show the result of the Kruskal Wallis5 test we applied to obtain
a statistical significance of the difference between measured
and predicted values of average response time. As p − value
is larger than 0.05, this result shows there is no statistically
significant difference between measured and predicted data.

5The Kruskal Wallis test is one of the non-parametric tests
that is used as a generalized form of the Mann Whitney U test:
https://www.statisticssolutions.com/kruskal-wallis-test/.



Finally, in Fig. 4e we show the result of the gain in average
service response time that can be achieved by performing
edge V2X service relocation in a proactive and automated
way, i.e., by applying MAESTRO algorithm. First, the result
shows the average response time measured at the client side
for application instance running on Edge 1, and Edge 2.
Second, it shows the behavior of MAESTRO algorithm against
a simple rule-based algorithm, thereby examining the way
they trigger service relocation. As the cloud orchestrator is
constantly monitoring CPU data from different edge domains,
it applies SVR model to predict the average response time for a
particular type of edge V2X application. In case of MAESTRO,
if predicted values of average response time in the upcoming
three samples (∆T = 1min, three minutes upfront in total)
is larger than tmax, which we consider as 15ms for a used
type of service, then the cloud orchestrator applies MCDM,
and potentially requests an application relocation to Edge 2
from Edge 1. On the other side, a rule-based algorithm simply
compares the current average response time with the threshold
(i.e., 15ms), and triggers the relocation. In Fig. 4e, for each of
the samples it can be seen whether these two algorithms trigger
relocation for service deployment on the Edge 1 or not. For
instance, in sample 10, MAESTRO is triggering the service
relocation from Edge 1 to Edge 2 in proactive way, which
prevents the vehicle user to experience an increased response
time, as in case of relocation the response time will be lower
than 15ms, while on the contrary it will reach 120ms on Edge 1.
This exemplifies how MAESTRO is outperforming rule-based
algorithms, which are most-commonly used in state-of-the-art
NFV MANO systems.

However, we also need to check how these decisions affect
the reliability of the service. As the service reliability can be
defined as a ratio of served and received requests, in Fig. 4f we
show how it changes from sample to sample in case service is
placed on the Edge 1, and if multiple users (10, 50, 80, and
100) are consuming the service. The type of service we used in
this performance analysis is capable of serving three concurrent
requests, i.e., if concurrently served, they achieve average
response time shown in Fig. 4e. In case of 89ms response
time (sample 1), the BSA application is capable of serving
33.59 requests/s (served). Clearly, the reliability of service will
depend on the overall number of received requests, i.e., number
of users. If there are 80 vehicles consuming the service at the
same time (80 requests/s), the service reliability drops down
to 0.42 in case service is consumed from Edge 1, which is
completely unacceptable for most of the V2X services that
require reliability of at least five nines (99.999%). Further, in
sample 17, the reliability would drop to 0.9862 for 100 vehicles
if service is not proactively relocated, which would happen
in case of the rule-based algorithm as it does not proactively
trigger the relocation in the 16th sample, as MAESTRO does.
Same applies to sample 19, which brings completely intolerable
reliability values if service is not previously relocated, as
in case of MAESTRO being the one that triggers relocation
in sample 18 (Fig. 4e). Such results show the true benefit
of the quality-aware MAESTRO algorithm performing edge
orchestration in a proactive and automated way, thereby re-
attaching user from one edge to another when the algorithm
triggers the relocation.

Concerning the re-attachment of vehicle client from one edge
to another, in this experiment we utilized Zenoh framework
to disseminate notifications from edge orchestrator to vehicle
client. Furthermore, this client on the vehicle is capable of

dynamically changing the service endpoint depending on the
input received from edge orchestrators, by applying a new rule
on its programmable data plane. As this concept is out of scope
of this paper, we leave it out for our future work. Also, in our
future work, we plan to i) further extend the experimentation
by adding more diversity to scenarios that can happen on the
highways, thereby studying the impact of mobility, ii) study
service relocation costs besides service reliability, and include
them in the decision-making process, and iii) analyze and
examine the efficiency of managing the decisions (that can be
contradictory) made at the cloud and edge orchestration layers
at different timescales.

V. CONCLUSION

In this paper, we present and evaluate MAESTRO, an
algorithm that makes proactive ML-driven decisions for edge
service relocation in order to ensure QoS guarantees for V2X
services. For the performance evaluation, we utilized the real-
life testbeds, Smart Highway and Virtual Wall, and created a
PoC, thereby validating the impact that ML models have on
the edge orchestration. The results show an improved MANO
operation of service relocation towards achieving required ser-
vice quality, by applying an ML-based quality-aware concept
that automates service relocation, while decreasing average
response time and improving service reliability.

VI. ACKNOWLEDGEMENT

This work has been performed within the European Union’s
Horizon 2020 projects: DAEMON (Grant Agreement No.
101017109), 5G-Blueprint (Grant Agreement No. 952189), and
the Horizon 2020 Fed4FIRE+ project (Grant Agreement No.
723638).

REFERENCES

[1] ETSI, “Autonomous Networks, supporting tomorrow’s ICT business,”
ETSI White Paper No. 40, 2020.

[2] J. Baranda and et al., “On the Integration of AI/ML-based scaling
operations in the 5Growth platform,” in 2020 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN), pp. 105–109, 2020.

[3] L. Pacheco, D. Rosário, E. Cerqueira, L. Villas, T. Braun, and A. A. F.
Loureiro, “Distributed user-centric service migration for edge-enabled
networks,” in 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 618–622, 2021.

[4] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling
and learning algorithms for containers in fog computing,” IEEE Trans-
actions on Services Computing, vol. 12, no. 5, pp. 712–725, 2019.

[5] P. Soto, D. De Vleeschauwer, M. Camelo, Y. De Bock, K. De Schep-
per, C.-Y. Chang, P. Hellinckx, J. F. Botero, and S. Latré, “Towards
Autonomous VNF Auto-scaling using Deep Reinforcement Learning,”
Zenodo, Dec. 2021.

[6] G. Shuxin, M. Cheng, X. He, and X. Zhou, “A Two-Stage Service
Migration Algorithm in Parked Vehicle Edge Computing for Internet of
Things,” Sensors, vol. 20, no. 10, 2020.

[7] M. Sabaghi, C. Mascle, and P. Baptiste, “Application of DOE-TOPSIS
Technique in Decision-Making Problems,” 15th IFAC Symposium on
Information Control Problems in Manufacturing, vol. 48, no. 3, pp. 773–
777, 2015.

[8] M. Awad and R. Khanna, “Support Vector Regression. In: Efficient
Learning Machines.,” Apress, Berkeley, CA, 2015.

[9] N. Slamnik-Krijestorac, G. M. Yilma, M. Liebsch, F. Z. Yousaf, and
J. Marquez-Barja, “Collaborative orchestration of multi-domain edges
from a Connected, Cooperative and Automated Mobility (CCAM) per-
spective,” IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[10] 5GAA, “Safety Treatment in Connected and Autonomous Driving Func-
tions Report,” 5GAA Automotive Association, 2021.

[11] N. Slamnik-Kriještorac, S. Latré, and J. M. Marquez-Barja, “An opti-
mized application-context relocation approach for Connected and Auto-
mated Mobility (CAM),” in IEEE 5G for CAM - 5G Virtual Summit,
2021.


