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Samenvatting

Samenvatting

Nanowetenschap en nanotechnologie zijn van enorm belang in vele wetenschappelijke
gebieden en voor talrijke praktische toepassingen, zoals energieopslag, halfgeleidertech-
nologie, precisiegeneeskunde, katalyse, milieutechnologie en nog veel meer. De impact
van dit vakgebied op de samenleving mag niet onderschat worden. De karakterisering
van structuren op nanometer- en atomaire schaal is van essentieel belang om onze
kennis van de kenmerken van nanostructuren en de processen die ze beheersen te
verbeteren. In deze context speelt transmissie-elektronenmicroscopie een cruciale
rol omdat het wetenschappers in staat stelt 3-dimensionale structuren op atomaire
resolutie af te beelden (in tegenstelling tot atomaire resolutie 2D-beeldvorming van
oppervlakken in scanning probe microscopie bijvoorbeeld). Met name ringvormige
donkerveld rastertransmissie-elektronenmicroscopie (HAADF STEM) is de afgelopen
decennia uitgebreid gebruikt voor de studie van nanostructuren met hoge resolutie. De
contrastmechanismen van deze methode zijn goed begrepen en kunnen worden gebruikt
om 3D-structuren te reconstrueren uit een enkele projectie of uit een tomografieserie
van beelden opgenomen bij verschillende kijkrichtingen met behulp van speciale algorit-
men. Het grootste nadeel van HAADF is misschien wel de relatief slechte dosisefficiëntie.
De invallende elektronenbundel interageert met het specimen, maar slechts enkele elek-
tronen, verstrooid naar grotere hoeken, dragen daadwerkelijk bij aan de contrastvorming
van het verkregen beeld. Dit is problematisch aangezien het specimen beschadigd kan
worden onder de elektronenbundel en de elektronendosis daarom zo laag mogelijk moet
zijn om de structuur niet te veranderen door de meting. Dit veelvoorkomend probleem
beperkt de signaal-ruisverhouding bij HAADF-beeldvorming vaak ernstig. Een manier
om zoveel mogelijk informatie uit deze lagedosisbeelden te halen, is door gebruik te
maken van restauratiemethoden om ruis te verwijderen of verschillende vervormingen
te corrigeren. Machine learning-algoritmen zijn de facto standaard geworden voor dit
soort computervisietaken. In het bijzonder zijn convolutional neural networks (CNN)
gebruikt in talloze denoising- en generieke beeldhersteltaken in de afgelopen tien jaar.
Het is duidelijk dat het louter creëren van "mooiere" afbeeldingen niet het doel kan zijn
als we geïnteresseerd zijn in het verkrijgen van kwantitatief nauwkeurige gegevens. In
plaats daarvan moeten de fysische processen van de beeldvorming geanalyseerd en
begrepen worden, inclusief de technische complexiteit van de elektronenmicroscoop,
de scanmotoren en de detectiesystemen, om fysisch betrouwbare reconstructies te
verkrijgen.

Hoofdstuk 2 "STEM Distortion correction" biedt een analyse en modellen om de ruisken-
merken en scanlijnvervormingen in HAADF-STEM-beelden te beschrijven. Deze modellen
werden gebruikt om een groot aantal synthetische, onvervormde-vervormde STEM-
beeldparen te genereren, die op hun beurt werden gebruikt om een CNN te trainen
om deze beelddegradaties te corrigeren. Verder wordt onderzocht en aangetoond dat
deze beeldherstelling niet alleen de signaal-ruisverhouding, maar ook de precisie en
nauwkeurigheid waarmee atoomkolommen kunnen worden gelokaliseerd, aanzienlijk
kan verbeteren. Bovendien wordt aangetoond dat ook het aantal atomen met hogere
nauwkeurigheid geteld kan worden. Deze conclusies zijn te veralgemenen, wat betekent
dat ook andere analysemethoden profiteren van het gebruik van de reconstructie, bi-
jvoorbeeld de kwaliteit van tomografische reconstructies zou aanzienlijk verbeteren bij
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het corrigeren van alle projectiebeelden in een tomografieserie. Er wordt op gewezen
dat vooral bij lage dosiswaarden de onderliggende modellen om de trainingsgegevens
te genereren, cruciaal zijn om een betrouwbare reconstructie te verkrijgen, wat de
implementatie in dit proefschrift onderscheidt van generieke denoising-algoritmen.

Ondanks de voordelen die dit reconstructie-algoritme biedt, blijft er echter een funda-
mentele nadeel, namelijk dat lage hoekverstrooiing op geen enkele manier bijdraagt
aan het beeldcontrast terwijl dit de meerderheid van de invallende elektronen verte-
genwoordigt en het specimen dus kunnen beschadigen. Lage hoekverstrooiing lijdt
aan coherentie-effecten en is gevoeliger voor lichte elementen, wat ook betekent dat
het signaal meer wordt beïnvloed door bijvoorbeeld koolstofverontreiniging. Idealiter
zouden we alle elektronen die met het specimen interageren willen gebruiken voor
beeldgeneratie, aangezien elk elektron waardevolle informatie bevat. Dit is het grote
voordeel van 4D-STEM, waarbij in plaats van alleen een geïntegreerd signaal voor een
gegeven hoekbereik te verzamelen, volledige diffractiepatronen worden opgenomen
met gepixelde elektronencamera’s. Op deze manier kan het volledige signaal binnen het
bereik van de camera worden gebruikt, terwijl ook informatie over de verstrooiingsricht-
ing behouden blijft. Dit betekent dat in plaats van te weten "Hoe sterk verstrooit het
specimen?", het mogelijk is om de vraag te beantwoorden: "Hoe sterk verstrooit het
specimen in een bepaalde richting?". 4D-STEM is daarom een zeer krachtige techniek,
maar het lijdt onder het feit dat de datasets zeer groot zijn en daarom langzaam te
verwerken zijn. Het live gebruik tijdens het bedienen van de microscoop is daarom
moeilijk of onmogelijk.

Hoofdstuk 3 "Real-time integration centre of mass (riCOM)" introduceert een conven-
tioneel algoritme gebaseerd op het zwaartepunt (COM) van de diffractiepatronen. De
berekening van het COM kan zeer snel zijn en de radiale integraal van het COM-signaal
(riCOM) geeft aanwijzingen over de geprojecteerde atomaire potentiaal. Het hoofdstuk
presenteert een zeer efficiënte implementatie van het algoritme, dat ook veel flexi-
biliteit biedt wat betreft de frequentietransfer door aanpassing van het integratiebereik
en het opnemen van instelbare filters in het liveproces. De methode is daarom zeer
geschikt voor livebeeldvorming, maar ook voor snelle en gemakkelijke nabewerkingen
van opgenomen 4D-STEM-gegevens. Dit algoritme is geïmplementeerd in een perfor-
mante, gebruiksvriendelijke GUI-applicatie, inclusief interfaces voor enkele camera’s en
gegevenstypen en open source gepubliceerd.

Hoofdstuk 4 "AI-assisted rapid phase imaging (AIRPI)" behandelt hetzelfde fundamentele
probleem op een andere manier. Geïnspireerd door ptychografische fase reconstruc-
tiemethoden, proberen we in dit project, genaamd "AIRPI - AI ondersteunde snelle fase-
beeldvorming", fase informatie op een scanpunt te reconstrueren op basis van een set
diffractiepatronen van overlappende probe-posities door middel van conventionele neu-
rale netwerken. De ontwikkeling van de trainingsdataset, het machine learning-model
en het reconstructie-algoritme worden gedocumenteerd en een aantal reconstructies
wordt gepresenteerd. De resultaten suggereren een vrij unieke contrastkarakteristiek
die hoge resolutie mogelijk maakt, die in principe alleen wordt beperkt door de opname-
hoek van de 4D-STEM-camera, en tegelijkertijd lage frequentiecomponenten ophaalt
die indicatief zijn voor de dikte van het specimen. De gevoeligheid voor het atoom-
nummer Z werd ook onderzocht en lijkt gunstig te zijn in die zin dat zeer lichte en zeer
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zware atomen tegelijkertijd en in zekere mate kwantitatief kunnen worden afgebeeld.
De prestaties van deze methode worden gedemonstreerd in simulatiestudies en op een
aantal experimentele datasets. Vergeleken met riCOM is het nog steeds aanzienlijk
meer rekenintensief en het is beperkt door het bereik van trainingsgegevens en som-
mige modelaannames, die de prestaties vooral beïnvloeden in de aanwezigheid van
ongecorrigeerde aberraties.

Het hoofdstuk 5 "Conclusions" vat de bevindingen van de drie hoofdstukken samen en
plaatst deze in de context van de state-of-the-art. In het bijzonder worden zowel riCOM
als AIRPI vergeleken met andere reconstructiemethoden en met elkaar. De sterke en
zwakke punten van elke methode worden vanuit een praktisch perspectief geschetst
(voor experimentatoren, in plaats van voor theoretici). Ten slotte worden enkele ideeën
gepresenteerd over mogelijke verdere ontwikkelingen om het onderzoek in deze scriptie
verder te verbeteren.
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Summary

Nanoscience and nanotechnologies are of immense importance across many fields
of science and for numerous practical applications, such as energy storage, semi-
conductor technology, precision medicine, catalysis, environmental technology and
many more. The impact that advances in this field will have on societies across the
world can hardly be overstated. The characterisation of structures at the nanometre-
and atomic scale is a cornerstone to improve our understanding of the characteristics
of nanostructures and the processes that govern them. In this context transmission
electron microscopy plays a crucial role as it allows scientists to image 3-dimensional
structures at atomic resolution (as opposed to atomic resolution 2D imaging of surfaces
in scanning probe microscopy for example). Especially scanning transmission electron
microscopy (STEM) with high-angle-annular-dark-field-detectors (HAADF) has been used
extensively over the last decades for the study of nanostructures with high resolution.
The contrast mechanisms of this method are well understood and can be used to
reconstruct 3D structures from a single projection or from a tomography series of
images at different viewing directions using dedicated algorithms. The perhaps biggest
drawback of HAADF is its comparatively poor dose efficiency. The entire beam current
interacts with the sample but only few electrons, scattered to larger angles, actually
contribute to the contrast formation of the image. This is troubling in the sense that
samples may be damaged under the electron beam and the electron dose should
therefore be as low as possible to avoid altering the structure by the measurement. This
is in fact a very common problem that often limits the signal to noise ratio in HAADF
imaging severely. One way to extract as much information as possible from these
low-dose images is the use of restoration methods, to remove noise or/and correct for
various distortions. Machine learning algorithms have become the de-facto standard for
this type of computer-vision task. In particular convolutional neural networks (CNN) were
used in countless denoising and generic image restoration tasks over the last decade or
so. It is clear that merely creating "nicer" images cannot be the goal if we are interested
in obtaining quantitative structure information. Instead, the physical processes involved
in the image generation need to be analysed and understood, including the technical
intricacies of the electron microscope, scan engines and detector systems if we hope to
achieve physically sound reconstructions.

Chapter 2 "STEM Distortion correction" provides an analysis and models to describe
the noise characteristics and scan line distortions in HAADF-STEM images. Thesemodels
were used to generate a large number of synthetic, undistorted-distorted STEM image-
pairs, which were in turn used to train a CNN to correct for these image degradations. It
is further investigated and shown that this image restoration can significantly enhance,
not only the signal-to-noise ratio, but also the precision and accuracy with which atomic
columns can be located. Further, it is demonstrated that also atom counting studies
benefit from improved accuracy. These conclusions are transferable, meaning that
also other analysis approaches will benefit from the use of the reconstruction, e.g. the
quality of tomography reconstructions would be expected to improve significantly when
restoring all projection images in a tomography-series. It is pointed out, that especially
at low doses the underlying models used to generate the training data are crucial for a
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faithful restoration, which sets the implementation presented in this thesis apart from
generic denoising algorithms.

No restoration changes the fundamental drawback, that low angle scattering does not
contribute in any way to the image contrast and the majority of probing electrons do
nothing for us but damaging the sample. Low angle scattering suffers from coherency
effects and is more sensitive to light elements, which also means the signal is more
influenced by carbon contamination for example. Ideally, we would want to use all the
electrons interacting with the sample for image generation since each one contains
some valuable information. This is the big advantage of 4D-STEM, where instead of
collecting only an integrated signal for a given annular range, entire diffraction patterns
are recorded with pixelated electron cameras. In this way the entire signal within the
collection range of the camera can be used while also retaining information about the
scattering direction. This means, instead of knowing "How strongly does the sample
scatter?", it is possible to answer the question: "How strongly does the sample scatter
into which direction?". 4D-STEM is therefore a very powerful technique but it suffers
from the fact that the datasets are very large and slow to process accordingly. Using it
live while operating the microscope has been difficult or impossible for reconstruction
methods beyond virtual STEM imaging. This forms the basis for the chapters 3 and 4,
where two new ways are proposed that enable very dose-efficient live imaging.

Chapter 3 "Real-time integration centre of mass (riCOM)" introduces a conventional
algorithm based on the centre of mass (COM) of the diffraction patterns. The computa-
tion of the COM can be very fast and the radial integral of the COM signal is indicative
of the projected atomic potential. The chapter presents a very efficient implementation
of the algorithm, that also allows much flexibility regarding the frequency transfer by
adjusting the integration range, as well as including tuneable filters into the live process.
The method is therefore very well suited for live imaging, but also for fast and easy post
processing of recorded 4D-STEM data. This algorithm was implemented in a performant,
user-friendly GUI-application, including interfaces for some cameras and data types and
published open source.

Chapter 4 "AI-assisted rapid phase imaging (AIRPI)" treats the same fundamental
problem in a very different way. Inspired by ptychographic phase-retrieval methods, in
this project, coined "AIRPI - AI assisted rapid phase imaging", we try to reconstruct phase
information at a scan point based on a set of diffraction patterns of overlapping probe
positions by means of CNNs. The development of the training dataset, the machine
learning model and reconstruction algorithm are documented and a number of recon-
structions are presented. The results suggest a fairly unique contrast characteristic
that enables a high resolution, that is in principle only limited by the collection angle
of the 4D-STEM camera and at the same time retrieves low frequency components
which are indicative of the sample thickness. The sensitivity to atomic number Z was
investigated too and appears to be favourable in the sense that very light and very
heavy atoms can be imaged at the same time and to some extent in a quantitative
manner. The performance of this method is demonstrated in simulation studies and on
a number of experimental datasets as well. Compared to riCOM it is still considerably
more computationally expensive and it is limited by the range of training data and some
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model assumptions, which affect the performance mainly in the presence of uncorrected
aberrations.

The chapter 5 "Conclusions" summarises the findings of the three main chapters
and establishes a context to the state of the art. In particular, both riCOM and AIRPI
are compared with other reconstruction methods and against each other as well. The
strengths and weaknesses of each respective method are outlined from amore practical
perspective (for the experimentalists, rather than for the theoreticians). Finally some
thoughts on possible further developments are presented to improve upon the research
presented in this thesis.
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2 Chapter 1. Introduction

1.1 The bigger picture (of tiny things)

1.1.1 Nanoscience

Nanoscience is a field that investigates the behaviour of materials and processes at
the nanometre scale, which ranges from about 1 to 100 nanometres. This scale is so
tiny that it is difficult to comprehend. To put it into perspective, figure 1.1 illustrates
a series of objects commonly known to people. The tip of a push pin has a size of
about one millimetre, which is equivalent to 1,000,000 nanometres. A human hair has a
diameter of about 100,000 nanometres, while a red blood cell measures around 7,000
nanometres. A typical bacteria cell has a size of 1-10 micrometres, which is between
10,000 and 100,000 nanometres. These kind of structures have been observable for
some time already by means of regular light microscopes, but researchers in both, the
life sciences and materials science work with objects and phenomena still orders of
magnitude smaller, such as the infamous Covid-19 virus depicted in figure 1.1 at 100nm.
Materials science research these days is often concerned even with the sub-nanometre
range, studying nanoparticles (NP) and individual atoms. The study of matter at
this scale is fascinating because nanomaterials possess unique physical and chemical
properties that are not evident in macroscopic systems. When the size of a material is
confined to the nanoscale, the surface area to volume ratio increases, which means
that surface atoms start to control the properties of nanomaterials. This distinctive
feature results in extraordinary properties like increased surface energy, enhanced
reactivity, and unique optical and magnetic properties. For instance, nanomaterials such
as quantum dots, nanowires, and nanotubes have a high surface-area to volume ratio
that enables them to act as excellent sensors or catalysts, making them suitable for
applications in electronic devices and medical diagnostics. Carbon nanotubes (CNT), for
example, are known for their high tensile strength and thermal conductivity, making them
promising materials for building nanoelectronics and energy storage devices. Moreover,
nanomaterials can be engineered to have specific functionalities based on their unique
surface properties, such as high porosity or selectivity in separating different chemicals.
The shape and size of nanoparticles can significantly affect their properties. For instance,
small gold particles, which are typically inert, can become effective catalysts when their
size is reduced to the nanometre scale. This is because the surface atoms of the
nanoparticles become more exposed, allowing them to participate in chemical reactions
[3]. Consequently, nanoscience and nanotechnology have been instrumental in driving
innovation and progress in the last decades, across numerous fields of technology,
enabling the development of new materials, energy storage, and generation systems,
medical treatments, and environmental technologies, as well as advanced electronics
and data storage devices. Nanoscience therefore plays a crucial role in tackling the
challenges of our time and the future. Most notably, climate change and global warming
and all its perilous consequences and dangers dictate the urgent need for a transition
from fossil-fuelled to carbon-neutral energy sources and mobility technologies. The
development of more efficient solar cells [4], and batteries has already, and will continue
to substantially support the growth of renewable energy production and plays a crucial
part on the way to green electromobility. Nanomaterials are also being used in numerous
environmental applications [5], such as water treatment and desalination applications
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Figure 1.1 | Overview of the scale of different objects from the decimeter to the sub-nanometre
scale. 1

with Zeolites [6, 7], or as catalysts in oxidation and hydrogenation reactions [8]. An
arguably less obvious field of nanoscience applications is agricultural science. For
example, carbon nanotubes [9] can be used to "engineer" plants and selectively change
their characteristics [10, 11]. This holds a large potential to help tackle global food
shortages and supply insecurities, which are likely to worsen in the near future in the
face or rising global temperatures, as well as political turmoil and conflict. Furthermore,
in biomedical applications nano-particles and structures are being used for drug delivery
and precision medicine [12]. This can for example be used to selectively target tumors
in cancer treatments. All these examples only scratch the surface of the vast amount of
applications but serve to show just how immensely important this branch of science is.

1.1.2 Electron microscopy

Being able to characterise these nano-structures is a fundamental cornerstone in the
development of novel nano-materials and their synthesis. Optical microscopes are
inherently limited by fundamental resolution restrictions arising from the wavelength
of the light used. The theoretical diffraction limit on a microscopes resolution was
discovered by Ernst Abbe and the popular equation relating the minimum resolvable
distance d to a wavelength  and aperture size � is hence known as the Abbe equation:

d =


2nsin�
, (1.1)

where n is the refractive index. If we consider a practical limit for � of about 70° and
the shortest wavelength of visible light to be at ≈ 400nm then d ≈ 188nm. While
there are multiple ways to increase the resolution of optical microscopes beyond this
example calculation, the fundamental wavelength dependency holds. The wavelength

1Illustration adapted/modified from reference [13] with elements from https://upload.wikimedia.
org/wikipedia/commons/9/94/Coronavirus._SARS-CoV-2.png, which is published under a CC BY-SA
4.0 license
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of electrons on the other hand is determined essentially by their momentum p as
established by de Broglie:

 =
h
p
=

h
m0v

, (1.2)

where h is Planck’s constant and m0 and v are the electron rest mass and velocity
respectively. This implies that the wavelength of an electron can be reduced by increas-
ing its velocity v, wherein lies the basis for superior resolution capabilities of electron
microscopes. Since electrons in a TEM are travelling very fast, relativistic effects should
be taken into account[14].

 =
hc√

eV
(
2m0c2 + eV

) , (1.3)

where eV is the kinetic energy of the electron. This further reduces the wavelength as
compared to the description of classical mechanics in equation 1.2. Applying equations
1.1 and 1.2 would suggest that ≈5 kilo volt (kV) of acceleration voltage would be required
to reach nanometre resolution. Modern transmission electron microscopes typically
work with acceleration voltages of up to 300 kV which would put the resolution according
to Abbes equation almost at the Ångstrom (Å) scale, which is 1/10 of a nanometre, which
would make objects on the right side of figure 1.1 observable. This is an overly simplistic
treatment of the resolution capabilities of course, but it serves to show why electron
microscopy is so fundamentally important to nanoscience.

Transmission electron microscopy takes in a unique role in this regard, since structures
may be imaged with atomic resolution using high resolution TEM (HRTEM) or scanning
transmission electron microscopy (STEM). However, these sophisticated instruments are
very versatile and may be used for a variety of atomic scale studies. Beyond creating
projection images to gain insight into the arrangements of atomic structures in 2D, it
is possible to retrieve 3D information as well, for example by means of tomography
reconstructions, which are based on a number of images taken for different projections
of the same object [15]. 3D shapes may also be retrieved from single projection images
utilising the dependence of the electron scattering intensities at high angles to the
sample thickness and atomic numbers [16, 17]. Further, electron microscopes may
also be used with spectroscopic methods, such as Electron Energy-Loss Spectroscopy
(EELS) or energy-dispersive X-ray analysis (EDX), which may provide access to additional
information such as elemental compositions, electron densities, plasmon excitations and
bondings [18]. Since electrons interact with magnetic and electric fields they can further
be used to probe these fields, which is particularly interesting for the investigation of
magnetic textures and skyrmions in materials [19]. Also the collection of full diffraction
patterns over a 2D scan grid in STEM, commonly referred to as 4D-STEM, has become
more practical and widely available in recent years. All the mentioned modes are
increasingly being used also in in-situ experiments, which are conducted in a controlled
environment, such as temperature, pressure, radiation exposure, or varying gaseous
environments [20]. This allows not only to make observations of a material in a given
state, but also to observe dynamic processes that may be triggered by changing the
sample environment. This last point in particular highlights the need for very fast
imaging processes, as time resolution becomes a critical factor for the observation
of dynamic processes. This poses a number of challenges for the development of the
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hardware, e.g. scan coils and detector systems, but also calls for highly efficient analysis
methods that can actually process these large, multi-dimensional datasets or data-
streams and extract the relevant information in a reasonable amount of time and at
reasonable amount of computational cost. Spectroscopic in-situ experiments may easily
produce tens or hundreds of gigabytes worth of data in a single experiment. Given these
challenges and the plethora of imaging modalities and applications mentioned, the
data-science behind electron microscopy has become an active field of research in its
own.

1.1.3 Thesis Motivation & Outline

The focus of this thesis is on scanning transmission electron microscopy (STEM) and
four-dimensional STEM (4D-STEM) techniques. These methods provide a wealth of
information, but can be challenging to analyse due to issues such as noise, distortions,
and the sheer volume of data. In this work, a set of novel approaches are developed that
aim to leverage this information while also considering performance, scalability, and
usability. Machine learning models, specifically convolutional neural networks (CNNs),
have been shown to be highly efficient in numerous imaging and computer vision tasks.
Therefore, this work explores the use of CNNs in STEM image analysis workflows and 4D-
STEM data processing pipelines, in addition to developing highly efficient conventional
algorithms.

The introduction chapter provides a general overview of scanning electron microscopes,
their basic components, and the fundamental physics involved. Additionally, it intro-
duces neural networks and CNNs, the latter being one of the key elements of this
thesis.

The second chapter describes prominent distortions and sources of noise in atomic
resolution STEM, which can impact atomic structure quantifications. It is shown that
these distortions can largely be corrected using a CNN. The benefit of this restoration
for atomic column detection and atom counting is investigated, demonstrating that
CNN-restoration provides an effective method for improving the accuracy and precision
of such studies.

The third and fourth chapters present two novel methods for extracting phase images
from 4D-STEM datasets. The first is a highly efficient conventional algorithm, coined
"riCOM", which is based on the centre of mass (COM) of diffraction patterns. It works on
individual diffraction patterns, granting the method live imaging capability. The fourth
chapter presents a different approach to the same problem, where a CNN is used to
retrieve the phase image one scan step at a time. This approach is computationally
more expensive and slower, but has superior imaging characteristics, including higher
resolution and the reconstruction of thickness information, which is a unique feature
among phase imaging methods.

The final chapter summarizes the main contributions of this work and compares the
developed methods with state-of-the-art (SOTA) techniques for some example datasets.
An outlook is provided for how the work presented in this thesis may be useful to the
wider electron microscopy and nanoscience research community.
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1.2 Scanning transmission electron microscopy

The scanning transmission electron microscope is among the most versatile and power-
ful instruments for atomic scale analysis at the disposal of the nanoscience community.
Crewe et al. were among the first to demonstrate the potential of the STEM by using a
field-emission gun (FEG) and an annular-dark-field (ADF) detector to record the first clear
image of heavy atoms in 1970 [18, 21]. It has since become a mainstream microscopy
mode alongside conventional TEM (CTEM). Most modern instruments are combined
systems and are capable of operating in both modes these days. The main difference
between the two modalities is that CTEM uses a parallel electron beam to illuminate
the sample area, while in STEM a convergent electron beam, forming a small probe
in the sample plane, is scanned in a 2D grid over the sample area instead. The basic
components of a STEM as outlined in figure 1.2 include an electron gun, a condenser
lens, an aperture, an objective lens, and a detector. The electron gun is responsible
for producing a beam of electrons, which is focused and directed towards the sample.
The most common types of electron guns found in SEMs and STEMs are thermionic,
FEG and CFEG (cold FEG) and allow a variety of voltage settings ranging from a few to
a few hundred kV. The condenser lens helps shape the electron beam by effectively
demagnifying the the electron source, which has a finite size [22]. Apertures control the
size of the beam that reaches the sample, by blocking parts of the beam, which also
may reduce the beam current. The scan coils, or scanning lenses, are used to deflect
the focused electron beam in a controlled way to enable the scanning over the sample,
typically in a raster pattern in the x-y plane. However, scanning lenses can be controlled
by a computer to generate any desired scanning pattern over the sample, which can be
useful to e.g. reduce beam damage [23]. The objective lens is one of the most critical

EELS

BF
ADF

HAADF

EDX
Objective lens

Scanning lenses

Condenser lenses

Electron gun Detectors
Electromagnetic lenses
Apertures
Sample

Figure 1.2 | Simplistic schematic of a typical TEM in STEM configuration 2

2Illustration recreated with permission from reference [24]
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components of a STEM. It focuses the beam onto the sample, forming a small probe that
can be scanned over the sample surface. The size of the probe is determined by the
convergence angle of the electron beam, which can be adjusted using the objective lens.
The smaller the probe, the higher the resolution of the resulting image in conventional
STEM experiments but it will become apparent in following chapters that this is not
strictly true for phase retrieval approaches. In addition to these basic components,
many modern STEM instruments are equipped with additional features to enhance their
imaging capabilities. For example, aberration correction technology can be used to cor-
rect for distortions in the electron beam, resulting in higher resolution and better image
quality [25]. A variety of detector systems is commonly found in STEM instruments,
including integrating detectors, such as annular dark-field (ADF), low-angle annular
dark-field (LAADF), annular-bright-field (ABF), bright-field (BF), and high-angle annular
dark-field (HAADF) detectors. They span a certain angular range in the diffraction plane
and integrate the collected signal over their respective surface area and a given time
interval. Energy dispersive X-Ray (EDX) detectors are able to detect X-rays, which may
be emitted as a result of excitations caused by the electron beam-sample interaction.
The energy of the x-ray photons can be measured and linked to atom-specific excitation
energies, which allows elemental mapping. Similarly EELS detectors may be used to
determine sample compositions or electronic structures.

1.2.1 (HA)ADF Imaging & 4D-STEM

The angular integration range of signal integrating detectors has decisive influence
on the contrast formation. Figure 1.3 shows a comparison illustrating the effect on a
SrTiO3 simulation at 300 kV and 20 mrad convergence angle. In the BF region all the
signal that underwent no significant scattering is collected and the integrated signal
is ≈1 in vacuum and attenuated at atomic column positions accordingly. BF-STEM
imaging can be considered a coherent imaging mode by reciprocity [22]. Selecting a
subset of the BF disk, excluding the centre of the BF, yields an ABF image, which still
has significant coherent contributions, but is oftentimes easier to interpret. When the
inner collection angle of an annular detector is larger than the convergence angle of
the beam the contrast flips into the (LA)ADF regime. If the inner collection angle is
≈3 times larger than the convergence angle the resulting image is usually considered
HAADF. The (HA)ADF detector is used to collect electrons that are scattered at large
angles by heavy atoms in the sample, providing high-contrast images of the atomic
structure, while the BF is more sensitive to atoms with lower atomic numbers as can
be seen by comparing the oxygen contrast in figure 1.3. These different detectors
may be used in combination as well to obtain a more thorough understanding of the
sample structure. However, in practice the BF and ABF contrast and its interpretability
often suffer from coherency and deteriorating effects such as carbon contamination,
which is one of the reasons why (HA)ADF is often preferred and has become one of
the- if not the most prominent imaging mode in materials science, in particular for
quantitative studies. The contrast formation is well understood and generally scales
with the average atomic number in an atomic column in zone axis orientation, as well
as with its thickness along the beam direction. This gives rise to the possibility of
reconstructing 3D nanostructures from single shot HAADF images [16, 17, 26]. HAADF
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5Å-1
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O
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Figure 1.3 | Simulation of SrTiO3 illustrating the influence of BF(0-20 mrad), ABF(15-20 mrad),
ADF(20-90 mrad), HAADF(90-190 mrad) detector angles at 20 mrad convergence angle and
300 keV.

images further satisfy the projection requirement of tomography and can therefore be
used for atomic resolution 3D-tomographic reconstructions [15].

However, the required dose for HAADF imaging is typically higher compared to other
imaging modalities. This is because although all electrons interact with the sample and
may cause damage to it, only a fraction of the electrons is actually collected by an HAADF
detector to form contrast. This is very apparent when considering the actual numbers
on the colour-scales in image 1.3, which represent the fraction of collected electrons
per pixel. HAADF therefore requires a larger number of electrons to be scattered by the
sample in order to produce a clear image. For many experiments this is problematic as
a high dose may damage the sample under study, limiting the dose to an extent that
creates poor contrast and noisy images or even makes some studies entirely impossible.
One strategy to maximise the value obtained from a low-dose HAADF image is to restore
as much information from it as possible, by taking into account the noise formation
and other distortions and correcting for these effects [2, 27–32]. This thesis explores
this approach in more detail in chapter 2. However, generally it would be preferred to
make good use of the lower angle scattered electron instead of just discarding them.
This may be achieved by combining different detector angle regimes, which was shown
conceptually to improve the accuracy of atomic structure quantifications considerably
for angles beyond the convergence angle [33]. However, this approach still neglects
the significant signal in the BF-disc. Further, all of the detectors mentioned so far are
circularly symmetric and can therefore not provide any directional information, i.e. into
which direction the electrons scatter with respect to the beam position. However, this is a
valuable information because the electron beam is subject to Coulomb deflection, which
is proportional to the electric fields the electrons interact with [34]. The considerations
that all angular regions contain useful information and that the direction and magnitude
of the beam shift should be captured as well leads to the family of segmented detectors
as shown in figures 1.4c-e. The solid quadrant detector (figure 1.4d) was among the
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a) b) c) d) e) f)

Figure 1.4 | Schematic of common electron detector geometries a) Bright field detector, b) An-
nular detector, c) Annular 4-Segment detector, d) 4-Segment detector, e) 16-Segment detector,
f) pixelated (4D-STEM) detector

first attempts to record the centre-of-mass shift in the BF. Annular quadrant detectors
(figure 1.4c) were later found to increase the signal to noise ratio [35] and allow for more
flexibility in tuning the contrast transfer for Lorentz microscopy [36]. Further extensions
of this idea lead to increased segmentation in detector geometries with 16 detector
segments [37] (figure 1.4e) and even up to 120 [38] leading to improved flexibility and
precision. Obviously, the ideal scenario would be to increase the segmentation to record
actual images of the diffraction patterns, which has become technologically viable
only in recent years due to the strides made in the development of direct electron
cameras [39–44](figure 1.4f). With this setup a full CBED can be recorded, which for a
STEM experiment results in one 2D-diffraction pattern per scan position on a 2D raster,
yielding a so-called 4D-STEM dataset. Figure 1.5 illustrates a set of simulated CBEDs
that may be recorded with a 4D-STEM camera, representing varying typical scenarios.
The first row shows a setup with a small convergence angle, which leads to small BF-disc
in reciprocal space, while the probe is relatively large in real space. As the thickness
increases it can be seen that additional, distinct diffraction discs appear, which are
spaced according to the crystals lattice spacings. This is analogous the conventional
electron diffraction, where the illumination is parallel (i.e. convergence angle=0) and the
diffraction spots very sharp. A convergence angle>0 increases the size of the diffraction
spots in reciprocal space accordingly until they eventually overlap and are no longer
distinct (figure 1.5e). Larger probe sizes (as in a) through c)) are commonly used for
nanobeam electron diffraction (NBED) studies to e.g. measure strain fields [45, 46].
In the second row of images in figure 1.5, CBEDs with a larger convergence angle are
shown. The electron probe is much sharper accordingly, allowing to limit the beam
interaction to a very small sample volume. This is a typical microscope setting that
would also be used in (HA)ADF experiments. It is easy to see, that simply integrating the
signal beyond the BF disc would yield the same effect as using a dedicated ADF detector.
The use of such virtual detectors is often referred to as virtual STEM (vSTEM) and allows
in principle to construct any number of integrated signals up to the collection angle
[33]. The overlap of the diffracted BF-discs and the resulting interference effects can
be exploited to reconstruct phase information, as well as the shift of the COM. These
concepts are essential for the chapters 3 and 4 of this thesis and are discussed in more
detail there. As the thickness increases (figure 1.5c,f) enough so multiple scattering can
occur, additionally features like Kikuchi lines and First (or Higher) order Laue zone rings
(FOLZ & HOLZ) may become visible as well. HOLZ rings are sensitive to periodicity along
the beam direction, while Kikuchi lines can be used to conclude on crystal orientations.
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Figure 1.5 | Simulations of a Si crystal in (001) zone axis orientation, illustrating and highlighting
prominent features commonly seen in CBEDs. The acceleration voltage is 200 kV and the
convergence angle 5 mrad for a)-c) and 25 mrad for d)-f). The columns separate varying
thicknesses from 0 (only first layer of atoms) to 109 Å. All figures are in logarithmic scale.

All these details and the many types of studies possible with 4D-STEM data again
highlight why 4D-STEM is such a powerful and versatile tool. From a scientific point of
view there is no argument for not using 4D-STEM over ADF so far. However, so far the
acquisition speed of 4D-STEM is still significantly lower than integrating detectors, which
can be problematic when time-resolution is a concern (e.g. for in-situ experiments). Also,
the sheer amount of data resulting from 4D-STEM presents challenges in terms of data
storage, but also in terms of fast processing, such that microscopists can actually work
with the technique live, without relying on additional ("fast") detectors, while setting
up an experiment, finding a suitable region of interest or adjusting the microscope.
The chapters 3 and 4 both present approaches and implementations to meet these
challenges. Scan line distortions, as well as drift, also apply to the collection of 4D-STEM
data. Therefore, restoration approaches as outlined in chapter 2 or any of the references
[2, 27–32] may also be applicable to 4D-data to some extent.

1.2.2 Physics of image formation & Image Simulations

Accurate simulations of TEM, STEM and ED images are an essential prerequisite for a
variety of studies and methods in the field of electron microscopy. They may be used for
qualitative comparisons to enable the interpretation of observed experimental images,
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but may also be utilised in quantitative ways, for example for atom counting [47–49]
or for the evaluation of imaging characteristics [50] and models [51] just to name a
few. With the emergence of machine learning methods in electron microscopy, image
simulations are also increasingly used for the generation of training datasets [52–55].
This is also true for chapter 4.2.3 in this thesis. For such applications that may require a
very large number of synthetic images the computational efficiency of the simulation
method is critical.

Multiple approaches for the quantum-mechanical description of electron scattering in
thick specimen exist with the twomost common concepts being the Bloch wave approach
and the multislice algorithm. In the Bloch wave approach the electron wavefunction
 (r⃗) is represented as a linear combination of j Bloch waves b

(
k⃗j , r⃗

)
:

 (r⃗) =
�
j

j bj

(
k⃗j , r⃗

)
, (1.4)

where k⃗j denotes scattering wave vectors on the Ewald sphere. A Bloch wave is a plane
wave with a periodicity according to the crystal, which can be expressed as a Fourier
series:

bj

(
k⃗j , r⃗

)
=
�

G

CG j exp
[
2i

(
k⃗j + G⃗

)
· r⃗
]

(1.5)

Additionally, each Bloch must satisfy the time independent Schrödinger equation:
[
− ℏ2

2m
∇2 − eV(r⃗)

]
bj

(
k⃗j , r⃗

)
= Ebj

(
k⃗j , r⃗

)
(1.6)

where m is the electron mass, ℏ is the reduced Plank’s constant (ℏ = h/2), E the energy
and V (r⃗) the potential, following the derivation of Kirkland [14, p.120]. While any set
of coefficients j is allowed in equation 1.4, there is only one that matches also the
incident wave function. Combining these requirements and making a few simplifying
assumptions yields a set of equations which can be stated in matrix form and solved as
Eigenvalue problem or using algorithms to solve the set of differential equations (e.g
Runge-Kutta method) [14]. This is a complex task that gets computationally, prohibitively
expensive as the number of considered scattering vectors G in equation 1.5 is increased.
For G beams considered the CPU time scales as O(G3) [14]. The Bloch wave approach is
therefore practically limited to periodic structures that can be accurately described with
relatively few scattering vectors. The computational cost and memory requirements
scale poorly with the number of Fourier components considered, but are, in contrast
to the multislice method, independent of the specimen thickness. For the simulation of
diffraction patterns and in particular electron backscatter diffraction patterns Bloch
waves are still regularly used [56, 57]. However, in TEM and STEM the multislice
method is way more popular, since it is less restrictive and faster for most cases in
transmission mode. The multislice method has no general periodicity requirement. The
CPU time scales linearly with thickness, which is often acceptable considering that there
is naturally an upper limit to the specimen thickness in transmission electron microscopy.
The multislice method at its core uses the phase object approximation (POA), which
states that the electron wave function (r⃗) can be described by a simple multiplication
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of the incident wave 0(r⃗) with a specimen transmission function T(r⃗), neglecting the
effect of wave propagation for thin samples:

(r⃗) = T(r⃗)0(r⃗) (1.7)

The transmission function depends on an interaction parameter , which is constant for
a given electron energy and the projected atomic potential vz(r⃗):

 =
2me

h2
, (1.8)

where m is the relativistic electron mass, e the elementary charge,  the wavelength
of the electron and h Planck’s constant. The 3D electrostatic potential of the atoms is
integrated along the beam direction into a 2D projected potential vz(r⃗):

vz(r⃗) = vz(x,y) =
∫

V(x,y,z)dz (1.9)

The transmission function is then given by:

T(r⃗) = exp
[
ivz(r⃗)

]
(1.10)

For a simulation of a very thin specimen (e.g. 2D materials) this is sufficient to compute
the exit wave for a given incident wave. If the sample is thicker, this principle can be
extended to the standard multislice formalism, by firstly, recognising that 0 in equation
1.7 can be any wave function, including the exit wave of a previous interaction. To make
use of this, the 3D sample potential can be split into slices along the beam direction (z)
with a given spacing �z. Applying equation 1.9 to each slice yields a number of projected
potentials vz,n, which are �z apart from another as illustrated in figure 1.6a). The
potential between two consecutive slices is considered to be zero and the propagation
of the electron wave within the slice is approximated by the Fresnel propagator p(r⃗,�z):

n+1(r⃗) = pn(r⃗,�zn)⊛
[
Tn(r⃗)n(r⃗)

]
, (1.11)

where ⊛ denotes a 2D-convolution operation. For computational efficiency this convolu-
tion in real space is usually implemented as a multiplication in Fourier space, where the
propagator P(k⃗,�z) is given as:

F
[
p (r⃗,�z)

]
= P

(
k⃗,�z

)
= exp

(
−ik2�z

)
, (1.12)

where F denotes a 2D Fourier transform, such that equation 1.11 can be restated as:

 (r⃗,z +�z) = F −1
[
P(k⃗,�z)F

[
T(r⃗,z)(r⃗,z)

]]
(1.13)

With equation 1.13 the wave function can be determined at any z-position in the sample.
This is illustrated with a very simple example in figure 1.6 for an incident plane wave
0(r⃗) (CTEM mode) in panel b). Panel c) shows the phase of the intermediate wave after
interacting with the potential vz,1 and propagating a �z of 5 Å according to equation
1.13. The exit wave (panel d) is again computed using equation 1.13, but the incident
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Figure 1.6 | a) An amorphous sample sliced into two segments of height �z with their atomic
electrostatic potentials projected into two slices vz,1 and vz,2. The simulation box is 10x10x10 Å
in size. b) Shows the phase of the incident plane wave 0, c) the phase of the intermediate wave
after interacting with the potential vz,1 and propagating 5 Å. d) The exit wave after interacting
with the potential vz,1 and vz,2 and propagating 2x5 Å.

wave is now the intermediate wave function depicted in panel c). This is a somewhat
simplistic description but captures the essence of the method. In practice multislice
codes are considerably more sophisticated and more accurate versions of the multislice
formalism exist [58–64]. A further important consideration is the inclusion of thermal
diffuse scattering effects. One of the more accurate and most popular models to include
this electron-phonon interaction is the frozen phonon model, which is based on the
fact that the velocity of the electron passing through the sample is much higher than
the atomic vibrations, such that the simplification can be made, that the electron wave
interacts with a static atomic structure while traversing the sample [65]. Every atom
is considered a harmonic oscillator with a single energy (one frequency) according to
the root-mean-squared-displacement (rmsd) of the atomic site, which is related to the

Debye-Waller-Factor (DWF) by: rmsd =
√

DWF
82 . As a result, all atoms are slightly shifted

from their reference positions and the final exit wave can be computed as the average of
multiple electron waves which interacted with different phonon configurations. Phonon
configurations may be simply considered uncorrelated as in the Einstein approximation
[61], or with the phonon band structure and correlated atomic motions taken into
account [66]. The effect of this model is illustrated by CTEM simulations of a Ag crystal
in (001) zone axis orientation in figure 1.7. Neglecting atomic displacements (still atom
approximation), results in Figure 1.7a. The interference is strongly pronounced because
all atoms are exactly stacked over another within the columns. Introducing a random
atomic position offset causes a blurring as seen in Figure 1.7b. Averaging over ever
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more phonon configurations creates increasingly smooth images and more realistic
simulations (figures 1.7b to 1.7d).

(a) Still atom
approximation

(b) Frozen phonon
approximation (1 Phonon)

(c) Frozen phonon
approximation (5

Phonons)

(d) Frozen phonon
approximation (20

Phonons)

Figure 1.7 | Comparison of electron phonon interaction approximations (log-scale)

For STEM and 4D-STEM the electron-specimen interaction is exactly the same as for the
presented CTEM case. The only difference is the choice of the incident wave, which is no
longer just a plane wave with unity intensity, but a convergent probe.

Incident waves & aberrations

Shaping the electron beam requires the use of magnetic lenses, which cause aberrations,
similarly as glass lenses cause aberrations in light microscopes. However, the quality of
magnetic lenses is significantly worse. These technological difficulties have long been
the limiting factor for the resolution in STEM until the development of probe correctors in
1998 [25]. Aberrations are modelled by means of an aberration function . The imaging
wave function 0 is a product of the aperture function A(k⃗) and the transfer function of
the objective lens H0(k⃗).

0(r⃗) = F −1

A(k⃗)H0(k⃗)


(1.14)

A(k⃗) =


1 |k| =  < max

0 otherwise
(1.15)

H0(k⃗) = e−i(k⃗), (1.16)

where k is the spatial frequency in the image plane, F −1 denotes inverse Fourier trans-
forms and max the maximum semiangle allowed by the objective aperture [14]. In
principle, the largest possible outer aperture radius would be desirable (very large max),
as the probe becomes smaller and smaller in real space. However, a larger outer aper-
ture radius also means that higher scattering angles contribute to the signal, which
are influenced by aberrations a lot stronger. For the example of spherical aberrations
this is because the magnetic field further away from the optic axis is stronger than
would be required to focus the electrons at these large angles () [14], which results in a
position error in the electron trajectories, as shown in figure 1.8. In practice, aberrations
cannot be fully omitted or corrected, which means that increasing the outer aperture is
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always a trade off for an accentuation of aberration effects. The aberration function

Optic axis

Lens

Image point

Figure 1.8 | Ray diagram illustrating spherical aberrations.

(k⃗) can be constructed as a sum of the contributions arising from the different types of
aberrations. The defocus �f and the spherical aberration Cs are rotationally symmetric
and its influence on the aberration function (k) is shown in equation (1.17):

(k) = k2
(
0.5Cs

2k2 −�f
)

(1.17)

Generally, smaller aberrations allow for a smaller probe and therefore, a better resolu-
tion. The spherical aberration Cs is essentially constant for a given beam energy and
cannot be fully, but partially compensated by adjusting an appropriate defocus value
(Scherzer defocus), which can be found using equation 1.18

�f =
√
1.5CS (1.18)

Nonsymmetric aberration terms, for e.g. coma and astigmatism may be added to  for
a full description of the aberration function. However, in practice these contributions
are often considered negligible for modern, well-adjusted instruments. They are at no
point in this thesis considered and are therefore omitted in this chapter as well. The
interested reader is referred to reference [14], chapter 2.6.

1.3 Neural Networks

1.3.1 Introduction

A neural network (NN) is a type of machine learning model that is inspired by the struc-
ture and function of the human brain. It consists of a large number of interconnected
processing nodes, called artificial neurons, which work together to process input data
and make predictions or decisions.

The structure of a simple neural network is depicted in Figure 1.9 and consists of layers
of interconnected neurons, where each layer receives input from the previous layer
and produces output that is passed to the next layer. The input layer receives the
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Figure 1.9 | Principal layout of a neural net-
work.
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Figure 1.10 | Schematic depiction of an artifi-
cial neuron.

raw input data, and the output layer produces the final prediction or decision made by
the network. Layers in between the input and output layers are called hidden layers,
and the number of hidden layers and the number of neurons in each layer can be
varied to control the complexity and capacity of the network. Artificial neurons are
simple computational units that receive input, transform the input using a mathematical
operation, and produce an output. The structure and function of a single neuron as
depicted in Figure 1.10 can be described mathematically as follows: Let x1,x2, ...,xn be
the input features for a single sample, and w1,w2, ...,wn be the corresponding weights.
The weighted sum of the inputs is calculated as follows:

z =
n�

i=1

wixi + b, (1.19)

where b is a bias term. The output of the neuron is then computed by applying an
activation function f (z) to the weighted sum:

y = f (z) (1.20)

Activation functions

Activation functions are essential to introduce non-linear behaviour. There are many
different types of activation functions that can be used, including a small selection
depicted in Figure 1.11. Sigmoid and tanh-functions were popular in the past but are
hardly seen in modern, deep learning systems anymore, because they are relatively slow
to compute and suffer from vanishing gradients for large (positive or negative) input
values [67]. The de-facto standard activation function, especially in deep convolutional
neural networks has become the rectified linear unit (ReLU), which is simple and fast
to compute and has shown to accelerate the convergence of model trainings using
gradient descent optimizers. However, ReLUs are prone to the so-called "dying-ReLU
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problem", which is a special case of the vanishing gradient problem, referring to the
common observation that neurons with ReLU activation become inactive and output
only zeros for any input [68]. Since the derivative of the ReLU function is zero for
negative inputs "dead" neurons usually do not recover during training, which can lead
to large parts of a NN to become inactive. To mitigate the problems arising from the
ReLU numerous other functions were introduced altering the behaviour of the ReLU for
negative inputs [69] as illustrated in Figure 1.11(d-f). The ELU and Swish functions have
the additional benefit that they are continuous around zero, which can help to improve
the training and accuracy somewhat. Particularly in deep NN these modifications of the
ReLU have shown to improve results considerably [69, 70].
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Figure 1.11 | Commonly used activation functions used to include (a) the sigmoid (z) and (b)
the hyperbolic tangent tanh(z) functions. More recently mostly (c) ReLU and derived functions
like (d) leaky ReLU, (e) ELU and (f) the Swish function [70], are being used in practical deep
learning applications.

Training

The process of training a neural network involves adjusting the weights and biases of
the connections between neurons in order to minimize the error between the predicted
output and the ground truth for a given set of input data. The goal of the training is to
find a set of weights and biases for a model that can accurately predict the output for a
given input. The match between the prediction and ground truth label is computed by
some scalar-producing loss function L. Most commonly, training algorithms are using
the first order derivative of this multivariate objective function (or loss function) with
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respect to the model parameters � to update the weights and biases in an iterative
manner. This concept is easily demonstrated using the example of the batch gradient
descent method.

�t+1← �t − �∇�L(�;x;y) (1.21)

In this equation, �t represents the model parameters (including the weights and biases)
at time step t, and � is the learning rate, which determines the step size of the update.
The gradient of the loss function with respect to the model parameters is denoted by
∇�L(�) and is computed using the backpropagation algorithm [71]. Since this imple-
mentation requires to the entire model and dataset to fit into computer memory it is
not very practical in modern applications anymore. Adaptions to the concept are the
stochastic gradient descent (SGD) and minibatch-gradient descent and optimization
algorithms. The model weights and biases are updated after each training sample or
batch of samples, respectively. This changes the update rules accordingly for the SGD:

�t+1← �t − �∇�L(�;xi ;yi ) (1.22)

and for the minibatch-GD with a batch size n:

�t+1← �t − �∇�L(�;xi :i+n;yi :i+n) (1.23)

The process is repeated until the loss function reaches a minimum or until a prede-
fined number of iterations has been reached. An example of such a process is given in
Figure 1.12 for a single arbitrary parameter of the NN. Each parameter has a random
initialization3. The gradient at this point is determined and the parameter updated
accordingly, where the learning rate � determines the scale of the update. This hyper-
parameter is crucial. Examining Figure 1.12 one can easily imagine how a learning
rate too large would cause the parameter to never actually reach the minimum, but
jump back and forth between the sides of the valley. On the other hand, if we imagine
the inital parameter being on the right side of the graph, one can see that a learning
rate too small could lead to the optimization getting stuck in the local minimum. While
Figure 1.12 depicts this for one parameter, it is important to consider that training a
NN potentially means optimizing thousands, millions or even billions of parameters
simultaneously, resulting in an extremely complex and difficult optimization task. A
number of improvements and algorithms were put forward to account for these diffi-
culties, including strategies of adding a momentum term to the update rule [72, 73],
the introduction of parameter-individual, adaptive learning rates, and combinations
thereof. Notable developments on gradient-descent optimizers include "Adagrad" [74],
"Adadelta" [75], "RMSProp"4 and "Adam", using Adaptive Moment Estimation [76]. The
latter in particular has shown to be reliable in many scenarios and hence emerged as a
default choice for many applications [77]. The Adam algorithm uses individual adaptive
learning rates for all parameters, computed from estimates of the first and second
moments of the gradients as outlined in algorithm 1.

3The appropriate initialization method is a topic in itself and may depend on the architecture and
activation functions used.

4This algorithm was developed by Geoffrey Hinton. The work is available in his lecture notes at
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf but was never for-
mally published.
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Figure 1.12 | Illustration of gradient descent on a single variable.

1.3.2 Convolutional neural networks

A convolutional neural network (CNN) is a type of neural network specifically designed to
process data that has a grid-like topology, such as an image. The main concept behind
the operation of a CNN is the idea of convolutional layers. In a convolutional layer, the
network learns a set of filters, which are small matrices of weights. These filters are
used to scan over the input data, such as an image, and extract features from it. The
output of a convolutional layer is called a feature map, which represents the presence
of certain features in the input data. By stacking multiple convolutional layers on top of
each other, a CNN can learn increasingly complex features of the input data, such as
edges, shapes, and textures.

A CNN is trained using a labelled dataset of images, where the network learns to
associate the features it extracts with a particular class or label. Once trained, the
network can be used on new images by extracting their features and using them to make
predictions based on what it has learned during training. CNNs gained a lot of relevance
in the 1990s with one of the most significant early contributions being the LeNET-5 [78,
79] for handwritten digit and character classification. This network was among the first
to contain all fundamental building blocks of most modern CNNs, as shown in figure
1.13. In the illustrated example the network takes a greyscale image (one channel)
as input, applies a convolution with a 5x5 kernel and a 2x2 pooling operation. This
convolution-pooling sequence is repeated once more. The last convolution has 120
filters with a kernel size of 5x5 pixels, which reduces the 5x5 feature maps to scalar
values. This amounts to a full connection. After another full connection follows the final
classifier step [79]. The individual components will be explained in a general manner in
the following sections.

Dense connections

Dense connections, also called "Fully connected layers", are often used in CNNs towards
the output of the network after feature maps were "flattened", i.e. the maps were reduced
to one dimension and concatenated into a vector. This allows to map spatial data (e.g.
images) to vectors or scalars, which is necessary for example in classification tasks.
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Algorithm 1 Adam Optimization as per reference [76]. g2
t indicates the elementwise

square gt ⊙ gt . All vector operations are element-wise too.

Require: : L() ▷ Objective function
Require: : 0 ▷ Initial parameter vector
Require:  ▷ learning rate
Require: 1 ∈ [0,1) ▷ Exponential decay rate for m
Require: 2 ∈ [0,1) ▷ Exponential decay rate for v
Require:  ▷ Small value to avoid division by zero
1: t← 0 ▷ Initialize time step variable
2: m0← 0 ▷ initialize 1st moment vector
3: v0← 0 ▷ initialize 2nd moment vector
4: while t not converged do
5: t← t +1
6: gt←∇ft(t −1) ▷ Get gradients w.r.t. stochastic objective at timestep t
7: mt← 1mt−1 + (1− 1)gt ▷ Update biased first moment estimate
8: vt← 2vt−1 + (1− 2)g2

t ▷ Update biased second raw moment estimate
9: m̂t←mt/(1− t1) ▷ Compute bias-corrected first moment estimate

10: v̂t← vt/(1− t2) ▷ Compute bias-corrected second raw moment estimate
11: t← t−1 −m̂t/(

√
v̂t + ) ▷ Update parameters

12: end while
13: return t ▷ Optimized parameters

Convolution Pooling Convolution Pooling

1@32x32 6@28x28 6@14x14 16@10x10 16@5x5
1x120

1x84

1x104
FC FC

Figure 1.13 | Minimalistic example of a CNN, based on the LeNET [79], including the fundamen-
tal building blocks: convolutional layers, pooling layers and dense layers. 5

These layers are identical to the ones described for generic neural networks (figures 1.9
& 1.10).

Pooling layers

Pooling layers introduce a down-sampling to feature maps individually, usually applied
after convolutional layers. The most common pooling operations are the max- and
average(or mean)-pooling. The former maps the maximum value of a feature map within
a given kernel to a corresponding pixel value of the output map, whereas the latter
computes the mean over the kernel area. The effect is demonstrated in figure 1.14 for
the common setting with a pooling size 2×2 pixels and a stride of 2 pixels. The size of the
feature map is reduced by a factor of 0.5 for both operations. One of the reasons these

5Illustration generated with http://alexlenail.me/NN-SVG/LeNet.html [80]
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layers are so commonly employed can be intuitively understood for Max-pooling. Albeit
some information is lost, the resulting feature map would not change for a shift of the
maximum value within the pooling kernel. This helps to make the CNN invariant to small
translations in the input maps [71]. Since layers in CNNs tend to encode the presence
of patterns and features it is often beneficial to retrieve the strongest response for a
given pattern. Particularly in computer vision tasks, such as image classification and
object detection, max-pooling frequently showed better results and is therefore more
commonly used [81]. A special case of pooling layer is the global pooling layer, which
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1
3

Max pooling

Mean pooling

Figure 1.14 | Visualisation of max- and mean-pooling operations with a kernel size of 2x2 and
strides of 2 in both, x and y directions. The pooling kernels and their corresponding results are
color-coded.

has a kernel size equal to the feature map size and hence reduces each feature map to
a single value. This may be used at the end of a CNN before fully connected layers.

Convolutional layers

In a CNN, each convolutional layer consists of a set of "filters" that are used to detect
certain patterns or features in the input data by. This process of convolving the input
data with a set of learned filters (also called kernels) allows a CNN to automatically
learn spatial hierarchies of features from the raw input data, which is particularly useful
for tasks such as image classification and object detection.

The terms convolution and cross-correlation are often used interchangeably in the
machine learning community. Both operations are equivalent except for a flip of the
kernel which can be avoided in the case of cross-correlation. Most AI-libraries actually
use cross-correlations, but often call it convolution. The formal definition of the "convo-
lution"6 operation for a 2D image I with pixel coordinates i , j and a Kernel K of size m× n
is therefore given as [71]:

S(i , j) = (K ∗ I)(i , j) =
�
m

�
n

I(i +m, j + n)K(m,n) (1.24)

, which is essentially the dot product. The size of S would be (i − (m−1))× (j − (n−1)) cor-
respondingly, which implies that feature maps would be shrinking in each convolutional
layer. The architecture shown in figure 1.13 for example shows this behaviour. This can

6for consistency with other literature the text will keep referring to the term convolution, albeit it is
technically a cross-correlation



22 Chapter 1. Introduction

be altered by zero-padding the input to account for the kernel size. For example for an
output to maintain the input size would require a padding p of one pixel around the input
for a 3×3 kernel. Further, the output size can be reduced by skipping steps along each
dimension, which is referred to as a strided convolution with a stride parameter s. A
stride of s = 2 would mean to compute only every other convolution along the given
dimension. The size of the output with a given padding p, input size i and stride s is thus
given by [82]:

o =
⌊ i +2p− k

s

⌋
+1 (1.25)

Figure 1.15 illustrates the discrete convolution for the first two steps along x and y with
numerical examples, including a zero-padding with p = 1, a stride of s = 2 for an input
size i = 5 and kernel (figure 1.15-e) of size k = 3.
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Figure 1.15 | Numerical example of a strided, discrete 2D convolution with i = 5, k = 3, s = 2,
and p = 1. The highlighted pixel in the smaller output maps in figures a-d are computed by the
dot product of the kernel (e) and the highlighted pixels in the corresponding input arrays. 7

However, in practice the input tensor and output tensor are typically three-dimensional:
width, height, and depth. The convolutional kernel is typically much smaller than the
input tensor in the spatial dimensions and has a depth that matches the depth of the
input tensor. Taking this into account and considering a number of c filters modifies
equation 1.24 accordingly.

Sc,j ,k =
�

l

�
m

�
n

Il,j+m,k+nKc,l,m,n (1.26)

This means that the number of output feature maps equals the number of filters in the
layer. For example, consider a 5x5x3 input tensor and five 3x3x3 filters as illustrated
in figure 1.16. The convolution operation would involve iterating over the input tensor
and the kernel, computing the dot product of the elements in the kernel and the input
tensor at each position, and adding the result to the output tensor. This process would
be repeated for every position in the input tensor, producing a new output tensor with a
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depth of 5. As described in section 1.3.1, analogous to the classical artificial neuron, also
convolutional layers use trainable biases and activation functions, which are applied to
the output tensor. In summary the process of computing a convolution can be broken

f +b⃗

�

�

�

�

�

Input Convolution with Filters
Bias &

Activation
Ouput

(feature maps)

Figure 1.16 | Schematic illustration of a convolutional layer in a CNN with a input of size 5x5x3.
The input is convolved with with 5 3x3x3 filters resulting in 5 3x3 feature maps (output size is
reduced because no padding was applied). Trainable biases b⃗ are added to each map and an
activation function f is applied to the output tensor.

down into the following steps:

1. Initialize the output tensor with zeros.

2. Iterate over the input tensor and the convolutional kernel, using their respective
width, height, and depth dimensions.

3. For each iteration, compute the dot product of the elements in the convolutional
kernel and the input tensor that are being "convolved" (i.e., multiplied and summed).

4. Add the dot product to the corresponding element in the output tensor.

5. Repeat this process until the entire input tensor has been convolved with the kernel,
producing the output tensor.

6. Add a bias to each feature map and apply the activation function to the output
tensor.

7Images for figures 1.15 & 1.17 were generated based on TikZ code given in reference [82], available
at https://github.com/vdumoulin/conv_arithmetic
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Another important type of convolutional layer is the so-called transposed convolutional
layer, which is often used to upsample feature maps. To achieve this, the kernel(array)
is multiplied with a given pixel in the input map (scalar) and added to the corresponding
positions in the output map. The output size naturally increases correspondingly (k−1)/2
pixels. Striding and padding may be applied similarly as in the standard convolution case.
A numerical example for a 4x4 input map, a 3x3 kernel, a stride of 1 and no padding is
given in figure 1.17.
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Figure 1.17 | Numerical example of a strided, discrete 2D transposed convolution with i = 1,
k = 3, s = 2, and p = 0. The highlighted pixel in the input maps in figures a-d are multiplied with
the kernel (e) and added to the output array.

Modifications for deep convolutional neural networks

The use of the chain rule in the backpropagation algorithm for the computations of
gradients presents a problem for the construction of deep networks. If convolutional
layers are just arranged sequentially as in figure 1.18-a), the gradients keep decreasing
towards the beginning of the CNN and eventually vanish. Multiple strategies were
developed to avoid this problem and to allow for the design of deep CNNs. Most of
the approaches are based on the idea of creating short paths from earlier to later
layers in the network. This can be done by addition as shown in figure 1.18-b), which is a
residual block of the popular ResNet [83]. Figure 1.18-c) illustrates the use of so-called
dense connections. In this case the short path is established by concatenating feature
maps from earlier to later layers in the network. This idea may be used to construct
densely connected architectures as in reference [84]. Also, both concepts may be
employed simultaneously to construct residual dense blocks as in references [85, 86].
Skip connections may also be used to enable global residual learning which is a useful
concept for image-to-image tasks, e.g. denoising [86] or image super-resolution [85].

Another general approach to support the training of deeper networks is the normalisa-
tion of feature maps throughout the network. The most commonly used normalisation
method is the batch normalisation (BN) as introduced by Ioffe and Szegedy [87]. The
core idea is to normalize each feature map in the CNN over a mini-batch by subtracting
the mean and dividing by the variance, such that the expectation E(x) is zero and the
variance unity.

x̂ =
x − � [x]√
Var[x]

, (1.27)
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Figure 1.18 | Connections of convolutional layers: a) depicts a standard feed-forward con-
nection, b) show a residual block with a skip connection as in reference [83], c) shows a dense
block with dense connections (concatenations). + is an addition operator, || symbolises a
concatenation of feature maps along the channel dimension, f is the activation function. The
blocks in c) include a convolution layer, activation function and batch normalization as per
reference [84]

where the tensor x has the size of the feature map multiplied by the mini-batch size. The
output of a BN layer x̂ is then computed by scaling and shifting x̂ by trained parameters
� and � respectively.

y = �x̂ + � (1.28)

More generally we may consider a 3D tensor as depicted in figure 1.19, that spans c
channels, of a feature map of size (h×w) and n samples in a mini-batch. Slicing this cube
into normalised sections in different ways yields different normalisation methods, with
the three most common approaches depicted in figure 1.19, In figure 1.19-a) the tensor
is normalised for each feature map over the batch size, which corresponds to batch
normalisation. Figure 1.19-b highlights the dimensions to be normalised in the so-called
layer normalisation and c) shows the instance normalisation. Further, a compromise
between instance- and layer normalization is the group normalisation [88] where the
layer is split into multiple groups.

8Figure design inspired by reference [88]
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c n

(h,w)

a)

c n

(h,w)
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c n

(h,w)
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Figure 1.19 | Common normalisation methods used in CNNs include a) Batch normalisation, b)
Layer normalisation and c) Instance normalisation. The dimensions n correspond to samples
in a mini-batch, c to the channels in a feature map and (h,w) corresponds to a combined
dimension representing the spatial dimensions of a feature map. The normalised section of the
tensor is highlighted in green.8
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2.1 Introduction

The image resolution of modern scanning transmission electronmicroscopes (STEM) has
reached the sub-Angstrom range, enabling microscopists to directly image individual
atoms or atomic columns. Beyondmerely visual interpretations, atomic-resolution STEM
images can be used to extract quantitative measures, such as atomic column positions,
scattering cross sections (SCS1) and a number of derived quantities, such as the number
of atoms in a nanoparticle or strain distributions [89] Reliable determination of these
measures is an important cornerstone for materials engineering at the nanoscale.
Statistical parameter estimation theory was successfully employed to obtain accurate
and precise estimates of atomic column positions and SCS [89] enabling one to locate
atomic columns and to count atoms with single-atom sensitivity [90]. The reliability of
these estimates depends on the quality of the underlying STEM image, which is naturally
limited by systematic and statistical distortions. In the case of STEM images, the most
prominent systematic distortions include X- and Y-jitter and fast scan distortion and
unavoidable statistical distortions include a mixture of counting- and thermal noise.
These distortions are particularly severe, when investigating beam sensitive materials
and light elements and may make it very difficult to draw quantitative conclusions from
STEM data [91].

This reasoning has been motivating the development of image post-processing and
restoration approaches for both TEM [92] and STEM data [93–95]. Methods dedicated to
atomic-resolution STEM images often make use of lattice periodicity, which imposes an
important limitation to crystalline materials [96]. Other methods require a pair of STEM
images of the same area but rotated by 90° to each other around the optical axis [97], or
a multiframe series of the same region [98]. Jones et al. made considerable progress on
the correction of scan line distortions on single images by essentially refining each pixel
position based on its surroundings and imposing the assumption that image features be
continuous [27]. While this approach reliably conserves the integrated intensity of the
entire image without assuming any periodicity, it has some notable limitations, especially
for data of low-dose experiments. The referenced examples show that in order to correct
these image distortions by means of classical image processing techniques, they need
to be individually identified and corrected, resulting in a variety of specialised, complex
and computationally expensive algorithms that often have specific requirements on
the data. The introduction of machine learning techniques led to a paradigm shift
in image processing in the 70s and 80s [99–102] heralding the more recent surge in
developments of deep convolutional neural networks (CNN) for numerous applications,
especially for image reconstruction, image restoration, image enhancement, feature
extraction, segmentation, object recognition and classification problems [102]. We have
shown that deep convolutional neural networks can be used to denoise and correct
image distortions in single-shot STEM data without any particular constraint, prior
knowledge or additional user input using a blind restoration approach. Especially the
correction of scan-line distortions can be very significant, also beyond standard (HA)ADF
imaging scenarios. If the CNN can faithfully recover the correct, undistorted image

1formally defined in section 2.3.2
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it can be used as a ground truth image to determine a shift mapping that transforms
the distorted to the undistorted scan grid. With the knowledge of this transformation
also multidimensional data, such as spectroscopy data (e.g. EELS and EDX) and 4D-
STEM data can be corrected as well. This is because all spectra or CBEDs in a dataset
are linked to real-space positions on a scan grid and can be shifted, similarly as in
references [28, 98]. Figure 2.1 illustrates that also 4D data can simply be reshaped
into a cube which can then be corrected by interpolating each data column to their
correct real-space location. Besides reviewing the most relevant distortion and noise

q x

q y
...

...

...

...

...
...

x
y

x
y

(qx · qy)

Reshape

Figure 2.1 | Correcting 4D STEM data based on 2D images is possible due to their shared
real-space locations (x and y). Distortions in the scan grid may be recovered from the STEM
image. After reshaping each CBED with reciprocal dimensions qx and qy into a single vector,
the resulting cube can be interpolated over the real-space dimensions with the corresponding
shift mapping.2

contributions for atomic resolution STEM, as well as the fundamentals of parametric
model estimation for STEM data, this chapter is dedicated to the determination of the
improvements in accuracy and precision for quantitative data analysis resulting from
this image restoration over a wide range of signal to noise ratios (SNR). We confirm
that this procedure does neither introduce any significant bias nor eliminates specimen
features such as dislocations or grain boundaries.

2.2 Distortions in (HA)ADF STEM

2.2.1 Detector Noise

Because electron detection is in principle a counting of events (electrons detected per
pixel area) it is naturally subject to Poisson noise (or shot noise). In statistical terms a

2Image was recreated based on reference [98]
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measured pixel intensity is a random variable following the Poisson distribution. So the
probability P to observe k electrons is:

P(k|) = k

k!
e− ,k = 0,1,2, ... (2.1)

where the -parameter is both the sample mean and variance. To model Poisson noise
in a STEM image, each pixel is assigned a random number following this distribution
(equation 2.1), with a value of  = I · d · dx · dy, where I is the simulated pixel intensity,
d is the dose in e−/Å

2
and dx and dy the pixel dimensions in Å. This simple model is a

good approximation for high dose (HA)ADF imaging, when the image noise is dominated
by Poisson noise. However, at lower doses the influence of the detector system becomes
more pronounced, as the intensity distribution of imaged noise is no longer purely
Poissonian. An accurate model of the detector system is necessary to adequately
describe and understand the noise in ADF-STEM images.

Incident 
electron

Photons

Scintillator

Dynodes

Anode

Connector
Focusing 
electrode

Photomultiplier Tube

Photocathode

Electrons

Photon 
trans-

mission

Figure 2.2 | Schematic of a typical (HA)ADF detector setup, consisting of a scinitllator and
photmultiplier tube. 3

A typical (HA)ADF detector consist of a scintillator coupled to a photomultiplier tube
(PMT) as illustrated in figure 2.2. An electron incident on the scintillator produces
photons, which are then transmitted to a photomultiplier tube (PMT) through e.g. a
parabolic mirror [103] or a light pipe [104, p. 139]. The photons are converted back
into electrons by a photocathode upon entering the PMT with a quantum efficiency 
[105]. The focusing electrode accelerates the photoelectrons towards the first of a
set of dynodes, which are electrodes with a high secondary-electron yield. At each
dynode electrons are multiplied by a secondary emission factor  with an average value
and a variance. The successive acceleration and secondary-electron emission over n
dynodes with a secondary-electron yield  amplifies the signal in a process that can be
understood as a cascade of independent, sequential events. In general for a cascade

3Illustration adapted/modified from https://commons.wikimedia.org/wiki/File:
PhotoMultiplierTubeAndScintillator.svg, which is published under a CC BY-SA 3.0 license
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of two events with generating functions A(x) and B(x), the generating function of the
cascade QAB(x) is

QAB(x) =A [B(x)] (2.2)

and the average product and variance of the product are given by:

nAB = nAnB (2.3)

2
AB = n2

B
2
A + nA

2
B (2.4)

[106, p.161]. These relationships hold for the scintillator-photocathode stage, as well
as for the subsequent processes of the multiplier chain and can be used to estimate
the characteristics of the detector. Firstly, the photon yield of a single electron impact-
ing the scintillator is energy dependent and also varies depending on the type of the
scintillator. Ishikawa et. al reported ≈ 20 electrons per kV for YAP (Yttrium Aluminium
Perovskite) scintillators and an efficiency of the transmission setup guiding the photons
to the photocathode of ≈ 5%. This yields an approximation for the number of collected
photons mc as about 1 per kV acceleration voltage. Reference [106] reports up to 8
photoelectrons per kV for NaI(Tl) (Thallium-doped Sodium Iodide) scintillators. The
photocathode is quoted to have a detective quantum efficiency of  ≈ 25%. Using the
photon count at the photocathode mc and its quantum efficiency  as a starting point,
the average number of photoelectrons per pulse can be stated using equation 2.3:

np =mc (2.5)

Given that the variance of the photoemission process is [106]

2 = − 2 (2.6)

the variance in the number of photoelectrons, using equation 2.4 is given as:

2
p = 22

c +mc(− 2) (2.7)

It follows themultiplier chain of the PMT. The gain of the photomultiplier GPM over n
dynodes, would be given by generalising equation 2.3 as:

GPM = 12...n =
n�

k=1

k (2.8)

Under the assumption that all dynodes have equal gain, the expected amount of elec-
trons on the anode of the PMT per incident electron may be estimated as the detector
gain G .

G =mc
n (2.9)

The distribution of a single electron response of a dynode can be generally described by
a Pólya distribution.

P(k|) = k

k!
(1 + b)−k−1/b

k−1�

j=1

(1 + jb),k = 0,1,2, ... (2.10)
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Setting the parameter b = 0 in equation 2.10 leads to the special case of the Poisson
distribution in equation 2.1 [106, p. 164]. This is a reasonable simplification, provided
that inhomogeneities across the dynodes are small [106, 107]. The amplification can
thus be seen as a cascade of Poisson processes. Further, using again the assumption that
all dynode gains are equal, following the derivation given in reference [106] eventually
yields an expression for the variance in the response of a single electron. Since the
the number of photons reaching the photocathode per incoming electron is large (≈
100) [103], and the gain is also typically in the order G = k ≈ 410 [105] a gaussian
approximation is suitable to describe this distribution [108] with a standard deviation of:

 =mcG

√
1− + 1

−1
mc

+
2c
m2

c
(2.11)

Therefore, in order to model the noise accurately for given simulation x one would need
a two-step process. Firstly, x is scaled by a dose-dependent parameter  and subjected
to Poisson noise �

x← � (x) (2.12)

Secondly, noise from a gaussian distribution � is added, where the standard deviation 
is dependent on the updated x, because mc in equation 2.11 must be scaled accordingly.

x← (x +� (0,(x)))/ (2.13)

Dividing by  in the latter equation brings x back to approximately its original range.
The most obvious effect of this accurate modelling of the detector is that the values
produced by single electrons are actually subject to distribution spreads, which can
clearly be seen in figure 2.3, which shows a simulated low-dose background noise in
panel a) and its histogram in panel b). In the histogram the peaks are evenly spaced and
each peak represents a given electron count. Although this is a simulation according
to equations 2.11, 2.12 and 2.13 this can be experimentally verified as for example in
references [108] and [105]

2.2.2 Jitter

X- and Y-jitter are caused by beam instabilities while scanning line by line over the
sample. X-jitter causes a shift �x

j of the entire j-th horizontal scan line. While an
image is recorded on a regular grid as shown in figure 2.4-a), the actual probe positions
are displaced as a result of the these shifts along x (figure 2.4-b) and y (figure 2.4-
c). X- and Y-jitter are caused by beam instabilities while scanning line by line over
the sample. X-jitter causes a shift �x

j of the entire j-th horizontal scan line. Y-jitter
appears as a stretching/squishing of scan lines, or line interchanges, caused by an
offset �y

j of the vertical position of each scan line j . Both effects occur not fully random,
but are dependent on the previous state (e.g. the position of the previous scan line).



Chapter 2. STEM Distortion correction 33

1

2

3

4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

P
ro
b
a
b
il
it
y

a) b)

Figure 2.3 | HAADF detector noise distribution for a low dose background image. a) shows a
simulated noise image according to equations 2.11, 2.12 and 2.13. b) shows the histogram of
a), where distinct peaks can be seen, which correspond to the number detected electrons (e.g.
1st peak=1 electron, 2nd peak=2 electrons, etc.)

a) b) c) d)

Figure 2.4 | Schematic illustration of distorted scan grids. a) perfect grid, b) x-jitter, c) y-jitter,
d) combination of x-and y-jitter.

d)c)b)a)

Figure 2.5 | Simulated examples of a Pt lattice, illustrating how jitter affects a given undistorted
image (a). b) shows the effect of x-jitter only, c) the effect of y-jitter only and d) a combination
of both.

Mathematically the series of j shifts along either direction may be described by series of
related terms [109]:

�x
j =



axj√
1−2

x
j = 1

x�
x
j−1 + ax

j j > 1
(2.14)
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�
y
j =



ay
j√

1−2
y

j = 1

y�
y
j−1 + ay

j j > 1
, (2.15)

where ax
j and ay

j are random numbers following a normal distribution with zero mean
and a standard deviations x and y . x and y are factors, describing how strongly
the series value is coupled to the previous value. The scan line positions are shifted
accordingly and the distorted image is created by linearly interpolating over the newly
arranged scan lines.

2.2.3 Fast scan distortion

Fast scan distortion arises from a finite detector response time. At short dwell times,
the beam scans too fast for the detector to process, resulting in a smearing along the
scan line. The response function may be modelled as a decay function, adding a tail to
objects in the image along the scan direction [110]. This effect is illustrated on single
electron responses in figure 2.6-a). Figure 2.6-b) shows the characteristic damping of
high frequencies in horizontal direction [108]. Mathematically, this may be expressed as
a convolution of the image I with some point spread function h(x) to compute a distorted
model Id .

Id (x,y) = I(x,y)⊛ h(x) (2.16)

The point spread function may be described in various ways, with one being a simple
exponential decay [110], given in equation 2.17

h(x) =


e−|x| x <= 0

0 x > 0
(2.17)

However, more recent studies suggest that the point spread may be more accurately de-
scribed by a half-Lorentzian profile as given in equation 2.18 [2]. At extremely fast scan
speeds this model may needs to be extended to also include a point-spread originating
from the readout system [2].

h(x) =




42x2+2 x <= 0

0 x > 0
(2.18)
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a) b)

Figure 2.6 | HAADF detector noise for a low dose background image. a) shows a simulated
noise image according to equations 2.11, 2.12 and 2.13 with an applied fast-scan distortion
as given in equations 2.18 and 2.16. The smearing along the scan direction can be clearly
seen on single electron signals. Panel b) shows the Fourier transform of a) with the fast-scan
distortion-typical fingerprint in Fourier space.

2.3 Distortion correction & Atomic structure quantifica-
tion

While the CNN from reference [2] was trained to restore images of a wide variety of
imaging modes, STEM is of particular interest as it is routinely used for the quantifica-
tion of atomic structures [89, 111, 112] in terms of atomic column positions and their
corresponding SCS, which allows us to study the impact of the image restoration method
quantitatively. The evaluation of the effect image restoration has on the quantitative
assessments of STEM images is done in three complementary approaches, using MUL-
TEM [60, 61] to create multislice simulations and the StatSTEM software for all model
fittings [89]. All evaluations are based on 100 distortion/noise realisations for each
dose setting.

1. We demonstrate the effect of image denoising with an idealised setup in analogy to
the study conducted in reference [89], where the precision of the determination of
the location and scattering cross section of an atomic column was determined over
a wide range of signal-to-noise-ratios (SNRs). This setting allows the comparison
to the theoretical limits of variance, the Cramér–Rao-Lower Bounds(CRLBs). The
simulated STEM dataset is of a bulk Pt crystal in [001] orientation and contains
STEM images over 75 depth sections with unit cell spacing in z-direction.

2. A more practical example, that includes crystal irregularities, is chosen to deter-
mine the impact of a combination of noise, scan-line-distortions and fast-scan
distortion. In this case, we evaluate the mean absolute error (MAE) for atomic
column positions and the mean absolute percentage error (MPE) for the scattering
cross sections of atomic columns, as well as the variance of these measurements.
This serves to show in particular the independence of the approach on the struc-
tural periodicity for atomic-resolution STEM images.
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3. For a simulated Pt-nanoparticle it is demonstrated that distortion correction yields
not only a more accurate localisation of atomic columns but also enables more
reliable atom counting.

2.3.1 Simulations

All specimens were modelled and simulated with the MULTEM software [61], using the
microscope- and aberration settings, as summarised in table 2.1. The electrostatic
potentials were modelled using the parameterisation method by Lobato and Van Dyck
[113]. Incoherent scattering effects were included employing the frozen phonon model
with 200 phonon configurations. The effect of source size broadening of the electron
probe was accounted for by a subsequent convolution of the simulated images with
a two-dimensional, normalised, symmetric Gaussian function with a width given as a
full-width-half-maximum (FWHM) FWHMSB .

Table 2.1 | Simulation parameters for all multislice simulations used in section "Results - Atomic
structure quantification".

Description Parameter Bulk Dislocation Particle

Acceleration voltage E0 300 kV 300 kV 300 kV
Detector inner angle �di 60 mrad 60 mrad 42 mrad
Detector outer angle �do 190 mrad 190 mrad 220 mrad
Outer aperture angle �ai 21.1 mrad 21.1 mrad 21.0 mrad
3rd order spherical ab. C30 0.04 mm 0.04 mm 0.04 mm
5th order spherical ab. C50 10 mm 10 mm 10 mm
Defocus C10 −8.874 nm −8.874 nm −10.868 nm
Source size broadening FWHMSB 0.7Å 0.7Å 0.75Å
Pixel size �x 0.15Å 0.16Å 0.12Å
# Phonon configurations nFP 200 200 200

Table 2.2 | Distortion modelling parameters for simulations of the edge-dislocation and nano-
particle samples used in section "Results - Atomic structure quantification"

Distortion Parameter Value

Poisson noise (Dose) d[e−/Å
−2
] 5e2,1e3,5e3,1e4,5e4,1e5,5e5

X-Jitter x 0.5
x 0.5

Y-Jitter y 0.5
y 0.25

Dwell time tfs 0.5s
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2.3.2 Parameter estimation & metrics

Model fitting

The StatSTEM [89] software was used to determine atomic column positions and SCS.
Each atomic column is modelled as a two-dimensional, symmetrical gaussian function,
and the entire image is modelled as a superposition of those gaussian peaks. The
expectation model fkl(�) is therefore given for any pixel over a discrete grid (k, l) with
position (xk,yl):

fkl(�) =  +
N

n=1

n exp

−

xk − xn

2
+

yl − yn

2

22n

 (2.19)

where  is a uniform background, the summation runs over N atomic columns in the
model with index n. Each peak has the parameters  as the height,  the width and x and
y as position coordinates. This model is fitted to the observation with a least-squares
optimisation algorithm to determine the model parameters � = (x1 , . . . ,xN ,y1 , . . . ,
yN ,1, . . . ,N ,1, . . . ,N ,)

T for all columns in the image. The SCS are calculated by
integrating their corresponding gaussian functions:

SCSn = 2n
2
n (2.20)

When all the estimated SCS in an image are visualised in a histogram, ideally one
would see distinct peaks where each peak relates to a certain number of atoms. This
enables atom counting in principle. However, in practice peaks are usually smeared
out and overlap, such that they can neither be distinguished easily nor is the correct
number of distinct peaks obvious or known. To conclude on atom counts in a reliable
manner the distribution of SCS is modelled as a gaussian mixture model, where the
probability distribution and the number of significant components need to be estimated
[114]. Alternatively the fitted SCSs may also be compared to simulated library values
and assigned to the closest match.

Metrics

The metrics used for evaluating the errors between the models fitted to raw- and
restored images in this section are given in the following overview, where the variable N
denotes the number of samples considered (i.e. noise realisations) and C the number
of atomic columns per sample. We define the mean absolute error (MAE) for position
measurements as the mean error of the euclidean norm for two-dimensional positions
with x and y coordinates. This metric represents the mean of the magnitude of the
displacement between the sets of atomic columns a and b, which corresponds to the
fitted trial and known ground-truth data in this context.

MAExy =
1
NC

N
n

C
c


(xa,n,c − xb,c)2 + (ya,n,c − yb,c)2 (2.21)
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For SCS measurements, the relative error is a more meaningful description because
atoms in each column should be counted correctly, independent of the actual number of
atoms. Therefore we relate the measurements to the ground truth and define the mean
absolute percentage error (MAPE) for SCS measurements:

MAPESCS =
100
NC

N
n

C
c

1
SCSb,c

SCSa,n,c − SCSb,c

 (2.22)

In accordance with reference [89], errorbars on MAE and MAPE are given by the  = 0.95
confidence intervals, which are computed for any given set of values x of size N and
confidence interval  by equation 2.23.

CIx̄(,x) =


x̄ − t1−

2 ,N−1
sx√
N
, x̄ + t1−

2 ,N−1
sx√
N


, (2.23)

where x̄ and sx denote the sample mean and standard deviation respectively. t1−
2 ,N−1

corresponds to the 1− 
2 quantile of the student’s t-distribution with N −1 degrees of

freedom. Similarly, the confidence intervals on variances s2x are computed using the
1− 

2 and 
2 quantiles of the 2 distribution with N −1 degrees of freedom:

CIs2x (,x) =


(N −1)s2x
2


2 ,N−1

,
(N −1)s2x
2
1− a

2 ,N−1

 (2.24)

Cramér-Rao lower bound

The Cramér-Rao lower bound (CRLB) is a fundamental result in statistics that provides a
lower bound on the variance of an unbiased estimator of a population parameter. Within
the context of this study it is used to compare the obtained precisions of the model
parameters, as outlined in section 2.3.2, against a theoretical lower bound. We assume
a joint probability function p() for statistically independent observations, modelled by
a stochastic variable  following a Poisson distribution:

p() =
K

k=1

L

l=1

(kl)
kl

kl !
exp(−kl) (2.25)

where the expectation values kl are obtained by an appropriate parametric model fkl
(in this case given by equation 2.19). The dependence on  can be used to create a
covariance matrix, known as the Fisher information matrix F:

F = −�

2 lnp(;)

2


(2.26)



Chapter 2. STEM Distortion correction 39

The individual elements of F, with indices (r,s) can be computed according to the joint
probability function given in equation 2.25:

Frs =
K�

k=1

L�

l=1

1
kl

kl

r

kl

s
(2.27)

The diagonal elements of this matrix define lower bounds on the model parameters .
To obtain the lower bound on the variance of the derived parameter SCSn (equation
2.20), the general rule for the CRLB of a function should be used[89, 115]:

2
SCSn

=
SCSn


F−1�

(
SCSn



)T
(2.28)

Since SCSn depends only on the parameters n and n, the vector SCSn
 will have only

2 non-zero elements accordingly:

SCSn

n
=4nn

SCSn

n
=22n

(2.29)

2.3.3 Results & Discussion

The results of the first study are shown in figure 2.7. Examples of the underlying STEM
images are given for the extremes of signal-to-noise-ratios (i.e. smallest thickness and
lowest dose and largest thickness and highest dose) for raw and restored images in
panels (e) and (f) and (g) and (h) respectively. Comparing figure 2.7-(e) and (f) it can be
seen visually, that even at a very low dose, the CNN can recover the underlying structure
faithfully. This effect can be quantified in terms of the precision with which both, the
atomic column positions and SCSs can be measured, and is particularly pronounced
in the low dose range as illustrated in figure 2.7-(a) and (b). As the dose increases
the precision of the structural measurements converge eventually (figure 2.7-(c)-(d)).
An interesting observation is that the theoretical precision limit given by the CRLB,
can be overcome employing image restoration. This makes a strong point for using
image restoration for quantitative studies, like atom counting or strain measurements in
general. The restoration results in the first example arguably benefit from the underlying
perfect crystal symmetry, which is why we test the CNN also for imperfect structures.
The Pt-bulk model depicted in figure 2.8-(a) is in [112] zone axis orientation, six unit cells
thick and contains a unit edge dislocation of Burgers vector b = 1/2[110] in the (111)
glide plane; a dislocation commonly observed in fcc metals [116]. The structure was
created using the Atomsk software, which determines atom positions corresponding
to the displacement fields predicted by the elastic theory of dislocations [117]. The
simulated HAADF images were subjected to varying noise levels from 5e2 e/Å

2
to 5e4

e/Å
2
, and further corrupted by scan-line distortions as outlined in section "S(T)EM noise

model". Example reconstructions for raw images at doses of 5e2 e/Å
2
and 5e4 e/Å

2
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Figure 2.7 | Precision of atomic column position and SCS-measurements over a series of
Pt-bulk samples with a thickness varying from 2-75 unit cells. Error-bars are given as the
95% confidence intervals. (a) Position precision for dose 5e2 e/Å

2
(b) SCS precision for dose

5e2 e/Å
2
(c) Position precision for dose 5e4 e/Å

2
(d) SCS precision for dose 5e4 e/Å

2
(e)

Example of a raw STEM image at thickness=2 atoms and dose=5e2 e/Å
2
(f) example of a

raw STEM image at thickness=75 atoms and dose=5e4 e/Å
2
(g) example of a restored STEM

image at thickness=2 atoms and dose=5e2 e/Å
2
(h) example of a restored STEM image at

thickness=75 atoms and dose=5e4 e/Å
2

(figure 2.8-(b) and (c)) are shown in figure 2.8-(d) and (e) respectively. In the low-dose raw
image individual atomic columns are hardly recognisable. Without the prior knowledge
of the atomic column positions any attempt of model fitting would have to overcome the
challenge of performing reliable peak finding first, which is a factor not considered here.
The reconstruction of this image (figure 2.8-(d)) on the other hand shows very clear
peaks. A Burgers circuit is superimposed on the image to highlight that despite the poor
separation of columns in the raw image, the dislocation with its correct Burgers vector
b is maintained, which means that the structure at large is correctly retrieved, albeit
the individual column positions may not be fully accurate as seen in the mean absolute
position error of the columns in around the centre of the dislocation (columns within
the red circle in figure 2.8-(a)) for low doses shown in figure 2.8-(f). However, the error
drops rapidly with increasing dose and shows a clear improvement against raw images.
The position accuracy is therefore not only a result of denoising but also the result
of the accurate correction of scan-line and fast-scan distortions. The comparatively
high accuracy for the raw image fitting at low doses can be attributed to the fact that
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correct initial column positions are given for the fitting procedure. Since the column
can hardly be located in the noisy images, the fitting algorithm does not actually move
the position away from this initial position much on average. The CNN on the other
hand reconstructs a clearly visible atomic column, but the available information in
the underlying image is insufficient for an accurate positioning. However, the proper
retrieval of the dislocated atomic column at higher doses shows that the CNN is not by
default just picking up on periodicity, but faithfully recovers the atomic structure also in
the presence of non-periodic features in atomic resolution STEM images.

[110]

z=[112]

[111]

(111)

b) c)

d) e)

f)

b b

a)

Figure 2.8 | (a) Schematic of the Pt structure in [112] zone axis with a unit edge dislocation of
Burgers vector b = 1/2[110] in the (111) glide plane. (b) Corrupted raw image with a dose of

500e/Å
2
. (c) Corrupted raw image with a dose of 5e5e/Å

2
. (d) Restored image with a dose of

500e/Å
2
. (e) Restored image with a dose of 5e5e/Å

2
. (f) Quantification results for the atomic

column positions and scattering cross sections of the atomic columns around the centre of the
edge dislocation (marked with a red circle in panel (a)).

Also the SCS measurements improve in accuracy by the restoration, which would trans-
late directly into improvements for atom counting studies. An example for such an
atom counting scenario is presented in figure 2.9. These results were obtained from
a simulated spherical Pt nanoparticle with 11 unit cells in diameter in [100] zone axis
orientation under the same distortion and noise parameters as given in the previous
example. Atom counts were obtained by matching retrieved SCS values against simu-
lated library values. The improvement in column position measurements over all dose
settings again indicates the proper correction of scan-line and fast-scan distortions.
The improvement of SCS measurement accuracies, especially at low-dose conditions
greatly decreases the chance of miscounting atoms in the structure, which in turn may
be very beneficial for e.g. the reconstruction of 3D information from atom-counts [16,
17].
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a) bb)) cc)) d)

Figure 2.9 | Quantification results for a spherical Pt nanoparticle with a diameter of 11 unit
cells in [100] orientation. The values are based on all 333 atomic columns.

2.4 Conclusions

In this chapter the most prominent distortions in STEM are reviewed and mathematical
models to describe them presented. While the description of noise characteristics is
specific to scintillator-PMT type detectors, scan line distortions apply to spectral- and
4D-STEM data just the same. It was shown that a convolutional neural network can
be used to correct these distortions in a single shot [2]. This approach is not only
very practical and creates nicer images, but also aids and improves the entire process
of atomic structure determinations, starting with the mere identification of column
positions(e.g. for the purpose of peak finding in noisy images). Also the quantification of
structures was shown to improve from the restoration. We could show that the errors
and variances in the measured atomic column positions and SCSs are significantly
reduced in three separate simulation studies, which indicates that image restoration
may be a very easy way to improve structure quantifications and due to its ease of use
may be well suited as a general first step in structure determination studies.

2.5 Additional information

CNN implementation

The model and training designs were developed by Ivan Lobato alone. The relevant
implementation details here are provided for context from reference [2].

In single-shot EM image restoration, the goal is to estimate an undistorted image y
from a distorted image x. To achieve this, we train a generator G using a deep neural
network approach, which learns to estimate the corresponding undistorted image y for
a given input x. During the training procedure, a loss function is minimised to evaluate
the quality of the results.

Traditionally, pixel-wise losses such as L1 or L2 have been used to obtain quantitative
results for the image restoration problem [118]. However, these losses often lead to
blurred images that do not look realistic. To address this, we propose a conditional
generative adversarial network (cGAN) that trains both a generator and a discriminator.
The generator G maps the distorted image x to the undistorted image yg = G (x), and
the discriminator is trained to differentiate between real and generated images [119].
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We use pixel-wise losses to ensure quantitative results while restricting the GAN discrim-
inator to model high-frequency details, resulting in sharper and more realistic restored
images.

Our training is supervised, which requires input pairs of distorted and undistorted EM
images. However, in practice, we only have access to distorted EM data. To overcome
this, we can partially address the problem by collecting time-series EM images and
using an average procedure based on rigid and non-rigid registration to generate an
undistorted image. However, the combination of high-speed scans, jitter, and low-dose
leads to highly correlated distortions [120]. Furthermore, long exposure to the electron
beam can result in charging, beam damage, atom hopping and rotation of the specimen
under study, which can further hamper the average procedure. Therefore, the only
solution is to train the GAN using synthetic pairs of undistorted/distorted EM images.

Network architecture

A GAN [71] is a powerful framework that encourages predictions to be realistic and thus
to be close to the undistorted data distribution. A GAN consists of a generator (G) and
discriminator (D) playing an adversarial game. A generator learns to produce output that
looks realistic to the discriminator, while a discriminator learns to distinguish between
real and generated data. Themodels are trained together in an adversarial manner such
that improvements in the discriminator come at the cost of a reduced capability of the
generator and vice versa. The GAN involves the generation of conditional data, which is
fed to the generator and/or the discriminator [121]. The generator and discriminator
architectures proposed here are adapted from those described in [122] and [119],
respectively. The details of these architectures are discussed in the following sections.

Generator architecture

Our generator architecture, called Concatenated Grouped Residual Dense Network
(CGRDN), is shown in Fig. 2.10. This network architecture is an extension of the GRDN
for image denoising [123], which was ranked first for real image denoising in terms of
the PSNR and the structure similarity index measure in the NTIRE2019 Image Denoising
Challenge [124]. The GRDB architecture is shown in Fig. 2.10(a). The building module of
this architecture is the residual dense block (RDB) [122], which is shown in Fig. 2.10(b).
The original GRDN architecture can be conceptually divided into three parts. The first
part consists of a convolutional layer followed by a downsampling layer based on a con-
volutional stride, the middle part is built by cascading GRDBs and the last part consists
of an upsampling layer based on transposed convolution followed by a convolutional
block attention module (CBAM) [125] and a convolutional layer. The GRDN also includes
the global residual connection between the input and the last convolutional layer. In the
original version of the GRDN [123], residual connections are applied in three different
levels (global residual connection, semi-global residual connection in GRDB, and local
residual connection in each RDB). However, in the version submitted for the NTIRE2019
Image Denoising Challenge [124], residual connections for every 2 GRDBs were included.

Although it has been demonstrated that one architecture developed for a certain image
restoration task also performs well for other restoration tasks [119, 122, 126, 127], an
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architecture for a given task will be data dependent. When applied to EM data, we found
out that 2 modifications of GRDN are necessary in order to best handle the nature of
our data, which involves different types and levels of distortions with high correlation
between pixels:

1. The cascading of the GRDN is replaced by feature concatenation, feature fusion,
and a semiglobal residual connection. This allows us to exploit hierarchical fea-
tures in a global way, which is important for highly correlated pixels that extend
over a large area of the image.

2. The CBAM, which is included in [122] is removed from our network. The reason for
this is the use of large image sizes (256x256) for training, which reduces its gain
[123].
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Figure 2.10 | Concatenated Grouped Residual Dense Network (CGRDN) architecture for EM im-
age restoration. (a) Overall architecture, (b) GRDB architecture used in (a), (c) RDB architecture
used in (b).

Discriminator architecture

The purpose of the discriminator network is to judge the quality of the output data result-
ing from the generator network. For our discriminator, we use the 70x70 convolutional
patch discriminator described in [119] with some minor modifications. The zero-padding
layers were removed and batch normalization layers [87] were replaced by instance
normalization layers (IN) [128]. Figure 2.11 shows the structure of the discriminator
network. The result of the network is the non-transformed output C(y) or C(yg) of dimen-
sions 32x32. Some benefits of the discriminator architecture shown in Fig. 2.11 include
that it is fully convolutional and it only penalizes structure at the scale of image patches.
Furthermore, we enhance our discriminator based on the relativistic GAN, which has
been shown to improve the data quality and stability of GANs at no computational cost
[129]. Different from the standard discriminator, which estimates the probability that
input data is real, a relativistic discriminator predicts the probability that real data y
is relatively more realistic than generated data yg = G (x). If we denote our relativistic
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Figure 2.11 | Patch discriminator architecture.

average patch discriminator as DRap(x), then the output of the discriminator can be
written as:

DRap

(
y,yg

)
= 

(
C(y)− � [yg]C(yg)

)
(2.30)

DRap

(
yg ,y

)
= 

(
C(yg)− � [y]C(y)

)
(2.31)

where  is the sigmoid function and � [x1, ...xn]. is an operator representing the expecta-
tion value computed on the variables x1, ...xn. In the next section, these functions will be
used in the definition of the loss functions.

Loss function

The loss function is the effective driver of the network’s learning. Its goal is to map a
set of parameter values of the network onto a scalar value, which allows candidate
solutions to be ranked and compared. In our case, the discriminator and adversarial
losses are based on the relativistic average GAN loss defined in [129]. We design our
generator loss function as a sum of different contributions in such amanner that it keeps
the quantitative information of the image at the pixel level and produces perceptually
correct and realistic images. The different contributions of these loss functions are
described in the following sections.

L1 loss

Pixel-wise losses are advantageous to keep quantitative information of the ground truth
image. In this work, we used the L1 loss, which as compared to the L2 loss yields less
blurred results [118]. The L1 loss can be written as:

L1 = � y,yg

{
wy∥y − yg∥

}
, (2.32)

wy = 1/max
(
min,Stdy {y}

)
(2.33)

where wy is a weighting factor that gives equal importance to each example regardless
of its contrast, min is a small value to limit the maximum scaling factor, and Stdx1,...xn {.}
is an operator that represents the standard deviation calculated on the variables x1, ...xn.

L2 loss

Due to the design of our architecture, which is learning the residual difference between
the distorted and undistorted image and based on the fact that distorted images can
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have few outliers in the distribution of pixel intensities (i.e. X-rays hitting the EM detector,
saturation of the detector, low dose and dead-pixels), the output of the generator will
show a strong correlation at those pixel positions. For this reason, we also used the L2
loss which strongly penalized the outliers:

L2 = � y,yg

{
wy∥y − yg∥2

}
(2.34)

Multi-local whitening transform loss

Local contrast normalisation (LCN) is a method that normalises the image on local
patches on a pixel basis [130]. A special case of this method is the whitening transform
which is obtained by subtracting the mean and dividing by the standard deviation of a
neighborhood from a particular pixel:

ySi j =
(
yi j − � Ŝ

{
yi ,j

})
/max

(
min,StdŜ

{
yi ,j

})
, (2.35)

where Ŝ is a local neighbourhood around the pixel i , j of window size S. The whitening
transform makes the image patches less correlated with each other and can highlight
image features that were hidden in the raw image due to its low local contrast. This
effect can be seen in Fig. 2.12a), which shows a simulated ADF-STEM image of a random
nanoparticle on a carbon support. The edge of the nanoparticle shows low contrast due
to its reduced thickness, resulting in lower intensity values. Based on this observation,
we introduce a multi-local whitening transform (MLWT) loss which pays more attention
to fine details independent of the intensity value. Specifically, the generated and the
ground truth image are local whitening transforms corresponding to different window
sizes of 2x2, 4x4, 8x8, and 16x16 pixels. Then, we calculate the average L1 loss for
these 4 images:

Lmlwt =
1
4

�

S=2,4,8,16

� yS ,ySg

{
∥yS − ySg ∥

}
. (2.36)

Using different windows sizes for the calculation of the whitening transform, we ensure
that the relevant features present in the image are highlighted independently of its pixel
size. Figs. 2.12(b)-(e) show an enhancement of the edge of the nanoparticle as well
as the carbon support after applying the whitening transform to Fig. 2.12(a) by using
different window sizes.

b) c)a) d) e)

Figure 2.12 | a) Undistorted ADF STEM image of a nanoparticle on a carbon support. Images
are generated by applying the whitening transform to (a) by using different window sizes of (b)
2, (c) 4, (d) 8 and (e) 16.
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Fourier space loss

In electron microscopy, the Fourier space contains crucial information about the sample
and any distortions that may be difficult to discern in real space. To address this issue,
we introduce the L loss in the 2D Fourier transform of the difference between the
generated data yg and the ground truth image y. The loss is defined as follows:

Lf s− = � y,yg

{
∥F (y − yg)∥

}
, (2.37)

Here, F represents the 2D Fourier transform, and  is a parameter in the range (0.0,1.0].
In our study, we use  = 0.125.

Constraint losses

Some important parameters for EM quantification are the total intensity and the stan-
dard deviation of the images. The reason for this is that they carry information about
physical quantities of the sample or microscope, such as the number of atoms, defocus
and spatial and temporal incoherence [131, 132]. Therefore, we encourage that the
restored images have to minimize the above quantities, resulting in the following two
loss functions:

Lmean = ∥� y {y} − � yg

{
yg
}
∥, (2.38)

Lstd = ∥Stdy {y} −Stdyg
{
yg
}
∥. (2.39)

Adversarial loss

The job of the relativistic adversarial loss is to fool the discriminator which can be
expressed as:

LAdv = −� x,y

{
log

(
1−DRap(y,yg)

)}
− � yg

{
log

(
DRap(yg ,y)

)}
, (2.40)

with DRap(y,yg) and DRap(yg ,y) defined in equations 2.30 and 2.31, respectively. This
definition is based on the binary cross entropy between the ground truth and the gener-
ated images. Different from the conventional adversarial loss, in which y is not used,
our generator benefits from y and yg in the adversarial training.

Generator loss

Our total generator loss function can be written as:

LG =Lpixel−wise +AdvLAdv, (2.41)

Lpixel−wise =1L1 +2L2 +mlwtLmlwt +f s−Lf s− +meanLmean +stdLstd , (2.42)

where Lpixel−wise is our pixel-wise loss function, 1, 2, mlwt, f s−, mean, std and
Adv are the weighting parameters to balance the different loss terms.



48 Chapter 2. STEM Distortion correction

Discriminator loss

Symmetrically to the relativistic adversarial loss, the relativistic discriminator is trying
to predict the probability that real data is relatively more realistic than generated data,
and it can be expressed as:

LD = −� x,y

{
log

(
DcRap(x,y,yg)

)}
− � x,yg

{
log

(
1−DcRap(x,yg ,y)

)}
. (2.43)
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3.1 Introduction

Scanning transmission electron microscopy (STEM) is one of the most powerful tools
for inspecting materials with sub-nanometre or even sub-angstrom level resolution. By
scanning with a sharp electron probe, information of the sample from each scan position
is collected and images that contain features at the atomic level are generated. There
are several methods to form images using the data collected from such experiments.
Traditionally, detectors that capture electrons from certain ranges of scattering angles
are used in the microscope. They generate a value based on the sum of received
electrons at each probe position and result in 2D images. Images formed by detectors
that collect signals at high scattering angles are even capable of reflecting the scattering
power experienced by the electron probe at the corresponding probe position [22].

A pixelated detector does not generate a single value, but instead records a convergent
beam electron diffraction pattern (CBED) for each probe position by using a large number
of pixels, where each pixel can be seen as an individual detector. This results in a 4D
dataset (2D CBEDs on a 2D scan grid). More importantly, these advanced direct electron
detectors [41, 133, 134] record CBEDs at a much higher rate than traditional charge-
coupled device detectors, and allow collecting a regular-sized 4D dataset before serious
sample drifting happens.

To process 4D datasets, one is the filter function and the symbol can define virtual de-
tectors by selecting specific groups of pixels on the detector plane for summation, which
result in similar 2D images as traditional detectors would produce, or seek solutions
from more advanced and complex methods. Most of these methods take into account
the distribution of the electrons on the detector plane, as well as the relationship be-
tween CBEDs and their corresponding probe positions, allowing extra information to
be extracted from the dataset. This enables reconstructions with resolution beyond
the limitation imposed by the optical system [135] and can reduce the dose needed
for microscopists to obtain the necessary information to analyse their samples. Within
the category of 4D dataset processing methods, iterative optimization approaches
[136–140] reconstruct subsets of the full dataset one region at a time. The process
repeats and reprocesses each subset until the algorithm converges to an estimated
version of electric potential distribution. Other methods that handle 4D datasets with-
out an iterative process, for example single sideband ptychography (SSB) [141, 142],
or integrated centre of mass (iCOM) or integrated differential phase contrast (iDPC)
[142–145] reconstruction methods, have also proven to be much more dose efficient
than traditional imaging methods. Compared to iterative processes, they are less com-
putationally demanding and guarantee unique solutions since they do not depend on
optimization algorithms. Also, some prior knowledge, such as the prediction of a phase
distribution that may arise from astigmatism and defocus, can be provided to this post
process for acquiring more detailed information [146]. However, the ability to achieve
fast reconstructions, regardless whether they are iterative or not, usually relies on
accelerators (e.g. GPU) as well as large amounts of computer memory in order to fit in
the whole dataset, or some reduced version of it. With an exception of iCOM, most of
these post processing methods are thus limited by the hardware to a certain number of
probe positions.
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Even though the reconstruction methods may be further optimized to reduce the pro-
cessing time, users still need to wait for the recording of the dataset to be completed
before a resulting image can be generated. This waiting time varies, but for datasets
composed of a large number of scan points or in situations where the detector has a
slow frame rate, this delay would hinder the process of searching for features of interest,
as well as adjusting the optical system based on the observations. Some rather simple
approaches such as traditional imaging methods, centre of mass (COM) shift, or some of
its derivatives such as COM shift divergence [147] can effectively reduce or eliminate this
delay. However, these methods also require a higher number of electrons to generate
images with adequate quality, compared to more complex methods such as SSB, iCOM,
and iDPC. As proposed by A. Strauch et al. [148], a dose efficient reconstruction with live
image update can be done by first allocating memory for the dataset, and then gradually
filling it with collected and processed data during the scanning process. An update of
the reconstructed image can be generated anytime by SSB reconstruction, even before
the dataset is complete. However, it also indicates that the number of probe positions in
a dataset is limited by the GPU memory, as it needs to store data for later processing. At
the current state of technology, this approach is limited in terms of processing rate to
about 1000 probe positions per second in the implementation of Strauch et al. [148],
while the collection frame rate of direct electron detectors is approaching 100 kHz [146]
and even the MHz range for event driven cameras at suitable conditions [149].

To overcome these hardware and speed limitations, we hereby propose a new live
reconstruction method based on iCOM, which does not rely on storing the entire 4D
dataset in memory, does not require accelerators of any kind and thus greatly reduces
the computational requirements, as well as allowing reconstructions of images of a
larger scale. In this chapter, the physical formulation of real-time iCOM (riCOM) is first
derived, and details of the software implementation of the reconstruction algorithm
are discussed. This software implements a direct interface to the electron camera,
and several real-time reconstructed results are recorded, from which one can see that
the tuning of the imaging conditions are immediately reflected in live-updated images.
RiCOM reconstruction from existing experimental datasets are also shown. These
datasets are recorded frame-by-frame or per-event [149, 150]. Both formats can be
processed with the riCOM method with little alteration of the algorithm. Reconstruction
results with different range of integration and integrated filters are also displayed.
They are compared with each other and with other reconstruction methods to put the
proposed method into context.

3.2 Methods

3.2.1 Physical Formulation

In 4D STEM, the distribution of the electron intensity at each probe position is recorded.
The centre of mass of this distribution can then be calculated, resulting in a vector image
I⃗ COM(r⃗p) or two scalar images describing its x component ICOMx(r⃗p) and y component
ICOMy(r⃗p). For the x-component,
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ICOMx(r⃗p) =
∫ ∫ ∞

−∞
kx I(k⃗, r⃗p)d

2k⃗, (3.1)

where r⃗p is the probe position, k⃗ indicates a point on the detector plane with components
kx and ky , and I(k⃗, r⃗p) is the intensity at k⃗ while the probe is situated at r⃗p. From previous
work [144] it follows that (derivation in supplementary)

I⃗ COM(r⃗p) =
1
2
|in(r⃗, r⃗p)|2 ⋆ ∇(r⃗)

=
1
2
∇(|in(r⃗, r⃗p)|2 ⋆ (r⃗))

= ∇O(r⃗p).

(3.2)

Figure 3.1 | (a) The kernel takes multiple data points from the COM shift map to calculate the
value for one pixel in the riCOM image. (b) The riCOM image is being updated based on the
contributions of the COM shift at one probe position. The yellow triangles indicate the scanning
probe position. (c) X and Y components of a kernel of size 21×21.

In equation 3.2, the COM shift signal is understood as the gradient (∇) of a function
O(r⃗p), which is the local projected potential (r⃗) cross-correlated (⋆) with the intensity
distribution of the incoming electron beam at a given probe position |in(r⃗, r⃗p)|2. Note
that this result is achieved under the phase object approximation, which assumes that
the electron probe remains unmodified while passing through the object. With this
approximation the 3D potential established by the material is simplified to a projected
potential in a 2D plane. It clearly fails for thicker objects, but it allows a simple deriva-
tion and easy understanding of how experimental conditions can affect reconstructed
images.

To solve for a scalar function describing the object, path integration is performed on
the COM shift signal to remove the gradient from the right-hand side of equation 3.2.
For an ideal case the path of the integration can be taken arbitrarily, since the integral
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is only dependent on the end point of the path integration. However, in realistic cases,
the measurement of COM shift contains noise, and thus it would give better estimation
of the noise-free result by taking the average of all possible path integrals. By the
assumption that equipotential can be found at infinity, this can be achieved by averaging
path integrals at all possible azimuthal angles, from infinity towards the probe position.
In order for this concept to work with a 2D grid of probe positions, the averaged integral
can be expressed in a discretized form:

O(r⃗p)

=
∫ r⃗p

∞
I⃗ COM(r⃗) · dr⃗

=
1
2

∫ 2

0

∫ rp

∞
I⃗ COM(r⃗) · n̂drd

=
a
2

+∞�
x=−∞

+∞�
y=−∞

r⃗p − r⃗xy
|⃗rp − r⃗xy |2

· I⃗ COM(r⃗xy).

(3.3)

In the continuous representation of the radial averaged path integral (third line of
equation 3.3), n̂ is a unit vector pointing towards r⃗p. In the discrete representation
(fourth line of equation 3.3), r⃗xy describes a vector pointing at each probe position that
composes the 2D array, and a describes a factor proportional to the square of the step
size taken to discretize the integration.

The discrete representation in equation 3.3 states that the summation has to go over
an infinite amount of points, or at least all probe positions in the dataset (as for iCOM
reconstructions) in order to acquire or to approximate the desired object function.
This would require the full dataset to be collected first, and rendering a live update
of the partially reconstructed dataset is therefore impossible. However, it is found
that by limiting the spatial range of the summation, the algorithm results in similar
reconstructions as iCOM, but with more emphasis on local variations of the object
function. This behaviour can be understood qualitatively. The term (r⃗p − r⃗xy)/ |r⃗p − r⃗xy |2
describes an odd function since the vector distribution on both sides of the probe position
r⃗p is the same in magnitude but opposite in direction as the sign changes for r⃗p − r⃗xy . For
a global homogeneous COM shift, or for cases where the variation is negligible within
the range of the kernel size, it results in an even function for I⃗ COM(r⃗xy), and thus the sum
of the product of the two will always be zero. But for short range variations of the object
function, which results in local fluctuations of the I⃗ COM distribution, it would generate
non-zero contribution to the summation result. By replacing the infinite sum in equation
3.3 with a finite sum considering a kernel of n × n pixels, it results in:
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I riCOM(r⃗p)

=
a
2

rp,x+
n−1
2�

x=rp,x− n−1
2

rp,y+
n−1
2�

y=rp,y− n−1
2

r⃗p − r⃗xy
|⃗rp − r⃗xy |2

· I⃗ COM(r⃗xy)

= kn(r⃗p) ⋆ I⃗ COM(r⃗p)

kn(r⃗p) =
a
2

rp,x+
n−1
2�

x=rp,x− n−1
2

rp,y+
n−1
2�

y=rp,y− n−1
2

r⃗p − r⃗xy
|⃗rp − r⃗xy |2

(3.4)

Equation 3.4 shows the summation with a range n centred at probe position r⃗p = (rp,x , rp,y).
With this constraint on the range, the integrated centre of mass at one point can be
found by only processing COM data from its limited surrounding (Fig. 3.1-a), allowing
data processing to begin and results to be generated during the scanning session. This
reconstruction method is thus given the name "real-time iCOM" or "riCOM", as indicated
in the same equation by I riCOM(r⃗p). This process is equivalent to a cross correlation
between an array kn(r⃗p) of size n × n, that stores vectors (r⃗p − r⃗xy)/ |r⃗p − r⃗xy |2, and the

COM shift map I⃗ COM(r⃗xy). This array will be referred to as the "kernel" throughout this
manuscript, and images generated by processing COM shift maps with such kernels will
be denoted as "riCOM results" or "riCOM images".

Since the kernel processes a group of data points and outputs a value corresponding
to the probe position at the centre of the kernel, the collection of data has to lead the
reconstruction by (n −1)/2 scan lines to fill up the kernel (when scanning in a traditional
line by line fashion). This delay between the data collection progress and reconstruction
result can be troublesome for operations that highly rely on real time feedback from the
scanning process. Since the summation in equation 3.4 describes a linearly independent
process, the contribution from multiple probe positions to a common pixel in the riCOM
array can be separately calculated. Furthermore, by collecting the contribution from
the COM shift at a specific probe position to its vicinity, an update to the riCOM image
can be generated in the form of an array of the same size as the kernel. Since this
reconstruction scheme depends on one CBED at a time, it leads to a live update of the
riCOM result without any delay (Fig. 3.1-b). Although this does not reduce the time
differences between the latest scanning point and the fully updated riCOM pixel, the
partially reconstructed fraction of the riCOM image can already show atomic features1,
and therefore valuable information at the newly scanned probe position appears with
minimal delay. This way the user can also get a quick feedback of their operation.
Another advantage is that once the contribution from one probe position is calculated
and the corresponding update to the riCOM array is made, the CBED pattern can be
discarded, freeing up memory. This effectively removes any memory imposed restriction
on scan size if the user is only interested in the resulting riCOM image.

1See supplementary data at [151] for example videos
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3.2.2 Kernel Design

As mentioned in the previous section, summation carried out by a smaller kernel em-
phasizes local object function variations. In other words, it gives more weights to
components of higher spatial frequency. To show the relationship between this effect
and the kernel size, we start with the Fourier transform of the function O(r⃗p) for the case
of a perfect COM shift measurement (second line of equation 3.3).

F

O(r⃗p)


= F


 r⃗p

−∞
I⃗ COM(r⃗) · dr⃗



= F
⃗
ICOM(r⃗p)


· 1

i k⃗p
.

(3.5)

Here the symbol F indicates Fourier transform and k⃗p is a vector in the Fourier do-
main. As seen in equation 3.5, each of the Fourier components of the COM shift map
is transferred to the final image with a weight 1/ i k⃗p after the path integration. This
transfer function decays fast with the frequency, and thus low frequency components
are attenuated much less than high frequency ones. By integrating over a finite range,
an analytical expression for the riCOM result can be obtained as follows:

F

I riCOM(r⃗p)



= F


 r⃗p

r⃗p−�r⃗
I⃗ COM(r⃗) · dr⃗ −

 r⃗p+�r⃗

r⃗p

I⃗ COM(r⃗) · dr⃗

 /2

= F
⃗
ICOM(r⃗p)


· 1

i k⃗p
× [1− cos(�r⃗ · k⃗p)]

= F

O(r⃗p)


× [1− cos(�r⃗ · k⃗p)].

(3.6)

In equation 3.6, the riCOM result is approximated by the contribution from both sides of
the probe position r⃗p in a single line, within the range of 2�r⃗. The result shows that by
limiting the integration range, it reproduces the function O(r⃗p) with an extra weighting
function 1− cos(�r⃗ · k⃗p). This function is close to zero when �r⃗ · k⃗p is small, and thus
strongly suppresses the low frequency signal in the retrieved object function. Also, it
peaks at k⃗p =


�r⃗ , which implies that by choosing smaller �r⃗, or shorter integration range,

one can put more weight to the high frequency components. By using kernels with sizes
smaller than the real space dimension of the dataset, this effect of limiting integration
range can be achieved. Although the actual frequency spectrum of a 2D kernel deviates,
the weight of a kernel of size n at each frequency k can be well approximated with the
formula derived from line-integration:
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N
2k

× [1− cos(n −1
2
× 2k

N
)]. (3.7)

Here N is the number of pixels of the image in one direction, and the extra factor 2/N
scales with the pixel size in the Fourier transformed result.

This effect is not equal to but can be compared to a high-pass filter as it emphasizes
high frequency details in the reconstructed image. However, other filtering effects, such
as low-pass or band-pass filtering, cannot be created simply by altering the kernel size.
A filter can be seen as a mask that reduces or eliminates a certain range of frequency
signals of an image. This is done by a piece-wise multiplication between the filter and
the image in the frequency domain, which is equivalent to a convolution between their
real space counterparts. For riCOM images, which can be seen as a cross correlation
between a COM shift map and a kernel, the application of such a filter can be included
to the design of the kernel:

I riCOM(r⃗p)⊛ f (r⃗p) = [⃗I COM(r⃗p) ⋆ kn(r⃗p)]⊛ f (r⃗p)

= I⃗ COM(r⃗p) ⋆ [kn(r⃗p)⊛ f (r⃗p)]
(3.8)

With

f (r⃗p) = F −1

F (k⃗p)



F (k⃗p) =


1, kmax ≥ |kp| ≥ kmin

0, otherwise

(3.9)

In equation 3.8, f (r⃗p) is the filter function and the symbol ⊛ indicates convolution. Equa-
tion 3.9 writes one of the possible ways to design such a filter, with a hard cutoff at two
frequency limits kmax and kmin, i.e. a band-pass filter. The real space counterpart of the
filter can be found by performing an inverse Fourier transform F −1 to the filter function
in the Fourier domain. This real space filtering effect can be incorporated to the kernel
due to the associative property of cross correlation and convolution. It is worth noting
that the last part of equation 3.8 only holds for centrally symmetric filters that treat
frequency components at different azimuthal angles equally, which is indeed the case
for the filter shown in equation 3.9. We also want to point out that to create a sharp
cutoff at the frequency domain, one would need a filter matching the size of the COM
shift array. But in order to keep the size of the kernel, the outcome of the convolution is
reduced in size. In other words, the outcome of k(r⃗p)⊛ f (r⃗p) is kept at the same size as
k(r⃗p). This would make the cutoff appear in the fashion of a slope and also distorts the
rest of the frequency spectrum.

In Fig. 3.2 the frequency components of different kernel designs are illustrated. From
bottom to top, the curves correspond to the template kernel with size of 101×101, a
smaller kernel with size of 41×41, template kernel with high-pass filter (kmin = 12.19

2 px−1),
low-pass filter (kmax = 12.19 px−1), and band-pass filter (kmin,kmax same as before). For
the bottom two curves, the result of the corresponding line integration approximation
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Figure 3.2 | Frequency components of a set of kernels acting on a COM shift map of size
500 × 500. The presented examples include, from bottom to top, the template kernel with
size of 101× 101, a smaller kernel with size of 41× 41, template kernel with high-pass filter,
low-pass filter, and band-pass filter. The dashed line shows the predicted transfer function with
line-integration approximation. The two vertical lines indicate the cutoff frequency of the filter
or the inverse of the kernel size, and the circles at the intersection of the vertical lines and
integral indicate whether a cutoff frequency is applied to the specific design.

(dashed lines), with �⃗r⃗ chosen to be half of the kernel size, is also drawn to show their
similarity in oscillation frequency and magnitude.

By comparing the blue and grey curves in Fig. 3.2, it is clear that Kernel 41 peaks at
a higher frequency than Kernel 101, as predicted by the analytical formula, and that
the cutoff of the lower frequency due to a smaller kernel happens approximately at
the inverse of the kernel size, indicated by the grey circle. This value is then used for
kmin of the high-pass filter incorporated to Kernel 101-HP (orange curve), which indeed
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shows a similar overall frequency spectrum as the one of Kernel 41. Notice that the size
reduction after convolution between kernel and the decorating filter causes a smooth
decrease of frequency components below kmin, and spectrum differences beyond kmin
compared to Kernel 101. Similarly, a kernel with low-pass filter Kernel 101-LP (green
curve) and a kernel incorporating a band-pass filter Kernel 101-BP (pink curve) is created.
Both of them are showing a suppression of the higher frequency ranges. Kernel 101-BP
also shows a shift of the spectrum peak to a higher frequency because of its high-pass
characteristic.

Despite the fact that it is not always possible to recreate the exact characteristics of
common post processing filters, the incorporation of filters into the kernel, as well as
the choice of kernel sizes allows for a great flexibility for frequency tuning and yields
consistent and predictable solutions. Combining the kernel and the filter in real space
also enables these image processing functions to be applied before the complete riCOM
image is rendered, and thus compatible with the live update algorithm.

3.2.3 Data Processing

Due to the simplicity of the algorithm, the processing can be carried out completely by
CPU with very limited usage of memory. However, in order to reach real time reconstruc-
tion that is limited only by the frame rate of the camera, an efficient implementation of
the algorithm is crucial. The benchmark shown in figure 3.3 shows that an optimized
implementation using C++ can easily achieve the maximum speed of ≈14 kHz of a
MerlinEM camera. Additionally, the pre-processing of binary live data benefits from the
low-level features of C++ (e.g. adapting endianness and efficient conversion of binary
into numerical arrays). An implementation of the algorithm tailored to event-driven
cameras and their corresponding sparse datasets is even significantly faster. Depend-
ing on the dose, >100 kHz have been obtained. The live visualizations at such rates
also benefit from using C++ through the possibility of directly accessing and modifying
OpenGL textures across threads.

0 5 10 15 20 25 30 35

C++
Numba
Python

35.1
9.4

5.8

Frame rate [kHz]

Figure 3.3 | Speed (Frame Rate in kHz) vs. Implementation benchmark for the computation of
riCOM signal with Kernel size of 61x61, data type uint16 and camera size of 256x256 pixels,
run on a single thread of an Intel i5-10210U @ 4.2GHz processor. Comparison of a simple
implementation in Python, a just-in-time compiled optimisation of the same code, using Numba
and a version written completely in C++ (compiled with GNU gcc-11).

The program was developed as a cross-platform application that can be run through a
command-line-interface (CLI) or interactively through a graphical user interface (GUI)
as shown in figure 3.4. The core functionality of the algorithm is implemented in a
single C++ class object. Visual interfaces interact with an instance of that class across
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threads through pointers, which allows live updates to be displayed immediately while
maintaining a responsive interface without interrupting the reconstruction process.
Furthermore, kernel settings for riCOM reconstruction and virtual STEM (vSTEM) settings,
such as rotation angle due to Lorentz force, kernel size, filter, and the virtual detector
size, can be changed during the process without interruption, which is helpful to find
suitable settings interactively while spending the lowest amount of dose on the precious
sample area.

The riCOM base class is independent of specific camera models and data types, while
additional dedicated classes provide live- and file interfaces for given camera types/file
formats. This allows for easy extendibility of the program by simply including further
interface-classes. The current implementation includes a live- and data interface for
the MerlinEM as an example for frame-based data and a filetype interface for the event-
based Timepix3 camera and is available on GitHub under a GPL license.

Figure 3.4 | Layout of the GUI. The Menu column on the left allows the user to change various
settings, such as scan size, riCOM Kernel and filter settings, virtual STEM settings and interfaces
for live mode and file dialogues. During a running reconstruction, a CBED is plotted at the
bottom of this menu to visually assist interactive tuning of pattern centre and integration area
for vSTEM. All other windows are floating panels and can be moved and resized.

3.3 Experimental Details

The results presented in this chapter are produced from data collected in two exper-
iments. In the first experiment, a SrTiO3 focused ion beam (FIB) lamella is examined
with a probe corrected Thermo Fisher Titan3 (X-Ant-TEM) operated in STEM mode. The
resulting CBEDs are collected with a MerlinEM direct electron detector [42] and form 4D
datasets for further analysis, as well as movies demonstrating the real-time processing
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power of the method. The experiment is performed with a beam energy of 300 keV and a
convergence angle of 20 mrad.

The second STEM experiment is performed on a silicalite-1 zeolite sample with a Thermo
Fisher Themis Z (Advan-TEM). The data is collected with a custom made Timepix3
detector [44] based on an Advapix TP3 camera unit, and is recorded in event-based
format. The beam energy and convergence angle used in the second experiment are
200 keV and 12 mrad, respectively.

All the datasets and movies recorded in both experiments, including necessary parame-
ters for the reconstruction, can be found in the online repository [151].

3.4 Results and Discussion

3.4.1 Real Time Reconstruction

To demonstrate riCOM imaging, the software for real time reconstruction is run directly
on incoming data during live experiments. The computer receives frames of CBEDs
from the detector, and the software reads the data through a TCP socket. Throughout
the process, the only extra prior knowledge to be provided to the algorithm is the COM
of an undiffracted pattern in vacuum, so that the relative shift of COM at each probe
position can be computed. Alternatively, it can also be approximated by averaging the
COM from multiple probe positions, thereby omitting any calibration steps, making this
method equivalent to more traditional imaging methods regarding ease of use. This step
also inherently corrects for systematic shifts of the CBED away from the centre of the
detector. While scanning, some of the most basic parameters of the microscopic imaging
system are tuned, for example changing the defocus, astigmatism, and magnification,
as shown in figure 3.5a-c.

Defocus broadens the intensity distribution of the electron probe, and astigmatism
has the effect of creating two focal points, making the beam to be first focused in
one direction and then the other when travelling down along the optical axis. This
would reduce the electron beam sharpness and make the beam elliptical if out of focus,
resulting in stretched atomic features in the images, as can be seen in figure 3.5-b
in the region scanned before achieving right focus. According to equation 3.3, the
intensity in the iCOM image equals the cross correlation between the projected electric
potential of the material and the probe function, and therefore the reduction in contrast
as well as distortions of the atomic features in the riCOM reconstruction is directly
related to these beam aberrations. Hence, microscopists can tune optical conditions
intuitively to maximize contrast and produce circular atoms with the live updated results.
By changing the magnification during the scanning process the step size is changed
accordingly. The live process can still continue, although the intensity needs to be
adjusted since a is changed as the scan step size is changed, as shown in equation 3.4.
Besides, the optimal kernel size changes with the magnification, as the spatial frequency
of the desired features will be shifted when the step size is changed. However, since the
kernel size can be adjusted during the process, a suitable choice can always be found by
tuning the kernel size according to the quality of the live updated reconstruction image.
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Figure 3.5 | Real-time reconstruction of SrTiO3 while tuning the magnification, defocus, and
stigmator. (a) The magnification is increased during the scanning. In the top most part the
contrast reveals a layered structure of the FIB lamella, and with increasing magnification the
atoms can be captured in the image. (b) Tuning focus is reflected by the change of the shape
of atomic columns. (c) Tuning the stigmator affects the electron probe sharpness and also
the contrast between atom and vacuum. (d) Simultaneous imaging using riCOM, ADF, and
iCOM. RiCOM successfully images the crystalline structure in the centre of the image and the O
columns, which is missing in the ADF image. The small kernel size used in riCOM reconstruction
reduces long range intensity distribution shown in iCOM.

In figure 3.5-d, a riCOM image rendered with a kernel size of 21 is compared to the
ADF image and the iCOM result. Apparent differences can be found in the centre of the
images, which appears to have a hole according to ADF result but shows some crystalline
structure in the riCOM and iCOM images, indicating possible extension of the crystalline
material with lower thickness. ADF gives more significant contrast for differences in
scattering ability, making it easier to distinguish Sr columns from Ti + O columns, but
also reduces intensity of weak scatterers, such as thin regions and the pure O columns,
to a level that is completely invisible, while riCOM and iCOM successfully image all three
types of columns with a trade-off of less distinction between the columns. On the other
hand, atomic structures are blurred by the long range intensity variation in the iCOM
result. The origin of this variation could be local strain, misorientation, contamination,
charge accumulation, etc., but it is very difficult to pinpoint the actual cause. RiCOM
with an appropriate kernel size suppresses these low frequency signals and shows a
clear image of atomic columns.

The examples shown in figure 3.5 show how riCOM images can be used to fine tune
optical systems in a similar manner as using ADF. Moreover, the method is superior
to ADF imaging in terms of required electron dose and provides contrast also for the
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weak scatterers in the object, including thinner regions or atomic columns composed of
lighter atoms. The high-pass characteristic of the suitable kernel size has shown to be
helpful in highlighting features of higher spatial frequency and reduce low frequency
components, but it also means that the contrast interpretation has to be evaluated
carefully, especially for quantitative analysis, as they can be affected by multiple factors
unknowingly.

3.4.2 Comparison of Reconstruction Methods

In this section, results from the riCOM reconstruction are compared with other recon-
struction methods that have the potential to provide real time imaging. For 4D datasets,
ADF images can be computed using a virtual detector which integrates all electrons in
a specified region of the detector. The summing process is independent of the probe
position, and does not require information beyond the scope of a single diffraction
pattern, thus making virtual ADF reconstruction possible for real-time visualization of
the dataset. To showcase the performance of riCOM reconstruction, it is compared to
both ADF as a traditional imaging mode, and SSB, which is generally considered as a
highly dose efficient and quantitative ptychography method. For riCOM reconstruction,
three results generated using different kernels are put into comparison, including two
kernel sizes and one kernel incorporating a band pass filter.

The dataset used for the comparison is a 4D dataset recorded from a silicalite-1 zeolite
specimen. The dataset is recorded in a sparse array, in which the location where
electrons hit the detector and the arrival time is recorded. This type of data format
has several advantages over more commonly seen frame-by-frame types at suitable
experiment conditions. For instance, in the case of low dose imaging, sparse arrays
result in datasets many times smaller than full-frame arrays, since only the pixels of the
detector that successfully capture an electron generate data, while other inactive pixels
remain silent. For riCOM reconstruction, this format also shows its strength in terms of
processing speed. Yet another important feature of this format is that the arrival time
can be used to adjust the dose in the post reconstruction stage. Since the arrival time
of each electron is recorded, the amount of dose put into the reconstruction algorithm
can be post-adjusted by reducing the acceptance time from each probe position. For
example, with a dataset recorded with a beam dwell time of 6000 ns, the dose for the
post reconstruction can be reduced to 1/3 of the original dose if the acceptance time is
set to be 2000 ns since any electrons that arrive to the detector after the acceptance
time for each probe position will be discarded.

Accordingly, five data treatment algorithms/setups are used for the experimental data
at 3 different dose levels. The results are presented in figure 3.6. Comparing the images
generated by a virtual ADF detector with other reconstruction methods, it is obvious
that even with the maximum dose, it is not enough to generate an interpretable ADF
image. The vertical lines in the ADF image is a result of the camera being inactive for
unknown reason, which is discussed in previous work [149]. This however makes almost
unnoticeable difference to other reconstruction methods, since the value of each pixel
in the reconstructed image not only depends on the corresponding probe position but
also on its surroundings. For SSB reconstruction, it includes a process to integrate
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Figure 3.6 | Reconstructed images from an experimental zeolite dataset with different doses
(Full dose: 1.27e+4 e/Å

2
). ADF images are generated by integrating the intensities in the

detector area beyond the convergence angle at each probe position. For SSB reconstruction, a
frame-based dataset is first generated from the event array, with the detector space binned
down to 32×32 (8 times smaller). For riCOM reconstruction, three different kernels are used:
21-by-21, 61-by-61, and 61-by-61 with a band-pass filter. The effect is however much less
significant in other reconstruction method. The insets show magnified versions of the centre
of their respective images, and the red arrows point out intensity fluctuations within the holes.
The last row shows the Fourier transform of each reconstructed result. The radial averaged
frequency spectra are represented with yellow curves, the frequency components of each kernel
in red, and the line-integration approximation in black dashed curve.

specific regions in the CBEDs according to their spatial frequency by performing Fourier
transformation with respect to probe position. Certain spatial frequencies are weighted
more strongly from larger integration area, and thus creating a band-pass filtering
effect [50, 142]. The riCOM images of smaller kernel size (riCOM-21) are shown to be
similar to the SSB results, also manifested by the similarity of their frequency spectra,
as low frequency signal is suppressed. For riCOM-61 result, by using a larger kernel
size, more components at lower spatial frequencies can be found in the image. These
components greatly increase the contrast for the long range structure in the material,
such as the pores and framework of the zeolite crystal, but reduces high frequency
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components, making the short range structures such as atomic columns less clear. This
is especially highlighted in the result of 1/10 dose. However, by integrating a band pass
filter to the big kernel (riCOM-61-BP), noise from the high frequency parts are removed
and weights are redistributed to mid-range components from the low frequency end. It
results in a much clearer image of the atomic structure even at 1/10 dose. The filter
used for the last column is designed to remove signals from 3.8 nm−1 to 1.14 nm−1,
with kmax = 60 px−1 and kmin = 18 px−1.

In the third row, only 1/100 of the electrons in the dataset is used for imaging. The
insufficient amount of electrons introduces a large amount of noise and hides the atomic
structure in the images. Yet for the reconstruction result of riCOM-61, the pores within
the zeolite framework are preserved in the image. This is possibly due to the fact that
features of larger scale are reconstructed from more data points and is thus a result
averaged over more possible integration paths. This kind of low frequency components
are only supported by kernels of larger size, explaining why other reconstruction meth-
ods shown here do not benefit from them and fail to present any meaningful information
in the images.

Imaging of zeolites at atomic resolution with iDPC, a similar method as iCOM, has been
demonstrated to be successful at low dose between 100 and 1000 electrons per Å

2

[152, 153]. In a similar dose range, riCOM is capable of presenting structural features
of the sample at different spatial frequencies, showing that the dose efficiency of the
method is not sacrificed to enable real-time reconstruction.

While riCOM benefits from amplifying signals at specific frequencies so that clearer
images of the lattice structures and atomic features can be captured, one has to bear
in mind that the same effect is also applied to the statistical noise present in the
experimental data. To study how noise affects the reconstructed images, one could
compare results from ideal data with results from data with noise. However, for many
reconstruction methods, it does not mean that the effect of noise can be simply acquired
by subtracting one from the other since noise is not additive. Luckily, due to the linear
independent nature, it is indeed the case for riCOM. In other words, the reconstructed
image from a COM shift map with noise is exactly the same as the combination of the
reconstructed image from a noise-free COM shift map and the one from pure noise. The
latter is thus a suitable candidate for further noise analysis.

To demonstrate how noise is transferred to the reconstructed image at each frequency,
a 4D dataset of a 20 nm thick zeolite sample is simulated according to the condition used
in the second experiment (see Experimental Details). The noise is separated from the
dataset to reconstruct an ADF image of pure noise, and the noise-induced COM deviation
is calculated by subtracting the COM shift map from the noise-included dataset from the
one without noise. The COM deviation map is then used for riCOM reconstruction with
kernel size of 21 and 61. The components at different radial frequency of these images
are plotted in figure 3.7. Two major differences between ADF and riCOM images can be
found. First, the noise amplitudes of ADF images are higher when the dose is higher
but the opposite for riCOM reconstruction is observed. It is due to the fact that the ADF
intensity values follow a Poisson distribution, where the noise increases with the square
root of the dose while the signal scales linearly with the dose. The COM shift on the
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other hand is based on the spatial distribution of electrons, rather than the cumulative
intensity and thus is not directly linked to this kind of shot noise. However, the error of
the COM estimation still decreases when more electrons are used. Therefore, despite
different noise behaviours, the signal to noise ratios of both methods increase with dose.
The second difference lies in the distribution of noise at different frequencies. For the
ADF noise image, the noise is distributed equally at different frequencies, yet for riCOM,
the noise is amplified according to the approximated weighting function based on the
kernel size (eq. 3.7). Through this analysis, it is clear that not only the signal from the
examined object but also the noise is affected by the weighting in frequency domain. This
greatly changes how noise appears in the reconstructed images compared to traditional
imaging methods such as ADF and is worthy of the attention of the microscopists in
order not to misinterpret features created by noise.

Figure 3.7 | Components of the noise images at different frequencies. The noise images are
rendered by applying virtual ADF detector, riCOM with kernel size 21, and riCOM with kernel
size 61. Three levels of dose for noise realization are chosen, and the curves are drawn by
averaging 30 random noise configurations at each dose. The weighting functions given by the
line-integration approximation are also presented for the riCOM results in dashed lines.
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Figure 3.8 | (a) Reconstruction results of a simulated zeolite dataset with different kernel sizes.
The red and blue lines indicate the locations of intensity line profiles drawn in subplots (b).
(b) The intensity profile shows that the intensity inside the hole area increases in riCOM-21
results but decays in riCOM-61 towards the centre. (c) Step function for analogy shows that
removing low frequency components may cause imaging artefacts similar to the ones seen in
reconstruction results from smaller kernel sizes.

The different reconstruction results in figure 3.6 show a disagreement about the content
inside of the pores that exist in the zeolite framework. Results from methods that give
more weight to the high-frequency components, such as SSB and riCOM-21, show some
intensity fluctuation inside of the pores, indicating the possible existence of dopants,
yet these do not appear in the riCOM-61 image. In order to understand the cause
of the difference, another simulation is run with the same condition to compare the
reconstructed results with different kernel sizes in figure 3.8. To eliminate the possibility
that this difference originates from the presence of noise, the reconstruction is done
without adding noise to the dataset. From each reconstructed image an intensity profile
is drawn over the atom framework into the pore (Fig. 3.8-a), which is indeed vacuum
as designed for the simulation. The profile reveals that for riCOM-21, the intensity
increases, while riCOM-61 shows a monotonic decay towards the centre of the pore (Fig.
3.8-b). The intensity increase for riCOM-21 cannot be explained by the projected atomic
potential, since it can only decay when moving further away from the atoms.

To investigate the origin of this false intensity, the Fourier transformed riCOM images are
analysed (Fig. 3.6). The bright spots at the lowest frequency correspond to the periodic
structure of the pores and framework. The intensity of these spots are greatly reduced in
riCOM-21 but supported in riCOM-61, indicated by the approximated weighting function
as red curves. This causes major differences to features that necessarily rely on such
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low frequency signals. To illustrate the principle, we simplify the atom framework and
the pore using a step function (Fig. 3.8-c). By removing the low frequency components,
the step becomes a curve with a concave and a convex segment in the regions of the
high and the low step, respectively. This step function analogy conceptually captures
the differences between the zeolite framework and the holes and explains the protruding
intensity in the hole for riCOM-21 as the effect of reduced low-frequency components.
For riCOM-61 such components are included by the larger kernel size, so that no such
phantom intensity can be found in the same area.

These examples show that the proposed method, like many other reconstruction meth-
ods, is capable of providing extra information compared to traditional imaging methods.
RiCOM also shows great dose efficiency, allowing high quality reconstruction results
under low dose conditions. The freedom to use different kernel sizes grants users the
ability to tune the desired spatial frequency range, which is very important in order to
avoid misinterpretation of details in the image. Including more low-frequency compo-
nents has shown to enable the reconstruction of long range structures of the object with
even lower amounts of electrons. This could be very useful for microscope operators
when imaging objects of larger scale.

3.5 Conclusion

In this chapter we propose and demonstrate a reconstruction method for real time
STEM based on the integrated centre of mass that is applicable to any kind of seg-
mented detector dataset, including but not limited to 4D-STEM. Through derivation
of the physical formulation, we illustrate the physical relevance and the benefits for
numerically efficient implementations of this approach, motivating the application par-
ticularly in real-time imaging scenarios. The freedom to change the size of the kernel or
incorporating filters are also discussed, with examples showing their effect.

It is shown that riCOM can effectively reproduce iCOM results, but allows for more
flexibility in terms of selecting contributing spatial frequencies. The method, including
frequency band pass filtering depends only on the individual intensity distribution (or
CBED) at its corresponding real space location, which in combination with a rather simple
algorithm, creates a uniquely flexible and fast reconstruction method that requires very
little user input. We further present a well optimized, interactive GUI implementation,
developed in standard C++ and published open source on GitHub.

Demonstrations of themethod on an operatingmicroscope shows that firstly, the process
is fast enough to keep up with the highest frame rate supported by currently available
detectors, and secondly, providing dynamic feedback to the microscope operator when
tuning and optimizing the microscope parameters. This ability enables swift search
of the sample, or region of interest, as well as adjustments of the imaging conditions,
at potentially very low dose conditions. The algorithm can run on any kind of data
from which the centre of mass of the electron diffraction pattern, or derivatives of COM
such as DPC signals, can be calculated, and therefore it is by no means limited to the
hardware demonstrated in this chapter.
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Comparisons with results of other non-iterative reconstructionmethods show that riCOM
renders high quality images on par with established methods, even at very low doses.
The pros and cons of using different frequency components are discussed. Users can
accordingly choose the most suitable designs of kernels, and run simultaneously other
imaging forming methods, in order to reach the highest dose efficiency or extract the
most amount of knowledge from the investigated sample in real time.
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4.1 Introduction

In the previous chapter one approach was presented that makes use of fast pixelated
electron detectors [39, 41–43, 147, 149], which extends the set of modern imaging
modalities for 4D-STEM (e.g. ptychography, the calculation of phase contrast [144]
and true centre of mass (COM) imaging [143]). These imaging modalities can all be
considered phase retrieval algorithms in a wider sense [154], as they all aim to retrieve
the projected electrostatic potential of a sample, which directly affects the phase of
the transmitted electron wave. While riCOM is attractive for its simplicity, ease of use
and flexibility, its resolution is limited by the probe size. Ptychographic methods have
been of particular interest for their super-resolution capabilities and the possibility to
determine/correct for microscope aberrations as well [155–157]. However, the compu-
tational cost and memory requirements for these algorithms are considerable. Iterative
algorithms like ePIE [137, 139] use optimization algorithms to fit an object to a given
dataset such that the estimated phase corresponds to the intensity observations across
the entire dataset. This is a computationally intensive task and the result is influenced
by optimization parameters and convergence criteria. Other non-iterative methods typi-
cally use only the bright-field disc for phase reconstructions which imposes limitations
on the maximum achievable resolution [157]. They rely on taking Fourier transforms
with respect to the probe positions in real space, which means that for conventional
Fast Fourier Transform algorithms (FFT), entire datasets (or at least substantial parts
of them) have to fit into computer memory, which is becoming increasingly restrictive
considering the growing size of 4D-datasets. For these reasons, ptychography has found
many useful applications, mainly as a post-experiment data processing analysis step in
specialized studies, but has not become a mainstream imaging modality so far. However,
there is an increasing interest in using these algorithms interactively during experiments.
To that end, live imaging using SSB was recently implemented and demonstrated by
[148] and [146], as well as live centre of mass imaging by [158].
In the present work we explore the possibility to use machine learning (ML) for dose-
efficient phase object (PO) reconstructions with super-resolution in (near) real-time. We
show that using a convolutional neural network (CNN) enables fast exit wave retrieval
for a given CBED, by using only a 3x3 kernel of adjacent diffraction patterns at a time.
The method allows the retrieval of exit waves, with a resolution theoretically only limited
by the Nyquist frequency of the detector and thus enables super-resolution imaging at
sufficiently high doses. Using only nine CBEDs per probe position in a 4D-STEM dataset
implies that the dataset can practically be of arbitrary size and the reconstruction can
be performed live during the experiment with appropriate accelerator hardware, such as
a modern, single GPU.
In this chapter, the character and capability of the proposed method is discussed in
detail and demonstrated on both simulated and experimental data. Comparisons are
also made with other possible live processing methods. To the best of our knowledge the
only reconstruction methods that go beyond utilizing the traditional annular detector
and enable live imaging are single sideband ptychography (SSB) [146, 148], integrated
differential phase contrast (iDPC) and integrated centre of mass (iCOM) [158]. This is
why we focus our analysis on comparing the results of our proposed method to those
methods.



Chapter 4. AIRPI 71

4.2 Materials & Methods

4.2.1 Theoretical Framework

The interaction of fast electrons with thin specimens can be conveniently described
with the phase object approximation (POA). As an electron passes through a positive
electrostatic potential its wavelength  is temporarily altered which is equivalent to
shifting the phase of the electron [14]. For cases where the specimen is extremely thin,
the propagation of the wave as it goes through the material can be neglected as a
reasonable approximation and the real space 3D electrostatic potential of the atomic
structure Vs(r⃗,z) can be expressed as its integral along the optical axis z, resulting in the
projected electrostatic potential vz(r⃗) =

∫
Vs(r⃗,z)dz, which is a function of the vector r⃗

that spans the remaining two dimensions. With this approximation the exit wave out(r⃗)
is simply the product of the incident wave in(r⃗) and the object, which can be described
by the transmission function T(r⃗):

out(r⃗) = in(r⃗)T(r⃗) (4.1)

where T(r⃗) = exp(ivz(r⃗)) and  is an interaction parameter (See [14] for a more de-
tailed derivation). However, a direct solution of the transmission function according to
equation 4.1 is only possible if both incident and exit wave are known, while in practice
neither of them are known a priori. The incident wave in(r⃗), can be fairly well approxi-
mated as the Fourier transform (F ) of the product of the aperture function A(k⃗) and an
aberration-function((k⃗))-dependent phase shift [159].

in(r⃗) = F −1
[
A(k⃗)exp[i(k⃗)]

]
(4.2)

Here, r⃗ describes a 2D space at the object plane and k⃗ describes the reciprocal space.
The function (k⃗), considering only the spherical aberration Cs and defocus �f , is given
by:


(
k⃗
)
= k2

(
0.5Cs

2k2 −�f
)

(4.3)

Assuming that at least the low order aberration parameters of (k⃗) are known, equations
4.2 and 4.3 can be used to estimate in(k⃗). The other piece of missing information is
then the exit wave out(r⃗). From a 4D STEM experiment, only the intensity |out(k⃗)|2 can
be measured (figure 4.1- 2 ), and thus a method to retrieve the exit waveform on the
sample plane based on the information accessible from the experiment is required to
solve equation 4.1 to get the transmission function T(r⃗). Retrieving the phase of out(k⃗)
is a common inverse problem, but is severely complicated in 4D-STEM by the presence
of noise to a level that makes even the estimation of |out(k⃗)| a challenging task in its
own. The idea in this study is to leverage the multislice formalism, incorporating the
calculation of electrostatic atomic potentials [113] and the frozen phonon approximation
[65], as a forward model to generate a large synthetic dataset. This dataset can then be
used to train a convolutional neural network (CNN) to retrieve an estimate of out for
any given experiment within the boundaries of the validity of the used forward model
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and within the parameter space of the training data, which will be discussed in section
"Training data generation" and is given concisely in table 4.1.

4.2.2 General Workflow

The general concept of the proposed reconstruction method is schematically illustrated
in figure 4.1. The workflow to retrieve the object T(r⃗) (figure 4.1- 1 ) of a 4D-STEM dataset
(figure 4.1- 2 ) can be divided into two main steps: firstly, a neural network, trained to
solve the inverse problem as outlined in section "Neural Network implementation",
reconstructs the phase out and amplitude |out | of the exit wave, based on the intensity
measurements of a 3x3 kernel of adjacent diffraction patterns, as depicted in figure 4.1-
( 3 - 5 ). Secondly, a patch of the object is retrieved from the previously reconstructed
exit wave according to equation 4.1, as shown in figure 4.1-( 6 ). In order to take the

CNN

2

34

5

6

1

Figure 4.1 | General workflow: A patch of the phase object 1 of a 4D-STEM dataset 2 is
reconstructed by extracting a 3x3 kernel of adjacent CBEDs 3 , using a CNN 4 to reconstruct
the amplitude (|out(r⃗)|) and phase (out(r⃗)) of the exit wave of the central CBED 5 and using
the phase object approximation to reconstruct the object patch 6 from the reconstructed exit
wave and an estimated probe function in(r⃗). Patches are then stitched together by complex
addition to yield a reconstruction of the full phase object.

relative position of each individual object patch into account, a phase factor is included
to the approximated in(k⃗) and the predicted out(k⃗) so that their real space counterpart
in(r⃗) and out(r⃗) are found at the right position. This phase factor shif t is a function of
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the displacement of the probe position in the x and y directions (�x and �y) with regard
to the centre of an array of size Nx ×Ny .

shif t (�x,�y) = exp


2i


�x
Nx

+
�y
Ny


(4.4)

The real space wave functions considering the phase factor are:

in,n(r⃗) = F {in(k⃗)×shif t,n}
out,n(r⃗) = F {out(k⃗)×shif t,n}

(4.5)

In equation 4.5, F is Fourier transformation, and the amount of displacement �x and
�y is absorbed into n, which specifies the nth probe position.
The phase object approximation assumes that the retrieved object patch should have
a homogeneous amplitude of 1 with a phase distribution reflecting the projected po-
tential of the imaged material. However, since the transmitting electron probe carries
information mostly from a specific region of the examined sample at the probe position,
the retrieved object patches are given a weighting function n according to the nth

incident probe intensity distribution, and the accordingly weighted object patch patch,n
is expressed as:

Tpatch,n(r⃗) =
out,n(r⃗)/in,n(r⃗)
|out,n(r⃗)/in,n(r⃗)|

×n(r⃗) (4.6)

with the weighting function n as:

n(r⃗) =
|in,n(r⃗)|2
r⃗ |in,n(r⃗)|2

if |in,n(r⃗)|2 > 1
10max(|in,n(r⃗)|2)

0 if otherwise

(4.7)

This procedure is repeated for all real space coordinates in the 4D-STEM dataset and
the object patches are combined into the final phase object T by complex addition over
n probe positions.

T(r⃗) =

n

Tpatch,n(r⃗) (4.8)

The object patch estimations coming from the CNN are not perfect but carry some
errors. However, the full object is the combined result of the predictions made at multiple
probe positions (equation 4.8). Even if one particular prediction is very inaccurate, its
impact on the final result is limited as long as it is outweighed by the contributions
from neighbouring probe positions, which is the case when a significant probe overlap is
established by a dense scanning raster.

4.2.3 Training data generation

We created a large synthetic dataset, using atomic structures extracted from the materi-
als project [160] database. Based on the unit cell definitions we created bulk specimens
in one of the low-index zone axis orientations given in table 4.1. Each sample consists of
a 3x3 kernel of simulated CBED patterns as features and the corresponding exit wave
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in real-space as label. The simulations were performed using the multislice formalism
and the frozen phonon approximation. In the implementation given by [60, 61], following
the derivation of [65] the CBED intensity can be expressed as the sum of coherent and
incoherent intensities.

〈∣∣∣out

(
k⃗
)∣∣∣2

〉
=
∣∣∣∣
〈
out

(
k⃗
)〉∣∣∣∣

2
+
〈∣∣∣

(
k⃗, t

)∣∣∣2
〉
, (4.9)

where out(k⃗) is the exit wave,  is a phonon configuration(t)-dependent difference and
⟨⟩ denotes the average over t. This formalism gives us access to the average, coherent,
complex wave function. We use this wave function of the central CBED of the 3x3
kernel as labels (i.e. the ground truth training target) and the CBED intensities of all
patterns in the kernel, as given in equation 4.9 as features (i.e. the CNN input). Only low
order aberration parameters �f and Cs of (k⃗) (equation 4.3) are considered as they
are unavoidable and typically have the strongest influence. We assume that including
these effects phenomenologically with a constant, small Cs and corresponding Scherzer
defocus is sufficient. Temporal and spatial incoherence are also not taken into account.
This reduces the parameter space considerably but also implies that the method is (for
now) limited to aberration corrected, well adjusted microscopes.
Further, the dataset includes the CBED-size in Å

−1
, the aperture size and the acceleration

voltage, which allows the computation of the probe function in(k⃗) within the data pre-
processing pipeline during the training using equations 4.2 and 4.3. Also the effect of
finite electron dose is applied as a data augmentation step during the training, assuming
only Poisson noise. To accommodate the possibility that there may be no specimen
interacting with the beam, another augmentation step replaces the CBEDs with the probe
function intensity with a 3% chance. An example of the resulting training sample inputs

Figure 4.2 | Example of an exit wave reconstruction taken from the validation dataset, illustrat-
ing the inputs and outputs of the CNN, as well as the Fourier transforms of the (real space) exit
waves. Intensities and amplitudes are depicted in log scale.

and labels is illustrated in figure 4.2 in the "input" and "ground truth" panels respectively.
All parameters describing the dataset are summarized in table 4.1. Visualizations of the
parameter distributions are shown in figure 4.3. The data generation code was published
open source under https://github.com/ThFriedrich/ap_data_generation, as well
as the training dataset used [161].



Chapter 4. AIRPI 75

Description Value

Acceleration voltage ∈ {30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 300}kV
Step size (r⃗) (0.0167...≈2.0) Å
Convergence angle 5...30 mrad
Spherical aberration 0.001 mm
Defocus Scherzer defocus
# Frozen phonons 30
Atom rmsd 0.08 Å
Orientation ∈ {[1 1 0], [0 1 1], [1 0 1], [0 0 1], [1 0 0], [0 1 0], [1 1 1]}
Thickness <30 Å
Dose 3...3e9 e/CBED
# Structures 126,335
# Samples 742,688

Table 4.1 | Simulation parameters for the training dataset.
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Figure 4.3 | Parameter distributions of most important simulation parameters of the training
dataset, consisting of 742,688 samples. The "rotation" refers to sample rotation around the
viewing direction, relative to the projected, crystallographic a-axis.
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4.2.4 Neural Network implementation

CNN architecture

The complexity of the inverse problem practically dictates the use of deep neural net-
works in this study. The U-Net architecture [162] is one of the most popular choices for
deep learning applications, since it allows to expand the number of parameters consid-
erably, while maintaining strong backpropagation. Each depth level in the "U-shape"
reduces the filter map size which accommodates the retrieval of features of different
sizes. This makes the U-NET an extremely versatile and easy to train CNN and hence
suitable as a starting point for this project as well [54]. However, since the training target
is naturally complex valued, a generic pixel-to-pixel mapping, as commonly employed
for CNNs in image processing, cannot be used. Two popular ways of dealing with this
exist. Firstly, both, phase and amplitude retrieval problems can essentially be treated
separately by defining two outputs and optimizing for dedicated loss functions on the
phase and amplitude components of the wave function [163]. This treats the complex
wave as two real valued images, which in practice has the advantage that common,
highly optimized AI tools can be readily employed. Another approach that naturally
lends itself to this kind of problem is using complex valued neural networks [164]; an
approach that has found relatively few applications so far. However, the theoretical
framework for complex CNNs is established [164] and implementations have been show-
ing promising results [165, 166]. We implemented the U-NET architecture for both CNN
types to test the main ideas. The complex networks delivered reconstruction results and
accuracies of predicted phases, which are, for all intents and purposes, equivalent to
the real-valued CNN, while decreasing the speed performance considerably. Since live
imaging is an envisioned application, inference speed is a critical concern and the faster
real-valued CNN was chosen in the study accordingly.

The structure of the U-NET is modified to account for physical considerations. The
aim of the neural network is to model the electron-specimen interaction. Adding skip
connections from the input probe function to the output exit waves (essentially enabling
global residual learning) isolates the specimen interaction contributions from the probe
function contributions to the exit wave. The CNN therefore does not need to learn to
actually model the electron probe. The skip connections have the additional benefit of
providing a common template during inference. The training is done on isolated scan
points of only 9 CBEDs per specimen, while during inference the probe function should be
consistent for the entire dataset, which is a requirement that cannot be captured by any
metric during the training. Providing an estimated probe function greatly promotes this
consistency during inference. Global residual learning also enhances noise robustness
because the probe function serves as template, which is hardly altered if the input is
merely noise.

On the input the dynamic range of the CBEDs are being scaled by taking them to the
power of 0.1 in a preprocessing step, which puts more relative weight on the dark
field scattered electrons to support exit wave reconstructions beyond the convergence
angle. Subsequently each pattern is scaled, according to equation 4.10 depending on
its distance from the central beam position, where �xy and �d correspond to the CBED
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weights adjacent to the central CBED along x and y and on the diagonal, respectively.
This is a straightforward way to include the step size �s into the workflow.

xy =
1

�s ∗50
d =

1
√
2 ∗�s2 ∗50

(4.10)

The constant factor of 50 accounts for the range of step sizes in the training datasets
such that all  are between 0 and 1. The effect of this weighting can be seen in the
"Input" panel of figure 4.2, evident by the higher mean intensity of the central CBED.

Other notable differences as compared to the original U-NET implementation [162] are
different map sizes, the use of Swish-Activation functions [70] and the use of strided
convolutional layers instead of max-pooling layers to avoid any loss of information when
feature map sizes are reduced. Trainable scaling factors on the two output layers for
the phase and amplitude were added to scale between the batch-normalized feature
maps (with standard deviations of 1 and means of zero) in the CNN and the relatively
small target value distributions, which correspond to the difference between exit waves
and probe functions. The variables were initialized accordingly with small values of 1e-4
and optimized during training. The amplitude output layer includes a regularization
which penalizes integrated exit wave intensities > 1. The phase output layer penalizes
values larger than  and smaller than −. These penalties are added to the loss during
training. The resulting overall architecture is depicted in figure 4.4. The tensorflow
implementations of the models and individual layers are available open source on Github
at https://github.com/ThFriedrich/airpi. During the training the CNN can process
>750,000 sample points in about 6 minutes on a single Nvidia RTX 3080 GPU, indicating
that the model itself may be well suited for live processing at rates >2kHz, if the pre-
and post-processing pipelines are well optimized.

Loss function

To facilitate the learning of a general representation for both the phase and amplitude
we designed a multi-objective loss function as a linear combination of L2-losses on
the phase and the amplitude in Fourier space and in real space. Enforcing the corre-
spondence between r⃗ and k⃗-space during the training encourages the CNN to abide to
physical constraints. It was also observed that the decomposition of the phase into its
sin and cos components facilitates better convergence, compared to just optimizing for
the phase directly. This is presumably related to the decompositions being smooth so
the CNN does not have to account for phase wrapping effects. Since the probe function
is an input to the CNN the object can be solved directly and used in the loss function
too. The optimization of the L2 error of the phase of the object T(r⃗) directly promotes
an agreement of the object with the transmission function, which is practically the most
meaningful metric. However, a good quantitative match may be impossible to achieve in
certain scenarios (e.g. very low dose). To promote at least a visual match, the object
phase is also optimized for its cross correlation xc as given in equation 4.14. Further
it was empirically determined that a higher weight on the phase in (k⃗)-space leads to
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Figure 4.4 | The CNN architecture used in this study is a modified U-NET with separate, real
valued phase and amplitude outputs. The model leverages global residual learning through
added skip connections of the probe function to the output. Each "convolution layer" is com-
posed of a 2D convolution layer, batch normalization and a Swish [70] activation function. Each
"convolution block" consists of 3 consecutive convolution layers.

faster convergence and overall better results. Putting all terms into a sum, for an exit
wave  with phase  and an object phase obj the loss function is given by:

L =

L2(|(k⃗)|2) + (L2(sin(k⃗)) +L2(cos(k⃗))) ∗3
+L2(|(r⃗)|2) +L2(sin(r⃗)) +L2(cos(r⃗))
+L2(obj (r⃗)) +Lxc(obj (r⃗))

(4.11)

with:
L2(x) =

(
xtrue − xpredicted

)2
(4.12)

Lxc(x) =
(
1− xc

(
xtrue,xpredicted

))
/2, (4.13)

where:

xc(x,y) =

�
i ,j
[(y(i , j)− y)(x(i , j)− x)]

√�
i ,j
[y(i , j)− y]2

√�
i ,j
[x(i , j)− x]2

, (4.14)
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where x and y correspond to pixel values at the locations (i , j) and x and y are the mean
values respectively.

Training

The training was performed using the Adam optimizer with a learning rate of 5e-4, a
batch size of 256 and a momentum setting of 0.9. The learning rate was decreased by a
factor of 0.5 when the validation loss did not decrease for 3 epochs. Convergence was
reached after ≈50 epochs. After convergence the training was resumed for another 10
epochs with a weighting factor of 10 applied to the L2(obj (r⃗)) term of equation 4.11,
which leads to a further small decrease on the object error. This step does not alter
the reconstruction results considerably but improves the quantitative match between
reconstructed objects and transmission functions somewhat.

4.2.5 Experiments & Simulations

The demonstrations of the reconstruction methods are performed on both experimental
and simulated datasets. For the experiments, probe corrected Thermo Fisher Titan
(X-Ant-TEM) and Themis (Advan-TEM) were used. The former is equipped with a MerlinEM
direct electron detector [42] and the latter with a custom-made Timepix3 detector
[44]. For the experimental datasets of an Au crystal and a SrTiO3 focused ion beam
lamella, which can be found in the the online repository [158], the acceleration voltage
is set at 300 kV, the semi convergence angle of the electron beam is 20 mrad, and
the scanning step size 0.2 Å and 0.185 Å, respectively. The USY zeolite dataset, which
can be found in [167], is collected at 200 keV, with 12 mrad convergence angle and
0.15 Å step size. The simulated twisted bilayer graphene dataset is generated with an
acceleration voltage 200 kV, a convergence angle of 25 mrad, and a scan step size 0.2 Å.
The twisted bilayer MoS2 dataset was simulated with the settings: acceleration voltage
300 kV, convergence angle 20 mrad, and scan step size 0.1 Å. The MgO dataset was
created with an acceleration voltage of 300 kV, a convergence angle of 20 mrad, and
a scan step size 0.05 Å. All of the simulated datasets are generated with the MULTEM
software [61].

4.3 Results & Discussion

4.3.1 Super-Resolution

The reconstruction of the proposed method is based on solving equation 4.1 for the
object using the incident and the exit wave functions, and therefore the resolution of the
method is not explicitly limited by neither the optical conditions of the imaging system
nor the sampling density of the electron probe. By reciprocity, the object plane is sampled
with a maximum resolution determined by the maximum scattering angle the detector
can reach, or the highest angle at which the exit wave can be accurately retrieved, which
can potentially result in a higher resolution than permitted by the former two limitations.
This super-resolution granted by the knowledge of the exit wave at higher scattering
angles is demonstrated by the reconstruction of a simulated dataset of a twisted bilayer
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graphene sample at infinite dose [54]. The result from the CNN reconstruction is shown
in figure 4.5-a, and compared with a SSB reconstruction in figure 4.5-b.

To analyse the spatial frequency achieved by each method, the Fourier transformed (FT)
images are presented as well (figure 4.5-d, e). The circle in the FT SSB image indicates
twice the range of the convergence angle (�), which is the upper limit of the spatial
frequency of this reconstruction method [157], and therefore all the frequency com-
ponents beyond are eliminated. The reconstruction of the CNN successfully retrieves
components beyond this limitation, also reflected in the ability to distinguish atoms with
very short spacing in between, as can be seen in the atom pairs profile (figure 4.5-c)

1Å-1

Å-1

Å

2

5Å

Figure 4.5 | Demonstration of super resolution capabilities on simulated datasets with infinite
dose. Compared are CNN reconstructions and standard SSB ptychography (b). Their corre-
sponding Fourier transformed (FT) intensities show the maximal spatial frequency achieved by
each method (d, e). For the FT image of the SSB result, a circle indicating twice the convergence
angle is added, which corresponds to the maximal spatial frequency of the method. (c) shows
the intensity along the line profile drawn in each image. Markers on the x-axis indicate atom
positions. (f) depicts the integrated intensity of the FT images along y-axis.

The improved resolution capability of the method, as well as its dependency on the
individual per-CBED-dose (more thoroughly discussed in section "Step Size") are also
demonstrated on an experimental USY-zeolite dataset [167]. This dataset has a fairly
low dose and small step size. To increase the dose of each individual diffraction pattern,
the CBED at each probe position is replaced by a summation of CBEDs within a 5 × 5
box, while the reconstruction is done with a step size twice as large as originally. This
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repetition in data usage increases the effective dose in the dataset, as each individual
CBED now contains 25/4-times more electrons and greatly increases the accuracy of the
neural network prediction. The actual dose that inflicts damage while interacting with
the material, on the other hand, remains the same. For comparison, SSB is performed
on the original dataset and a dataset with the same data repetition strategy applied. In
figure 4.6, it is shown that the last three reconstructions successfully build a clear image
of the zeolite crystal structure with atomic level resolution. The CNN reconstruction
based on the original dataset (figure 4.6-a) does not showcase a similar quality, since
the dose for individual CBEDs is too low to make accurate predictions of the exit waves,
but after data repetition is applied, the neural network gives results that capture details
of the material (figure 4.6-b). SSB, on the other hand, does neither benefit nor suffer
from this repetition, at least not at a noticeable level. From the Fourier transform of
the three images one can estimate the resolution limits of the methods by comparing
the most distant frequency component. The neural network reconstruction shows a
maximum frequency component at 0.78 Å

−1
, which according to the Rayleigh criterion:

d =
0.61
sin

(4.15)

is equivalent to the resolving power of an un-aberrated perfect optical system of conver-
gence angle 12 mrad, which is the same as the aperture size used in the experiment, at
the electron wavelength () of 0.02 Å. As most of the microscopes, even ones equipped
with probe corrector, cannot achieve the resolving power given by the Rayleigh criterion,
the presented method shows the ability to overcome the effect of remaining aberrations,
shot noise, and other imperfection in the system to reach a higher resolution.

3 nm
-1

0.78Å
-1

3 nm

Figure 4.6 | Reconstruction results of three different approaches. (a, b) Neural Network
performed on datasets without and with data repetition, respectively. (c, d) SSB reconstruction
done on datasets without and with data repetition, respectively. The Fourier transforms of the
reconstructed images are shown below. Notice that in (a) vertical streaks can be found, which
originate from an unknown defect of the detector, also reported in [149].
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4.3.2 Step Size

Since the proposed reconstruction method is based on retrieving individual object
patches, which are commonly sampled finer than the step the electron beam takes to
scan the sample, a rather coarse scanning grid can produce high quality images, as
long as a good prediction of the exit wave, and hence the object patch, can be made.
This character of the proposed reconstruction method is demonstrated on a simulated
MgO particle with different step sizes of 0.1, 0.4, 0.8 and 1.6 Å. The "ratio" values shown
in figure 4.7 refer to the ratio of the diameter of the incident probe function (1.2 Å) and
the step size, where the probe size for a given convergence angle  in Å

−1
is defined by

the first root of the Bessel function of the first kind and first order:

d = 2 ∗ 3.8317


(4.16)

Figures in the left column are generated with infinite dose and therefore the neural
network has very detailed knowledge of the amplitude of the exit wave to make accurate
predictions. In this case the difference between results of overlap ratio of 12 and overlap
ratio of 3 is barely noticeable. By further reducing the scan density, probe positions reach
a distance where the weighting function forbids any overlap, as shown in equation 4.7.
Despite the weighting function cutoff, which creates blank spaces between the object
patches, the actual probe positions used to generate the data overlap with each other
just enough, making exit wave predictions possible to maintain the crystal structure
to a certain level in the reconstructed image. As the step size reaches 1.6 Å and the
ratio drops below 1, the retrieved object patches deteriorate severely and no longer
reflect any crystal periodicity. This failure shows that the neural network follows certain
physical and mathematical constraints, such as necessary probe overlap for accurate
exit wave retrieval, and that it would fail rather then making false predictions that
continue to resemble atoms or the crystal. This failure can be identified by the user
not only based on the deviation of the resulting image from the expected appearance
of the object, but also by the wide blanks left between the object patches, indicating
insufficient probe overlap.

The images in the right column of figure 4.7 were generated with the same dose per
area. As mentioned in the previous section, the accuracy of the retrieved object patch is
not directly related to the total dose in the dataset, but rather to the dose per CBED. By
this consideration it follows that larger step sizes work better for the neural network,
since this would mean fewer probe positions in the same area and a higher dose at every
individual CBED. On the other hand, a certain level of probe overlap is also required for
accurate predictions. Therefore, not only the total dose per area, but also the scanning
strategy is an important consideration for the proposed method. A balanced scan
density will generate better results as compared to a very fine scan grid, even if the total
dose per area would be the same. This behaviour is illustrated in the images in the right
column of figure 4.7. The noise level is lowered significantly as the step/probe-width
ratio drops from 12 to 3 in figures 4.7-h and 4.7-f. Ptychographic methods in comparison
offer more flexibility in this regard as shown in figures 4.6-c and 4.6-d.
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The noise created by inaccurate predictions also creates different features as the step
size changes. As the training is exclusively done on crystalline materials in zone axis
orientations, the predicted object patches may show atomic scale features, even if the
input is merely noise. In other words, the frequency transfer function of each object
patch is highest at the spatial frequency that would compose an image of an atom. This
somewhat dangerous behaviour of the neural network is compensated by the stitching
of the patches, since atomic-scale features of the noise would not remain sharp as
multiple object patches contribute to the same area, and would thus contribute to a
cloudy, low intensity background, as seen in figure 4.7-h. However, when the degree
of overlap is reduced, such that the phase value is completely determined by 1 or few
object patches, the risk to observe a false, atom-like feature, such as the ones seen in
figures 4.7-f and 4.7-d, greatly increases. Awareness of this effect is therefore important
when using the method and large step-size scanning patterns should be treated with
extra caution. The other effect of noise is that the phase value drops in cases of very
few electrons per CBED. This is essentially related to the failure of the CNN at making
accurate phase object predictions, but it also shows that as long as sufficient dose is
present in the 3×3 CBED input set, the phase value retrieved is not strongly related to
step size.
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Figure 4.7 | Reconstruction results of simulated MgO particle. In the left column (a, c, e, g) the
images are generated with infinite dose, and in the right (b, d, f, h) the dose is set to be 500

electron per Å
2
. Each row of images is constructed with the same step size, as well as the same

step/probe-width ratio. The colorbar in the bottom left panel applies to all images in the figure.
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4.3.3 Contrast Analysis

As outlined in section "Theoretical Framework", the phase of the object is proportional to
the electrostatic potential. By this relation atomic species should, at least within the
boundaries of the phase object approximation, be distinguishable. To verify whether this
requirement holds true for the CNN reconstructions, 4D STEM datasets of isolated, single
atoms for each species in the periodic table up to Z=103 are simulated individually with
a step size of 0.2 Å, a simulation box size of 3×3 Å, an aperture angle of 20 mrad and a
collection angle 60 mrad. The frozen phonon approximation was used with a root-mean-
square-displacement of 0.08 Å and 100 phonon configurations for each simulation. The
retrieved phase objects of these datasets are compared to the ground truth transmission
function, which is based on the parameterization by [113]. The comparison is carried out
by taking averaged phase values from pixels within various ranges. In figure 4.9, from
top to bottom, the curves show phase values at the peak only (figure 4.9-a), averaged
phase over 3×3 pixels around the atomic position (figure 4.9-b), and the average over
5 × 5 pixels (4.9-c). Both, the curves of the ground truth transmission function and
the CNN predictions, generally increase against atomic number, with the exception of
certain dips at larger averaging ranges. This effect stems from different electron orbital
distributions in the radial direction, and thus only the phase value averages at larger
ranges are sensitive to this difference. The CNN predictions obviously also preserve
these sub-atomic level details to some extent, as the shape of the curves bear strong
resemblance to the ground truth curves. Although the reconstructed phase values
and the transmission functions do not match exactly, the predictions are accurate
enough, such that the phase values of the reconstructed objects are indeed useful as
an indicator for different atomic species, potentially even allowing semi-quantitatively
predicting the exact atomic species. For thick samples the method is not expected to
yield results in quantitative agreement with projected potentials, because even if the
neural network would retrieve the correct exit wave, the reconstruction algorithm is still
based on the POA and inherits its limitations. The analysis of thicker samples presented
here is therefore done in a more qualitative/empirical manner and comparisons are
made against ADF imaging and SSB. ADF images are well known for their strong contrast
related to the scattering power of the imaged object, and thus are suitable for examining
the thickness variation of the sample [89] and local elemental compositions [168]. The
contrast of SSB reconstructions is not as strong as ADF [169], yet the method is often
used to study crystals containing elements of a wide range of atomic numbers due to its
ability to image heavy and light atomic columns at the same time with distinguishable
contrast [170]. Albeit a quantitative match can hardly be expected, it is important to
verify whether reconstructed phase images still reflect the relative projected potentials
of thicker samples to avoid misinterpretations. To that end an experimental dataset
of a SrTiO3 FIB-lamella was analysed. The reconstruction results are presented and
compared to ADF and SSB images in figure 4.8.

For ADF imaging the contrast difference between the Sr and O columns is too large,
making it difficult to locate the O columns without the help of the profiling. On the other
hand, the SSB reconstruction does successfully image both atomic column types. While
the peak intensities of the columns are ambiguous, they can still be distinguished by
their corresponding size. The O columns are sharper than the Sr ones, indicating that
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Figure 4.8 | Reconstructed images of SrTiO3
with (a) virtual ADF detector, (b) SSB, and
(c) CNN. Line profiles are drawn to illustrate
contrast between the heavier Sr columns
and the lighter O columns, which are also in-
dicated respectively with black and red dots
under the curves.
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Figure 4.9 | Phase response of the CNN com-
pared to ground truth transmission functions
for simulations of single atoms throughout the
periodic table at infinite dose for (a) peak inten-
sity, (b) mean over 3x3 pixels around the atomic
position, and (c) mean over 5x5 pixels around
the atomic position.

an integrated signal from the area of each column could still be used as a reference of
the local projected potential. The CNN reconstruction exhibits the advantage of both:
while the light atom columns are observable, both the intensity and size differences are
large enough to distinguish their types. This confirms, that the Z-contrast sensitivity is
preserved for thicker specimen.

To further investigate the thickness dependence of the retrieved phase signal, an ex-
perimental dataset of the tip of an Au nanorod was used. As shown in figure 4.10, the
intensity recorded by the virtual low angle ADF (LAADF) detector (20 mrad to 30 mrad)
and HAADF detector (45 mrad and beyond) increases from the top to the bottom of the
image. Based on statistical analysis of the HAADF signal to retrieve atom counts in each
column [89], the thickest part in the image is about 9 nm. A line profile is then drawn
for each imaging method presented in the figure. For the two ADF imaging methods at
different collection angle, the profiles showmonotonic increase at different pace against
thickness, while the SSB profile only shows locations but the intensity is not correlated to
the thickness of the atomic column. Compared to these profiles, the CNN reconstruction
appears to be qualitatively most similar to the one of HAADF, and correlates with the
estimated thickness accordingly. It should be noted that the maximum thickness of
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≈9 nm is well outside the parameter range of the training data (<3 nm). Also the SrTiO3-
sample, being a FIB-lamella, should be well beyond 3 nm thickness. This means that
these examples also demonstrate extrapolation capabilities of the CNN, which albeit
being quantitatively arguably inaccurate, may still provide very useful reconstructions
for imaging purposes. The strong resemblance with HAADF images at larger thicknesses
may in fact be a very desirable characteristic, as it aligns well with many microscopists’
experience and intuition.
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Figure 4.10 | Reconstructed images of an edge of a Au crystal using (a) CNN reconstruction,
(b) HAADF, (c) LAADF and (d) SSB. Line profiles across the nanorod illustrate the thickness
dependence of the corresponding signals.

By comparing the reconstructed images from the Au crystal and SrTiO3, one would
notice that SSB recovers contrast of higher spatial frequencies, such as the intensity
and shape of atomic columns, but it does not recover long range features induced by e.g.
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thickness variation. This is due to the band-pass characteristics of the method [50, 142],
which in practice has a cutoff for high frequencies and a strong tendency to attenuate
low frequencies. Long range features are built with low frequency components, and thus
for reconstruction methods that filter out, or cannot utilize signals that fall in the low
frequency end, these features are lost. For the CNN reconstruction, the object patches
are also localized and no information beyond one probe position away are shared among
the predictions of the exit waves. Therefore, the existence of thickness-related contrast
variations can only be attributed to a reasonably good prediction accuracy of the CNN,
also for the low frequency components.

4.3.4 Noise robustness

The performance of the method under different dose conditions is demonstrated and
analysed on a simulated dataset of a twisted MoS2 bilayer. The dose used for the
reconstruction ranges from 500 to 1e5 e/Å

2
, and the dataset is processed by the

proposed method, SSB, and iDPC. The methods reconstructions are illustrated in figure
4.11 and compared against the ground truth transmission function in terms of their
normalized cross correlations (equation 4.14).

It is evident that the method is strong in all three dose conditions, as can be seen
visually in figure 4.11, and is confirmed by a cross correlations higher than those of the
corresponding SSB and iDPC reconstructions. The higher cross correlation is not only
due to a lower noise level, but also the generally better matched atom shape and phase
value with respect to the ground truth, as indicated in the line profiles drawn under each
dose condition (figures 4.11j-l). The sharper atom shape is due to the superior resolution,
which is confirmed by the better distinction of close atom pairs, as well as by the higher
frequency component found in the Fourier transform of the image (figure 4.12). In
figure 4.11-l, the atom profile of the CNN reconstruction at high dose almost strikes a
perfect match with the transmission function. Note that the CNN- and SSB-lines are not
normalized or shifted, indicating that a very accurate wave retrieval is achieved by the
CNN. Additionally, the contrast of the CNN results allows to distinguish Mo and S2, which
is more difficult with other methods, as their difference is much smaller. At low dose, the
line profiles suggest a stronger low-dose robustness may be found in iDPC, as the two
peaks are preserved in the reconstructed image. However, the signal almost completely
falls into the noise level, as confirmed by the Fourier transform, and thus this seemingly
better low-dose performance could very likely be a coincidental noise distribution. The
given example highlights the potential of the proposed method for low dose imaging.
As pointed out in sections "Super-Resolution" and Step Size" and illustrated in figures
4.6 and 4.7 respectively, the noise robustness may depend substantially on the step
size and the effective dose per CBED. To gain an advantage over other methods in this
regard this context needs to be taken into account and scanning strategies adapted
accordingly.
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Figure 4.11 | The dose dependency of the
proposed reconstruction method is demon-
strated for a simulated dataset of twisted bi-
layer MoS2 (top row panels) and compared to
the corresponding SSB (2nd row) and iDPC(3rd

row) reconstructions. Cross correlation val-
ues xc are given with respect to the ground
truth phase object in panel of each result im-
age. In (j, k, l) line profiles averaged in the
perpendicular direction over 1.6 Å are drawn
across a Mo-S2 pair in all the images, and
shown with the ground truth. iDPC values
were normalized by the maximum value of
the transmission function.

Figure 4.12 | Fourier transforms of the the
the MoS2 dataset presented in figure 4.11.
All images correspond to their counterparts
in figure 4.11 with the same labels. Panels
(j), (k) and (l) show compare the integrated
intensities of the power spectrum along the
y-axis. Circles in panels (c), (f) and (i) depict
estimated resolution limits in the given ex-
ample for the CNN, SSB and iDPC methods
respectively.

4.4 Conclusion

This chapter presents a new computational imaging method, leveraging a CNN to
retrieve complex exit wave functions from CBEDs and an algorithm to reconstruct the
phase object from the predictions of the neural network. Since the exit waves are
retrieved for each real-space coordinate in a 4D-STEM dataset, based only on a small
kernel of adjacent diffraction patterns, the method can be employed in a sequential
manner, thus enabling live imaging during an experiment. The machine learning system
is based on a well established model but streamlined to the task at hand and adapted
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to account for physical constraints and considerations. The model was trained on a
large synthetic dataset of multislice simulations. Large and higher order aberrations,
as well as CBED distortions, like non-centricity, geometric distortions and hot/dead
pixels are not considered in the training data. Therefore, experimental data may require
a pre-processing step. The range of practical conditions for which the method works
reliably is therefore arguably limited accordingly to aberration corrected, well adjusted
instruments at this stage. The trained model, code and training data are publicly
available as summarized in the supplementary information. In the discussion multiple
unique characteristics and advantages of the method are demonstrated. The CNN-
based reconstruction is shown to enable higher resolutions than any other live-imaging-
capable method considered, on simulated, as well as on experimental data, provided that
a sufficiently high dose-per-CBED is maintained. In correspondence to this consideration
the effect of the step size is analysed. While a better estimation of the exit wave is
obtained with the electron dose-per-area distributed across fewer probe positions, some
probe overlap is necessary to insure the accuracy of the exit wave retrieval. Hence, the
method is most suitably applied at a balanced scan density. If these considerations are
taken into account the reconstruction method can be very dose efficient.

The Z-contrast was analysed on single atom-simulations across the periodic table.
The phase signal of the reconstructions could indeed be linked qualitatively to atomic
properties and a semi-quantitative analysis of thin specimen within the limits of the POA,
was shown to be possible. We confirmed the contrast sensitivity to atomic species and
sample thickness on experimental datasets of a SrTiO3 FIB-lamella and an Au nanorod
respectively. The observed monotonic increase of the phase signal with thickness and
nearly monotonic increase with atomic number indicates that quantitative analyses
based on the reconstruction results may be feasible.

Generally, we believe the proposed method presents an attractive imaging modality for
its super-resolution capability, high noise robustness, and the feasibility of qualitative or
even quantitative contrast analysis. While further studies would be necessary to obtain
a more detailed view on the model performance over the entire parameter space (and
beyond), we could already show that the method is robust for a wide range of practically
meaningful applications, even exhibiting reasonably good extrapolation behaviour well
beyond the maximum sample thickness of the training data. The fact that none of the
examples shown in this study exist in those exact configurations in the training data,
further indicates that the system generalizes well within the parameter interpolation
range as well.

4.5 Supporting Information

Code and Data

Trained Neural Network and Reconstruction implementations:
authors: Thomas Friedrich and Chu-Ping Yu
title: airpi
license: GNU GPL3
url: https://github.com/ThFriedrich/airpi
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Training Datsets:
authors: Thomas Friedrich, Chu-Ping Yu, Jo Verbeeck and Sandra van Aert
title: Phase Object Reconstruction for 4D-STEM using Deep Learning,

(4D-STEM Training Data)
doi: 10.5281/zenodo.6971200
license: Creative Commons Attribution 4.0 International Public License
url: https://doi.org/10.5281/zenodo.6971200

Data generation code:
authors: Thomas Friedrich and Chu-Ping Yu
title: ap_data_generation
license: GNU GPL3
url: https://github.com/ThFriedrich/ap_data_generation

STO datset:
authors: Chu-Ping Yu, Thomas Friedrich, Daen Jannis, Xie Xiaobin,

Sandra van Aert and Jo Verbeeck
title: Real Time Integration centre of Mass (riCOM) Reconstruction for 4D-STEM
doi: 10.5281/zenodo.6971200
license: Creative Commons Attribution 4.0 International Public License
url: https://doi.org/10.5281/zenodo.5572123

Zeolite datset:
authors: Daen Jannis, Christoph Hofer, Chuang Gao, Xiaobin Xie,

Armand Béché, Timothy J. Pennycook and Jo Verbeeck
title: Event driven 4D STEM acquisition with a Timepix3 detector:

microsecond dwelltime and faster scans for high precision
and low dose applications

doi: 10.5281/zenodo.6971200
license: Creative Commons Attribution 4.0 International Public License
url: https://doi.org/10.5281/zenodo.5068510

Example Datsets:
authors: Thomas Friedrich, Chu-Ping Yu, Jo Verbeeck and Sandra van Aert
title: Phase Object Reconstruction for 4D-STEM using Deep Learning,

(4D-STEM Examjple Data)
doi: 10.5281/zenodo.7034879
license: Creative Commons Attribution 4.0 International Public License
url: https://doi.org/10.5281/zenodo.7034879
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Additional data and figures

Table 4.2 | Table summarizing all occurrences of material structures used in this chapter in the
training data with corresponding simulation settings. This shows, that the examples presented
in the chapter are not actually part of the training data in those settings. "SG" is short for Space
Group. �s refers to the probe-scan-step-size, "E0" to the microscope acceleration voltage.

SG Zone
Axis

Rotation
[°]

Thickness
[Å]

E0 [kV] Aperture
[mrad]

Detector
Size
[Å
−1
]

�s [Å]

Gold (mp-81)
225 1 1 1 338.3 15.8 300 20.94 5.216 0.180
225 0 0 1 50.7 22.8 200 8.02 0.522 1.357
225 1 0 0 84.7 9.1 100 22.63 0.955 0.617
225 0 1 1 148.0 18.5 180 24.97 3.073 0.375

Graphene (mp-48)
194 1 0 1 2.6 14.1 80 15.63 0.398 0.364
194 0 1 0 273.4 13.0 160 25.28 4.242 0.405
194 1 0 0 217.1 7.6 300 20.63 1.871 0.302
194 0 1 0 168.9 24.1 30 28.43 0.473 1.070

MgO (mp-1265)
225 1 1 0 274.9 6.2 200 22.50 1.031 0.348

MoS2 (mp-2815)
194 1 0 1 75.8 8.1 140 10.60 1.355 0.381
194 0 1 1 45.9 7.9 120 26.46 0.855 0.685
194 0 1 1 330.8 23.1 200 29.22 1.370 0.145
194 1 0 1 256.0 9.4 180 18.86 1.945 0.191
194 0 1 1 22.1 29.7 160 20.48 0.760 0.471

SrTiO3 (mp-5229)
221 1 1 0 300.6 14.2 120 20.42 3.693 0.755
221 0 1 1 64.8 14.7 100 5.57 0.581 1.416
221 0 1 0 356.4 12.1 300 25.83 1.796 0.383
221 1 0 0 122.6 28.0 160 22.50 0.845 0.223
221 1 0 1 346.2 15.4 100 7.88 0.461 0.892
221 0 1 0 194.9 9.1 40 22.55 0.486 0.426
221 0 1 0 1.8 23.5 300 20.42 1.187 0.363
221 0 1 1 139.2 15.3 160 22.61 1.072 0.446
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2 nm

Figure 4.13 | Comparison of iDPC (right) and Neural network reconstructions (left) of a FIB
lamella, including a hole in the center. This illustrates reasonable tolerance of the proposed
method towards thickness variations and bending.

3 nm 3 nm 0.5 nm

Figure 4.14 | Additional iDPC reconstructions for comparison of samples presented in the
chapter, f.l.t.r: experimental Gold nanorod, experimental Zeolite, simulated twisted bilayer
graphene with infinite dose.
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This chapter uses a set of examples to compare the developed methods described in this
thesis to SOTA algorithms, in order to draw conclusions in a contextualised manner. This
allows to summarise the findings, estimate the potential impact and identify possible
applications and some future development opportunities.

5.1 Distortion correction

We could show that the use of modern CNNs holds enormous potential for the correction
of distortions. While CNNs have been used in generic image processing for denoising pur-
poses for some time, the inclusion of accurate STEM distortion models adds significant
capabilities to the system presented here. Figure 5.1 shows a comparison of the CNN
performance to SOTA algorithms for image denoising, nameley the Block-matching and
3D filtering algorithm (BM3D) [171] and the application of a Wiener filter in combination
with Anscombe and inverse Anscombe transformations [172]. Images are being evalu-
ated by the peak-signal-to-noise-ration (PSNR). It can be seen that generic denoisers
can indeed also deliver some improvements in the mid-dose range, but generally fail
to account for scan-line distortions. Also, and especially for low doses, generic algo-
rithms cannot infer any underlying structure, while the CNN can clearly recover atomic
features. Also comparing the performance to other machine learning/CNN based de-
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Figure 5.1 | Comparison of CNN-restoration, Wiener filter and BM3D algorithm for image
denoising on a simulated Pt-NP. The row labels show the dose applied to the ground truth (GT)
image to get the raw image. The numbers given in each reconstruction is the PSNR.

noising approaches illustrates the importance of the proper modelling of the noise and
distortion sources as seen in figure 5.2. In this example we compare the reconstruction
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performance of our CNN, AtomSegNet [30] and the Noise2Void-NN (N2V) [32], where the
N2V was retrained on the presented experimental image itself. The sample is a BaHfO3
nanoparticle (figure 5.2- 3 ) embedded in a superconducting REBa2Cu3O7–� (REBCO)
matrix [173, 174] (figure 5.2- 2 ), which was grown on a SrTiO3 substrate (figure 5.2- 1 ).
While all three networks successfully remove the noise from the image, there are notable
differences in the reconstruction results. In region 1 the N2V reconstruction recovers
all the weaker intensities of the Ti + O columns to some degree, which is not the case
for the AtomSegNet reconstruction. There, some of the columns blur or even disappear.
Our CNN reliably recovers all atomic columns with superior contrast to the other two
methods. Similar improvements are evident also in region 2 but most notably in region
3 , which is an embedded BaHfO3 nanoparticle. This region at the top of the image
is also degraded, presumably by either FIB damage or carbon contamination. In both
N2V and AtomSegNet reconstructions features tend to blur into diagonal streaks, while
our CNN recovers clearly distinguishable atomic columns and, given that the BaHfO3
nanoparticle was grown epitaxially on the SrTiO3 substrate, that is indeed what would
be expected. Considering the N2V network is a generic denoising network, the results
are quite remarkable, albeit the additional training step is somewhat inconvenient from
a user perspective. However, this example illustrates that the CNN presented in this
work does not only benefit from the latest advances in deep learning, but also from
the development of accurate, physically meaningful models of all distortions specific
to HAADF-STEM. This CNN is shown to be accurate, not only in perceived contrast en-
hancement, but also in a quantitative way which boosts the accuracy and precision
of atomic structure determinations in ADF-STEM studies. In some scenarios only the
proposed restoration method was able to recover atomic features at all. Such cases
should generally be checked quite carefully, but so far we have no evidence of the CNN
generating any "dreamed features". In numerous tests, well beyond what is shown in
this thesis, the CNN has proven very relaible across many samples and imaging con-
ditions. The method therefore provides a significant contribution to the wider electron
microscopy community. We believe that the combination of sound physical models
underlying the training data and a rigourous approach to model evaluation throughout
the development process, including repeated quantitative studies, make a strong point
for the trustworthiness of the reconstructions and we hope that the community will
appreciate the contribution.
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Noise2Void
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Figure 5.2 | Comparison of different CNN-restoration approaches on an experimental HAADF-
STEM dataset of a BaHfO3 nanoparticle ( 3 ) embedded in a superconducting REBa2Cu3O7–�
(REBCO) matrix ( 2 ), which grew epitaxially on a SrTiO3 substrate( 1 ). Images were acquired on
a non-probe-corrected Titan microscope with 300 keV at KIT Karlsruhe. The data is described in
detail in references [173] and [174]
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5.2 Live 4D-STEM Methods

This thesis describes two newmethods to interpret 4D-STEM data, riCOM1 and AIRPI, both
of which can run efficiently and accurately on a very small subset of CBEDs, such that an
image of the object is created one scan-point at a time, without iterative optimizations.
This not only permits live imaging in principle, but also allows experimentalists to work
with datasets of arbitrary size, as the computer memory is no longer dictating the
maximum file size. RiCOM benefits from a dedicated and efficient reformulation and
implementation of conventional algorithms, based on DPC, while AIRPI is using a CNN at
its core to reconstruct electron exit waves. The imaging characteristics of both methods
were described in detail in chapters 3.4 and 4.3, but some further examples, including
direct comparisons between the two methods and established algorithms are presented
here in order to provide a better context as to how and in which circumstances these
new approaches may be useful. Figure 5.3 shows images of a Pt nanoparticle, embedded
in an amorphous carbon and graphite matrix, taken at 200 keV and a convergence
angle of 21 mrad. In this example the probe and step size are relatively small and the
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Figure 5.3 | Comparison of different reconstruction methods on a Pt-nanoparticles in a graphite
matrix.

dose is actually high enough, such that ADF and BF images can show reasonably good
contrast at atomic resolution as seen at the NP at 1 . In the ADF image the edge of the

1In figure labels the kernel size used for the riCOM reconstruction is given in brackets, e.g. riCOM(3)
denotes a kernel radius of 3 pixels. No filtering was applied unless explicitly stated.
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C matrix ( 4 ), as well as the out-of-zone-axis NPs at 2 , 5 and to the right of 1 can be
identified due to the Z- and thickness contrast dependency. However, due to the relative
insensitivity to light elements, many details of the graphite arrangements are lost (e.g. at
3 or along the edge at 4 ). That is where phase imaging methods, including iDPC, SSB,
riCOM and AIRPI can provide additional information. However, the iDPC result is difficult
to interpret due to the large low-frequency obstructions. The flexibility riCOM allows in
terms of frequency selection makes it possible to isolate the contributions responsible
for the features of interest. This way, the atomic resolution features in the image can be
highlighted, at the expense of low frequency features, such as the particle at 2 or the
edge ( 4 ), which become all but invisible. This is also seen for the SSB reconstruction,
which has an intrinsic frequency filtering effect due to its contrast transfer function (CTF)
[50]. Though the results of SSB and riCOM are very similar, it should be noted that riCOM
is orders of magnitude faster, especially in a live imaging scenario and easier to use
from a user perspective. AIRPI shows a reconstruction dominated by Z- and thickness
contrast, similar to the ADF image. Because it is more sensitive to light elements, the
carbon matrix has a stronger effect and the graphite sheets are still clearly visible. At
the same time the resolution is also very good, so no details are lost or blurry. This
may even cause different interpretations to be made. For example the magnified insets
show a supposedly single Pt atom or column to the side of the particle. Only in the AIRPI
image the two graphite sheets in between the particles are clearly visible, giving rise
to the possibility that this contrast may be caused by the carbon, similar as at point 3 .
All previously mentioned features are visible in the AIRPI-reconstruction as well, with
superior resolution which is arguably a very intuitive and comprehensive representation
of the actual sample under study. Particularly in a live imaging context, when exploring
the sample, this is likely to be the most favourable CTF among the methods presented
here for many microscopists.

A similar point can be made for the example given in figure 5.4, which shows PbBrFA
nanocrystals (NCs) in (110) zone axis orientation. This organic-inorganic lead halide
perovskite contains a formamidinium (FA) group at the A-cation [175, 176], which
consists of light atoms (C,H and N) only.
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Accordingly, they are for all intents and purposes invisible in the ADF image. The intensity
smudge in between the two NCs shows weak atomic features in iDPC, SSB and riCOM,
while in the AIRPI reconstruction this can be clearly identified as a small Pb-NC in zone
axis, which may form as a result of beam damage. Line profiles are overlaid on the
images and plotted out underneath the images in figure 5.4. The direction goes from
the top left to the bottom right of the lines, around a corner, such that the first half
of the line goes across some Pb + Br, and pure Br columns and the second half spans
across pure Br and the FA columns. Dashed lines indicate the integration range used for
the line profiles. Despite the integration, the ADF profile is still very noisy and only the
Pb columns can be reliably identified, but Br columns are mostly visible too. The iDPC
reconstruction is again obstructed by low frequency components, although all columns
show some contrast. The riCOM and SSB reconstructions are qualitatively fairly similar.
However, it is easier to distinguish the different column types in riCOM. At least the
Pb + Br, and the pure Br columns can be separated by their different peak intensities.
However, the FA- and pure Br-columns can be reliably distinguished only by AIRPI, as
seen in the right half of the line profiles of figure 5.4. Therefore, also for this example
AIRPI shows some advantageous imaging characteristics.

However, this is not always the case. Figure 5.5 shows a reconstruction of a single
layer WS2 [167]. With a step size of only 0.09 Å, an acceleration voltage of 60 kV

ADF

1 nm

iDPC

SSB riCOM(3) AIRPI

PACBED

Figure 5.5 | Comparison of common reconstruction methods on 2D-WS2. The dataset was
recorded at 60 keV, an convergence angle of 25 mrad and a step size of 0.09 Å. It includes
residual aberrations, most notably 2-fold astigmatism, The dataset was binned by a factor 8 for
AIRPI.
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and an aperture angle of 25 mrad this data was recorded with a relatively large probe
(d ≈ 4.75Å), dense scan grid and low dose. These settings are most beneficial for
ptychographical reconstructions, and likely the data was recorded specifically to suit
these algorithms. Methods like ADF, iDPC and riCOM, which depend on a sharp probe
for a high resolution obviously are at a disadvantage with such settings. AIRPI can in
principle handle large probes and even benefits from it to some extent, provided that
the dose per CBED is large enough, as described in section 4.3.2. This can be mitigated
by binning down the dataset (e.g. adding 2x2 CBEDs into one while decreasing the
step size by 50%), which was done for the reconstruction in figure 5.5 by a factor of
8 to obtain a decent image. The SSB reconstruction is still arguably of better quality.
Inspecting the position-averaged-CBED (PACBED) in figure 5.5 reveals some further
aspects disadvantageous for AIRPI. Firstly, the pattern is highly off centre and includes
shadowing from the HAADF detector. Even though we correct for this COM-shift in a
pre-processing step, a large amount of the dark field electrons is lost, even worse so in a
non-radially symmetric way. This scenario was not considered in the training and is likely
to deteriorate the accuracy of the CNN. Also non-spherically-symmetric aberrations
were not considered, but as highlighted by the overlaid red circle in the PACBED, the
probe function clearly includes 2-fold astigmatism, which results in an elongation of
the probe in one axis. A great advantage of SSB and other ptychographic methods is
that they can actually correct for these aberrations (post-acquisition at least), while
AIRPI relies on a very well adjusted instrument with probe corrector and a reasonably
accurate approximation of the probe function. However, this probe function is hardly
known exactly, which clearly presents a limitation to AIRPI in its current implementation.
Considering how poorly the WS2 dataset is suited for AIRPI, it is still encouraging that
the reconstruction does not fail completely or introduces unreal artefacts but merely
degrades in quality and resolution.

Table 5.1 summarises the most important aspects of the discussed 4D-STEM reconstruc-
tion methods. It is fair to state that in terms of dose efficiency and resolution vSTEM
methods have a clear disadvantage compared to all phase retrieval approaches, but it
allows quantitative imaging (e.g. atom counting), especially when employing techniques
like complementary ADF [177]. Due to the missing low frequency components phase
retrieval methods hardly allow quantitative structure analysis beyond a thickness of
a few atoms. AIRPI can overcome these limitations in part as shown in figure 4.10.
Wether it can be used reliably for atom counting or not will have to be determined in a
dedicated study, but the results outlined in section 4.3.3 suggest that the contrast is
indeed dependent on atomic species and thickness, as it is the case for ADF, albeit the
Z-sensitivity and behaviour at larger thicknesses is different. Regarding the usability
of the methods ADF and riCOM are the easiest to use as they require only very few
parameters that are intuitively understood without too much in-depth knowledge of the
method and require no pixel-size calibration. They are also considerably faster and
can benefit greatly and easily from event-driven electron cameras. Independent of the
implementation, the memory requirements and computational complexity scales with
O(1) and O(N) respectively for ADF, riCOM and AIRPI, which is an important advantage
over direct ptychography methods such as SSB [148] and WDD [178], when scaling to
larger datasets. Table 5.1 is a somewhat simplistic summary of these methods, but
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Table 5.1 | Table comparing the features of live imaging approaches ADF, SSB, riCOM and AIRPI.

ADF SSB riCOM AIRPI

Necessary information

• COM
• integration
limits

• conv. angle
• step size
• energy
• rotation

• kernel size
• rotation
• filter limits
(optional)

• conv. angle
• step size
• energy
• rotation

Imaging characteristics

Contrast de-
termined by

Species and
thicknessa

Frequency (ex-
periment condi-
tions)

Frequency (ad-
justable)

Species and
thickness

Resolution
limit

⪅ Probe size ⪅ Convergence
angle

⪅ Probe size ⪅ Collection
angle

Dose robust-
ness

Poor Very goodb Very good Very goodb

Quantitative
imaging

yes no no limited/possibly

Performance

Speed
(Frames)

≈ 30 kHz ≈ 1 kHz [148] ≈ 30 kHz ≈ 4 kHz

Speed
(Events)

⪆ 100 kHz - ⪆ 100 kHz -

Memory scala-
bility

O(1) O(N) O(1) O(1)

Computanional
scalability

O(N) O(N2) O(N) O(N)

aLight elements are often not visible
bAt appropriate experimental conditions

captures the most important points and may be useful as a quick-reference overview for
experimentalists, looking for the right tool for their image reconstructions.

Our contribution to the microscopy community through the work on riCOM and AIRPI
lies not only in developing and publishing these methods, but also in making them
accessible. This includes developing performant code beyond the proof-of-concept
level, publishing this code open source under permissive licenses and documenting it as
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well. Especially the riCOM software has reached a relatively advanced state, with well
performing C++ implementations including camera interfaces and file type handling for
the MediPix 3 and AdvaCam TimePix 3 cameras, and a live interface for the "CheeTah"-
camera from Amsterdam scientific instruments (ASI) currently under development.
This allows not only live imaging, but also presents a very convenient tool to quickly
inspect datasets, without the need for any kind of application programming interface
(API) or python scripting. This also implies that no setup of Java environments, python
or virtual environments are necessary (contrary to most other toolboxes available to
the community). Instead the entire software compiles into a ≈1 MB executable, that
links into standard OS libraries. Since the compilation (for Windows and Linux) is
automated in a GitHub continuous integration (CI) pipeline, riCOM requires essentially
no setup beyond downloading the pre-compiled software. RiCOM includes visualisation
options for riCOM, COM-X and COM-Y maps, vSTEM and electric field mapping. The
combination of an intuitive GUI (and CLI for e.g. bash-scripting), out-of-the-box interfaces,
no meaningful hardware requirements, easy setup and various imaging modalities
makes this a unique tool for microscopists. Further improvements, besides implementing
more camera interfaces, could be made by a more efficient multi-threading strategy.
This mainly affects the performance of the COM integration, which presents a bottleneck
when the kernel size is large in the current implementation. For AIRPI the situation is
somewhat more difficult due to the relatively complex dependency environment for GPU-
accelerated machine learning frameworks. For this reason the code and trained model
were published on GitHub alongside a Docker container, which is comparable to a virtual
machine that includes all necessary libraries and dependencies. This makes the use
much easier but still requires Docker to be installed (and Windows subsystem for Linux
(WSL) for Windows users), which can also be challenging. Eventually, we hope to use
Tensorflow Lite for the model deployment, which allows model quantization that could
potentially lead to significant performance improvements. Since Tensorflow Lite has
language support for C++ this would also open a path towards integrating AIRPI into the
riCOM codebase, where all the camera- and file-interfaces, as well as visualisation tools
could be readily used. This transition would require a significant amount of technical
work however.
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URL (Code): https://github.com/ThFriedrich/riCOM_cpp

2. AIRPI (AI-assisted rapid phase imaging for 4D-STEM )
Language: Python
Role: Creator & Owner
License: GNU GPL3
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URL: https://worldwide.espacenet.com

2. Can AI do your Ptychography?
Authors: T. Friedrich, C.-P. Yu,

J. Verbeeck and S. van Aert
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