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Summary

Queueing theory plays a crucial role in modelling systems with congestion. It has been
long applied in analyzing and improving the performance of communication systems.
As modern communication systems often are composed of multiple heterogeneous re-
sources, the analysis of such large-scale systems using traditional queueing theory can be
prohibitive. When analyzing such systems exactly, one usually comes across the problem
of the, so called, state space explosion.

Large-scale systems are therefore often studied through mean field analysis: if a sys-
tem consists of a large number of queues, it can be approximated by a system with
infinitely many queues. The analysis of the model of the latter system, the mean field
model, is generally more straightforward, as it circumvents the problem of the state space
explosion.

The goal of this thesis is to analyze and gain insight in the performance of existing
and novel large-scale load balancing policies through the use of mean field modelling.
Each chapter of this thesis contains the mean field analysis of a family of systems with
these policies. In the analysis, techniques from dynamical systems, stochastic modelling,
probability theory, numerical analysis and simulations are used.

The chapters are grouped into three parts. The first of these parts deals with monotone
systems. These systems have an apparent ordering of states that is maintained over time.
The next part deals with the analysis of systems with job stealing and multithreaded
computing. In these systems parts of a job can be transferred between queues and can be
thus worked on by different queues concurrently. In the last part several hyperscalable
policies with a single dispatcher are studied. These are policies where a central dispatcher
distributes the jobs to the queues, based on their estimated queue lengths. The policies
are called hyperscalable if the message overhead between the queues and the dispatcher
is less than one message per job on average. For the systems in the last two parts,
simulations are performed for finite number of queues to measure the accuracy of the
mean field approximation.
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Chapter 1111111111111111111111111111111111111111111111111111111111111111111111111
Introduction

Imagine you find yourself in the following situation. You go to a supermarket. You
search through the aisles for the products you want and when you are done you proceed
to the cash registers to pay. Arriving at the cash registers, you notice that three of them
are open. You see that there are customers queueing for each of these cash registers.
Which of these queues do you choose to wait in? Without overthinking it, you simply
count the number of customers in each queue and decide to join the one with the least
customers. Assuming you want to wait the least amount of time, is this a good strategy?

Queueing theory is used to study queueing systems and tries to answer questions such as
the one above. A queueing system is, roughly stated, any system where congestion occurs.
Queueing systems consist of one or multiple queues, each queue further consisting of
one or multiple service stations (servers) and a buffer. In this thesis, every queue has
a single server. Every server provides service to the customers (jobs) that arrive to the
server’s queue. When studying a queueing system, we have to specify several things.
First, the arrival process of the customers and the way they are distributed among the
queues. The latter is called a “load balancing policy”. One also has to specify in what
manner do the customers queue (f.e. in what order the customers are serviced). This is
called the “scheduling policy”, also known as the “service discipline”.

In the example above, the queueing system consists of three servers (cashiers), each
cashier handling customers in the order of their arrival to the respective queue (the
scheduling policy is “first come, first serve”). The load balancing policy is “join the
shortest queue”.

Continuing with the example, after you joined the shortest queue, it still turns out that
the customers in the other queues get serviced faster. How is that possible? Maybe, your
cashier works slower that the others... In terms of queueing theory, the servers possibly
are not homogeneous (they are heterogeneous). Whether the servers are homogeneous
or not is thus an important property of a queueing system.

Another possible explanation is that it just so happens that in your chosen queue, the
customers have way more products that need to be scanned than in the other queues.
In queueing theory this is modelled by assuming that the job sizes are random, this
randomness can be described by specifying the job size distribution.

When modelling a queueing system we also have to make a bunch of other assumptions,
for example:

5



6 CHAPTER 1. INTRODUCTION

• Is it possible that the service stations (in this case, the cash registers or the cashiers)
break down?

• Do bored customers decide at some point to simply leave the system; here, the store
(hopefully, without the products)?

• ...

Once all these assumptions are specified, the stability and the performance of the system
can be studied. Stability means the following: if we let the system run infinitely long,
does the number of customers in a queue stay finite or does it keep growing (on average).
If the former is true for every queue of the system, the system is stable. The performance
of a queuing system is usually measured through the “mean response time”. This is
the average time that a customer has to stay in the system (i.e. the sum of the time the
customer has to wait in the queue and the time it takes to service the customer).

This thesis, that is the fruit of almost four years of my labour, deals with the analysis
of the long term behaviour of several load balancing and scheduling policies in large
scale systems. These are systems consisting of a large number of queues. The analysis
deals both with well-known as well as novel policies. Each chapter of this thesis contains
the analysis of a family of systems with these policies. In the analysis, techniques from
dynamical systems, stochastic modelling, probability theory, numerical analysis and
simulations are used.

In the remainder of the introduction, I shall give a brief explanation on the numbering
used in the thesis and further on how the thesis is structured. When explaining the latter,
I shall also suggest a reading order based on the reader’s level of proficiency in queueing
theory.

1.1 Structure of the thesis

1.1.1 Numbering used in the thesis

The thesis is made up of four parts followed by appendices. The four parts are numbered
using roman numerals, while the different appendices use capital letters for labels. In the
rest of the numbering explained further, Arabic numerals are used. Each part is split up
into several numbered chapters (the numbering is not reset between parts). Every chapter
consists of several sections, which in turn can further consist of subsections. These are
numbered as chapter.section and chapter.section.subsection respectively. So, for example,
you are now reading Part I, Chapter 1, Section 1.1 and Subsection 1.1.1. The numbering
of sections and subsections is respectively reset between chapters and sections. For
example, the first section of the next chapter is Section 2.1.

Sections can also contain “environments”, namely: theorems, propositions, lemmas, defi-
nitions, remarks, examples and conjectures. These are numbered as chapter.section.environ-
ment, with the numbering being reset between sections, for example:

Example 1.1.1. This is an example.
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Sometimes, references are made to expressions or equations. They are numbered as
(chapter.expression), for example:

1 + 1 = 2. (1.1)

This numbering is reset between chapters.

1.1.2 Chapters of the thesis and suggested reading order

As noted, the thesis is made up out of four parts and three appendices. The four parts
are as follows:

• Part I: Introductory Chapters. This is the part you are reading now. It contains
several introductory chapters to the thesis, namely: Chapter 2 on all important
distributions used in this thesis, followed by a chapter with four elementary single
server queueing systems (Chapter 3). There we also touch on several matrix identi-
ties used from Part III onward. The last introductory chapter, Chapter 4, contains an
explanation on two techniques used to approximate systems with a large number
of servers.

• Part II: Monotone Systems. The part consists of two chapters, each dealing with
mean field models of a family of monotone systems. These are systems where
the states show a certain ordering that is kept over time: if a state of the system
is dominated w.r.t. this ordering by another state at some timestamp, it will stay
dominated by the other system at all future times.

• Part III: Multithreaded Computing. The part consists of three chapters, each based
on a published paper. It deals with systems where parts of a job can be concurrently
worked on by different servers.

• Part IV: Hyperscalable Policies. In this part we study three hyperscalable policies.
These are policies with communication overhead below 1. This means the follow-
ing. We assume that there is a central dispatcher that assigns jobs to the queues
based on information on the queue lengths that the dispatcher possesses. This
information is updated through the messages sent between the dispatcher and the
queues. We call a load balancing policy hyperscalable if, on average, less than one
message per job is sent.

Note, that Parts II-IV contain original research for this thesis. The parts above are followed
by the appendices containing a list of abbreviations (Appendix A) and a list of symbols
(Appendix B). The final appendix (Appendix C) is a Dutch summary of the thesis.

I tried to make the thesis accessible to anybody with a basic understanding of probability
theory, calculus, dynamical systems and matrices. To this end, I made the thesis as
self-contained as possible. Below, I suggest a reading order of the chapters of this thesis,
based on your level of experience with queueing theory.

If you, dear reader, have no prior experience with queueing theory, I suggest you first
thoroughly read the introductory chapters (Chapters 2-4) in the presented order. If you
have a basic understanding of queueing theory, I still suggest you read the introductory
chapters. If you however are well versed in queueing theory, you may start reading Parts
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II-IV right away. These parts can be read in any order and so can the chapters contained
in them. I do however believe that the chapters of Parts III and IV can be best read in the
order they are presented here.

As is customary in mathematical literature, I shall use the word “we” instead of “I”
starting form the next chapter of the thesis. I hope you enjoy reading this book!



Chapter 2222222222222222222222222222222222222222222222222222222222222222222222222
Frequently used distributions

When modelling any type of system that has randomness (aka a stochastic system), we
usually have to specify what we mean by “random”. In mathematical terms, we have
to describe the “randomness” by using random variable(s) and specify the distribution
of said variable(s). In this chapter we therefore introduce all distributions used in this
thesis, together with some important properties thereof.

The chapter is structured as follows. In Section 2.1, we define the exponential distribu-
tion, using the definition we provide a characterisation of the Poisson process. We also
list several properties of this distribution and of the Poisson process. In Section 2.2, we
define a generalization of the exponential distribution, namely (continuous) phase type
distributions and list properties thereof used throughout the thesis. Several important
examples of PH distributions, together with their properties are shown in Section 2.3.
Section 2.4 deals with distributions that are not of the phase type but are used through-
out the paper, namely discrete distributions and bounded Pareto distributions. When
introducing the former of the two, we also define generating functions. Finally Section
2.5 contains the definition and several properties of Laplace-Stieltjes transforms.

2.1 Exponential distribution and the Poisson process

In this section, which is loosely based on [78], we introduce the exponential distribution
and the Poisson process. There are multiple, different, equivalent ways for defining the
latter of the two. However, for simplicity, we will introduce the Poisson process using
the exponential distribution.
We also provide several useful properties of the two. These properties are part of
the reason why exponential distributions and Poisson processes are widely used when
modelling real life situations.

Definition 2.1.1 (Exponential distribution). We say that a positive valued random vari-
able 𝑋 is exponentially distributed with parameter �, 𝑋 ∼ exp(�) for short, if it has a
probability density function (pdf) given by 𝑓𝑋(𝑡) = �𝑒−�𝑡 . In this case, its cumulative
distribution function (cdf) is given by 𝐹𝑋(𝑡) = 1 − 𝑒−�𝑡 and its mean by 𝐸[𝑋] = 1/�.

In general, if a cdf 𝐹 is differentiable, then the pdf 𝑓 can be obtained as 𝑓 (𝑡) = 𝐹′(𝑡). For
a simple explanation on cdfs see Subsection 2.4.1.

9
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Suppose we wish to model the number of incoming calls to a call centre or the number of
cars passing by a certain point on the road. If we assume that the average traffic intensity
is constant, then we can use the Poisson process to this end.

Definition 2.1.2 (Poisson (counting) process). A counting process (𝑃(𝑡))𝑡∈[0,+∞[, where
counted occurrences will be called arrivals henceforth, is called Poisson with parame-
ter/rate � if the following three conditions hold:

1. 𝑃(0) = 0, i.e. when we start counting we have observed no arrivals.

2. 𝑃(𝑡) has independent increments, i.e. the number of arrivals in non-overlapping
time intervals is independent.

3. The interarrival times, that is the times between consecutive arrivals, are exponen-
tially distributed with parameter �.

We defined the Poisson process with rate � using one of equivalent definitions, namely
through exponential interarrival times. An immediate consequence is that it takes on
average 1/� time units between arrivals.
The Poisson process can also be defined as a counting process where the number of
arrivals in a time interval of length 𝑡 has a Poisson(�𝑡) distribution or by giving the
probability that an arrival occurs between time 𝑡 and 𝑡 + Δ𝑡 [30, Section 1.7.].

We now list some properties of the exponential distribution and the Poisson process. The
first one is the memoryless property of the exponential distribution [30, Section 1.8.].

Theorem 2.1.3 (Memorylessness). The exponential distribution with parameter � is memory-
less, meaning for 𝑋 ∼ exp(�) and for 𝑡 , 𝑠 ≥ 0 we have

𝑃(𝑋 > 𝑡 + 𝑠 |𝑋 > 𝑠) = 𝑃(𝑋 > 𝑡).

As interarrival times of a Poisson process are exponentially distributed, memorylessness
implies that the timestamps of future arrivals are independent of those of previous ar-
rivals. As such the memoryless property makes the exponential distribution an attractive
tool in modelling stochastic systems. Another such property is the following:

Theorem 2.1.4 (Minimum of two independent exponential distributions). Let𝑋1 and𝑋2 be
independent exponentially distributed random variables with parameters �1 and �2, respectively.
Then, min(𝑋1 , 𝑋2) is exponentially distributed with parameter �1 + �2. Further,

𝑃(𝑋1 < 𝑋2) =
�1

�1 + �2
.

Corollary 2.1.5. Let 𝑋1 , 𝑋2 , . . . , 𝑋𝑛 be independent exponentially distributed random vari-
ables with parameters �1 ,�2 , . . . ,�𝑛 , respectively. Then, min(𝑋1 , 𝑋2 , . . . , 𝑋𝑛) is exponentially
distributed with parameter �1 + �2 + · · · + �𝑛 . Further,

𝑃(𝑋1 = min(𝑋1 , . . . , 𝑋𝑛)) =
�1

�1 + · · · + �𝑛
.

Proof. Both claims follow immediately from Theorem 2.1.4. □
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In the next section we will make use of this Corollary when explaining phase type
distributions. We now provide two important properties of the Poisson process.

Theorem 2.1.6 (Poisson superposition). The superposition of two independent Poisson pro-
cesses with parameters �1 and �2 is a Poisson process with parameter �1 + �2. In other words, if
arrivals can occur due to two independent Poisson processes with parameters �1 and �2, they in
fact occur due to a Poisson process with parameter �1 + �2.

Proof. Let 𝐼1 ∼ exp(�1) and 𝐼2 ∼ exp(�2) denote the interarrival times of the first and
second Poisson process respectively. As interarrival times of both processes are memo-
ryless (cf. Theorem 2.1.3), the interarrival time of the superposed process is distributed
as min(𝐼1 , 𝐼2). Due to Theorem 2.1.4, the interarrival times of the superposed process are
exponentially distributed with parameter �1 + �2. □

Theorem 2.1.7 (Poisson random split). If a Poisson process with parameter � is randomly split
into two subprocesses with probability 𝑝 and 1 − 𝑝, then the resulting processes are independent
Poisson processes with parameters �𝑝 and �(1 − 𝑝).

We reflect for a moment on Theorems 2.1.6 and 2.1.7. In this thesis we study large scale
systems, that is, systems consisting of large number of queues. Let us denote this number
by 𝑁 . Due to the last two results, it is equivalent to say that

• each queue has its own Poisson arrival process with rate �; and that

• the system as a whole has a Poisson arrival process with rate𝑁�with each incoming
arrival being assigned at random to one of these 𝑁 queues.

2.2 Phase type distributions

Suppose you wish to model the production time of some product that requires several
production steps/phases. In many such cases the production time can be described using
a distribution of the phase type. A phase-type distribution can be of either continuous
or discrete time. As we only use the former in this thesis, we only introduce continuous
phase type distributions, or PH distributions for short. As PH distributions can be
defined through Markov chains (MCs for short), we will also take the opportunity to
provide a very brief explanation on continuous time Markov chains (CTMCs).

Definition 2.2.1 (Continuous time distribution of the phase type). A random variable
𝑋 is (continuous time) PH-distributed with representation (𝛼, 𝑆), if 𝑋 is the time until
absorption in state 0 of the CTMC characterised by the initial probability vector [𝛼0 , 𝛼]
and rate matrix

𝑄 =

[
0 0′𝑛
𝑠∗ 𝑆

]
,

where

• 𝛼0 ≥ 0 and 𝛼 is a positive valued row vector of length 𝑛, such that 𝛼1𝑛 ≤ 1 and
𝛼0 + 𝛼1𝑛 = 1 (where 1𝑛 is a column vector of ones of height 𝑛);
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• 𝑆 is an 𝑛 × 𝑛 matrix, with negative diagonal entries, positive off-diagonal entries
and with negative row sums1;

• 𝑠∗ is a positive column vector of height 𝑛 given by 𝑠∗ = −𝑆1𝑛 ; and

• where the states of the CTMC are labelled as 0, 1, . . . , 𝑛.

In this case, we write 𝑋 ∼ 𝑃𝐻(𝛼, 𝑆), we call 𝛼 the initial probability distribution, 𝑆 the
phase matrix, 𝑛 the number of phases of the distribution and (𝛼, 𝑆) a representation of
𝑋.

Let us unpack this definition. Suppose 𝑋 ∼ 𝑃𝐻(𝛼, 𝑆) is the distribution of the time that
is needed to finish some job.

The vector [𝛼0 , 𝛼]: This vector holds the probabilities that the job starts in a given phase,
f.e. the third entry of 𝛼 is the probability that the job is in phase 3 at time 0. Note, that 𝛼0
is the probability that the job is finished immediately upon starting, that is at time 0. As
we always want jobs to carry some work in this thesis, we assume throughout the other
sections that 𝛼0 = 0. As 𝛼0 and every entry of 𝛼 holds some probability, we get that 𝛼0
and 𝛼 must be positive valued. Note further, that 𝛼0 + 𝛼1𝑛 = 1 comes from the fact that
the job starts in some phase. This equation also explains why we do not need to note the
value of 𝛼0 in the representation (𝛼, 𝑆).

The states of the CTMC: As 𝑆 is an 𝑛 × 𝑛 matrix, 𝑄 is an (𝑛 + 1) × (𝑛 + 1) matrix. The
rows and columns of 𝑆 are labelled from 1 to 𝑛 while those of 𝑄 are labelled from 0 to
𝑛. In the latter manner, we also label the states of the CTMC. As the name suggests, the
state of the CTMC is used to denote the current state of the job. Note, that states 1 to 𝑛
of the CTMC are called “phases” of the distribution.

The matrix 𝑄: The moment the job enters phase 𝑖, 𝑛 exponential timers get started. We
label these timers from 0 to 𝑛 but skip label 𝑖. The 0-th, first, second,. . . , (𝑖−1)-st, (𝑖+1)-st,
. . . , 𝑛-th timer counts down time drawn at random from exponential distribution with
parameter 𝑄𝑖 ,0 , 𝑄𝑖 ,1 , . . . , 𝑄𝑖 ,𝑖−1, 𝑄𝑖 ,𝑖+1 , . . . , 𝑄𝑖 ,𝑛 respectively. Here 𝑄𝑖 , 𝑗 denotes the entry
of 𝑄 at row 𝑖 and column 𝑗 ((𝑖 , 𝑗)-th entry of 𝑄 for short). Suppose that the 𝑗-th timer
is the first to run out of time. At that moment the job changes phase from 𝑖 to 𝑗, or
equivalently, the CTMC transitions from state 𝑖 to 𝑗. If 𝑗 = 0, the job is finished. Notice
how the first row of 𝑄 only contains zeros, therefore, once the CTMC enters state 0 it
cannot leave it anymore. This is why the 0-th state is called “absorbing”. Note further,
that if 𝑄𝑖 , 𝑗 = 0, then the corresponding timer never runs out of time.

We can also characterise the probabilities that the CTMC in state 𝑖 will enter state 𝑗 next.
By using Corollary 2.1.5, we know that the probability that 𝑗-th timer is the first one to
run out is given by

𝑄𝑖 , 𝑗

𝑄𝑖 ,0 + · · · +𝑄𝑖 ,𝑖−1 +𝑄𝑖 ,𝑖+1 + · · · +𝑄𝑖 ,𝑛

By using 𝑠∗ = −𝑆1𝑛 , the above expression can be simplified to −𝑄𝑖 , 𝑗/𝑄𝑖 ,𝑖 . It also follows
that the mean time until some timer runs out is −1/𝑄𝑖 ,𝑖 . In fact, −𝑄𝑖 ,𝑖 can be thought of
as the rate at which the job leaves phase 𝑖 or, equivalently, as the rate at which the CTMC

1A matrix that has these properties is called a subgenerator matrix.
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leaves state 𝑖. Note, that 𝑖-th entry of the vector 𝑠∗ thus contains the rate at which the
CTMC goes from state 𝑖 to state 0, i.e. the rate at which the job gets finished given that it
is in phase 𝑖.

Note further, that the transition probabilities to the next phase/state only depend on
the current phase/state and not on previous phases nor on the number of previous
transitions. This is in fact what is called the “Markov property”.

Note finally, that for a PH distribution there exist infinitely many representations. As an
example note, that a hyperexponential distribution (see Subsection 2.3.2), with all rates
�𝑖 the same, is simply an exponential distribution.

We now wish to proceed with properties of PH distributions. To this end we need to be
able to raise the Euler’s number 𝑒 to an exponent that is a matrix. The next definition
explains how to perform this operation.

Definition 2.2.2. Let 𝐴 be a square matrix. The exponential of 𝐴, denoted by 𝑒𝐴, is
defined as

𝑒𝐴 =

∞∑
𝑘=0

𝐴𝑘

𝑘! = 𝐼 + 𝐴 + 𝐴2

2! + 𝐴3

3! + 𝐴4

4! + . . . ,

where 𝑘! denotes the factorial of 𝑘 given by 1 · 2 · 3 · . . . · 𝑘.

Theorem 2.2.3. Let 𝑋 ∼ 𝑃𝐻(𝛼, 𝑆). The cumulative distribution function (cdf) of 𝑋 is given by

𝐹(𝑡) = 1 − 𝛼𝑒−𝑆𝑡1, for 𝑡 ≥ 0,

where 1 is a column vector of ones of the appropriate height, i.e. 1 has the same height as the
number of phases of 𝑃𝐻(𝛼, 𝑆). Further, the probability density function (pdf) of 𝑋 is given by

𝑓 (𝑡) = 𝛼𝑒−𝑆𝑡 𝑠∗ , for 𝑡 > 0

and 𝑓 (0) = 𝛼0.

Proof. See f.e. [48, Theorem 2.4.1] or Lemma 2.2.2. and the subsequent remark in [60]. □

Note, 𝐹(𝑡) is the probability that the absorption in state 0 occurs before time 𝑡. One might
ask: can we be certain that the absorption in state 0 will occur? This leads to the following
definition.

Definition 2.2.4. We call a PH distribution nondefective if the absorption into state 0
occurs in finite time with probability 1, i.e. if 𝐹(∞) = 1.

Another way of saying that a PH distribution is nondefective is calling the states that the
CTMC can visit “transient”. Simply put, a transient state is a state that gets visited only
a finite number of times by the CTMC, which must be the case if the PH distribution is
nondefective.
In case the phase matrix of a representation is non-singular, we get that the PH distribu-
tion is nondefective:

Theorem 2.2.5. Consider a distribution with representation 𝑃𝐻(𝛼, 𝑆). Absorption into state 0
occurs with probability 1 from any phase if and only if the matrix 𝑆 is non-singular.
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Proof. See the proof of [48, Theorem 2.4.3] or [60, Lemma 2.2.1.]. □

Conversely, if a PH distribution is nondefective, then it has representations with non-
singular phase matrices:

Theorem 2.2.6. Let 𝑋 be a PH distributed random variable. Suppose that this PH distribution
is nondefective. Then, there exist a vector 𝛼 and an invertible matrix 𝑆 such that 𝑋 ∼ 𝑃𝐻(𝛼, 𝑆).

Proof. See [48, Theorem 2.4.4]. □

Throughout this thesis, we not only assume that all used PH-distributions are non-
defective, but also assume that they are described using a representation with non-
singular/invertible phase matrix.

Theorem 2.2.7. Let 𝑋 ∼ 𝑃𝐻(𝛼, 𝑆) and suppose 𝑆 is non-singular. Then (−𝑆−1)𝑖 , 𝑗 is the
expected total time until absorption spent in phase 𝑗 given the distribution started in phase 𝑖.
As a consequence, (−𝑆−1)𝑖 , 𝑗 ≥ 0. Further, the expected value of 𝑋, that is, the mean time until
absorption in state 0 is given by

𝐸[𝑋] = 𝛼(−𝑆)−11.

Proof. The proof of the first statement can be found in [48, Theorem 2.4.3]. The second
and the third statement follow immediately from the first. □

In this thesis we sometimes have to work with PH distributions that have mean 1, i.e. if
𝑋 ∼ 𝑃𝐻(𝛼, 𝑆), then 𝐸[𝑋] = 1. In this case, the next proposition can be of use.

Proposition 2.2.8. Let 𝑋 ∼ 𝑃𝐻(𝛼, 𝑆). Suppose that 𝑆 is non-singular and 𝐸[𝑋] > 0. Then for
𝑌 ∼ 𝑃𝐻(𝛼, 𝑆 · 𝛼(−𝑆)−11), we have 𝐸[𝑌] = 1.

Proof. By Theorem 2.2.7, we have

𝐸[𝑌] = 𝛼
[
−𝑆 · 𝛼(−𝑆)−11

]−1 1 = 𝛼(−𝑆)−11/𝛼(−𝑆)−11 = 1,

where in the last equality, we have used 𝐸[𝑋] = 𝛼(−𝑆)−11 > 0. □

The following theorem states that the maximum and minimum of two PH distributions
is once again a PH distribution.

Theorem 2.2.9 (Maximum and minimum of two PH distributions). Let 𝑋,𝑌 be two PH
variables with representations (𝛼, 𝑃) and (𝛽, 𝑄) respectively. Denote by 𝑛𝑃 and 𝑛𝑄 respectively
the number of phases of these representations. Denote further 𝑝∗ = −𝑃1𝑛𝑃 and 𝑞∗ = −𝑄1𝑛𝑄 .
Then:

• max(𝑋,𝑌) is PH-distributed and has a representation (𝛾, 𝑆) of 𝑛𝑃𝑛𝑄 + 𝑛𝑃 + 𝑛𝑄 phases
given by

𝛾 = [𝛼 ⊗ 𝛽, 𝛽0𝛼, 𝛼0𝛽],

𝑆 =


𝑃 ⊗ 𝐼𝑛𝑄 + 𝐼𝑛𝑃 ⊗ 𝑄 𝐼𝑛𝑃 ⊗ 𝑞∗ 𝑝∗ ⊗ 𝐼𝑛𝑄

0 𝑃 0
0 0 𝑄

 .
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• min(𝑋,𝑌) is PH-distributed and has a representation of 𝑛𝑃𝑛𝑄 phases given by (𝛾, 𝑆) =
(𝛼 ⊗ 𝛽, 𝑃 ⊗ 𝐼𝑛𝑄 + 𝐼𝑛𝑃 ⊗ 𝑄).

Note, 𝐼𝑛 denotes the identity matrix of dimensions 𝑛 × 𝑛, while ⊗ denotes the Kronecker product,
which is given in Definition 3.6.5.

Proof. See [60, Theorem 2.2.9.]. □

The next theorem states that any positive valued distribution can be approximated arbi-
trarily close by a PH distribution.

Theorem 2.2.10. The class of phase-type distributions is dense in the class of distributions on
[0,+∞[.

Proof. A full proof for this result can be found, for example, in [6, Section 3.2.1]. □

In Definition 2.2.1, 𝛼, 𝑆 and 𝑠∗ have some requirements. In the next definition, we define
matrix exponential distributions, where these requirements get relaxed significantly. It
then follows that matrix exponential distributions are a generalization of PH distribu-
tions.

Definition 2.2.11 (Matrix exponential distribution). A distribution is called matrix expo-
nential if there exist

• a row vector 𝛼 of length 𝑛,

• an 𝑛 × 𝑛 matrix 𝑆

• and column vector 𝑠∗ of height 𝑛,

such that the cdf of this distribution is given by

𝐹(𝑡) = 1 − 𝛼𝑒−𝑆𝑡 𝑠∗ , for 𝑡 ≥ 0.

Although, in this thesis, we only need the definition of the matrix exponential distribu-
tion, we note that different properties of such distributions can be found for example
in [32].

2.3 Examples of (acyclic) PH distributions

In this section we provide several examples of PH distributions. The distributions pre-
sented here are all used throughout the thesis. These distributions are not just any PH
distributions but in fact acyclic PH distributions:

Definition 2.3.1 (Acyclic phase type distribution). A PH distribution is called acyclic if it
has a representation (𝛼, 𝑆), where 𝑆 is an upper (or a lower) triangular matrix.
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The definition implies that if an acyclic PH distribution has left some phase, it can never
return to that phase (as otherwise this would create a “cycle”). We now proceed with
examples.

2.3.1 Exponential distribution

The exponential distribution with parameter � can be seen as the simplest example of a
PH distribution, by setting 𝛼 = 1 and 𝑆 = −�. The mean of the distribution is given by
𝛼(−𝑆)−11 = 1/�, in agreement with Definition 2.1.1. Further, the cdf and pdf in Theorem
2.2.3 clearly are a generalisation of those in Definition 2.1.1.

2.3.2 Hyperexponential distribution

Hyperexponential distributions are so called “mixtures” of exponential distributions.
More precisely, a random variable is called hyperexponentially distributed if there exist
𝑛 exponential distributions with parameters �1 , �2 , . . . , �𝑛 , for some 𝑛 > 0, such that
with probability 𝛼𝑘 the variable is distributed according to the 𝑘-th of these exponential
distributions. Such hyperexponential distribution has a 𝑃𝐻(𝛼, 𝑆) representation of 𝑛
phases where

𝛼 = [𝛼1 , 𝛼2 , . . . , 𝛼𝑛],

𝑆 =


−�1

−�2
. . .

−�𝑛

 .
We also write that this distribution has a representation 𝐻𝑦𝑝𝐸𝑥𝑝(𝛼, [�1 , . . . , �𝑛]). As the
mean of the 𝑘-th exponential distribution is 1/�𝑘 , the mean of a 𝐻𝑦𝑝𝐸𝑥𝑝(𝛼, [�1 , . . . , �𝑛])
distributed variable is

𝛼(−𝑆)−11𝑛 =

𝑛∑
𝑘=1

𝛼𝑘
�𝑘
.

Every hyperexponential distribution has a representation such that 𝛼𝑖 ≠ 0 and �𝑖 ≠ �𝑗
for every 𝑖 , 𝑗 ∈ {1, . . . , 𝑛}, with 𝑖 ≠ 𝑗. In this case we say that the hyperexponential
distribution is “of order 𝑛” and write 𝐻𝑦𝑝𝐸𝑥𝑝(𝑛) for short.

We note that a hyperexponential distribution of order 2 can be described using the
parameters 𝐸[𝑋], 𝑆𝐶𝑉, 𝑓 , where 𝐸[𝑋] is the mean of the distribution, where 𝑆𝐶𝑉 is the
squared coefficient of variation and where 𝑓 is the “shape parameter”.

Using these parameters we can generate a 𝐻𝑦𝑝𝐸𝑥𝑝(2) distribution with representation
𝐻𝑦𝑝𝐸𝑥𝑝([𝛼1 , 1 − 𝛼1], [�1 , �2]), where

�1 =
𝑆𝐶𝑉 + (4 𝑓 − 1) +

√
(𝑆𝐶𝑉 − 1)(𝑆𝐶𝑉 − 1 + 8 𝑓 (1 − 𝑓 ))

2𝐸[𝑋] 𝑓 (𝑆𝐶𝑉 + 1) ,

�2 =
𝑆𝐶𝑉 + (4(1 − 𝑓 ) − 1) −

√
(𝑆𝐶𝑉 − 1)(𝑆𝐶𝑉 − 1 + 8 𝑓 (1 − 𝑓 ))

2𝐸[𝑋](1 − 𝑓 )(𝑆𝐶𝑉 + 1)
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and 𝛼1 = 𝐸[𝑋]�1 𝑓 [80, Subsection 4.3].

We make several remarks on the parameters 𝐸[𝑋], 𝑆𝐶𝑉 and 𝑓 . First, we note that 𝑆𝐶𝑉
is defined as

𝑉𝑎𝑟[𝑋]
𝐸[𝑋]2 ,

where 𝑉𝑎𝑟[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2 is the variance of the distribution. Suppose we work on
𝐻𝑦𝑝𝐸𝑥𝑝(2) jobs one after another, then the shape parameter 𝑓 can be though of as the
fraction of time we work on jobs in phase 1 and 𝐸[𝑋] as the mean time to finish a job.
Note, that if 𝑓 = 1/2, then the 𝐻𝑦𝑝𝐸𝑥𝑝(2) distribution is said to have “balanced means”.
In this case it is possible that we come across jobs of one phase more often than jobs of
the other phase, but the total amount of work needed by jobs of phase 1 is the same as
that of phase 2 jobs.

2.3.3 Coxian distribution

A random variable 𝑋 has a Coxian distribution of order 𝑛 if it has a 𝑃𝐻(𝛼, 𝑆) represen-
tation with 𝛼 = 𝑒1 (with 𝑒1 a row vector with 1 in its leftmost entry and 0’s elsewhere)
and

𝑆 =


−�1 𝑝1�1

−�2 𝑝2�2
. . .

. . .

−�𝑛−1 𝑝𝑛−1�𝑛−1
−�𝑛


,

with 0 < 𝑝𝑖 ≤ 1 for 𝑖 = 1, . . . , 𝑛 − 1 and �𝑖 > 0 for 𝑖 = 1, . . . , 𝑛 [76, Section 2].

If a job is Coxian distributed, we can think about the job in the following way: The job
starts in phase 1. After an exponentially distributed amount of time with parameter �1,
it goes to phase 2 with probability 𝑝1 or is finished with probability 1 − 𝑝1. In the first
case, it stays in phase 2 for an exponentially distributed amount of time with parameter
�2, then it proceeds into phase 3 with probability 𝑝2 or finishes with probability 1 − 𝑝2.
And so on... If the job reaches phase 𝑛, then it finishes after an exponentially distributed
amount of time with parameter �𝑛 . It follows that the probability that a job reaches phase
𝑗 is 𝑝1𝑝2 . . . 𝑝 𝑗 =

∏𝑗−1
𝑠=1 𝑝𝑠 . Therefore

𝛼(−𝑆)−11𝑛 =

𝑛∑
𝑗=1

1
�𝑗

𝑗−1∏
𝑠=1

𝑝𝑠

is the expected duration of the job.

We note that every hyperexponential distribution of order 𝑛 can be represented by
a Coxian distribution of order 𝑛 [76, Section 2]. This implies that hyperexponential
distributions form a subclass of Coxian distributions. As we explain below, another
subclass of Coxian distributions is the class of Erlang distributions.
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2.3.4 Erlang distribution

A random variable 𝑋 is Erlang distributed if it is the sum of 𝑛 identically distributed
and independent exponential variables with parameter �, for some 𝑛, � > 0. In this
case we write 𝑋 ∼ 𝐸𝑟𝑙𝑎𝑛𝑔(𝑛, �). An 𝐸𝑟𝑙𝑎𝑛𝑔(𝑛, �) distribution has the following PH
representation: 𝛼 = 𝑒1 and

𝑆 =


−� �

−� �
. . .

. . .

−� �
−�


,

with 𝑆 an 𝑛 × 𝑛 matrix.

If a job has an𝐸𝑟𝑙𝑎𝑛𝑔(𝑛, �)distribution, it starts in phase 1, stays there for an exponentially
distributed amount of time with parameter �, goes into phase 2, stays there for an
exponentially distributed amount of time with parameter �, and so on, until it reaches
phase 𝑛. Then, after an exponentially distributed amount of time with parameter �, it
finishes. We thus must have that the average time to finish such job is 𝛼(−𝑆)−11𝑛 = 𝑛/�.
An 𝐸𝑟𝑙𝑎𝑛𝑔(𝑛, 𝑛) distribution therefore has mean 1. In the remainder of the text we shall
write 𝐸𝑟𝑙𝑎𝑛𝑔(𝑛) for an 𝐸𝑟𝑙𝑎𝑛𝑔(𝑛, 𝑛) distribution.

Note, that by setting 𝑝𝑖 = 1 for 𝑖 = 1, . . . , 𝑛 − 1 and �𝑖 = � for 𝑖 = 1, . . . , 𝑛 in Sub-
section 2.3.3, we immediately get that Erlang distributions form a subclass of Coxian
distributions.

2.3.5 Hyper-Erlang distribution

Similarly to Subsection 2.3.2, where we defined hyperexponential distributions using
exponential distributions, we can define hyper-Erlang distributions using Erlang distri-
butions.

Hyper-Erlang distributions are mixtures of Erlang distributions. More precisely, a ran-
dom variable is hyper-Erlang distributed if there exist 𝑛 Erlang distributions with parame-
ters (𝑚1 , �1), (𝑚2 , �2), . . . , (𝑚𝑛 , �𝑛), such that the variable is distributed as 𝐸𝑟𝑙𝑎𝑛𝑔(𝑚𝑘 , �𝑘)
with probability 𝑝𝑘 . Let 𝑆𝑘 denote the phase matrix of the PH representation of the
𝐸𝑟𝑙𝑎𝑛𝑔(𝑚𝑘 , �𝑘) distribution for 𝑘 = 1, . . . , 𝑛. Then the hyper-Erlang distribution has the
following 𝑃𝐻(𝛼, 𝑆) representation:

𝛼 = [𝑝1 , 0′𝑚1−1 , 𝑝2 , 0′𝑚2−1 , . . . , 𝑝𝑛 , 0
′
𝑚𝑛−1],

𝑆 =


𝑆1

𝑆2
. . .

𝑆𝑛

 .
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As the distribution is 𝐸𝑟𝑙𝑎𝑛𝑔(𝑚𝑘 , �𝑘) with probability 𝑝𝑘 , we must have that

𝛼(−𝑆)−11 =

𝑛∑
𝑗=1

𝑝 𝑗
𝑚 𝑗

�𝑗
.

2.4 Other distributions

In this section we present two classes of distributions used in the thesis that are not
examples of continuous PH distributions, namely discrete distributions and truncated
Pareto distributions. When introducing discrete distributions we also define generating
functions.

2.4.1 Discrete distribution

Discrete distributions are used to describe random variables with a finite or countably
infinite number of outcomes. Examples include surveying a random person on the street
for this person’s age in years, number of owned cars, number of children, . . .

Let𝑋 be a random variable that takes values inZ, that is every possible outcome of𝑋 is an
integer. Then𝑋 is called a “discrete random variable” and the corresponding distribution
a “discrete distribution”. We call the set of values that 𝑋 can take the “support” of (the
distribution of) 𝑋, that is {𝑖 | 𝑃(𝑋 = 𝑖) ≠ 0} is the support of 𝑋.

The cumulative distribution function (cdf) of 𝑋 in 𝑥, denoted as 𝐹𝑋(𝑥), is the probability
that 𝑋 is smaller than or equal to 𝑥, i.e. 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥). Sometimes we suppress
the dependence on 𝑋 and simply write 𝐹(𝑥). In case of discrete distributions, we have
𝐹𝑋(𝑥) =

∑
𝑖≤𝑥 𝑃(𝑋 = 𝑖). Note that the expected value/mean of 𝑋 is given by

𝐸[𝑋] =
+∞∑
𝑖=−∞

𝑖𝑃(𝑋 = 𝑖).

In this thesis all discrete distributions have positive, finite support, that is the discrete
variable 𝑋 can only take values in N = {0, 1, 2, . . . } and there are only finitely many
numbers in N that 𝑋 can be. In fact, we have already seen several examples of discrete
distributions with positive finite support, namely all initial probability vectors 𝛼 from
Section 2.3 are examples of discrete distributions.

We now introduce the generating functions, which concerns non-negative discrete dis-
tributions.

Definition 2.4.1. Let 𝑋 be a non-negative discrete random variable. The generating
function of 𝑋 is defined as

𝑃𝑋(𝑧) =
∞∑
𝑛=0

𝑃(𝑋 = 𝑛)𝑧𝑛 .

In Sections 3.5 and 10.4 we use the following properties of the generating functions:
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Theorem 2.4.2. Let 𝑋 be a non-negative discrete random variable. The generating function of
𝑋 has the following properties:

𝑃𝑋(1) = 1, 𝑃′
𝑋(1) = 𝐸[𝑋] and 𝑃′′

𝑋(1) = 𝐸[𝑋(𝑋 − 1)].

A thorough treatment on generating functions can be found in [29, Section 5], while [1,
Section 2.2] contains a brief summary of the properties of generating functions.

2.4.2 Truncated Pareto distribution

In this thesis we use the truncated Pareto distribution in Chapter 10. In that chapter we
developed formulas for general distributions, hence we also want to use them with a
distribution that is not of the phase type. As the Pareto distributions are used to describe
a wide variety of real-life phenomena, we chose to use those distributions.

The Pareto distribution is characterized by three values: 𝛼, 𝐿 and 𝑈 , with 0 < 𝐿 < 𝑈 ≤
+∞. The value of 𝛼 is called the shape parameter, while 𝐿 and𝑈 respectively denote the
lower and upper bound of the support of the distribution. Note that 𝑈 can be finite or
infinite. In the former case the Pareto distribution is called “upper truncated” or, simply,
“truncated”. In this thesis we only consider truncated Pareto distributions. For 𝛼 > 0,
the cdf of the truncated Pareto distribution is given by

𝐹(𝑥) =
{ 1−(𝐿/𝑥)𝛼

1−(𝐿/𝑈)𝛼 , if 𝐿 ≤ 𝑥 ≤ 𝑈
0 otherwise.

For 𝛼 ∉ {0, 1}, the mean of the truncated Pareto distribution is given by

𝐸[𝑋] = 𝛼𝐿
𝛼 − 1 · 1 − (𝐿/𝑈)𝛼−1

1 − (𝐿/𝑈)𝛼 =
𝛼𝐿𝑈
𝛼 − 1 · 𝑈

𝛼−1 − 𝐿𝛼−1

𝑈𝛼 − 𝐿𝛼 .

These and other properties of truncated Pareto distributions are summarized in [13].

2.5 Laplace-Stieltjes transforms

In this section we define the Laplace-Stieltjes transform of a random variable, which is
used in Sections 3.5 and 10.4. We also remark on some properties of Laplace-Stieltjes
transforms. We then illustrate how these properties can be used on an example.

Definition 2.5.1. Let 𝑋 be a random variable with 𝐺 as its distribution. The Laplace-
Stieltjes transform (LST) of 𝐺 in 𝑠, denoted by 𝐺∗(𝑠), is defined as

𝐺∗(𝑠) = 𝐸
[
𝑒−𝑠𝑋

]
=

∫ ∞

𝑥=0
𝑒−𝑠𝑥𝑑𝐹𝑋(𝑥),

for 𝑠 ≥ 0, where 𝐹𝑋 is the cdf of 𝑋.



2.5. LAPLACE-STIELTJES TRANSFORMS 21

Theorem 2.5.2. Let 𝑋 and 𝑌 be random variables. Let 𝐺 and 𝐻 be the distribution of 𝑋 and 𝑌
respectively and 𝐺∗(𝑠) and 𝐻∗(𝑠) their respective Laplace-Stieltjes transforms. Then

𝐺∗′(0) = −𝐸[𝑋] and 𝐺∗′′(0) = 𝐸[𝑋2].

If 𝑍 is a random variable (with distribution 𝐼) that is equal to 𝑋 with probability 𝑝 and equal to
𝑌 with probability 1 − 𝑝, then the LST of 𝐼 in 𝑠 is given by

𝐼∗(𝑠) = 𝑝𝐺∗(𝑠) + (1 − 𝑝)𝐻∗(𝑠).

If 𝑋 and 𝑌 are independent and 𝑍 = 𝑋 + 𝑌, then

𝐼∗(𝑠) = 𝐺∗(𝑠)𝐻∗(𝑠).

Proposition 2.5.3. Let 𝑋 ∼ exp(�) and let 𝐺 denote the distribution of 𝑋. We have

𝐺∗(𝑠) = �

� + 𝑠 .

These and other properties of LSTs can be found in [1, Sections 2.3-2.4]. In the following
proposition, we apply the properties of Theorem 2.5.2 and Proposition 2.5.3.

Proposition 2.5.4. Let 0 ≤ 𝑝1 ≤ 1 and let �1 , �2 > 0. Let 𝑋 ∼ 𝑃𝐻(𝛼, 𝑆) with 𝛼 = (1, 0) and

𝑆 =

[
−�1 𝑝1�1

0 −�2

]
.

Denote �̃� = 1 − 𝑝1�1/(�1 − �2). Let 𝑌 ∼ 𝑃𝐻(�̃�, �̃�), where �̃� = (�̃� , 1 − �̃�) and

�̃� =

[
−�1 0

0 −�2

]
.

Then 𝑋 and 𝑌 have the same distribution.

Proof. We prove the claim by showing that the LSTs of the distributions of 𝑋 and 𝑌
are the same. 𝑋 ∼ exp(�1) with probability 1 − 𝑝1 and with probability 𝑝1 it is the
sum of an exp(�1) and an exp(�2) distributed variable (with the two random variables
independent). The LST of the distribution of 𝑋 in 𝑠 is therefore given by

(1 − 𝑝1)
�1

�1 + 𝑠
+ 𝑝1

�1

�1 + 𝑠
�2

�2 + 𝑠
. (2.1)

𝑌 is exponentially distributed with parameter �1 (respectively, parameter �2) with prob-
ability �̃� (respectively 1 − �̃�). Its LST is therefore

�̃�
�1

�1 + 𝑠
+ (1 − �̃�)

�2

�2 + 𝑠
. (2.2)

Noting that both (2.1) and (2.2) can be rewritten as

�1[�2 + (1 − 𝑝1)𝑠]
(�1 + 𝑠)(�2 + 𝑠)

finishes the proof. □
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Chapter 3333333333333333333333333333333333333333333333333333333333333333333333333
Some elementary single server

queueing systems

In this chapter we present four important single server queueing systems, namely (in
Kendall notation) the 𝑀/𝑀/1, 𝑀/𝑃𝐻/1, 𝑀/𝑀𝐴𝑃/1 and the 𝑀/𝐺/1 queue. When
presenting these queues we shall explain several core definitions and techniques used in
this thesis. We also remark on several matrix identities that can be useful when dealing
with the 𝑀/𝑃𝐻/1 queue and similar queues.

The rest of the chapter is structured as follows. We first explain the Kendall notation
in Section 3.1. In Section 3.2 we describe the 𝑀/𝑀/1 queue. There, we also touch on
the concepts of irreducibility, positive recurrence, invariant distribution, balance equa-
tions and the response time. In Section 3.2, we also note two important results from
queueing theory, namely the Little’s law and the PASTA property. Section 3.3 deals
with a generalization of 𝑀/𝑀/1 queue, namely the 𝑀/𝑃𝐻/1 queue. There, we explain
how the 𝑀/𝑃𝐻/1 queue can be modelled using a QBD MC and briefly touch on matrix
analytic methods. In Section 3.4, we introduce the 𝑀/𝑀𝐴𝑃/1 queue and provide a
way of numerically determining its invariant distribution. The section also contains an
explanation on how the 𝑀/𝑀/1 and the 𝑀/𝑃𝐻/1 queues can be seen as an 𝑀/𝑀𝐴𝑃/1
queue. A generalization of the three previous queues, the 𝑀/𝐺/1 queue, is summarized
in Section 3.5. In that section, we provide two ways of deriving the mean response time
of the queue, namely through the use of mean value analysis and through generating
functions. Finally, in Section 3.6, we remark on several important matrix identities used
from Chapter 7 onward.

3.1 Kendall notation

The Kendall notation is used to classify elementary queueing systems. These usually
consist of one or multiple queues each, with one or multiple service stations called
servers. The Kendall notation was introduced in 1953 by David G. Kendall in [41].
Originally, it consisted of three symbols 𝐴/𝑆/𝑁 , where 𝐴 describes the arrival process,
𝑆 is the service time distribution and 𝑁 denotes the number of servers of the queueing
system.

23
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𝐴, the arrival process. The first of the three symbols is used to describe the arrival process,
that is, 𝐴 describes in what way jobs arrive to the queueing system. In all queueing
systems presented in this chapter, the arrival process is Poissonian (or equivalently the
times between arrivals are exponential, cf. Section 2.1). This is denoted by 𝐴 = 𝑀, where
𝑀 stands for “memoryless”, as the exponential distribution is memoryless. In the next
four sections, we thus assume that jobs arrive to the system according to a Poisson process
with parameter �.

Although not used in this thesis, we make note of some other arrival disciplines:

• 𝐴 = 𝐺𝐼, where 𝐺𝐼 stands for “General Input” and means that the time between
successive arrivals is distributed according to a general distribution. We can also
specify this distribution, for example, when 𝐴 = 𝐸, then the interarrival times are
Erlang distributed. (This is also the reason why we write 𝐴 = 𝑀 instead of 𝐴 = 𝐸
for exponential interarrival times.)

• Batch arrivals 𝐴𝑋 : every time an arrival event occurs, a batch of 𝑋 jobs is added to
the system, where 𝑋 can be a natural number or a discrete random variable taking
values in N.

𝑆, the service time distribution. The second parameter describes the distribution of the
time that the server needs to finish a job. In the remainder of the chapter we consider the
following cases:

• 𝑆 = 𝑀, memoryless or Markovian service, i.e. the service time distribution is
exponential (cf. Section 2.1).

• 𝑆 = 𝑃𝐻, the service time is distributed according to a distribution of the phase
type.

• 𝑆 = 𝑀𝐴𝑃, where 𝑀𝐴𝑃 stands for “Markovian arrival process”. As the name
suggests, in many cases, Markovian arrival processes are used as arrival disciplines.
However, in Part III of this thesis we make use of queues with 𝑀𝐴𝑃s as a service
discipline.

• 𝑆 = 𝐺, general service times. The service time is distributed according to some
(unknown) distribution 𝐺.

𝑁 , the number of servers. The third parameter denotes the number of servers, i.e. the
number of service stations where jobs are served. 𝑁 can be any positive natural number
or infinite. In the examples presented in the next sections we assume that there is only
one server, i.e. 𝑁 = 1.

Other parameters. We note that since its original version, the Kendall notation has been
expanded to also include the buffer of the queue, the population of jobs that need to be
served and the service discipline. In case of infinite buffer/population, these parameters
are not included in the Kendall notation.

The buffer of the queue is simply the amount of jobs that can wait in the queue to be
served. Think for example of a store that is full to the brim with people; no new customers
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� �

(a) A job enters the queue. As the server is not working on a job, the arriving job enters
service.

� �

(b) Another job enters the queue. As the server is busy, the job begins waiting in the queue.

� �

(c) The server finishes working on the job in service. That job leaves the queue and the next
job enters service.

Figure 3.1: A schematic representation of the 𝑀/𝑀/1, 𝑀/𝑃𝐻/1, 𝑀/𝑀𝐴𝑃/1 and 𝑀/𝐺/1
queues.

can enter the store until some customers leave the store. In the queues presented in the
next sections the buffer is assumed to be infinite.

As we are interested in the long term behaviour of queues (i.e. as time goes to infinity),
we assume that the population of jobs needing service also is infinite. Otherwise, the
queues have an infinite amount of time to process a finite number of jobs, which they
will do in finite time. In this case the fraction of time that the servers are busy is 0.

The last of the other parameters is the service discipline (also called the “scheduling
policy”), that is, in what way do the servers handle the jobs. Some important service
disciplines include

• First-in-first-out (FIFO), also called first-come-first-served (FCFS): the jobs get served
in the order of their arrival, that is, the oldest job gets processed first. In this case,
the service discipline is not written in the Kendall notation. The next four sections
thus deal with queuing systems with the FIFO service discipline.

• Last-in-first-out (LIFO): the newest job gets served first.

• Processor sharing (PS): the server processes all jobs in the queue at the same time,
giving a fraction (1 divided by the number of jobs present in the queue) of its
processing power to each of the jobs. In Chapter 5 we study a queueing system
with processor sharing discipline.

• Random order of service (ROS): jobs are executed in a random order, irrespective
of their arrival times.

Schematically, the 𝑀/𝑀/1, 𝑀/𝑃𝐻/1, 𝑀/𝑀𝐴𝑃/1 and 𝑀/𝐺/1 queues can be thus repre-
sented as in Figure 3.1.
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3.2 The 𝑀/𝑀/1 queue

We first give an overview of the 𝑀/𝑀/1 queue. This section is loosely based on [78].
Another overview of the 𝑀/𝑀/1 queue can be found in [1, Chapter 4]. Suppose jobs
arrive to the queue according to a Poisson process with rate �. Suppose that the jobs
have exponentially distributed service requirements with parameter �, that is, the time
it takes for a single job to be processed by the server is exp(�) distributed.

We wish to describe the queue using a (continuous time) Markov chain. First we de-
termine the “state space” of the CTMC. Throughout this thesis we will denote the state
space by Ω. Roughly stated, the state space is the set of all states the CTMC can be in.
As the exponential distribution is memoryless, to describe the queue at a certain point in
time, we only need to know the number of jobs in the queue. This implies that the state
space of the 𝑀/𝑀/1 queue is given by Ω = N.

We now describe the transitions between different states. At any time, the state can
increase by one (at rate �) due to an incoming arrival. If there are jobs present in the
queue, the queue length decreases by one at rate � due to jobs being finished by the
server. This implies that the queue can be described using a CTMC with the rate matrix

𝑄 =


−� �
� −� − � �

� −� − � �
. . .

. . .
. . .

 .
This type of MC is an example of a “Birth-and-Death” MC. Note, that if �,� ≠ 0, then the
MC can reach any given state from any other state. This is what is commonly referred to
as “irreducibility”.

Another important notion concerning MCs is that of recurrence. A state 𝑖 of a Markov
chain is called “positive recurrent” if after leaving state 𝑖 the MC will return to state 𝑖 at
some point with probability 1 and if the mean time that it takes for the MC to return to
state 𝑖 is finite. If every state of a Markov chain is positive recurrent then we call the MC
“positive recurrent”. Note that an irreducible Markov chain with a finite state space is
always positive recurrent.

In case of the 𝑀/𝑀/1 queue, one can show that its CTMC is positive recurrent if and
only if �/� < 1. This inequality is intuitively clear, as it states that the rate at which jobs
get completed by the server should be higher than the rate at which jobs arrive to the
queue (otherwise, on average, the queue length would keep increasing as time goes on).
The ratio �/� is referred to as the “load” of the queue and denoted by 𝜌. In this thesis,
the load will be always equal to the arrival rate per queue multiplied with the average
time needed to complete a job. The load is the fraction of time that the queue is busy (i.e.
that the server is working on a job) as time becomes large.

As we are interested in the long term behaviour of the queueing systems, we would also
like the know the probability that the CTMC is in certain state as time goes to infinity.
Under certain assumptions, which we will note further, these probabilities can be studied
though invariant distributions:
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Definition 3.2.1. Let 𝑄 be the rate matrix of a CTMC. We call a vector 𝜋 the “invariant
distribution”, “stationary distribution” or the “steady state probability vector” of the
CTMC if 𝜋𝑄 = 0 and 𝜋1 = 1 (the entries of 𝜋 sum to 1).

The equation𝜋1 = 1 simply comes from the fact that we want𝜋 to be a distribution. Note,
that we will provide some intuition on the equation 𝜋𝑄 = 0 in the proof of Theorem
3.2.3.

In case of CTMCs, irreducibility and positive recurrence are two properties we need for
the existence of the invariant distribution 𝜋:

Theorem 3.2.2. Let 𝑄 be the rate matrix of an irreducible, positive recurrent CTMC with state
space Ω. The limit 𝜋 𝑗 = lim𝑡→∞ 𝑝𝑖 , 𝑗(𝑡) exists, for every 𝑖 , 𝑗 ∈ Ω, where 𝑝𝑖 , 𝑗(𝑡) is the probability
that the CTMC is in state 𝑗 at time 𝑡, given that it was in state 𝑖 at time 0. Further, the vector
𝜋 = (𝜋 𝑗)𝑗∈Ω is the unique stationary distribution of the CTMC.

Proof. A proof can be found in [14, Theorem 3.5.]. □

In case of the 𝑀/𝑀/1 queue we have the following result for the invariant distribution:

Theorem 3.2.3. For the 𝑀/𝑀/1 queue with arrival rate � and service rate �, with � < �, we
have

𝜋𝑘 = (1 − 𝜌)𝜌𝑘 ,
for 𝑘 > 0 and 𝜋0 = 1 − 𝜌, where 𝜌 = �/�.

Proof. We first provide some intuition behind Definition 3.2.1. If we write 𝜋𝑄 = 0 out in
its component form, then the equations we obtain are called “(global) balance equations”,
as they state that the rate at which the CTMC enters a certain state is the rate at which
it leaves that state if the CTMC is in equilibrium. We also have the, so called, “detailed
balance equations”. They state that the rate at which the MC in equilibrium up-crosses a
certain threshold state should be equal to the rate at which it down-crosses that threshold.

For the 𝑀/𝑀/1 queue, the detailed balance equations are

�𝜋𝑘−1 = �𝜋𝑘 , 𝑘 ≥ 1,

where we have chosen 𝑘 as the threshold state. This is equivalent to 𝜋𝑘 = 𝜌𝜋𝑘−1 which
immediately implies that 𝜋𝑘 = 𝜋0𝜌𝑘 . From 𝜋1 = 1, one can then obtain 𝜋0 = 1 − 𝜌 as
needed.

Note, that this result is also an immediate consequence of the formula in [30, Section 2.1]
or [48, Theorem 4.5.1]. □

So, for an𝑀/𝑀/1 queue we know𝜋𝑘 , the probability that the queue has 𝑘 jobs if observed
at an arbitrary time instant. But what can we say about 𝜋𝑎

𝑘
, the probability that the queue

has 𝑘 jobs given that an arrival just occurred? It turns out that for many stochastic systems
these two probabilities are the same, that is 𝜋𝑘 = 𝜋𝑎

𝑘
. These stochastic systems include

those with Poissonian arrival processes:
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Theorem 3.2.4 (Poisson Arrivals See Time Averages, PASTA property). Let 𝜋 denote the
invariant distribution of an irreducible, positive recurrent CTMC. Let 𝜋𝑎

𝑘
denote the limiting

probability that the CTMC is in state 𝑘 upon an arrival. If the number of future arrivals is
independent of the current and past states of the CTMC, then 𝜋𝑘 = 𝜋𝑎

𝑘
for every 𝑘 ∈ Ω.

Proof. A formal proof can be found in [84]. □

When studying the performance of a queueing system we are especially interested in the
mean response time, with the response time being the amount of time that a job spends
in the system. The mean response time can be obtained from the average queue length
by using the following result:

Theorem 3.2.5 (Little’s law). Let

• 𝐿 be the average number of customers in the queue up to time 𝑇 as 𝑇 → ∞,

• � be the average number of arrivals per time unit up to time 𝑇 as 𝑇 → ∞, and

• 𝑅 be the average response time of the first 𝑛 jobs as 𝑛 → ∞.

If 𝐿,� and 𝑅 are finite, then 𝐿 = �𝑅.

Proof. A proof can be found in [71]. □

Note, that Little’s law can be also used on a part of a queueing system, which makes it
extremely useful.

From the invariant distribution we can obtain the mean queue length as it is simply the
expected value of 𝜋.

Theorem 3.2.6. For the 𝑀/𝑀/1 queue with arrival rate � and service rate �, with � < �, the
mean queue length and the mean response time are respectively given by

𝐸[𝑄] = 𝜌

1 − 𝜌
and 𝐸[𝑅] = 1

� − �
.

Proof. The first claim can be proven by calculating
∑
𝑘∈N 𝑘𝜋𝑘 , the second follows from the

first claim and Little’s law. □

The response time can be split up in the waiting and service time. The first of these is the
time that a job waits in the queue before entering service, while the second is the amount
of time that a server works on a job until the job leaves the system. From the fact that the
mean service time is 1/� it follows from the last result that the mean waiting time 𝐸[𝑊]
in an 𝑀/𝑀/1 queue is given by 𝐸[𝑊] = 1/(� − �) − 1/�.
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3.3 The 𝑀/𝑃𝐻/1 queue

In this section we summarize the important results on the 𝑀/𝑃𝐻/1 queue. This queue
is a generalization of 𝑀/𝑀/1 queue (as PH distributions generalize the exponential
distribution). Suppose jobs arrive to the queue according to a Poisson process with rate
�. Suppose further that the job size distribution has a PH representation of 𝑛𝑝 phases
with parameters (𝛼, 𝑆) and denote 𝑠∗ = −𝑆1.

Similarly to the previous, section we can describe the 𝑀/𝑃𝐻/1 queue using a Markov
chain. Knowing the number of jobs in the queue is not enough to describe the state of the
𝑀/𝑃𝐻/1 queue: we also need to know the phase of the job in service (when the queue
is not empty). Hence, the state space of the queue is given by

Ω = {0} ∪ {(𝑖 , 𝑗)|𝑖 = 1, 2, . . . and 𝑗 = 1, . . . , 𝑛𝑝},

where the first component of (𝑖 , 𝑗) denotes the number of jobs in a busy queue and 𝑗
denotes the phase of the job in service. We use the lexicographical ordering on the states,
that is, (𝑖 , 𝑗) <𝑙𝑒𝑥 (𝑖′, 𝑗′) if 𝑖 < 𝑖′ or if 𝑖 = 𝑖′ and 𝑗 < 𝑗′. We will call 𝑖 the “level” and 𝑗
the “phase” of the queue. This way states representing the same number of jobs in the
queue are grouped together.

We now describe the transitions between the states. When the queue is busy, phase
changes of the job in service leave the level unchanged. This means that block-diagonal
entries of the rate matrix 𝑄 will consists of the matrix 𝑆 at every level, except on the
diagonal. The level in the queue is increased by one due to arrivals, which occur at rate �.
If the queue is empty and an arrival occurs, the queue will jump from state 0 to (1, 𝑗) with
probability 𝛼 𝑗 . Job completions from any state with phase 𝑖 occur at rate 𝑠∗

𝑖
and decrease

the level by 1. If the queue is non-empty after completion the next job immediately enters
service and its initial phase is 𝑗 with probability 𝛼 𝑗 . This implies that the rate matrix of
the 𝑀/𝑃𝐻/1 queue is given by

𝑄 =



−� �𝛼
𝑠∗ 𝑆 − �𝐼𝑛𝑝 �𝐼𝑛𝑝

𝑠∗𝛼 𝑆 − �𝐼𝑛𝑝 �𝐼𝑛𝑝
𝑠∗𝛼 𝑆 − �𝐼𝑛𝑝 �𝐼𝑛𝑝

. . .
. . .

. . .


. (3.1)

This type of MC is an example of a “Quasi-Birth-and-Death” MC, or QBD for short. Note
that if � ≠ 0, then (𝛼, 𝑆) can be chosen is such a way that the MC is irreducible. We
assume that this is the case throughout the rest of this section.

The CTMC is positive recurrent if and only if the load is smaller than 1, that is if

𝜌 = �𝛼(−𝑆)−11𝑛𝑝 < 1,

as 𝛼(−𝑆)−11𝑛𝑝 denotes the mean time to finish a job (cf. Theorem 2.2.7).

We now wish to describe the invariant distribution. We first have to introduce some
notation. Suppose an invariant distribution 𝜋 of the 𝑀/𝑃𝐻/1 queue exists, we then set
for ℓ = 1, 2, . . .

𝜋ℓ = [𝜋ℓ ,1 ,𝜋ℓ ,2 , . . . ,𝜋ℓ ,𝑛𝑝 ].
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We have the following result:

Theorem 3.3.1. For the 𝑀/𝑃𝐻/1 queue with arrival rate � and job size distribution 𝑃𝐻(𝛼, 𝑆),
with 𝜌 < 1, we have 𝜋0 = 1 − 𝜌 and for ℓ ≥ 1 that

𝜋ℓ = (1 − 𝜌)𝛼𝑅ℓ ,

where the matrix 𝑅 is given by

𝑅 = �
(
�𝐼𝑛𝑝 − �1𝑛𝑝𝛼 − 𝑆

)−1
.

Proof. See [27, Sections 1-2]. □

Note that 𝑅 is the smallest non-negative solution to the quadratic matrix equation �𝐼𝑛𝑝 +
𝑅(𝑆 − �𝐼𝑛𝑝 ) + 𝑅2𝑠∗𝛼 = 0 [48, Section 6.4]. Throughout this thesis we will need to solve
similar quadratic matrix equations for matrix 𝑅. In some cases, we will have explicit
results for 𝑅, in other cases 𝑅 can only be found numerically. Note that this technique,
where we have to find the matrix 𝑅 to determine 𝜋, is an example of a matrix analytic
method. These methods are used to compute the invariant distribution when the rate
matrix has a repeated structure (which clearly is the case for the 𝑀/𝑃𝐻/1 queue).

Similarly to Theorem 3.2.6 we have the following:

Theorem 3.3.2. For the 𝑀/𝑃𝐻/1 queue with arrival rate � and job size distribution 𝑃𝐻(𝛼, 𝑆),
with 𝜌 < 1, we have

𝐸[𝑅] = 𝛼(−𝑆)−11𝑛𝑝 +
�

1 − 𝜌
𝛼(−𝑆)−21𝑛𝑝 .

Proof. The claim can be proven by first calculating
∑∞
ℓ=1 ℓ𝜋ℓ1𝑛𝑝 (although this is not as

simple as in the case of exponential job sizes) and by using Little’s law. Alternatively, we
can also use the formula from Theorem 3.5.1 by noting that the second moment of a PH
distribution is given by 2𝛼(−𝑆)−21𝑛𝑝 and its mean service time by 𝛼(−𝑆)−11𝑛𝑝 . □

As the mean service time is given by 𝛼(−𝑆)−11𝑛𝑝 , the mean waiting time of an 𝑀/𝑃𝐻/1
queue is therefore given by 𝐸[𝑊] = �

1−𝜌𝛼(−𝑆)−21𝑛𝑝 . Note that one can easily check
that this formula and the formulas from Theorem 3.3.1 and 3.3.2 generalize those from
Theorem 3.2.3 and 3.2.6.

3.4 The 𝑀/𝑀𝐴𝑃/1 queue

We first give an intuitive explanation on the Markovian arrival process (𝑀𝐴𝑃). Then,
we describe the 𝑀/𝑀𝐴𝑃/1 queue as a CTMC and show how we can numerically find
its invariant distribution (Theorem 3.4.1). Finally, we explain how the 𝑀/𝑀/1 and the
𝑀/𝑃𝐻/1 queues can be seen as examples of an 𝑀/𝑀𝐴𝑃/1 queue (Examples 3.4.2 and
3.4.3 respectively).
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We now give an explanation on 𝑀𝐴𝑃s. Note that other descriptions of the Markovian
arrival process can be found, for example, in [53, Section 2.1.]. A 𝑀𝐴𝑃 service is char-
acterized by two 𝑛 × 𝑛 matrices 𝑆0 and 𝑆1. Denote 𝑆 = 𝑆0 + 𝑆1. We assume that the
following holds for the matrices 𝑆0 and 𝑆1:

• Every entry of 𝑆1 is non-negative.

• The diagonal entries of 𝑆0 are negative and non-diagonal entries of 𝑆0 are non-
negative.

• The row sums of 𝑆 = 𝑆0 + 𝑆1 are 0, i.e. 𝑆1𝑛 = 0. In other words, 𝑆 is a rate matrix of
a CTMC.

Sometimes (f.e. in [53, 85]), the matrix 𝑆 is such that the CTMC with rate matrix 𝑆 is
irreducible and positive recurrent. In this case, due to Theorem 3.2.2, there exists a
unique invariant distribution, say 𝛾, of the CTMC with rate matrix 𝑆, meaning 𝛾𝑆 = 0
and 𝛾1𝑛 = 1. In this case we call the 𝑀𝐴𝑃 service “irreducible”. As explained further, at
the very least one has to make the following assumption on 𝑆0 and 𝑆1:

• The matrices 𝑆0 and 𝑆1 are such that for every state 𝑖 of the CTMC with rate matrix
𝑆, the CTMC can reach a state 𝑗, with the 𝑗-th row of 𝑆1 containing a non-zero entry.

For ease of presentation, we shall henceforth refer to the states of the CTMC with rate
matrix 𝑆 as the states of the𝑀𝐴𝑃. We denote the Markovian arrival process characterized
by the matrices 𝑆0 and 𝑆1 as 𝑀𝐴𝑃(𝑆0 , 𝑆1).

We now explain how a 𝑀𝐴𝑃(𝑆0 , 𝑆1) service works. Let (𝑆𝑘)𝑖 , 𝑗 denote the entry (𝑖 , 𝑗) of
the matrix 𝑆𝑘 for 𝑘 = 0, 1. Suppose that the 𝑀𝐴𝑃 service just entered state 𝑖. At this
point 2𝑛 − 1 exponential timers get started:

• The first, second,. . . , (𝑖 − 1)-st timer counts down time drawn at random from
exponential distribution with parameter (𝑆0)𝑖 ,1 , (𝑆0)𝑖 ,1 , . . . , (𝑆0)𝑖 ,𝑖−1 respectively.

• The 𝑖-th, (𝑖 + 1)-st,. . . , (𝑛 − 1)-st timer counts down time drawn at random from
exponential distribution with parameter (𝑆0)𝑖 ,𝑖+1 , (𝑆0)𝑖 ,𝑖+2 , . . . , (𝑆0)𝑖 ,𝑛 respectively.

• The 𝑛-th, (𝑛 + 1)-st,. . . , (2𝑛 − 1)-st timer counts down time drawn at random from
exponential distribution with parameter (𝑆1)𝑖 ,1 , (𝑆1)𝑖 ,2 , . . . , (𝑆1)𝑖 ,𝑛 respectively.

When one of the 2𝑛 − 1 timers runs out of time, one of the following things happens,
depending on which timer ran out of time:

• If it was one of the first 𝑛 − 1 timers, say, the one corresponding to the entry (𝑆0)𝑖 , 𝑗 ,
then the state of the 𝑀𝐴𝑃 changes from 𝑖 to 𝑗.

• If it was one of the latter 𝑛 timers, say, the one corresponding to the entry (𝑆1)𝑖 , 𝑗 , a
service completion occurs. (This explains why we need the last assumption on 𝑆0
and 𝑆1.) If 𝑖 ≠ 𝑗, then the state of the 𝑀𝐴𝑃 changes from 𝑖 to 𝑗. If 𝑖 = 𝑗, the 𝑀𝐴𝑃
stays in state 𝑖, yet the 2𝑛 − 1 timers get reset.
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Note, that if (𝑆𝑘)𝑖 , 𝑗 = 0, then the corresponding timer never runs out of time.

We now proceed with the description of the 𝑀/𝑀𝐴𝑃/1 queue. Jobs arrive to the queue
according to a Poisson process, with parameter � > 0. Note, that the arrival of a job does
not change the state of the 𝑀𝐴𝑃. While there are jobs in the queue the 𝑀𝐴𝑃 runs as
described above. Whenever a service completion occurs (with 𝑀𝐴𝑃 in state 𝑗), the first
job in queue leaves service and the next one (if available) enters service (with 𝑀𝐴𝑃 in
state 𝑗). Technically, to fully characterize the queue, we have to specify how many jobs the
queue has at time 0 and in which state the 𝑀𝐴𝑃 is at time 0. This is however irrelevant
for the long term behaviour of the queue, provided that the 𝑀𝐴𝑃 service is irreducible.

To know the state of the queue we only need to keep track of the number of jobs in the
queue and the state of the 𝑀𝐴𝑃. In other words, the state space of the 𝑀/𝑀𝐴𝑃/1 queue
is given by

Ω = {(ℓ , 𝑖)|ℓ ∈ N, 𝑖 ∈ {1, . . . , 𝑛}}.
Similarly to the previous section, we use the lexicographical ordering on the states.

Based on the discussion above, the 𝑀/𝑀𝐴𝑃/1 queue can be described using the CTMC
with rate matrix

𝑄 =


−�𝐼𝑛 �𝐼𝑛
𝑆1 𝑆0 − �𝐼𝑛 �𝐼𝑛

𝑆1 𝑆0 − �𝐼𝑛 �𝐼𝑛
. . .

. . .
. . .

 . (3.2)

Similarly to (3.1), the rate matrix (3.2) has a QBD structure. It should be therefore possible
to numerically find the invariant distribution of the queue (provided it exists). Similarly
to the previous section, we introduce the following notation: suppose an invariant dis-
tribution 𝜋 of the 𝑀/𝑀𝐴𝑃/1 queue exists, we then set for ℓ = 0, 1, . . .

𝜋ℓ = [𝜋ℓ ,1 ,𝜋ℓ ,2 , . . . ,𝜋ℓ ,𝑛].

Suppose now that the CTMC with rate matrix 𝑆 is irreducible (and positive recurrent)
and let 𝛾 be its invariant distribution. The average rate at which jobs get completed is
then 𝛾𝑆11𝑛 . It follows that the system is stable if � < 𝛾𝑆11𝑛 . In this case, the load of the
system is given by 𝜌 = �/(𝛾𝑆11𝑛).

Under the above assumptions, we can numerically find the invariant distribution of the
𝑀/𝑀𝐴𝑃/1 queue:

Theorem 3.4.1. Suppose we have an 𝑀/𝑀𝐴𝑃/1 queue with arrival rate � and irreducible
𝑀𝐴𝑃(𝑆0 , 𝑆1) service, with 𝜌 = �/(𝛾𝑆11𝑛) < 1. Let the matrices 𝑅 and 𝐺 be the solutions to the
equations

�𝐼𝑛 + 𝑅(𝑆0 − �𝐼𝑛) + 𝑅2𝑆1 = 0
𝑆1 + (𝑆0 − �𝐼𝑛)𝐺 + �𝐺2 = 0.

Then:

• The vector 𝜋0 can be numerically obtained as a solution to the following set of equations{
𝜋0(𝐺 − 𝐼𝑛) = 0,

𝜋0(𝐼𝑛 − 𝑅)−11𝑛 = 1.
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• For ℓ ≥ 1 we have 𝜋ℓ = 𝜋0𝑅
ℓ .

Proof. See [48, Section 6.4]. □

Note that, in general, the matrices 𝑅 and 𝐺 from Theorem 3.4.1 can be numerically
obtained by using the solver in [5]. Also note, that we have 𝜋01𝑛 = 1− 𝜌 = 1−�/(𝛾𝑆11𝑛).

We finish this section by showing how the 𝑀/𝑀/1 and the 𝑀/𝑃𝐻/1 queues can be seen
as examples of the 𝑀/𝑀𝐴𝑃/1 queue.

Example 3.4.2 (The 𝑀/𝑀/1 queue). An 𝑀/𝑀/1 queue with service rate �, can be seen
as an 𝑀/𝑀𝐴𝑃/1 queue with 𝑀𝐴𝑃(−�, �) service. In this case 𝑆 = 0, 𝑛 = 1 and 𝛾 = 1.

Example 3.4.3 (The 𝑀/𝑃𝐻/1 queue). We describe an 𝑀/𝑃𝐻/1 queue with 𝑃𝐻(𝛼, �̃�) jobs
of 𝑛 phases as an 𝑀/𝑀𝐴𝑃/1 queue by setting 𝑆0 = �̃� and 𝑆1 = 𝑠∗𝛼 (with 𝑠∗ = −�̃�1𝑛)
in (3.2). This can be easily seen by comparing the rate matrices (3.1) and (3.2): the only
difference is that, when the queue is empty, in (3.1) the initial phase of the next job is
chosen upon the arrival of said job, while in (3.2) that phase is already chosen at the time
of completion of the previous job.

3.5 The 𝑀/𝐺/1 queue

In this section we summarize important results on the 𝑀/𝐺/1 queue. Suppose that jobs
arrive to the queue according to a Poisson process with parameter � and suppose further
that job sizes are distributed according to a general distribution 𝐺. Note that the load of
the queue is then given by 𝜌 = �𝐸[𝐺]. Suppose that 𝜌 < 1. Due to the generality of 𝐺, we
cannot describe the 𝑀/𝐺/1 queue using a CTMC, as we did for the 𝑀/𝑀/1, 𝑀/𝑃𝐻/1
and 𝑀/𝑀𝐴𝑃/1 queues. Despite this we still can provide formulas for the mean response
time and mean waiting time of the queue.

A way of finding mean response and waiting times is through the use of the, so called,
mean value analysis. Due to PASTA property the average waiting time of the queue is the
same as the average waiting time that an arriving job experiences. This waiting time is 0
if the job arrives when the queue is empty, otherwise the job has to wait until all previous
jobs get serviced. If the queue is busy, the incoming job also has to wait on the job in
service to leave the system. Note that the latter wait is called the “residual service time”.
Note further, that the probability that the server is working on a job upon an arrival is 𝜌
(once again due to PASTA). Let 𝐸[𝐿𝑞] denote the average number of waiting jobs in the
buffer of the queue (thus not counting the possible job in service). We then have that the
mean waiting time equals

𝐸[𝑊] = 𝐸[𝐿𝑞]𝐸[𝐺] + 𝜌𝐸[residual service time | a job is in service].

By using Little’s law on the buffer of the queue, we obtain 𝐸[𝑊] = �𝐸[𝐿𝑞]. Substituting
this in the above equation and solving for 𝐸[𝑊] gives

𝐸[𝑊] = 𝜌

1 − 𝜌
𝐸[residual service time | a job is in service].

It can be shown that the last expected value equals 𝐸[𝐺2]/(2𝐸[𝐺]) and we thus obtain:
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Theorem 3.5.1. For the 𝑀/𝐺/1 queue with arrival rate � and job size distribution 𝐺, with
𝜌 < 1, we have

𝐸[𝑊] = 𝜌

1 − 𝜌
· 𝐸[𝐺

2]
2𝐸[𝐺] and 𝐸[𝑅] = 𝐸[𝐺] + 𝜌

1 − 𝜌
· 𝐸[𝐺

2]
2𝐸[𝐺] .

The above derivation can be found for example in [30, Subsection 5.1.1] or in [1, Section
7.6]. Note, that we use a similar method in the second proof of the formula (10.6).

Another way of deriving this result is through the use of generating functions (cf. Defi-
nition 2.4.1). Let 𝜋(𝑧),𝜋𝑎(𝑧) and 𝜋𝑑(𝑧) denote the generating functions of: the invariant
distribution, the distribution of the system observed upon an arrival and the distribution
of the system observed upon a departure. Due to PASTA we must have 𝜋(𝑧) = 𝜋𝑎(𝑧) for
the 𝑀/𝐺/1 queue. Due to the following result 𝜋𝑑(𝑧) also equals 𝜋(𝑧):

Theorem 3.5.2. For the𝑀/𝐺/1 queue with arrival rate� and job size distribution𝐺, with 𝜌 < 1,
we have 𝜋(𝑧) = 𝜋𝑑(𝑧), meaning that the invariant distribution is the same as the distribution of
the queue observed at departure times.

Proof. See [30, Subsection 5.1.3]. □

The generating function 𝜋(𝑧) is given by:

Theorem 3.5.3. For the 𝑀/𝐺/1 queue with arrival rate � and job size distribution 𝐺, with
𝜌 < 1, we have

𝜋(𝑧) =
(1 − 𝜌)(1 − 𝑧)𝐺∗(� − �𝑧)

𝐺∗(� − �𝑧) − 𝑧 ,

where 𝐺∗(𝑠) is the Laplace-Stieltjes transform of the job size distribution (cf. Definition 2.5.1).

Proof. A proof can be found in [30, Subsections 5.1.2 and 5.1.5] or in [1, Section 7.2]. Note
that this proof uses the result from Theorem 3.5.2. □

By using Theorem 3.5.3 together with Theorem 2.4.2 and Little’s law, the mean response
time of the𝑀/𝐺/1 queue can be now obtained as 𝐸[𝑅] = 𝜋′(1)/�. Note, that the formulas
in Theorems 3.5.1 and 3.5.3 are commonly referred to as Pollaczek–Khinchine formulas.

Note further, that we shall write �(𝑧) for the generating function of the queue length of
an 𝑀/𝐺/1 queue from now on.

3.6 Frequently used matrix identities and operations

In this section we list several matrix identities used in this thesis from Chapter 7 onward.
We start by displaying several inversion identities in Subsection 3.6.1. We then provide
the definitions of the Kronecker product and the vector stacking operator in Subsection
3.6.2, together with a proposition concerning a connection between them.
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3.6.1 Matrix inversion identities

When working with inverses of sums of matrices two identities can be very useful:
Woodbury matrix identity and Sherman–Morrison formula [31, Section 18.2.d.]:

Theorem 3.6.1 (Woodbury matrix identity). Let 𝐴, 𝐵, 𝐶 and 𝐷 be matrices of dimensions
𝑛×𝑛, 𝑛×𝑚, 𝑚×𝑚 and𝑚×𝑛 respectively. Suppose that 𝐴 and 𝐶 are invertible. Then 𝐴+𝐵𝐶𝐷
is invertible if and only if 𝐶−1 + 𝐷𝐴−1𝐵 is invertible. In this case, we have

(𝐴 + 𝐵𝐶𝐷)−1 = 𝐴−1 − 𝐴−1𝐵(𝐶−1 + 𝐷𝐴−1𝐵)−1𝐷𝐴−1.

Sherman–Morrison formula can be seen as a special case of Woodbury matrix identity:

Corollary 3.6.2 (Sherman–Morrison formula). Let 𝐴 be an invertible 𝑛×𝑛 matrix and 𝑢 and
𝑣 column vectors of height 𝑛. Then 𝐴+ 𝑢𝑣′ is invertible if and only if 𝑣′𝐴−1𝑢 ≠ −1. In this case,
we have

(𝐴 + 𝑢𝑣′)−1 = 𝐴−1 − 𝐴−1𝑢𝑣′𝐴−1

1 + 𝑣′𝐴−1𝑢
.

Proof. This follows directly from Theorem 3.6.1 by setting 𝐵 = 𝑢, 𝐶 = 1 and 𝐷 = 𝑣′. □

When studying QBDs one often comes across the geometric progression of matrices. The
following properties can then be of use [31, Section 18.2.f.]:

Theorem 3.6.3 (Geometric progression of matrices). Let 𝐴 be a square matrix and 𝐼 the
identity matrix of the same dimensions. For 𝑛 ≥ 0 denote 𝑆𝑛 =

∑𝑛
𝑘=0 𝐴

𝑘 . Then lim𝑛→∞ 𝑆𝑛
exists if and only if lim𝑘→∞ 𝐴𝑘 = 0. In this case 𝐼 − 𝐴 is invertible and we have

𝑆𝑛 =

𝑛∑
𝑘=0

𝐴𝑘 = (𝐼 − 𝐴)−1(𝐼 − 𝐴𝑛+1)

and thus

lim
𝑛→∞

𝑆𝑛 =

∞∑
𝑘=0

𝐴𝑘 = (𝐼 − 𝐴)−1.

Remark 3.6.4. In Theorem 3.6.3, the condition lim𝑘→∞ 𝐴𝑘 = 0 is equivalent to 𝑠𝑝(𝐴) < 1,
i.e. for every eigenvalue � of 𝐴, we must have |�| < 1.

Theorem 3.6.3 is a generalization of the geometric progression of numbers, where an
infinite geometric series converges if and only if for 𝑟, the common ratio, |𝑟 | < 1 holds.

3.6.2 Matrix operations

We finish this chapter by defining two matrix operations and by presenting a connection
between them.
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Definition 3.6.5 (Kronecker product). Let𝐴 and 𝐵 be 𝑘×ℓ and𝑚×𝑛matrices respectively.
The Kronecker product of 𝐴 and 𝐵, denoted by 𝐴 ⊗ 𝐵, is a 𝑘𝑚 × ℓ𝑛 matrix defined as
follows

𝐴 ⊗ 𝐵 =


𝑎11𝐵 . . . 𝑎1ℓ𝐵
...

. . .
...

𝑎𝑘1𝐵 . . . 𝑎𝑘ℓ𝐵

 ,
with 𝑎𝑖 𝑗 the (𝑖 , 𝑗)-th entry of 𝐴.

Definition 3.6.6 (Vector stacking operator). 𝑣𝑒𝑐⟨·⟩, the vector stacking operator, is defined
as follows: for an 𝑚 × 𝑛 matrix 𝐴, 𝑣𝑒𝑐⟨𝐴⟩ is a column vector of height 𝑚𝑛 consisting of
the columns of 𝐴 stacked one under another (starting from the leftmost column). That
is, if 𝐴 = [𝐶1 , 𝐶2 , . . . , 𝐶𝑛], where 𝐶𝑖 denotes the 𝑖-th column of 𝐴, then

𝑣𝑒𝑐⟨𝐴⟩ =


𝐶1
𝐶2
...
𝐶𝑛

 .
The following property, which is due to [65, Section 3.], shows a connection between
𝑣𝑒𝑐⟨·⟩ and the Kronecker product.

Proposition 3.6.7 (Roth’s column lemma). Let 𝐴, 𝐵 and 𝐶 be 𝑘× ℓ , ℓ ×𝑚 and 𝑚×𝑛 matrices
respectively. Then

𝑣𝑒𝑐⟨𝐴𝐵𝐶⟩ = (𝐶′ ⊗ 𝐴)𝑣𝑒𝑐⟨𝐵⟩.

The last two definitions and the above proposition, along with some other properties,
can be found for example in [37].
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Large-scale systems

4.1 Motivation

Simple queueing systems can often be studied directly by using Markov chains. These
systems include a variety of systems where the number of servers 𝑁 is small. In Chapter
3, we have seen several examples of such queueing systems with 𝑁 = 1. However, in this
thesis, we are interested in studying large scale systems, i.e. systems where the number
of servers 𝑁 is large. In case of large 𝑁 , exact analysis is in most cases prohibitive.

One challenge we are faced with when trying to analyze an 𝑁-server queueing system,
with 𝑁 large, is the “state space explosion”. We illustrate this phenomenon with an
example.

Example 4.1.1. Consider a system of 𝑁 queues, where each queue uses the FIFO dis-
cipline, each job has exponential service requirements with mean 1, and where every
queue has a finite buffer consisting of 𝐵 slots (where we assume that the job in service
occupies one of these slots). When a job tries to enter a queue that is full, the job is
discarded from the system. Suppose jobs arrive to central dispatcher according to a Pois-
son process with rate �𝑁 , for some 0 < � < 1. The dispatcher then distributes arriving
jobs to the queues according to JSQ(𝑑) policy. JSQ(𝑑) stands for Join Shortest Queue out
of 𝑑 selected queues. The policy is also referred to as power-of-𝑑 policy. As the name
suggests, the policy works as follows: upon an arrival, the central dispatcher chooses 𝑑
queues at random and one of those queues with the least amount of jobs gets assigned
the arriving job (with ties between queues broken uniformly at random). Note that for
𝑁 = 1, this system can be described in the Kendall notation as an 𝑀/𝑀/1/𝐵 queue.

Due to the memorylessness property of the exponential distribution (cf. Theorem 2.1.3),
we only need to know the number of jobs in each queue to describe the state of the system.
For the 𝑁-server system, we thus get Ω = {0, 1, . . . , 𝐵}𝑁 as the state space, meaning that
the number of states of the system is (𝐵 + 1)𝑁 . The number of states thus quickly grows
in function of 𝑁 .

To circumvent the state space explosion we employ mean field modelling. We shall
also refer to mean field modelling as “mean field method”, simply “mean field”, “cavity
method” and “cavity queue”. In this thesis, we employ mean field modelling in two
manners, both are explained below. For ease of presentation we shall refer in this chapter

37
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to the first manner as “mean field method/model” and as “cavity method/queue” to
the second. The first method focuses on studying the fraction of queues in a given state
when 𝑁 → ∞. This method is explained in Section 4.2. The second method, focuses
on studying a single queue from the system of infinitely many queues. We explain the
cavity method in 4.3. Note, that the system of infinitely many queues, that is the system
with 𝑁 → ∞, is referred to as the “large-scale limit”. In Part II, we use the first method,
in Part III both methods are used, while Part IV only uses the cavity method. Further, in
Subsection 4.3.2, we remark on a connection between the two methods and why we can
use the terms “mean field method” and “cavity method” interchangeably. In Section 4.4
we note the importance of performing simulations for finite 𝑁 . There, we also explain
how we calculate the relative error and the 95% confidence intervals for the simulations.
Finally, in Section 4.5 we apply the cavity method to an example.

4.2 Mean field method

Mean field modelling is a popular tool and been used to study a large variety of sys-
tems, including systems with job stealing/sharing [25, 55, 72, 77, 79] and load balancing
algorithms [2, 58, 80, 82].

The idea of the method is the following. We approximate the system of 𝑁 queues by a
system with infinitely many queues. We then study the latter system, henceforth referred
to as the “mean field model”. When studying the mean field model, we do not focus on
the state of each queue separately. Instead, we group the queues according to their state
and focus on the fraction of queues in a state. Using a set of ODEs we can describe the
evolution of these fractions as time progresses.

Example 4.1.1 (continued). Continuing with the example, we now give the mean field
model, its state space and its set of ODEs. Since for every queue in the 𝑁-server system,
we only need to know the queue length, we should group the queues according to their
queue length. We can then describe the mean field model by the variables 𝑥𝑖(𝑡), where
𝑥𝑖(𝑡) denotes the fraction of queues in state 𝑖 at time 𝑡. The state space of this system is:

Ω∞ =

{
(𝑥𝑖)0≤𝑖≤𝐵

����� 𝐵∑
𝑖=0

𝑥𝑖 = 1,∀𝑖 ∈ {0, . . . , 𝐵} : 0 ≤ 𝑥𝑖 ≤ 1

}
.

For ease of notation we set 𝑥𝐵+1(𝑡) = 0, for all 𝑡.

The fraction of queues at time 𝑡 with 𝑖 or more jobs is
∑𝐵
𝑘=𝑖 𝑥𝑘(𝑡). The probability that

if an arrival occurs at time 𝑡 a queue with 𝑖 jobs gets picked by the dispatcher (where
0 ≤ 𝑖 < 𝐵) is the same as the dispatcher choosing 𝑑 queues with 𝑖 or more jobs of which
not all have at least 𝑖 + 1 jobs. This probability, which we will denote by 𝑝𝑖(𝑡), equals

𝑝𝑖(𝑡) =
(
𝐵∑
𝑘=𝑖

𝑥𝑘(𝑡)
)𝑑

−
(

𝐵∑
𝑘=𝑖+1

𝑥𝑘(𝑡)
)𝑑
.

The evolution of the mean field model can be then described using the following set of
ODEs. For 0 < 𝑖 ≤ 𝐵, we have

𝑑𝑥𝑖(𝑡)
𝑑𝑡

= �𝑝𝑖−1(𝑡)𝑥𝑖−1(𝑡) − 1[𝑖 < 𝐵]�𝑝𝑖(𝑡)𝑥𝑖(𝑡) − 𝑥𝑖(𝑡) + 𝑥𝑖+1(𝑡), (4.1)
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where 1[𝑃] is one if𝑃 is true and is zero otherwise. The first two terms of Equation (4.1) are
due to the dispatcher assigning arrivals to queues (of length 𝑖−1 and 𝑖 respectively), while
the last two terms are due to completions (in queues with 𝑖 and 𝑖 + 1 jobs respectively).
Similarly, we have

𝑑𝑥0(𝑡)
𝑑𝑡

= −�𝑝0(𝑡)𝑥0(𝑡) + 𝑥1(𝑡).
We thus have described the set of ODEs of the mean field.

In general, let Ω∞ denote the state space of the mean field model. That is, if 𝑖 is a state
in the system with a single queue (𝑁 = 1) and 𝑥 ∈ Ω∞ then 𝑥𝑖 denotes the fraction of
queues in state 𝑖. The next step is showing that there exists a unique solution 𝑥(𝑡) for the
set of ODEs, with 𝑥(𝑡) ∈ Ω∞ for every 𝑡 ≥ 0 and 𝑥(0) = 𝑥0 for every 𝑥 ∈ Ω∞.

Without going too much into detail, this follows if we can show that the drift 𝑑𝑥(𝑡)/𝑑𝑡 is
locally Lipschitz continuous and bounded on Ω∞ for a suitable norm on RN.

For ease of presentation, we assume throughout the rest of this section that queues have
a finite buffer 𝐵. By using [4, Theorem 1.9.6] we can then almost immediatly show the
existence of a fixed point. Note, that practically, there is very little difference between
having a system with an infinite buffer and a huge finite buffer, provided that the system
is stable.

Next, let 𝑋(𝑁)(𝑡) capture the system of 𝑁 queues at time 𝑡, such that 𝑋(𝑁)(𝑡)𝑖 is the
fraction of queues in state 𝑖 at time 𝑡 in the𝑁-queue system. Let 𝜋(𝑁) denote the invariant
distribution of the process 𝑋(𝑁)(𝑡). Suppose that 𝑋(𝑁)(0) ∈ Ω∞. Note, that in this case
we call 𝑋(𝑁)(𝑡) a “sample path”. Then, under suitable conditions [17, Chapter 11], we get

lim
𝑁→∞

sup
𝑡≤𝑇

| |𝑋(𝑁)(𝑡) − 𝑥(𝑡)| | = 0. (4.2)

(Note, that (4.2) is also easier to prove when 𝐵 < ∞.) Equation (4.2) says that, over finite
time scales, the sample paths of the 𝑁-server system converge (in probability) to the
unique solution of the set of ODEs as the number of servers tends to infinity.

If we can then show that the set of ODEs has a fixed point 𝜋, which is a global attractor
(meaning lim𝑡→∞ 𝑥(𝑡) = 𝜋, for every 𝑥 ∈ Ω∞ with 𝑥(0) = 𝑥), then the invariant distribu-
tions 𝜋(𝑁) converge weakly to the Dirac measure of 𝜋. Thus, if 𝜋 is a global attractor, we
can approximate 𝜋(𝑁) through (the Dirac measure of) 𝜋. In many cases (including the
systems from Part II), proving global attraction is the most difficult step.

When proving global attraction, an essential step can be showing that the there exists a
partial order relation on the state space Ω∞ that is maintained over time.
Definition 4.2.2 (Partial order). Let 𝑆 be a set. We call ⪯ a partial order relation on the
set 𝑆 if the following three properties hold:

• Reflexivity: for every 𝑥 ∈ 𝑆, we have 𝑥 ⪯ 𝑥.

• Antisymmetry: for every 𝑥, 𝑦 ∈ 𝑆, if 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥, then 𝑥 = 𝑦.

• Transitivity: for every 𝑥, 𝑦, 𝑧 ∈ 𝑆, if 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑧, then 𝑥 ⪯ 𝑧.

The most known example of a partial order probably is the relation ≤ on the set of real
numbers.
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4.3 Cavity method

In the last section, we described the mean field method in case of systems that can be
described using a set of ODEs as 𝑁 → ∞. This is true for all the systems in this thesis
where this method is used. There exist systems, however, that cannot be described
using a set of ODEs as 𝑁 → ∞ and are instead described by the, so called, differential
inclusion [40]. In this case, the cavity method can be a more direct approach.

The cavity method has been long used in a large range of problems and fields. It was
used, for example, in statistical physics [54] in 1987. In 2010, it was properly formalized
and adapted to the study of large scale queueing systems in the paper [9]. The method
has been used for the analysis of different queueing systems and policies, for example:
[10, 11, 34, 35].

We now provide the proper mathematical background of the method and afterwards
provide an intuitive explanation behind the method. The modularized program from [9]
consists of the following steps:

1. proving uniform stability;

2. given the existence and uniqueness of an invariant distribution of the large scale
limit system, proving asymptotic independence; and

3. solving two fixed point equations.

We continue by explaining each of these steps in Subsections 4.3.1, 4.3.2 and 4.3.3 respec-
tively.

4.3.1 Uniform stability

For 1 ≤ 𝑖 ≤ 𝑁 , let 𝑞𝑖 ,𝑁 (𝑡) denote number of jobs at time 𝑡 in the 𝑖-th queue of the
𝑁-server system. Let 𝑟𝑖 ,𝑁 (𝑡) denote the column vector of residual service times in the
𝑖-th of the 𝑁 servers at time 𝑡, that is, the 𝑘-th entry of 𝑟𝑖 ,𝑁 (𝑡) is the remaining amount
of service that the 𝑘-th job in 𝑖-th queue has to receive at time 𝑡. If the 𝑖-th queue
has less than 𝑘 jobs at time 𝑡, i.e. 𝑞𝑖 ,𝑁 (𝑡) < 𝑘, we let 𝑘-th entry of 𝑟𝑖 ,𝑁 (𝑡) be 0. Denote
𝑄𝑁 (𝑡) = (𝑞1,𝑁 (𝑡), 𝑞2,𝑁 (𝑡), . . . , 𝑞𝑁,𝑁 (𝑡)) and 𝑅𝑁 (𝑡) = (𝑟1,𝑁 (𝑡), 𝑟2,𝑁 (𝑡), . . . , 𝑟𝑁,𝑁 (𝑡)). In this
thesis we always assume that service requirements of different jobs are independent and
identically distributed. In this case (𝑄𝑁 (𝑡), 𝑅𝑁 (𝑡)) forms a CTMC. Throughout the rest
of the section we assume that this CTMC is irreducible for every 𝑁 ≥ 1.

Definition 4.3.1 (Uniform stability). We say that uniform stability holds if

sup
𝑁≥1

𝑃 (𝑞1,𝑁 (𝑡) > 𝑀) → 0 (4.3)

and

sup
𝑁≥1

𝑃

(∑
𝑘≥1

(𝑟1,𝑁 (𝑡))𝑘 > 𝑀

)
→ 0, (4.4)

as 𝑀 → ∞, for every 𝑡.
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Uniform stability means that regardless of the number of queues 𝑁 and the time 𝑡, the
probabilities that there are at least 𝑀 jobs in the first queue (4.3) and that there are at least
𝑀 units of work left in the first queue (4.4) approach 0 while 𝑀 keeps being increased.

Note, that uniform stability always holds if the queues have a finite buffer 𝐵. Indeed,
for a finite buffer 𝐵 we have 𝑃 (𝑞1,𝑁 (𝑡) > 𝐵) = 0. Further, as jobs have finite mean, the
average amount of work in total in a finite number of jobs is also finite. As there are at
most 𝐵 jobs in the first queue, (4.4) therefore also holds.

4.3.2 Asymptotic independence

For the remaining steps the service discipline is assumed to be local:

Definition 4.3.2. A service discipline is said to be “local” if at every queue 𝑖 the service
discipline only depends on 𝑞𝑖 ,𝑁 (𝑡) and on 𝑟𝑖 ,𝑁 (𝑡).

In this thesis all service disciplines are local.

Next step involves showing that the system of infinitely many queues has an invariant
and ergodic measure Π (on N∞). One further has to show that Π is unique.

If the 𝑁-server system is stable, then the CTMC (𝑄𝑁 (𝑡), 𝑅𝑁 (𝑡)) is positive recurrent and
therefore has a unique invariant distribution (Π𝑁 , Γ𝑁 ). The next step is then showing that
Π𝑁 → Π as 𝑁 → ∞. Once this is done, we have to prove “asymptotic independence”:

Definition 4.3.3. Let Π(𝑘) denote the restriction of Π to the first 𝑘 entries of Π. We say
that a queueing system is asymptotically independent if for every 𝑘 = 1, 2, 3, . . . we have

Π(𝑘) =
𝑘⊗
𝑖=1

Π(1) (4.5)

as 𝑁 → ∞, where
⊗𝑘

𝑖=1 Π
(1) denotes the 𝑘-fold product space.

Let us reflect on the above definition for a moment. Asymptotic independence implies
that in the large scale limit any finite number of queues become independent. Note, that

Π
(1)
ℓ

= lim
𝑁→∞

lim
𝑡→∞

𝑃(𝑞1,𝑁 (𝑡) = ℓ )

is the probability that in the large scale limit the first queue, and therefore any queue, has
ℓ jobs in equilibrium. This implies that Π(1)

ℓ
is also the fraction of queues with ℓ jobs in

the large scale limit in equilibrium and Π(1) is thus a fixed point of the set of ODEs/the
differential inclusion describing the large scale limit. This also explains the link between
the two methods. Further, Equation (4.5) says the following: if we wish to calculate f.e.
the probability that the first queue has 5 jobs and the second 2 in the large scale limit,
we simply have to find Π(1) and calculate Π

(1)
5 Π

(1)
2 . Finally, note that letting 𝑁 → ∞ is

usually essential for asymptotic independence to hold.

Some important classes of systems where asymptotic independence has been shown to
hold include:
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• Systems with JSQ(𝑑) policy, FCFS service and job size distribution with decreasing
hazard rate1 [10].

• Systems using LL(𝑑) policy [10], where LL stands for “least loaded”. These are the
systems where the dispatcher gives an incoming job to the queue with the least
remaining work out of 𝑑 randomly chosen queues.

• Systems using any convex combination of 𝐿𝐿(𝑑, 𝐾) policies [67]. Note, that the
𝐿𝐿(𝑑, 𝐾) policy is a generalization of the 𝐿𝐿(𝑑) policy. Under 𝐿𝐿(𝑑, 𝐾) policy, with
𝐾 ≤ 𝑑, 𝐾 jobs are assigned by a dispatcher to 𝐾 least loaded queues among 𝑑
selected queues.

4.3.3 Fixed point equations

As the final step, we actually calculate Π(1). This is done through two “fixed point
equations”.

For many load balancing policies, the rate at which jobs arrive to the first queue (or any
other queue) in the large scale limit, depends on the number of jobs in said queue. If
every arrival consists of a single job, let �ℓ denote the rate at which jobs arrive to the first
queue in the large scale limit in equilibrium, provided that this queue has ℓ ≥ 0 jobs. Let
Λ denote the vector (�ℓ )ℓ∈N. If the system has batch arrivals, let �ℓ ,𝑘 denote the rate at
which a batch of 𝑘 ≥ 1 jobs arrives to the first queue in the large scale limit in equilibrium,
provided that the queue has ℓ ≥ 0 jobs. In this case, let Λ be the matrix (�ℓ ,𝑘)ℓ ,𝑘 . As Π(1)

ℓ
is the fraction of queues in the large scale limit in equilibrium with ℓ jobs, Λ depends on
Π(1) and therefore, for some function 𝐺, we have

Λ = 𝐺(Π(1)). (4.6)

Conversely, the invariant measure Π, and therefore Π(1), clearly depends on the (batch)
arrival rates Λ. Thus, there exists another function 𝐹 such that

Π(1) = 𝐹(Λ). (4.7)

Combining Equations (4.6) and (4.7) now yields

Π(1) = 𝐹(𝐺(Π(1))),
Λ = 𝐺(𝐹(Λ)).

Solving these two “fixed point equations” gives Π(1) and Λ.

Note, that in this thesis we are sometimes not only interested in the distribution of the
number of jobs in the cavity queue in equilibrium, but also in the phase of the job in
service. In this case let Π(1)

ℓ ,𝑘
be the probability that in the equilibrium the first queue has

ℓ jobs and some phase 𝑘 and let Π(1) denote the matrix with (ℓ , 𝑘)-th entry given by Π
(1)
ℓ ,𝑘

.
Note, that Π(1)

ℓ
=

∑
𝑘 Π

(1)
ℓ ,𝑘

= Π
(1)
ℓ ,𝑘

1. Therefore, using the map 𝐺′(·) = 𝐺(· 1), Equation (4.6)
can be rewritten as

Λ = 𝐺′(Π(1)) = 𝐺(Π(1)1).
1A non-negative random variable with cdf 𝐹(𝑡) and pdf 𝑓 (𝑡) is said to have decreasing hazard rate if the

hazard function ℎ(𝑡) = 𝑓 (𝑡)/(1 − 𝐹(𝑡)) is decreasing in function of 𝑡.
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Proceeding similarly as above, we get two modified fixed point equations:

Π(1) = 𝐹(𝐺′(Π(1))),
Λ = 𝐺′(𝐹(Λ)).

By solving these equations, we can also obtain the distribution of the phase of the job in
service.

In Parts III and IV, the fixed point equations are solved as follows. In Part III, we first find
a way of calculating Λ. This requires solving several quadratic matrix equations. Based
on this Λ we can calculate Π(1). In Chapter 10, we find an explicit formula for Λ and then
an explicit formula for the generating function of Π(1). In Chapter 11, we use a bisection
algorithm to numerically solve the fixed point equations.

4.4 Simulation results

Usually, we skip the steps described in Subsections 4.3.1 and 4.3.2 and we simply assume
the following conjecture (referred to as the “Ansatz”) to be true:

Conjecture 4.4.1 (Ansatz). Consider a system of 𝑁 queues with a load smaller than 1 operating
under some load balancing policy. Suppose that the system is uniformly stable and that the service
discipline is local. Then, in the large scale limit, i.e. as 𝑁 → ∞, there exists a unique invariant
measure. Further, in the large scale limit, the system exhibits asymptotic independence, i.e. any
finite number of queues become independent.

This allows us to immediately work on the analysis of the queue at the cavity and also
gives the first reason for simulations: we examine whether simulation results support
the Ansatz. Further, regardless of whether or not the Ansatz holds for a system, it is
still worthwhile to simulate the system for various values of 𝑁 . This is due to the fact
that if the Ansatz holds, the cavity queue provides a correct approximation of the 𝑁-
server system as𝑁 grows large, however we do not know anything on the accuracy of the
approximation in function of𝑁 . If the Ansatz does not hold, then the cavity queue/mean
field model may still provide good approximate results for the system of 𝑁 queues.

When simulating a system of 𝑁 queues we usually measure the mean response time.
In this thesis, for every simulated 𝑁-server system we run the simulation 20 times. For
each of these 20 runs we note down the measured mean response time. The average
of these measured mean response times (denoted as �̃�[𝑅𝑁 ]) should be approximately
the theoretical mean response time of the 𝑁-server system. Let us denote the latter by
𝐸[𝑅𝑁 ]. We are interested in the relative error of the mean response times 𝐸[𝑅𝑁 ] and
𝐸[𝑅∞], defined as

|𝐸[𝑅𝑁 ] − 𝐸[𝑅∞]|
𝐸[𝑅∞]

.

We can approximate this error by

|�̃�[𝑅𝑁 ] − 𝐸[𝑅∞]|
𝐸[𝑅∞]

.
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In all simulations presented here, this approximation seems to be 𝑂(1/𝑁) accurate,
similarly to the results presented in [24]. 𝑂(1/𝑁) accuracy means the following: if we
increase the number of queues 𝑁 by a factor, then the relative error decreases by that
factor. We also calculate the 95% confidence intervals for each set of 20 simulations. Let
�̃�𝑖[𝑅𝑁 ] denote the measured mean response time of the system of the 𝑁-server system
in 𝑖-th simulation. This interval is then of the form

[
�̃�[𝑅𝑁 ] − 𝑐𝑜𝑛 𝑓 , �̃�[𝑅𝑁 ] + 𝑐𝑜𝑛 𝑓

]
, with

𝑐𝑜𝑛 𝑓 given by

𝑐𝑜𝑛 𝑓 = 𝐶𝑇

√∑𝑛
𝑖=1

(
�̃�[𝑅𝑁 ] − �̃�𝑖[𝑅𝑁 ]

)2

𝑛(𝑛 − 1)
for 𝑛 simulations, where𝐶𝑇 is the so called critical𝑇 value. For 𝑛 = 20 and 95% confidence
intervals, 𝐶𝑇 is (approximately) 2.093.

4.5 Queue at the cavity of Example 4.1.1

We finish this chapter by describing the queue at the cavity and the fixed point equations
for the system in Example 4.1.1. Suppose the Ansatz holds for the system in the example.

Each of the queues, and therefore the cavity queue, of the large scale limit system has
Poisson arrivals that depend on the number of jobs in the queue. Continuing with the
notation from 4.3.3 we shall denote by �ℓ the rate at which jobs arrive to the cavity queue
given that it has ℓ jobs. As the job sizes are exponential and the scheduling policy is
FCFS, we only need to know the number of jobs in the cavity queue to describe its state.
In other words, the state space of the cavity queue is given by Ω𝑐𝑎𝑣 = {0, 1, . . . , 𝐵}. The
cavity queue then evolves as a CTMC with the rate matrix

𝑄(Λ) =



−�0 �0
1 −1 − �1 �1

1 −1 − �2 �2
. . .

. . .
. . .

1 −1 − �𝐵−1 �𝐵−1
1 −1


,

where we stress the dependence on Λ by writing 𝑄(Λ). As �ℓ > 0 for every ℓ =

0, 1, . . . , 𝐵 − 1, this CTMC is irreducible. As the state space is finite, the CTMC is also
positive recurrent. Therefore, it has a unique invariant distribution Π(1) (cf. Theorem
3.2.2). This distribution can be found as the unique solution to the set of equations
Π(1)𝑄 = 0 and Π(1)1 = 1. This can be seen as the equivalent of Equation (4.7) as Π(1)

depends on 𝑄(Λ), which in turn depends on Λ. On the other hand as Π(1)
ℓ

is the fraction
of queues with ℓ jobs in equilibrium, �ℓ can be determined as follows.

∑𝐵
𝑘=ℓ Π

(1)
𝑘

is the
probability that a queue has at least ℓ job in equilibrium. Therefore(

𝐵∑
𝑘=ℓ

Π
(1)
𝑘

)𝑑
−

(
𝐵∑

𝑘=ℓ+1
Π

(1)
𝑘

)𝑑
is the probability that the dispatcher assigns an arrival to a queue with ℓ jobs (the
dispatcher chooses 𝑑 queues, each with ℓ or more jobs, but not all with at least ℓ + 1 jobs).
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The rate at which jobs arrive to the queues with ℓ jobs is then

�


(
𝐵∑
𝑘=ℓ

Π
(1)
𝑘

)𝑑
−

(
𝐵∑

𝑘=ℓ+1
Π

(1)
𝑘

)𝑑 .
As Π(1)

ℓ
is the fraction of queues with ℓ jobs in equilibrium, it follows that in equilibrium

�ℓ =
�

Π
(1)
ℓ


(
𝐵∑
𝑘=ℓ

Π
(1)
𝑘

)𝑑
−

(
𝐵∑

𝑘=ℓ+1
Π

(1)
𝑘

)𝑑
is the rate at which jobs get assigned to each queue (and therefore the cavity queue) with
ℓ jobs.
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Chapter 5555555555555555555555555555555555555555555555555555555555555555555555555
Supermarket Model in Processor

Sharing Systems

This Chapter is based on the paper [43], titled “On the Asymptotic Insensitivity of the Supermarket
Model in Processor Sharing Systems”. This was the first paper I worked on that got accepted to a
conference, namely to ACM SIGMETRICS ’21. The conference was planned to take place in Bei-
jing, China. However due to the COVID-19 pandemic, it was changed into a fully virtual event.
My presentation of the paper can be freely viewed at https://www.youtube.com/watch?v=
uG41LRnvpyU . The paper was subsequently published in Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems.

5.1 Introduction

The supermarket model refers to a popular load balancing model consisting of 𝑁 ho-
mogeneous servers and Poisson arrivals with rate �𝑁 , where for each incoming job 𝑑
servers are selected at random and the job joins the queue with the fewest jobs. In the
seminal papers [58,82] it was shown that when job sizes are exponential with mean 1 the
probability of having 𝑘 or more jobs in a server converges to �(𝑑𝑘−1)/(𝑑−1) as the number of
servers 𝑁 tends to infinity. Hence the queue length decays doubly exponential as soon
as 𝑑 > 1, demonstrating the power of having 𝑑 choices. While the authors considered
First-Come-First-Served (FCFS) servers, the result also applies to processor sharing (PS)
servers as both systems are equivalent when the job sizes are exponential.

A modularized program to study the supermarket model with non-exponential job sizes
was proposed in [9] for both FCFS and PS servers. The program relies on an ansatz that
asserts that, for a randomized load balancing scheme in equilibrium, any fixed number of
queues become independent of one another as the number of servers tends to infinity.
Using this ansatz hypothesis the limiting steady-state queue length distribution and other
performance measures of interest can be computed by studying the queue at the cavity
(e.g., [33, 34]).

For the supermarket model with processor sharing the steady-state queue length distri-
bution of the queue at the cavity is that of an 𝑀/𝐺/1/𝑃𝑆 queue with arrival rates that
depend on the queue length. As the queue length distribution of such a queue is known
to be insensitive to the job size distribution (meaning only the mean job size matters) [12],
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this naturally leads to the conjecture that the queue length distribution becomes insensi-
tive to the job size distribution as the number of servers tends to infinity, which we refer
to as asymptotic insensitivity. In [9] the authors noted that for the supermarket model
with a finite fixed number of servers 𝑁 with PS service, the queue length distribution
is not insensitive, meaning only as 𝑁 tends to infinity the sensitivity vanishes. In ad-
dition, the authors showed that the cavity map that is used to compute the limiting
steady-state queue length distribution in case of PS servers has a unique fixed point that
corresponds to the same distribution as in the exponential case, yielding further support
for the conjecture of asymptotic insensitivity. While the ansatz was proven in [10,66] for
various load balancing policies and proving the ansatz for the supermarket model with
PS servers would settle the conjecture, it is still an open problem.

In [81] the authors also considered the supermarket model with PS service and general
service times. The authors used measure-valued processes and martingale techniques
to show that the limit of the empirical distributions satisfies a set of partial differential
equations (PDEs). These PDEs correspond to the transient behavior of an 𝑀/𝐺/1/𝑃𝑆
queue with a queue length and time dependent arrival rate. The authors further showed
that this set of PDEs has a unique fixed point, which is in agreement with the result in [9].
However, as stated after listing their main contributions, in order to prove asymptotic
insensitivity of the limit of the stationary measures, global attraction of the fixed point
must be proven. Instead of providing such a proof, the authors present simulation results
supporting asymptotic insensitivity.

A major challenge in proving asymptotic insensitivity for the the supermarket model
with PS servers lies in overcoming the apparent lack of monotonicity in such systems.
In this chapter we show that monotonicity arguments can still be leveraged if we restrict
ourselves to the class of hyperexponential distributions of order 2. More specifically,
we prove that the limiting steady-state queue length distribution of the supermarket
model with PS servers and order 2 hyperexponential job sizes is the same as the limiting
distribution for exponential job sizes. In other words we prove asymptotic insensitivity of the
limiting steady-state queue length distribution within the class of hyperexponential distributions of
order 2. The class of hyperexponential distributions of order 2 is often used in performance
modeling as it can be regarded as a mixture of long and short jobs and can be used to
match any squared coefficient of variation (SCV) larger than one.

It is worth noting that convergence of the steady state measures has been established in
some specific cases even for systems that are not monotone. For instance, in [51] it is
shown that various load balancing policies for FCFS servers achieve vanishing delays in
the heavy traffic regime when the load equals 1−𝑁−𝛼, for 0 < 𝛼 < 0.5, when the job sizes
have general order-2 Coxian distributions. The supermarket model is one of the policies
considered in [51], but in this case 𝑑 scales as 𝑂(𝑁𝛼 log(𝑁)), whereas in this chapter 𝑑 is
a constant independent of 𝑁 , which implies that delays do not vanish, and servers use
PS instead of FCFS.

The approach taken in this chapter is as follows. For job sizes with an order 2 hyperexpo-
nential distribution, the sample paths of the stochastic process of the supermarket model
consisting of 𝑁 servers converge to the solution of a set of ordinary differential equations
(ODEs) that is shown to have a unique fixed point. The main step to establish asymptotic
insensitivity then exists in showing that the fixed point of the set of ODEs is a global
attractor. We show that the set of ODEs is monotone by using a Coxian representation of
the hyperexponential distribution and defining a suitable state space and partial order,
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from which global attraction follows without much effort. The work in this chapter is in
this regard somewhat similar to [76], where a Coxian representation and a suitable state
space and partial order was also used to prove global attraction of some load balancing
systems. However the systems considered in [76] are restricted to FCFS servers, which
simplifies the set of ODEs and especially the proof that the set of ODEs is monotone.
Moreover, the result in [76] applies to hyperexponential distributions of any order, while
for PS servers the approach appears to be limited to order 2 distributions (see Section 5.8).
Similar to [76], we also present our global attraction result in such a manner that it can
be used to prove global attraction for models with PS servers other than the supermarket
model and we demonstrate this for the traditional push strategy (see Section 5.9). To
avoid some technical issues, we assume that the buffer size at each server is finite.

The main contributions of the chapter are as follows:

• We prove asymptotic insensitivity of the limiting steady-state queue length distri-
bution within the class of hyperexponential distributions of order 2 for the super-
market model with PS servers.

• We present our global attraction result used to prove asymptotic insensitivity in
such a manner that it may also be leveraged for other load balancing policies with
PS servers and demonstrate this using the traditional push algorithm.

The chapter is structured as follows. In Section 5.2 we discuss the model under consider-
ation and present the Coxian representation. In Section 5.3 we introduce the set of ODEs
describing the mean field limit, while the state space and partial order are presented in
Section 5.4. Our global attraction result is stated and proven in Section 5.5. In Section
5.7 we show that the assumptions of our global attraction result are satisfied for the
supermarket model and prove that the set of ODEs has a unique fixed point that corre-
sponds to the same queue length distribution as in the exponential case. The asymptotic
insensitivity result is presented in Section 5.8, while in Section 5.9 we demonstrate that
our results are not limited to the supermarket model. Finally conclusions are drawn in
Section 5.10.

5.2 Model Description

We focus on the supermarket model, also known as the JSQ(𝑑) load balancing policy, with
processor sharing servers. In this model, arrivals occur according to a Poisson process
with rate �𝑁 , we have a set of 𝑁 servers that use processor sharing and each incoming
job is immediately assigned to a server by selecting a server with the least number of
jobs among a set of 𝑑 random servers (with ties being broken at random). We assume
the processing speed of a server equals 1 and when 𝑛 jobs are present in a server, each
job receives an equal share 1/𝑛 of the processing speed of the server. We further assume
each server has a finite buffer of size 𝐵, meaning an incoming job is lost if 𝑑 servers with
a full buffer are selected. The finiteness of the buffer allows us to avoid certain technical
issues and is not an uncommon assumption in mean field modeling [22, 25]. Further in
a real system all buffers are finite and there is hardly any difference between having a
huge finite buffer or an infinite buffer (as long as the system is stable).
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We consider order 2 hyperexponential job sizes with a mean equal to 1, meaning � < 1
suffices for the system to be stable. More specifically, with some probability �̃� jobs have an
exponential size with mean 1/�1 and with probability 1− �̃� jobs have an exponential size
with mean 1/�2 with �1 > �2, such that �̃�/�1 + (1− �̃�)/�2 = 1. While the standard phase-
type representation (�̃�, �̃�) of a hyperexponential distribution is given by �̃� = (�̃� , 1 − �̃�)
and

�̃� =

[
−�1 0

0 −�2

]
,

hyperexponential distributions also have a Coxian representation, see [76, Proposition
1], which in case of 2 phases corresponds to a representation (𝛼, 𝑆) with 𝛼 = (1, 0) and

𝑆 =

[
−�1 𝑝1�1

0 −�2

]
,

where 𝑝1 = (1 − �̃�)(1 − �2/�1) and (1 − 𝑝1)�1 > �2. In fact one can readily check
(by computing the Laplace Stieljes transform) that any distribution with an order 2
Coxian representation and (1 − 𝑝1)�1 > �2, is a hyperexponential distribution with
�̃� = 1 − 𝑝1�1/(�1 − �2) (cf. Proposition 2.5.4). For further use we denote �1 = �1(1 − 𝑝1)
and �2 = �2. To establish monotonicity we formulate the mean field limit using the
Coxian representation (𝛼, 𝑆).

The main challenge to prove global attraction using monotonicity arguments, is to pick a
set of variables that capture the system state such that the set of ODEs that describes the
dynamics of the mean field model in terms of these variables is monotone with respect to
some partial order on the associated state space. When the job sizes are exponential, [82]
showed that the set of ODEs given by

𝑑

𝑑𝑡
ℎ 𝑗(𝑡) = �(ℎ𝑑𝑗−1(𝑡) − ℎ

𝑑
𝑗 (𝑡)) − (ℎ 𝑗(𝑡) − ℎ 𝑗+1(𝑡)),

where the variables ℎ 𝑗(𝑡) represent the fraction of the servers with 𝑗 or more jobs at time
𝑡 is monotone with respect to the pointwise partial order.

When the servers are FCFS servers as in [76] and the job sizes are hyperexponential of
order 2, then it suffices to use a set of variables that represent the fraction of servers with
𝑗 or more jobs (denoted as ℎ 𝑗 ,1 in [76]) and a set of variables for the fraction of servers
with 𝑗 or more jobs for which the server is in phase 2 (denoted as ℎ 𝑗 ,2 in [76]). In this case
a stronger partial order ≤𝐶 is required to get a monotone system. This order is such that
ℎ ≤𝐶 ℎ̃ if

ℎ 𝑗1 ,1 − ℎ 𝑗1 ,2 + ℎ 𝑗2 ,2 ≤ ℎ̃ 𝑗1 ,1 − ℎ̃ 𝑗1 ,2 + ℎ̃ 𝑗2 ,2 ,
for all 𝑗1 ≥ 𝑗2 ≥ 1. Note that ℎ 𝑗1 ,1 − ℎ 𝑗1 ,2 + ℎ 𝑗2 ,2 is the fraction of servers with 𝑗1 or more
jobs in service phase 1 (given by ℎ 𝑗1 ,1 − ℎ 𝑗1 ,2) plus the fraction of servers with 𝑗2 or more
jobs in service phase 2 (given by ℎ 𝑗2 ,2).

For PS servers the system state is clearly more complex as we need to keep track of the
number of jobs in service phase 1 and phase 2. Therefore a more complex set of variables
denoted as ℎ𝑖 , 𝑗 is required, where ℎ𝑖 , 𝑗 represents the fraction of servers with at least 𝑖 + 𝑗
jobs of which at least 𝑗 jobs are in phase 2, for 𝑖 , 𝑗 ≥ 0. As a result, the partial order in
case of PS servers is more involved as is the set of ODEs that describe the evolution of the
mean field limit. This implies that proving monotonicity requires different arguments
and is more challenging in case of PS servers. Indeed, the monotonicity proof in case of
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Figure 5.1: Illustration of the variables ℎ𝑖 , 𝑗 , 𝑦𝑖 , 𝑗(ℎ) = ℎ𝑖 , 𝑗 − ℎ𝑖−1, 𝑗+1 and 𝑤𝑖 , 𝑗(ℎ) = 𝑦𝑖 , 𝑗(ℎ) −
𝑦𝑖+1, 𝑗(ℎ).

FCFS servers given in [76, Proposition 6] is fairly straightforward compared to the proof
of Proposition 5.5.2 in this chapter.

5.3 The Set of ODEs

In this section we introduce the set of ODEs that describes the mean field limit when
the servers use processor sharing, have a finite buffer of size 𝐵 and the order 2 hyper-
exponential job sizes are represented in Coxian form. Let ℎ𝑖 , 𝑗(𝑡), for 𝑖 , 𝑗 ≥ 0, denote the
fraction of servers with at least 𝑖 + 𝑗 jobs of which at least 𝑗 jobs are in service phase 2 at
time 𝑡 ≥ 0. We set ℎ0,0(𝑡) = 1 and ℎ𝑖 , 𝑗(𝑡) = 0, if 𝑖 + 𝑗 > 𝐵. We define 1[𝑃] to be 1 if the
property 𝑃 holds and 0 otherwise. To ease the presentation we define

• 𝑦𝑖 , 𝑗(ℎ(𝑡)) = ℎ𝑖 , 𝑗(𝑡) − ℎ𝑖−1, 𝑗+1(𝑡), for 𝑖 > 0, 𝑗 ≥ 0,

• 𝑦0, 𝑗(ℎ(𝑡)) = ℎ0, 𝑗(𝑡) − ℎ0, 𝑗+1(𝑡), for 𝑗 ≥ 0,

• 𝑤𝑖 , 𝑗(ℎ(𝑡)) = 𝑦𝑖 , 𝑗(ℎ(𝑡)) − 𝑦𝑖+1, 𝑗(ℎ(𝑡)), for 𝑖 , 𝑗 ≥ 0,

Note that 𝑦𝑖 , 𝑗(ℎ(𝑡)) represents the fraction of the queues with at least 𝑖 + 𝑗 jobs of which
exactly 𝑗 jobs are in service phase 2 at time 𝑡 ≥ 0, 𝑤𝑖 , 𝑗(ℎ(𝑡)) is the fraction of the queues
with exactly 𝑖 jobs in service phase 1 and exactly 𝑗 jobs in service phase 2 at time 𝑡 ≥ 0. An
illustration of these variables can be seen in Figure 5.1. While the notation may appear a
bit heavy, its usefulness becomes apparent in the next section.

In order to understand the set of ODEs that is presented next, we make the following
observations:

• Phase changes increase ℎ𝑖 , 𝑗(𝑡) if and only if such a phase change happens in a server
with exactly 𝑗 − 1 jobs in phase 2 and exactly 𝑘 + 1 jobs in phase 1, for 𝑘 ≥ 𝑖. This
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happens at rate 𝑝1�1 times the fraction (𝑘 + 1)/(𝑘 + 𝑗) of jobs that are in phase 1.
This explains the appearance of the first sum in (5.1).

• Service completions decrease ℎ𝑖 , 𝑗(𝑡) if a service completion happens in a server with
exactly 𝑖+ 𝑗 jobs. These service completions occur at rate (�1(𝑖− 𝑘)+�2(𝑗+ 𝑘))/(𝑖+ 𝑗)
if 𝑖 − 𝑘 of the 𝑖 + 𝑗 jobs are in phase 1, which explains the second sum in (5.1).

• Service completions also decrease ℎ𝑖 , 𝑗(𝑡) if a service completion of a job in phase
2 occurs in a server with 𝑘 + 𝑗 > 𝑖 + 𝑗 jobs, of which exactly 𝑗 jobs are in phase 2.
These service completions occur at rate �2 𝑗/(𝑗 + 𝑘) when there are 𝑗 + 𝑘 jobs. This
yields the third sum in (5.1).

Let 𝑓𝑖 , 𝑗(ℎ(𝑡)) capture the changes due to other events, such as arrivals (specified later on),
then the system of ODEs is given by:

𝑑

𝑑𝑡
ℎ𝑖 , 𝑗(𝑡) = 𝑓𝑖 , 𝑗(ℎ(𝑡)) + 1[𝑗 ≥ 1]𝑝1�1

∞∑
𝑘=𝑖

𝑤𝑘+1, 𝑗−1(ℎ(𝑡))
𝑘 + 1
𝑘 + 𝑗

−
𝑖∑
𝑘=0

𝑤𝑖−𝑘,𝑗+𝑘(ℎ(𝑡))
�1(𝑖 − 𝑘) + �2(𝑗 + 𝑘)

𝑖 + 𝑗
− �2

∞∑
𝑘=𝑖+1

𝑤𝑘,𝑗(ℎ(𝑡))
𝑗

𝑘 + 𝑗
(5.1)

for all 𝑖 , 𝑗 ≥ 0 with (𝑖 , 𝑗) ≠ (0, 0) and 𝑖 + 𝑗 ≤ 𝐵. Note that 𝑤𝑖 , 𝑗(ℎ(𝑡)) = 0 whenever 𝑖 + 𝑗 > 𝐵.
Remark 5.3.1. In this chapter we show that this set of ODEs has a unique fixed point
that is a global attractor using monotonicity arguments. The monotonicity is proven
by separately showing that 𝑓𝑖 , 𝑗(ℎ(𝑡)) is monotone and that all the remaining terms are
monotone. This implies that our result can also be used to prove global attraction for
other systems of ODEs as long as they have the above form and 𝑓𝑖 , 𝑗(ℎ(𝑡)) is monotone, as
demonstrated in Section 5.9.

5.4 State space and partial order

We define the state space Ω𝐵 of the mean field model in terms of the variables ℎ𝑖 , 𝑗 as
follows

Ω𝐵 =

{
(ℎ𝑖 , 𝑗)𝑖 , 𝑗≥0, (𝑖 , 𝑗)≠(0,0)

��� 0 ≤ ℎ𝑖 , 𝑗 ≤ 1, ℎ𝑖 , 𝑗 = 0 for 𝑖 + 𝑗 > 𝐵, ℎ𝑖 , 𝑗 ≥ ℎ𝑖+1, 𝑗 ,

ℎ𝑖 , 𝑗 ≥ 1[𝑖 ≥ 1]ℎ𝑖−1, 𝑗+1 , (ℎ𝑖+1, 𝑗 − ℎ𝑖 , 𝑗+1) − (ℎ𝑖+2, 𝑗 − ℎ𝑖+1, 𝑗+1) ≥ 0
}
.

The last condition states that 𝑤𝑖+1, 𝑗 ≥ 0, where 𝑤𝑖 , 𝑗 and 𝑦𝑖 , 𝑗 is defined analogue to
𝑤𝑖 , 𝑗(ℎ(𝑡)) and 𝑦𝑖 , 𝑗(ℎ(𝑡)), respectively. Note that from the last two conditions we get

ℎ𝑖 , 𝑗 ≥ ℎ𝑖 , 𝑗+1.

We now define the variables 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

(ℎ) illustrated in Figure 5.1(right) that will be used to
define the partial order.



5.4. STATE SPACE AND PARTIAL ORDER 55

𝑔4
2,3,6

𝑗1 2 43

6

3

2

𝑖

𝑗1 2 3 4

6

3

2

𝑖

𝑦6,1

𝑦3,2

𝑦2,3

ℎ0,4

Figure 5.2: Illustration of the variables 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

(ℎ) from Definition 5.4.1.

Definition 5.4.1. For ℎ ∈ Ω𝐵, 𝑗 ≥ 1, 0 ≤ 𝑠 ≤ 𝑗 and 0 = 𝑖0 < 𝑖1 < 𝑖2 < . . . < 𝑖𝑠 , we set

𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) = ℎ0, 𝑗 +

𝑠∑
𝑘=1

𝑦𝑖𝑘 , 𝑗−𝑘(ℎ).

As an example, we show 𝑔4
2,3,6(ℎ) in Figure 5.2.

Definition 5.4.2 (Partial order ≤𝐶 on Ω𝐵). Let ℎ, ℎ̃ ∈ Ω𝐵. We state that ℎ ≤𝐶 ℎ̃ if

𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) ≤ 𝑔

𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃) (5.2)

for all 𝑗 ≥ 1, 0 ≤ 𝑠 ≤ 𝑗 and 0 = 𝑖0 < 𝑖1 < 𝑖2 < . . . < 𝑖𝑠 .

Remark 5.4.3. By noting that 𝑔 𝑖+𝑗1,2,...,𝑖(ℎ) = ℎ𝑖 , 𝑗 , (5.2) implies that ℎ𝑖 , 𝑗 ≤ ℎ̃𝑖 , 𝑗 for all 𝑖 , 𝑗.

Remark 5.4.4. To see why the pointwise partial order does not suffice, consider ℎ, ℎ̃ ∈ Ω𝐵

with 𝑤0,1(ℎ) = 𝑤2,0(ℎ) = 1/2 and 𝑤1,1(ℎ̃) = 𝑤1,0(ℎ̃) = 1/2. In other words, in state ℎ half
of the servers contain a single job in phase 2 and the other servers contain 2 jobs both
in phase 1, while in state ℎ̃ half of the servers contain a single job in phase 1 and the
remaining servers contain a phase 1 and phase 2 job. It is easy to check that ℎ𝑖 , 𝑗 ≤ ℎ̃𝑖 , 𝑗

for all 𝑖 , 𝑗 ≥ 0 (as ℎ1,0 = ℎ̃1,0 = 1, ℎ2,0 = ℎ̃2,0 = 1/2, ℎ0,1 = ℎ̃0,1 = 1/2, ℎ1,1 = 0, ℎ̃1,1 = 1/2
and ℎ𝑖 , 𝑗 = ℎ̃𝑖 , 𝑗 = 0 for all other 𝑖 , 𝑗). Hence, ℎ is smaller than ℎ̃ in the pointwise order.
However, idle servers are created at rate �2/2 in state ℎ and at rate �1/2 in state ℎ̃.
As �1 > �2, this implies that ℎ̃1,0 decreases faster than ℎ1,0, meaning the system is not
monotone with respect to the pointwise partial order. Note that ℎ ≰𝐶 ℎ̃ as 𝑔1

2(ℎ) = 1 and
𝑔1

2(ℎ̃) = 1/2, so the fact that idle servers are created at a higher rate from state ℎ̃ than
state ℎ does not violate monotonicity with respect to the order ≤𝐶 .
Remark 5.4.5. Consider two sets 𝒜 and �̃� of 𝑁 servers and let ℎ and ℎ̃ be their corre-
sponding states in Ω𝐵. The intuition behind the order ≤𝐶 is that it should be such that
ℎ ≤𝐶 ℎ̃ implies that there exists a mapping 𝑚 : 𝒜 → �̃� such that both the total number
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Figure 5.3: Illustration of the intuition from Remark 5.4.5, with𝑁 = 4. The yellow system
is dominated by the green one.

of jobs as well as the number of jobs in phase two for any server 𝑎 ∈ 𝒜 is dominated by
the corresponding quantities of server 𝑚(𝑎) ∈ �̃�. Remark 5.4.4 shows that this is not the
case for the pointwise order.

We illustrate the intuition in Figure 5.3. The Figure shows two systems with𝑁 = 4, where
each of the servers is depicted by a numbered, coloured ball. The yellow system is clearly
dominated by the green one (𝑚 can be chosen to map the 𝑘-th server from the yellow
system to the 𝑘-th server from the green one). In terms of the variables 𝑔 𝑗

𝑖1 ,...,𝑖𝑠
(ℎ), the

dominance can be seen as follows: for every 𝑗 ≥ 1, 0 ≤ 𝑠 ≤ 𝑗 and 0 = 𝑖0 < 𝑖1 < 𝑖2 < . . . < 𝑖𝑠 ,
if we draw the border of of 𝑔 𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) and compare the number of coloured balls to the

right of the border, then the number of green balls should be at least as high as the
number of yellow balls. In Figure 5.3 this is shown for 𝑔4

2,3,6(ℎ).

For further use we remark that for 𝑗 ≥ 𝑠 ≥ 1:

𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) = 𝑔

𝑗

𝑖1 ,...,𝑖𝑠−1
(ℎ) + 𝑦𝑖𝑠 , 𝑗−𝑠(ℎ) (5.3)

and

𝑤𝑖𝑠 , 𝑗−𝑠(ℎ) = 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) − 𝑔

𝑗

𝑖1 ,...,𝑖𝑠−1 ,𝑖𝑠+1(ℎ), (5.4)

𝑤0, 𝑗(ℎ) = 𝑔 𝑗(ℎ) − 𝑔
𝑗+1
1 (ℎ). (5.5)

To simplify the notation we set 𝑔 𝑗
𝑖1 ,...,𝑖 𝑗 ,𝑘

(ℎ) = 𝑔
𝑗

𝑖1 ,...,𝑖 𝑗
(ℎ) if 𝑘 ≥ 1, i.e., additional indices

after position 𝑗 have no impact. Also note that for 𝑖𝑠 > 𝐵 − (𝑗 − 𝑠) we have

𝑔
𝑗

𝑖1 ,...,𝑖𝑠−1 ,𝑖𝑠
(ℎ) = 𝑔

𝑗

𝑖1 ,...,𝑖𝑠−1
(ℎ), (5.6)

as 𝑦𝑖𝑠 , 𝑗−𝑠(ℎ) = 0 for 𝑖𝑠 + 𝑗 − 𝑠 > 𝐵. The next two Lemmas are used further on to prove
monotonicity of the set of ODEs in (5.1) with respect to the order ≤𝐶 .
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Lemma 5.4.6. Let 𝑗 , 𝑠 , 𝑖1 , . . . , 𝑖𝑠 be as in Definition 5.4.2. Let 𝑐1 , . . . , 𝑐𝑠 ∈ R and 𝑐0 = 0. We
then have

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘(ℎ)𝑐𝑘 = 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)𝑐𝑠 −

𝑠−1∑
𝑘=0

𝑔
𝑗

𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1+1,...,𝑖𝑠+1(ℎ)(𝑐𝑘+1 − 𝑐𝑘). (5.7)

Proof. First, repeatedly using (5.3) and (5.4) gives

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘(ℎ) = 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) − 𝑔

𝑗

𝑖1+1,...,𝑖𝑠+1(ℎ),

which yields that the left hand side of (5.7) can be rewritten as:

𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)𝑐1 − 𝑔

𝑗

𝑖1+1,...,𝑖𝑠+1(ℎ)𝑐1 +
𝑠∑
𝑘=2

𝑤𝑖𝑘 , 𝑗−𝑘(ℎ)(𝑐𝑘 − 𝑐1). (5.8)

Applying (5.3) and (5.4) implies that (5.8) is equivalent to

𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)𝑐1 − 𝑔

𝑗

𝑖1+1,...,𝑖𝑠+1(ℎ)𝑐1 −
𝑠∑
𝑘=2

(−𝑔 𝑗
𝑖1 ,...,𝑖𝑘

(ℎ) + 𝑔
𝑗

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘+1(ℎ))(𝑐𝑘 − 𝑐1)

= 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)𝑐1 − 𝑔

𝑗

𝑖1+1,...,𝑖𝑠+1(ℎ)𝑐1

−
𝑠∑
𝑘=2

(−𝑔 𝑗
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1+1,...,𝑖𝑠+1(ℎ) + 𝑔

𝑗

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘+1,...,𝑖𝑠+1(ℎ))(𝑐𝑘 − 𝑐1). (5.9)

Rearranging the terms in (5.9) (and noting that the sum can start in 𝑘 = 1), we conclude
that the left hand side of (5.7) can be written as

𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)𝑐1 − 𝑔

𝑗

𝑖1+1,...,𝑖𝑠+1(ℎ)𝑐1 + 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)(𝑐𝑠 − 𝑐1) − 1[𝑠 ≥ 2]𝑔 𝑗

𝑖1 ,𝑖2+1,...,𝑖𝑠+1(ℎ)(𝑐2 − 𝑐1)

−
𝑠−1∑
𝑘=2

𝑔
𝑗

𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1+1,...,𝑖𝑠+1(ℎ)(𝑐𝑘+1 − 𝑐𝑘) = 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)𝑐𝑠 −

𝑠−1∑
𝑘=0

𝑔
𝑗

𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1+1,...,𝑖𝑠+1(ℎ)(𝑐𝑘+1 − 𝑐𝑘).

(5.10)

This finishes the proof. □

Lemma 5.4.7. Let 𝑗 , 𝑠 , 𝑖1 , . . . , 𝑖𝑠 be as in Definition 5.4.2. If 𝑠 > 𝑠, then

𝑖𝑠

𝑖𝑠 + 𝑗 − 𝑠 >
𝑖𝑠

𝑖𝑠 + 𝑗 − 𝑠 . (5.11)

Proof. We have that
𝑖𝑘+1

𝑖𝑘+1 + 𝑗 − (𝑘 + 1) >
𝑖𝑘

𝑖𝑘 + 𝑗 − 𝑘 (5.12)

is equivalent to
(𝑖𝑘+1 − 𝑖𝑘)(𝑗 − 𝑘) > −𝑖𝑘 , (5.13)

which is true, as the right hand side is negative. The statement then follows by repeatedly
using (5.12) 𝑠 − 𝑠 times. □



58 CHAPTER 5. SUPERMARKET MODEL IN PROCESSOR SHARING SYSTEMS

5.5 Global Attraction

In this section, we define empty summations to be 0. We now state three assumptions for
𝑓𝑖 , 𝑗(ℎ) that suffice for the set of ODEs in (5.1) to have a global attractor in Ω𝐵. We prove
that these assumptions hold for the supermarket model in Section 5.7.

Assumption 5.1. The functions 𝑓𝑖 , 𝑗(ℎ) : Ω𝐵 → R are such that for any ℎ0 ∈ Ω𝐵, the set of
ODEs given by (5.1) has a unique solution ℎ(𝑡) : [0,∞) → R with ℎ(0) = ℎ0.

Definition 5.5.1. For ℎ ∈ Ω𝐵, 𝑗 ≥ 1, 0 ≤ 𝑠 ≤ 𝑗 and 0 = 𝑖0 < 𝑖1 < 𝑖2 < . . . < 𝑖𝑠 , we set

𝐹
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) = 𝑓0, 𝑗(ℎ) +

𝑠∑
𝑘=1

( 𝑓𝑖𝑘 , 𝑗−𝑘(ℎ) − 𝑓𝑖𝑘−1, 𝑗−𝑘+1(ℎ)).

Assumption 5.2. The functions 𝑓𝑖 , 𝑗(ℎ) : Ω𝐵 → R are such that for all 𝑗 ≥ 1 and all 𝑖𝑘 ’s as in
(5.2) we have

𝐹
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) ≤ 𝐹

𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃) (5.14)

if ℎ ≤𝐶 ℎ̃ and 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

(ℎ) = 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃).

Assumption 5.3. The functions 𝑓𝑖 , 𝑗(ℎ) : Ω𝐵 → R are such that the set of ODEs given by (5.1)
has a unique fixed point 𝜋 in Ω𝐵.

Under the first two assumptions we prove that the partial order ≤𝐶 is preserved over
time.

Proposition 5.5.2. Assume that Assumptions 5.1-5.2 hold and let ℎ0 , ℎ̃0 ∈ Ω𝐵. Let ℎ(𝑡)
and ℎ̃(𝑡) be the unique solution of (5.1) with ℎ(0) = ℎ0 and ℎ̃(0) = ℎ̃0, respectively. If
�1 = �1(1 − 𝑝1) > �2 = �2 and ℎ0 ≤𝐶 ℎ̃0 then ℎ(𝑡) ≤𝐶 ℎ̃(𝑡) for any 𝑡 ≥ 0.

Proof. The proof is long and technical, therefore we present it in Section 5.6. The main
idea is to prove that 𝑑

𝑑𝑡
𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)) is non-decreasing in 𝑔 𝑗

′

𝑖′1 ,...,𝑖
′
𝑠′
(ℎ(𝑡)) for all sets of indices

(𝑗′, 𝑖′1 , . . . , 𝑖
′
𝑠′), as in (5.2), different from (𝑗 , 𝑖1 , . . . , 𝑖𝑠). □

Theorem 5.5.3 (Global attraction). Assume Assumptions 5.1-5.3 hold and �1 > �2, then 𝜋 is
a global attractor of the set of ODEs given by (5.1), meaning ℎ(𝑡) converges to 𝜋 as 𝑡 tends to
infinity for any ℎ0 ∈ Ω𝐵 with ℎ(0) = ℎ0.

Proof. The proof is similar to [40, Theorem 4]. Define (ℎ(𝑢))𝑖 , 𝑗 = 1 and (ℎ(ℓ ))𝑖 , 𝑗 = 0 for
0 < 𝑖 + 𝑗 ≤ 𝐵, then ℎ(ℓ ) ≤𝐶 ℎ ≤𝐶 ℎ(𝑢) for all ℎ ∈ Ω𝐵. By Proposition 5.5.2 it suffices to
show that ℎ(𝑡) converges to 𝜋 when ℎ(0) = ℎ(ℓ ) and when ℎ(0) = ℎ(𝑢) as the trajectories of
other initial states ℎ0 must remain between these two trajectories.

We prove the convergence when ℎ(0) = ℎ(ℓ ), the proof for ℎ(𝑢) is analogous. First note
that ℎ(0) = ℎ(ℓ ) ≤𝐶 ℎ(𝑡 − 𝑠) holds for 0 < 𝑠 < 𝑡, as ℎ(ℓ ) ≤𝐶 ℎ for all ℎ ∈ Ω𝐵. Hence, by
Proposition 5.5.2 ℎ(𝑠) ≤𝐶 ℎ(𝑡) for 0 < 𝑠 < 𝑡, as ℎ(𝑡) is the state at time 𝑠 if we start in state
ℎ(𝑡− 𝑠). The theory of monotone dynamical systems (see [38, Theorem 1.4 ]) now implies
that ℎ(𝑡) converges to a fixed point as Ω𝐵 is a compact set. Due to Assumption 5.3, ℎ(𝑡)
must converge to 𝜋 when ℎ(0) = ℎ(ℓ ). □
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Figure 5.4: Illustration of change to 𝑔4
2,3,6(ℎ(𝑡)) due to phase changes (left), service com-

pletions in phase 1 (middle) and service completions in phase 2 (right).

5.6 Proof of Proposition 5.5.2

We show that (5.2) is retained over time. Suppose that 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

(ℎ(𝑡)) = 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃(𝑡)) for

some 𝑗 ≥ 1 and 0 < 𝑖1 < . . . < 𝑖𝑠 , with 𝑠 ≤ 𝑗. We need to show that

𝑑

𝑑𝑡
𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)) ≤ 𝑑

𝑑𝑡
𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃(𝑡)), (5.15)

as otherwise (5.2) is violated at some time greater than 𝑡. Hence, it suffices to show
the claim that 𝑑

𝑑𝑡
𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)) is non-decreasing in 𝑔

𝑗′

𝑖′1 ,...,𝑖
′
𝑠′
(ℎ(𝑡)) for all sets of indices

(𝑗′, 𝑖′1 , . . . , 𝑖
′
𝑠′), as in (5.2), different from (𝑗 , 𝑖1 , . . . , 𝑖𝑠). Due to Assumption 5.2, this holds

for the terms associated to 𝑓𝑖 , 𝑗(ℎ(𝑡)) and it suffices to show that this claim also holds for
the remaining terms corresponding to phase changes and service completions.

The rest of the proof is structured as follows. In Subsection 5.6.1 we prove that the claim
holds in the terms associated with phase changes, while Subsections 5.6.2-5.6.4 show that
the claim holds in the terms associated with completions: Subsection 5.6.2 deals with
completions from phase 1, Subsection 5.6.3 with completions from phase 2 in case where
𝑖𝑘+1 − 𝑖𝑘 ≥ 2 for every 𝑘 and Subsection 5.6.4 with the general case of completions from
phase 2. To ease presentation, we suppress the dependence on ℎ(𝑡) throughout the rest
of the proof.
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5.6.1 Drift due to the phase changes

The drift of 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

due to phase changes can be written as

1[𝑗 ≥ 1]𝑝1�1

(
𝑠∑
𝑣=1

𝑖𝑣−1∑
𝑘=𝑖𝑣−1+1

𝑤𝑘,𝑗−𝑣
𝑘

𝑘 + 𝑗 − 𝑣

+1[𝑗 ≥ 𝑠 + 1]
∞∑

𝑘=𝑖𝑠+1
𝑤𝑘,𝑗−𝑠−1

𝑘

𝑘 + 𝑗 − (𝑠 + 1)

)
, (5.16)

as illustrated in Figure 5.4(left).

For ease of notation set 𝑖𝑠+1 = ∞. Using (5.4), we have that (5.16) is equal to

1[𝑗 ≥ 1]𝑝1�1

(
𝑠∑
𝑣=1

𝑖𝑣−1∑
𝑘=𝑖𝑣−1+1

(𝑔 𝑗
𝑖1 ,...,𝑖𝑣−1 ,𝑘

− 𝑔
𝑗

𝑖1 ,...,𝑖𝑣−1 ,𝑘+1)
𝑘

𝑘 + 𝑗 − 𝑣

+ 1[𝑗 ≥ 𝑠 + 1]
∞∑

𝑘=𝑖𝑠+1
(𝑔 𝑗
𝑖1 ,...,𝑖𝑠 ,𝑘

− 𝑔
𝑗

𝑖1 ,...,𝑖𝑠 ,𝑘+1)
𝑘

𝑘 + 𝑗 − (𝑠 + 1)

)
.

Due to (5.3), this is the same as

1[𝑗 ≥ 1]𝑝1�1

(
𝑠∑
𝑣=1

𝑖𝑣−1∑
𝑘=𝑖𝑣−1+1

(𝑔 𝑗
𝑖1 ,...,𝑖𝑣−1 ,𝑘,𝑖𝑣+1 ,...,𝑖𝑠

− 𝑔
𝑗

𝑖1 ,...,𝑖𝑣−1 ,𝑘+1,𝑖𝑣+1 ,...,𝑖𝑠
) 𝑘

𝑘 + 𝑗 − 𝑣

+ 1[𝑗 ≥ 𝑠 + 1]
∞∑

𝑘=𝑖𝑠+1
(𝑔 𝑗
𝑖1 ,...,𝑖𝑠 ,𝑘

− 𝑔
𝑗

𝑖1 ,...,𝑖𝑠 ,𝑘+1)
𝑘

𝑘 + 𝑗 − (𝑠 + 1)

)
. (5.17)

Given 𝑖1 , . . . , 𝑖𝑠 (with 𝑖0 = 0 and 𝑖𝑠+1 = ∞), we now define 𝑎𝑖 as follows:

𝑎𝑖 =
𝑖

𝑖 + 𝑗 − 𝑣 − 𝑖 − 1
𝑖 + 𝑗 − 𝑣 − 1 ≥ 0,

for 𝑣 = 1, . . . , 𝑠 + 1 and 𝑖𝑣−1 + 2 ≤ 𝑖 ≤ 𝑖𝑣 − 1. Using (5.6), (5.17) can be written as

1[𝑗 ≥ 1]𝑝1�1

(
𝑠∑
𝑣=1

(
1[𝑖𝑣 − 𝑖𝑣−1 ≥ 2]𝑔 𝑗

𝑖1 ,...,𝑖𝑣−1 ,𝑖𝑣−1+1,𝑖𝑣+1 ,...,𝑖𝑠

𝑖𝑣−1 + 1
𝑖𝑣−1 + 1 + 𝑗 − 𝑣

+
𝑖𝑣−1∑

𝑘=𝑖𝑣−1+2
𝑔
𝑗

𝑖1 ,...,𝑖𝑣−1 ,𝑘,𝑖𝑣+1 ,...,𝑖𝑠
𝑎𝑘 − 1[𝑖𝑣 − 𝑖𝑣−1 ≥ 2]𝑔 𝑗

𝑖1 ,...,𝑖𝑠

𝑖𝑣 − 1
𝑖𝑣 − 1 + 𝑗 − 𝑣

)
+ 1[𝑗 ≥ 𝑠 + 1]

(
𝑔
𝑗

𝑖1 ,...,𝑖𝑠 ,𝑖𝑠+1
𝑖𝑠 + 1

𝑖𝑠 + 𝑗 − 𝑠 +
∞∑

𝑘=𝑖𝑠+2
𝑔
𝑗

𝑖1 ,...,𝑖𝑠 ,𝑘
𝑎𝑘 − 𝑔

𝑗

𝑖1 ,...,𝑖𝑠

))
, (5.18)

which shows that if 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

(ℎ(𝑡)) = 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃(𝑡)) with ℎ(𝑡) ≤𝐶 ℎ̃(𝑡), then the drift of

𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃(𝑡)) due to the phase changes is at least as large as the drift of 𝑔 𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)) due

to the phase changes as only the 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

terms have a negative coefficient in the above
expression.
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5.6.2 Drift due to job completions from phase 1

Job completions decrease 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

in the following two ways as illustrated in Figure 5.4(mid-
dle) and (right):

• when there is a job completion of a job in phase 1 in a server with exactly 𝑖𝑘 jobs in
phase 1 and exactly 𝑗 − 𝑘 jobs in phase 2 for some 𝑘 ∈ {1, . . . , 𝑠};

• when there is a job completion of a job in phase 2 in a server with between 𝑖𝑘 and
𝑖𝑘+1−1 jobs in phase 1 and exactly 𝑗− 𝑘 jobs in phase 2 for some 𝑘 ∈ {0, . . . , 𝑠−1[𝑗 =
𝑠]}.

Set 𝑖𝑠+1 = ∞. The change to 𝑔 𝑗
𝑖1 ,...,𝑖𝑠

due to service completions can therefore be written as

− �1

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑖𝑘

𝑖𝑘 + 𝑗 − 𝑘 (5.19)

− �2

𝑠−1[𝑗=𝑠]∑
𝑘=0

𝑖𝑘+1−1∑
𝑖=𝑖𝑘

𝑤𝑖 , 𝑗−𝑘
𝑗 − 𝑘

𝑖 + 𝑗 − 𝑘 . (5.20)

Note, that we can drop −1[𝑗 = 𝑠] from (5.20) as 𝑗 − 𝑘 = 0 in such case. We now rewrite
both these expressions to show that combined they are such that only the 𝑔 𝑗

𝑖1 ,...,𝑖𝑠
terms

have negative coefficients.

Using Lemma 5.4.6, we have that (5.19) is equal to

− �1𝑔
𝑗

𝑖1 ,...,𝑖𝑠

𝑖𝑠

𝑖𝑠 + 𝑗 − 𝑠 + �1

𝑠−1∑
𝑘=0

𝑔
𝑗

𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1+1,...,𝑖𝑠+1

( 𝑖𝑘+1
𝑖𝑘+1 + 𝑗 − 𝑘 − 1 − 𝑖𝑘

𝑖𝑘 + 𝑗 − 𝑘
)
. (5.21)

Note that the coefficients appearing in the sum are positive due to (5.12).

5.6.3 Drift due to job completions from phase 2: the easy case

We now proceed with (5.20). For ease of presentation we assume we have 𝑖𝑘+1 − 𝑖𝑘 ≥ 2 as
the general case is tedious. The full proof can be found in Subsection 5.6.4. So suppose
𝑖𝑘+1 − 𝑖𝑘 ≥ 2 for all 𝑘 ∈ {0, . . . , 𝑠 − 1}. We can reorder the terms in (5.20) as

−�2

(
𝑤0, 𝑗 +

𝑠∑
𝑘=0

𝑖𝑘+1−2∑
𝑖=𝑖𝑘+1

𝑤𝑖 , 𝑗−𝑘
𝑗 − 𝑘

𝑖 + 𝑗 − 𝑘

+
𝑠−1∑
𝑘=0

𝑤𝑖𝑘+1−1, 𝑗−𝑘
𝑗 − 𝑘

𝑖𝑘+1 − 1 + 𝑗 − 𝑘 +
𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑗 − 𝑘

𝑖𝑘 + 𝑗 − 𝑘

)
,

by making use of the fact that 𝑖𝑠+1 = ∞. By means of (5.5) and (5.4), this equals

−�2

(
(𝑔 𝑗 − 𝑔

𝑗+1
1 ) +

𝑠∑
𝑘=0

𝑖𝑘+1−2∑
𝑖=𝑖𝑘+1

(𝑔 𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖+1)

𝑗 − 𝑘
𝑖 + 𝑗 − 𝑘
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+
𝑠∑
𝑘=1

(
𝑤𝑖𝑘−1, 𝑗−𝑘+1

𝑗 − 𝑘 + 1
𝑖𝑘 + 𝑗 − 𝑘 + 𝑤𝑖𝑘 , 𝑗−𝑘

𝑗 − 𝑘
𝑖𝑘 + 𝑗 − 𝑘

) )
. (5.22)

As
𝑤𝑖𝑘−1, 𝑗−𝑘+1 + 𝑤𝑖𝑘 , 𝑗−𝑘 = 𝑔

𝑗+1
𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1 ,

we get that (5.22) is equal to

− �2

(
(𝑔 𝑗 − 𝑔

𝑗+1
1 ) +

𝑠∑
𝑘=0

𝑖𝑘+1−2∑
𝑖=𝑖𝑘+1

(𝑔 𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖+1)

𝑗 − 𝑘
𝑖 + 𝑗 − 𝑘

+
𝑠∑
𝑘=1

(
𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1

) 𝑗 − 𝑘 + 1
𝑖𝑘 + 𝑗 − 𝑘 −

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
1

𝑖𝑘 + 𝑗 − 𝑘

)
.

This can be restated using (5.3) as

− �2

(
(𝑔 𝑗
𝑖1 ,...,𝑖𝑠

− 𝑔
𝑗+1
1,𝑖1 ,...,𝑖𝑠 ) +

𝑠∑
𝑘=0

𝑖𝑘+1−2∑
𝑖=𝑖𝑘+1

(𝑔 𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖 ,𝑖𝑘+1 ,...,𝑖𝑠

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖+1,𝑖𝑘+1 ,...,𝑖𝑠

) 𝑗 − 𝑘
𝑖 + 𝑗 − 𝑘

+
𝑠∑
𝑘=1

(𝑔 𝑗+1
𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘 ,...,𝑖𝑠

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1,𝑖𝑘+1 ,...,𝑖𝑠

)
𝑗 − 𝑘 + 1
𝑖𝑘 + 𝑗 − 𝑘 −

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
1

𝑖𝑘 + 𝑗 − 𝑘

)
.

By adding and subtracting two sums we find

− �2

(
(𝑔 𝑗
𝑖1 ,...,𝑖𝑠

− 𝑔
𝑗+1
1,𝑖1 ,...,𝑖𝑠 )

+
𝑠∑
𝑘=0

𝑖𝑘+1−1∑
𝑖=𝑖𝑘+1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖 ,𝑖𝑘+1 ,...,𝑖𝑠

𝑗 − 𝑘
𝑖 + 𝑗 − 𝑘 −

𝑠∑
𝑘=0

𝑖𝑘+1−2∑
𝑖=𝑖𝑘

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖+1,𝑖𝑘+1 ,...,𝑖𝑠

𝑗 − 𝑘
𝑖 + 𝑗 − 𝑘

−
(
𝑠∑
𝑘=1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1,𝑖𝑘+1 ,...,𝑖𝑠

𝑗 − 𝑘 + 1
𝑖𝑘 + 𝑗 − 𝑘 −

𝑠∑
𝑘=0

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1,𝑖𝑘+1 ,...,𝑖𝑠

𝑗 − 𝑘
𝑖𝑘 + 𝑗 − 𝑘

)
−

(
𝑠∑
𝑘=0

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1−1,𝑖𝑘+1 ,...,𝑖𝑠

𝑗 − 𝑘
𝑖𝑘+1 − 1 + 𝑗 − 𝑘 −

𝑠∑
𝑘=1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘 ,...,𝑖𝑠

𝑗 − 𝑘 + 1
𝑖𝑘 + 𝑗 − 𝑘

)
−

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
1

𝑖𝑘 + 𝑗 − 𝑘

)
.

Combining both double sums and keeping in mind that 𝑖𝑠+1 = ∞, the above expression
is equivalent to

− �2𝑔
𝑗

𝑖1 ,...,𝑖𝑠
+ �2

𝑠∑
𝑘=0

𝑖𝑘+1−1∑
𝑖=𝑖𝑘+1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖 ,𝑖𝑘+1 ,...,𝑖𝑠

(
𝑗 − 𝑘

𝑖 + 𝑗 − 𝑘 − 1 − 𝑗 − 𝑘
𝑖 + 𝑗 − 𝑘

)
+ �2

𝑠∑
𝑘=1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1,𝑖𝑘+1 ,...,𝑖𝑠

(
𝑗 − 𝑘 + 1
𝑖𝑘 + 𝑗 − 𝑘 − 𝑗 − 𝑘

𝑖𝑘 + 𝑗 − 𝑘

)
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+ �2

𝑠∑
𝑘=1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘 ,...,𝑖𝑠

(
𝑗 − 𝑘 + 1
𝑖𝑘 + 𝑗 − 𝑘 − 𝑗 − 𝑘 + 1

𝑖𝑘 + 𝑗 − 𝑘

)
+ �2

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
1

𝑖𝑘 + 𝑗 − 𝑘 ,

= −�2𝑔
𝑗

𝑖1 ,...,𝑖𝑠
+ �2

𝑠∑
𝑘=0

𝑖𝑘+1−1∑
𝑖=𝑖𝑘+1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖 ,𝑖𝑘+1 ,...,𝑖𝑠

(
𝑗 − 𝑘

𝑖 + 𝑗 − 𝑘 − 1 −
𝑗 − 𝑘

𝑖 + 𝑗 − 𝑘

)
+ �2

𝑠∑
𝑘=1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1,𝑖𝑘+1 ,...,𝑖𝑠

1
𝑖𝑘 + 𝑗 − 𝑘 + �2

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
1

𝑖𝑘 + 𝑗 − 𝑘 , (5.23)

We still need to deal with the term �2
∑𝑠
𝑘=1 𝑤𝑖𝑘 , 𝑗−𝑘

1
𝑖𝑘+𝑗−𝑘 . Using Lemma 5.4.6, we find that

this term equals

�2𝑔
𝑗

𝑖1 ,...,𝑖𝑠

1
𝑖𝑠 + 𝑗 − 𝑠 − �2

𝑠−1∑
𝑘=0

𝑔
𝑗

𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1+1,...,𝑖𝑠+1

( 1
𝑖𝑘+1 + 𝑗 − 𝑘 − 1 − 1

𝑖𝑘 + 𝑗 − 𝑘
)
,

which has the same form as (5.21). This shows that the term associated with the service
completions from phase 2 is also monotone when 𝑖𝑘+1 − 𝑖𝑘 ≥ 2 for 𝑘 = 0, . . . , 𝑠. Note that
we did not rely on the fact that �1 > �2, however, this requirement is necessary for the
full proof in the next Subsection where we may have 𝑖𝑘+1 = 𝑖𝑘 + 1 for some 𝑘 values.

5.6.4 Drift due to job completions from phase 2: the general case

The expression in (5.23) for (5.20) is only valid in case 𝑖𝑘+1 ≥ 𝑖𝑘 + 2, for 𝑘 = 0, . . . , 𝑠. In
this Subsection we derive a general expression for (5.20), where 𝑖𝑘+1 = 𝑖𝑘 + 1 for some 𝑘
values is allowed. This is for instance needed for 𝑔 𝑗+1

𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1,𝑖𝑘+1 ,...,𝑖𝑠
to be well defined.

We combine this expression with (5.21) (which was shown to be equivalent to (5.20)), to
conclude that the sum of the terms corresponding to service completions in phase 1 and
2 together are monotone when �1 > �2.

For given 𝑗 , 𝑠 , 𝑖1 , . . . , 𝑖𝑠 as in Definition 5.4.2, with 𝑖𝑠 < ∞ and 𝑖𝑠+1 = ∞, we define
inductively 𝑑1 = 1 and 𝑑𝑘 = 1 + 1[𝑖𝑘 − 𝑖𝑘−1 = 1]𝑑𝑘−1 for 𝑘 = 2, . . . , 𝑠. We further define
an injection 𝜎 : {1, . . . , 𝑠} → {1, . . . , 𝑠} as follows: 𝜎(�) is the �-th index 𝑘 such that
𝑖𝑘+1 − 𝑖𝑘 ≥ 2, not counting whether or not 𝑖1 ≥ 2. As 𝑖𝑠+1 = ∞, we have 𝑠 ≥ 1 and 𝜎(𝑠) = 𝑠.
We also set 𝜎(0) = 0. We now prove three lemmas which are combined afterwards.

Lemma 5.6.1. Define the following formulas, these are illustrated in Figure 5.5

𝑆 =

𝜎(1)−1∑
𝑘=0

𝑖𝑘+1−1∑
𝑖=𝑖𝑘

𝑤𝑖 , 𝑗−𝑘
𝑗 − 𝑘

𝑖 + 𝑗 − 𝑘 + 𝑤𝑖𝜎(1) , 𝑗−𝜎(1)
𝑗 − 𝜎(1)

𝑖𝜎(1) + 𝑗 − 𝜎(1) ,

for � ∈ {1, . . . , 𝑠}:

𝑇(𝜎(�)) =

𝑖𝜎(�)+1−2∑
𝑖=𝑖𝜎(�)+1

𝑤𝑖 , 𝑗−𝜎(�)
𝑗 − 𝜎(�)

𝑖 + 𝑗 − 𝜎(�) ,

and for � ∈ {1, . . . , 𝑠 − 1}:

𝑈 (𝜎(�)) = 𝑤𝑖𝜎(�)+1−1, 𝑗−𝜎(�)
𝑗 − 𝜎(�)

𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�)
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𝑆

𝑇(𝜎(1))

𝑈 (𝜎(1))

𝑇(𝜎(2))

𝑈 (𝜎(2))

𝑇(𝜎(3))

...

𝑗1 2 4 5 63

8

3

9

13

𝑖

Figure 5.5: Illustration of the formulas defined in Lemma 5.6.1 for 𝑔6
3,8,9,13(ℎ(𝑡)), we have

𝜎(1) = 1, 𝜎(2) = 3, 𝜎(3) = 4.

+
𝜎(�+1)−1∑
𝑘=𝜎(�)+1

𝑖𝑘+1−1∑
𝑖=𝑖𝑘

𝑤𝑖 , 𝑗−𝑘
𝑗 − 𝑘

𝑖 + 𝑗 − 𝑘 + 𝑤𝑖𝜎(�+1) , 𝑗−𝜎(�+1)
𝑗 − 𝜎(� + 1)

𝑖𝜎(�+1) + 𝑗 − 𝜎(� + 1) .

For ease of notation set for 𝑘 ∉ 𝜎({1, . . . , 𝑠}):

𝑇(𝑘) = 0,

and for 𝑘 ∉ 𝜎({1, . . . , 𝑠 − 1}):

𝑈 (𝑘) = 0.

Then:

− �2

𝑠∑
𝑘=0

𝑖𝑘+1−1∑
𝑖=𝑖𝑘

𝑤𝑖 , 𝑗−𝑘
𝑗 − 𝑘

𝑖 + 𝑗 − 𝑘 = −�2(𝑆 +
𝑠∑
𝑘=1

𝑇(𝑘) +
𝑠∑
𝑘=1

𝑈 (𝑘)), (5.24)

further,

𝑆 = 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
−
𝑖1−1∑
𝑖=1

𝑔
𝑗+1
𝑖 ,𝑖1 ,...,𝑖𝑠

(
𝑗

𝑖 + 𝑗 − 1 − 𝑗

𝑖 + 𝑗

)
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− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(1) ,𝑖𝜎(1)+1,𝑖𝜎(1)+1 ,...,𝑖𝑠

𝑗

𝑖1 − 1 + 𝑗
−

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 ,

for � ∈ {1, . . . , 𝑠}:

𝑇(𝜎(�)) = 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�) + 𝑗 − 𝜎(�)

−
𝑖𝜎(�)+1−1∑
𝑖=𝑖𝜎(�)+1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖 ,𝑖𝜎(�)+1 ,...,𝑖𝑠

(
𝑗 − 𝜎(�)

𝑖 + 𝑗 − 𝜎(�) − 1
− 𝑗 − 𝜎(�)
𝑖 + 𝑗 − 𝜎(�)

)
− 1[� < 𝑠]𝑔 𝑗+1

𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1−1,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�) ,

and for � ∈ {1, . . . , 𝑠 − 1}:

𝑈 (𝜎(�)) = 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1−1,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�)

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�+1) ,𝑖𝜎(�+1)+1,𝑖𝜎(�+1)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�) −

𝜎(�+1)∑
𝑘=𝜎(�)+1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 .

Proof. By writing

𝑆 +
𝑠∑
𝑘=1

𝑇(𝑘) +
𝑠∑
𝑘=1

𝑈 (𝑘) = 𝑆 +
𝑠∑

�=1
𝑇(𝜎(�)) +

𝑠−1∑
�=1

𝑈 (𝜎(�))

= 𝑆 + 𝑇(𝜎(1)) +𝑈 (𝜎(1)) + · · · + 𝑇(𝜎(𝑠−1)) +𝑈 (𝜎(𝑠−1)) + 𝑇(𝜎(𝑠)) ,

the first claim clearly holds. We have for � ∈ {1, . . . , 𝑠}

𝑇(𝜎(�)) =

𝑖𝜎(�)+1−2∑
𝑖=𝑖𝜎(�)+1

(
𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖+1

) 𝑗 − 𝜎(�)
𝑖 + 𝑗 − 𝜎(�)

=

𝑖𝜎(�)+1−2∑
𝑖=𝑖𝜎(�)+1

(
𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖 ,𝑖𝜎(�)+1 ,...,𝑖𝑠

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖+1,𝑖𝜎(�)+1 ,...,𝑖𝑠

) 𝑗 − 𝜎(�)
𝑖 + 𝑗 − 𝜎(�) ,

where we relied on (5.4) for the first equality and (5.3) for the second. By adding and
subtracting zero to the sums, we find that this is equal to (where the indicator function
is due to 𝑖𝜎(𝑠)+1 = 𝑖𝑠+1 = ∞)

𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�) + 𝑗 − 𝜎(�) −

𝑖𝜎(�)+1−2∑
𝑖=𝑖𝜎(�)

𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖+1,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖 + 𝑗 − 𝜎(�)

+
𝑖𝜎(�)+1−1∑
𝑖=𝑖𝜎(�)+1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖 ,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖 + 𝑗 − 𝜎(�) − 𝑔

𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1−1,𝑖𝜎(�)+1 ,...,𝑖𝑠

1[� < 𝑠](𝑗 − 𝜎(�))
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�)

= 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�) + 𝑗 − 𝜎(�)
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−
𝑖𝜎(�)+1−1∑
𝑖=𝑖𝜎(�)+1

𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖 ,𝑖𝜎(�)+1 ,...,𝑖𝑠

(
𝑗 − 𝜎(�)

𝑖 + 𝑗 − 𝜎(�) − 1
− 𝑗 − 𝜎(�)
𝑖 + 𝑗 − 𝜎(�)

)
− 1[� < 𝑠]𝑔 𝑗+1

𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1−1,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�) .

This proves the expression for 𝑇(𝜎(�)). Suppose 𝑖1 = 1, then by the definition of 𝜎,

𝑆 =

𝜎(1)∑
𝑘=0

𝑤𝑖𝑘 , 𝑗−𝑘
𝑗 − 𝑘

𝑖𝑘 + 𝑗 − 𝑘 .

The definition of 𝜎 implies that 𝑖𝑘 = 𝑘 = 𝑑𝑘 for 𝑘 = 1, . . . , 𝜎(1) when 𝑖1 = 1. By using (5.5)
and then (5.3), we get

𝑆 = 𝑔 𝑗 − 𝑔
𝑗+1
1 +

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑗 − 𝑘

𝑖𝑘 + 𝑗 − 𝑘 = 𝑔 𝑗 − 𝑔
𝑗+1
1 +

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘(1 − 𝑘

𝑖𝑘 + 𝑗 − 𝑘 )

= 𝑔
𝑗

𝑖1 ,...,𝑖𝜎(1)
− 𝑔

𝑗+1
1,𝑖1+1,...,𝑖𝜎(1)+1 −

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘

= 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
− 𝑔

𝑗+1
𝑖1 ,...,𝑖𝜎(1) ,𝑖𝜎(1)+1,𝑖𝜎(1)+1 ,...,𝑖𝑠

−
𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 .

Suppose now 𝑖1 ≥ 2, then similarly as 𝑖𝑘 − 𝑘 = 𝑖1 − 1 and 𝑑𝑘 = 𝑘 for 𝑘 = 1, . . . , 𝜎(1)

𝑆 =

𝑖1−1∑
𝑖=0

𝑤𝑖 , 𝑗
𝑗

𝑖 + 𝑗
+

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑗 − 𝑘

𝑖𝑘 + 𝑗 − 𝑘

= 𝑔 𝑗 − 𝑔
𝑗+1
1 +

𝑖1−1∑
𝑖=1

𝑤𝑖 , 𝑗
𝑗

𝑖 + 𝑗
+

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑗 − 𝑘

𝑖𝑘 + 𝑗 − 𝑘

= 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
− 𝑔

𝑗+1
1,𝑖1 ,...,𝑖𝑠 +

𝑖1−2∑
𝑖=1

(
𝑔
𝑗+1
𝑖 ,𝑖1 ,...,𝑖𝑠

− 𝑔
𝑗+1
𝑖+1,𝑖1 ,...,𝑖𝑠

) 𝑗

𝑖 + 𝑗

+
(
𝑔
𝑗+1
𝑖1−1 − 𝑔

𝑗+1
𝑖1

) 𝑗

𝑖1 − 1 + 𝑗
+

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘(
𝑗

𝑖1 − 1 + 𝑗
− 𝑘

𝑖𝑘 + 𝑗 − 𝑘 )

= 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
− 𝑔

𝑗+1
1,𝑖1 ,...,𝑖𝑠 +

𝑖1−2∑
𝑖=1

(
𝑔
𝑗+1
𝑖 ,𝑖1 ,...,𝑖𝑠

− 𝑔
𝑗+1
𝑖+1,𝑖1 ,...,𝑖𝑠

) 𝑗

𝑖 + 𝑗

+
(
𝑔
𝑗+1
𝑖1−1,𝑖1 ,...,𝑖𝜎(1)

− 𝑔
𝑗+1
𝑖1 ,𝑖1+1,...,𝑖𝜎(1)+1

) 𝑗

𝑖1 − 1 + 𝑗
−

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 .

Similarly to the proof of 𝑇(𝑘), we find that 𝑆 is equal to

𝑔
𝑗

𝑖1 ,...,𝑖𝑠
− 𝑔

𝑗+1
1,𝑖1 ,...,𝑖𝑠 + 𝑔

𝑗+1
1,𝑖1 ,...,𝑖𝑠 − 𝑔

𝑗+1
𝑖1−1,𝑖1 ,...,𝑖𝑠

𝑗

𝑖1 − 1 + 𝑗
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−
𝑖1−1∑
𝑖=1

𝑔
𝑗+1
𝑖 ,𝑖1 ,...,𝑖𝑠

(
𝑗

𝑖 + 𝑗 − 1 −
𝑗

𝑖 + 𝑗

)
+

(
𝑔
𝑗+1
𝑖1−1,𝑖1 ,...,𝑖𝑠 − 𝑔

𝑗+1
𝑖1 ,𝑖1+1,...,𝑖𝜎(1)+1,𝑖𝜎(1)+1 ,...,𝑖𝑠

) 𝑗

𝑖1 − 1 + 𝑗

−
𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘

= 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
−
𝑖1−1∑
𝑖=1

𝑔
𝑗+1
𝑖 ,𝑖1 ,...,𝑖𝑠

(
𝑗

𝑖 + 𝑗 − 1 − 𝑗

𝑖 + 𝑗

)
− 𝑔

𝑗+1
𝑖1 ,...,𝑖𝜎(1) ,𝑖𝜎(1)+1,𝑖𝜎(1)+1 ,...,𝑖𝑠

𝑗

𝑖1 − 1 + 𝑗
−

𝜎(1)∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 .

Finally, noting that 𝑖𝑘+1 − 1 = 𝑖𝑘 for 𝑘 = 𝜎(�) + 1, . . . , 𝜎(�+ 1) − 1, 𝑖𝑘 − 𝑘 = 𝑖𝜎(�)+1 − 𝜎(�) − 1
and 𝑑𝑘 = 𝑘 − 𝜎(�) for 𝑘 = 𝜎(�) + 1, . . . , 𝜎(� + 1), we find similarly to the proof of 𝑆 with
𝑖1 = 1 for � ∈ {1, . . . , 𝑠 − 1}:

𝑈 (𝜎(�)) = 𝑤𝑖𝜎(�)+1−1, 𝑗−𝜎(�)
𝑗 − 𝜎(�)

𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�) +
𝜎(�+1)∑
𝑘=𝜎(�)+1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑗 − 𝑘

𝑖𝑘 + 𝑗 − 𝑘

=

(
𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1−1 − 𝑔

𝑗+1
𝑖1 ,...,𝑖𝜎(�)+1

) 𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�)

+
𝜎(�+1)∑
𝑘=𝜎(�)+1

𝑤𝑖𝑘 , 𝑗−𝑘

(
𝑗 − 𝜎(�)

𝑖𝜎(�)+1 + 𝑗 − 𝜎(�) − 1
+ 𝜎(�) − 𝑘
𝑖𝑘 + 𝑗 − 𝑘

)
= 𝑔

𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1−1,𝑖𝜎(�)+1 ,...,𝑖𝜎(�+1)

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�)

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�)+1 ,𝑖𝜎(�)+1+1,...,𝑖𝜎(�+1)+1

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�)

−
𝜎(�+1)∑
𝑘=𝜎(�)+1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘

= 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�) ,𝑖𝜎(�)+1−1,𝑖𝜎(�)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�)

− 𝑔
𝑗+1
𝑖1 ,...,𝑖𝜎(�+1) ,𝑖𝜎(�+1)+1,𝑖𝜎(�+1)+1 ,...,𝑖𝑠

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 − 1 + 𝑗 − 𝜎(�)

−
𝜎(�+1)∑
𝑘=𝜎(�)+1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 .

This finishes the proof of the first lemma. □

Lemma 5.6.2. We have for � = 0, . . . , 𝑠 − 1

𝑗 − 𝜎(�)
𝑖𝜎(�)+1 + 𝑗 − (𝜎(�) + 1) ≥ 𝑗 − 𝜎(� + 1)

𝑖𝜎(�+1) + 𝑗 − 𝜎(� + 1) .
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Proof. As 𝑖𝜎(�+1) − 𝜎(� + 1) ≥ 𝑖𝜎(�)+1 − (𝜎(�) + 1), the claim holds if

𝑗 − 𝜎(�)
𝑖𝜎(�+1) + 𝑗 − 𝜎(� + 1) ≥

𝑗 − 𝜎(� + 1)
𝑖𝜎(�+1) + 𝑗 − 𝜎(� + 1) .

But this is true as 𝜎(� + 1) > 𝜎(�). □

Lemma 5.6.3. We have for every 𝑘 = 1, . . . , 𝑠 − 1: if 𝑑𝑘+1
𝑖𝑘+1+𝑗−(𝑘+1) −

𝑑𝑘
𝑖𝑘+𝑗−𝑘 > 0 then

𝑑𝑘+1
𝑖𝑘+1 + 𝑗 − (𝑘 + 1) −

𝑑𝑘
𝑖𝑘 + 𝑗 − 𝑘 =

𝑖𝑘+1
𝑖𝑘+1 + 𝑗 − (𝑘 + 1) −

𝑖𝑘
𝑖𝑘 + 𝑗 − 𝑘 . (5.25)

Proof. Suppose 𝑑𝑘+1 = 1, i.e. 𝑖𝑘+1 − 𝑖𝑘 ≥ 2. Then 𝑖𝑘 + 𝑗 − 𝑘 < 𝑖𝑘+1 + 𝑗 − (𝑘 + 1) and thus

𝑑𝑘+1
𝑖𝑘+1 + 𝑗 − (𝑘 + 1) −

𝑑𝑘
𝑖𝑘 + 𝑗 − 𝑘 <

𝑑𝑘+1
𝑖𝑘+1 + 𝑗 − (𝑘 + 1) −

𝑑𝑘

𝑖𝑘+1 + 𝑗 − (𝑘 + 1)

=
1 − 𝑑𝑘

𝑖𝑘+1 + 𝑗 − (𝑘 + 1) ≤ 0.

Hence, it suffices prove the claim for the case where 𝑑𝑘+1 = 1+ 𝑑𝑘 , i.e. where 𝑖𝑘+1 − 𝑖𝑘 = 1.
(5.25) is then equivalent to

𝑑𝑘+1
𝑖𝑘 + 𝑗 − 𝑘 − 𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 =
𝑖𝑘+1

𝑖𝑘 + 𝑗 − 𝑘 − 𝑖𝑘
𝑖𝑘 + 𝑗 − 𝑘 ,

which is true. □

We now combine these Lemmas. We can rewrite (5.24) using Lemma 5.6.1. Note that
the last term in 𝑇(𝜎(�)) cancels the first term in𝑈 (𝜎(�)), while the first term in 𝑇(𝜎(�)) can be
combined with the last term in𝑈 (𝜎(�−1)) for � > 1 and with 𝑆 for � = 1. Then, by Lemma
5.6.2 all these terms have the desired sign and only the following sum remains to be dealt
with

�2

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 . (5.26)

Using Lemma 5.4.6, we can rewrite (5.26) as

�2

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘 = �2𝑔
𝑗

𝑖1 ,...,𝑖𝑠

𝑑𝑠

𝑖𝑠 + 𝑗 − 𝑠

− �2

𝑠−1∑
𝑘=0

𝑔
𝑗

𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1+1,...,𝑖𝑠+1

( 𝑑𝑘+1
𝑖𝑘+1 + 𝑗 − 𝑘 − 1 − 𝑑𝑘

𝑖𝑘 + 𝑗 − 𝑘
)
.

The coefficients in this sum may not have the desired sign, however, if this is the case
they can be combined with the expression that was derived for (5.19), that is,

− �1

𝑠∑
𝑘=1

𝑤𝑖𝑘 , 𝑗−𝑘
𝑖𝑘

𝑖𝑘 + 𝑗 − 𝑘 = −�1𝑔
𝑗

𝑖1 ,...,𝑖𝑠

𝑖𝑠

𝑖𝑠 + 𝑗 − 𝑠

+ �1

𝑠−1∑
𝑘=0

𝑔
𝑗

𝑖1 ,...,𝑖𝑘 ,𝑖𝑘+1+1,...,𝑖𝑠+1

( 𝑖𝑘+1
𝑖𝑘+1 + 𝑗 − 𝑘 − 1 − 𝑖𝑘

𝑖𝑘 + 𝑗 − 𝑘
)
.

The proof of Proposition 5.5.2 is now finished using Lemma 5.6.3 and �1 > �2.
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5.7 The Supermarket Model

In this section we show that Assumptions 5.1-5.3 hold for the supermarket model with
processor sharing. We start by describing the expressions for 𝑓𝑖 , 𝑗(ℎ(𝑡)). We first note that
𝑓0, 𝑗(ℎ(𝑡)) = 0 as new jobs start service in phase 1 (that is, 𝛼 = (1, 0) when using the Coxian
representation). So suppose 𝑖 ≥ 1. The probability that all 𝑑 chosen servers have at least
𝑖 + 𝑗 − 1 jobs but not all have at least 𝑖 + 𝑗 jobs is ℎ𝑑

𝑖+𝑗−1,0(𝑡) − ℎ
𝑑
𝑖+𝑗 ,0(𝑡). In other words, this

is the probability that at least one chosen server has exactly 𝑖 + 𝑗 − 1 jobs. As

ℎ𝑖−1, 𝑗(𝑡) − ℎ𝑖 , 𝑗(𝑡)
ℎ𝑖+𝑗−1,0(𝑡) − ℎ𝑖+𝑗 ,0(𝑡)

is the probability that a server with exactly 𝑖 + 𝑗 − 1 jobs has at least 𝑗 jobs in phase 2, the
arrival terms are given by

𝑓𝑖 , 𝑗(ℎ(𝑡)) = �
(
ℎ𝑑𝑖+𝑗−1,0(𝑡) − ℎ

𝑑
𝑖+𝑗 ,0(𝑡)

) ℎ𝑖−1, 𝑗(𝑡) − ℎ𝑖 , 𝑗(𝑡)
ℎ𝑖+𝑗−1,0(𝑡) − ℎ𝑖+𝑗 ,0(𝑡)

= �

(
𝑑−1∑
ℓ=0

ℎℓ𝑖+𝑗−1,0(𝑡)ℎ
𝑑−1−ℓ
𝑖+𝑗 ,0 (𝑡)

)
(ℎ𝑖−1, 𝑗(𝑡) − ℎ𝑖 , 𝑗(𝑡)), (5.27)

where we have used the identity (𝑎𝑑 − 𝑏𝑑)/(𝑎 − 𝑏) = ∑𝑑−1
ℓ=0 𝑎

ℓ 𝑏𝑑−1−ℓ . Define Ψ𝑖 , 𝑗(ℎ(𝑡)) =
𝑑
𝑑𝑡
ℎ𝑖 , 𝑗(𝑡) and Ψ(ℎ) =

[
Ψ𝑖 , 𝑗(ℎ)

]∞
𝑖 , 𝑗=0. We first show that Ψ is Lipschitz continuous on Ω𝐵.

We use the supremum metric on Ω𝐵:

d(ℎ, ℎ̃) = ∞sup
𝑖 , 𝑗=0

|ℎ𝑖 , 𝑗 − ℎ̃𝑖 , 𝑗 |. (5.28)

Proposition 5.7.1. The drift Ψ is Lipschitz continuous on Ω𝐵, meaning Assumption 5.1 is met
when 𝑓𝑖 , 𝑗(ℎ(𝑡)) is defined as in (5.27).

Proof. Let ℎ, ℎ̃ ∈ Ω𝐵 and let 𝑤, �̃� be the corresponding vectors as defined in Section 5.3.
As 𝑤𝑖 , 𝑗 = (ℎ𝑖 , 𝑗 − ℎ𝑖−1, 𝑗+1) − (ℎ𝑖+1, 𝑗 − ℎ𝑖 , 𝑗+1) for 𝑖 ≥ 1 and 𝑤0, 𝑗 = ℎ0, 𝑗 − ℎ1, 𝑗 , we have

∞sup
𝑖 , 𝑗=0

|𝑤𝑖 , 𝑗 − �̃�𝑖 , 𝑗 | ≤ 4d(ℎ, ℎ̃). (5.29)

We have

�2
∞sup
𝑖 , 𝑗=0

����� ∞∑
𝑘=𝑖+1

(𝑤𝑘,𝑗 − �̃�𝑘,𝑗)
𝑗

𝑘 + 𝑗

����� ≤ �2
∞sup
𝑖 , 𝑗=0

∞∑
𝑘=𝑖+1

��𝑤𝑘,𝑗 − �̃�𝑘,𝑗

��
≤ �2(𝐵 + 1) ∞sup

𝑖 , 𝑗=0

��𝑤𝑖 , 𝑗 − �̃�𝑖 , 𝑗 �� ≤ 4�2(𝐵 + 1)d(ℎ, ℎ̃),

where we have used (5.29) in the last inequality. Proceeding similarly we get

d(Ψ(ℎ),Ψ(ℎ̃)) ≤ 4(𝐵 + 1)(�1 + 2�2)d(ℎ, ℎ̃)

+ �
∞sup
𝑖 , 𝑗=0

�����(ℎ𝑖 , 𝑗 − ℎ𝑖+1, 𝑗)
𝑑−1∑
ℓ=0

ℎℓ𝑖+𝑗 ,0ℎ
𝑑−1−ℓ
𝑖+𝑗+1,0 − (ℎ̃𝑖 , 𝑗 − ℎ̃𝑖+1, 𝑗)

𝑑−1∑
ℓ=0

ℎ̃ℓ𝑖+𝑗 ,0 ℎ̃
𝑑−1−ℓ
𝑖+𝑗+1,0

����� .
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We now use the inequality |𝑎𝑚1
1 𝑎𝑚2

2 − 𝑏
𝑚1
1 𝑏𝑚2

2 | ≤ 𝑚1 |𝑎1 − 𝑏1 | + 𝑚2 |𝑎2 − 𝑏2 |, for 0 ≤
𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 ≤ 1 and 𝑚1 , 𝑚2 ∈ N \ {0}, to find that

∞sup
𝑖 , 𝑗=0

�����(ℎ𝑖 , 𝑗 − ℎ𝑖+1, 𝑗)
𝑑−1∑
ℓ=0

ℎℓ𝑖+𝑗 ,0ℎ
𝑑−1−ℓ
𝑖+𝑗+1,0 − (ℎ̃𝑖 , 𝑗 − ℎ̃𝑖+1, 𝑗)

𝑑−1∑
ℓ=0

ℎ̃ℓ𝑖+𝑗 ,0 ℎ̃
𝑑−1−ℓ
𝑖+𝑗+1,0

�����
≤ ∞sup

𝑖 , 𝑗=0
|ℎ𝑖 , 𝑗 − ℎ𝑖+1, 𝑗 − (ℎ̃𝑖 , 𝑗 − ℎ̃𝑖+1, 𝑗)| +

∞sup
𝑖 , 𝑗=0

�����𝑑−1∑
ℓ=0

(ℎℓ𝑖+𝑗 ,0ℎ
𝑑−1−ℓ
𝑖+𝑗+1,0 − ℎ̃

ℓ
𝑖+𝑗 ,0 ℎ̃

𝑑−1−ℓ
𝑖+𝑗+1,0)

�����
≤ 2d(ℎ, ℎ̃) + ∞sup

𝑖 , 𝑗=0

𝑑−1∑
ℓ=0

���ℎℓ𝑖+𝑗 ,0ℎ𝑑−1−ℓ
𝑖+𝑗+1,0 − ℎ̃

ℓ
𝑖+𝑗 ,0 ℎ̃

𝑑−1−ℓ
𝑖+𝑗+1,0

��� .
Using the above mentioned inequality once more, we get

∞sup
𝑖 , 𝑗=0

𝑑−1∑
ℓ=0

���ℎℓ𝑖+𝑗 ,0ℎ𝑑−1−ℓ
𝑖+𝑗+1,0 − ℎ̃

ℓ
𝑖+𝑗 ,0 ℎ̃

𝑑−1−ℓ
𝑖+𝑗+1,0

���
≤ ∞sup

𝑖 , 𝑗=0

𝑑−1∑
ℓ=0

(
ℓ |ℎ𝑖+𝑗 ,0 − ℎ̃𝑖+𝑗 ,0 | + (𝑑 − 1 − ℓ )|ℎ𝑖+𝑗+1,0 − ℎ̃𝑖+𝑗+1,0 |

)
≤ 2𝑑2d(ℎ, ℎ̃).

To conclude, we have

d(Ψ(ℎ),Ψ(ℎ̃)) ≤
(
4(𝐵 + 1)(�1 + 2�2) + 2�(𝑑2 + 1)

)
d(ℎ, ℎ̃).

□

We now proceed with Assumption 5.2. Let 𝑗 , 𝑠 , 𝑖1 , . . . , 𝑖𝑠 be as in Definition 5.4.2. Define

𝑏𝑘 = �
𝑑−1∑
ℓ=0

ℎℓ
𝑖𝑘+𝑗−𝑘−1,0(𝑡)ℎ

𝑑−1−ℓ
𝑖𝑘+𝑗−𝑘,0(𝑡),

to simplify the notation. Note, that 𝑏𝑘 > 𝑏𝑘+1 if 𝑖𝑘+1 − 𝑖𝑘 ≥ 2 and 𝑏𝑘 = 𝑏𝑘+1 if 𝑖𝑘+1 − 𝑖𝑘 = 1.
We then have that 𝐹 𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)), as defined in Definition 5.5.1, is given by

𝐹
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)) = 𝑓0, 𝑗(ℎ(𝑡)) +

𝑠∑
𝑘=1

( 𝑓𝑖𝑘 , 𝑗−𝑘(ℎ(𝑡)) − 𝑓𝑖𝑘−1, 𝑗−𝑘+1(ℎ(𝑡)))

= �
𝑠∑
𝑘=1

(
ℎ𝑑
𝑖𝑘+𝑗−𝑘−1,0(𝑡) − ℎ

𝑑
𝑖𝑘+𝑗−𝑘,0(𝑡)

)
·
(ℎ𝑖𝑘−1, 𝑗−𝑘(𝑡) − ℎ𝑖𝑘 , 𝑗−𝑘(𝑡)) − 1[𝑖𝑘 ≥ 2](ℎ𝑖𝑘−2, 𝑗−𝑘+1(𝑡) − ℎ𝑖𝑘−1, 𝑗−𝑘+1(𝑡))

ℎ𝑖𝑘+𝑗−𝑘−1,0(𝑡) − ℎ𝑖𝑘+𝑗−𝑘,0(𝑡)

=

𝑠∑
𝑘=1

𝑏𝑘𝑤𝑖𝑘−1, 𝑗−𝑘(ℎ(𝑡)).

The change due to arrivals is illustrated in Figure 5.6.
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𝑔4
2,3,6

𝑗1 2 43

𝑖3 = 6

𝑖2 = 3

𝑖1 = 2

𝑖

Figure 5.6: Illustration of change to 𝑔4
2,3,6(ℎ(𝑡)) due to arrivals with JSQ(𝑑).

Proposition 5.7.2. Assumption 5.2 holds for the system of ODEs (5.1) with 𝑓𝑖 , 𝑗(ℎ(𝑡)) specified
by (5.27).

Proof. It suffices to show that 𝐹 𝑗
𝑖1 ,...,𝑖𝑠

(ℎ(𝑡)) is non-decreasing in 𝑔 𝑗
′

𝑖′1 ,...,𝑖
′
𝑠′
(ℎ(𝑡)) for all sets of

indices { 𝑗′, 𝑖′1 , . . . , 𝑖
′
𝑠′}, as in (5.2), different from { 𝑗 , 𝑖1 , . . . , 𝑖𝑠}. Suppose first that 𝑖1 ≥ 2.

For ease of notation set 𝑏0 = 𝑏𝑠+1 = 0. By using Lemma 5.4.6, we find

𝐹
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)) =

𝑠∑
𝑘=1

𝑏𝑘𝑤𝑖𝑘−1, 𝑗−𝑘(ℎ(𝑡))

= 𝑔
𝑗

𝑖1−1,...,𝑖𝑠−1(ℎ(𝑡))𝑏𝑠 −
𝑠−1∑
𝑘=0

𝑔
𝑗

𝑖1−1,...,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖𝑠
(ℎ(𝑡))

(
𝑏𝑘+1 − 𝑏𝑘

)
= −𝑔 𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡))𝑏1 +

𝑠∑
𝑘=1

𝑔
𝑗

𝑖1−1,...,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖𝑠
(ℎ(𝑡))

(
𝑏𝑘 − 𝑏𝑘+1

)
.

Suppose now 𝑖1 = 1. We have

𝐹
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)) = 𝑏1𝑤0, 𝑗−1(ℎ(𝑡)) +

𝑠∑
𝑘=2

𝑏𝑘𝑤𝑖𝑘−1, 𝑗−𝑘(ℎ(𝑡)).

Using (5.5) and (5.4), this is equal to

𝑏1(𝑔 𝑗−1(ℎ(𝑡)) − 𝑔
𝑗

1(ℎ(𝑡))) +
𝑠∑
𝑘=2

𝑏𝑘(𝑔 𝑗−1
𝑖2−1,...,𝑖𝑘−1(ℎ(𝑡)) − 𝑔

𝑗−1
𝑖2−1,...,𝑖𝑘−1−1,𝑖𝑘

(ℎ(𝑡))).

By (5.3), we can write this as

𝑏1(𝑔 𝑗−1
𝑖2 ,...,𝑖𝑠

(ℎ(𝑡)) − 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡))) +

𝑠∑
𝑘=2

𝑏𝑘(𝑔 𝑗−1
𝑖2−1,...,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖𝑠

(ℎ(𝑡)) − 𝑔
𝑗−1
𝑖2−1,...,𝑖𝑘−1−1,𝑖𝑘 ,...,𝑖𝑠

(ℎ(𝑡)))
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= −𝑏1𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ(𝑡)) +

𝑠∑
𝑘=1

𝑔
𝑗−1
𝑖2−1,...,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖𝑠

(ℎ(𝑡)) (𝑏𝑘 − 𝑏𝑘+1) .

This finishes the proof. □

We now present a fixed point 𝜋 of the system of the ODEs given in (5.1) when 𝑓𝑖 , 𝑗(ℎ(𝑡))
is given by (5.27) and then prove that it is the unique fixed point. As

ℎ𝑖 , 𝑗(𝑡) =
∑
𝑘≥𝑖+𝑗

𝑘∑
ℓ=𝑗

𝑤𝑘−ℓ ,ℓ (ℎ(𝑡)),

finding a fixed point of (5.1) is equivalent to finding a fixed point 𝜋𝑤 of the corresponding
set of equations for 𝑑

𝑑𝑡
𝑤𝑖 , 𝑗(ℎ(𝑡)). We have

𝑑

𝑑𝑡
𝑤𝑖 , 𝑗(ℎ(𝑡)) = 1[𝑖 ≥ 1]�

(
ℎ𝑑𝑖+𝑗−1,0(𝑡) − ℎ

𝑑
𝑖+𝑗 ,0(𝑡)

) 𝑤𝑖−1, 𝑗(ℎ(𝑡))
ℎ𝑖+𝑗−1,0(𝑡) − ℎ𝑖+𝑗 ,0(𝑡)

− �
(
ℎ𝑑𝑖+𝑗 ,0(𝑡) − ℎ

𝑑
𝑖+𝑗+1,0(𝑡)

) 𝑤𝑖 , 𝑗(ℎ(𝑡))
ℎ𝑖+𝑗 ,0(𝑡) − ℎ𝑖+𝑗+1,0(𝑡)

+ 1[𝑗 ≥ 1]𝑝1�1𝑤𝑖+1, 𝑗−1(ℎ(𝑡))
𝑖 + 1
𝑖 + 𝑗

− �1𝑤𝑖 , 𝑗(ℎ(𝑡))
𝑖

𝑖 + 𝑗
− �2𝑤𝑖 , 𝑗(ℎ(𝑡))

𝑗

𝑖 + 𝑗

+ �2𝑤𝑖 , 𝑗+1(ℎ(𝑡))
𝑗 + 1

𝑖 + 𝑗 + 1 + (1 − 𝑝1)�1𝑤𝑖+1, 𝑗(ℎ(𝑡))
𝑖 + 1

𝑖 + 𝑗 + 1 , (5.30)

for 𝑖 , 𝑗 ≥ 0 and 𝑖 + 𝑗 ≤ 𝐵, where 𝑤𝑖 , 𝑗(ℎ(𝑡)) = 0 for 𝑖 + 𝑗 > 𝐵. Consider the set of ODEs for
𝑖 = 1, . . . , 𝐵 given by

𝑑

𝑑𝑡
ℎ̂𝑖(𝑡) = �(ℎ̂𝑖−1(𝑡)𝑑 − ℎ̂𝑖(𝑡)𝑑) − (ℎ̂𝑖(𝑡) − ℎ̂𝑖+1(𝑡)) (5.31)

and set ℎ̂0(𝑡) = 1 and ℎ̂𝑖(𝑡) = 0, for 𝑖 > 𝐵. Notice this set of ODEs corresponds to the mean
field limit of the supermarket model with FCFS or processor sharing service, exponential
job sizes and a finite buffer of size 𝐵 [58].

Proposition 5.7.3. The set of ODEs given by (5.31) has a unique fixed point �̂�. Further
�̂�𝑖 ∈ (0,�(𝑑𝑖−1)/(𝑑−1)) and �̂�𝑖 > �̂�𝑖+1.

Proof. Summing the equations in (5.31) from 𝑖 = 𝑘 to 𝐵 yields that any fixed point �̂�
satisfies

�̂�𝑘 = �(�̂�𝑑
𝑘−1 − �̂�𝑑𝐵),

for 𝑘 = 2, . . . , 𝐵 and �̂�1 = �(1−�̂�𝑑
𝐵
). Define𝐻1(𝑥) = �(1−𝑥𝑑) and𝐻𝑘(𝑥) = �(𝐻𝑘−1(𝑥)𝑑−𝑥𝑑)

for 𝑘 = 2, . . . , 𝐵, then �̂�𝑘 = 𝐻𝑘(�̂�𝐵). Using induction on 𝑘 one now readily shows that
𝐻𝑘(0) = �1+𝑑+...+𝑑𝑘−1

= �(𝑑𝑘−1)/(𝑑−1) > 0.

We first consider the case where 𝑑 is odd. As 𝐻𝑘−1(𝑥)𝑑−1 ≥ 0 for 𝑑 odd and 𝐻′
𝑘
(𝑥) =

�𝑑𝐻𝑘−1(𝑥)𝑑−1𝐻′
𝑘−1(𝑥) − �𝑑𝑥𝑑−1, we immediately have by induction on 𝑘 that 𝐻𝑘(𝑥) is

decreasing on [0, 1] with 𝐻𝑘(1) ≤ 0. As �̂�𝐵 = 𝐻𝐵(�̂�𝐵), this implies that there exists
a unique solution for �̂�𝐵 ∈ (0,�(𝑑𝐵−1)/(𝑑−1)) and therefore at most one fixed point as
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�̂�𝑘 = 𝐻𝑘(�̂�𝐵). Further, we see that �̂�𝑘 ≤ �(𝑑𝑘−1)/(𝑑−1) as 𝐻𝑘(0) = �(𝑑𝑘−1)/(𝑑−1) and 𝐻𝑘(𝑥) is
decreasing. Finally, �̂�𝑘 < �̂�𝑘−1 as �̂�𝑘 = �(�̂�𝑑

𝑘−1 − �̂�𝑑
𝐵
) with �̂�𝐵 positive.

Now assume 𝑑 is even. 𝐻1(𝑥) is clearly decreasing and positive on [0, 1], therefore 𝐻2(𝑥)
is decreasing on [0, 1] and 𝐻2(1) = −� < 0. Let �2 be the unique root of 𝐻2(𝑥) in (0, 1).
For 𝑥 ∈ (�2 , 1] we have −𝑥 < 𝐻2(𝑥) < 0. We now find using induction on 𝑘 that for
𝑘 = 3, . . . , 𝐵

1. 𝐻𝑘(𝑥) is decreasing on [0, �𝑘−1) as 𝐻′
𝑘
(𝑥) = �𝑑𝐻𝑘−1(𝑥)𝑑−1𝐻′

𝑘−1(𝑥) − �𝑑𝑥𝑑−1 and
𝐻𝑘−1(𝑥) is positive and decreasing on [0, �𝑘−1),

2. 𝐻𝑘(�𝑘−1) = −��𝑑
𝑘−1 < 0 and −𝑥 < −�𝑥𝑑 < 𝐻𝑘(𝑥) < 0 for 𝑥 ∈ [�𝑘−1 , 1], where we use

(i) that 𝐻𝑘−1(𝑥)𝑑 ≥ 0 for 𝑑 even to find that −�𝑥𝑑 < 𝐻𝑘(𝑥) and (ii) that −𝑥 < 𝐻𝑘−1(𝑥)
yields 𝑥𝑑 > 𝐻𝑘−1(𝑥)𝑑 for 𝑑 even, that is, 𝐻𝑘(𝑥) < 0.

3. 𝐻𝑘(𝑥) has a unique root �𝑘 on [0, 1] with �𝑘 < �𝑘−1.

The proof now proceeds as in the case with 𝑑 odd. □

We now define 𝜋𝑤 as

𝜋𝑤𝑖,𝑗 = (�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1)
(
𝑖 + 𝑗
𝑖

) (
1
�1

) 𝑖 (
𝑝1

�2

) 𝑗
, (5.32)

and show that it is a fixed point of (5.30). Note that 𝜋𝑤 depends on � via �̂�. If we then
define 𝜋𝑖 , 𝑗 =

∑
𝑘≥𝑖+𝑗

∑𝑘
ℓ=𝑗 𝜋

𝑤
𝑘−ℓ ,ℓ , then 𝜋 is a fixed point of (5.1) and

𝜋𝑖 ,0 =
∑
𝑘≥𝑖

𝑘∑
ℓ=0

𝜋𝑤
𝑘−ℓ ,ℓ =

∑
𝑘≥𝑖

(�̂�𝑘 − �̂�𝑘+1)
(

1
�1

+ 𝑝1

�2

) 𝑘
= �̂�𝑖 ,

as the mean job size equals one, that is, 1/�1+ 𝑝1/�2 = 1. Hence the probability of having
𝑖 or more jobs in the fixed point 𝜋 is the same as in the exponential case.

Proposition 5.7.4. 𝜋𝑤 is a fixed point of (5.30).

Proof. 𝜋𝑤 is a fixed point of (5.30) if

0 = 1[𝑖 ≥ 1]�
(
�̂�𝑑𝑖+𝑗−1 − �̂�𝑑𝑖+𝑗

) 𝜋𝑤
𝑖−1, 𝑗

�̂�𝑖+𝑗−1 − �̂�𝑖+𝑗
− �

(
�̂�𝑑𝑖+𝑗 − �̂�𝑑𝑖+𝑗+1

) 𝜋𝑤
𝑖,𝑗

�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1

+ 1[𝑗 ≥ 1]𝑝1�1𝜋
𝑤
𝑖+1, 𝑗−1

𝑖 + 1
𝑖 + 𝑗

− �1𝜋
𝑤
𝑖,𝑗

𝑖

𝑖 + 𝑗
− �2𝜋

𝑤
𝑖,𝑗

𝑗

𝑖 + 𝑗

+ �2𝜋
𝑤
𝑖,𝑗+1

𝑗 + 1
𝑖 + 𝑗 + 1 + (1 − 𝑝1)�1𝜋

𝑤
𝑖+1, 𝑗

𝑖 + 1
𝑖 + 𝑗 + 1 .

By using the definition of 𝜋𝑤 , this is equivalent to

0 = 1[𝑖 ≥ 1]�(�̂�𝑑𝑖+𝑗−1 − �̂�𝑑𝑖+𝑗)
(
𝑖 + 𝑗 − 1
𝑖 − 1

) (
1
�1

) 𝑖−1 (
𝑝1

�2

) 𝑗
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− �(�̂�𝑑𝑖+𝑗 − �̂�𝑑𝑖+𝑗+1)
(
𝑖 + 𝑗
𝑖

) (
1
�1

) 𝑖 (
𝑝1

�2

) 𝑗
+ 1[𝑗 ≥ 1]𝑝1�1(�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1)

(
𝑖 + 𝑗
𝑖 + 1

) (
1
�1

) 𝑖+1 (
𝑝1

�2

) 𝑗−1
𝑖 + 1
𝑖 + 𝑗

− �1(�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1)
(
𝑖 + 𝑗
𝑖

) (
1
�1

) 𝑖 (
𝑝1

�2

) 𝑗
𝑖

𝑖 + 𝑗

− �2(�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1)
(
𝑖 + 𝑗
𝑖

) (
1
�1

) 𝑖 (
𝑝1

�2

) 𝑗
𝑗

𝑖 + 𝑗

+ �2(�̂�𝑖+𝑗+1 − �̂�𝑖+𝑗+2)
(
𝑖 + 𝑗 + 1

𝑖

) (
1
�1

) 𝑖 (
𝑝1

�2

) 𝑗+1
𝑗 + 1

𝑖 + 𝑗 + 1

+ (1 − 𝑝1)�1(�̂�𝑖+𝑗+1 − �̂�𝑖+𝑗+2)
(
𝑖 + 𝑗 + 1
𝑖 + 1

) (
1
�1

) 𝑖+1 (
𝑝1

�2

) 𝑗
𝑖 + 1

𝑖 + 𝑗 + 1 .

We can rewrite this as

0 = �(�̂�𝑑𝑖+𝑗−1 − �̂�𝑑𝑖+𝑗)
�1𝑖

𝑖 + 𝑗
− �(�̂�𝑑𝑖+𝑗 − �̂�𝑑𝑖+𝑗+1)

+ �2(�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1)
𝑗

𝑖 + 𝑗
− �1(�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1)

𝑖

𝑖 + 𝑗

− �2(�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1)
𝑗

𝑖 + 𝑗
+ 𝑝1(�̂�𝑖+𝑗+1 − �̂�𝑖+𝑗+2) + (1 − 𝑝1)(�̂�𝑖+𝑗+1 − �̂�𝑖+𝑗+2),

or, equivalently,

0 = (�(�̂�𝑑𝑖+𝑗−1 − �̂�𝑑𝑖+𝑗) − (�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1))
�1𝑖

𝑖 + 𝑗
− (�(�̂�𝑑𝑖+𝑗 − �̂�𝑑𝑖+𝑗+1) − (�̂�𝑖+𝑗+1 − �̂�𝑖+𝑗+2)).

(5.33)

But this is true by definition of �̂�. □

Proposition 5.7.5. 𝜋𝑤 is the unique fixed point of (5.30) and therefore Assumption 5.3 holds for
the set of ODEs in (5.1) with 𝑓𝑖 , 𝑗(ℎ(𝑡)) specified by (5.27).

Proof. The proof proceeds similar to [81, Theorem 3]. We first argue that any fixed point
� must have the same form as in (5.32), that is, it can be written as

�𝑖 , 𝑗 = (�̂𝑖+𝑗 − �̂𝑖+𝑗+1)
(
𝑖 + 𝑗
𝑖

) (
1
�1

) 𝑖 (
𝑝1

�2

) 𝑗
. (5.34)

Let
�𝑖+𝑗 = �(�𝑑𝑖+𝑗 ,0 − �𝑑𝑖+𝑗+1,0)/(�𝑖+𝑗 ,0 − �𝑖+𝑗+1,0)

and replace �
(
ℎ𝑑
𝑖+𝑗−1,0(𝑡) − ℎ

𝑑
𝑖+𝑗 ,0(𝑡)

)
/(ℎ𝑖+𝑗−1,0(𝑡) − ℎ𝑖+𝑗 ,0(𝑡)) in the set of ODEs given by

(5.30) by �𝑖+𝑗−1 and �
(
ℎ𝑑
𝑖+𝑗 ,0(𝑡) − ℎ

𝑑
𝑖+𝑗+1,0(𝑡)

)
/(ℎ𝑖+𝑗 ,0(𝑡) − ℎ𝑖+𝑗+1,0(𝑡)) by �𝑖+𝑗 . Then, � is

also a fixed point of this new set of ODEs. However this system of ODEs corresponds an
𝑀/𝑃𝐻/1 queue with a pre-specified arrival rate that depends on the queue length and
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processor sharing service. As such a queue is insensitive to the job size distribution [12],
it has a unique fixed point of the form given in (5.34). It now suffices to argue that �̂𝑗 = �̂� 𝑗 ,
where �̂� is the unique solution of (5.31).

As � has the form given in (5.34), we can repeat the proof of the previous theorem to
show that (5.33) holds with �̂� replaced by �̂ for any 𝑖 and 𝑗 and therefore also for 𝑖 = 0,
which means �̂ is a fixed point of (5.31). The proof is then completed due to Proposition
5.7.3. □

5.8 Asymptotic Insensitivity

We now present our main result, having established global attraction of the fixed point 𝜋,
the proof is quite standard. Let 𝜋(𝑁) be the stationary measure associated to the Markov
chain𝑋(𝑁)(𝑡) that captures the fraction of the servers with 𝑖+ 𝑗 or more jobs, where at least
𝑗 of these jobs are in phase 2 in a system with 𝑁 servers and initial state 𝑋(𝑁)(0) ∈ Ω𝐵.

Theorem 5.8.1. The limiting queue length distribution of the supermarket model with processor
sharing service is insensitive to the job size distribution within the class of hyperexponential
distributions of order 2, that is, the sequence𝜋(𝑁) converges weakly to the Dirac measure associated
with the fixed point𝜋. In other words, the limiting queue length distribution is given by the unique
fixed point �̂� of (5.31).

Proof. By the Lipschitz continuity and Kurtz’ theorem [17, Chapter 11] the sample paths
𝑋(𝑁)(𝑡) of the stochastic system consisting of 𝑁 servers converge in probability to the
unique solution of the set of ODEs given by (5.1) with 𝑓𝑖 , 𝑗(ℎ(𝑡)) specified by (5.27) over
any finite time scale (0, 𝑇], that is,

lim
𝑁→∞

sup
𝑡≤𝑇

| |𝑋(𝑁)(𝑡) − ℎ(𝑡)| | = 0,

in probability if lim𝑁→∞ 𝑋(𝑁)(0) = ℎ0, where ℎ(0) = ℎ0.

As Ω𝐵 is compact the sequence of stationary measures 𝜋(𝑁) is tight. Hence, Prokhorov’s
theorem implies that any subsequence of the sequence 𝜋(𝑁) has a further subsequence
that converges to some measure on Ω𝐵. Now [25, Theorem 4], implies that any limit point
of the these further subsequences of 𝜋(𝑁) has support on the compact closure of the set
of accumulation points of the set of ODEs for all initial conditions ℎ0 ∈ Ω𝐵. By Theorem
5.5.3 the only accumulation point is the fixed point 𝜋, which proves that all these further
subsequences converge to the same limit point, being the Dirac measure 𝛿𝜋 of the fixed
point 𝜋. This implies that the sequence of measures 𝜋(𝑁) converges weakly to the Dirac
measure 𝛿𝜋. □

An interesting question at this stage is whether this result can be generalized easily to
hyperexponential distributions of order 𝑟 > 2. We now argue that this does not appear to
be the case. Assume we have 3 phases, then the state would be captured by the variables
ℎ𝑖 , 𝑗 ,𝑘(𝑡) that represent the fraction of the servers with at least 𝑖 + 𝑗 + 𝑘 jobs, of which at
least 𝑗 + 𝑘 are in phase 2 or 3 and at least 𝑘 are in phase 3 at time 𝑡. Similarly, define
𝑤𝑖 , 𝑗 ,𝑘(𝑡) as the fraction of the servers with exactly 𝑖 jobs in phase 1, 𝑗 in phase 2 and 𝑘 in
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phase 3. Now consider the state ℎ(0) where 𝑤0,1,0(𝑡) = 1, meaning all servers contain 1
job and this job is in phase 2. Further, consider the state ℎ̃(𝑡) with �̃�99,1,0(𝑡) = 1, meaning
all servers contain 100 jobs, 99 in phase 1 and 1 in phase 2. If we generalize the partial
order ≤𝐶 presented in this chapter in the obvious manner, then clearly ℎ(0) ≤𝐶 ℎ̃(0).
However, ℎ(𝜖) ≤𝐶 ℎ̃(𝜖) may not hold for 𝜖 small, meaning the system does not appear
to be monotone. To understand this, note that from state ℎ(0) servers are created that
contain at least 1 job in phase 3 at a rate �2𝑝2 as the full server capacity is devoted to a
single job in phase 2 in state ℎ(0), while from state ℎ̃(0) jobs in phase 3 are only created
at a rate �2𝑝2/100, thus ℎ0,0,1(𝜖) will exceed ℎ̃0,0,1(𝜖) for 𝜖 small enough.

5.9 Traditional push

In this section we illustrate that Theorem 5.5.3 can also be used to prove asymptotic
insensitivity of other systems with PS servers. More specifically we focus on the tra-
ditional push strategy studied for FCFS servers in [16] and [55, Section VI.A]. We will
argue that Assumptions 5.1 to 5.3 hold for this strategy in case of PS servers, which al-
lows us to establish asymptotic insensitivity within the class of order-2 hyperexponential
distributions by using the same arguments as in the proof of Theorem 5.8.1.

We consider a system consisting of 𝑁 servers, each subject to its own local Poisson arrival
process with rate � < 1. When a job arrives in server 𝑛 and server 𝑛 is busy, a single
random server 𝑛′ is probed and the incoming job is immediately transferred to server 𝑛′
provided that it is idle. Otherwise the job is executed on server 𝑛. Note that although the
servers are PS servers, a job is fully executed on a single server under this strategy. This
is in contrast to the traditional pull or the rate-based strategies in [55], where transferred
jobs are always partially executed on one server before being transferred to another PS
server. In fact, such partial executions imply that asymptotic insensitive is lost despite
the PS service discipline.

We first define the drift terms 𝑓𝑖 , 𝑗(ℎ) corresponding to job arrivals and transfers for the
traditional push strategy. As jobs always start service in phase 1, we have 𝑓0, 𝑗(ℎ) = 0 as
in the supermarket model. When 𝑖 > 0 and 𝑖 + 𝑗 > 1, then ℎ𝑖−1, 𝑗 − ℎ𝑖 , 𝑗 is the fraction of
the queues with an exact queue length of 𝑖 + 𝑗 − 1 with at least 𝑗 jobs in phase 2. Arrivals
in such a queue increase the queue length to 𝑖 + 𝑗 provided that the probed server is
busy, which occurs with probability ℎ1,0. Hence, �(ℎ𝑖−1, 𝑗 − ℎ𝑖 , 𝑗)ℎ1,0 is the rate at which
ℎ𝑖 , 𝑗 increases due to arrivals that are not transferred (for 𝑖 > 0 and 𝑖 + 𝑗 > 1). When 𝑖 = 1
and 𝑗 = 0, ℎ𝑖 , 𝑗 = ℎ1,0 is the fraction of busy servers and this fraction increases at rate
�(1− ℎ1,0), due to local arrivals in idle servers, plus �ℎ1,0(1− ℎ1,0), due to arrivals in busy
servers that are immediately transferred to an idle server. Hence, we have

𝑓𝑖 , 𝑗(ℎ) = 1[𝑖 > 0, 𝑖 + 𝑗 > 1]�(ℎ𝑖−1, 𝑗 − ℎ𝑖 , 𝑗)ℎ1,0

+ 1[𝑖 = 1, 𝑗 = 0]�((1 − ℎ1,0) + ℎ1,0(1 − ℎ1,0))
= 1[𝑖 > 0]�(ℎ𝑖−1, 𝑗 − ℎ𝑖 , 𝑗)ℎ1,0 + 1[𝑖 = 1, 𝑗 = 0]�(1 − ℎ1,0). (5.35)

In particular, we have

𝑓1,0(ℎ) = �(1 − (ℎ1,0)2). (5.36)
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Define Ξ𝑖 , 𝑗(ℎ(𝑡)) = 𝑑
𝑑𝑡
ℎ𝑖 , 𝑗(𝑡) and Ξ(ℎ) =

[
Ξ𝑖 , 𝑗(ℎ)

]∞
𝑖 , 𝑗=0. The next two results show that

Assumptions 5.1 and 5.2 hold.

Proposition 5.9.1. The drift Ξ is Lipschitz continuous on Ω𝐵, meaning Assumption 5.1 is met
when 𝑓𝑖 , 𝑗(ℎ) is defined as in (5.35).

Proof. Let ℎ, ℎ̃ ∈ Ω𝐵. Proceeding similarly to Proposition 5.7.1, we get

d(Ξ(ℎ),Ξ(ℎ̃)) ≤ 4(𝐵 + 1)(�1 + 2�2)d(ℎ, ℎ̃) +
∞sup
𝑖 , 𝑗=0

�� 𝑓𝑖 , 𝑗(ℎ) − 𝑓𝑖 , 𝑗(ℎ̃)
�� .

We have
∞sup
𝑖 , 𝑗=0

�� 𝑓𝑖 , 𝑗(ℎ) − 𝑓𝑖 , 𝑗(ℎ̃)
�� ≤ �d(ℎ, ℎ̃) + �

∞sup
𝑖 , 𝑗=0

��(ℎ𝑖−1, 𝑗 − ℎ𝑖 , 𝑗)ℎ1,0 − (ℎ̃𝑖−1, 𝑗 − ℎ̃𝑖 , 𝑗)ℎ̃1,0
�� . (5.37)

We now use the inequality |𝑎1𝑎2 − 𝑏1𝑏2 | ≤ |𝑎1 − 𝑏1 | + |𝑎2 − 𝑏2 |, for 0 ≤ 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 ≤ 1 on
(5.37), to find that

∞sup
𝑖 , 𝑗=0

��(ℎ𝑖−1, 𝑗 − ℎ𝑖 , 𝑗)ℎ1,0 − (ℎ̃𝑖−1, 𝑗 − ℎ̃𝑖 , 𝑗)ℎ̃1,0
�� ≤ ��ℎ1,0 − ℎ̃1,0

�� + 2d(ℎ, ℎ̃) ≤ 3d(ℎ, ℎ̃).

To conclude, we have

d(Ξ(ℎ),Ξ(ℎ̃)) ≤ (4(𝐵 + 1)(�1 + 2�2) + 4�)d(ℎ, ℎ̃).

□

Proposition 5.9.2. Assumption 5.2 holds for the system of ODEs (5.1) with 𝑓𝑖 , 𝑗(ℎ) specified by
(5.35).

Proof. By (5.36), 𝐹1
1(ℎ) is only decreasing in 𝑔1

1 = ℎ1,0. So we may assume that the indices
{ 𝑗 , 𝑖1 , . . . , 𝑖𝑠} are different from 𝑗 = 1, 𝑖1 = 1. We then have

𝐹
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) = 𝑓0, 𝑗(ℎ) +

𝑠∑
𝑘=1

( 𝑓𝑖𝑘 , 𝑗−𝑘(ℎ) − 𝑓𝑖𝑘−1, 𝑗−𝑘+1(ℎ))

= �ℎ1,0

𝑠∑
𝑘=1

𝑤𝑖𝑘−1, 𝑗−𝑘(ℎ).

The arrivals can be visualised in the same way as those for the supermarket model (see
Figure 5.6). If 𝑠 = 0 then there is nothing to show, so suppose 𝑠 ≥ 1. We need to check
two cases: 𝑖1 = 1 and 𝑖1 > 1. Set 𝑐𝑘 = �ℎ1,0 = �𝑔1

1(ℎ) for 𝑘 = 1, . . . , 𝑠 and 𝑐0 = 𝑐𝑠+1 = 0.
Suppose first 𝑖1 > 1. By using Lemma 5.4.6, we get

𝐹
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) =

𝑠∑
𝑘=1

𝑐𝑘𝑤𝑖𝑘−1, 𝑗−𝑘(ℎ)

= 𝑔
𝑗

𝑖1−1,...,𝑖𝑠−1(ℎ)𝑐𝑠 −
𝑠−1∑
𝑘=0

𝑔
𝑗

𝑖1−1,...,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖𝑠
(ℎ)

(
𝑐𝑘+1 − 𝑐𝑘

)
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= �𝑔1
1(ℎ)(𝑔

𝑗

𝑖1−1,...,𝑖𝑠−1(ℎ) − 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)).

If ℎ, ℎ̃ ∈ Ω𝐵 such that ℎ ≤𝐶 ℎ̃ and 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) = 𝑔

𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃), then 𝑔1

1(ℎ) ≤ 𝑔1
1(ℎ̃) and

𝑔
𝑗

𝑖1−1,...,𝑖𝑠−1(ℎ) ≤ 𝑔
𝑗

𝑖1−1,...,𝑖𝑠−1(ℎ̃) such that

�𝑔1
1(ℎ)(𝑔

𝑗

𝑖1−1,...,𝑖𝑠−1(ℎ) − 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)) ≤ �𝑔1

1(ℎ̃)(𝑔
𝑗

𝑖1−1,...,𝑖𝑠−1(ℎ̃) − 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃)).

Suppose now 𝑖1 = 1. Proceeding similarly as in Proposition 5.7.2, we get

𝐹
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) =

𝑠∑
𝑘=1

𝑐𝑘𝑤𝑖𝑘−1, 𝑗−𝑘(ℎ)

= −𝑐1𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) +

𝑠∑
𝑘=1

𝑔
𝑗−1
𝑖2−1,...,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖𝑠

(ℎ) (𝑐𝑘 − 𝑐𝑘+1)

= �𝑔1
1(ℎ)(𝑔

𝑗−1
𝑖2−1,...,𝑖𝑠−1(ℎ) − 𝑔

𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)).

If ℎ, ℎ̃ ∈ Ω𝐵 such that ℎ ≤𝐶 ℎ̃ and 𝑔
𝑗

𝑖1 ,...,𝑖𝑠
(ℎ) = 𝑔

𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃), then 𝑔1

1(ℎ) ≤ 𝑔1
1(ℎ̃) and

𝑔
𝑗−1
𝑖2−1,...,𝑖𝑠−1(ℎ) ≤ 𝑔

𝑗−1
𝑖2−1,...,𝑖𝑠−1(ℎ̃) such that

�𝑔1
1(ℎ)(𝑔

𝑗−1
𝑖2−1,...,𝑖𝑠−1(ℎ) − 𝑔

𝑗

𝑖1 ,...,𝑖𝑠
(ℎ)) ≤ �𝑔1

1(ℎ̃)(𝑔
𝑗−1
𝑖2−1,...,𝑖𝑠−1(ℎ̃) − 𝑔

𝑗

𝑖1 ,...,𝑖𝑠
(ℎ̃)).

This finishes the proof. □

We now proceed by arguing that we have a unique fixed point in Ω𝐵. As ℎ𝑖 , 𝑗 =∑
𝑘≥𝑖+𝑗

∑𝑘
ℓ=𝑗 𝑤𝑘−ℓ ,ℓ , finding a fixed point of (5.1) is equivalent to finding a fixed point

𝜋𝑤 of the corresponding set of equations for 𝑑
𝑑𝑡
𝑤𝑖 , 𝑗(ℎ(𝑡)). As there is no ambiguity here,

we denote 𝑤(ℎ(𝑡)) simply as 𝑤(𝑡). For the traditional push we have, similar to (5.30),

𝑑

𝑑𝑡
𝑤𝑖 , 𝑗(𝑡) = 1[𝑖 ≥ 1]�(𝑤𝑖−1, 𝑗(𝑡) − 𝑤𝑖 , 𝑗(𝑡))(1 − 𝑤0,0(𝑡)) + 1[𝑖 = 1, 𝑗 = 0]�𝑤0,0(𝑡)

− 1[𝑖 = 𝑗 = 0]�𝑤0,0(𝑡) − 1[𝑖 = 0]�𝑤0, 𝑗(𝑡)(1 − 𝑤0,0(𝑡))

+ 1[𝑗 ≥ 1]𝑝1�1𝑤𝑖+1, 𝑗−1(𝑡)
𝑖 + 1
𝑖 + 𝑗

− �1𝑤𝑖 , 𝑗(𝑡)
𝑖

𝑖 + 𝑗
− �2𝑤𝑖 , 𝑗(𝑡)

𝑗

𝑖 + 𝑗

+ �2𝑤𝑖 , 𝑗+1(𝑡)
𝑗 + 1

𝑖 + 𝑗 + 1 + (1 − 𝑝1)�1𝑤𝑖+1, 𝑗(𝑡)
𝑖 + 1

𝑖 + 𝑗 + 1 , (5.38)

for 𝑖 , 𝑗 ≥ 0 and 𝑖 + 𝑗 ≤ 𝐵, where 𝑤𝑖 , 𝑗(𝑡) = 0 for 𝑖 + 𝑗 > 𝐵.

We first consider the set of ODEs for the traditional push strategy in case of exponential
job sizes (which has the same form as in [55, Section VI.A] for FCFS servers). Let 𝑘𝑖(𝑡) be
the fraction of servers with 𝑖 or more jobs at time 𝑡, then

𝑑

𝑑𝑡
𝑘𝑖(𝑡) = �(𝑘𝑖−1(𝑡) − 𝑘𝑖(𝑡))𝑘1(𝑡) − (𝑘𝑖(𝑡) − 𝑘𝑖+1(𝑡)) + 1[𝑖 = 1]�(1 − 𝑘1(𝑡)), (5.39)

for 𝑖 = 1, . . . , 𝐵 and set 𝑘0(𝑡) = 1 and 𝑘𝑖(𝑡) = 0, for 𝑖 > 𝐵.
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Proposition 5.9.3. The set of ODEs given by (5.39) has a unique fixed point �̂�. Further
�̂�𝑖 ∈ (0,�2𝑖−1) and �̂�𝑖 > �̂�𝑖+1.

Proof. Summing the equations in (5.39) from 𝑖 = 𝑘 to 𝐵 yields that any fixed point �̂�
satisfies

�̂�𝑘 =
�2

1 + ��̂�𝐵
(�̂�𝑘−1 − �̂�𝐵),

for 𝑘 = 2, . . . , 𝐵 and �̂�1 = �/(1 + ��̂�𝐵). Define 𝑉1(𝑥) = �/(1 + �𝑥) and 𝑉𝑘(𝑥) =
�2

1+�𝑥 (𝑉𝑘−1(𝑥)−𝑥) for 𝑘 = 2, . . . , 𝐵, then �̂�𝑘 = 𝑉𝑘(�̂�𝐵). It is easy to see that𝑉𝑘(0) = �2𝑘−1 > 0.
By noting that (𝑉𝑖+1(𝑥) −𝑉𝑖(𝑥)) = �2

1+�𝑥 (𝑉𝑖(𝑥) −𝑉𝑖−1(𝑥)), we find,

𝑉𝑘(𝑥) =
𝑘−1∑
𝑖=1

(𝑉𝑖+1(𝑥) −𝑉𝑖(𝑥)) +𝑉1(𝑥) =
𝑘−1∑
𝑖=1

(
�2

1 + �𝑥

) 𝑖−1

(𝑉2(𝑥) −𝑉1(𝑥)) +𝑉1(𝑥)

= −
1 −

(
�2

1+�𝑥

) 𝑘−1

1 − �2

1+�𝑥︸           ︷︷           ︸
>0

�(�2𝑥2 − �2 + 2�𝑥 + 1)
(1 + �𝑥)2︸                        ︷︷                        ︸

>0

+ �
1 + �𝑥

,

for 𝑥 ∈ [0, 1]. Hence, 𝑉𝑘(𝑥) < 𝑉𝑘−1(𝑥) for 𝑘 = 2, . . . , 𝐵 and 𝑥 ∈ [0, 1]. One easily checks
that𝑉′

2(𝑥) < 0 on [0, 1] and𝑉2(1) = −�2/(1+�)2 < 0, meaning𝑉2(𝑥) has a unique root �2
on [0, 1]. We now complete the proof by showing by induction that𝑉𝑘(𝑥) is decreasing on
[0, �𝑘−1] and 𝑉𝑘(𝑥) < 0 on [�𝑘−1 , 1], which implies that 𝑉𝑘(𝑥) has a unique root �𝑘 < �𝑘−1
on [0, 1] (as 𝑉𝑘(0) = �2𝑘−1) and 𝑉𝑘(𝑥) is negative on (�𝑘 , 1].

By definition of 𝑉𝑘(𝑥), we have

𝑉′
𝑘(𝑥) =

�2

1 + �𝑥
𝑉′
𝑘−1(𝑥) −

�3

(1 + �𝑥)2𝑉𝑘−1(𝑥) −
�2

(1 + �𝑥)2 .

Therefore, 𝑉′
𝑘
(𝑥) is negative if 𝑉′

𝑘−1(𝑥) ≤ 0 and 𝑉𝑘−1(𝑥) ≥ 0. By induction this is the
case on [0, �𝑘−1], meaning 𝑉𝑘(𝑥) is decreasing on [0, �𝑘−1] and negative on [�𝑘−1 , 1] as
𝑉𝑘(𝑥) < 𝑉𝑘−1(𝑥). □

Proposition 5.9.4. Let �̂� be the unique fixed point of (5.39) and define 𝜋𝑤 as in (5.32), then 𝜋𝑤

is a fixed point of (5.38).

Proof. The proof is nearly identical to the proof of Proposition 5.7.4, that is, by replacing
𝑤𝑖 , 𝑗(𝑡) by 𝜋𝑤

𝑖,𝑗
in (5.38) with the left hand side set equal to zero, one obtains

0 =
(
�(�̂�𝑖+𝑗−1 − �̂�𝑖+𝑗)�̂�1 − (�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1) + 1[𝑖 + 𝑗 = 1]�(1 − �̂�1)

) �1𝑖

𝑖 + 𝑗

−
(
�(�̂�𝑖+𝑗 − �̂�𝑖+𝑗+1)�̂�1 − (�̂�𝑖+𝑗+1 − �̂�𝑖+𝑗+2) + 1[𝑖 + 𝑗 = 0]�(1 − �̂�1)

)
. (5.40)

for 𝑖 ≥ 0, which holds as �̂� is the unique fixed point of (5.39). □

Proposition 5.9.5. 𝜋𝑤 is the unique fixed point of (5.38) and therefore Assumption 5.3 holds for
the set of ODEs in (5.1) with 𝑓𝑖 , 𝑗(ℎ) specified by (5.35).
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Proof. We can repeat the same arguments as in the proof of Proposition 5.7.5, except that
we define �𝑖+𝑗 = �(1−�0,0) for 𝑖+ 𝑗 > 0, �0 = �+�(1−�0,0) and rely on Proposition 5.9.3.
Note that the 𝑀/𝑃𝐻/1 queue with pre-specified arrival rates has arrival rate �0 when
the queue is empty and �1 when the queue is busy. □

Having established Assumptions 5.1 to 5.3, global attraction of the unique fixed point
follows from Theorem 5.5.3 and asymptotic insensitivity within the class of hyperexpo-
nential distributions of order 2 follows for the traditional push strategy by repeating the
arguments of in the proof of Theorem 5.8.1.

5.10 Conclusions

In this chapter we established an asymptotic insensitivity result for the supermarket
model with processor sharing servers for the class of hyperexponential distributions of
order 2. To the best of our knowledge, it is the first result of its kind for systems with PS
service. More specifically, we showed that the weak limit of the stationary distributions
as the number of servers tends to infinity is given by the Dirac measure of a fixed point,
the queue length distribution of which is insensitive to the job size distribution. The main
step in proving this result is showing that the set of ODEs describing the evolution of
the mean field limit, has a global attractor. We also demonstrated, using the traditional
push strategy in distributed systems, that our results can be of use to prove asymptotic
insensitivity results beyond the supermarket model.
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Global attraction of ODE-based mean

field models of heterogeneous systems
with hyperexponential job sizes

The first results I obtained in my research were a generalization of the results in [76, Sections
3-8]. These account for about half of the results presented in this chapter. The rest of the chapter’s
results I have found towards the the end of my PhD. This means that this chapter contains both
some of the first and some of the last results I discovered for my thesis.

6.1 Introduction

Mean field modelling is a popular tool in studying large scale systems. The tool has been
used in systems with job stealing/sharing in homogeneous [55,76,77] and heterogeneous
[25, 72, 79, 80] setting, load balancing algorithms [2, 58, 76, 80, 82] and for other problems
(see [76, Section 1]).

In particular, in [76] the mean field models of a family of homogeneous systems with
hyperexponential job sizes were studied. Using monotonicity arguments, it was shown
that under several assumptions the set of ODEs describing such mean field model has a
unique fixed point which is a global attractor. It was further proven that these assump-
tions hold for several policies, including JSQ(𝑑) and pull and push strategies. In [76, Sec-
tion 9], the author shared his belief that the same arguments could be leveraged in case
of heterogeneous queues. In this chapter we generalize the results and the assumptions
from [76, Sections 3-8] to heterogeneous systems, thus confirming the author’s belief. As
many of the proofs are analogous to those from [76], we omit some of them and instead
provide intuition or describe the idea behind omitted proofs. This generalization is the
main contribution of this chapter.

As examples, we show that the assumptions hold for JSQ(𝑑) policy and a policy which
we call split-JSQ(𝑑). The latter policy works as follows: the central dispatcher first
determines to which type of server a job is assigned and then uses power-of-𝑑 policy
on the servers of that type. This policy was studied in [80] for jobs of the phase type,
however global attraction was not proven there.
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CHAPTER 6. GLOBAL ATTRACTION OF ODE-BASED MEAN FIELD MODELS OF

HETEROGENEOUS SYSTEMS WITH HYPEREXPONENTIAL JOB SIZES

The rest of the chapter is structured as follows. In Section 6.2, we describe the system
and the job size distribution. We model the system using a set of ODEs as the number
of queues 𝑁 tends to infinity in Section 6.3. The state space of this set of ODEs and a
partial order on the states are introduced in Section 6.4. Using this partial order, global
attraction is proven (under certain assumptions) in Section 6.5. In Sections 6.6 and 6.7,
we present two examples of load balancing policies for which these assumptions hold,
respectively the JSQ(𝑑) and the split-JSQ(𝑑) policies. Finally, in Section 6.8 we make some
concluding remarks.

6.2 System description

6.2.1 The queues

The system consists of𝑁 queues, each comprising of a server and an infinite buffer. Note,
that from the practical point of view, there is little difference between having an infinite
buffer and a huge finite one. All queues handle jobs according to the FCFS policy. When
an idle queue receives a job, then that job immediately enters service. Upon finishing
the job, the next job enters service immediately (if available). We suppose there are
1 ≤ 𝑇 < ∞ types of servers and we denote by 𝑞𝑘 the fraction of queues with server of type
𝑘, for 𝑘 = 1, . . . , 𝑇. Thus

∑𝑇
𝑘=1 𝑞𝑘 = 1 and we suppose that 𝑞𝑘 > 0 for every 𝑘 = 1, . . . , 𝑇.

We denote by 𝑠𝑘 the “strength” of a server of type 𝑘, that is the amount of work per time
unit that a type-𝑘 server can process. We assume for every 𝑘 that 𝑠𝑘 > 0 and that the
average strength of the servers is 1, i.e.

∑𝑇
𝑘=1 𝑞𝑘 𝑠𝑘 = 1. Note, that if 𝑠𝑘 = 𝑠ℓ for every

𝑘, ℓ = 1, . . . , 𝑇 or if 𝑇 = 1, then the queues are homogeneous. We shall henceforth refer
to queues that have servers of type 𝑘 as queues of type 𝑘.

6.2.2 The distribution of the job sizes

Service requirements of jobs are distributed according to a distribution from the class 𝐶0.
𝐶0 consists of Coxian distributions with some restrictions. We first present a definition
of a Coxian distribution and then introduce the class 𝐶0 below.

A phase type distribution with parameters (𝛼, 𝑆) and 𝑛 phases is called Coxian if 𝛼 =

[1, 0, . . . , 0] and

𝑆 =


−�1 𝑝1�1

−�2 𝑝2�2
. . .

. . .

−�𝑛−1 𝑝𝑛−1�𝑛−1
−�𝑛


,

with �𝑖 ≥ 0, for every 𝑖 = 1, . . . , 𝑛 and with 0 < 𝑝𝑖 ≤ 1 for every 𝑖 = 1, . . . , 𝑛 − 1. We
set 𝑝𝑛 = 0 and denote �𝑖 = �𝑖(1 − 𝑝𝑖) for 𝑖 = 1, . . . , 𝑛. We say that a Coxian distribution
belongs to the class 𝐶0 if and only if �𝑖 = �𝑖(1 − 𝑝𝑖) is decreasing in 𝑖. Note, that for a
distribution in 𝐶0, we must have 𝑝𝑖 ≠ 1 for 𝑖 = 1, . . . , 𝑛−1 due to �𝑛 > 0 and 𝑝𝑛 = 0. Note
further, that 𝐶0 contains all hyperexponential distributions [76, Theorem 1.]. We assume
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that jobs have mean 1, that is 𝛼(−𝑆)−11𝑛𝑝 = 1, or equivalently:

𝑛∑
𝑗=1

1
�𝑗

𝑗−1∏
𝑠=1

𝑝𝑠 = 1. (6.1)

Let 𝑅𝑖 ,𝑘 be the expected remaining time of a job in phase 𝑖 in a server of type 𝑘. Clearly,
𝑅𝑛,𝑘 = 1

𝑠𝑘�𝑛
and 𝑅𝑖−1,𝑘 = 1

𝑠𝑘�𝑖−1
+ 𝑝𝑖−1𝑅𝑖 ,𝑘 for 𝑖 = 2, . . . , 𝑛. As we assume that the mean

service requirement of jobs equals 1, we must have 𝑅1,𝑘 =
1
𝑠𝑘

(as all jobs start in phase 1).
We thus have

𝑠𝑘𝑝𝑖−1�𝑖−1𝑅𝑖 ,𝑘 = 𝑠𝑘�𝑖−1𝑅𝑖−1,𝑘 − 1. (6.2)

Lemma 6.2.1. If �𝑖(1 − 𝑝𝑖) is decreasing, we have 𝑅𝑖 ,𝑘 > 𝑅𝑖−1,𝑘 for 𝑖 = 2, . . . , 𝑛.

Proof. The proof is analogous to that of [76, Lemma 2.]. From the definition of 𝑅𝑖 ,𝑘 we
get

𝑅𝑖 ,𝑘 =
1
𝑠𝑘�𝑖

+
𝑛−1∑
𝑗=𝑖

(
𝑗∏
𝑘=𝑖

𝑝𝑘

)
1

𝑠𝑘�𝑗+1
,

as
∏𝑗

𝑘=𝑖
𝑝𝑘 is the probability that a job in phase 𝑖 will reach phase 𝑗 + 1. This implies

𝑅𝑖 ,𝑘 − 𝑅𝑖−1,𝑘 =
1
𝑠𝑘

[
1 − 𝑝𝑖−1

�𝑖
+
𝑛−1∑
𝑗=𝑖

(
𝑗∏
𝑘=𝑖

𝑝𝑘

)
1 − 𝑝𝑖−1

�𝑗+1
− 1

�𝑗−1

]
. (6.3)

Hence, it suffices to show that RHS of Equation (6.3) is greater than 0. This can be done
analogously to [76, Appendix A]. □

We still have not specified how jobs arrive and are distributed among the servers, and if
jobs can be transferred between servers. This is because we wish that the arguments in
the following sections apply to a large family of policies. In Sections 6.6 and 6.7 we will
present examples of these policies.

6.3 The form of the ODEs

We wish to define a set of ODEs to model the system as 𝑁 → ∞. To this end we define
the variables ℎℓ ,𝑖,𝑘(𝑡) as the fraction of servers at time 𝑡 with at least ℓ jobs in the queue,
in phase ≥ 𝑖 and of type 𝑘.

For ease of notation, we set ℎℓ ,𝑛+1,𝑘(𝑡) = 0, ℎ0,1,𝑘(𝑡) = 𝑞𝑘 and, for 𝑖 > 1, ℎ0,𝑖 ,𝑘(𝑡) = ℎ1,𝑖 ,𝑘(𝑡).
Then ℎℓ ,𝑖,𝑘(𝑡) − ℎℓ ,𝑖+1,𝑘(𝑡) denotes the fraction of queues with at least ℓ jobs, job in service
in phase exactly 𝑖 (and of type 𝑘) and ℎℓ ,𝑖,𝑘(𝑡) − ℎℓ+1,𝑖 ,𝑘(𝑡) the fraction of queues with
exactly ℓ jobs, with job in service in phase ≥ 𝑖 (and of type 𝑘). Similarly,

(ℎℓ ,𝑖,𝑘(𝑡) − ℎℓ ,𝑖+1,𝑘(𝑡)) − (ℎℓ+1,𝑖 ,𝑘(𝑡) − ℎℓ+1,𝑖+1,𝑘(𝑡))

is the fraction of queues with exactly ℓ jobs, leading job in phase 𝑖 and of server type 𝑘.
We also introduce the variables 𝑓ℓ ,𝑖,𝑘(ℎ(𝑡)). These capture all events that are not phase
changes or service completions, e.g. job arrivals, transfers,...
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By using the variables ℎℓ ,𝑖,𝑘(𝑡) and 𝑓ℓ ,𝑖,𝑘(ℎ(𝑡)) we can describe the evolution of the system
using a set of ODEs. For the case of exponential job sizes we get:

𝑑

𝑑𝑡
ℎℓ ,1,𝑘(𝑡) = 𝑓ℓ ,1,𝑘(ℎ(𝑡)) − 𝑠𝑘(ℎℓ ,1,𝑘(𝑡) − ℎℓ+1,1,𝑘(𝑡)). (6.4)

For the case of 𝐶0 distributions we make some remarks analogous to the homogeneous
case. Service completion in a queue of length ≥ ℓ always decreases ℎℓ ,𝑖,𝑘(𝑡) for 𝑖 ≥ 2, as
the next job starts service in phase 1, while a completion decreases ℎℓ ,1,𝑘(𝑡) if the queue
length is exactly ℓ . The set of ODEs from (6.4) thus generalizes as:

𝑑

𝑑𝑡
ℎℓ ,1,𝑘(𝑡) = 𝑓ℓ ,1,𝑘(ℎ(𝑡))

− 𝑠𝑘
𝑛∑
𝑗=1

[(ℎℓ , 𝑗,𝑘(𝑡) − ℎℓ , 𝑗+1,𝑘(𝑡)) − (ℎℓ+1, 𝑗 ,𝑘(𝑡) − ℎℓ+1, 𝑗+1,𝑘(𝑡))]�𝑗 (6.5)

and for 𝑖 = 2, . . . , 𝑛 as

𝑑

𝑑𝑡
ℎℓ ,𝑖,𝑘(𝑡) = 1[ℓ > 1] 𝑓ℓ ,𝑖,𝑘(ℎ(𝑡)) + 𝑠𝑘(ℎℓ ,𝑖−1,𝑘(𝑡) − ℎℓ ,𝑖,𝑘(𝑡))𝑝𝑖−1�𝑖−1

− 𝑠𝑘
𝑛∑
𝑗=𝑖

(ℎℓ , 𝑗,𝑘(𝑡) − ℎℓ , 𝑗+1,𝑘(𝑡))�𝑗 , (6.6)

where for a statement 𝑃, 1[𝑃] is one if 𝑃 is true and 0 otherwise. Note that the only way
that queues of type 𝑘 can influence those of type 𝑘, for 𝑘 ≠ 𝑘, is through 𝑓·,·,𝑘(ℎ(𝑡)).

6.4 State space and partial order

For the non-homogeneous exponential case we have the state space:

Ω𝑛ℎ
𝑒𝑥𝑝𝑜 = {(ℎℓ ,1,𝑘)𝑘∈{1,...,𝑇}ℓ>0 |∀𝑘 ∈ {1, . . . , 𝑇} : 0 ≤ ℎℓ ,1,𝑘 ≤ 𝑞𝑘 , ℎℓ+1,1,𝑘 ≤ ℎℓ ,1,𝑘 ,

∑
ℓ

ℎℓ ,1,𝑘 < ∞}.

A partial order relation on Ω𝑛ℎ
𝑒𝑥𝑝𝑜 is given by the componentwise order. For the case of

𝐶0 distributed job sizes we define:

Ω𝑛ℎ = {(ℎℓ ,1,𝑘)𝑘∈{1,...,𝑇}ℓ>0,𝑖∈{1,...,𝑛} |∀𝑘 ∈ {1, . . . , 𝑇} : 0 ≤ ℎℓ ,𝑖,𝑘 ≤ 𝑞𝑘 , ℎℓ ,𝑖+1,𝑘 ≤ ℎℓ ,𝑖,𝑘 ,

ℎℓ+1,𝑖 ,𝑘 ≤ ℎℓ ,𝑖,𝑘 , ℎℓ ,𝑖,𝑘 + ℎℓ+1,𝑖+1,𝑘 ≥ ℎℓ+1,𝑖 ,𝑘 + ℎℓ ,𝑖+1,𝑘 ,
∑
ℓ

ℎℓ ,1,𝑘 < ∞}. (6.7)

The first three conditions of (6.7) are obvious. The fourth condition comes from the
inequality ℎℓ ,𝑖,𝑘 − ℎℓ+1,𝑖 ,𝑘 ≥ ℎℓ ,𝑖+1,𝑘 − ℎℓ+1,𝑖+1,𝑘 . This inequality states that the fraction of
queues with queue length ℓ with leading job in phase ≥ 𝑖 (and of type 𝑘) should be equal
or greater to the fraction of queues with queue length ℓ with leading job in phase ≥ 𝑖 + 1
(and of type 𝑘). The last condition says that the system should be stable.
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𝑔(6,3,2),𝑘(ℎ)

𝑖1 2 3

6

3

2

ℓ

ℎ6,1,𝑘

ℎ3,2,𝑘 − ℎ6,2,𝑘

ℎ2,3,𝑘 − ℎ3,2,𝑘

𝑖1 2 3

6

3

2

ℓ

Figure 6.1: Illustration of condition (6.9) in terms of variables 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ).

Definition 6.4.1 (Partial order ≤𝐶). Let ℎ, ℎ̃ ∈ Ω𝑛ℎ . We state that ℎ ≤𝐶 ℎ̃ if and only if

ℎℓ ,𝑖,𝑘 ≤ ℎ̃ℓ ,𝑖,𝑘 , (6.8)

for all ℓ , 𝑖, 𝑘, and

ℎℓ1 ,1,𝑘 +
𝑛∑
𝑖=2

(ℎℓ𝑖 ,𝑖 ,𝑘 − ℎℓ𝑖−1 ,𝑖 ,𝑘) ≤ ℎ̃ℓ1 ,1,𝑘 +
𝑛∑
𝑖=2

(ℎ̃ℓ𝑖 ,𝑖 ,𝑘 − ℎ̃ℓ𝑖−1 ,𝑖 ,𝑘), (6.9)

for all 𝑘 and any set ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓ𝑛 ≥ 1 with ℓ1 > ℓ𝑛 and ℓ1 , . . . , ℓ𝑛 ∈ N ∪ {∞}.
Definition 6.4.2. For any ℓ1 , . . . , ℓ𝑛 ∈ N ∪ {∞} with ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓ𝑛 ≥ 1, ℓ1 > ℓ𝑛 and
any 𝑘 ∈ {1, . . . , 𝑇}, define 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘 and 𝑓(ℓ1 ,...,ℓ𝑛 ),𝑘 as a function from Ω𝑛ℎ to R such that

𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) = ℎℓ1 ,1,𝑘 +
𝑛∑
𝑖=2

(ℎℓ𝑖 ,𝑖 ,𝑘 − ℎℓ𝑖−1 ,𝑖 ,𝑘), (6.10)

and

𝑓(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) = 𝑓ℓ1 ,1,𝑘(ℎ) +
𝑛∑
𝑖=2

( 𝑓ℓ𝑖 ,𝑖 ,𝑘(ℎ) − 𝑓ℓ𝑖−1 ,𝑖 ,𝑘(ℎ)). (6.11)

Condition (6.9) can thus be restated as 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) ≤ 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ̃). We illustrate (6.9) in
Figure 6.1. We now provide some intuition behind the partial order.
Remark 6.4.3. Consider two sets 𝒜 and �̃� of 𝑁 queues and let ℎ and ℎ̃ be their corre-
sponding states in Ω𝐵. The intuition behind the order ≤𝐶 is that it should be such that
ℎ ≤𝐶 ℎ̃ implies that there exists a mapping 𝑚 : 𝒜 → �̃� such that every queue 𝑎 is
mapped to a queue 𝑚(𝑎) of the same type with at least the same amount of jobs as 𝑎 and
with the phase of the job in service in queue 𝑚(𝑎) being at least that of the job in service
in queue 𝑎.

We illustrate the intuition in Figure 6.2. The Figure shows two systems with 𝑁 = 4
and 𝑇 = 1, where every queue is depicted by a numbered, coloured ball. The yellow
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Figure 6.2: Illustration of the intuition from Remark 6.4.3, with 𝑁 = 4 and 𝑇 = 1. The
yellow system is dominated by the green one.

system is clearly dominated by the green one (𝑚 can be chosen to map the 𝑘-th queue
from the yellow system to the 𝑘-th queue from the green one). In terms of the variables
𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ), the dominance can be seen as follows: for every set of integers ℓ1 ≥ ℓ2 ≥
· · · ≥ ℓ𝑛 ≥ 1 with ℓ1 > ℓ𝑛 , if we draw the border of of 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) and compare the
number of coloured balls to the right of the border, then the number of green balls
should be at least as high as the number of yellow balls, for every 𝑘 = 1, . . . , 𝑇. In Figure
6.2 this is shown for 𝑔(6,3,2),1(ℎ) and 𝑇 = 1.

Proposition 6.4.4. For every fixed point 𝜋 of (6.5)-(6.6) we have ∀𝑘 ∈ {1, . . . , 𝑇}:

𝜋1,𝑖 ,𝑘 = 𝜋1,1,𝑘

𝑛∑
𝑗=𝑖

1
�𝑗

𝑗−1∏
𝑠=1

𝑝𝑠 , (6.12)

for 𝑖 = 1, . . . , 𝑛, where �𝑖 and 𝑝𝑠 are the parameters of the Coxian representation.

Proof. This Proposition can be proven exactly as [76, Proposition 5]. Instead we provide
some intuition on equality (6.12). 𝜋1,𝑖 ,𝑘/𝜋1,1,𝑘 should be the fraction of time that a server
of type 𝑘 works on a job in phase ≥ 𝑖 provided that the server is busy. Note that we say
“should be” instead of “is”, as 𝜋 is a fixed point of set of ODEs and at this point we do
not know whether it is an invariant distribution of the cavity queue corresponding to the
system.

When a job enters phase 𝑗, it takes on average 1/𝑠𝑘�𝑗 time to leave it. The probability that
a job reaches phase 𝑗 is given by

∏𝑗−1
𝑠=1 𝑝𝑠 . Therefore

1
𝑠𝑘

𝑛∑
𝑗=𝑖

1
�𝑗

𝑗−1∏
𝑠=1

𝑝𝑠

is the average amount of time that a job spends in phases ≥ 𝑖. This implies that the
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following relation should hold:

𝜋1,𝑖 ,𝑘

𝜋1,1,𝑘
=

1
𝑠𝑘

∑𝑛
𝑗=𝑖

1
�𝑗

∏𝑗−1
𝑠=1 𝑝𝑠

1
𝑠𝑘

∑𝑛
𝑗=1

1
�𝑗

∏𝑗−1
𝑠=1 𝑝𝑠

.

Due to (6.1) and 𝑠𝑘 > 0, this simplifies to 𝜋1,𝑖 ,𝑘/𝜋1,1,𝑘 =
∑𝑛
𝑗=𝑖

1
�𝑗

∏𝑗−1
𝑠=1 𝑝𝑠 . □

6.5 Global attraction

In this section we prove that there exists a unique fixed point 𝜋 of the set of ODEs
from (6.5)-(6.6) and that this fixed point is a global attractor. We do this under certain
assumptions. In the next sections we consider certain policies for which we show that
the assumptions hold. We make the following assumptions:

Assumption 6.1. The functions 𝑓ℓ ,𝑖,𝑘(ℎ) : Ω𝑛ℎ → R are such that for any ℎ ∈ Ω𝑛ℎ , the set of
ODEs given by (6.5) - (6.6) has a unique solution ℎ(𝑡) : [0,∞) → Ω𝑛ℎ with ℎ(0) = ℎ and there
exists a fixed point 𝜋 in Ω𝑛ℎ .

Assumption 6.2. The functions 𝑓ℓ ,𝑖,𝑘(ℎ) : Ω𝑛ℎ → R are non-decreasing in ℎℓ ′ ,𝑖′ ,𝑘′ for any
(ℓ ′, 𝑖′, 𝑘′) ≠ (ℓ , 𝑖, 𝑘).

Assumption 6.3. The functions 𝑓(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) : Ω𝑛ℎ → R are such that

𝑓(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) ≤ 𝑓(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ̃)

for any ℎ, ℎ̃ ∈ Ω𝑛ℎ with ℎ ≤𝐶 ℎ̃ and 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) = 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ̃).

Assumption 6.4. Suppose that for every ℎ ∈ Ω𝑛ℎ the set of ODEs given by (6.5) - (6.6) has a
unique solution ℎ(𝑡) : [0,∞) → Ω𝑛ℎ with ℎ(0) = ℎ. The first derivative of ℎℓ ,𝑖,𝑘(𝑡) exists and is
bounded for every (ℓ , 𝑖, 𝑘) and every ℎ ∈ Ω𝑛ℎ , where ℎ(0) = ℎ.

Note, that assuming that 𝑑ℎℓ ,𝑖,𝑘(𝑡)/𝑑𝑡 is bounded is equivalent to assuming that 𝑓ℓ ,𝑖,𝑘(ℎ(𝑡))
is bounded.

Assumption 6.5. The functions 𝑓ℓ ,1,𝑘(ℎ) are such that for any fixed point 𝜋 and 𝐿 ≥ 1 we have

𝑇∑
𝑘=1

∑
ℓ≥𝐿

( 𝑓ℓ ,1,𝑘(ℎ) − 𝑓ℓ ,1,𝑘(𝜋)) =
𝑇∑
𝑘=1

𝐿−1∑
ℓ=1

𝑛∑
𝑗=1

𝑏𝐿,ℓ , 𝑗,𝑘(ℎ)(ℎℓ , 𝑗,𝑘 − 𝜋ℓ , 𝑗,𝑘) − 𝑎𝐿,𝜋(ℎ),

for some bounded functions 𝑏𝐿,ℓ , 𝑗,𝑘(ℎ) on Ω𝑛ℎ and functions 𝑎𝐿,𝜋(ℎ) for which 𝑎𝐿,𝜋(ℎ) ≥ 0 if
𝜋 ≤𝐶 ℎ and 𝑎𝐿,𝜋(ℎ) ≤ 0 if ℎ ≤𝐶 𝜋.

Note that in Assumption 6.5, we have 𝑎𝐿,𝜋(𝜋) = 0 for any fixed point 𝜋.

The first step in proving global attraction is showing “monotonicity”, that is: if at time
𝑡 a system state is dominated by another state w.r.t. the partial order ≤𝐶 , it will stay
dominated at time 𝑡 + 𝑠, for every 𝑠 ≥ 0.
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Proposition 6.5.1 (Monotonicity). Assume that Assumptions 6.1-6.3 hold and let ℎ, ℎ̃ ∈ Ω𝑛ℎ .
Let ℎ(𝑡) and ℎ̃(𝑡) be the unique solution of (6.5) - (6.6) with ℎ(0) = ℎ and ℎ̃(0) = ℎ̃, respectively.
If �𝑖 is decreasing in 𝑖 and ℎ ≤𝐶 ℎ̃ then ℎ(𝑡) ≤𝐶 ℎ̃(𝑡) for any 𝑡 > 0.

Proof. The proof is analogous to [76, Proposition 6]. The idea of the proof is that if at
some time 𝑡 we have ℎℓ ,𝑖,𝑘(𝑡) = ℎ̃ℓ ,𝑖,𝑘(𝑡) for some (ℓ , 𝑖, 𝑘), then we need to show

𝑑

𝑑𝑡
ℎℓ ,𝑖,𝑘(𝑡) ≤

𝑑

𝑑𝑡
ℎ̃ℓ ,𝑖,𝑘(𝑡).

Due to ℎ(𝑡) ≤𝐶 ℎ̃(𝑡) it suffices to show that 𝑑
𝑑𝑡
ℎℓ ,𝑖,𝑘(𝑡) is non-decreasing in ℎℓ ′ ,𝑖′ ,𝑘′(𝑡) for all

(ℓ ′, 𝑖′, 𝑘′) ≠ (ℓ , 𝑖, 𝑘). Once this is shown, we know that condition (6.8) stays true over time
and using a similar idea we can prove that so does condition (6.9). □

Proposition 6.5.2. Let ℎ ∈ Ω𝑛ℎ and assume �𝑖 is decreasing in 𝑖, then the trajectory ℎ(𝑡) starting
in ℎ(0) ∈ Ω𝑛ℎ at time 0 converges to 𝜋 provided that for any ℎ̃ ∈ Ω𝑛ℎ with ℎ̃ ≤𝐶 𝜋 or 𝜋 ≤𝐶 ℎ̃,
ℎ(𝑡) with ℎ(0) = ℎ̃ converges pointwise to 𝜋.

Proof. The proof is completely analogous to the proof of [76, Proposition 7]. The idea is
to define for every state ℎ ∈ Ω𝑛ℎ some states ℎ𝑑 , ℎ𝑢 ∈ Ω𝑛ℎ such that ℎ𝑑 ≤𝐶 𝜋, ℎ𝑑 ≤𝐶 ℎ
and 𝜋 ≤𝐶 ℎ𝑢 , ℎ ≤𝐶 ℎ𝑢 . The claim then follows from Proposition 6.5.1. Usually, we can
simply pick ℎ𝑑 to be the zero state, while more care is needed in choosing ℎ𝑢 . □

Note, that proof of Proposition 6.5.2 uses that the inequality

𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) = ℎℓ1 ,1,𝑘 +
𝑛∑
𝑖=2

(ℎℓ𝑖 ,𝑖 ,𝑘 − ℎℓ𝑖−1 ,1,𝑘) ≤ ℎℓ𝑛 ,1,𝑘 (6.13)

holds for any 𝑘 ∈ {1, . . . , 𝑇} and ℎ ∈ Ω𝑛ℎ . We illustrate this inequality in Figure 6.3 and
note that it can be proven similarly to [76, (17)].

For the proof of the global attraction we need the following two lemmas.

Lemma 6.5.3. Assume that Assumptions 6.1-6.4 hold and let ℎ ∈ Ω𝑛ℎ . Let ℎ(𝑡) be the unique
solution of (6.5) - (6.6) with ℎ(0) = ℎ. Let 𝜋 be a fixed point of (6.5) - (6.6). Suppose that �𝑖 is
decreasing in 𝑖. Let 𝐿 ≥ 1 and 𝑗 ∈ {1, . . . , 𝑛} be arbitrary. If 𝜋 ≤𝐶 ℎ(0), then∫ ∞

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘(ℎ𝐿,𝑗,𝑘(𝑡) − 𝜋𝐿,𝑗,𝑘)𝑑𝑡 < ∞

implies that for every 𝑘 = 1, . . . , 𝑇, lim𝑡→∞ ℎ𝐿,𝑗,𝑘(𝑡) = 𝜋𝐿,𝑗,𝑘 . If ℎ(0) ≤𝐶 𝜋, then∫ ∞

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘(𝜋𝐿,𝑗,𝑘 − ℎ𝐿,𝑗,𝑘(𝑡))𝑑𝑡 < ∞

implies that for every 𝑘 = 1, . . . , 𝑇, lim𝑡→∞ ℎ𝐿,𝑗,𝑘(𝑡) = 𝜋𝐿,𝑗,𝑘 .
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𝑔(6,3,2),𝑘(ℎ)

𝑖1 2 3

6

3

2

ℓ ℎ2,1,𝑘

𝑖1 2 3

6

3

2

ℓ

Figure 6.3: Illustration of Inequality (6.13). We clearly have 𝑔(6,3,2),𝑘(ℎ) ≤ ℎ2,1,𝑘 .

Proof. We prove the case where 𝜋 ≤𝐶 ℎ(0). The case where ℎ(0) ≤𝐶 𝜋 can be proven
analogously. So suppose 𝜋 ≤𝐶 ℎ(0). Assume that

∫ ∞
𝑡=0

∑𝑇
𝑘=1 𝑠𝑘(ℎ𝐿,𝑗,𝑘(𝑡) − 𝜋𝐿,𝑗,𝑘)𝑑𝑡 < ∞

is true. Due to Proposition 6.5.2, we have for every 𝑡 ≥ 0 that 𝜋 ≤𝐶 ℎ(𝑡), which implies
for every 𝑘 ∈ {1, . . . , 𝑇} that 𝜋𝐿,𝑗,𝑘 ≤ ℎ𝐿,𝑗,𝑘(𝑡). As 𝑠𝑘 > 0, we have for every 𝑘 that
0 ≤

∫ ∞
𝑡=0(ℎ𝐿,𝑗,𝑘(𝑡) − 𝜋𝐿,𝑗,𝑘)𝑑𝑡 < ∞. Due to Assumption 6.4, 𝑑ℎ𝐿,𝑗,𝑘(𝑡)/𝑑𝑡 exists and is

bounded. Similarly to the proof of [82, Lemma 7.(c)], we now get for every 𝑘 that
ℎ𝐿,𝑗,𝑘(𝑡) → 𝜋𝐿,𝑗,𝑘 as needed. □

Lemma 6.5.4. Define 𝑧1,𝐿(ℎ(𝑡)) =
∑𝑇
𝑘=1

∑
ℓ≥𝐿 ℎℓ ,1,𝑘(𝑡) and

𝑧2(ℎ(𝑡)) =
𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑖=2

ℎ1,𝑖 ,𝑘(𝑡)(𝑅𝑖 ,𝑘 − 𝑅𝑖−1,𝑘).

Then

𝑑

𝑑𝑡
𝑧1,𝐿(ℎ(𝑡)) =

𝑇∑
𝑘=1

∑
ℓ≥𝐿

𝑓ℓ ,1,𝑘(ℎ(𝑡)) −
𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=1

(ℎ𝐿,𝑗,𝑘(𝑡) − ℎ𝐿,𝑗+1,𝑘(𝑡))�𝑗 (6.14)

and
𝑑

𝑑𝑡
𝑧2(ℎ(𝑡)) = −

𝑇∑
𝑘=1

𝑠𝑘 ℎ1,1,𝑘(𝑡) +
𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=1

(ℎ1, 𝑗 ,𝑘(𝑡) − ℎ1, 𝑗+1,𝑘(𝑡))�𝑗 . (6.15)

Proof. The proof is analogous to the one of [76, Lemma 3]. The expression for 𝑑
𝑑𝑡
𝑧1,𝐿(ℎ(𝑡))

follows directly from Equation (6.5). For 𝑑
𝑑𝑡
𝑧2(ℎ(𝑡)) we can make use of Equation (6.6)

and obtain (after exchanging the order of the sums):

𝑑

𝑑𝑡

(
𝑛∑
𝑖=2

ℎ1,𝑖 ,𝑘(𝑡)(𝑅𝑖 ,𝑘 − 𝑅𝑖−1,𝑘)
)
=

𝑛∑
𝑖=2

(ℎ1,𝑖−1,𝑘(𝑡) − ℎ1,𝑖 ,𝑘(𝑡))𝑠𝑘𝑝𝑖−1�𝑖−1𝑅𝑖 ,𝑘
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−
𝑛∑
𝑖=2

(ℎ1,𝑖−1,𝑘(𝑡) − ℎ1,𝑖 ,𝑘(𝑡))𝑠𝑘𝑝𝑖−1�𝑖−1𝑅𝑖−1,𝑘

−
𝑛∑
𝑗=2

[
𝑗∑
𝑖=2

(𝑅𝑖 ,𝑘 − 𝑅𝑖−1,𝑘)
]
(ℎ1, 𝑗 ,𝑘(𝑡) − ℎ1, 𝑗+1,𝑘(𝑡))𝑠𝑘�𝑗 .

Using (6.2) on the first sum, we can rewrite this as

𝑑

𝑑𝑡

(
𝑛∑
𝑖=2

ℎ1,𝑖 ,𝑘(𝑡)(𝑅𝑖 ,𝑘 − 𝑅𝑖−1,𝑘)
)
=

𝑛∑
𝑖=2

(ℎ1,𝑖−1,𝑘(𝑡) − ℎ1,𝑖 ,𝑘(𝑡))𝑠𝑘�𝑖−1𝑅𝑖−1,𝑘

−
𝑛∑
𝑖=2

(ℎ1,𝑖−1,𝑘(𝑡) − ℎ1,𝑖 ,𝑘(𝑡))

−
𝑛∑
𝑗=2

(ℎ1, 𝑗 ,𝑘(𝑡) − ℎ1, 𝑗+1,𝑘(𝑡))𝑠𝑘�𝑗𝑅 𝑗 ,𝑘

+
𝑛∑
𝑗=2

(ℎ1, 𝑗 ,𝑘(𝑡) − ℎ1, 𝑗+1,𝑘(𝑡))𝑠𝑘�𝑗𝑅1,𝑘

= (ℎ1,1,𝑘(𝑡) − ℎ1,2,𝑘(𝑡))𝑠𝑘�1𝑅1,𝑘 − ℎ1,1,𝑘(𝑡) + ℎ1,𝑛,𝑘(𝑡)

− ℎ1,𝑛,𝑘(𝑡)𝑠𝑘�𝑛𝑅𝑛,𝑘 +
𝑛∑
𝑗=2

(ℎ1, 𝑗 ,𝑘(𝑡) − ℎ1, 𝑗+1,𝑘(𝑡))𝑠𝑘�𝑗𝑅1,𝑘 .

The result follows by noting that 𝑅1,𝑘 =
1
𝑠𝑘

, 𝑅𝑛,𝑘 = 1
𝑠𝑘�𝑘

and 𝑝𝑛 = 0. □

Remark 6.5.5. From the definitions of 𝑧1,𝐿(ℎ(𝑡)) and 𝑧2(ℎ(𝑡)) follows immediately that
𝑑
𝑑𝑡
𝑧1,𝐿(𝜋) = 0 and 𝑑

𝑑𝑡
𝑧2(𝜋) = 0.

Proposition 6.5.6. Assume that Assumptions 6.1 - 6.5 hold and that �𝑖(1 − 𝑝𝑖) is decreasing in
𝑖. For any ℎ(0) ∈ Ω𝑛ℎ with ℎ(0) ≤𝐶 𝜋 or 𝜋 ≤𝐶 ℎ(0), ℎ(𝑡) converges pointwise to 𝜋.

Proof. The proof is similar to the one of [76, Proposition 8]. We assume 𝜋 ≤𝐶 ℎ(0), the
proof for ℎ(0) ≤𝐶 𝜋 follows similarly. We first show that ℎ1,1,𝑘(𝑡) converges to 𝜋1,1,𝑘
for every 𝑘 ∈ {1, . . . , 𝑇}. Due to Lemma 6.5.3, with 𝐿, 𝑗 = 1, it suffices to show that∫ ∞
𝑡=0

∑𝑇
𝑘=1 𝑠𝑘(ℎ1,1,𝑘(𝑡) − 𝜋1,1,𝑘)𝑑𝑡 < ∞. Let 𝑧(ℎ) = 𝑧1,1(ℎ) + 𝑧2(ℎ). By Lemma 6.5.4 and

Assumption 6.5 with 𝐿 = 1 we then have

𝑑

𝑑𝑡
𝑧(ℎ(𝑡)) =

𝑇∑
𝑘=1

∑
ℓ≥1

𝑓ℓ ,1,𝑘(𝜋) −
𝑇∑
𝑘=1

𝑠𝑘 ℎ1,1,𝑘(𝑡) − 𝑎1,𝜋(ℎ(𝑡)).

Further, due to Remark 6.5.5 we have 𝑑
𝑑𝑡
𝑧(𝜋) = 0, which implies

∑𝑇
𝑘=1

∑
ℓ≥1 𝑓ℓ ,1,𝑘(𝜋) =∑𝑇

𝑘=1 𝑠𝑘𝜋1,1,𝑘 as 𝑎1,𝜋(𝜋) = 0. We thus get∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘(ℎ1,1,𝑘(𝑡) − 𝜋1,1,𝑘)𝑑𝑡 = −
∫ 𝜏

𝑡=0

𝑑

𝑑𝑡
𝑧(ℎ(𝑡))𝑑𝑡 −

∫ 𝜏

𝑡=0
𝑎1,𝜋(ℎ(𝑡))𝑑𝑡

≤ 𝑧(ℎ(0)) − 𝑧(ℎ(𝜏)) ≤ 𝑧(ℎ(0)),
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as 𝑎1,𝜋(ℎ(𝑡)) ≥ 0 and 𝑧(ℎ(𝜏)) ≥ 0 for 𝜏 ≥ 0 (due to Lemma 6.2.1). Hence
∫ 𝜏

𝑡=0
∑𝑇
𝑘=1 𝑠𝑘(ℎ1,1,𝑘(𝑡)−

𝜋1,1,𝑘)𝑑𝑡 is uniformly bounded in 𝜏 ≥ 0, meaning
∫ ∞
𝑡=0

∑𝑇
𝑘=1 𝑠𝑘(ℎ1,1,𝑘(𝑡) − 𝜋1,1,𝑘)𝑑𝑡 < ∞.

We now show that ℎ1, 𝑗 ,𝑘(𝑡) converges to 𝜋1, 𝑗 ,𝑘 for 𝑗 = 2, . . . , 𝑛 and for 𝑘 = 1, . . . , 𝑇, by
arguing that

∫ ∞
𝑡=0

∑𝑇
𝑘=1 𝑠𝑘(ℎ1, 𝑗 ,𝑘(𝑡) − 𝜋1, 𝑗 ,𝑘)𝑑𝑡 < ∞. This is sufficient due to Lemma 6.5.3,

with 𝐿 = 1. As �𝑗 is decreasing in 𝑗, we have �𝑗−1 − �𝑗 > 0 and it suffices to show that∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=2

(ℎ1, 𝑗 ,𝑘(𝑡) − 𝜋1, 𝑗 ,𝑘)(�𝑗−1 − �𝑗)𝑑𝑡

is uniformly bounded in 𝜏 ≥ 0. As 𝑧2(ℎ(𝜏)) ≥ 0 (thanks to Lemma 6.2.1), we have
𝑧2(ℎ(0)) ≥ −

∫ 𝜏

𝑡=0
𝑑𝑧2(ℎ(𝑡))

𝑑𝑡
𝑑𝑡 and Lemma 6.5.4 implies

𝑧2(ℎ(0)) ≥
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘 ℎ1,1,𝑘(𝑡)𝑑𝑡 −
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=1

(ℎ1, 𝑗 ,𝑘(𝑡) − ℎ1, 𝑗+1,𝑘(𝑡))�𝑗𝑑𝑡

=

∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘 ℎ1,1,𝑘(𝑡)(1 − �1)𝑑𝑡 +
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=2

ℎ1, 𝑗 ,𝑘(𝑡)(�𝑗−1 − �𝑗)𝑑𝑡

≥
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘(ℎ1,1,𝑘(𝑡) − 𝜋1,1,𝑘)(1 − �1)𝑑𝑡

+
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=2

(ℎ1, 𝑗 ,𝑘(𝑡) − 𝜋1, 𝑗 ,𝑘)(�𝑗−1 − �𝑗)𝑑𝑡,

where the last inequality is due to 𝜋 ≤𝐶 ℎ(0) and Proposition 6.5.1. This shows the
uniform boundedness in 𝜏 as 0 ≤

∫ 𝜏

𝑡=0
∑𝑇
𝑘=1 𝑠𝑘(ℎ1,1,𝑘(𝑡) − 𝜋1,1,𝑘)𝑑𝑡.

We complete the proof by showing that (ℎ𝐿,𝑗,𝑘(𝑡)−ℎ𝐿,𝑗+1,𝑘(𝑡)) converges to (𝜋𝐿,𝑗,𝑘−𝜋𝐿,𝑗+1,𝑘),
for 𝐿 > 1 and 𝑗 = 1, . . . , 𝑛. Note that (ℎ𝐿,𝑗,𝑘(𝑡) − ℎ𝐿,𝑗+1,𝑘(𝑡)) is not necessarily larger than
(𝜋𝐿,𝑗,𝑘−𝜋𝐿,𝑗+1,𝑘)when𝜋 ≤𝐶 ℎ(𝑡). We do however have ℎ𝐿,𝑗,𝑘(𝑡)+ℎ𝐿−1, 𝑗+1,𝑘(𝑡)−ℎ𝐿,𝑗+1,𝑘(𝑡) ≥
𝜋𝐿,𝑗,𝑘 + 𝜋𝐿−1, 𝑗+1,𝑘(𝑡) − 𝜋𝐿,𝑗+1,𝑘 due to (6.9). Using a similar argument as in Lemma 6.5.3,
we get that showing∫ ∞

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘[(ℎ𝐿,𝑗,𝑘(𝑡) + ℎ𝐿−1, 𝑗+1,𝑘(𝑡) − ℎ𝐿,𝑗+1,𝑘(𝑡)) − (𝜋𝐿,𝑗,𝑘 + 𝜋𝐿−1, 𝑗+1,𝑘(𝑡) − 𝜋𝐿,𝑗+1,𝑘)]𝑑𝑡 < ∞

is a sufficient condition for ℎ𝐿,𝑗,𝑘(𝑡) + ℎ𝐿−1, 𝑗+1,𝑘(𝑡) − ℎ𝐿,𝑗+1,𝑘(𝑡) to converge to 𝜋𝐿,𝑗,𝑘 +
𝜋𝐿−1, 𝑗+1,𝑘(𝑡) − 𝜋𝐿,𝑗+1,𝑘 for every 𝑘. Thus, using induction on 𝐿 it suffices to show that

Ψ𝐿,𝜏 =

∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=1

((ℎ𝐿,𝑗,𝑘(𝑡) + ℎ𝐿−1, 𝑗+1,𝑘(𝑡) − ℎ𝐿,𝑗+1,𝑘(𝑡))

− (𝜋𝐿,𝑗,𝑘 + 𝜋𝐿−1, 𝑗+1,𝑘 − 𝜋𝐿,𝑗+1,𝑘))�𝑗𝑑𝑡
is uniformly bounded in 𝜏 ≥ 0. As 𝑧1,𝐿(ℎ(𝜏)) ≥ 0 for 𝜏 ≥ 0, we have 𝑧1,𝐿(ℎ(0)) ≥
−

∫ 𝜏

𝑡=0
𝑑𝑧1,𝐿(ℎ(𝑡))

𝑑𝑡
𝑑𝑡 and Lemma 6.5.4 implies for 𝐿 ≥ 1

𝑧1,𝐿(ℎ(0)) ≥ −
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

∑
ℓ≥𝐿

𝑓ℓ ,1,𝑘(ℎ(𝑡))𝑑𝑡 +
𝑇∑
𝑘=1

𝑠𝑘

∫ 𝜏

𝑡=0

𝑛∑
𝑗=1

(ℎ𝐿,𝑗,𝑘(𝑡) − ℎ𝐿,𝑗+1,𝑘(𝑡))�𝑗𝑑𝑡
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= −
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

∑
ℓ≥𝐿

( 𝑓ℓ ,1,𝑘(ℎ(𝑡)) − 𝑓ℓ ,1,𝑘(𝜋))𝑑𝑡

+
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=1

((ℎ𝐿,𝑗,𝑘(𝑡) − ℎ𝐿,𝑗+1,𝑘(𝑡)) − (𝜋𝐿,𝑗,𝑘 − 𝜋𝐿,𝑗+1,𝑘))�𝑗𝑑𝑡,

where the last equality holds thanks to Lemma 6.5.4 and Remark 6.5.5. Therefore, we
find

𝑧1,𝐿(ℎ(0)) +
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=1

(ℎ𝐿−1, 𝑗+1,𝑘(𝑡) − 𝜋𝐿−1, 𝑗+1,𝑘)�𝑗𝑑𝑡

≥ −
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

∑
ℓ≥𝐿

( 𝑓ℓ ,1,𝑘(ℎ(𝑡)) − 𝑓ℓ ,1,𝑘(𝜋))𝑑𝑡 +Ψ𝐿,𝜏.

By relying on Assumption 6.5 with 𝐿 > 1 this is equivalent to

𝑧1,𝐿(ℎ(0)) +
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝑠𝑘

𝑛∑
𝑗=1

(ℎ𝐿−1, 𝑗+1,𝑘(𝑡) − 𝜋𝐿−1, 𝑗+1,𝑘)�𝑗𝑑𝑡

+
∫ 𝜏

𝑡=0

𝑇∑
𝑘=1

𝐿−1∑
ℓ=1

𝑛∑
𝑗=1

𝑏𝐿,ℓ , 𝑗,𝑘(ℎ(𝑡))(ℎℓ , 𝑗,𝑘(𝑡) − 𝜋ℓ , 𝑗,𝑘)𝑑𝑡

≥ Ψ𝐿,𝜏 +
∫ 𝜏

𝑡=0
𝑎𝐿,𝜋(ℎ(𝑡))𝑑𝑡.

As 𝑏𝐿,ℓ , 𝑗,𝑘(ℎ) is bounded onΩ𝑛ℎ , the left hand side is uniformly bounded in 𝜏 by induction
on 𝐿 and therefore so are the (positive) integrals on the right hand side. □

We need Assumption 6.5 and functions 𝑧1,𝐿(ℎ(𝑡)) and 𝑧2(ℎ(𝑡)) to prove Proposition 6.5.6.
This is not the case if the buffer is assumed to be finite. Having a finite buffer also
simplifies finding the state ℎ𝑢 in Proposition 6.5.2.

Essentially, we have now proven the main theorem of this chapter:

Theorem 6.5.7 (Global Attraction). Consider the set of ODEs given by (6.5) - (6.6). Assume
that Assumptions 6.1 - 6.5 hold and �𝑖(1− 𝑝𝑖) is decreasing in 𝑖. Then, for any ℎ(0) ∈ Ω𝑛ℎ , ℎ(𝑡)
converges pointwise to the unique fixed point 𝜋 ∈ Ω𝑛ℎ as 𝑡 tends to infinity.

Proof. This follows from Propositions 6.5.2 and 6.5.6. □

6.6 Example: JSQ(𝑑)

JSQ(𝑑) stands for Join Shortest Queue out of 𝑑 selected queues. The policy works as
follows: jobs arrive to the central dispatcher according to Poisson process with parameter
�𝑁 , upon an arrival the dispatcher chooses 𝑑 queues at random and assigns the job to a
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queue with the least number of jobs (with ties between queue lengths broken uniformly
at random). We assume that the dispatcher distributes jobs instantaneously, i.e. no time
passes between the dispatcher receiving a job and the job being assigned to a queue.

An advantage of the policy is that the dispatcher does not have to know all the queue
lengths, which can be problematic for large values of 𝑁 . As such, the policy is often
used in cloud load balancing setting (where there are possibly multiple dispatchers and
heterogeneous servers). Among popular load balancers, NGINX [23] and HAProxy [73]
can use the JSQ(2) policy. The policy has been studied for example in [58, 81, 82].

In this section we remark on the stability of the system and then show that the Assump-
tions 6.1-6.5 are satisfied for the JSQ(𝑑) policy.

We first note that having � < 1 is not enough for the system to be stable. Indeed, consider
the following example:

Example 6.6.1. Suppose that we have two types of servers (𝑇 = 2) and that 𝑞1 = 𝑞2 = 1/2,
i.e. half of the system consists of servers of type 1 and the other half of servers of type
2. Suppose further that 𝑠1 = 1.8 and 𝑠2 = 0.2, such that the average strength of servers
is 𝑠1/2 + 𝑠2/2 = 1 as required. Assume that the system handles the JSQ(2) policy. In this
case, on average, for every fourth arrival two queues of type 2 get chosen. This implies
that queues of type 2 get at least one fourth of the incoming jobs. The average number of
jobs that every queue of type 2 receives per time unit is therefore at least �/(4𝑞2) = �/2.
Hence, even if � < 1, it is possible that �/2 ≥ 0.2 and the system is unstable.

The example above shows that we need a stronger stability condition than � < 1. It also
shows that the condition should depend on the fractions and strengths of servers of given
types. The needed stability condition is given in [59, Section 2.4]:

� <
𝑇

min
𝑘=1

©«
∑𝑘
ℓ=1 𝑞ℓ 𝑠ℓ(∑𝑘
ℓ=1 𝑞ℓ

)𝑑 ª®®¬ , (6.16)

where we assume, without loss of generality, that 𝑠1 ≤ 𝑠2 ≤ · · · ≤ 𝑠𝑇 . Note that [59, Section
2.4] deals with heterogeneous processor sharing systems with exponential job sizes. The
stability condition is however the same for any service policy and job size distribution
(of the same mean). Note further, that if 𝑇 = 1, then (6.16) simplifies to � < 1.

We now derive a formula for 𝑓ℓ ,𝑖,𝑘(ℎ(𝑡)). First note that
∑𝑇
𝑚=1 ℎℓ ,1,𝑚(𝑡) is the fraction of

queues with at least ℓ jobs at time 𝑡. It follows that(
𝑇∑
𝑚=1

ℎℓ−1,1,𝑚(𝑡)
)𝑑

−
(
𝑇∑
𝑚=1

ℎℓ ,1,𝑚(𝑡)
)𝑑

is the probability that the dispatcher chooses a queue with exactly ℓ − 1 jobs upon an
arrival at time 𝑡, as this simply is the probability of choosing 𝑑 queues with at least ℓ − 1
jobs of which not all have ℓ or more jobs. Further, the probability that a queue with ℓ − 1
jobs is of type 𝑘 at time 𝑡 equals

ℎℓ−1,1,𝑘(𝑡) − ℎℓ ,1,𝑘(𝑡)∑𝑇
𝑚=1 (ℎℓ−1,1,𝑚(𝑡) − ℎℓ ,1,𝑚(𝑡))

.
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It now follows that for ℓ ≥ 1

𝑓ℓ ,1,𝑘(ℎ(𝑡)) = �


(
𝑇∑
𝑚=1

ℎℓ−1,1,𝑚(𝑡)
)𝑑

−
(
𝑇∑
𝑚=1

ℎℓ ,1,𝑚(𝑡)
)𝑑

ℎℓ−1,1,𝑘(𝑡) − ℎℓ ,1,𝑘(𝑡)∑𝑇
𝑚=1 (ℎℓ−1,1,𝑚(𝑡) − ℎℓ ,1,𝑚(𝑡))

(6.17)

= � (ℎℓ−1,1,𝑘(𝑡) − ℎℓ ,1,𝑘(𝑡))
𝑑−1∑
𝑗=0

(
𝑇∑
𝑚=1

ℎℓ−1,1,𝑚(𝑡)
) 𝑗 ( 𝑇∑

𝑚=1
ℎℓ ,1,𝑚(𝑡)

)𝑑−1−𝑗

, (6.18)

where we used
𝑎𝑑 − 𝑏𝑑
𝑎 − 𝑏 =

𝑑−1∑
𝑗=0

𝑎 𝑗𝑏𝑑−1−𝑗 (6.19)

in the second equality. As
ℎℓ−1,𝑖 ,𝑘(𝑡) − ℎℓ ,𝑖,𝑘(𝑡)
ℎℓ−1,1,𝑘(𝑡) − ℎℓ ,1,𝑘(𝑡)

is the probability that a queue of type 𝑘 with ℓ − 1 jobs at time 𝑡 has the leading job in
phase ≥ 𝑖, we further get for ℓ > 1 and 𝑖 ≥ 2 that

𝑓ℓ ,𝑖,𝑘(ℎ(𝑡)) = 𝑓ℓ ,1,𝑘(ℎ(𝑡)) ·
ℎℓ−1,𝑖 ,𝑘(𝑡) − ℎℓ ,𝑖,𝑘(𝑡)
ℎℓ−1,1,𝑘(𝑡) − ℎℓ ,1,𝑘(𝑡)

= � (ℎℓ−1,𝑖 ,𝑘(𝑡) − ℎℓ ,𝑖,𝑘(𝑡))
𝑑−1∑
𝑗=0

(
𝑇∑
𝑚=1

ℎℓ−1,1,𝑚(𝑡)
) 𝑗 ( 𝑇∑

𝑚=1
ℎℓ ,1,𝑚(𝑡)

)𝑑−1−𝑗

. (6.20)

Define Ψℓ ,𝑖,𝑘(ℎ(𝑡)) = 𝑑
𝑑𝑡
ℎℓ ,𝑖,𝑘(𝑡) and Ψ(ℎ) = [Ψℓ ,𝑖,𝑘(ℎ)]ℓ ,𝑖,𝑘 . We call Ψ the drift. Clearly,

the drift is bounded on Ω𝑛ℎ . We now show that Ψ is Lipschitz continuous on Ω𝑛ℎ with
respect to the supremum metric on Ω𝑛ℎ , with the supremum metric given by

d(ℎ, ℎ̃) = ∞sup
ℓ=1

𝑛sup
𝑖=1

𝑇sup
𝑘=1

��ℎℓ ,𝑖,𝑘 − ℎ̃ℓ ,𝑖,𝑘 �� ,
where ℎ, ℎ̃ ∈ Ω𝑛ℎ . It will then follow that for every ℎ ∈ Ω𝑛ℎ the set of ODEs (6.5)-(6.6)
has a unique solution ℎ(𝑡) with ℎ(0) = ℎ.

Proposition 6.6.2. The drift Ψ is Lipshitz continuous on Ω𝑛ℎ .

Proof. Let ℎ, ℎ̃ ∈ Ω𝑛ℎ . We have

sup
ℓ≠0,𝑖 ,𝑘

�� 𝑓ℓ ,𝑖,𝑘(ℎ) − 𝑓ℓ ,𝑖,𝑘(ℎ̃)
�� = � sup

ℓ≠0,𝑖 ,𝑘

����� (ℎℓ−1,𝑖 ,𝑘 − ℎℓ ,𝑖,𝑘)
𝑑−1∑
𝑗=0

(
𝑇∑
𝑚=1

ℎℓ−1,1,𝑚

) 𝑗 ( 𝑇∑
𝑚=1

ℎℓ ,1,𝑚

)𝑑−1−𝑗

−
(
ℎ̃ℓ−1,𝑖 ,𝑘 − ℎ̃ℓ ,𝑖,𝑘

) 𝑑−1∑
𝑗=0

(
𝑇∑
𝑚=1

ℎ̃ℓ−1,1,𝑚

) 𝑗 ( 𝑇∑
𝑚=1

ℎ̃ℓ ,1,𝑚

)𝑑−1−𝑗 �����.
We now use the inequality

|𝑎𝑚1
1 𝑎𝑚2

2 − 𝑏𝑚1
1 𝑏𝑚2

2 | ≤ 𝑚1 |𝑎1 − 𝑏1 | + 𝑚2 |𝑎2 − 𝑏2 |, (6.21)
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for 0 ≤ 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 ≤ 1 and 𝑚1 , 𝑚2 ∈ N \ {0}, to find that

sup
ℓ≠0,𝑖 ,𝑘

�� 𝑓ℓ ,𝑖,𝑘(ℎ) − 𝑓ℓ ,𝑖,𝑘(ℎ̃)
�� ≤ � sup

ℓ≠0,𝑖 ,𝑘

��ℎℓ−1,𝑖 ,𝑘 − ℎℓ ,𝑖,𝑘 − ℎ̃ℓ−1,𝑖 ,𝑘 + ℎ̃ℓ ,𝑖,𝑘
�� (6.22)

+ �
∞sup
ℓ=1

𝑑−1∑
𝑗=0

�����
(
𝑇∑
𝑚=1

ℎℓ−1,1,𝑚

) 𝑗 ( 𝑇∑
𝑚=1

ℎℓ ,1,𝑚

)𝑑−1−𝑗

−
(
𝑇∑
𝑚=1

ℎ̃ℓ−1,1,𝑚

) 𝑗 ( 𝑇∑
𝑚=1

ℎ̃ℓ ,1,𝑚

)𝑑−1−𝑗 �����. (6.23)

Note that due to ℎ0,𝑖 ,𝑘 = ℎ1,𝑖 ,𝑘 if 𝑖 > 1 and ℎ0,𝑖 ,𝑘 = 𝑞𝑘 if 𝑖 = 1 (for every ℎ ∈ Ω𝑛ℎ), we get
that (6.22) is smaller than or equal to 2�d(ℎ, ℎ̃). Using (6.21) inside the sum over 𝑗’s in
(6.23), we further get

sup
ℓ≠0,𝑖 ,𝑘

�� 𝑓ℓ ,𝑖,𝑘(ℎ) − 𝑓ℓ ,𝑖,𝑘(ℎ̃)
��

≤ 2�d(ℎ, ℎ̃) + �
∞sup
ℓ=1

𝑑−1∑
𝑗=0

�����𝑗 𝑇∑
𝑚=1

(ℎℓ−1,1,𝑚 − ℎ̃ℓ−1,1,𝑚) + (𝑑 − 1 − 𝑗)
𝑇∑
𝑚=1

(ℎℓ ,1,𝑚 − ℎ̃ℓ ,1,𝑚)
�����

≤ 2�d(ℎ, ℎ̃) + �𝑑(𝑑 − 1) ∞sup
ℓ=1

����� 𝑇∑
𝑚=1

(ℎℓ−1,1,𝑚 − ℎ̃ℓ−1,1,𝑚)
�����

≤ 2�d(ℎ, ℎ̃) + �𝑑(𝑑 − 1)𝑇d(ℎ, ℎ̃),

where in the last inequality we have used ℎ0,1,𝑚 = 𝑞𝑚 , for every ℎ ∈ Ω𝑛ℎ . It now follows
that

d(Ψ(ℎ),Ψ(ℎ̃)) ≤ �(2 + 𝑑(𝑑 − 1)𝑇)d(ℎ, ℎ̃) + 4𝑛 𝑛max
𝑖=1

�𝑖
𝑇max
𝑘=1

𝑠𝑘d(ℎ, ℎ̃)

+ 2 𝑛max
𝑖=1

𝑝𝑖�𝑖
𝑇max
𝑘=1

𝑠𝑘d(ℎ, ℎ̃),

which finishes the proof. □

We only prove the existence of a fixed point in case of finite buffers. So suppose that
every queue has a buffer of size 𝐵 < ∞. To make sure that queue lengths never exceed 𝐵
in our model, we can simply set 𝑓ℓ ,𝑖,𝑘(ℎ) = 0 for ℓ > 𝐵. Then, Ω𝑛ℎ is a compact, positively
invariant subset of R𝐵𝑛𝑇 . Further, the set Ω𝑛ℎ is clearly homeomorphic to the closed unit
ball in R𝐵𝑛𝑇 . [4, Theorem 1.9.6] now implies that there exists a fixed point in Ω𝑛ℎ . This,
together with Proposition 6.6.2, proves that Assumption 6.1 holds for JSQ(𝑑) policy (with
finite buffers).

We now show that Assumptions 6.2-6.5 hold for any buffer size (including infinite buffers).
Looking at Equations (6.18) and (6.20), it may look like Assumption 6.2 does not hold
due to the terms −ℎℓ ,1,𝑘(𝑡) and −ℎℓ ,𝑖,𝑘(𝑡) respectively. However, as ℎℓ−1,𝑖 ,𝑘(𝑡) ≥ ℎℓ ,𝑖,𝑘(𝑡) for
any ℓ ≥ 1 and any 𝑖 and 𝑘, the Assumption 6.2 does hold. Assumption 6.3 can be shown
analogously to [76, Section 7.1]: for (ℓ1 , . . . , ℓ𝑛) with ℓ1 > · · · > ℓ𝑛 , we have

𝑓(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) = �
𝑛∑
𝑖=1

[ (
𝑔(ℓ1 ,...,ℓ𝑖−1 ,ℓ𝑖−1[ℓ𝑖>1],ℓ𝑖+1 ,ℓ𝑛 ),𝑘(ℎ) − 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ)

)
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·
𝑑−1∑
𝑗=0

(
𝑇∑
𝑚=1

ℎℓ𝑖−1,1,𝑚

) 𝑗 ( 𝑇∑
𝑚=1

ℎℓ𝑖 ,1,𝑚

)𝑑−1−𝑗 ]
.

For the general case assume that ℓ̃1 > · · · > ℓ̃𝑛′ are the unique values appearing in the
sequence ℓ1 ≥ · · · ≥ ℓ𝑛 and let ℓ 𝑗𝑖 be the first element in this sequence equal to ℓ̃𝑖 for
𝑖 = 1, . . . , 𝑛. We then have

𝑓(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ) = �
𝑛′∑
𝑖=1

[
1[ℓ̃𝑖 > 1]

(
𝑔(ℓ ′1 ,...,ℓ

′
𝑛 ),𝑘(ℎ) − 𝑔(ℓ1 ,...,ℓ𝑛 ),𝑘(ℎ)

)
·
𝑑−1∑
𝑗=0

(
𝑇∑
𝑚=1

ℎℓ̃𝑖−1,1,𝑚

) 𝑗 ( 𝑇∑
𝑚=1

ℎℓ̃𝑖 ,1,𝑚

)𝑑−1−𝑗 ]
,

where ℓ ′𝑚 = ℓ𝑚 − 1 for 𝑗𝑖 ≤ 𝑚 ≤ 𝑗𝑖+1 and ℓ ′𝑚 = ℓ𝑚 otherwise. Assumption 6.3 thus also
holds.

Looking at (6.18) and (6.20), Assumption 6.4 clearly holds, as 0 ≤ ℎℓ , 𝑗,𝑘(𝑡) ≤ 1 for every 𝑡
and every (ℓ , 𝑗, 𝑘).

For every ℎ ∈ Ω𝑛ℎ , we have
∑𝑇
𝑘=1

∑
ℓ≥1 𝑓ℓ ,1,𝑘(ℎ) = �. Therefore, for Assumption 6.5 with

𝐿 = 1, we can simply set 𝑎1,𝜋(ℎ) = 0. Suppose 𝐿 > 1. By using formula (6.17), we get that∑𝑇
𝑘=1

∑
ℓ≥𝐿( 𝑓ℓ ,1,𝑘(ℎ) − 𝑓ℓ ,1,𝑘(𝜋)) equals

�
∑
ℓ≥𝐿


(
𝑇∑
𝑚=1

ℎℓ−1,1,𝑚

)𝑑
−

(
𝑇∑
𝑚=1

ℎℓ ,1,𝑚

)𝑑
−

(
𝑇∑
𝑚=1

𝜋ℓ−1,1,𝑚

)𝑑
+

(
𝑇∑
𝑚=1

𝜋ℓ ,1,𝑚

)𝑑 .
Working out the sum over ℓ , this simplifies to

�


(
𝑇∑
𝑚=1

ℎ𝐿−1,1,𝑚

)𝑑
−

(
𝑇∑
𝑚=1

𝜋𝐿−1,1,𝑚

)𝑑 ,
which is equal to

�
𝑑−1∑
𝑗=0

(
𝑇∑
𝑚=1

ℎ𝐿−1,1,𝑚

) 𝑗 ( 𝑇∑
𝑚=1

𝜋𝐿−1,1,𝑚

)𝑑−1−𝑗 𝑇∑
𝑘=1

(ℎ𝐿−1,1,𝑘 − 𝜋𝐿−1,1,𝑘) ,

due to Equation (6.19). For every 𝑘 ∈ {1, . . . , 𝑇}, we can thus set

𝑏𝐿,𝐿−1,1,𝑘(ℎ) = �
𝑑−1∑
𝑗=0

(
𝑇∑
𝑚=1

ℎ𝐿−1,1,𝑚

) 𝑗 ( 𝑇∑
𝑚=1

𝜋𝐿−1,1,𝑚

)𝑑−1−𝑗

≤ �𝑑,

𝑏𝐿,ℓ , 𝑗,𝑘(ℎ) = 0 for (ℓ , 𝑗) ≠ (𝐿 − 1, 1) and 𝑎𝐿,𝜋(ℎ) = 0, which shows that Assumption 6.5
holds for 𝐿 > 1.
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6.7 Example: split-JSQ(𝑑)

In this section we introduce a variant of the JSQ(𝑑) policy, which we call split-JSQ(𝑑).
The split-JSQ(𝑑) policy works as follows. Jobs arrive to the central dispatcher according
to a Poisson process with parameter �𝑁 . Upon an arrival, the dispatcher first picks a
type of queue according to a general distribution. Let 𝜌𝑘 denote the probability that the
dispatcher will choose type 𝑘, for 𝑘 = 1, . . . , 𝑇. We call these probabilities the “routing
probabilities”. The dispatcher then uses JSQ(𝑑) policy on the queues of the chosen type,
i.e. it picks 𝑑 queues of that type at random and it assigns the job to a queue with the
lowest number of jobs among the chosen queues, with ties broken randomly. We assume
that the dispatcher distributes jobs instantaneously.

This policy was studied in [80] for jobs of the phase type, however the authors did not
prove global attraction in their paper. The policy was also studied for exponential job
sizes in [59, Section 2.5] under the name hybrid SQ(𝑑), where the author provided a way
of finding the optimal routing probabilities.

We note, that the existence of a fixed point and global attraction for the split-JSQ(𝑑)
follow immediately if we have existence of a fixed point and global attraction in each
subsystem consisting servers of type 𝑘. Thus, if each subsystem is stable, we can simply
use [76, Section 7.1] and existence of a fixed point and global attraction follow.

We now determine the conditions needed for stability. As the average queue strength
and mean job size are both 1, the first condition for stability is � < 1. We also need
stability for each type of queues. Hence, we need for every 𝑘 = 1, . . . , 𝑇, that �𝜌𝑘 < 𝑠𝑘𝑞𝑘
as �𝜌𝑘/𝑞𝑘 is the average amount of jobs that a queue of type 𝑘 gets per time unit and 𝑠𝑘
is the strength of a type 𝑘 server. For the remainder of this section we therefore assume
that � < 1 and that �𝜌𝑘 < 𝑠𝑘𝑞𝑘 holds for every 𝑘 = 1, . . . , 𝑇.

As explained above, the existence of a fixed point and global attraction now follow.
However, as an example we analyze the policy in more detail. We first determine the
terms 𝑓ℓ ,𝑖,𝑘(ℎ(𝑡)). We then verify Assumptions 6.1-6.5, except Assumption 6.3, where we
simply refer to [76].

We will now derive a formula for 𝑓ℓ ,𝑖,𝑘(ℎ(𝑡)). The probability that at time 𝑡 a queue has
at least ℓ jobs provided that it is of type 𝑘 is ℎℓ ,1,𝑘(𝑡)/𝑞𝑘 . Therefore,

1
𝑞𝑑
𝑘

(
ℎℓ−1,1,𝑘(𝑡)𝑑 − ℎℓ ,1,𝑘(𝑡)𝑑

)
is the probability that a dispatcher chooses 𝑑 queues of which at least one has at least
ℓ − 1 jobs and not all queues have ℓ or more jobs, provided that the dispatcher chooses
type 𝑘 queues. As �𝜌𝑘/𝑞𝑘 is the average amount of jobs that a queue of type 𝑘 gets per
time unit, it follows that

𝑓ℓ ,1,𝑘(ℎ(𝑡)) =
�𝜌𝑘
𝑞𝑘

· 𝑞𝑘 ·
1
𝑞𝑑
𝑘

(
ℎℓ−1,1,𝑘(𝑡)𝑑 − ℎℓ ,1,𝑘(𝑡)𝑑

)
=

�𝜌𝑘

𝑞𝑑
𝑘

(
ℎℓ−1,1,𝑘(𝑡)𝑑 − ℎℓ ,1,𝑘(𝑡)𝑑

)
(6.24)
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for ℓ ≥ 1. As
ℎℓ−1,𝑖 ,𝑘(𝑡) − ℎℓ ,𝑖,𝑘(𝑡)
ℎℓ−1,1,𝑘(𝑡) − ℎℓ ,1,𝑘(𝑡)

is the probability that a queue of type 𝑘 has ℓ − 1 jobs with leading job in phase ≥ 𝑖, we
further get for ℓ > 1 and 𝑖 ≥ 2 that

𝑓ℓ ,𝑖,𝑘(ℎ(𝑡)) =
�𝜌𝑘

𝑞𝑑
𝑘

(
ℎℓ−1,1,𝑘(𝑡)𝑑 − ℎℓ ,1,𝑘(𝑡)𝑑

) ℎℓ−1,𝑖 ,𝑘(𝑡) − ℎℓ ,𝑖,𝑘(𝑡)
ℎℓ−1,1,𝑘(𝑡) − ℎℓ ,1,𝑘(𝑡)

=
�𝜌𝑘

𝑞𝑑
𝑘

(ℎℓ−1,𝑖 ,𝑘(𝑡) − ℎℓ ,𝑖,𝑘(𝑡))
𝑑−1∑
𝑗=0

ℎℓ−1,1,𝑘(𝑡)𝑗ℎℓ ,1,𝑘(𝑡)𝑑−1−𝑗 , (6.25)

where we have used Equation (6.19) to obtain (6.25).

We now verify Assumptions 6.1-6.5 for the split-JSQ(𝑑) policy. We first show that As-
sumption 6.1 holds for the split-JSQ(𝑑) policy. Clearly, if we focus on queues of type
𝑘, we get the following subsystem: on average we have �𝜌𝑘/𝑞𝑘 arrivals per queue per
time unit, these arrivals get distributed according to JSQ(𝑑) policy and the service of a
job takes 1/𝑠𝑘 time units on average. We can re-scale the time by a factor of 1/𝑠𝑘 and
we get that the subsystem is the system from [76, Section 4.1]. The subset of the set
ODEs (6.5)-(6.6) concerning the queues of type 𝑘, then has a unique solution, for every
𝑘 = 1, . . . , 𝑇. The whole set of ODEs then also has a unique solution ℎ(𝑡). Further, the
subsystem of queues of type 𝑘 has a fixed point, which we will denote by 𝜋(𝑘). We now
get a fixed point needed for Assumption 6.1 by setting 𝜋ℓ ,𝑖,𝑘 = 𝜋(𝑘)

ℓ ,𝑖
for every (ℓ , 𝑖, 𝑘).

Assumption 6.2 clearly holds if we look at (6.24). At first glance it may look like Assump-
tion 6.2 does not hold for (6.25) for the terms inside the sum due to −ℎℓ ,𝑖,𝑘(𝑡) before the
sum. However, as ℎℓ−1,𝑖 ,𝑘(𝑡) − ℎℓ ,𝑖,𝑘(𝑡) ≥ 0, Assumption 6.2 also holds for (6.25). Further,
Assumption 6.3 can be shown analogously to Assumption A2 in [76, Section 7.1].

Looking at (6.24) and (6.25), Assumption 6.4 clearly holds, as 0 ≤ ℎℓ , 𝑗,𝑘(𝑡) ≤ 1 for every 𝑡
and every (ℓ , 𝑗, 𝑘) as 𝑞𝑘 > 0 for every 𝑘.

For Assumption 6.5, we note the following. For 𝐿 = 1, we have
∑𝑇
𝑘=1

∑
ℓ≥1 𝑓ℓ ,1,𝑘(ℎ) =∑𝑇

𝑘=1 �𝜌𝑘 = � for every ℎ ∈ Ω𝑛ℎ . Therefore, we can set 𝑎1,𝜋(ℎ) = 0. For 𝐿 > 1, we have∑
ℓ≥𝐿

( 𝑓ℓ ,1,𝑘(ℎ) − 𝑓ℓ ,1,𝑘(𝜋)) =
�𝜌𝑘

𝑞𝑑
𝑘

(
ℎ𝑑
ℓ−1,1,𝑘 − 𝜋𝑑

ℓ−1,1,𝑘

)
,

which means that we can choose 𝑎𝐿,𝜋(ℎ) = 0 and due to Equation (6.19)

𝑏𝐿,𝐿−1,1,𝑘(ℎ) =
�𝜌𝑘

𝑞𝑑
𝑘

𝑑−1∑
𝑗=0

ℎ
𝑗

𝐿−1,1,𝑘𝜋
𝑑−1−𝑗
𝐿−1,1,𝑘 ≤

�𝜌𝑘𝑑

𝑞𝑑
𝑘

.

Finally, we can set 𝑏𝐿,ℓ , 𝑗,𝑘(ℎ) = 0 for (ℓ , 𝑗) ≠ (𝐿 − 1, 1).
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6.8 Conclusion

In this chapter we were able to generalize the results from [76]. We have namely shown
that monotonicity arguments can be used to show global attraction in mean field models
for a large class of heterogeneous systems with hyperexponential job sizes (whereas [76]
dealt with the homogeneous case). This confirmed a part of the author’s belief in [76,
Section 9].

As examples, we have shown that the global attraction holds in case of two heterogeneous
variants of the JSQ(𝑑) policy, which we called JSQ(𝑑) and split-JSQ(𝑑). For the latter of
these global attraction follows almost immediately from [76, Section 7.1]. We expect that
global attraction also holds in case of heterogeneous variants of other policies, such as
pull and push policies.

We share the belief from [76, Section 9], that a similar monotonicity argument can be
applied to systems where every queue uses FCFS discipline and has 𝐶 > 1 servers. This,
however, is a subject of future work.
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Jobs in multithreaded computing systems consist of several threads [7,83]. Upon starting
the execution a main thread (which we call a parent job) several other threads are spawned
(which we call child jobs). These spawned child jobs are initially stored locally, but can
be redistributed at a later stage. One way of redistributing jobs is called “randomized
work stealing”: processors that become empty start probing other processors at random
(uniformly) and if the probed processor has pending jobs, some of its jobs are transferred
to the probing processor [7, 16]. Another option is to make use of “randomized work
sharing”, where servers that have pending jobs probe others to offload some of their
work to other servers.

Work stealing solutions have been studied by various authors and are often used in
practice. They have been implemented for example in Cilk programming language
[8, 18], Intel TBB [64], Java fork/join framework [49], KAAPI [26] and .NET Task Parallel
Library [50]. Some early studies on work sharing and stealing include [16,57,69]. In [16]
the performance of work stealing and sharing is compared for homogenous systems
with exponential job sizes. Using similar techniques the work in [16] was generalized to
heterogeneous systems in [57]. The key takeaway from these papers is that work stealing
clearly outperforms work sharing in system with high load.

More recent work includes [25, 55, 56, 77, 79]. In [25] the authors analyse the system
consisting of several homogeneous clusters with exponential job sizes and where half of
the jobs are transferred when a probe is successful. A fair comparison between stealing
and sharing strategies is given for homogeneous networks and exponential job sizes
in [55, 56] and for non-exponential job sizes in [77]. Further, the comparison in [55] is
extended to heterogeneous networks in [79]. The key difference with the systems in
this part is that in these prior works jobs are considered to be sequential and are always
executed as a whole on a single server.

In this part we study multithreaded computing through the use of large scale homo-
geneous systems with randomized work stealing. We namely let empty servers send
probes, if a server with pending jobs or pending parts of a job is probed, some work is
transferred to the probing server. We assume that each job (parent job) spawns several
other jobs (child jobs) upon the beginning of its service. Note, that the child jobs can have
other distribution than the parent. We refer to the parent job together with its children
as a job.

The part is structured as follows. It consists of three chapters (Chapters 7-9), each based
on a published paper (papers [68], [44] and [45] respectively). In Chapter 7 we make
a comparison of two systems: in the first one only a single parent can be transferred
at once, in the second one one child get transferred per successful steal. In Chapter
8 we analyze systems where if a probed server has pending child jobs, a number of
them is transferred to the probing queue. Otherwise, a pending parent job is transferred
(if available). The number of transferred children follows a general distribution. This
allows us to investigate and compare different stealing strategies. In Chapters 7 and 8 both
parent and child job service requirements are assumed to be exponentially distributed.
In Chapter 9 we generalize the analysis of Chapter 8 to parent and child jobs of the phase
type.

As all these systems consist of multiple queues that can influence each other in a non-
trivial way, it is impossible to study these systems exactly for 𝑁 , the number of servers,
large. We instead opt to analyze the systems with𝑁 → ∞ through mean field techniques.
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For each of the systems we analyze a QBD Markov chain describing the cavity queue.
We also model each system using a set of ODEs and show that the unique fixed point
of this set of ODEs coincides with the invariant distribution of the cavity queue of the
corresponding system. As these mean field models are approximations of the 𝑁-server
systems, we validate our analysis using simulation in each of the three chapters. Finally,
for each system we perform various numerical experiments.
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Randomized work stealing: a

comparison of two systems

This Chapter contains the paper [68], titled “Performance Analysis of Work Stealing in Large-scale
Multithreaded Computing”. The writing of this paper started in late 2019. This was the only
time I got the chance to work with a researcher from abroad (Nikki Sonenberg) on site. The paper
was published in June 2021 in ACM Transactions on Modeling and Performance Evaluation of
Computing Systems.

7.1 Introduction

In this chapter we analyze the performance of randomized work stealing on a large
system of servers in the context of dynamic multithreaded computations. To the best of
our knowledge we are the first to develop a mean field model for work stealing in this
setting. Following [7, 83], a multithreaded computation is composed of a set of threads,
each of which has a sequential ordering of tasks. During execution, a thread, a sequence
of instructions executed within the context of a job, may spawn new child threads and a
scheduling algorithm determines which processors execute which threads.

We suppose there is a system of homogeneous processors operating with randomized
work stealing and consider the problem of balancing workloads over the processors
where jobs arriving to a processor can spawn child jobs that can feasibly be executed
in parallel with the parent job. Child jobs are generated upon a parent job beginning
service, and these child jobs are then initially stored locally. We consider two work
stealing protocols: one where only child jobs are able to be migrated across servers; and
one where parent jobs can be migrated across servers, but must be migrated together
with their child jobs.

We define mean field models for both stealing strategies and validate the models using
simulation. We prove the existence of a unique fixed point for each model and use this
to study the performance of these strategies in terms of the response time distribution
for the job. While we do not present convergence proofs for the stationary measures, we
believe such proofs may be constructed using existing mean field results [24, 47]. In this
chapter we make the following contributions:
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• We present two mean field models for work stealing in multithreaded computa-
tions.

• We prove that these models have a unique fixed point that can be computed ef-
ficiently using matrix analytic methods (by solving a single Quasi-Birth-Death
Markov chain). This is the main technical contribution of the chapter.

• We indicate how to compute the response time distribution of a job for both strate-
gies.

• For both strategies we illustrate the effect on mean response time of varying probe
rate, load and child job size distributions. In selected scenarios, we show that with
high probe rate and low loads, child stealing achieves a lower mean response time;
but the parent stealing strategy clearly performs better under low probe rate and
high loads.

• The developed model and methods provide a foundation for the performance
analysis of more general systems with similar features.

The rest of this chapter is organised as follows. In Section 7.2 we describe the system and
the work stealing strategies considered. The mean field model is introduced in Section
7.3. The model of a single server is introduced in Section 7.4 and used to compute the
fixed point in Section 7.5. We present results for the response time distribution in Section
7.6 and in Section 7.7 present explicit results when the probe rate tends to infinity. We
validate the mean field model using simulation in Section 7.8. The performance of the
stealing strategies with numerical examples is presented in Section 7.9 and Section 7.10
contains some concluding remarks.

7.2 System description and strategies

We consider a system with the following characteristics:

i. 𝑁 homogeneous servers each with an infinite buffer to store jobs.

ii. Each server is subject to its own local Poisson arrival process with rate �. Arriving
jobs are referred to as parent jobs.

iii. Upon a parent entering service, the parent job spawns 𝑖 ∈ {0, 1, . . . , 𝑚}, 𝑚 ≥ 1,
child jobs at that server, the number of which follows a general distribution with
finite support, �̌� = {𝑝𝑖}. We refer to a job as a parent job and its spawned child jobs.

iv. Child jobs spawned at a server are served before any waiting parent jobs are served.

v. It is assumed that parent and child jobs have exponentially distributed service
requirements with rates �1 and �2, respectively.

In this chapter we study the performance of rate based work stealing strategies [55,77] in
our model of multithreaded computations. More specifically we consider the following
two randomized work stealing protocols:
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(a) A parent job enters fourth queue and starts waiting.
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(b) A parent completes service in the second queue and the next parent enters service,
spawning three children.
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(c) The second queue is probed by the first and the waiting parent is transferred, starts
service in the the first queue and spawns a child.
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(d) The third queue probes the second. As the latter has no pending parents, no transfer
occurs.

Figure 7.1: Example of a parent stealing system with 𝑁 = 4. Blue and orange dots depict
parent and child jobs respectively.

• Parent job stealing. When a server is idle, it generates probe messages at rate 𝑟.
As long as the server remains idle, probes are sent according to Poisson process
with rate 𝑟. This process is interrupted whenever the server becomes busy. The
probed server is selected at random and a probe is successful if there are parent
jobs waiting to be served. We assume the policy is to always steal the oldest parent
job, that is, the head-of-the-line parent job in the waiting room.

• Child job stealing. Idle servers again probe at rate 𝑟, but a probe is only successful
if there is at least one child job waiting to be served. In this case a single child job
is transferred to the idle probing server. Extending the model such that multiple
child jobs can be stolen at once is non trivial and subject to future work.

The two systems are illustrated for 𝑁 = 4 in Figures 7.1 and 7.2 respectively.

We compare the performance of these two strategies, noting that when a parent job is
transferred to an idle server, its service immediately starts and its child jobs are spawned
at this server. Probes and job transfers are assumed to be instantaneous. Another
interpretation of the rate based probing is that it takes an exponentially distributed
amount of time with mean 1/𝑟 to probe another server (and to transfer the job if the
probe is successful) and steal attempts are executed sequentially.

7.3 Mean field model

We use a mean field model to describe the system with 𝑁 → ∞ servers. The infinite
system is defined by a set of ODEs and we use the superscript (𝑐) when referring to the
system where child job stealing is allowed and superscript (𝑝) where parent job stealing
is allowed.
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(a) A parent job enters fourth queue and starts waiting.
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(b) A parent completes service in the second queue and the next parent enters service,
spawning three children.
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(c) The first of the waiting children in the second queue gets transferred to the first queue
and begins service.
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(d) The fourth queue is probed by the third. As the fourth queue has no pending child
jobs, no transfer occurs.

Figure 7.2: Example of a child stealing system with 𝑁 = 4. Blue and orange dots depict
parent and child jobs respectively.

For 𝑖 ∈ {(𝑐), (𝑝)}, denote by 𝑓 𝑖
ℓ , 𝑗 ,𝑘

(𝑡) the fraction of servers with ℓ parent jobs in waiting in
the queue, 𝑗 ∈ {0, 1, . . . , 𝑚} child jobs in the queue and 𝑘 ∈ {0, 1} describing whether a
parent is in service (𝑘 = 1) or not (𝑘 = 0) at time 𝑡. Note that ℓ does not count parent jobs
in service, whereas 𝑗 counts child jobs waiting and in service. Let 𝑓 𝑖∗ (𝑡) be the fraction of
idle queues at time 𝑡, that is when ℓ , 𝑗, 𝑘 = 0. Let 1[𝐴] be equal to one if 𝐴 is true and
zero otherwise.

7.3.1 Child job stealing

For ℓ ≥ 0 and 𝑗 + 𝑘 ≥ 1,

𝑑

𝑑𝑡
𝑓
(𝑐)
ℓ , 𝑗,𝑘

(𝑡) = � 𝑓 (𝑐)
ℓ−1, 𝑗 ,𝑘(𝑡)1[ℓ ≥ 1] + �𝑝 𝑗 𝑓

(𝑐)
∗ (𝑡)1[ℓ = 0, 𝑘 = 1]

− � 𝑓 (𝑐)
ℓ , 𝑗,𝑘

(𝑡) + �1 𝑓
(𝑐)
ℓ , 𝑗,𝑘+1(𝑡)1[𝑘 = 0]

+ �1𝑝 𝑗 𝑓
(𝑐)
ℓ+1,0,𝑘(𝑡)1[𝑘 = 1] − �1 𝑓

(𝑐)
ℓ , 𝑗,𝑘

(𝑡)1[𝑘 = 1]

+ �2 𝑓
(𝑐)
ℓ , 𝑗+1,𝑘(𝑡)1[𝑗 ≤ 𝑚 − 1, 𝑘 = 0]

+ �2𝑝 𝑗 𝑓
(𝑐)
ℓ+1,1,𝑘−1(𝑡)1[𝑘 = 1] − �2 𝑓

(𝑐)
ℓ , 𝑗,𝑘

(𝑡)1[𝑘 = 0]

+ 𝑟 𝑓∗(𝑡) 𝑓 (𝑐)ℓ , 𝑗+1,𝑘(𝑡)1[𝑗 ≤ 𝑚 − 1]

− 𝑟 𝑓∗(𝑡) 𝑓 (𝑐)ℓ , 𝑗,𝑘
(𝑡)1[𝑗 + 𝑘 > 1]

+ 𝑟 𝑓 (𝑐)∗ (𝑡)
∑
ℓ ′≥0,
𝑗′+𝑘′>1

𝑓
(𝑐)
ℓ ′ , 𝑗′ ,𝑘′(𝑡)1[ℓ = 0, 𝑗 = 1, 𝑘 = 0]
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and for, ℓ , 𝑗, 𝑘 = 0,

𝑑

𝑑𝑡
𝑓
(𝑐)
∗ (𝑡) = −� 𝑓 (𝑐)∗ (𝑡) + �1 𝑓

(𝑐)
0,0,1(𝑡) + �2 𝑓

(𝑐)
0,1,0(𝑡) − 𝑟 𝑓

(𝑐)
∗ (𝑡)

∑
ℓ≥0,
𝑗+𝑘>1

𝑓
(𝑐)
ℓ , 𝑗,𝑘

(𝑡).

The first three terms of the drift of 𝑓 (𝑐)
ℓ , 𝑗,𝑘

(𝑡) correspond to arrivals of parent jobs, the
following three terms correspond to service completions of a parent job, the following
three terms correspond to service completions of a child job and the remaining terms
correspond to job transfers. Similarly for 𝑓 (𝑐)∗ (𝑡), the first term is due to arrivals of parent
jobs, the second and third due to parent and child job completions, respectively and the
last term is due to child job transfers. Note that∑

ℓ≥0, 𝑗+𝑘>1
𝑓
(𝑐)
ℓ , 𝑗,𝑘

(𝑡) = 1 − 𝑓
(𝑐)
∗ (𝑡) −

∑
ℓ≥0

( 𝑓 (𝑐)
ℓ ,1,0(𝑡) + 𝑓

(𝑐)
ℓ ,0,1(𝑡)),

which equals the probability that a probe transmitted at time 𝑡 succeeds in stealing a
child job.

We now rewrite these equations in matrix form, using the vectors below, where 0𝑖 is a
column vector of zeroes of length 𝑖, 𝑒𝑖 is the 𝑖-th row of the unit matrix and 1 a column
vector of ones:

𝑓
(𝑐)
ℓ

(𝑡) =
(
𝑓
(𝑐)
ℓ ,1,0(𝑡), . . . , 𝑓

(𝑐)
ℓ ,𝑚,0(𝑡), 𝑓

(𝑐)
ℓ ,0,1(𝑡), . . . , 𝑓

(𝑐)
ℓ ,𝑚,1(𝑡)

)
,

𝛼 =
[
0′𝑚 𝑝0 𝑝1 . . . 𝑝𝑚

]
,

� =
[
�2 0′

𝑚−1 �1 0′𝑚
] ′
,

𝑣0 =
[
1 0′

𝑚−1 1 0′𝑚
] ′
,

where 𝑓 (𝑐)
ℓ

(𝑡) and 𝛼 are row vectors of size 2𝑚 + 1, while � and 𝑣0 are column vectors of
size 2𝑚 + 1. Note that 𝑣0 marks the states where 𝑗 + 𝑘 = 1, which are the states where
there are no child jobs waiting for service.

We then have for ℓ ≥ 0,
𝑑

𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡) = � 𝑓 (𝑐)
ℓ−1(𝑡)1[ℓ ≥ 1] − � 𝑓 (𝑐)

ℓ
(𝑡) + � 𝑓 (𝑐)∗ (𝑡)𝛼1[ℓ = 0]

+ 𝑓
(𝑐)
ℓ

(𝑡)𝑆(𝑐)(𝑟, 𝑡) + 𝑓
(𝑐)
ℓ+1(𝑡)�𝛼

+ 𝑟 𝑓 (𝑐)∗ (𝑡)
∑
ℓ ′≥0

𝑓
(𝑐)
ℓ ′ (𝑡)(1 − 𝑣0)𝑒11[ℓ = 0], (7.1)

and
𝑑

𝑑𝑡
𝑓
(𝑐)
∗ (𝑡) = −� 𝑓 (𝑐)∗ (𝑡) + 𝑓

(𝑐)
0 (𝑡)�

− 𝑟 𝑓 (𝑐)∗ (𝑡)
∑
ℓ≥0

𝑓
(𝑐)
ℓ

(𝑡)(1 − 𝑣0). (7.2)

The size (2𝑚 + 1) × (2𝑚 + 1) matrix 𝑆(𝑐)(𝑟, 𝑡) is defined as

𝑆(𝑐)(𝑟, 𝑡) =
[
𝑆
(𝑐)
11 (𝑟, 𝑡) 𝑆12

𝑆21 𝑆
(𝑐)
22 (𝑟, 𝑡)

]
(7.3)
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with

𝑆
(𝑐)
11 (𝑟, 𝑡) =


−�2

�2 + 𝑟 𝑓∗(𝑡) −(�2 + 𝑟 𝑓∗(𝑡))
�2 + 𝑟 𝑓∗(𝑡) −(�2 + 𝑟 𝑓∗(𝑡))

. . .

 ,

𝑆21 =


0 . . .
�1

�1
�1

. . .


,

𝑆
(𝑐)
22 (𝑟, 𝑡) =


−�1
𝑟 𝑓∗(𝑡) −(�1 + 𝑟 𝑓∗(𝑡))

𝑟 𝑓∗(𝑡) −(�1 + 𝑟 𝑓∗(𝑡))
. . .

 ,
and 𝑆12 = 0 is an 𝑚 × (𝑚 + 1) matrix.

7.3.2 Parent job stealing

The ODE model for parent job stealing can be constructed in a very similar fashion as
the child job stealing model and we omit the details. Note that∑

ℓ ′≥1
𝑓
(𝑝)
ℓ ′ (𝑡)1 = 1 − 𝑓

(𝑝)
∗ (𝑡) − 𝑓

(𝑝)
0 (𝑡)1

equals the probability that a probe transmitted at time 𝑡 succeeds in stealing a parent job.
Hence for ℓ ≥ 0,

𝑑

𝑑𝑡
𝑓
(𝑝)
ℓ

(𝑡) = � 𝑓
(𝑝)
ℓ−1(𝑡)1[ℓ ≥ 1] − � 𝑓

(𝑝)
ℓ

(𝑡) + � 𝑓
(𝑝)
∗ (𝑡)𝛼1[ℓ = 0]

+ 𝑓
(𝑝)
ℓ

(𝑡)𝑆(𝑝) + 𝑓
(𝑝)
ℓ+1(𝑡)�𝛼 + 𝑟 𝑓 (𝑝)∗ (𝑡) 𝑓 (𝑝)

ℓ+1(𝑡)

− 𝑟 𝑓 (𝑝)∗ (𝑡) 𝑓 (𝑝)
ℓ

(𝑡)1[ℓ ≥ 1]

+ 𝑟 𝑓 (𝑝)∗ (𝑡)
(
1 − 𝑓

(𝑝)
∗ (𝑡) − 𝑓

(𝑝)
0 (𝑡)1

)
𝛼1[ℓ = 0], (7.4)

and

𝑑

𝑑𝑡
𝑓
(𝑝)
∗ (𝑡) = −� 𝑓 (𝑝)∗ (𝑡) + 𝑓

(𝑝)
0 (𝑡)� − 𝑟 𝑓 (𝑝)∗ (𝑡)

(
1 − 𝑓

(𝑝)
∗ (𝑡) − 𝑓

(𝑝)
0 (𝑡)1

)
, (7.5)

with

𝑆(𝑝) =

[
𝑆
(𝑝)
11 𝑆12

𝑆21 𝑆
(𝑝)
22

]
(7.6)
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and

𝑆
(𝑝)
11 =


−�2
�2 −�2

�2 −�2
. . .

 ,
𝑆
(𝑝)
22 = −�1𝐼 ,

This mean field model is a special case of the one described in [77] by focusing on the
phase type distribution characterized by (𝛼, 𝑆(𝑝)). There are two minor differences in [77]:
𝑓
(𝑝)
∗ (𝑡) and 𝑓

(𝑝)
ℓ

(𝑡) are denoted as 𝑓0(𝑡) and 𝑓ℓ+1(𝑡) and the mean service time of a job is
assumed to be 1. Note that the latter assumption can be made without loss of generality
by rescaling time.

7.4 QBD description

The sets of ODEs given by (7.1)-(7.2) and (7.4)-(7.5) describe the transient evolution of the
infinite system for the child and parent stealing models, respectively. We now introduce
two Quasi-Birth-Death (QBD) Markov chains and show further on that their unique
stationary distributions corresponds to the unique fixed points of these two mean field
models.

For 𝑖 ∈ {(𝑐), (𝑝)}, we define the QBD process {𝑋 𝑖
𝑡 (𝑟), 𝑌 𝑖𝑡 (𝑟) 𝑍 𝑖𝑡(𝑟) : 𝑡 ≥ 0}, where the level is

given by 𝑋 𝑖 and the phase is given by (𝑌 𝑖 , 𝑍 𝑖) with generator 𝑄 𝑖(𝑟). Denote by 𝑋 𝑖 ≥ 0 the
number of parent jobs waiting, 𝑌 𝑖 ∈ {0, 1, . . . , 𝑚} the number of child jobs in the queue
and 𝑍 𝑖 = {0, 1} where 𝑍 𝑖 = 1 if a parent is currently in service and 𝑍 𝑖 = 0 if not. Define

𝜋𝑖∗(𝑟) = lim
𝑡→∞

𝑃[𝑋 𝑖
𝑡 (𝑟) = 0, 𝑌 𝑖𝑡 (𝑟) = 0, 𝑍 𝑖𝑡(𝑟) = 0],

and for ℓ ≥ 0,

𝜋𝑖ℓ (𝑟) =
(
𝜋𝑖ℓ ,1,0(𝑟), ...,𝜋

𝑖
ℓ ,𝑚,0(𝑟),𝜋

𝑖
ℓ ,0,1(𝑟), ...,𝜋

𝑖
ℓ ,𝑚,1(𝑟)

)
,

where

𝜋𝑖
ℓ , 𝑗 ,𝑘

(𝑟) = lim
𝑡→∞

𝑃[𝑋 𝑖
𝑡 (𝑟) = ℓ , 𝑌 𝑖𝑡 (𝑟) = 𝑗 , 𝑍 𝑖𝑡(𝑟) = 𝑘].

7.4.1 Child job stealing

The QBD for the child stealing model is very similar to a simple M/PH/1 queue with
arrival rate � and phase-type service time characterized by (𝛼, 𝑆(𝑐)(𝑟)), except that we
also have additional job arrivals at some rate �𝑐(𝑟) (defined later) when the server is idle
and these additional arrivals have an exponential service time with parameter �2. The
subgenerator matrix 𝑆(𝑐)(𝑟) is identical to 𝑆(𝑐)(𝑟, 𝑡) defined by (7.3), if we replace 𝑓∗(𝑡) by
𝑞 = 1 − 𝜌 with

𝜌 = �

(
1
�1

+
∑𝑚
𝑛=1 𝑛𝑝𝑛

�2

)
.
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Proposition 7.4.1. The mean𝑚𝑃𝐻 = 𝛼(−𝑆(𝑐)(𝑟))−11 of the phase-type distribution characterized
by (𝛼, 𝑆(𝑐)(𝑟)) can be written as

𝑚𝑃𝐻 =
𝜌

�
− 1

�2


𝑚∑
𝑗=1

�̃� 𝑗

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗
+ 𝑟𝑞

𝑟𝑞 + �2

𝑚∑
𝑗=2

�̃� 𝑗

(
1 −

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗−1
) , (7.7)

where �̃� 𝑗 =
∑
𝑛≥ 𝑗 𝑝𝑛 .

Proof. Using blockwise inversion, (−𝑆(𝑐)(𝑟))−1 equals[
(−𝑆(𝑐)11 (𝑟))−1 0

(−𝑆(𝑐)22 (𝑟))−1𝑆21(−𝑆(𝑐)11 (𝑟))−1 (−𝑆(𝑐)22 (𝑟))−1

]
,

where

𝑆
(𝑐)
11 (𝑟) =


−�2

�2 + 𝑟𝑞 −�2 − 𝑟𝑞
. . .

. . .

 ,
𝑆
(𝑐)
22 (𝑟) =


−�1
𝑟𝑞 −�1 − 𝑟𝑞

. . .
. . .

 .
For 𝑖 ∈ N, define 𝑑𝑖 =

(𝑟𝑞)𝑖
(�1+𝑟𝑞)𝑖+1 . We then have

(−𝑆(𝑐)11 (𝑟))
−1 =



1
�2
... 1

�2+𝑟𝑞
...

...
. . .

1
�2

1
�2+𝑟𝑞 . . . 1

�2+𝑟𝑞


,

(−𝑆(𝑐)22 (𝑟))
−1 =



�1+𝑟𝑞
�1

𝑑0
�1+𝑟𝑞
�1

𝑑1 𝑑0
�1+𝑟𝑞
�1

𝑑2 𝑑1 𝑑0
...

...
. . .

. . .


,

and thus

(−𝑆(𝑐)22 (𝑟))
−1𝑆21(−𝑆(𝑐)11 (𝑟))

−1

= �1



0 0 . . . 0
1
�2
𝑑0 0

...

1
�2
(𝑑0 + 𝑑1) 1

�2+𝑟𝑞 𝑑0
. . .

...

...
...

. . . 0
1
�2

∑𝑚−1
𝑘=0 𝑑𝑘

1
�2+𝑟𝑞

∑𝑚−2
𝑘=0 𝑑𝑘 . . . 1

�2+𝑟𝑞 𝑑0


.
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Using the identity that �1
∑𝑠
𝑘=0 𝑑𝑘 = 1 −

(
𝑟𝑞

𝑟𝑞+�1

) 𝑠+1
, we find that (−𝑆(𝑐)22 (𝑟))−11 = 1/�1 and

(−𝑆(𝑐)22 (𝑟))
−1𝑆21(−𝑆(𝑐)11 (𝑟))

−11 =

0
1
�2

(
1 − 𝑟𝑞

𝑟𝑞+�1

)
1
�2

(
1 −

(
𝑟𝑞

𝑟𝑞+�1

)2
)
+ 1

�2+𝑟𝑞

(
1 − 𝑟𝑞

𝑟𝑞+�1

)
1
�2

(
1 −

(
𝑟𝑞

𝑟𝑞+�1

)3
)
+ 1

�2+𝑟𝑞
∑2
𝑗=1

(
1 −

(
𝑟𝑞

𝑟𝑞+�1

) 𝑗)
...

1
�2

(
1 −

(
𝑟𝑞

𝑟𝑞+�1

)𝑚)
+ 1

�2+𝑟𝑞
∑𝑚−1
𝑗=1

(
1 −

(
𝑟𝑞

𝑟𝑞+�1

) 𝑗)



.

As 1/(𝑟𝑞+�2) = 1
�2

(
1 − 𝑟𝑞

𝑟𝑞+�2

)
, the (𝑛+1)-st entry of the vector (−𝑆(𝑐)22 (𝑟))−1𝑆21(−𝑆(𝑐)11 (𝑟))−11

can be written as 1/�2 times

𝑛 −
(

𝑟𝑞

𝑟𝑞 + �1

)𝑛
− (𝑛 − 1) 𝑟𝑞

�2 + 𝑟𝑞
−

(
1 − 𝑟𝑞

�2 + 𝑟𝑞

) 𝑛−1∑
𝑗=1

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗
= 𝑛 −

𝑛∑
𝑗=1

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗
− 𝑟𝑞

�2 + 𝑟𝑞

𝑛−1∑
𝑗=1

(
1 −

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗)
.

We may therefore conclude that the mean 𝛼(−𝑆(𝑐)(𝑟))−11 equals

1
�1

+ 1
�2

𝑚∑
𝑛=1

𝑛𝑝𝑛 −
1
�2

𝑚∑
𝑛=1

𝑝𝑛

𝑛∑
𝑗=1

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗
− 1

�2

𝑟𝑞

�2 + 𝑟𝑞

𝑚∑
𝑛=2

𝑝𝑛

𝑛∑
𝑗=2

(
1 −

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗−1
)
,

which clearly equals (7.7). □

Note that the mean of the phase-type distribution (𝛼, 𝑆(𝑐)(𝑟)) is upper bounded by 𝜌/�
(and only equal for 𝑟 = 0). This implies that the load of the queue (when ignoring the
additional arrivals when the server is idle) is upper bounded by 𝜌. As such it is obvious
that this queueing system is stable for all 𝑟 ≥ 0 if 𝜌 < 1. For completeness we provide
a formal proof in Proposition 7.4.2. The possible transitions for this QBD for 𝑖 = (𝑐) are
listed in Table 7.1: 1. a parent job arriving at an idle queue and proceeding directly into
service, where any child jobs generated join the queue, 2. a parent arriving to a non-idle
queue, 3. completion of a parent in service, not succeeded by another parent job, 4.
child service completion, succeeded by either another child job or no job, 5. child service
completion, succeeded by a parent job that enters service and any child jobs generated
join the queue, 6. parent service completion, succeeded by a parent job that enters service
and any child jobs generated join the queue, 7. arrival of a child job due to work stealing
and 9. negative arrivals due to work stealing elsewhere.
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Table 7.1: Transitions for the QBDs in Section 7.4

𝑖 ∈ {(𝑐), (𝑝)} From Rate For
1. (𝑐), (𝑝) (0, 0, 0) → (0, 𝑗 , 1) �𝑝 𝑗 𝑗 = 0, 1, . . . 𝑚,
2. (𝑐), (𝑝) (𝑋 𝑖 , 𝑌 𝑖 , 𝑍 𝑖) → (𝑋 𝑖 + 1, 𝑌 𝑖 , 𝑍 𝑖) � 𝑌 𝑖 ≥ 1, 𝑍 𝑖 = 0 or 𝑍 𝑖 = 1,
3. (𝑐), (𝑝) (𝑋 𝑖 , 𝑌 𝑖 , 1) → (𝑋 𝑖 , 𝑌 𝑖 , 0) �1 𝑌 𝑖 ≥ 1 or 𝑋 𝑖 = 0, 𝑌 𝑖 = 0,
4. (𝑐), (𝑝) (𝑋 𝑖 , 𝑌 𝑖 , 0) → (𝑋 𝑖 , 𝑌 𝑖 − 1, 0) �2 𝑌 𝑖 ≥ 2 or 𝑋 𝑖 = 0, 𝑌 𝑖 = 1,
5. (𝑐), (𝑝) (𝑋 𝑖 , 1, 0) → (𝑋 𝑖 − 1, 𝑗 , 1) �2𝑝 𝑗 𝑋 𝑖 ≥ 1, 𝑗 = 0, 1, . . . 𝑚,
6. (𝑐), (𝑝) (𝑋 𝑖 , 0, 1) → (𝑋 𝑖 − 1, 𝑗 , 1) �1𝑝 𝑗 𝑋 𝑖 ≥ 1, 𝑗 = 0, 1, . . . 𝑚,
7. (𝑐) (0, 0, 0) → (0, 1, 0) �𝑐(𝑟)
8. (𝑝) (0, 0, 0) → (0, 𝑗 , 1) �𝑝(𝑟)𝑝 𝑗 𝑗 = 0, 1, . . . 𝑚,
9. (𝑐) (𝑋 𝑖 , 𝑌 𝑖 , 𝑍 𝑖) → (𝑋 𝑖 , 𝑌 𝑖 − 1, 𝑍 𝑖) 𝑟𝑞 𝑖 𝑌 𝑖 ≥ 2, 𝑍 𝑖 = 0 or 𝑌 𝑖 ≥ 1, 𝑍 𝑖 = 1.
10. (𝑝) (𝑋 𝑖 , 𝑌 𝑖 , 𝑍 𝑖) → (𝑋 𝑖 − 1, 𝑌 𝑖 , 𝑍 𝑖) 𝑟𝑞 𝑖 𝑋 𝑖 ≥ 1

The generator of the QBD Markov chain has the following form:

𝑄(𝑐)(𝑟) =


−�(𝑐)

0 (𝑟) �𝑐(𝑟)𝑒1 + �𝛼

� 𝐴
(𝑐)
0 (𝑟) 𝐴1

𝐴
(𝑐)
−1 𝐴

(𝑐)
0 (𝑟) 𝐴1
. . .

. . .


.

with �(𝑐)
0 (𝑟) = �𝑐(𝑟) + �. The size 2𝑚 + 1 matrix 𝐴(𝑐)

0 (𝑟) contains the transitions between
states belonging to the same level and is given by

𝐴
(𝑐)
0 (𝑟) = 𝑆(𝑐)(𝑟) − �𝐼 ,

where 𝑆(𝑐)(𝑟) is identical to 𝑆(𝑐)(𝑟, 𝑡) with 𝑓
(𝑐)
∗ (𝑡) = 𝑞. Similarly we define 𝑆(𝑐)11 (𝑟) and

𝑆
(𝑐)
22 (𝑟).

The matrices 𝐴(𝑐)
−1(𝑟) and 𝐴1 record the transitions for which the level is decreased and

increased by one, respectively. We have

𝐴
(𝑐)
−1 = �𝛼, (7.8)

and

𝐴1 = �𝐼.

Denote by 𝐴(𝑐)(𝑟) = 𝐴
(𝑐)
−1 + 𝐴

(𝑐)
0 (𝑟) + 𝐴1, the generator of the phase process, then

𝐴(𝑐)(𝑟) = 𝑆(𝑐)(𝑟) + �𝛼.

The physical interpretation of this generator describes that the phase, which captures the
mixture of the number of children present in the queue and the type of job in service, can
change due to the completion of the current job in service or when a child job is stolen
which can only occur when 𝑗 + 𝑘 > 1.

Due to the QBD structure [60], we have

𝜋(𝑐)
0 (𝑟) = 𝜋(𝑐)

∗ (𝑟)𝑅(𝑐)
0 (𝑟) (7.9)



7.4. QBD DESCRIPTION 117

and for ℓ ≥ 1,

𝜋(𝑐)
ℓ
(𝑟) = 𝜋(𝑐)

0 (𝑟)𝑅(𝑐)(𝑟)ℓ , (7.10)

where 𝑅(𝑐)(𝑟) is a (2𝑚 + 1) × (2𝑚 + 1) matrix and by [48, Proposition 6.4.2] the smallest
nonnegative solution to

𝐴1 + 𝑅(𝑐)(𝑟)𝐴(𝑐)
0 (𝑟) + 𝑅(𝑐)(𝑟)2𝐴(𝑐)

−1 = 0.

Also,

�𝑐(𝑟)𝑒1 + �𝛼 + 𝑅(𝑐)
0 (𝑟)𝐴(𝑐)

0 (𝑟) + 𝑅(𝑐)
0 (𝑟)𝑅(𝑐)(𝑟)𝐴(𝑐)

−1 = 0

and

𝐴1𝐺
(𝑐)(𝑟) = 𝑅(𝑐)(𝑟)𝐴(𝑐)

−1 ,

where 𝐺(𝑐)(𝑟) is the smallest nonnegative solution to

𝐴
(𝑐)
−1 + 𝐴

(𝑐)
0 (𝑟)𝐺(𝑐)(𝑟) + 𝐴1𝐺

(𝑐)(𝑟)2 = 0.

Then

𝑅
(𝑐)
0 (𝑟) = − (�𝑐(𝑟)𝑒1 + �𝛼)

(
𝐴

(𝑐)
0 (𝑟) + �𝐺(𝑐)(𝑟)

)−1
, (7.11)

where
(
𝐴0(𝑟) + �𝐺(𝑐)(𝑟)

)
is a subgenerator1 matrix and is therefore invertible. We note

that 𝑅(𝑐)(𝑟) and 𝐺(𝑐)(𝑟) are independent of �𝑐(𝑟).

The physical interpretation of matrix 𝐺(𝑐)(𝑟) is that the (𝑖 , 𝑗)-th entry of the matrix 𝐺(𝑐)(𝑟)
is the probability that the QBD will first enter level ℓ − 1 in phase 𝑗, given that it starts in
phase 𝑖 of level ℓ . Due to this interpretation we clearly have

𝐺(𝑐)(𝑟) = 𝐺(𝑐) = 1𝛼.

To fully characterize the QBD in terms of �, �1 , �2 and the probabilities 𝑝𝑖 , we still need
to specify �𝑐(𝑟). The steal rate �𝑐(𝑟) is defined as

�𝑐(𝑟) =
�
𝑞


𝑚∑
𝑗=1

�̃� 𝑗

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗
+ 𝑟𝑞

𝑟𝑞 + �2

𝑚∑
𝑗=2

�̃� 𝑗

(
1 −

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗−1
) , (7.12)

where �̃� 𝑗 =
∑
𝑖≥ 𝑗 𝑝𝑖 is the probability that there are 𝑗 jobs to be stolen. Note that the

expression between brackets is identical to the expression appearing in (7.7). Using
probabilistic arguments one finds that the first sum in this expression corresponds to the
mean number of child jobs stolen during the service of a parent job, while the second
term is the mean number of child jobs that is stolen while a child is in service. The second
expression relies on the fact that the number of child jobs stolen after the parent finishes
its service has a binomial distribution with parameters (𝑘 − 1, 𝑟𝑞/(𝑟𝑞 + �2)) if there were
𝑘 child jobs left when the service of the parent ended.

1A matrix is a subgenerator if its diagonal entries are negative, its off-diagonal entries are non-negative and
its row sums are negative.
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Proposition 7.4.2. The QBD process {𝑋(𝑐)
𝑡 (𝑟), 𝑌(𝑐)

𝑡 (𝑟), 𝑍(𝑐)
𝑡 (𝑟) : 𝑡 ≥ 0} has a unique stationary

distribution for any 𝑟 ≥ 0 if 𝜌 < 1.

Proof. If suffices to check the drift condition for QBD processes [60], which states that
the process is positive recurrent if �(𝑟)𝐴(𝑐)

−1(𝑟)1 > �(𝑟)𝐴11, where �(𝑟) is the such that
�(𝑟)𝐴(𝑐)(𝑟) = 0 and 𝐴(𝑐)(𝑟) = 𝐴

(𝑐)
−1(𝑟) + 𝐴

(𝑐)
0 (𝑟) + 𝐴1. Denote

�(𝑟) = (�(𝑟)
(0,1) , . . . , �

(𝑟)
(0,𝑚) , �

(𝑟)
(1,0) , �

(𝑟)
(1,1) , . . . , �

(𝑟)
(1,𝑚)), (7.13)

then

�(𝑟)
(0,1) =

1
�2

𝑚∑
𝑗=1

𝑝 𝑗

(
1 −

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗)
, (7.14)

�(𝑟)
(0,𝑖) =

1
𝑟𝑞 + �2

𝑚∑
𝑗=𝑖

𝑝 𝑗

(
1 −

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗−𝑖+1
)
, (7.15)

for 𝑖 = 2, . . . , 𝑚 and

�(𝑟)
(1,0) =

1
�1

𝑚∑
𝑗=0

𝑝 𝑗

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗
, (7.16)

�(𝑟)
(1,𝑖′) =

1
𝑟𝑞 + �1

𝑚∑
𝑗=𝑖′

𝑝 𝑗

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗−𝑖′
, (7.17)

for 𝑖′ = 1, . . . , 𝑚. It can be readily verified that �(𝑟)𝐴(𝑐)(𝑟) = 0. Using these expressions
one finds that

�(𝑟)𝐴(𝑐)
−11 = �(𝑟)� = 1.

By (7.16) and (7.17) we find
∑𝑚
𝑖=0 �

(𝑟)
(1,𝑖) =

1
�1

, while combining (7.14) and (7.15) yields

𝑚∑
𝑖=1

�(𝑟)
(0,𝑖) =

1
𝑟𝑞 + �2

𝑚∑
𝑗=2

𝑗𝑝 𝑗 +
1
�2
𝑝1

(
1 − 𝑟𝑞

𝑟𝑞 + �1

)
− 1

�1

(
𝑟𝑞 + �1

𝑟𝑞 + �2
−

�1

�2

)
︸              ︷︷              ︸

≥0

𝑚∑
𝑗=2

𝑝 𝑗

(
1 −

(
𝑟𝑞

𝑟𝑞 + �1

) 𝑗)

≤ 1
�2

©«
𝑚∑
𝑗=2

𝑗𝑝 𝑗
ª®¬ + 1

�2
𝑝1.

As 𝐴1 = �𝐼, this shows that the upward drift �(𝑟)𝐴11 is at most 𝜌. □

Proposition 7.4.3. We have 𝜋(𝑐)
∗ (𝑟) = 𝑞.
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Proof. Due to (7.9) and (7.10) we have

𝜋(𝑐)
∗ (𝑟) = 1

1 +∑
ℓ≥0 𝑅

(𝑐)
0 (𝑟)(𝑅(𝑐)(𝑟))ℓ1

. (7.18)

By Proposition 7.4.2 and [48, Proposition 6.4.2], we have 𝑠𝑝(𝑅(𝑐)(𝑟)) < 1 and 𝑅(𝑐)(𝑟) =

𝐴1(−𝑈(𝑟))−1 with𝑈(𝑟) = 𝐴
(𝑐)
0 (𝑟) + 𝐴1𝐺

(𝑐). We therefore have∑
ℓ≥0

𝑅
(𝑐)
0 (𝑟)(𝑅(𝑐)(𝑟))ℓ = (�𝑐(𝑟)𝑒1 + �𝛼)(−𝑈(𝑟))−1

∑
ℓ≥0

�ℓ (−𝑈(𝑟))−ℓ

=
�𝑐(𝑟)𝑒1 + �𝛼

�

∑
ℓ≥0

�ℓ (−𝑈(𝑟))−ℓ − �𝑐(𝑟)𝑒1 + �𝛼
�

=
�𝑐(𝑟)𝑒1 + �𝛼

�
(𝐼 + �𝑈(𝑟)−1)−1 − �𝑐(𝑟)𝑒1 + �𝛼

�
,

where𝑈(𝑟) = 𝐴
(𝑐)
0 (𝑟) + �1𝛼. Using the Woodbury matrix identity [28] we get:

(𝐼 + �𝑈(𝑟)−1)−1 = 𝐼 − �(𝑈(𝑟) + �𝐼)−1

and thus: ∑
ℓ≥0

𝑅
(𝑐)
0 (𝑟)(𝑅(𝑐)(𝑟))ℓ = −(�𝑐(𝑟)𝑒1 + �𝛼)(𝑈(𝑟) + �𝐼)−1. (7.19)

Employing the Sherman-Woodbury formula and the fact that 𝑈(𝑟) + �𝐼 = 𝑆(𝑐)(𝑟) + �1𝛼,
we further have

−(𝑈(𝑟)+�𝐼)−1 = (−𝑆(𝑐)(𝑟))−1 + �(−𝑆(𝑐)(𝑟))−11𝛼(−𝑆(𝑐)(𝑟))−1

1 − �𝛼(−𝑆(𝑐)(𝑟))−11
.

Let 𝑚𝑃𝐻 = 𝛼𝑆(𝑐)(𝑟))−11, this implies

−𝛼(𝑈(𝑟)+�𝐼)−11 = 𝑚𝑃𝐻 +
�𝑚2

𝑃𝐻

1 − �𝑚𝑃𝐻
=

𝑚𝑃𝐻

1 − �𝑚𝑃𝐻
, (7.20)

−𝑒1(𝑈(𝑟)+�𝐼)−11 =
1
�2

+ 1
�2

�𝑚𝑃𝐻

1 − �𝑚𝑃𝐻
, (7.21)

as 𝑒1(−𝑆(𝑐)(𝑟))−11 = 1/�2. Combining (7.19), (7.20) and (7.21) yields∑
ℓ≥0

𝑅
(𝑐)
0 (𝑟)(𝑅(𝑐)(𝑟))ℓ1 =

�𝑐(𝑟)
�2

(
1 + �𝑚𝑃𝐻

1 − �𝑚𝑃𝐻

)
+ �𝑚𝑃𝐻

1 − �𝑚𝑃𝐻

=
�
𝑞

(𝜌
�
− 𝑚𝑃𝐻

) (
1 + �𝑚𝑃𝐻

1 − �𝑚𝑃𝐻

)
+ �𝑚𝑃𝐻

1 − �𝑚𝑃𝐻

=
𝜌

𝑞

(
1 + �𝑚𝑃𝐻

1 − �𝑚𝑃𝐻

)
− �
𝑞

𝑚𝑃𝐻

1 − �𝑚𝑃𝐻
+ �𝑚𝑃𝐻

1 − �𝑚𝑃𝐻

=
1 − 𝑞
𝑞

,

where the second equality follows from (7.12) and (7.7). The result now follows from
(7.18). □

By using (7.11) and 𝐺(𝑐) = 1𝛼, we now also get an explicit formula for 𝜋(𝑐)
0 (𝑟).
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7.4.2 Parent job stealing

The QBD process for the system with parent job stealing is nearly identical to the one
used in [77]. Compared to the QBD for the system with child job stealing, this queue is
not similar to an M/PH/1 queue. Instead it corresponds to an M/PH/1 queue subject
to negative arrivals (when the queue has pending jobs) and these correspond to parent
jobs that are stolen.

The generator of the process {𝑋(𝑝)
𝑡 (𝑟), 𝑌(𝑝)

𝑡 (𝑟), 𝑍(𝑝)
𝑡 (𝑟)} is

𝑄(𝑝)(𝑟) =


−�(𝑝)

0 (𝑟) (� + �𝑝(𝑟))𝛼
� 𝐵

(𝑝)
0 𝐴1

𝐴
(𝑝)
−1 (𝑟) 𝐴

(𝑝)
0 (𝑟) 𝐴1
. . .

. . .


,

with �
(𝑝)
0 (𝑟) = � + �𝑝(𝑟),

𝐴
(𝑝)
−1 (𝑟) = 𝐴

(𝑐)
−1 + 𝑟𝑞𝐼,

where 𝐴(𝑐)
−1 is given in Equation (7.8) and

𝐴
(𝑝)
0 (𝑟) = 𝑆(𝑝) − �𝐼 − 𝑟𝑞𝐼,

where 𝑆(𝑝) is given by (7.6) and

𝐵
(𝑝)
0 = 𝑆(𝑝) − �𝐼.

We have

𝜋
(𝑝)
0 (𝑟) = 𝜋

(𝑝)
∗ (𝑟)𝑅(𝑝)

0 (𝑟)

and for ℓ ≥ 1,

𝜋
(𝑝)
ℓ

(𝑟) = 𝜋
(𝑝)
0 (𝑟)𝑅(𝑝)(𝑟)ℓ ,

where

𝑅
(𝑝)
0 (𝑟) = −(� + �𝑝(𝑟))𝛼

(
𝐵
(𝑝)
0 + 𝐴1𝐺

(𝑝)(𝑟)
)−1

,

and 𝑅(𝑝)(𝑟) is the smallest nonnegative solution to

𝐴1 + 𝑅(𝑝)(𝑟)𝐴(𝑝)
0 (𝑟) + 𝑅(𝑝)(𝑟)2𝐴(𝑝)

−1 = 0.

As in [77] we still need to set the value of �𝑝(𝑟) to fully characterize the QBD. This value
is determined by demanding that 𝜋(𝑝)

∗ (𝑟) = 𝑞 = 1 − 𝜌, which yields

�
(𝑝)
0 (𝑟) = 𝜌

𝑞𝛼(�(𝐼 − 𝐺(𝑝)(𝑟)) − 𝑆(𝑝))−1(𝐼 − 𝑅(𝑝)(𝑟))−11
− �,
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while the steady state probabilities of this system are given by

𝜋
(𝑝)
∗ (𝑟) = 𝑞,

𝜋
(𝑝)
ℓ

(𝑟) = 𝜌
𝛼(�(𝐼 − 𝐺(𝑝)(𝑟)) − 𝑆(𝑝))−1𝑅(𝑝)(𝑟)ℓ

𝛼(�(𝐼 − 𝐺(𝑝)(𝑟)) − 𝑆(𝑝))−1(𝐼 − 𝑅(𝑝)(𝑟))−11
,

for ℓ ≥ 0. Contrary to the case with child job stealing, the matrices 𝑅(𝑝)(𝑟) and 𝐺(𝑝)(𝑟)
must be determined numerically by solving a non-linear matrix equation.

While there is no explicit expression for 𝜋ℓ (𝑟) as it is a function of 𝑅(𝑟) (or 𝐺(𝑟)), these
matrices can be computed very efficiently using matrix analytic methods [5].

7.5 Stationary behaviour

In this section we show that the stationary distribution of the child stealing QBD in
Section 7.4 corresponds to the unique fixed point �𝑖 of the set of ODEs. For the case of
parent job stealing, we illustrate how the results by [77] can be modified to obtain the
desired result. Define for 𝑖 ∈ {𝐶, 𝑃}, �𝑖 = (�𝑖∗ , �𝑖0 , �

𝑖
1 , . . . ) with �𝑖∗ +

∑
ℓ≥0 �

𝑖
ℓ
1 = 1.

7.5.1 Child job stealing

Lemma 7.5.1. For any fixed point �(𝑐) = (�(𝑐)∗ , �(𝑐)0 , �(𝑐)1 , . . . ) with �(𝑐)∗ + ∑
ℓ≥0 �

(𝑐)
ℓ

1 = 1 of the
set of ODEs in Equations (7.1)-(7.2) we have

� = ��(𝑐)∗ +
∑
ℓ≥1

�(𝑐)
ℓ
�. (7.22)

Proof. As 𝑑
𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡) = 0 in a fixed point we can show that

∑
ℓ≥0

�(𝑐)
ℓ

©«
0𝑚
�1
0𝑚

ª®¬ +
∑
ℓ≥0

�(𝑐)
ℓ

©«
�2
0𝑚
0𝑚

ª®¬ = � + 𝑟�(𝑐)∗
∑
ℓ≥0

�(𝑐)
ℓ
(1 − 𝑣0), (7.23)

by using the equality
∑
ℓ≥0(ℓ + 1) 𝑑

𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡)1 = 0. (7.22) now follows by combining this
equality with 𝑑

𝑑𝑡
𝑓
(𝑐)
∗ (𝑡) = 0. □

Lemma 7.5.2. For any fixed point �(𝑐) = (�(𝑐)∗ , �(𝑐)0 , �(𝑐)1 , . . . ) with �(𝑐)∗ + ∑
ℓ≥0 �

(𝑐)
ℓ

1 = 1 of the
set of ODEs in Equations (7.1)-(7.2) we have for 1 ≤ 𝑘 ≤ 𝑚

𝑟�(𝑐)∗
∑
ℓ≥0

�(𝑐)
ℓ

(
0𝑚+𝑘

1𝑚−𝑘+1

)
= �

𝑚∑
𝑗=𝑘

�̃� 𝑗

(
𝑟�(𝑐)∗

𝑟�(𝑐)∗ + �1

) 𝑗−𝑘+1

, (7.24)

where 1𝑖 denotes a column vector of 𝑖 ones.



122
CHAPTER 7. RANDOMIZED WORK STEALING: A COMPARISON OF TWO

SYSTEMS

Proof. We use backward induction on 𝑘 to prove this result. By demanding that∑
ℓ≥0

𝑑

𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡)
(

0𝑚+𝑘
1𝑚−𝑘+1

)
= 0

for any 𝑘 ∈ {1, . . . , 𝑚}, we find due to Lemma 7.5.1 that

��̃�𝑘 = 𝑟�(𝑐)∗
∑
ℓ≥0

�(𝑐)
ℓ

©«
0𝑚+𝑘

1
0𝑚−𝑘

ª®¬ + �1
∑
ℓ≥0

�(𝑐)
ℓ

(
0𝑚+𝑘

1𝑚−𝑘+1

)
,

which is equivalent to (7.24) when 𝑘 = 𝑚. For 𝑘 < 𝑚 we can rewrite the above as

��̃�𝑘 = (𝑟�(𝑐)∗ + �1)
∑
ℓ≥0

�(𝑐)
ℓ

(
0𝑚+𝑘

1𝑚−𝑘+1

)
− 𝑟�(𝑐)∗

∑
ℓ≥0

�(𝑐)
ℓ

(
0𝑚+𝑘+1
1𝑚−𝑘

)
,

and use induction on the second term. This yields

��̃�𝑘 = (𝑟�(𝑐)∗ + �1)
∑
ℓ≥0

�(𝑐)
ℓ

(
0𝑚+𝑘

1𝑚−𝑘+1

)
− �

𝑚∑
𝑗=𝑘+1

�̃� 𝑗

(
𝑟�(𝑐)∗

𝑟�(𝑐)∗ + �1

) 𝑗−𝑘
.

This expression is clearly equivalent to (7.24). □

Proposition 7.5.3. For any fixed point �(𝑐) = (�(𝑐)∗ , �(𝑐)0 , �(𝑐)1 , . . . ) with �(𝑐)∗ +∑
ℓ≥0 �

(𝑐)
ℓ

1 = 1 of
the set of ODEs in Equations (7.1)-(7.2) we have

�(𝑐)∗ = 𝑞, (7.25)

𝑟�(𝑐)∗
∑
ℓ≥0

�(𝑐)
ℓ
(1 − 𝑣0) = �(𝑐)∗ �𝑐(𝑟), (7.26)

where �𝑐(𝑟) was defined in (7.12).

Proof. We denote 1:𝑖 for the column vector of length 𝑖 with the 𝑗-th entry equal to 𝑗. To
establish that �(𝑐)∗ = 𝑞 it suffices to establish the following two identities:∑

ℓ≥0
�(𝑐)
ℓ

(
0𝑚

1𝑚+1

)
=

�
�1
, (7.27)

∑
ℓ≥0

�(𝑐)
ℓ

(
1𝑚

0𝑚+1

)
=

�
�2

(
𝑚∑
𝑖=1

𝑖𝑝𝑖

)
. (7.28)

As
∑
ℓ≥0

𝑑
𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡)
(

1𝑚
0𝑚+1

)
= 0, we find

∑
ℓ≥0

�(𝑐)
ℓ

©«
�2
0𝑚
0𝑚

ª®¬ = 𝑟�(𝑐)∗
∑
ℓ≥0

�(𝑐)
ℓ
(1 − 𝑣0) +

∑
ℓ≥0

�(𝑐)
ℓ

(
0𝑚+1
�11𝑚

)
. (7.29)
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Combining (7.23) and (7.29) yields (7.27). From
∑
ℓ≥0

𝑑
𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡)[(1:𝑚)′ 0 (1:𝑚)′]′ = 0 and
Lemma 7.5.1, one can show that∑

ℓ≥0
�(𝑐)
ℓ

(
�21𝑚
0𝑚+1

)
= �

(
𝑚∑
𝑖=1

𝑖𝑝𝑖

)
,

which is equivalent to (7.28).

Proving (7.26) requires more work. We prove the following two equalities that together
provide us with the required result:

𝑟�(𝑐)∗
∑
ℓ≥0

�(𝑐)
ℓ

(
0𝑚+1
1𝑚

)
= �

𝑚∑
𝑗=1

�̃� 𝑗

(
𝑟�(𝑐)∗

𝑟�(𝑐)∗ + �1

) 𝑗
,

(𝑟�(𝑐)∗ + �2)
∑
ℓ≥0

�(𝑐)
ℓ

©«
0

1𝑚−1
0𝑚+1

ª®¬ = �
𝑚∑
𝑗=2

�̃� 𝑗
©«1 −

(
𝑟�(𝑐)∗

𝑟�(𝑐)∗ + �1

) 𝑗−1ª®¬ . (7.30)

The first is immediate from Lemma 7.5.2 if we set 𝑘 = 1. To establish the second equality,
we first note that

∑
ℓ≥0

𝑑
𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡)[0 (1:(𝑚 − 1))′ 0′
𝑚+1]′ = 0 allows us to show that

(𝑟�(𝑐)∗ + �2)
∑
ℓ≥0

�(𝑐)
ℓ

©«
0

1𝑚−1
0𝑚+1

ª®¬ = �1
∑
ℓ≥0

�(𝑐)
ℓ

(
0𝑚+2

1:(𝑚 − 1)

)
. (7.31)

Clearly, we have (
0𝑚+2

1:(𝑚 − 1)

)
=

𝑚∑
𝑘=2

(
0𝑚+𝑘

1𝑚−𝑘+1

)
.

Combining this with (7.31) and Lemma 7.5.2 for 𝑘 = 2 to 𝑚 we find

(𝑟�(𝑐)∗ + �2)
∑
ℓ≥0

�(𝑐)
ℓ

©«
0

1𝑚−1
0𝑚+1

ª®¬ =
��1

𝑟�(𝑐)∗

𝑚∑
𝑘=2

𝑚∑
𝑗=𝑘

�̃� 𝑗

(
𝑟�(𝑐)∗

𝑟�(𝑐)∗ + �1

) 𝑗−𝑘+1

=
��1

𝑟�(𝑐)∗

𝑚∑
𝑗=2

�̃� 𝑗

𝑗−1∑
𝑠=1

(
𝑟�(𝑐)∗

𝑟�(𝑐)∗ + �1

) 𝑠

=
��1

𝑟�(𝑐)∗ + �1

𝑚∑
𝑗=2

�̃� 𝑗

1 −
(

𝑟�(𝑐)∗
𝑟�(𝑐)∗ +�1

) 𝑗−1

1 −
(

𝑟�(𝑐)∗
𝑟�(𝑐)∗ +�1

)
= �

𝑚∑
𝑗=2

�̃� 𝑗
©«1 −

(
𝑟�(𝑐)∗

𝑟�(𝑐)∗ + �1

) 𝑗−1ª®¬ ,
which proves (7.30). □

Theorem 7.5.4. The stationary distribution 𝜋(𝑐)(𝑟) of the QBD Markov chain characterized by
𝑄(𝑐)(𝑟) is the unique fixed point �(𝑐) of the set of ODEs in Equations (7.1)-(7.2).
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Proof. Using Proposition 7.5.3 we show that the fixed point equations 𝑑
𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡) = 0 are
equivalent to the balance equations of the QBD Markov chain characterized by 𝑄(𝑐)(𝑟).
The uniqueness of the fixed point the follows from the uniqueness of the stationary
distribution of the Markov chain.

For ℓ ≥ 1, 𝑑
𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡) = 0 can be written as

0 = �(𝑐)
ℓ−1 (�𝐼) + �(𝑐)

ℓ

(
𝑆(𝑐)(𝑟, 𝑡) − �𝐼

)
+ �(𝑐)

ℓ+1�𝛼,

which is exactly the balance equations of 𝑄(𝑐)(𝑟) for ℓ ≥ 1 as �(𝑐)∗ = 𝑞 due to Proposition
7.5.3. This implies that �(𝑐)

ℓ
= �(𝑐)0 𝑅(𝑟)ℓ , for all ℓ ≥ 1 for any fixed point.

For ℓ = 0, 𝑑
𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡) = 0 implies

0 = �(𝑐)0 (𝑆(𝑡) − �𝐼) + �1�𝛼 + ��(𝑐)∗ 𝛼 + 𝑟�(𝑐)∗
∑
ℓ ′≥0

�(𝑐)
ℓ ′ (1 − 𝑣0)𝑒1.

Due to Proposition 7.5.3 we can rewrite this as

0 = �(𝑐)0 𝐴0(𝑟) + �(𝑐)1 𝐴−1 + 𝑞 (�𝑐(𝑟)𝑒1 + �𝛼) .

This indicates that 𝑑
𝑑𝑡
𝑓
(𝑐)
ℓ

(𝑡) = 0 corresponds to the balance equation for ℓ = 0. Finally
one readily checks that 𝑑

𝑑𝑡
𝑓
(𝑐)
∗ (𝑡) = 0 is equivalent to the first balance equation due to

(7.26). □

7.5.2 Parent job stealing

Theorem 7.5.5. The stationary distribution 𝜋(𝑝)(𝑟) of the QBD Markov chain characterized by
𝑄(𝑝)(𝑟) is the unique fixed point �(𝑝) of the set of ODEs in Equations (7.4)-(7.5).

Proof. Define�(𝑝) = (�(𝑝)
1 , . . . , �

(𝑝)
2𝑚+1)with�

(𝑝)
𝑗

= 1
�2
�̃� 𝑗 for 𝑗 = 1, . . . , 𝑚 and�

(𝑝)
𝑗

= 1
�1
𝑝 𝑗−𝑚−1

for 𝑗 = 𝑚 + 1, . . . , 2𝑚 + 1. We then have �(𝑝)(𝑆(𝑝) + �𝛼) = 0. Therefore

𝛽(𝑝) =
1∑2𝑚+1

𝑗=1 �
(𝑝)
𝑗

�(𝑝) =
©« 1
�1

+ 1
�2

𝑚∑
𝑗=1

𝑗𝑝 𝑗
ª®¬
−1

�(𝑝)

is the stationary distribution of the service phase given the server is busy. We also have

𝛽(𝑝)� =
©« 1
�1

+ 1
�2

𝑚∑
𝑗=1

𝑗𝑝 𝑗
ª®¬
−1

.

One can now make the same calculations as in [77, Proposition 1] to conclude that∑
ℓ≥0

�
(𝑝)
ℓ

= �
©« 1
�1

+ 1
�2

𝑚∑
𝑗=1

𝑗𝑝 𝑗
ª®¬ 𝛽(𝑝) = 𝜌𝛽(𝑝).



7.6. RESPONSE TIME DISTRIBUTION 125

Table 7.2: Non-zero entries of the rate matrix �̃�(𝑐)(𝑟)

From Rate For

1. (𝑌(𝑐) , 𝑍(𝑐) , �̃�(𝑐)) → (𝑌(𝑐) − 1, 𝑍(𝑐) , �̃�(𝑐)) �2 𝑌(𝑐) ≥ 1, 𝑍(𝑐) = 0
2. (𝑌(𝑐) , 𝑍(𝑐) , �̃�(𝑐)) → (𝑌(𝑐) , 𝑍(𝑐) − 1, �̃�(𝑐)) �1 𝑍(𝑐) = 1
3. (𝑌(𝑐) , 𝑍(𝑐) , �̃�(𝑐)) → (𝑌(𝑐) , 𝑍(𝑐) , �̃�(𝑐) − 1) �2�̃�

(𝑐) �̃�(𝑐) ≥ 1
4. (𝑌(𝑐) , 𝑍(𝑐) , �̃�(𝑐)) → (𝑌(𝑐) − 1, 𝑍(𝑐) , �̃�(𝑐) + 1) 𝑟𝑞(𝑐) 𝑌(𝑐) + 𝑍(𝑐) ≥ 2

As 𝛽(𝑝) is a stochastic vector, we get

�
(𝑝)
∗ = 1 − 𝜌𝛽(𝑝)1 = 𝑞.

The rest of the proof is identical to the one of [77, Theorem 1], except with 𝑞 instead of
1 − �. □

7.6 Response time distribution

Define 𝑇 𝑖(𝑟) as the response time for a job with probe rate 𝑟, in a system where only type
𝑖 ∈ {(𝑝), (𝑐)} jobs can be transferred. The response time is the interval of time between
the arrival epoch of a parent job and the instant at which the parent and all of its child
jobs have completed service. This can be expressed as

𝑇 𝑖(𝑟) =𝑊 𝑖(𝑟) + 𝐽 𝑖(𝑟),

where𝑊 𝑖(𝑟) is waiting time defined as the interval between the arrival epoch of a parent
job and instant at which it moves into service. In the case that parent jobs are stolen, we
assume that the oldest waiting parent job is stolen (as this should be best to reduce the
variability of the waiting time). The service time 𝐽 𝑖(𝑟) is defined as the time between the
start of service of the parent job and the first point in time in which both the parent and
all of its children completed service. Clearly 𝑊 𝑖(𝑟) and 𝐽 𝑖(𝑟) are independent. Note that
𝑊 𝑖(𝑟) is harder to compute in case parent jobs are stolen, while 𝐽 𝑖(𝑟) is more demanding
when child jobs can be transferred.

7.6.1 Waiting time distribution

We present a unified analysis for both models. Due to the PASTA property we have
𝑃[𝑊 𝑖(𝑟) = 0] = 𝑞. To compute 𝑃[𝑊 𝑖(𝑟) > 𝑡] we employ the approach taken in Ozawa [61]
and Horvath et al. [39]. Ozawa [61] studied FIFO queues defined by a QBD Markov chain
where transitions that increase/decrease the level are regarded as arrivals/departures.
Ozawa showed that the sojourn time distribution (the time between an arrival and its
departure) of a queue defined by a QBD has a matrix exponential form (of order 𝑛2 if we
have 𝑛 phases per level). A similar result is presented below for the waiting time𝑊 𝑖(𝑟).
Theorem 7.6.1. For 𝑖 ∈ {(𝑝), (𝑐)}, the distribution of the waiting time is given by

𝑃[𝑊 𝑖(𝑟) > 𝑡] = (1′ ⊗ 𝜋𝑖0(𝐼 − 𝑅
𝑖(𝑟))−1)𝑒W𝑖 𝑡𝑣𝑒𝑐⟨𝐼⟩ (7.32)
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with W𝑖 = ((𝐴𝑖0(𝑟) + 𝐴1)′ ⊗ 𝐼) + ((𝐴𝑖−1(𝑟))′ ⊗ 𝑅𝑖(𝑟)) and where 𝑣𝑒𝑐⟨·⟩ is the column stacking
operator. The mean waiting time is

𝐸
[
𝑊 𝑖(𝑟)

]
=

∫ ∞

0
𝑃

[
𝑊 𝑖(𝑟) > 𝑡

]
𝑑𝑡

= (1′ ⊗ 𝜋𝑖0(𝐼 − 𝑅
𝑖(𝑟))−1)(−W𝑖)−1𝑣𝑒𝑐⟨𝐼⟩. (7.33)

Proof. Let (𝑁 𝑖(𝑘, 𝑡))𝑗 , 𝑗′ be the probability that we have exactly 𝑘 transitions that decrease
the level by one in (0, 𝑡) and the phase at time 𝑡 equals 𝑗′ for the QBD 𝑄 𝑖 given that the
level never decreased below 1 and the phase was 𝑗 at time 0. Due to the PASTA property
we have

𝑃[𝑊 𝑖(𝑟) > 𝑡] =
∞∑
𝑛=1

𝜋𝑖𝑛−1

𝑛−1∑
𝑘=0

𝑁 𝑖(𝑘, 𝑡)1,

as (𝜋𝑖
𝑛−1)𝑗 is the probability that a tagged parent job is the 𝑛-th parent job waiting in the

queue immediately after it arrived and the service phase equals 𝑗. In such case there can
be at most 𝑛 − 1 events that decrease the level otherwise𝑊 𝑖(𝑟) < 𝑡. Thus,

𝑃[𝑊 𝑖(𝑟) > 𝑡] =
∞∑
𝑘=0

𝜋𝑖0

∞∑
𝑛=𝑘+1

(𝑅𝑖(𝑟))𝑛−1𝑁 𝑖(𝑘, 𝑡)1,

= 𝜋𝑖0(𝐼 − 𝑅
𝑖(𝑟))−1

∞∑
𝑘=0

(𝑅𝑖(𝑟))𝑘𝑁 𝑖(𝑘, 𝑡)1.

Using the same arguments as in [61] or [39] one finds that

𝑣𝑒𝑐⟨
∞∑
𝑘=0

(𝑅𝑖(𝑟))𝑘𝑁 𝑖(𝑘, 𝑡)⟩ = 𝑒W
𝑖 𝑡𝑣𝑒𝑐⟨𝐼⟩.

The proof is completed by noting that 𝑣𝑒𝑐⟨𝐴𝐵𝐶⟩ = (𝐶′ ⊗ 𝐴)𝑣𝑒𝑐⟨𝐵⟩ (cf. Proposition
3.6.7). □

7.6.2 Service distribution

When parent jobs are stolen, a parent job and all its child jobs are executed on the same
server. Hence, the service time 𝐽(𝑝) has a phase type distribution with parameters (𝛼, 𝑆(𝑝)):

𝑃[𝐽(𝑝) < 𝑡] = 1 − 𝛼𝑒−𝑆
(𝑝)𝑡1,

and 𝐸
[
𝐽(𝑝)

]
= 𝛼

(
−𝑆(𝑝)

)−1
1. We have from (7.32) that the waiting time distribution

𝑊 𝑖(𝑟) follows a matrix exponential distribution with parameters (1′⊗𝜋𝑖0(𝐼 −𝑅𝑖(𝑟))−1 ,W𝑖 ,

(−W𝑖)𝑣𝑒𝑐⟨𝐼⟩). Therefore due to [6, Theorem 4.4.2] the convolution of the waiting time
and service time can be expressed as

𝑃[𝑇(𝑝)(𝑟) > 𝑡] =
[
1′ ⊗ 𝜋

(𝑝)
0 (𝐼 − 𝑅(𝑝)(𝑟))−1 𝑞𝛼

]
𝑒T

(𝑝)𝑡(−T(𝑝))−1
(
02𝑚+1
�

)
,
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where
T(𝑝) =

[
W(𝑝) (−W(𝑝))𝑣𝑒𝑐⟨𝐼⟩𝛼

0 𝑆(𝑝)

]
,

and

𝐸[𝑇(𝑝)(𝑟)] =
[
1′ ⊗ 𝜋

(𝑝)
0 (𝐼 − 𝑅(𝑝)(𝑟))−1 𝑞𝛼

]
(T(𝑝))−2

(
02𝑚+1
�

)
.

Note, that we can also simply calculate 𝐸[𝑇(𝑝)(𝑟)] as the sum of (7.33) and 𝛼
(
−𝑆(𝑝)

)−1
1.

When child jobs are stolen, we need to keep track of the number of transferred child
jobs as such a child job may be the last to complete service. To this end, we define the
phase process {𝑌(𝑐)

𝑡 (𝑟), 𝑍(𝑐)
𝑡 (𝑟), �̃�(𝑐)

𝑡 (𝑟)}𝑡≥0 where 𝑌(𝑐)
𝑡 (𝑟), 𝑍(𝑐)

𝑡 (𝑟) are defined as before and
�̃�
(𝑐)
𝑡 ∈ {0, 1, . . . , 𝑚} is the number of transferred child jobs still in service.

The service time 𝐽(𝑐)(𝑟) of a parent job with 𝑛 child jobs therefore equals the time needed
for the phase process to go from phase (𝑛, 1, 0) to (0, 0, 0). In other words 𝐽(𝑐)(𝑟) can
be represented as a phase-type distribution with parameters (�̃�(𝑐) , �̃�(𝑐)(𝑟)). As 𝑍(𝑐)

𝑡 (𝑟) ∈
{0, 1}, 0 ≤ �̃�

(𝑐)
𝑡 (𝑟) + 𝑌(𝑐)

𝑡 (𝑟) ≤ 𝑚 and (0, 0, 0) is the absorbing state �̃�(𝑐)(𝑟) is a size 𝑑 =

2
∑𝑚+1
𝑘=1 𝑘 − 1 = 𝑚2 + 3𝑚 + 1 matrix. Its non-zero entries are listed in Table 7.2. The vector

�̃�(𝑐) equals 𝑝𝑛 in the position corresponding to phase (𝑛, 1, 0) and equals zero for any
other phase. Then

𝑃[𝐽(𝑐)(𝑟) < 𝑡] = 1 − �̃�(𝑐)𝑒−�̃�
(𝑐)(𝑟)𝑡1,

and 𝐸
[
𝐽(𝑐)(𝑟)

]
= �̃�(𝑐)

(
−�̃�(𝑐)(𝑟)

)−1
1. Let �̃ be a column vector of height 𝑑, with �2 in

entries corresponding to states (1, 0, 0) and (0, 0, 1), with �1 in entry corresponding to
state (0, 1, 0) and with all other entries zero. The convolution of𝑊 (𝑐)(𝑟) and 𝐽(𝑐)(𝑟) can be
then computed in a similar manner as in the parent job stealing case. We namely have:

𝑃[𝑇(𝑐)(𝑟) > 𝑡] =
[
1′ ⊗ 𝜋(𝑐)

0 (𝐼 − 𝑅(𝑐)(𝑟))−1 𝑞�̃�(𝑐)
]
𝑒T

(𝑐)𝑡(−T(𝑐))−1
(
02𝑚+1
�̃

)
,

where
T(𝑐) =

[
W(𝑐) (−W(𝑐))𝑣𝑒𝑐⟨𝐼⟩�̃�(𝑐)

0 �̃�(𝑐)

]
,

and

𝐸[𝑇(𝑐)(𝑟)] =
[
1′ ⊗ 𝜋(𝑐)

0 (𝐼 − 𝑅(𝑐)(𝑟))−1 𝑞�̃�(𝑐)
]
(T(𝑐))−2

(
02𝑚+1
�̃

)
.

7.7 Probe rate 𝑟 → ∞

Child job stealing Taking 𝑟 → ∞, we define �𝑐 = lim𝑟→∞ �𝑐(𝑟), then by Equation
(7.12),

�𝑐 =
�
𝑞

𝑚∑
𝑗=1

𝑗𝑝 𝑗 .
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The resulting process is given by the QBD {𝑋(𝑐) , 𝑍(𝑐)} as defined in Section 7.4, with𝑋 ≥ 0
and 𝑍 ∈ {0, 1}, noting the empty boundary state is distinct from the state (𝑋(𝑐) , 𝑍(𝑐)) =
(0, 0), in which a child job is in service. The rate matrix is

𝑄
(𝑐)
∞ =


−� − �𝑐 �𝑐𝑒1 + �𝑒2

�∞ 𝐴∞
0 𝐴∞

1
𝐴∞

−1 𝐴∞
0 𝐴∞

1
. . .

. . .

 ,
where �∞ = [�2 , �1]′, 𝐴∞

−1 = [02 , �∞], 𝐴∞
0 = −diag([�2 + �, �1 + �]) and 𝐴∞

1 = �𝐼.
Proceeding similarly to section 7.4.1, we find

𝐺
(𝑐)
∞ =

[
02 12

]
,

𝑅
(𝑐)
0,∞ =

[
�𝑐

�2+�
�
�1

(
1 + �𝑐

�2+�

)]
.

Using [48, Proposition 6.4.2], we get

𝑅
(𝑐)
∞ = �

[
1

�2+�
�

�1(�2+�)
0 1

�1

]
. (7.34)

Note that (𝐼 − 𝑅(𝑐)
∞ ) is invertible as � < �1. (Note that this can be shown algebraically:

(𝐼 − 𝑅(𝑐)
∞ ) is not invertible only when � = �1.) Directly from (7.34), we get for 𝑘 ≥ 1

𝜋𝑘,0 = 𝜋0,0

(
�

�2 + �

) 𝑘
.

According to the PASTA property,

𝐸[𝑊 (𝑐)] = 1
�2

∞∑
𝑘=0

𝜋𝑘,0 +
1
�1

∞∑
𝑘=0

𝜋𝑘,1 +
1
�1

∞∑
𝑘=1

𝑘(𝜋𝑘,0 + 𝜋𝑘,1),

=

(
1
�2

− 1
�1

)
𝜋0,0

∞∑
𝑘=0

(
�

�2 + �

) 𝑘
+ 1

�1

∞∑
𝑘=0

(𝑘 + 1)[𝜋𝑘,0 𝜋𝑘,1]1,

=

(
1
�2

− 1
�1

)
𝜋0,0

�2 + �

�2
+ 1

�1
[𝜋0,0 𝜋0,1]

∞∑
𝑘=0

(𝑘 + 1)
(
𝑅
(𝑐)
∞

) 𝑘
1,

=

(
1
�2

− 1
�1

)
𝜋0,0

�2 + �

�2
+ 1

�1
[𝜋0,0 𝜋0,1]

(
𝐼 − 𝑅(𝑐)

∞

)−2
1.

With 𝜋0 = 𝜋∗𝑅
(𝑐)
0,∞ = 𝑞𝑅

(𝑐)
0,∞,

𝐸[𝑊 (𝑐)] =
(

1
�2

− 1
�1

)
𝑞�𝑐
�2

+ 𝑞

�1
𝑅
(𝑐)
0,∞

(
𝐼 − 𝑅(𝑐)

∞

)−2
1, (7.35)

where

𝑅
(𝑐)
0,∞

(
𝐼 − 𝑅(𝑐)

∞

)−2
=

[
�𝑐 (�2+�)
(�2)2

�𝑐�2

(�2)2(�1−�) +
�𝑐�2�1+��2�1(�2+�+�𝑐 )

�2(�1−�)2(�2+�)

]
.
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Thus limit of the waiting time depends on the mean of �̌� via �𝑐 . The limit of the mean
response time is 𝐸[𝑇(𝑐)] = 𝐸[𝑊 (𝑐)] + �̃�(𝑐)(−�̃�(𝑐))−1𝑒 , where �̃�(𝑐) = lim𝑟→∞ �̃�(𝑐)(𝑟).

In the limit, the service time is the maximum of set of exponentials and the expected
service time is

𝐸[𝐽(𝑐)] =
𝑚∑
𝑘=0

𝑝𝑘 𝐽𝑘 ,

where 𝐽𝑘 , 𝑘 = 0, . . . , 𝑚, as the average time it takes for a parent job that will spawn 𝑘 child
jobs to be processed. Obviously, we have 𝐽0 = 1

�1
. For 𝐽𝑘 , with 𝑘 ≥ 1, let 𝐽𝑝 ∼ exp(�1),

𝐽1 , . . . , 𝐽𝑚 ∼ exp(�2) be independent random variables. We will provide a recursive
formula for 𝐽𝑘 using the following facts:

𝐸[min(𝐽𝑝 , 𝐽1 , . . . , 𝐽 𝑘)] = 1
�1 + 𝑘�2

,

𝑃[𝐽𝑝 < min(𝐽1 , . . . , 𝐽 𝑘)] = �1

�1 + 𝑘�2
.

We now define recursively, for 𝑘 ≥ 1:

𝐽𝑘 =
1

�1 + 𝑘�2
+ �1

�1 + 𝑘�2
𝐸[max(𝐽1 , . . . , 𝐽 𝑘)] + 𝑘�2

�1 + 𝑘�2
𝐸[max(𝐽𝑝 , 𝐽1 , . . . , 𝐽 𝑘−1)],

=
1

�1 + 𝑘�2
+ �1

�1 + 𝑘�2

1
�2

𝑘∑
𝑗=1

1
𝑗
+ 𝑘�2

�1 + 𝑘�2
𝐽𝑘−1. (7.36)

Proposition 7.7.1. The worst case for the service time is for a fixed number of child jobs 𝑑 =

1, 2 . . . , as

𝐽𝑑 ≥
𝑚∑
𝑛=0

𝑝𝑛 𝐽𝑛 , (7.37)

such that
∑𝑚
𝑛=1 𝑛𝑝𝑛 = 𝑑 and for all 𝑛, max({𝑝𝑛 |𝑛 = 0, . . . , 𝑚}) < 1.

Proof. It suffices to argue that

𝐽𝑛 − 𝐽𝑛−1 ≥ 𝐽𝑛+1 − 𝐽𝑛 .

The result then follows immediately by concavity. Due to (7.36) with 𝑘 = 𝑛 + 1, we have
that 2𝐽𝑛 ≥ 𝐽𝑛+1 + 𝐽𝑛−1 can be written as

(2�1 + (𝑛 + 1)�2)𝐽𝑛 ≥ 1 + �1

�2

𝑛+1∑
𝑗=1

1
𝑗
+ (�1 + (𝑛 + 1)�2)𝐽𝑛−1.

By (7.36) with 𝑘 = 𝑛, we get that this is equivalent to

2�1 + (𝑛 + 1)�2

�1 + 𝑛�2

©«1 +
�1

�2

𝑛∑
𝑗=1

1
𝑗
+ 𝑛�2𝐽𝑛−1

ª®¬ ≥ 1 +
�1

�2

𝑛+1∑
𝑗=1

1
𝑗
+ (�1 + (𝑛 + 1)�2)𝐽𝑛−1
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that is,

�1 + �2

�1 + 𝑛�2

©«1 + �1

�2

𝑛∑
𝑗=1

1
𝑗
+ 𝑛�2𝐽𝑛−1

ª®¬ ≥ 1
𝑛 + 1

�1

�2
+ (�1 + �2)𝐽𝑛−1.

By multiplying with �1+𝑛�2
�1+�2

, we get

1 + �1

�2

𝑛∑
𝑗=1

1
𝑗
+ 𝑛�2𝐽𝑛−1 ≥ 1

𝑛 + 1
�1 + 𝑛�2

�1 + �2

�1

�2
+ (�1 + 𝑛�2)𝐽𝑛−1.

Which, after dividing by �1, is equivalent to

1
�1

+ 1
�2

©«
𝑛∑
𝑗=1

1
𝑗
− 1
𝑛 + 1

ª®¬ ≥ 𝑛 − 1
𝑛 + 1

1
�1 + �2

+ 𝐽𝑛−1. (7.38)

By using the definition of 𝐽𝑛−1 and multiplying by �1 + (𝑛 − 1)�2, we get

1 + (𝑛 − 1)�2

�1
+ (𝑛 − 1) ©«

𝑛∑
𝑗=1

1
𝑗
− 1
𝑛 + 1

ª®¬ +
�1

�2

©«
𝑛∑
𝑗=1

1
𝑗
− 1
𝑛 + 1

ª®¬
≥ 𝑛 − 1
𝑛 + 1 + 𝑛 − 1

𝑛 + 1
(𝑛 − 2)�2

�1 + �2
+ 1 + �1

�2

𝑛−1∑
𝑗=1

1
𝑗
+ (𝑛 − 1)�2𝐽𝑛−2 ,

which after simplification and division by (𝑛 − 1)�2 is equivalent to

1
�1

+ 1
�2

©«
𝑛∑
𝑗=1

1
𝑗
− 2
𝑛 + 1

ª®¬ + 1
𝑛 − 1

�1

�2
2

(
1
𝑛
− 1
𝑛 + 1

)
≥ 𝑛 − 2
𝑛 + 1

1
�1 + �2

+ 𝐽𝑛−2. (7.39)

Which holds if

1
�1

+ 1
�2

©«
𝑛∑
𝑗=1

1
𝑗
− 2
𝑛 + 1

ª®¬ ≥ 𝑛 − 2
𝑛 + 1

1
�1 + �2

+ 𝐽𝑛−2. (7.40)

Doing similar steps as between (7.38) and (7.39), we get that (7.40) is equivalent to

1
�1

+ 1
�2

©«
𝑛∑
𝑗=1

1
𝑗
− 3
𝑛 + 1

ª®¬ + 1
𝑛 − 2

�1

�2
2

(
1

𝑛 − 1 + 1
𝑛
− 2
𝑛 + 1

)
≥ 𝑛 − 3
𝑛 + 1

1
�1 + �2

+ 𝐽𝑛−3 ,

which is true if

1
�1

+ 1
�2

©«
𝑛∑
𝑗=1

1
𝑗
− 3
𝑛 + 1

ª®¬ ≥ 𝑛 − 3
𝑛 + 1

1
�1 + �2

+ 𝐽𝑛−3 ,

and so on. In the end we get that 𝐽𝑛 − 𝐽𝑛+1 ≥ 𝐽𝑛−1 − 𝐽𝑛 holds if

1
�1

+ 1
�2

©«
𝑛∑
𝑗=1

1
𝑗
− 𝑛

𝑛 + 1
ª®¬ ≥ 𝐽0 ,

which is true as 𝐽0 = 1
�1

and 1
𝑗 ≥ 1

𝑛+1 . □



7.8. MODEL VALIDATION 131

Parent job stealing Taking 𝑟 → ∞, the effect on the mean response and waiting times
in the limit is shown in Figure 7.7. The expected waiting time 𝐸[𝑊 (𝑝)] goes to zero and
the mean response time 𝐸[𝑇(𝑝)] goes to the mean service time, 𝐸[𝐽(𝑝)], i.e.

lim
𝑟→∞

𝐸[𝑇(𝑝)(𝑟)] = 𝐸[𝐽(𝑝)]. (7.41)

7.8 Model validation

Mean field models are intended to capture the system behavior as the number of servers
in the systems tends to infinity. In this section we use simulation experiments to indicate
that the system performance for a large finite system is very close to the fixed point of
the mean field models. It may be possible to formally show that the sequence of the
stationary measures of the finite systems weakly converge towards to the Dirac measure
of the fixed point using the methodology in [24]. In fact, if we truncate the queues to
some large finite size 𝐵, proving the convergence of the sample paths over finite time
scales towards the solution of the set of ODEs is fairly straightforward using Kurtz’s
theorem [47]. To show that the convergence can be extended to the stationary regime
one also needs to establish global attraction of the fixed point. Global attraction is often
proven using monotonicity arguments, but it seems doubtful that such an argument can
be leveraged for our multithreading models.

We consider different scenarios for varying probe rates and the two stealing strategies,
for 𝑁 = 500 with �1 = 1, �2 = 2 and child job distribution �̌� = [5, 4, 3, 2, 1]/15 ≈
[0.33, 0.27, 0.20, 0.13, 0.07]. Figure 7.3 shows the calculated waiting and response times
for the mean field models (solid lines) and the simulations (dotted lines) for two different
probe rates, 𝑟 = 1, 10. The simulation started from an empty system and the system was
simulated for 𝑇 = 105 with a warm-up period of 33%. The 95% confidence intervals were
computed based on 5 runs.

We see that there is an excellent agreement between the ODE and simulation times for
all settings, and that the ODE plots consistently lie close to the displayed confidence
intervals. As expected, the response times for 𝑟 = 10 are less than for 𝑟 = 1, for both
strategies.

Table 7.3 shows the mean field value and the relative errors obtained when comparing
the mean response rate in a finite system with 𝑁 servers, under both stealing strategies
with 𝑟 ∈ {1, 10}, 𝜌 ∈ {0.75, 0.85} based on 20 runs, with a runtime of 𝑇 = 2 · 105 and
warm-up period of 33%. Overall the relative error tends to increase with 𝜌 and 𝑟 and
decreases in 𝑁 . Similar to the results in [24], the expected response times appear to be
1/𝑁 accurate, which means that doubling 𝑁 should approximately halve the relative
error. For all cases the relative error is below 1%.

7.9 Numerical experiments

In this section we consider the performance, i.e., the mean response time of a job for each
policy, followed by a comparison of the two.
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Figure 7.3: Waiting and response times from the ODE and simulations.

7.9.1 Performance of child job stealing

Example 7.9.1. For the parameter set (𝜌, �1 , �2 , �̌�) = (0.85, 1, 2, 𝑈(2, 4)), with 𝑟 → ∞ we
illustrate this result in Equation (7.35) in Figure 7.4 where for increasing 𝑟 we see the
mean waiting and response times approach 𝐸[𝑊 (𝑐)] = 0.9015 and 𝐸[𝑇(𝑐)] = 2.2706. In
this system, setting a probe rate 𝑟 ∼ 102 would provide performance of 𝑟 = ∞.

Example 7.9.2. Consider the three child job distributions with mean 3, �̌�1 ∼ 𝐷(3) and
�̌�2 ∼ 𝑈(0, 6) and �̌�3 defined with 𝑝(𝑚 = 1) = 5/7 and 𝑝(𝑚 = 8) = 2/7. The variances
are 0 and 4, and 16 respectively. For 𝜌 = 0.75, 0.85, 0.95, we illustrate the mean response
times in Figure 7.5 (�1 , �2) = (1, 2). We note that the dimension of the system grows with
𝑚. The three dashed lines correspond to the proportional increase in mean response
time from �̌�1 to �̌�3 and the three sold lines correspond to this for �̌�1 to �̌�3. Under small
probe rates, 𝑟 < 101, there is a significant impact of the variability on performance under
child job stealing, where the most variable distribution �̌�3 performs worse than the less
variable distribution �̌�2.

Further, the performance is worsened at a higher load, in the given scenarios the largest
increase of 0.279 occurs for 𝑟 = 1 and load 𝜌 = 0.95. This figure also illustrates that
for increasing 𝑟, system performance is similar under different loads and child job size
variability. We note that for 𝑟 → ∞, the child job distributions with positive variance
perform 2 to 3% better than the deterministic child job distribution. This is due to
the result in in Equation (7.37), where for �̌�1 : 𝐸[𝐽(𝑐)] = 1.3738, �̌�2 : 𝐸[𝐽(𝑐)] = 1.3684,
�̌�3 : 𝐸[𝐽(𝑐)] = 1.3072.

Example 7.9.3. We consider the effect on performance of changing the ratio 𝑐 = �1/�2,
under a fixed load 𝜌 and arrival rate �. Given 𝑐, we have �2 = �

𝜌 ( 1
𝑐 +

∑𝑚
𝑛=1 𝑛𝑝𝑛) and
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Table 7.3: Relative error of simulation results for 𝐸[𝑇 𝑖] for 𝑖 ∈ {(𝑐), (𝑝)}, based on 20 runs

𝜌 = 0.75 𝜌 = 0.85
𝑁 sim. ± conf. rel.err.% sim. ± conf. rel.err.%

𝑟 = 1
(𝑐) 250 4.6027 ± 2.71e-03 0.0702 7.3763 ± 6.57e-03 0.0994

500 4.6026 ± 1.58e-03 0.0669 7.3718 ± 4.99e-03 0.0384
1000 4.5999 ± 1.18e-03 0.0084 7.3683 ± 3.81e-03 0.0095
2000 4.6001 ± 7.46e-04 0.0140 7.3707 ± 2.84e-03 0.0226
4000 4.6000 ± 8.81e-04 0.0105 7.3685 ± 1.85e-03 0.0065

∞ 4.5995 7.3690
(𝑝) 250 3.3085 ± 1.26e-03 0.2634 4.6953 ± 3.05e-03 0.3715

500 3.3038 ± 1.10e-03 0.1217 4.6858 ± 1.93e-03 0.1682
1000 3.3022 ± 5.66e-04 0.0726 4.6830 ± 1.77e-03 0.1081
2000 3.3006 ± 4.79e-04 0.0249 4.6799 ± 1.20e-03 0.0422
4000 3.3002 ± 3.12e-04 0.0129 4.6788 ± 8.40e-04 0.0203

∞ 3.2998 4.6779
𝑟 = 10
(𝑐) 250 2.7648 ± 2.45e-04 0.3382 3.7295 ± 5.75e-04 0.6935

500 2.7601 ± 8.17e-04 0.1684 3.7160 ± 3.30e-03 0.3297
1000 2.7577 ± 5.30e-04 0.0781 3.7098 ± 1.32e-03 0.1624
2000 2.7564 ± 3.11e-04 0.0339 3.7074 ± 9.00e-04 0.0981
4000 2.7561 ± 2.44e-04 0.0272 3.7048 ± 5.88e-04 0.0283

∞ 2.7555 3.7038
(𝑝) 250 1.9529 ± 3.32e-04 0.4146 2.2031 ± 6.53e-04 0.9520

500 1.9488 ± 1.68e-04 0.2039 2.1929 ± 3.45e-04 0.4848
1000 1.9468 ± 1.60e-04 0.1013 2.1875 ± 3.20e-04 0.2369
2000 1.9458 ± 1.14e-04 0.0533 2.1848 ± 1.93e-04 0.1142
4000 1.9453 ± 9.28e-05 0.0267 2.1836 ± 1.63e-04 0.0611

∞ 1.9448 2.1823

�1 = �
𝜌 (1 + 𝑐∑𝑚

𝑛=1 𝑛𝑝𝑛). As 𝑐 is increased, the mean job size remains constant, the mean
parent job size decreases and the mean child job size increases, and lim𝑐→∞ 1/�1 = 0,
lim𝑐→∞ 1/�2 = 𝜌(�∑𝑚

𝑛=1 𝑛𝑝𝑛)−1. Figure 7.6 illustrates the mean waiting and response
times for (�, 𝜌, 𝑟)= (0.4, 0.95, 10) for �̌�1 ∼ 𝑈(2, 4) and �̌�2 ∼ 𝑈(4, 5).

An improvement in performance, due to the reduction in waiting time, can be seen for 𝑐
increasing to 1. For 𝑐 > 1, the mean child job size has approached its limit and no further
performance improvements are obtained. As expected, when the mean number of child
jobs is decreased, from �̌�2 to �̌�1, i.e., the mean size of a child job is decreased we see the
performance improve.
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Figure 7.4: Example 7.9.1. Probe rate 𝑟 → ∞

7.9.2 Performance of parent job stealing

Example 7.9.4. For the parameter set (𝜌, �1 , �2 , �̌�)= (0.85, 1, 2, 𝑈(2, 4)), we illustrate the
result in Equation (7.41) in Figure 7.7. For 𝑟 ∼ 102 the waiting time is close to zero and
the mean response time approaches 𝐸[𝑇(𝑝)] = 2.5.

Example 7.9.5. Using the distributions and parameters as Example 7.9.2, we display the
mean response times for parent stealing in Figure 7.8. For the scenarios considered, the
most significant impact on the mean response time is seen from �̌�3 with a proportional
increase of 0.208 of �̌�1 under load 𝜌 = 0.95 and 𝑟 = 1. This impact on the mean response



7.9. NUMERICAL EXPERIMENTS 135

100 101 102 103
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
 rho = 0.75, p1 to p2
 rho = 0.85, p1 to p2
 rho = 0.95, p1 to p2
 rho = 0.75, p1 to p3
 rho = 0.85, p1 to p3
 rho = 0.95, p1 to p3

r

0.75

0.85

ρ = 0.95

0.95

0.75

0.85

p̌1 vs. p̌3

p̌1 vs. p̌2

Figure 7.5: Example 7.9.2. Proportional increase in 𝐸[𝑇(𝑐)(𝑟)]

time reduces with an increased probe rate, a reduced load and a smaller variance in child
job size distribution.

Example 7.9.6. Under parent job stealing, changing the proportion of the workload
between parent and child jobs 𝑐 = �1/�2 does not impact the performance of the system,
as the job, the parent and any child jobs, is stolen together following a successful probe.
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Figure 7.6: Example 7.9.3. Parent to child job service ratio 𝑐 = �1/�2

7.9.3 Child versus parent job stealing

Example 7.9.7. For varying probe rates 𝑟 and loads 𝜌 we illustrate the proportional
difference in the mean response times for child job stealing compared to parent job
stealing in Figure 7.9 for child job size distributions �̌� = 𝐷(2), 𝐷(4), 𝐷(6), 𝐷(8), with
(�1 , �2) = (1, 2). Under high loads and with small probe rates, parent job stealing shows
the most significant benefit in performance. Increasing the number of child jobs in the
system increases the orange region in which child stealing performs best. The white
region illustrates the parameter set in which the two strategies perform within ±6.7% of
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Figure 7.7: Example 7.9.4. Probe rate 𝑟 → ∞

each other. In Figure 7.9(d), for 𝜌 = 0.5 and 𝑟 = 20, child stealing performs ∼ 50% better
than parent job stealing. Whereas at 𝜌 = 0.95 and 𝑟 = 1 parent stealing performs ∼ 100%
better than child job stealing. We note that we obtain similar insights for other child job
size distributions.
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7.10 Conclusions and further work

We introduced two mean field models for randomized work stealing in multithreaded
computations in large systems, where parent jobs spawn child jobs. We proved the
existence of a unique fixed point and showed that this fixed point can be computed easily
using matrix analytic methods (by solving a single quasi-birth-death Markov chain). The
accuracy of these models was illustrated using simulation experiments.

The two models correspond to two stealing strategies: one that involves the transfer of
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Figure 7.9: Example 7.9.7. Proportional difference in mean response time of (𝑐) compared
to (𝑝). (𝐸[𝑇(𝑝)] − 𝐸[𝑇(𝑐)])/𝐸[𝑇(𝑝)]

child jobs across servers; the other where parent jobs are transferred (together with the
child jobs that they spawn). Having derived expressions for the response time distri-
butions for each strategy, we investigated the impact of the probe rates, load, and child
job size variability on performance with respect to the individual stealing strategies. We
also studied the effect of changing the ratio of parent to child service rates and identified
scenarios (low probe rate, high load) where parent stealing significantly outperformed
child stealing, and scenarios (high probe rate, low load) where child stealing achieved a
lower mean response time.

Future work exists in considering extensions of the model in which multiple child jobs
can be transferred after a successful probe, or multigenerational multithreading, that is
where child jobs can generate their own offspring jobs.
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Chapter 8888888888888888888888888888888888888888888888888888888888888888888888888
Analysis of work stealing strategies in
large scale multi-threaded computing

This Chapter contains the paper [44] of the same title, together with results that were originally
omitted due to the constraint on the number of pages. This paper was the second paper I presented
at a conference (namely at QEST 2021) and it was subsequently published in the conference jour-
nal. The conference was supposed to take place in Paris, France. However, due to the COVID-19
pandemic it was held online instead.
My presentation can be freely viewed athttps://www.youtube.com/watch?v=468aPFBOysc?t=
2653 . At the conference, the paper won the best paper award. As a consequence, I was asked to
write an extended version of the paper, which is contained in the next chapter.

8.1 Introduction

In this chapter, we consider a system of homogeneous processors that uses a randomized
work stealing policy. We consider a set of policies where if a server with pending child
jobs is probed by an idle server, some of its child jobs are transferred. When a server is
probed that does not have any pending child jobs, a pending parent job is transferred
instead (if available). The work presented in this chapter is closely related to Chapter 7,
where two systems are considered: one system where parent jobs can be stolen and the
other system where child jobs can be stolen one at a time. In the current chapter we allow
that several child jobs can be stolen at once and the main objective is to provide insights
on how to determine the number of child jobs that should be transferred in such an event.
When several child jobs can be stolen at once, child jobs may be transferred several times
before being executed and this considerably complicates the analysis compared to the
one in Chapter 7.

The main contributions of the chapter are the following:

1. We introduce a Quasi-Birth-Death (QBD) Markov chain describing a single server
queueing system with negative arrivals that is used to approximate the performance
of the work stealing system. We present simulation results that suggest that as the
number of servers becomes large, the approximation error tends to zero.
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2. We prove that this QBD has a unique stationary distribution for which we provide
formulas for the waiting, service, mean waiting and mean service time. These are
the main technical results of the chapter.

3. We write down a set of ODEs which captures the transient evolution of the system
when the number of servers tends to infinity. We show that this set of ODEs
has a unique fixed point which coincides with the stationary distribution. This
contribution was originally omitted from [44] due to the constraint on the number
of pages.

4. We compare the performance of several stealing strategies. Our main insight is that
the strategy of stealing half of the child jobs performs well for low loads and/or
high probe rates and stealing all child jobs is a good heuristic when the load is high
and/or the probe rate is low.

The rest of this chapter is organized as follows. In Section 8.2 we describe the system
while the Quasi-Birth-Death (QBD) Markov chain is introduced in Section 8.3 and the
response time distribution is analyzed in Section 8.4. In Section 8.5 we present explicit
results when the probe rate tends to infinity. In Section 8.6 we describe the work stealing
strategies considered and present the performance of these strategies using numerical
examples. The QBD approximation is validated using simulation in Section 8.7. In
Section 8.8 we define a set of ODEs that captures the behaviour of the system when the
number of servers tends to infinity and we show that this set of ODEs has a unique fixed
point coinciding with the stationary distribution of the QBD. Section 8.9 contains some
concluding remarks and possible future work.

8.2 System description and strategies

We consider a system with 𝑁 homogeneous servers each with an infinite buffer to store
jobs. Parent jobs arrive in each server according to a local Poisson arrival process with
rate �. Upon entering service a parent job spawns 𝑖 ∈ {0, 1, . . . , 𝑚}, 𝑚 ≥ 1, child jobs, the
number of which follows a general distribution with finite support 𝑝𝑖 (i.e., 𝑝𝑖 ≥ 0 for every
𝑖 and

∑𝑚
𝑖=0 𝑝𝑖 = 1). These child jobs are stored locally and have priority over any parent

jobs (either already present or yet to arrive), while the spawning parent job continues
service. Thus, when a (parent or child) job completes service the server first checks to
see whether it has any waiting child jobs, if so it starts service on a child job. If there
are no child jobs present, service on a waiting parent job starts (if any are present). We
assume that parent and child jobs have exponentially distributed service requirements
with rates �1 and �2 respectively.

When a server is idle, it probes other servers at random at rate 𝑟 > 0, where 𝑟 is a system
parameter. Note that 𝑟 determines the amount of communication between the servers
and increasing 𝑟 should improve performance at the expense of a higher communication
overhead. When a server is probed (by an idle server) and it has waiting (parent or child)
jobs, we state that the probe is successful. When a successful probe reaches a server
without waiting child jobs, a parent job is transferred to the idle server. Note that such a
transferred parent job starts service and spawns its child jobs at the new server.
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When a successful probe reaches a server with pending/waiting child jobs, several child
jobs can be transferred at once. If the probed server is serving a parent job and there are
𝑖 child jobs in the buffer of the probed server, 𝑗 ≤ 𝑖 child jobs are stolen with probability
𝜙𝑖 , 𝑗 (i.e., for every 𝑖 we have

∑𝑖
𝑗=1 𝜙𝑖 , 𝑗 = 1). On the other hand if a child job is being

processed by the probed server and there are 𝑖 child jobs waiting in the buffer of the
probed server, 𝑗 ≤ 𝑖 child jobs are stolen with probability 𝜓𝑖 , 𝑗 (i.e., for every 𝑖 we have∑𝑖
𝑗=1 𝜓𝑖 , 𝑗 = 1). For ease of notation we set 𝜙𝑖 , 𝑗 = 𝜓𝑖 , 𝑗 = 0 if 𝑗 > 𝑖 and further 𝜙𝑖 , 𝑗 = 𝜓𝑖 , 𝑗 = 0

if 𝑖 or 𝑗 is 0. Probes and job transfers are assumed to be instantaneous. In Figure 8.1, we
visualize the working of a system with 𝑁 = 4.

Note, that we make the distinction between the probabilities 𝜙𝑖 , 𝑗 and 𝜓𝑖 , 𝑗 because it is
possible that good a stealing strategy has different stealing probabilities depending on
whether or not a parent is in service. For example: suppose we have a system where
parent jobs take a long time to process, while children get processed quickly. Suppose
further that the arrival rate � is small such that the chance that there exist pending parent
jobs in the system is small. Then one can expect that the following is a good stealing
strategy: if a parent is in service in the probed queue steal most or all of the child jobs
(as it will probably take a long time before the parent exits service); if there is a child in
service steal half of the pending children.

The main objective of this chapter is to study how the probabilities 𝜙𝑖 , 𝑗 and 𝜓𝑖 , 𝑗 influence
the response time of a job, where the response time is defined as the time between the
arrival of a parent job and the completion of the parent and all its spawned child jobs.
Given the above description, it is clear that we get a Markov process if we keep track
of the number of parent and child job in each of the 𝑁 servers. This Markov process
however does not appear to have a product form, making its analysis prohibitive.

Instead we use an approximation method, the accuracy of which is investigated in Section
8.7. The idea of the approximation exists in focusing on a single server and assuming
that the queue lengths at any other server are independent and identically distributed as
in this particular server. Within the context of load balancing, this approach is known
as the cavity method (see [9] or Section 4.3). In fact all the analytical models used
in [16, 25, 55–57, 68, 69, 77, 79] can be regarded as cavity method approximations. A
common feature of such an approximation is that it tends to become more accurate as the
number of servers tends to infinity, as we demonstrate in Section 8.7 for our model. The
cavity method typically involves iterating the so-called cavity map (see [9] or Section 4.3).
However, in our case the need for such an iteration is avoided by deriving expressions
for the rates at which child and parent jobs are stolen.

8.3 Quasi-Birth-Death Markov chain

In this section we introduce a Quasi-Birth-Death (QBD) Markov chain to approximate the
system from the viewpoint of a single server. Let �𝑝(𝑟) denote the rate at which parent
jobs are stolen when the server is idle. Let �𝑐,1(𝑟), . . . ,�𝑐,𝑚(𝑟) denote respectively the
rates at which 1, . . . , 𝑚 child jobs are stolen. We provide formulas for these rates further
on. The evolution of a single server has the following characteristics, where the negative
arrivals correspond to steal events:
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(a) A parent job enters fourth queue and starts waiting.
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(b) A parent completes service in the second queue and the next parent enters service,
spawning three children.
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(c) The first two waiting children in the second queue get transferred to the first queue.
The first of these child jobs starts service.
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(d) Waiting parent job gets transferred from the fourth to first queue. The parent enters
service and spawns two jobs.

Figure 8.1: Example of a system with 𝑁 = 4. Blue and orange dots depict parent and
child jobs respectively.

1. When the server is busy, arrivals of parent jobs occur according to a Poisson process
with rate �. When the server is idle, parent jobs arrive at the rate � +�𝑝(𝑟), while a
batch of 𝑖 child jobs arrives at rate �𝑐,𝑖(𝑟) for 𝑖 = 1, . . . , 𝑚.

2. Upon entering service, a parent job spawns 𝑖 ∈ {0, 1, . . . , 𝑚}, 𝑚 ≥ 1, child jobs with
probability 𝑝𝑖 . Child jobs are stored locally.

3. Child jobs have priority over any parent jobs waiting in the queue and are thus
executed immediately after their parent job when executed on the same server.

4. Parent and child jobs have exponentially distributed service requirements with
rates �1 and �2, respectively.

5. If there are parent jobs and no child jobs waiting in the buffer of the server then a
negative parent arrival occurs at the rate 𝑟𝑞, where 𝑞 = 1 − 𝜌 is the probability that
a queue is idle (where 𝜌 is defined in (8.1)).

6. If a parent job is in service and there are 𝑖 ∈ {1, . . . , 𝑚} child jobs in the buffer of
the server, a batch of 𝑗 negative child job arrivals occurs at the rate 𝑟𝑞𝜙𝑖 , 𝑗 , for all
𝑗 ∈ {1, . . . , 𝑖}.

7. If a child job is in service and there are 𝑖 ∈ {1, . . . , 𝑚 − 1} child jobs pending in the
buffer of the server, a batch of 𝑗 negative child job arrivals occurs at the rate 𝑟𝑞𝜓𝑖 , 𝑗 ,
for all 𝑗 ∈ {1, . . . , 𝑖}.

Note that the load of the system can be expressed as

𝜌 = �

(
1
�1

+
∑𝑚
𝑛=1 𝑛𝑝𝑛

�2

)
. (8.1)

Denote by 𝑋 ≥ 0 the number of parent jobs waiting, by 𝑌 ∈ {0, 1, . . . , 𝑚} the number of
child jobs in the server (either in service or waiting), and by 𝑍 ∈ {0, 1} whether a parent
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Table 8.1: Transitions for the QBD in Section 8.3

From To Rate For
1. (0, 0, 0) → (0, 𝑗 , 0) �𝑐,𝑗(𝑟) 𝑗 = 1, . . . , 𝑚,
2. (0, 0, 0) → (0, 𝑗 , 1) (� + �𝑝(𝑟))𝑝 𝑗 𝑗 = 0, 1, . . . , 𝑚,
3. (𝑋,𝑌, 𝑍) → (𝑋 + 1, 𝑌, 𝑍) � 𝑋 + 𝑌 + 𝑍 ≥ 1,
4. (𝑋,𝑌, 1) → (𝑋,𝑌, 0) �1 𝑋 ≥ 0, 𝑌 ≥ 1 or 𝑋 = 0, 𝑌 = 0,
5. (𝑋,𝑌, 0) → (𝑋,𝑌 − 1, 0) �2 𝑋 ≥ 0, 𝑌 ≥ 2 or 𝑋 = 0, 𝑌 = 1,
6. (𝑋, 1, 0) → (𝑋 − 1, 𝑗 , 1) �2𝑝 𝑗 𝑋 ≥ 1, 𝑗 = 0, 1, . . . , 𝑚,
7. (𝑋, 0, 1) → (𝑋 − 1, 𝑗 , 1) �1𝑝 𝑗 𝑋 ≥ 1, 𝑗 = 0, 1, . . . , 𝑚,
8. (𝑋,𝑌, 𝑍) → (𝑋 − 1, 𝑌, 𝑍) 𝑟𝑞 𝑋 ≥ 1, 𝑌 + 𝑍 = 1,
9. (𝑋,𝑌, 1) → (𝑋,𝑌 − 𝑗 , 1) 𝑟𝑞𝜙𝑌,𝑗 𝑋 ≥ 0, 𝑌 ≥ 𝑗 , 𝑗 = 1, . . . , 𝑚,
10. (𝑋,𝑌, 0) → (𝑋,𝑌 − 𝑗 , 0) 𝑟𝑞𝜓𝑌−1, 𝑗 𝑋 ≥ 0, 𝑌 ≥ 𝑗 + 1, 𝑗 = 1, . . . , 𝑚 − 1.

job is currently in service (𝑍 = 1) or not (𝑍 = 0). The possible transitions of the QBD
Markov chain are listed in Table 8.1, corresponding to: 1. a batch of 𝑗 child jobs arriving
at an idle queue and the first child job proceeding directly into service, 2. a parent job
arriving at an idle queue and proceeding directly into service, spawning 𝑗 child jobs, 3. a
parent arriving to a non-idle queue, 4. completion of a parent in service, not succeeded
by another parent job, 5. child service completion, succeeded by either another child job
or no job, 6. child service completion, succeeded by a parent job that enters service and
spawns 𝑗 child jobs, 7. parent service completion, succeeded by a parent job that enters
service and spawns 𝑗 child jobs, 8. negative parent job arrival, 9. a parent is in service
and a batch of negative child job arrivals occurs, 10. a child job is in service and a batch
of negative child job arrivals occurs.

The three dimensional process {𝑋𝑡(𝑟), 𝑌𝑡(𝑟), 𝑍𝑡(𝑟) : 𝑡 ≥ 0} is an irreducible, aperiodic
Quasi-Birth-Death process, where the level ℓ = ∗ when the chain is in state (0, 0, 0) and
equals ℓ ≥ 0 when the chain is in a state with 𝑋 = ℓ (different from (0, 0, 0)). When the
level ℓ ≥ 0, the phase of the QBD is two dimensional and given by (𝑌, 𝑍). The 2𝑚 + 1
phases of level ℓ ≥ 0 are ordered such that the 𝑗-th phase corresponds to (𝑌, 𝑍) = (𝑗 , 0),
for 𝑗 = 1, . . . , 𝑚 and phase 𝑚 + 1 + 𝑗 to (𝑌, 𝑍) = (𝑗 , 1) for 𝑗 = 0, . . . , 𝑚.

As explained below, the generator of the process is

𝑄(𝑟) =


−�0(𝑟)

∑𝑚
𝑗=1 �𝑐,𝑗(𝑟)𝑒 𝑗 + (� + �𝑝(𝑟))𝛼

� 𝐵0(𝑟) 𝐴1
𝐴−1(𝑟) 𝐴0(𝑟) 𝐴1

. . .
. . .

. . .


with �0(𝑟) =

∑𝑚
𝑗=1 �𝑐,𝑗(𝑟)+�+�𝑝(𝑟), with 𝑒 𝑗 a row vector with 1 in its 𝑗-th entry and zeros

elsewhere. The initial probability vector 𝛼 records the distribution of child jobs upon a
parent job entering service and is given by 𝛼 =

[
0′𝑚 𝑝0 𝑝1 . . . 𝑝𝑚

]
, where 0𝑖 is a

column vector of zeros of length 𝑖. Indeed, at rate �𝑐,𝑗(𝑟) a batch of 𝑗 child jobs arrives in
an idle server, causing a jump to level 1 and phase 𝑗, while at rate � + �𝑝(𝑟) a parent job
arrives that spawns 𝑗 child jobs with probability 𝑝 𝑗 causing a jump to phase 𝑚 + 1 + 𝑗 of
level 1.
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For further use, define

𝑆(𝑟) =
[
𝑆00(𝑟) 0
𝑆10 𝑆11(𝑟)

]
,

where 𝑆00(𝑟) is an 𝑚 × 𝑚 matrix and 𝑆11(𝑟) is an (𝑚 + 1) × (𝑚 + 1) matrix,

𝑆00(𝑟) = 𝑟𝑞


𝜓1,1
...

. . .

𝜓𝑚−1,𝑚−1 . . . 𝜓𝑚−1,1

 +

−�2

�2
. . .

. . .
. . .

�2 −�2


,

𝑆10 =


0 . . .
�1

�1
. . .

 , 𝑆11(𝑟) = 𝑟𝑞


𝜙1,1
...

. . .

𝜙𝑚,𝑚 . . . 𝜙𝑚,1

 +

−�1

. . .

. . .

−�1


.

The matrix 𝐴0(𝑟) contains the possible transitions for which the level ℓ > 0 remains
unchanged, this is when child jobs are stolen, or when a waiting child moves into service.
Hence

𝐴0(𝑟) = 𝑆(𝑟) − �𝐼 − 𝑟𝑞𝐼.
Note that even when there are no child jobs waiting, the rate 𝑟𝑞 appears on the main
diagonal due to the negative parent arrivals. When ℓ = 0 there are no parent jobs waiting
and therefore the negative parent arrivals that occur in phase 1 and𝑚+1 have no impact.
This implies that

𝐵0(𝑟) = 𝐴0(𝑟) + 𝑟𝑞𝑉0

= 𝑆(𝑟) − �𝐼 − 𝑟𝑞(𝐼 −𝑉0),

where 𝑉0 = diag(
[
1 0′

𝑚−1 1 0′𝑚
]
). The level ℓ can only decrease by one due to a

service completion from a phase with no pending child jobs, that is, from phase 1 and
𝑚 + 1. To capture these events define � =

[
�2 0′

𝑚−1 �1 0′𝑚
] ′. The level can also

decrease due to a negative parent arrival when ℓ > 0. The matrix 𝐴−1(𝑟) records the
transitions for which the level decreases and therefore equals

𝐴−1(𝑟) = �𝛼 + 𝑟𝑞𝑉0.

Finally, parent job arrivals always increase the level by one:

𝐴1 = �𝐼.

Denote by 𝐴(𝑟) = 𝐴−1(𝑟) + 𝐴0(𝑟) + 𝐴1, the generator of the phase process, then

𝐴(𝑟) = 𝑆(𝑟) + �𝛼 − 𝑟𝑞(𝐼 −𝑉0).

Define
𝜋∗(𝑟) = lim

𝑡→∞
𝑃[𝑋𝑡(𝑟) = 0, 𝑌𝑡(𝑟) = 0, 𝑍𝑡(𝑟) = 0],
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and for ℓ ≥ 0,
𝜋ℓ (𝑟) = (𝜋ℓ ,1,0(𝑟), . . .𝜋ℓ ,𝑚,0(𝑟),𝜋ℓ ,0,1(𝑟), . . . ,𝜋ℓ ,𝑚,1(𝑟))

where
𝜋ℓ , 𝑗,𝑘(𝑟) = lim

𝑡→∞
𝑃[𝑋𝑡(𝑟) = ℓ , 𝑌𝑡(𝑟) = 𝑗 , 𝑍𝑡(𝑟) = 𝑘].

Due to the QBD structure [60], we have

𝜋0(𝑟) = 𝜋∗(𝑟)𝑅0(𝑟), (8.2)

where 𝑅0(𝑟) is a row vector of size 2𝑚 + 1 and for ℓ ≥ 1,

𝜋ℓ (𝑟) = 𝜋0(𝑟)𝑅(𝑟)ℓ , (8.3)

where 𝑅(𝑟) is a (2𝑚 + 1) × (2𝑚 + 1) matrix and by [48] the smallest nonnegative solution
to

𝐴1 + 𝑅(𝑟)𝐴0(𝑟) + 𝑅(𝑟)2𝐴−1(𝑟) = 0.
Also, due to the balance equations with ℓ = 0, we have

𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)𝑒 𝑗 + (� + �𝑝(𝑟))𝛼 + 𝑅0(𝑟)𝐵0(𝑟) + 𝑅0(𝑟)𝑅(𝑟)𝐴−1(𝑟) = 0

and due to [48, Chapter 6]
𝐴1𝐺(𝑟) = 𝑅(𝑟)𝐴−1(𝑟),

where 𝐺(𝑟) is the smallest nonnegative solution to

𝐴−1(𝑟) + 𝐴0(𝑟)𝐺(𝑟) + 𝐴1𝐺(𝑟)2 = 0.

Combining the above yields the following expression:

𝑅0(𝑟) = − ©«
𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)𝑒 𝑗 + (� + �𝑝(𝑟))𝛼ª®¬ (𝐵0(𝑟) + �𝐼𝐺(𝑟))−1 , (8.4)

where 𝐵0(𝑟) + �𝐼𝐺(𝑟) is a subgenerator matrix and is therefore invertible. We note that
𝑅(𝑟) and 𝐺(𝑟) are independent of �𝑐,1(𝑟), . . . ,�𝑐,𝑚(𝑟) and �𝑝(𝑟) and can be computed
easily using the toolbox presented in [5]. To fully characterize the QBD in terms of
�, �1 , �2 and the probabilities 𝑝𝑖 , 𝜙𝑖 , 𝑗 and 𝜓𝑖 , 𝑗 , we need to specify �𝑐,1(𝑟), . . . ,�𝑐,𝑚(𝑟) and
�𝑝(𝑟).

To determine these rates we use the following observation: 𝑞 = 1 − 𝜌 should be the
probability that the QBD is in state (0, 0, 0) and in this state batches of 𝑗 child jobs arrive
at rate �𝑐,𝑗(𝑟). Therefore 𝑞�𝑐,𝑗(𝑟) should equal the parent arrival rate � times the expected
number of times that a batch of 𝑗 child jobs is stolen per parent job. The main difficulty
in using this equality lies in the fact that we must also take into account that a child job
can be stolen several times before it is executed.

To this end and as a preparation for Proposition 8.3.1, we define recursively 𝑝0,𝑖(𝑟),
𝑖 = 1, . . . , 𝑚, as the probability that the QBD visits phase (𝑖 , 0) during the service of a
job and similarly 𝑝1,𝑖′(𝑟), 𝑖′ = 0, . . . , 𝑚 that phase (𝑖′, 1) is visited. By conditioning on
whether we first have a service completion or steal event, we have

𝑝1,𝑚(𝑟) = 𝑝𝑚 ,
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𝑝1,𝑖(𝑟) = 𝑝𝑖 +
𝑟𝑞

𝑟𝑞 + �1

∑
𝑗>𝑖

𝑝1, 𝑗(𝑟)𝜙 𝑗 , 𝑗−𝑖 ,

for 𝑖 ∈ {0, . . . , 𝑚 − 1}, and

𝑝0,𝑖(𝑟) =
�1

𝑟𝑞 + �1
𝑝1,𝑖(𝑟) +

�2

𝑟𝑞 + �2
𝑝0,𝑖+1(𝑟) +

𝑟𝑞

𝑟𝑞 + �2

∑
𝑗>𝑖

𝑝0, 𝑗(𝑟)𝜓 𝑗−1, 𝑗−𝑖 ,

for 𝑖 ∈ {1, . . . , 𝑚}, with 𝑝0,𝑚+1 = 0. Note that

𝑝1,0(𝑟) + 𝑝0,1(𝑟) = 1, (8.5)

as phase (1, 0) or (0, 1) is visited before any job completes service.
We also define 𝑝 𝑗

𝑖
(𝑟), for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚, as the probability that the QBD visits phase (0, 𝑖)

given that it is in the phase (0, 𝑗) before a job completes service. We have

𝑝
𝑗

𝑗
(𝑟) = 1,

𝑝
𝑗

𝑖
(𝑟) =

�2

𝑟𝑞 + �2
𝑝
𝑗

𝑖+1(𝑟) +
𝑟𝑞

𝑟𝑞 + �2

𝑗∑
𝑘=𝑖+1

𝜓𝑘−1,𝑘−𝑖𝑝
𝑗

𝑘
(𝑟),

for 𝑖 ∈ {1, . . . , 𝑗 − 1}. Note that we have 𝑝 𝑗1(𝑟) = 1, for 1 ≤ 𝑗 ≤ 𝑚, as the QBD visits phase
(0, 1) before completing service if it is in phase (0, 𝑗). We are now in a position to define
�𝑐,𝑖(𝑟) recursively as:

�𝑐,𝑚(𝑟) =
�
𝑞
𝑝1,𝑚(𝑟)

𝑟𝑞

𝑟𝑞 + �1
𝜙𝑚,𝑚

�𝑐,𝑖(𝑟) =
�
𝑞

𝑟𝑞

𝑟𝑞 + �1

∑
𝑗≥𝑖

𝑝1, 𝑗(𝑟)𝜙 𝑗 ,𝑖 +
�
𝑞

𝑟𝑞

𝑟𝑞 + �2

∑
𝑗>𝑖

𝑝0, 𝑗(𝑟)𝜓 𝑗−1,𝑖

+
𝑚∑

𝑗=𝑖+1
�𝑐,𝑗(𝑟)

𝑗∑
𝑘=𝑖+1

𝑝
𝑗

𝑘
(𝑟)𝜓𝑘−1,𝑖

𝑟𝑞

𝑟𝑞 + �2
(8.6)

for 𝑖 ∈ {1, . . . , 𝑚 − 1}. Note that 𝑝1,𝑚(𝑟)𝑟𝑞𝜙𝑚,𝑚/(𝑟𝑞 + �1) indeed equals the expected
number of batches of size 𝑚 that are stolen per parent job (as the job must spawn 𝑚 child
jobs and these must be stolen as a batch before the parent completes service). For 𝑖 < 𝑚,
the first two sums represent the expected number of size 𝑖 batches that are stolen from
the original server, while the double sum counts the expected number of such steals that
occur on a server different from the original server.

It remains to define �𝑝(𝑟), for this we demand that 𝜋∗(𝑟) = 𝑞 and that

𝜋∗(𝑟) +
∑
ℓ≥0

𝜋ℓ (𝑟)1 = 1,

where 1 is a column vector of ones. Then from equations (8.2) and (8.3),

𝑞
(
1 + 𝑅0(𝑟)(𝐼 − 𝑅(𝑟))−11

)
= 1, (8.7)
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where the inverse of 𝐼 − 𝑅(𝑟) exists due to Proposition 8.3.1. Using (8.4) and (8.7) we get:

�𝑝(𝑟) =
(1 − 𝑞) − 𝑞(∑𝑚

𝑗=1 �𝑐,𝑗(𝑟)𝑒 𝑗 + �𝛼)𝑤
𝑞𝛼𝑤

, (8.8)

with 𝑤 = −(𝐵0(𝑟) + �𝐼𝐺(𝑟))−1(𝐼 − 𝑅(𝑟))−11. Note that �𝑝(𝑟) is well-defined for 𝑞 > 0, i.e.
𝜌 < 1. This completes the description of the QBD Markov chain.

Proposition 8.3.1. The QBD process {𝑋𝑡(𝑟), 𝑌𝑡(𝑟), 𝑍𝑡(𝑟) : 𝑡 ≥ 0} has a unique stationary
distribution for any 𝑟 ≥ 0 if 𝜌 < 1.

Proof. The positive recurrence of the QBD process only depends on the matrices 𝐴−1(𝑟),
𝐴0(𝑟) and 𝐴1 [60]. These three matrices are the same three matrices as those of the QBD
characterizing the 𝑀/𝑀𝐴𝑃/1 queue where the MAP service process is characterized by
(𝑆0(𝑟), 𝑆1(𝑟)) with 𝑆0(𝑟) = 𝑆(𝑟) − 𝑟𝑞𝐼 and 𝑆1(𝑟) = �𝛼 + 𝑟𝑞𝑉0. As such the QBD process
is positive recurrent if and only if the arrival rate � is less than the service completion
intensity of the 𝑀𝐴𝑃 (𝑆0(𝑟), 𝑆1(𝑟)). This intensity equals �(𝑟)𝑆1(𝑟)1/�(𝑟)1, where the
vector �(𝑟) is such that �(𝑟)(𝑆0(𝑟) + 𝑆1(𝑟)) = 0.

We note that 𝑆0(𝑟) + 𝑆1(𝑟) = 𝐴−1(𝑟) + 𝐴0(𝑟) + 𝐴1 = 𝐴(𝑟) and define

�(𝑟)
(0,1) =

1
�2
𝑝0,1(𝑟),

�(𝑟)
(0,𝑖′) =

1
𝑟𝑞 + �2

𝑝0,𝑖′(𝑟),

�(𝑟)
(1,0) =

1
�1
𝑝1,0(𝑟),

�(𝑟)
(1,𝑖) =

1
𝑟𝑞 + �1

𝑝1,𝑖(𝑟),

for 𝑖′ = 2, . . . , 𝑚 and for 𝑖 = 1, . . . , 𝑚. Define 𝑣(𝑟) = �(𝑟)𝐴(𝑟). Then, using (8.5),

𝑣
(𝑟)
𝑖

= 𝑝𝑖−𝑚−1 − 𝑝1,𝑖−𝑚−1(𝑟) +
𝑟𝑞

𝑟𝑞 + �1

∑
𝑗>𝑖−𝑚−1

𝑝1, 𝑗(𝑟)𝜙 𝑗 , 𝑗−𝑖−𝑚−1 = 0,

for 𝑖 = 𝑚 + 1, . . . , 2𝑚 + 1, and

𝑣
(𝑟)
𝑖′ = −𝑝0,𝑖′(𝑟) + 1[𝑖 < 𝑚] �2

𝑟𝑞 + �2
𝑝0,𝑖′+1(𝑟)

+
𝑟𝑞

𝑟𝑞 + �2

∑
𝑗>𝑖

𝑝0, 𝑗(𝑟)𝜓 𝑗−1, 𝑗−𝑖′ +
�1

𝑟𝑞 + �1
𝑝1,𝑖′(𝑟) = 0,

for 𝑖′ = 1, . . . , 𝑚. Hence �(𝑟)𝐴(𝑟) = �(𝑟)(𝑆0(𝑟) + 𝑆1(𝑟)) = 0. As

�(𝑟)𝑆1(𝑟)1
�(𝑟)1

=
1

�(𝑟)1

(
�2 + 𝑟𝑞

�2
𝑝0,1(𝑟) +

�1 + 𝑟𝑞
�1

𝑝1,0(𝑟)
)

≥ 1
�(𝑟)1

(𝑝0,1(𝑟) + 𝑝1,0(𝑟)) =
1

�(𝑟)1
,

it suffices that � < 1/�(𝑟)1 for the chain to be positive recurrent. For 𝑟 = 0 we have
𝑝1,𝑖(𝑟) = 𝑝𝑖 and 𝑝0,𝑖′ =

∑
𝑗≥𝑖′ 𝑝 𝑗 , which implies that �(0)1 = 𝜌/�. Therefore � < 1/�(0)1
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is equivalent to demanding that 𝜌 < 1. As �(𝑟)1 is the mean time between two service
completions of the MAP process where the state is reset according to the vector 𝛼,
we have that �(𝑟)1 decreases in 𝑟. This completes the proof as 𝜌 < 1 implies that
� < 1/�(0)1 ≤ 1/�(𝑟)1. □

8.4 Response time distribution

We define 𝑇(𝑟) as the response time of a job in a system with probe rate 𝑟. The response
time is defined as the length of the time interval between the arrival of a parent job and
the completion of this parent job and all of its spawned child jobs. 𝑇(𝑟) can be expressed
as the sum of the waiting time𝑊(𝑟) and the service time 𝐽(𝑟). The waiting time is defined
as the amount of time that the parent job waits in the queue before its service starts.
Clearly, the waiting and the service time of a job are independent in our QBD model.

By repeating the arguments from the proof of Theorem 7.6.1, we find that 𝑊(𝑟) can be
expressed as:

Theorem 8.4.1. The distribution of the waiting time is given by

𝑃[𝑊(𝑟) > 𝑡] = (1′ ⊗ 𝜋0(𝐼 − 𝑅(𝑟))−1)𝑒W𝑡𝑣𝑒𝑐⟨𝐼⟩

with W = ((𝐴0(𝑟) + 𝐴1)′ ⊗ 𝐼) + ((𝐴−1(𝑟))′ ⊗ 𝑅(𝑟)) and where 𝑣𝑒𝑐⟨·⟩ is the column stacking
operator. The mean waiting time is

𝐸 [𝑊(𝑟)] =
∫ ∞

0
𝑃 [𝑊(𝑟) > 𝑡] 𝑑𝑡

= (1′ ⊗ 𝜋0(𝐼 − 𝑅(𝑟))−1)(−W)−1𝑣𝑒𝑐⟨𝐼⟩.

Service time distribution 𝐽(𝑟) is more difficult to compute compared to the models in
Chapter 7. This is due to the fact that child jobs can be stolen multiple times before finally
going into service.

We define 𝐽0,𝑘(𝑟) as the distribution of the time that it takes for 𝑘 child jobs in a server to
be completed (𝑘 = 1, . . . , 𝑚). Similarly, we define 𝐽1,𝑘(𝑟) as the distribution of the time
that it takes for a parent job and 𝑘 child jobs in a server to be completed (𝑘 = 0, . . . , 𝑚).
The service time distribution can then be expressed as

𝑃[𝐽(𝑟) ≤ 𝑡] =
𝑚∑
𝑘=0

𝑝𝑘𝑃[𝐽1,𝑘(𝑟) ≤ 𝑡].

Clearly, 𝑃[𝐽0,1(𝑟) ≤ 𝑡] = 1− 𝑒−�2𝑡 and 𝑃[𝐽1,0(𝑟) ≤ 𝑡] = 1− 𝑒−�1𝑡 . For 𝑘 > 1, we can condition
on the first service completion or steal event to find that

𝑃[𝐽0,𝑘(𝑟) ≤ 𝑡] =
∫ 𝑡

0

(
𝑟𝑞

𝑘−1∑
𝑗=1

𝜓𝑘−1, 𝑗𝑃[𝐽0,𝑘−𝑗(𝑟) ≤ 𝑡 − 𝑠]𝑃[𝐽0, 𝑗(𝑟) ≤ 𝑡 − 𝑠]

+ �2𝑃[𝐽0,𝑘−1(𝑟) ≤ 𝑡 − 𝑠]
)
𝑒−(𝑟𝑞+�2)𝑠𝑑𝑠, (8.9)



152
CHAPTER 8. ANALYSIS OF WORK STEALING STRATEGIES IN LARGE SCALE

MULTI-THREADED COMPUTING

and for 𝑘 > 0 this yields

𝑃[𝐽1,𝑘(𝑟) ≤ 𝑡] =
∫ 𝑡

0

(
𝑟𝑞

𝑘∑
𝑗=1

𝜙𝑘,𝑗𝑃[𝐽1,𝑘−𝑗(𝑟) ≤ 𝑡 − 𝑠]𝑃[𝐽0, 𝑗(𝑟) ≤ 𝑡 − 𝑠]

+ �1𝑃[𝐽0,𝑘(𝑟) ≤ 𝑡 − 𝑠]
)
𝑒−(𝑟𝑞+�1)𝑠𝑑𝑠. (8.10)

While the above formulas recursively determine the service time, they are less suited
for numerical computations, we therefore also develop a recursive scheme for the mean
service time.

Consider a set of 𝑠 servers, where the 𝑘-th server contains 𝑖𝑘 child jobs, where 𝑠 ≥ 1,
0 ≤ 𝑖1 + · · · + 𝑖𝑠 ≤ 𝑚 and 𝑖𝑘 ≥ 0 for 𝑘 = 1, . . . , 𝑠. Let 𝐸𝑖1 ,...,𝑖𝑠 (𝑟) be the expected time until
all these child jobs have completed service. Define similarly 𝐸𝑝

𝑖1 ,...,𝑖𝑠
(𝑟), except that the

first server contains 𝑖1 child jobs and a parent job (that is in service).

By definition, we can drop 𝑖𝑘 ’s that are zero (expect 𝑖1 in 𝐸𝑝
𝑖1 ,...,𝑖𝑠

(𝑟)) and can permute the
indices of 𝐸𝑖1 ,...,𝑖𝑠 (𝑟) and all indices except the first one of 𝐸𝑝

𝑖1 ,...,𝑖𝑠
(𝑟). We have for 𝑠 ≥ 1

𝐸1′𝑠 (𝑟) =
1
�2

𝑠∑
𝑘=1

1
𝑘
. (8.11)

We now define recursively, assuming 𝑖𝑘 ≥ 1 for 𝑘 = 1, . . . , 𝑠:

𝐸𝑖1 ,...,𝑖𝑠 (𝑟) =
1

𝑠�2 + 𝑟𝑞
∑𝑠
𝑘=1 1[𝑖𝑘 ≥ 2]

(
1 + �2

𝑠∑
𝑘=1

𝐸𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖𝑠 (𝑟)

+ 𝑟𝑞
𝑠∑
𝑘=1

𝑖𝑘−1∑
𝑛=1

𝜓𝑖𝑘−1,𝑛𝐸𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−𝑛,𝑖𝑘+1 ,...,𝑖𝑠 ,𝑛(𝑟)
)
.

We have 𝐸𝑝0 (𝑟) = 1/�1 and we define recursively for 𝑠 ≥ 1

𝐸
𝑝

1′𝑠
(𝑟) = 1

�1 + (𝑠 − 1)�2

(
1 + �1𝐸1′𝑠 (𝑟) + (𝑠 − 1)�2𝐸

𝑝

1′
𝑠−1
(𝑟)

)
=

1
�1 + (𝑠 − 1)�2

(
1 + �1

�2

𝑠−1∑
𝑘=1

1
𝑘
+ (𝑠 − 1)�2𝐸

𝑝

1′
𝑠−1
(𝑟)

)
,

where we have used (8.11) in the last equality. Finally, we define recursively, assuming
𝑖𝑘 ≥ 1 for 𝑘 = 2, . . . , 𝑠:

𝐸
𝑝

𝑖1 ,...,𝑖𝑠
(𝑟) = 1

�1 + (𝑠 − 1)�2 + 𝑟𝑞1[𝑖1 ≥ 1] + 𝑟𝑞∑𝑠
𝑘=2 1[𝑖𝑘 ≥ 2]

(
1

+ �1𝐸𝑖1 ,...,𝑖𝑠 (𝑟) + 𝑟𝑞
𝑖1∑
𝑛=1

𝜙𝑖1 ,𝑛𝐸
𝑝

𝑖1−𝑛,𝑖2 ,...,𝑖𝑠 ,𝑛(𝑟)
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+ �2

𝑠∑
𝑘=2

𝐸
𝑝

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖𝑠
(𝑟)

+ 𝑟𝑞
𝑠∑
𝑘=2

𝑖𝑘−1∑
𝑛=1

𝜓𝑖𝑘−1,𝑛𝐸
𝑝

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−𝑛,𝑖𝑘+1 ,...,𝑖𝑠 ,𝑛
(𝑟)

)
.

The expectation 𝐸[𝐽(𝑟)] can now be computed as:

𝐸[𝐽(𝑟)] =
𝑚∑
𝑘=0

𝑝𝑘𝐸
𝑝

𝑘
(𝑟).

8.5 Limiting behaviour

In this section we remark how the QBD simplifies when 𝑟 = 0 and 𝑟 → ∞. If 𝑟 = 0, i.e. if
there is no stealing, the cavity queue becomes an 𝑀/𝑃𝐻/1-queue. The case where 𝑟 goes
to infinity is more interesting. We have 𝑝0,𝑖′(𝑟) → 0 for 𝑖′ = 1, . . . , 𝑚. Due to (8.5), we get
𝑝1,0(𝑟) → 1. Let 0𝑝,𝑞 denote the zero matrix of dimensions 𝑝× 𝑞. Using the interpretation
that (𝑖 , 𝑗)-th entry of 𝐺(𝑟) is the chance that the server goes from phase 𝑖 to 𝑗 at a time of
a level decrease (when the new level is at least 1), we get

𝐺(𝑟) →
[
1𝑚 0𝑚,𝑚−1 0𝑚,𝑚+1

0𝑚+1,𝑚 1𝑚+1 0𝑚+1,𝑚

]
.

We have 𝜋∗(𝑟) + 𝜋(0,1,0)(𝑟) + 𝜋(0,0,1)(𝑟) → 1 and thus 𝑅(𝑟) → 0. Note, that in general∑
ℓ≥0

𝑚∑
𝑖=0

𝜋ℓ ,𝑖,1(𝑟) =
�
�1

holds. For 𝑟 → ∞, it follows that 𝜋(0,0,1)(𝑟) → �/�1 and 𝜋(0,1,0)(𝑟) → 𝜌 − �/�1.
Obviously,𝑊(𝑟) → 0 and

𝑃[𝐽0,𝑘(𝑟) ≤ 𝑡] = 𝑃[𝐽0,1(𝑟) ≤ 𝑡]𝑘 ,
𝑃[𝐽1,𝑘′(𝑟) ≤ 𝑡] = 𝑃[𝐽1,0(𝑟) ≤ 𝑡]𝑃[𝐽0,1(𝑟) ≤ 𝑡]𝑘′

for 𝑘 = 2, . . . , 𝑚 and for 𝑘′ = 1, . . . , 𝑚. Further, we have

𝐸[𝐽(𝑟)] →
𝑚∑
𝑘=0

𝑝𝑘𝐸
𝑝

0,1′
𝑘

(𝑟).

Let 𝑑 =
∑𝑚
𝑛=1 𝑛𝑝𝑛 denote the average number of children spawned per parent. Suppose

𝑑 ∈ N. Then, due to Proposition 7.7.1, for 𝑟 → ∞ and 𝑑 child jobs spawned per parent
on average, the QBD with the worst mean service time is the one where a parent always
spawns 𝑑 child jobs (𝑝𝑑 = 1).

8.6 Numerical experiments

In this section we perform numerical experiments to compare the performance of several
stealing strategies. Due to the lack of space, we present only a subset of the experiments
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performed. The main conclusions in these additional experiments (e.g., different �2
values) are in agreement with the results presented. Define Ψ as the matrix where
[Ψ]𝑖 , 𝑗 = 𝜓𝑖 , 𝑗 and define Φ similarly. Note that a strategy is fully characterized by Ψ and
Φ. The strategies considered are as follows:

1. Steal one: The strategy of always stealing one child job, that is 𝜙𝑖 ,1 = 𝜓𝑖 ,1 = 1 for
every 𝑖.

2. Steal half: The strategy of always stealing half of the pending child jobs. If 𝑛, the
number of pending child jobs, is uneven, there is a fifty percent chance that ⌊𝑛/2⌋
child jobs get stolen and ⌈𝑛/2⌉ jobs otherwise;

3. Steal all: The strategy of stealing all of the pending child jobs, that is 𝜙𝑖 ,𝑖 = 𝜓𝑖 ,𝑖 = 1
for every 𝑖.

Note that these strategies do not rely on any knowledge on the (mean) job sizes or system
load.

We compare the mean response time for these strategies with the optimal monotone
deterministic strategy. A strategy is called deterministic if for every 𝑖 ≤ 𝑚 there exists a
𝑗 ≤ 𝑖 such that 𝜙𝑖 , 𝑗 = 1 and a 𝑘 ≤ 𝑖 such that 𝜓𝑖 ,𝑘 = 1. It is called monotone deterministic
(MD) if in addition having 𝜓𝑖 , 𝑗 = 1 and 𝜓𝑖′ , 𝑗′ = 1 with 𝑖 < 𝑖′ implies that 𝑗 ≤ 𝑗′ for all
𝑖 , 𝑗 , 𝑖′, 𝑗′ and the same holds for Φ. Experiments not included in the chapter suggest
that the optimal strategy, that is, the optimal Ψ and Φ matrices, corresponds to an MD
strategy. The optimal MD strategy is determined using brute-force and its mean response
time is denoted as 𝑇𝑀𝐷(𝑟). Let p = [𝑝0 , 𝑝1 , . . . , 𝑝𝑚].
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Figure 8.2: Example 8.6.1: 𝐸[𝑇(𝑟)]/𝐸[𝑇𝑀𝐷(𝑟)] in function of 𝑟 with 𝜌 = 0.15 (left), 𝜌 = 0.5
(mid) and 𝜌 = 0.85 (right).

Example 8.6.1. In Figure 8.2 we examine the effect of increasing the steal rate on how
well the three strategies perform compared to the optimal MD strategy. We do this for
𝜌 ∈ {0.15, 0.5, 0.85}, �1 = 1, �2 = 2, p = 1′5/5 and 𝑟 ∈ [0.05, 50]. We note that there exists
no universal best strategy. The strategy of stealing one job performs the worst. This is due
to the fact that relatively very little work of the pending jobs is transferred. When �2 < �1,
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examples can be constructed where the strategy of stealing a single child outperforms
the others. For moderately high values of 𝑟 or for low loads the strategy where half of the
child jobs get stolen is close to the optimal MD strategy, which is intuitively clear as there
is a small chance that there are pending parent jobs in a queue. In fact, it seems that as 𝑟
becomes large enough the optimal strategy for systems where �1 ≤ �2 is stealing ⌊𝑖/2⌋ +1
out of 𝑖 children. For low values of 𝑟 the strategy of stealing all child jobs performs well,
as there is a fair chance that there are pending parents in the queue and it can take a long
time until the server is probed again.

For 𝜌 = 0.85 the matrices Ψ,Φ of the optimal MD strategy change as follows: for low
values of 𝑟 the best strategy is the one of stealing all jobs, that is Ψ and Φ are identity
matrices of size 𝑚 − 1 and 𝑚 respectively. Then, at approximately 𝑟 = 7.6, 𝜓3,2 becomes
one. Around 𝑟 = 13.5, the 𝜙4,3 becomes one and finally 𝜙3,2 = 1 around 𝑟 = 20.35. For
𝜌 = 0.5 we see a similar evolution: for low values of 𝑟 the best strategy is stealing all
child jobs. Then, at approximately 𝑟 = 0.85, 𝜓3,2 becomes one. Around 𝑟 = 1.55, the 𝜙4,3
becomes one and finally 𝜙3,2 = 1 around 𝑟 = 3.35.

Denote for 𝑛 ≥ 0
𝐶(𝑘) = (2𝑘)!

(𝑘 + 1)!𝑘! .

The sequence (𝐶(𝑘))𝑘≥0 is the sequence of the Catalan numbers [15, Section 2]. We now
provide a formula for the number of MD strategies.

Proposition 8.6.2. For a given 𝑚, there exist 𝐶(𝑚 − 1)𝐶(𝑚) monotone deterministic strategies.

Proof. We prove that there are 𝐶(𝑚) different choices for the matrix Φ. For an MD
strategy, we can encode the matrix Φ as a vector 𝑣 of length 𝑚 of increasing numbers
from the set {1, . . . , 𝑚}, where [𝑣]𝑖 = 𝑗 if and only if 𝜙𝑖 , 𝑗 = 1. Clearly, there is a one-to-one
correspondence between matricesΦ of MD strategies and vectors 𝑣. Further, the different
possibilities for 𝑣 are exactly the different Catalan combinations if we subtract 1 from
every entry of 𝑣 [15, Section 2]. Hence, we have 𝐶(𝑚) different choices for Φ.

For 𝑚 > 1, we can show in a similar way that there are 𝐶(𝑚 − 1) choices for Ψ. For 𝑚 = 1,
Ψ is the empty matrix, hence we only have one choice for Ψ. The claim now follows. □

Hence, the number of MD strategies grows quickly in function of 𝑚. This implies that
it can take a long time to determine the optimal MD strategy for systems with larger
𝑚 values. We therefore introduce a smaller family of strategies and compare our three
strategies with the optimal strategy in this smaller family to limit the brute-force search.
We call a strategy bounded monotone deterministic (BMD) if it is monotone deterministic
and 𝜓𝑖 , 𝑗 = 1 implies 𝜓𝑖+1, 𝑗 = 1 or 𝜓𝑖+1, 𝑗+1 = 1 for every 𝑖 and the same holds for Φ.
Note that there are 2𝑚−22𝑚−1 = 22𝑚−3 BMD strategies for a given 𝑚 ≥ 2. The optimal
BMD strategy is determined using brute-force and we denote its mean response time by
𝑇𝐵𝑀𝐷(𝑟). The mean response time of the optimal BMD strategy may exceed that of the
optimal MD strategy as indicated in the next example.



156
CHAPTER 8. ANALYSIS OF WORK STEALING STRATEGIES IN LARGE SCALE

MULTI-THREADED COMPUTING

0 10 20 30 40 50

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

0 10 20 30 40 50

1

1.02

1.04

1.06

1.08

1.1

1.12

0 10 20 30 40 50

1

1.05

1.1

1.15

1.2

1.25

1.3

Figure 8.3: Example 8.6.3: 𝐸[𝑇(𝑟)]/𝐸[𝑇𝐵𝑀𝐷(𝑟)] in function of 𝑟 with 𝜌 = 0.15 (left), 𝜌 = 0.5
(mid) and 𝜌 = 0.85 (right).

Example 8.6.3. In Figure 8.3 we examine the effect of increasing the steal rate on how
well the three strategies perform compared to the optimal BMD strategy when 𝑚 = 6
instead of 𝑚 = 4 as in the previous example. We do this for 𝜌 ∈ {0.15, 0.5, 0.85}, �1 =

1, �2 = 2, p = 1′7/7 and 𝑟 ∈ [0.05, 50]. It is clear that the main insights are similar as in the
𝑚 = 4 case, except that more substantial gains can be achieved by optimizing Ψ and Φ.
We also performed some experiments to compare the performance of the optimal MD
and BMD strategies and noted that for 𝑟 ∈ [6.9, 7.4], the optimal MD strategy has 𝜓3,2 = 1
and 𝜓4,4 = 1, which is not BMD. The reduction in the mean response time was however
very limited.

Example 8.6.4. In Figure 8.4 we illustrate the effect of increasing the load 𝜌 on the mean
response time. We do this for 𝜌 ∈ [0.05, 0.95], �1 = 1, �2 = 2, p = 1′5/5 and 𝑟 ∈ {0.1, 1, 10}.
These result confirm that stealing all is best when the load is sufficiently high, while
stealing half of the child jobs is good for systems with a limited load.
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Figure 8.4: Example 8.6.4: 𝐸[𝑇(𝑟)]/𝐸[𝑇𝑀𝐷(𝑟)] in function of 𝜌 with 𝑟 = 0.1 (left), 𝑟 = 1
(mid) and 𝑟 = 10 (right).
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8.7 Model validation

Based on numerical experiments in the previous section, we see that stealing all or half of
the children are good stealing policies, stealing all works best for low values of 𝑟, while
stealing half of the children works well for higher values. Therefore, we validate the
mean field model for these two policies. We always start the simulations from an empty
system and simulate the behaviour for 𝑇 = 105 with a warm up period of 33% of 𝑇.
In Figures 8.5 and 8.6, we see that there is an excellent match between the simulated
waiting and service times and those of the QBD model (calculated using Section 8.4) in
case of stealing all and half of the children respectively. The 95% confidence intervals
were computed based on 5 runs with 𝑁 = 500 servers, 𝑚 = 4, �1 = 1, �2 = 2, 𝜌 = 0.75,
p = (1, 1, 1, 1, 1)/5 and 𝑟 ∈ {1, 5}.
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Figure 8.5: Waiting and response times from the QBD (blue dots) and simulations (red
dashed line) with confidence intervals for 5 runs.

In Tables 8.2 and 8.3 we compare the relative error of the simulated mean response time,
based on 20 runs, to the one obtained from Section 8.4. We do this for �1 = 1, �2 = 2,
p = 1′5/5, 𝜌 ∈ {0.75, 0.85}, 𝑟 ∈ {1, 10} and 𝑁 ∈ {250, 500, 1000, 2000, 4000}. Tables 8.2
and 8.3 show the comparison for the strategy of stealing all and half of the children
respectively.
The relative error in all cases is below 1.5% and tends to increase with the steal rate
𝑟. Further, the relative error seems roughly to halve when doubling 𝑁 , which is in
agreement with the results in [24].
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Figure 8.6: Waiting and response times from the QBD (blue dots) and simulations (red
dashed line) with confidence intervals for 5 runs.

Table 8.2: Relative error of simulation results for 𝐸[𝑇(𝑟)], based on 20 runs

𝜌 = 0.75 𝜌 = 0.85
𝑁 sim. ± conf. rel.err.% sim. ± conf. rel.err.%

𝑟 = 1
250 3.7650 ± 2.41e-03 0.2986 5.5121 ± 6.89e-03 0.3386
500 3.7588 ± 1.56e-03 0.1334 5.5053 ± 3.62e-03 0.2157

1000 3.7568 ± 1.38e-03 0.0818 5.4980 ± 3.58e-03 0.0821
2000 3.7548 ± 7.33e-04 0.0283 5.4945 ± 1.96e-03 0.0197
4000 3.7541 ± 5.66e-04 0.0091 5.4953 ± 1.56e-03 0.0344
QBD 3.7537 5.4935
𝑟 = 10

250 1.7766 ± 4.72e-04 0.7247 2.1371 ± 1.41e-03 1.2816
500 1.7701 ± 3.42e-04 0.3553 2.1232 ± 8.85e-04 0.6249

1000 1.7671 ± 1.84e-04 0.1894 2.1165 ± 5.59e-04 0.3090
2000 1.7655 ± 1.59e-04 0.0957 2.1131 ± 4.20e-04 0.1454
4000 1.7646 ± 1.61e-04 0.0437 2.1119 ± 1.79e-04 0.0878
QBD 1.7638 2.1100

8.8 Mean field model

In this section we write down a set of ODEs which captures the transient evolution of
the system as 𝑁 → ∞. We show that the invariant distribution of the QBD, introduced
in Section 8.3, coincides with the fixed point of this set of ODEs. This also implies that
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Table 8.3: Relative error of simulation results for 𝐸[𝑇(𝑟)], based on 20 runs

𝜌 = 0.75 𝜌 = 0.85
𝑁 sim. ± conf. rel.err.% sim. ± conf. rel.err.%

𝑟 = 1
250 3.9305 ± 3.24e-03 0.2392 5.8435 ± 6.51e-03 0.2830
500 3.9261 ± 2.82e-03 0.1271 5.8331 ± 3.76e-03 0.1045

1000 3.9231 ± 1.24e-03 0.0506 5.8288 ± 2.33e-03 0.0307
2000 3.9225 ± 1.04e-03 0.0353 5.8281 ± 2.97e-03 0.0187
4000 3.9219 ± 6.06e-04 0.0200 5.8279 ± 2.09e-03 0.0153
QBD 3.9211 5.8270
𝑟 = 10

250 1.7822 ± 5.23e-04 0.7748 2.1782 ± 1.32e-03 1.3017
500 1.7752 ± 4.47e-04 0.3790 2.1642 ± 7.18e-04 0.6506

1000 1.7720 ± 2.80e-04 0.1965 2.1576 ± 6.31e-04 0.3437
2000 1.7703 ± 1.98e-04 0.1007 2.1537 ± 4.07e-04 0.1623
4000 1.7695 ± 8.56e-05 0.0567 2.1520 ± 3.69e-04 0.0832
QBD 1.7685 2.1502

the ODEs have a unique fixed point.

We denote by 𝑓ℓ , 𝑗,𝑘(𝑡) the fraction of queues at time 𝑡 with ℓ parent jobs in waiting in the
queue, 𝑗 ∈ {1, . . . , 𝑚} child jobs in the queue and 𝑘 ∈ {0, 1} describing whether a parent
job is in service (𝑘 = 1) or not (𝑘 = 0). Note that ℓ does not count parent jobs in service,
whereas 𝑗 counts child jobs waiting and in service. In particular for ℓ = 0 and 𝑗 + 𝑘 ≥ 1
the server is busy and there may be child jobs waiting, which can be transferred. We
denote 𝑓0,0,0(𝑡) as 𝑓∗(𝑡), the fraction of idle queues. For a statement 𝐴 we set 1[𝐴] to be 1
if 𝐴 is true and 0 if 𝐴 is false. We have for ℓ ≥ 0 and 𝑗 + 𝑘 ≥ 1,

𝑑

𝑑𝑡
𝑓ℓ , 𝑗,𝑘(𝑡) = � 𝑓ℓ−1, 𝑗 ,𝑘(𝑡)1[ℓ ≥ 1] + �𝑝 𝑗 𝑓∗(𝑡)1[ℓ = 0, 𝑘 = 1] − � 𝑓ℓ , 𝑗,𝑘(𝑡)

+ �1 𝑓ℓ , 𝑗,𝑘+1(𝑡)1[𝑘 = 0] + �1𝑝 𝑗 𝑓ℓ+1,0,𝑘(𝑡)1[𝑘 = 1] − �1 𝑓ℓ , 𝑗,𝑘(𝑡)1[𝑘 = 1]
+ �2 𝑓ℓ , 𝑗+1,𝑘(𝑡)1[𝑗 ≤ 𝑚 − 1, 𝑘 = 0] + �2𝑝 𝑗 𝑓ℓ+1,1,𝑘−1(𝑡)1[𝑘 = 1] − �2 𝑓ℓ , 𝑗,𝑘(𝑡)1[𝑘 = 0]
+ 𝑟 𝑓∗(𝑡) 𝑓ℓ+1, 𝑗 ,𝑘(𝑡)1[𝑗 + 𝑘 = 1] − 𝑟 𝑓∗(𝑡) 𝑓ℓ , 𝑗,𝑘(𝑡)1[ℓ ≥ 1]

+ 𝑟 𝑓∗(𝑡)
𝑚−𝑗∑
𝑠=1

𝜓 𝑗+𝑠−1,𝑠 𝑓ℓ , 𝑗+𝑠,𝑘(𝑡)1[1 ≤ 𝑗 , 𝑘 = 0] + 𝑟 𝑓∗(𝑡)
𝑚−𝑗∑
𝑠=1

𝜙 𝑗+𝑠,𝑠 𝑓ℓ , 𝑗+𝑠,𝑘(𝑡)1[𝑘 = 1]

− 𝑟 𝑓∗(𝑡) 𝑓ℓ , 𝑗,𝑘(𝑡)1[ℓ = 0, 𝑗 + 𝑘 > 1]

+ 𝑟 𝑓∗(𝑡)
∑
𝑗′≥1,ℓ ′

𝑚∑
𝑠=1

𝜙 𝑗′ ,𝑠 𝑓ℓ ′ , 𝑗′ ,1(𝑡)1[ℓ = 0, 𝑗 = 𝑠, 𝑘 = 0]

+ 𝑟 𝑓∗(𝑡)
∑
𝑗′>1,ℓ ′

𝑚−1∑
𝑠=1

𝜓 𝑗′−1,𝑠 𝑓ℓ ′ , 𝑗′ ,0(𝑡)1[ℓ = 0, 𝑗 = 𝑠, 𝑘 = 0]

+ 𝑟 𝑓∗(𝑡)𝑝 𝑗
∑

ℓ ′≥1, 𝑗′+𝑘′=1
𝑓ℓ ′ , 𝑗′ ,𝑘′(𝑡)1[ℓ = 0, 𝑘 = 1],
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and for ℓ , 𝑗, 𝑘 = 0,

𝑑

𝑑𝑡
𝑓∗(𝑡) = −� 𝑓∗(𝑡) + �1 𝑓0,0,1(𝑡) + �2 𝑓0,1,0(𝑡) − 𝑟 𝑓∗(𝑡)(1 − 𝑓∗(𝑡) − 𝑓0,0,1(𝑡) − 𝑓0,1,0(𝑡)).

The first three terms of the drift of 𝑓ℓ , 𝑗,𝑘(𝑡) correspond to arrivals, the following three
terms correspond to job completions of parent jobs, the following three correspond to
service completions of child jobs and the remaining terms correspond to job transfers:
the first term is due to parent job transfers, the second is due to both parent and child job
transfers, the third and fourth are due to child job transfers, the fifth one is due to child
job transfers, the next two are due to child job transfers to empty servers and the last one
is due to parent job transfers to empty servers.

Similarly for 𝑓∗(𝑡), the first term is due to job arrivals, the next two are due to service
completions and the last is due to job transfers. Note that 1 − 𝑓∗(𝑡) − 𝑓0,0,1(𝑡) − 𝑓0,1,0(𝑡) =∑
ℓ , 𝑗+𝑘>1 𝑓ℓ , 𝑗,𝑘(𝑡) +

∑
ℓ≥1, 𝑗+𝑘=1 𝑓ℓ , 𝑗,𝑘(𝑡). We set

®𝑓ℓ (𝑡) = ( 𝑓ℓ ,1,0(𝑡), . . . , 𝑓ℓ ,𝑚,0(𝑡), 𝑓ℓ ,0,1(𝑡), . . . , 𝑓ℓ ,𝑚,1(𝑡))

for every ℓ ≥ 0. We can then rewrite the ODEs in matrix form: for ℓ ≥ 0 and 𝑗 + 𝑘 ≥ 1 we
have

𝑑

𝑑𝑡
®𝑓ℓ (𝑡) = � ®𝑓ℓ−1(𝑡)1[ℓ ≥ 1] − � ®𝑓ℓ (𝑡) + � 𝑓∗(𝑡)𝛼1[ℓ = 0]

+ ®𝑓ℓ (𝑡)�̃�(𝑡) + ®𝑓ℓ+1(𝑡)�𝛼 + 𝑟 𝑓∗(𝑡) ®𝑓ℓ+1(𝑡)𝑉0

− 𝑟 𝑓∗(𝑡) ®𝑓ℓ (𝑡)(𝐼 −𝑉0)1[ℓ = 0] − 𝑟 𝑓∗(𝑡) ®𝑓ℓ (𝑡)1[ℓ ≥ 1]
+ 𝑟 𝑓∗(𝑡)

∑
ℓ ′≥0

®𝑓ℓ ′(𝑡)𝑇1[ℓ = 0]

+ 𝑟 𝑓∗(𝑡)
∑
ℓ ′≥1

®𝑓ℓ ′(𝑡)𝑣0𝛼1[ℓ = 0], (8.12)

and for ℓ , 𝑗, 𝑘 = 0

𝑑

𝑑𝑡
𝑓∗(𝑡) = −� 𝑓∗(𝑡) + ®𝑓0(𝑡)� − 𝑟 𝑓∗(𝑡)

(
1 − 𝑓∗(𝑡) − ®𝑓0(𝑡)𝑣0

)
, (8.13)

with 𝑣0 =
[
1 0′

𝑚−1 1 0′𝑚
] ′
, where the entries are non-zero when 𝑗 + 𝑘 = 1 (i.e.

𝑉0 = diag(𝑣0)). The matrix �̃�(𝑡) is defined as

�̃�(𝑡) =
[
�̃�00(𝑡) 𝑆01
𝑆10 �̃�11(𝑡)

]
, (8.14)

where �̃�00(𝑡) and �̃�11(𝑡) are the same matrices as 𝑆00(𝑟) and 𝑆11(𝑟) respectively, except with
every instance of 𝑞 changed to 𝑓∗(𝑡). The (2𝑚 + 1) × (2𝑚 + 1) matrix 𝑇 = 𝑇𝜓 + 𝑇𝜙 records
the distribution of the number of child jobs transferred when a probe is successful:

𝑇𝜓 =


0 . . . 0 0′

𝑚+2
𝜓1,1 . . . 𝜓1,𝑚−1
...

...
...

𝜓𝑚−1,1 . . . 𝜓𝑚−1,𝑚−1 0′
𝑚+2

0𝑚+1 . . . 0𝑚+1 0𝑚+1,𝑚+2


, 𝑇𝜙 =



0′2𝑚+1
...

0′2𝑚+1
𝜙1,1 . . . 𝜙1,𝑚 0′

𝑚+1
...

...
...

𝜙𝑚,1 . . . 𝜙𝑚,𝑚 0′
𝑚+1


.
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Note that if 𝜙𝑖 ,1 = 1 for every 𝑖 ∈ {1, . . . , 𝑚} and if 𝜓 𝑗 ,1 = 1 for every 𝑗 ∈ {1, . . . , 𝑚 − 1},
then 𝑇 = (1 − 𝑣0)𝑒1.

We show that the stationary distribution of the QBD corresponds to the unique fixed
point � of the set of ODEs in Equations (8.12)-(8.13).

Lemma 8.8.1. For any fixed point � = (�∗ , ®�0 , ®�1 , . . .) with �∗+
∑
ℓ≥0 ®�ℓ1 = 1 of the set of ODEs

in Equations (8.12)-(8.13) we have

� = ��∗ +
∑
ℓ≥1

®�ℓ� + 𝑟�∗
∑
ℓ≥1

®�ℓ𝑣0.

Proof. As 𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 in a fixed point we get using

∑
ℓ≥0(ℓ + 1) 𝑑

𝑑𝑡
®𝑓ℓ (𝑡)1 = 0 that∑

ℓ≥0

®�ℓ� = � + 𝑟�∗

(
1 − �∗ −

∑
ℓ≥0

�ℓ𝑣0

)
. (8.15)

The claim now follows by using (8.15) and (8.13) in a fixed point. □

Define recursively
�1,𝑚 = �𝑝𝑚

and

�1,𝑘 = �𝑝𝑘 +
𝑟�∗

𝑟�∗ + �1

𝑚∑
𝑑=𝑘+1

𝜙𝑑,𝑑−𝑘�1,𝑑 ,

for 𝑘 = 0, . . . , 𝑚 − 1, and

�0,𝑘′ =
�1

𝑟�∗ + �1
�1,𝑘′ +

𝑟�∗
𝑟�∗ + �1

𝑚∑
𝑑=𝑘′

𝜙𝑑,𝑘′�1,𝑑

+ 1[𝑘′ < 𝑚] �2

𝑟�∗ + �2
�0,𝑘′+1 +

𝑟�∗
𝑟�∗ + �2

𝑚∑
𝑑=𝑘′+1

(𝜓𝑑−1,𝑑−𝑘′ + 𝜓𝑑−1,𝑘′)�0,𝑑 ,

for 𝑘′ = 1, . . . , 𝑚. �𝑖 , 𝑗 is the rate at which servers enter into phase (𝑖 , 𝑗).

Lemma 8.8.2. For any fixed point � = (�∗ , ®�0 , ®�1 , . . .) with �∗+
∑
ℓ≥0 ®�ℓ1 = 1 of the set of ODEs

in Equations (8.12)-(8.13) we have for 1 ≤ 𝑘 ≤ 𝑚:

(𝑟�∗ + �1)
∑
ℓ≥0

®�ℓ ©«
0𝑚+𝑘

1
0𝑚−𝑘

ª®¬ = �1,𝑘 . (8.16)

Proof. We prove the lemma using complete backward induction on 𝑘. By demanding
that

∑
ℓ≥0

®𝑓ℓ (𝑡)[0′𝑚+𝑘 , 1, 0
′
𝑚−𝑘]

′ = 0 for any 𝑘 ∈ {1, . . . , 𝑚}, we find due to Lemma 8.8.1 that

0 = �𝑝𝑘 − (𝑟�∗ + �1)
∑
ℓ≥0

®�ℓ ©«
0𝑚+𝑘

1
0𝑚−𝑘

ª®¬ + 𝑟�∗
∑
ℓ≥0

®�ℓ
[
0′𝑚+𝑘+1 , 𝜙𝑘+1,1 , 𝜙𝑘+2,2 , . . . , 𝜙𝑚,𝑚−𝑘

] ′
.
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This is equivalent to

(𝑟�∗ + �1)
∑
ℓ≥0

®�ℓ ©«
0𝑚+𝑘

1
0𝑚−𝑘

ª®¬ = �𝑝𝑘 + 𝑟�∗
∑
ℓ≥0

®�ℓ
[
0′𝑚+𝑘+1 , 𝜙𝑘+1,1 , . . . , 𝜙𝑚,𝑚−𝑘

] ′
. (8.17)

(8.17) is equivalent to (8.16) for 𝑘 = 𝑚. Suppose now that 𝑘 < 𝑚 and that (8.16) holds for
all 𝑘′ ∈ {𝑘 + 1, . . . , 𝑚}. Due to (8.17), it suffices to show that

𝑟�∗
∑
ℓ≥0

®�ℓ
[
0′𝑚+𝑘+1 , 𝜙𝑘+1,1 , . . . , 𝜙𝑚,𝑚−𝑘

] ′
=

𝑟�∗
𝑟�∗ + �1

𝑚∑
𝑑=𝑘+1

𝜙𝑑,𝑑−𝑘�1,𝑑 ,

which holds due to induction hypothesis. □

Lemma 8.8.3. For any fixed point � = (�∗ , ®�0 , ®�1 , . . .) with �∗+
∑
ℓ≥0 ®�ℓ1 = 1 of the set of ODEs

in Equations (8.12)-(8.13) we have for 2 ≤ 𝑘 ≤ 𝑚:

(𝑟�∗ + �2)
∑
ℓ≥0

®�ℓ ©«
0𝑘−1

1
02𝑚−𝑘+1

ª®¬ = �0,𝑘 . (8.18)

Proof. Similarly to the proof of Lemma 8.8.2, we use complete backward induction on 𝑘.
By demanding

∑
ℓ≥0

𝑑
𝑑𝑡
®𝑓ℓ (𝑡)[0′𝑚−1 , 1, 0

′
𝑚+1]′ = 0, we get

(𝑟�∗ + �2)
∑
ℓ≥0

®�ℓ ©«
0𝑚−1

1
0𝑚+1

ª®¬ = (𝑟�∗𝜙𝑚,𝑚 + �1)
∑
ℓ≥0

®�ℓ
(
02𝑚
1

)
= (𝑟�∗𝜙𝑚,𝑚 + �1)

�1,𝑚

𝑟�∗ + �1

= �0,𝑚 ,

where (8.16) was used in the second equality. This shows (8.18) for 𝑘 = 𝑚. Suppose
𝑘 < 𝑚 and that (8.18) holds for all 𝑘′ ∈ {𝑘 + 1, . . . , 𝑚}. By demanding

∑
ℓ≥0

𝑑

𝑑𝑡
®𝑓ℓ (𝑡) ©«

0𝑘−1
1

02𝑚−𝑘+1

ª®¬ = 0,

we get

(𝑟�∗ + �2)
∑
ℓ≥0

®�ℓ ©«
0𝑘−1

1
02𝑚−𝑘+1

ª®¬ = 𝑟�∗
∑
ℓ≥0

®�ℓ
[
0′𝑘 ,𝜓𝑘,1 + 𝜓𝑘,𝑘 , . . . ,𝜓𝑚−1,𝑚−𝑘 + 𝜓𝑚−1,𝑘 , 0′𝑚+1

] ′
+ 𝑟�∗

∑
ℓ≥0

®�ℓ
[
0′𝑚+𝑘 , 𝜙𝑘,𝑘 , . . . , 𝜙𝑚,𝑘

] ′
+ �2

∑
ℓ≥0

®�ℓ ©«
0𝑘
1

02𝑚−𝑘

ª®¬ + �1
∑
ℓ≥0

®�ℓ ©«
0𝑚+𝑘

1
0𝑚−𝑘

ª®¬
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By using induction hypothesis and (8.16) we further get

(𝑟�∗ + �2)
∑
ℓ≥0

®�ℓ ©«
0𝑘−1

1
02𝑚−𝑘+1

ª®¬ =
𝑟�∗

𝑟�∗ + �2

𝑚∑
𝑑=𝑘+1

(𝜓𝑑−1,𝑑−𝑘 + 𝜓𝑑−1,𝑘)�0,𝑑 +
𝑟�∗

𝑟�∗ + �1

𝑚∑
𝑑=𝑘

𝜙𝑑,𝑘�1,𝑑

+ �2

𝑟�∗ + �2
�0,𝑘+1 +

�1

𝑟�∗ + �1
�1,𝑘

which is equal to �0,𝑘 . This finishes the proof. □

Proposition 8.8.4. For any fixed point � = (�∗ , ®�0 , ®�1 , . . .) with �∗ +
∑
ℓ≥0 ®�ℓ1 = 1 of the set of

ODEs in Equations (8.12)-(8.13) we have

�∗ = 𝑞, (8.19)

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇 = �∗

𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)𝑒 𝑗 , (8.20)

where �𝑐,𝑗(𝑟) was defined in (8.6).

Proof. Denote by 1:𝑘 the column vector [1, . . . , 𝑘]′ for 𝑘 ≥ 1. To prove (8.19) it suffices to
show ∑

ℓ≥0

®�ℓ
(

0𝑚
1𝑚+1

)
=

�
�1
, (8.21)

∑
ℓ≥0

®�ℓ
(

1𝑚
0𝑚+1

)
=

�
�2

(
𝑚∑
𝑖=1

𝑖𝑝𝑖

)
. (8.22)

By demanding
∑
ℓ≥0

𝑑
𝑑𝑡
®𝑓ℓ (𝑡)

(
1𝑚

0𝑚+1

)
= 0, we find

∑
ℓ≥0

®�ℓ ©«
�2
0𝑚
0𝑚

ª®¬ = 𝑟�∗
∑
ℓ≥0

®�ℓ (1 − 𝑣0) +
∑
ℓ≥0

®�ℓ
(
0𝑚+1
�11𝑚

)
. (8.23)

Combining (8.15) and (8.23) yields (8.21). By demanding

∑
ℓ≥0

𝑑

𝑑𝑡
®𝑓ℓ (𝑡) ©«

1:𝑚
0

1:𝑚

ª®¬ = 0

and by using Lemma 8.8.1, one can show that∑
ℓ≥0

®�ℓ
(
�21𝑚
0𝑚+1

)
= �

(
𝑚∑
𝑖=1

𝑖𝑝𝑖

)
,

which is equivalent to (8.22). To prove the second claim it suffices to show that for
𝑖 = 1, . . . , 𝑚 we have:

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇𝑒′𝑖 = �∗�𝑐,𝑖(𝑟).
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This is equivalent to showing the following two equalities:

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇𝜓𝑒′𝑖 = �
𝑟𝑞

𝑟𝑞 + �2

∑
𝑗>𝑖

𝑝0, 𝑗(𝑟)𝜓 𝑗−1,𝑖 + 𝑞
𝑚∑

𝑗=𝑖+1
�𝑐,𝑗(𝑟)

𝑗∑
𝑘=𝑖+1

𝑝
𝑗

𝑘
(𝑟)𝜓𝑘−1,𝑖

𝑟𝑞

𝑟𝑞 + �2
(8.24)

for 𝑖 = 1, . . . , 𝑚 − 1, and

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇𝜙𝑒′𝑖 = �
𝑟𝑞

𝑟𝑞 + �1

∑
𝑗≥𝑖

𝑝1, 𝑗(𝑟)𝜙 𝑗 ,𝑖 , (8.25)

for 𝑖 = 1, . . . , 𝑚. Due to (8.16), we have

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇𝜙𝑒′𝑖 =
𝑟�∗

𝑟�∗ + �1

∑
𝑑≥𝑖

𝜙𝑑,𝑖�1,𝑑 .

As
�1,𝑑 = �𝑝1,𝑑(𝑟), (8.26)

where all instances of 𝑞 in the formula of 𝑝1,𝑑(𝑟) have been changed to �∗, equation (8.25)
follows from (8.19). Equation (8.24) requires more work to prove. Due to (8.18), it suffices
to show that

𝑟�∗
𝑟�∗ + �2

𝑚−1∑
𝑘=𝑖

𝜓𝑘,𝑖�0,𝑘+1 = �
𝑟𝑞

𝑟𝑞 + �2

∑
𝑗>𝑖

𝑝0, 𝑗(𝑟)𝜓 𝑗−1,𝑖 + 𝑞
𝑚∑

𝑗=𝑖+1
�𝑐,𝑗(𝑟)

𝑗∑
𝑘=𝑖+1

𝑝
𝑗

𝑘
(𝑟)𝜓𝑘−1,𝑖

𝑟𝑞

𝑟𝑞 + �2
.

Due to (8.19), this is equivalent to showing
𝑚∑

𝑘=𝑖+1
𝜓𝑘−1,𝑖�0,𝑘 = �

𝑚∑
𝑘=𝑖+1

𝑝0,𝑘(𝑟)𝜓𝑘−1,𝑖 + 𝑞
𝑚∑

𝑘=𝑖+1

𝑚∑
𝑗=𝑘

�𝑐,𝑗(𝑟)𝑝 𝑗𝑘(𝑟)𝜓𝑘−1,𝑖 . (8.27)

We show that for 𝑘 = 2, . . . , 𝑚, we have

�0,𝑘 = �𝑝0,𝑘(𝑟) + 𝑞
𝑚∑
𝑗=𝑘

�𝑐,𝑗(𝑟)𝑝 𝑗𝑘(𝑟) (8.28)

and (8.27) then follows. Intuitively, equation (8.28) is clear: the rate at which jobs arrive
in servers in state (0, 𝑘) is the sum of the following three rates:

1. the rate at which servers spawn child jobs from parent jobs and eventually go into
phase (0, 𝑘),

2. the rate at which 𝑘 jobs get transferred, and

3. the rate at which servers go into phase (0, 𝑘) after starting in phases (0, 𝑗) for
𝑗 = 𝑘 + 1, . . . , 𝑚.

We prove (8.28) by complete backward induction on 𝑘. By definition and (8.19), we have
for 𝑘 = 𝑚

�0,𝑚 =
�1

𝑟�∗ + �1
�1,𝑚 + 𝑟�∗

𝑟�∗ + �1
𝜙𝑚,𝑚�1,𝑚 = �𝑝0,𝑚(𝑟) + 𝑞�𝑐,𝑚(𝑟).
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Suppose now that 𝑘 < 𝑚 and that (8.28) holds for all 𝑘′ ∈ {𝑘 + 1, . . . , 𝑚}. We have by
definition

�0,𝑘 =
�1

𝑟�∗ + �1
�1,𝑘 +

𝑟�∗
𝑟�∗ + �1

𝑚∑
𝑑=𝑘

𝜙𝑑,𝑘�1,𝑑

+ �2

𝑟�∗ + �2
�0,𝑘+1 +

𝑟�∗
𝑟�∗ + �2

𝑚∑
𝑑=𝑘+1

(𝜓𝑑−1,𝑑−𝑘 + 𝜓𝑑−1,𝑘)�0,𝑑 .

By induction hypothesis, (8.19) and (8.26) this is equal to

�
�1

𝑟𝑞 + �1
𝑝1,𝑘(𝑟) + �

𝑟𝑞

𝑟𝑞 + �1

𝑚∑
𝑑=𝑘

𝑝1,𝑑(𝑟)𝜙𝑑,𝑘

+ �2

𝑟𝑞 + �2

©«�𝑝0,𝑘+1(𝑟) + 𝑞
𝑚∑

𝑗=𝑘+1
�𝑐,𝑗(𝑟)𝑝 𝑗𝑘+1(𝑟)

ª®¬
+ 𝑟𝑞

𝑟𝑞 + �2

𝑚∑
𝑑=𝑘+1

(𝜓𝑑−1,𝑑−𝑘 + 𝜓𝑑−1,𝑘)
(
�𝑝0,𝑑(𝑟) + 𝑞

𝑚∑
𝑖=𝑑

�𝑐,𝑖(𝑟)𝑝 𝑖𝑑(𝑟)
)
.

By first using the formula for 𝑝0,𝑘(𝑟) and then for �𝑐,𝑘(𝑟) (8.6) this is further equal to

�𝑝0,𝑘(𝑟) + �
𝑟𝑞

𝑟𝑞 + �1

𝑚∑
𝑑=𝑘

𝑝1,𝑑(𝑟)𝜙𝑑,𝑘

+ 𝑞 �2

𝑟𝑞 + �2

𝑚∑
𝑗=𝑘+1

�𝑐,𝑗(𝑟)𝑝 𝑗𝑘+1(𝑟) + �
𝑟𝑞

𝑟𝑞 + �2

𝑚∑
𝑑=𝑘+1

𝜓𝑑−1,𝑘𝑝0,𝑑(𝑟)

+ 𝑞 𝑟𝑞

𝑟𝑞 + �2

𝑚∑
𝑖=𝑘+1

�𝑐,𝑖(𝑟)
𝑖∑

𝑑=𝑘+1
𝑝 𝑖
𝑑
(𝑟)(𝜓𝑑−1,𝑑−𝑘 + 𝜓𝑑−1,𝑘)

= �𝑝0,𝑘(𝑟) + 𝑞�𝑐,𝑘(𝑟) + 𝑞
�2

𝑟𝑞 + �2

𝑚∑
𝑗=𝑘+1

�𝑐,𝑗(𝑟)𝑝 𝑗𝑘+1(𝑟)

+ 𝑞 𝑟𝑞

𝑟𝑞 + �2

𝑚∑
𝑖=𝑘+1

�𝑐,𝑖(𝑟)
𝑖∑

𝑑=𝑘+1
𝑝 𝑖
𝑑
(𝑟)𝜓𝑑−1,𝑑−𝑘 .

By rearranging the terms and by using the formula for 𝑝 𝑗
𝑘
(𝑟) this equals

�𝑝0,𝑘(𝑟) + 𝑞�𝑐,𝑘(𝑟)𝑝𝑘𝑘 (𝑟) + 𝑞
𝑚∑

𝑗=𝑘+1
�𝑐,𝑗(𝑟)

(
�2

𝑟𝑞 + �2
𝑝
𝑗

𝑘+1(𝑟) +
𝑟𝑞

𝑟𝑞 + �2

𝑗∑
𝑑=𝑘+1

𝑝
𝑗

𝑑
(𝑟)𝜓𝑑−1,𝑑−𝑘

)
= �𝑝0,𝑘(𝑟) + 𝑞

𝑚∑
𝑗=𝑘

�𝑐,𝑗(𝑟)𝑝 𝑗𝑘(𝑟),

which shows (8.28), thus finishing the proof. □

Theorem 8.8.5. The stationary distribution 𝜋(𝑟) of the QBD Markov chain characterized by
𝑄(𝑟) is the unique fixed point � of the set of ODEs in Equations (8.12)-(8.13).
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Proof. Using Proposition 8.8.4 we show that the fixed point equations 𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 are

equivalent to the balance equations of the QBD Markov chain characterized by 𝑄(𝑟).
The uniqueness of the fixed point the follows from the uniqueness of the stationary
distribution of the Markov chain.

For ℓ ≥ 1, 𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 can be written as

0 = ®�ℓ−1(�𝐼) + ®�ℓ (�̃�(𝑡) + �𝐼 − 𝑟�∗𝐼) + ®�ℓ+1(�𝛼 + 𝑟�∗𝑉0),

which is exactly the balance equations of𝑄(𝑟) for ℓ ≥ 1 as �∗ = 𝑞 due to Proposition 8.8.4.
This implies that ®�ℓ = ®�0𝑅(𝑟)ℓ , for all ℓ ≥ 1 for any fixed point.

For ℓ = 0, 𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 implies

0 = ®�0(�̃�(𝑡) − �𝐼 − 𝑟�∗(𝐼 −𝑉0)) + ®�1(�𝛼 + 𝑟�∗𝑉0) + ��∗𝛼 + 𝑟�∗
∑
ℓ ′≥0

®�ℓ ′𝑇 + 𝑟�∗
∑
ℓ ′≥1

®�ℓ ′𝑣0𝛼.

Due to Proposition 8.8.4 we can rewrite this as

0 = ®�0𝐵0(𝑟) + ®�1𝐴−1(𝑟) + 𝑞 ©«
𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)𝑒 𝑗 + �𝛼 + 𝑟
∑
ℓ≥1

®�ℓ𝑣0𝛼
ª®¬ .

This implies that

®�0 = −𝑞 ©«
𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)𝑒 𝑗 + �𝛼 + 𝑟
∑
ℓ≥1

®�ℓ𝑣0𝛼
ª®¬ (𝐵0(𝑟) + �𝐼𝐺(𝑟))−1 ,

as �𝐼𝐺(𝑟) = 𝑅(𝑟)𝐴−1(𝑟). As
∑
ℓ≥0 ®�ℓ1 = 1 − 𝑞 = ∑

ℓ≥0 𝜋ℓ (𝑟)1, we find that

𝑟
∑
ℓ ′≥1

®�ℓ ′𝑣0 = �𝑝(𝑟) (8.29)

defined in (8.8). This indicates that 𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 corresponds to the balance equation for

ℓ = 0. As 𝑇1 = 1 − 𝑣0, we have for 𝑑
𝑑𝑡
𝑓∗(𝑡) = 0 that

0 = −��∗ + ®�0� − 𝑟�∗(1 − �∗ − ®�0𝑣0)

= −�∗

(
𝑟
∑
ℓ ′≥0

®�ℓ ′𝑇1 + � + 𝑟
∑
ℓ ′≥1

®�ℓ ′𝑣0

)
+ ®�0�,

which is exactly the first balance equation due to Proposition 8.8.4 and (8.29). □

Although this theorem proves that the set of ODEs defined by (8.12) and (8.13) has a
unique fixed point, it does not show that the fixed point is a global attractor of these
ODEs. One way of proving global attraction is using a monotonicity argument, where
one defines a state space for the set of ODEs and a partial relation order on this state
space. One then shows that if one state is dominated by another w.r.t. to this partial
order at time 𝑡, then it stays dominated at time 𝑡 + 𝑠, for every 𝑠 > 0. This however is
not feasible for the whole class of systems in this chapter, as some systems are clearly not
monotone (e.g. a system where out of 5 child jobs always 5 get stolen, whereas out of 4
children only one is transferred upon a successful steal attempt).
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8.9 Conclusions and future work

We introduced a model for randomized work stealing in multithreaded computations
in large systems, where parent jobs spawn child jobs and where any number of existing
child jobs can be stolen from a queue per probe. We defined a QBD Markov chain
that approximates the behaviour of the system when the number of servers tends to
infinity. We showed the existence and uniqueness of a stationary distribution for this
QBD, provided formulas for the waiting and service times and provided a practical way
of calculating expected service times. We have introduced a set of ODEs that captures
the behaviour of the system when 𝑁 → ∞ and we have shown that this set of ODEs has
a unique fixed point given by the stationary distribution of the QBD. These are the main
technical contributions of the chapter. Using numerical experiments we examined the
effect of changing the load 𝜌 and the steal rate 𝑟. We concluded that the stealing policy
where the half of child jobs gets stolen every time is in general a good stealing policy for
higher values of 𝑟, while the strategy of stealing all children performs best for low values
of 𝑟. We concluded further that stealing only one child performs the worst in most of the
cases. Finally, using simulation, we validated the model using simulation.

Possible generalizations include stealing multiple parent jobs (up to some finite amount)
per probe and systems where offspring of a job can spawn further offspring (multigen-
erational multithreading). One can also attempt to relax the exponential service time
requirements for child and/or parent jobs. This may be challenging as this complicates
several aspects of the model such as determining the rates �𝑐,𝑗(𝑟).
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Chapter 9999999999999999999999999999999999999999999999999999999999999999999999999
Analysis of work stealing strategies in
large scale multi-threaded computing

with jobs of the phase type

This Chapter contains a generalization of the paper [44], that was presented at QEST 2021. The
generalized version will be published in [45]. This chapter also contains results omitted from
[45] due to the constraint on the number of pages.

9.1 Introduction

This chapter is closely related to Chapters 7 and 8. Here and in Chapters 7 and 8 we
consider a system of homogeneous servers that uses a randomized work stealing policy.
Firstly, in Chapter 7 we compared two systems: one system where parent jobs can be
stolen and the other system where child jobs can be stolen one at a time. The latter of
the two studied systems was novel in the sense that all previous research about work
stealing and sharing focused on systems where jobs are considered to be sequential and
are always executed as a whole on a single server. The key takeaway from Chapter 7 is
that if probe rate 𝑟 is large enough, then the second system outperforms the first. This
is to be expected: for large probe rates a job gets redistributed quickly and more queues
can work on it, thus lowering the mean response time. On the other hand, for small
probe rates, it is better to transfer parents to empty queues as a larger amount of work is
transferred per steal.

Next, in the paper contained in Chapter 8, presented at QEST 2021, we considered a set
of policies where if a server with pending child jobs is probed by an idle server, some of
its child jobs are transferred. When a server is probed that does not have pending child
jobs, a pending parent job is transferred instead (if available). The major complication
in the analysis of these policies, compared to Chapter 7, is that when several child jobs
get stolen at once, child jobs may be transferred several times before being executed. The
objective of Chapter 8 was to gain insights on how to determine the number of child jobs
that should be stolen at once. We concluded that the stealing policy where half of the
child jobs gets stolen every time is in general a good stealing policy for large probe rates,
while stealing all children performs best when the probe rate is low. We also noted that
stealing a single child usually performs the worst.
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In Chapters 7 and 8 we assumed that parent and child jobs have exponentially distributed
service requirements, while jobs in a real system are typically more variable in size. In
this chapter, which is an extended version of Chapter 8, we relax this assumption by
generalizing the analysis from Chapter 8 to phase-type (PH) distributed parent and child
job sizes. As any positive valued distribution can be approximated arbitrarily close
by a phase-type distribution (cf. Theorem 2.2.10), this relaxation is significant, without
complicating the analysis too much. We show that the insights obtained in Chapter 8 still
hold for PH child and parent jobs. Compared to Chapter 8 we also present a mean field
model and prove that it has a unique fixed point that coincides with the steady state of
a structured Markov chain (a similar result was presented in Chapter 7, where the proof
is considerably easier due to the more restricted setting).

The rest of this chapter is organized as follows. In Section 9.2 we describe the system of𝑁
queues. The subsequent sections contain the main contributions of the chapter, namely:

• To approximate the performance of the work stealing system of 𝑁 queues, we
introduce in Section 9.3 a Quasi-Birth-Death Markov chain (QBD for short) that
describes the evolution of a single server queueing system with negative arrivals.
We prove that this QBD has a unique stationary distribution, which can be quickly
calculated. In Section 9.4, we indicate how to compute the waiting time distribution
and mean service time.

• We compare the performance of several stealing strategies in Section 9.6. We
confirm the main insights gained from Chapter 8, namely that the strategy of
stealing half of the child jobs performs well for low loads and/or high probe rates
and that stealing all child jobs performs best when the load is high and/or the
probe rate is low. We further conclude that stealing becomes more worthwhile as
the job sizes become more variable (that is, with increased squared coefficient of
variation).

• For some strategies we present simulation results in Section 9.7 that suggest that as
the number of servers becomes large, the approximation error of the QBD model
tends to zero.

• In Section 9.8, we introduce a mean field model and prove that it has a unique fixed
point which is given by the stationary distribution of the QBD.

We finish the chapter with Section 9.9, where we present some concluding remarks.

9.2 System description and strategies

We consider a system with 𝑁 homogeneous servers each with an infinite buffer to store
jobs. Parent jobs arrive in each server according to a local Poisson arrival process with
rate �. Upon entering service a parent job spawns 𝑖 ∈ {0, 1, . . . , 𝑚}, 𝑚 ≥ 1, child jobs, the
number of which follows a general distribution with finite support 𝑝𝑖 (i.e., 𝑝𝑖 ≥ 0 for every
𝑖 and

∑𝑚
𝑖=0 𝑝𝑖 = 1). These child jobs are stored locally and have priority over any parent

jobs (either already present or yet to arrive), while the spawning parent job continues
service. Thus, when a (parent or child) job completes service the server first checks to
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see whether it has any waiting child jobs, if so it starts service on a child job. If there
are no child jobs present, service on a waiting parent job starts (if any are present). We
assume that parent and child jobs have phase type (PH) distributed service requirements
with representations (𝛼𝑝 , 𝑆𝑝) and (𝛼𝑐 , 𝑆𝑐) respectively, meaning the probability that the
service requirement of a child job exceeds 𝑡 is given by 𝛼𝑐𝑒𝑆

𝑐 𝑡1, where 1 denotes a column
vector of ones of the correct size, and the same holds for the parent jobs if we replace
the superscript 𝑐 by 𝑝. PH distributions are distributions with a modulating finite state
Markov chain (see also [48]). Moreover there are various fitting tools available for PH
distributions (see e.g. [46, 62]).

When a server is idle, it probes other servers at random at rate 𝑟 > 0, where 𝑟 is a system
parameter. Note that 𝑟 determines the amount of communication between the servers
and increasing 𝑟 should improve performance at the expense of a higher communication
overhead. When a server is probed (by an idle server) and it has waiting (parent or child)
jobs, we state that the probe is successful. When a successful probe reaches a server
without waiting child jobs, a parent job is transferred to the idle server. Note that such a
transferred parent job starts service and spawns its child jobs at the new server.

When a successful probe reaches a server with pending/waiting child jobs, several child
jobs can be transferred at once. If the probed server is serving a parent job and there are
𝑖 child jobs in the buffer of the probed server, 𝑗 ≤ 𝑖 child jobs are stolen with probability
𝜙𝑖 , 𝑗 (i.e., for every 𝑖 we have

∑𝑖
𝑗=1 𝜙𝑖 , 𝑗 = 1). On the other hand if a child job is being

processed by the probed server and there are 𝑖 child jobs waiting in the buffer of the
probed server, 𝑗 ≤ 𝑖 child jobs are stolen with probability 𝜓𝑖 , 𝑗 (i.e., for every 𝑖 we have∑𝑖
𝑗=1 𝜓𝑖 , 𝑗 = 1). For ease of notation we set 𝜙𝑖 , 𝑗 = 𝜓𝑖 , 𝑗 = 0 if 𝑗 > 𝑖 and further 𝜙𝑖 , 𝑗 = 𝜓𝑖 , 𝑗 = 0

if 𝑖 or 𝑗 is 0. Probes and job transfers are assumed to be instantaneous.

The main objective of this chapter is to study how the probabilities 𝜙𝑖 , 𝑗 and 𝜓𝑖 , 𝑗 influence
the response time of a job, where the response time is defined as the time between the
arrival of a parent job and the completion of the parent and all its spawned child jobs.
Given the above description, it is clear that we get a Markov process if we keep track of
the number of parent and child job and the phase of the job in service in each of the 𝑁
servers. This Markov process however does not appear to have a product form, making
its analysis prohibitive.

Instead we use an approximation method, the accuracy of which is investigated in Section
9.7. The idea of the approximation exists in focusing on a single server and assuming
that the queue lengths at any other server are independent and identically distributed as
in this particular server. Within the context of load balancing, this approach is known
as the cavity method (see [9] or Section 4.3). In fact all the analytical models used
in [16, 25, 55–57, 68, 69, 77, 79] can be regarded as cavity method approximations. A
common feature of such an approximation is that it tends to become more accurate as the
number of servers tends to infinity, as we demonstrate in Section 9.7 for our model. The
cavity method typically involves iterating the so-called cavity map (see [9] or Section 4.3).
However, in our case the need for such an iteration is avoided by deriving expressions
for the rates at which child and parent jobs are stolen.
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9.3 Quasi-Birth-Death Markov chain

As the system of 𝑁 queues uses work stealing, where (parts of) a job can be transferred
upon a successful steal, these 𝑁 queues are coupled in a non-trivial way. However, due
to homogeneity of the processors we are still able to analyze the system of 𝑁 queues by
approximating it by a single queue with negative arrivals. This queue can described by
a Quasi-Birth-Death (QBD) Markov chain, which we introduce in this section.

Let �𝑝(𝑟) denote the rate at which parent jobs are stolen when the server is idle. Let
�𝑐,1(𝑟), . . . ,�𝑐,𝑚(𝑟) denote respectively the rates at which 1, . . . , 𝑚 child jobs are stolen.
We provide formulas for these rates further on. The evolution of a single server has the
following characteristics, where the negative arrivals correspond to steal events:

1. When the server is busy, arrivals of parent jobs occur according to a Poisson process
with rate �. When the server is idle, parent jobs arrive at the rate � +�𝑝(𝑟), while a
batch of 𝑖 child jobs arrives at rate �𝑐,𝑖(𝑟) for 𝑖 = 1, . . . , 𝑚.

2. Upon entering service, a parent job spawns 𝑖 ∈ {0, 1, . . . , 𝑚}, 𝑚 ≥ 1, child jobs with
probability 𝑝𝑖 . Child jobs are stored locally.

3. Child jobs have priority over any parent jobs waiting in the queue and are thus
executed immediately after their parent job when executed on the same server.

4. Parent and child jobs have PH distributed service requirements with 𝑛𝑝 and 𝑛𝑐
phases and with representations (𝛼𝑝 , 𝑆𝑝) and (𝛼𝑐 , 𝑆𝑐), respectively. We assume
that these representations have 𝛼𝑐1 = 1 and 𝛼𝑝1 = 1. We denote 𝑠𝑝 = −𝑆𝑝1 and
𝑠𝑐 = −𝑆𝑐1.

5. If there are parent jobs and no child jobs waiting in the buffer of the server then a
negative parent arrival occurs at the rate 𝑟𝑞, where 𝑞 = 1 − 𝜌 is the probability that
a queue is idle (where 𝜌 is defined in (9.1)).

6. If a parent job is in service and there are 𝑖 ∈ {1, . . . , 𝑚} child jobs in the buffer of
the server, a batch of 𝑗 negative child job arrivals occurs at the rate 𝑟𝑞𝜙𝑖 , 𝑗 , for all
𝑗 ∈ {1, . . . , 𝑖}.

7. If a child job is in service and there are 𝑖 ∈ {1, . . . , 𝑚 − 1} child jobs pending in the
buffer of the server, a batch of 𝑗 negative child job arrivals occurs at the rate 𝑟𝑞𝜓𝑖 , 𝑗 ,
for all 𝑗 ∈ {1, . . . , 𝑖}.

Note that the load of the system can be expressed as

𝜌 = �

(
𝛼𝑝(−𝑆𝑝)−11 + 𝛼𝑐(−𝑆𝑐)−11

𝑚∑
𝑛=1

𝑛𝑝𝑛

)
, (9.1)

where 𝛼𝑝(−𝑆𝑝)−11 and 𝛼𝑐(−𝑆𝑐)−11 is the mean parent and child job size, respectively.
Denote by 𝑋 ≥ 0 the number of parent jobs waiting, by 𝑌 ∈ {0, 1, . . . , 𝑚} the number of
child jobs in the server (either in service or waiting), by 𝑍 ∈ {0, 1} whether a parent job
is currently in service (𝑍 = 1) or not (𝑍 = 0) and by 𝑊 the phase of the job in service.
Note that we have 𝑊 ∈ {1, . . . , 𝑛𝑝} when 𝑍 = 1 and 𝑊 ∈ {0, . . . , 𝑛𝑐} when 𝑍 = 0, where
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Table 9.1: Transitions for the QBD in Section 9.3

From To Rate For
1. (0, 0, 0, 0) → (0, 𝑗 , 0, 𝑘) �𝑐,𝑗(𝑟)𝛼𝑐𝑘 𝑗 = 1, . . . , 𝑚, 𝑘 = 1, . . . , 𝑛𝑐
2. (0, 0, 0, 0) → (0, 𝑗 , 1, 𝑘) (� + �𝑝(𝑟))𝑝 𝑗𝛼𝑝𝑘 𝑗 = 0, 1, . . . , 𝑚, 𝑘 = 1, . . . , 𝑛𝑝 ,
3. (𝑋,𝑌, 𝑍,𝑊) → (𝑋 + 1, 𝑌, 𝑍,𝑊) � 𝑋 + 𝑌 + 𝑍 ≥ 1,𝑊 ≥ 1
4. (𝑋,𝑌, 1, 𝑘) → (𝑋,𝑌, 0, ℓ ) 𝑠

𝑝

𝑘
𝛼𝑐
ℓ

𝑋 ≥ 0, 𝑌 ≥ 1, 𝑘 = 1, . . . , 𝑛𝑝 , ℓ = 1, . . . , 𝑛𝑐 ,
5. (𝑋,𝑌, 0, 𝑘) → (𝑋,𝑌 − 1, 0, ℓ ) 𝑠𝑐

𝑘
𝛼𝑐
ℓ

𝑋 ≥ 0, 𝑌 ≥ 2, 𝑘, ℓ = 1, . . . , 𝑛𝑐 ,
6. (0, 0, 1, 𝑘) → (0, 0, 0, 0) 𝑠

𝑝

𝑘
𝑘 = 1, . . . , 𝑛𝑝 ,

7. (0, 1, 0, 𝑘) → (0, 0, 0, 0) 𝑠𝑐
𝑘

𝑘 = 1, . . . , 𝑛𝑐 ,
8. (𝑋, 0, 1, 𝑘) → (𝑋 − 1, 𝑗 , 1, ℓ ) 𝑠

𝑝

𝑘
𝑝 𝑗𝛼

𝑝

ℓ
𝑋 ≥ 1, 𝑗 = 0, 1, . . . , 𝑚, 𝑘, ℓ = 1, . . . , 𝑛𝑝 ,

9. (𝑋, 1, 0, 𝑘) → (𝑋 − 1, 𝑗 , 1, ℓ ) 𝑠𝑐
𝑘
𝑝 𝑗𝛼

𝑝

ℓ
𝑋 ≥ 1, 𝑗 = 1, . . . , 𝑚, 𝑘 = 1, . . . , 𝑛𝑐 , ℓ = 1, . . . , 𝑛𝑝 ,

10. (𝑋,𝑌, 1, 𝑘) → (𝑋,𝑌, 1, ℓ ) 𝑆
𝑝

𝑘,ℓ
𝑋,𝑌 ≥ 0, 𝑘, ℓ = 1, . . . , 𝑛𝑝 , with 𝑘 ≠ ℓ ,

11. (𝑋,𝑌, 0, 𝑘) → (𝑋,𝑌, 0, ℓ ) 𝑆𝑐
𝑘,ℓ

𝑋 ≥ 0, 𝑌 ≥ 1, 𝑘, ℓ = 1, . . . , 𝑛𝑐 , with 𝑘 ≠ ℓ ,
12. (𝑋,𝑌, 𝑍,𝑊) → (𝑋 − 1, 𝑌, 𝑍,𝑊) 𝑟𝑞 𝑋,𝑊 ≥ 1, 𝑌 + 𝑍 = 1,
13. (𝑋,𝑌, 1,𝑊) → (𝑋,𝑌 − 𝑗 , 1,𝑊) 𝑟𝑞𝜙𝑌,𝑗 𝑋 ≥ 0, 𝑌 ≥ 𝑗 , 𝑗 = 1, . . . , 𝑚,𝑊 = 1, . . . , 𝑛𝑝 ,
14. (𝑋,𝑌, 0,𝑊) → (𝑋,𝑌 − 𝑗 , 0,𝑊) 𝑟𝑞𝜓𝑌−1, 𝑗 𝑋 ≥ 0, 𝑌 ≥ 𝑗 + 1, 𝑗 = 1, . . . , 𝑚 − 1,𝑊 = 1, . . . , 𝑛𝑐 .

𝑊 = 0 if the queue is idle. The possible transitions of the QBD Markov chain are listed
in Table 9.1, corresponding to: 1. a batch of 𝑗 child jobs arriving at an idle queue and the
first child job proceeding directly into service, 2. a parent job arriving at an idle queue
and proceeding directly into service, spawning 𝑗 child jobs, 3. a parent arriving to a
non-idle queue, 4. completion of a parent in service, succeeded by a child job, 5. child
service completion, succeeded by another child job, 6. completion of a parent in service,
not succeeded by any job, 7. child service completion, not succeeded by another job, 8.
parent service completion, succeeded by a parent job that enters service and spawns 𝑗
child jobs, 9. child service completion, succeeded by a parent job that enters service and
spawns 𝑗 child jobs, 10. a phase change occurs in the service of a parent, 11. a phase
change occurs in the service of a child, 12. negative parent job arrival, 13. a parent is in
service and a batch of negative child job arrivals occurs, 14. a child job is in service and
a batch of negative child job arrivals occurs.

The four dimensional process {𝑋𝑡(𝑟), 𝑌𝑡(𝑟), 𝑍𝑡(𝑟),𝑊𝑡(𝑟) : 𝑡 ≥ 0} is an irreducible, aperi-
odic Quasi-Birth-Death process, where the level ℓ = ∗ when the chain is in state (0, 0, 0, 0)
and equals ℓ ≥ 0 when the chain is in a state with 𝑋 = ℓ (different from (0, 0, 0, 0)). When
the level ℓ ≥ 0, the phase of the QBD is three dimensional and given by (𝑌, 𝑍,𝑊). The
𝑚𝑛𝑐 + (𝑚 + 1)𝑛𝑝 phases of level ℓ ≥ 0 are ordered such that the 𝑗-th phase corresponds
to (𝑌, 𝑍,𝑊) = (⌈𝑗/𝑛𝑐⌉ , 0, (𝑗 − 1) mod 𝑛𝑐 + 1), for 𝑗 = 1, . . . , 𝑚𝑛𝑐 and phase 𝑚𝑛𝑐 + 𝑗 to
(𝑌, 𝑍,𝑊) = (⌈𝑗/𝑛𝑝⌉ − 1, 1, (𝑗 − 1) mod 𝑛𝑝 + 1) for 𝑗 = 1, . . . , (𝑚 + 1)𝑛𝑝 .

As explained below, the generator of the process is

𝑄(𝑟) =


−�0(𝑟)

∑𝑚
𝑗=1 �𝑐,𝑗(𝑟)� 𝑗 + (� + �𝑝(𝑟))𝛼

� 𝐵0(𝑟) 𝐴1
𝐴−1(𝑟) 𝐴0(𝑟) 𝐴1

. . .
. . .

. . .


,
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with �0(𝑟) =
∑𝑚
𝑗=1 �𝑐,𝑗(𝑟) + � + �𝑝(𝑟). The row vector � 𝑗 is defined as

� 𝑗 =
[
0′(𝑗−1)𝑛𝑐 𝛼

𝑐 0′(𝑚−𝑗)𝑛𝑐+(𝑚+1)𝑛𝑝

]
,

where 0𝑖 is a column vector of zeroes of length 𝑖. The initial probability vector 𝛼 records
the distribution of child jobs upon a parent job entering service and the initial phase of
that parent. It is given by 𝛼 =

[
0′𝑚𝑛𝑐 𝑝0𝛼𝑝 𝑝1𝛼𝑝 . . . 𝑝𝑚𝛼𝑝

]
. Indeed, at rate �𝑐,𝑗(𝑟)𝛼𝑐𝑘

a batch of 𝑗 child jobs arrives in an idle server, causing a jump to level 1 and phase (𝑗 , 0, 𝑘),
while at rate (� + �𝑝(𝑟))𝛼𝑝𝑘 a parent job arrives that spawns 𝑗 child jobs with probability
𝑝 𝑗 causing a jump to phase (𝑗 , 1, 𝑘) of level 1.

For further use, define

𝑆(𝑟) =
[
𝑆00(𝑟) 0
𝑆10 𝑆11(𝑟)

]
,

where 𝑆00(𝑟) is an 𝑚𝑛𝑐 × 𝑚𝑛𝑐 matrix and 𝑆11(𝑟) is an (𝑚 + 1)𝑛𝑝 × (𝑚 + 1)𝑛𝑝 matrix,

𝑆00(𝑟) = 𝑟𝑞


𝜓1,1
...

. . .

𝜓𝑚−1,𝑚−1 . . . 𝜓𝑚−1,1

 ⊗ 𝐼𝑛𝑐 +


𝑆𝑐

𝑠𝑐𝛼𝑐
. . .

. . .
. . .

𝑠𝑐𝛼𝑐 𝑆𝑐


,

𝑆10 =


0𝑛𝑝 . . .

𝑠𝑝𝛼𝑐

𝑠𝑝𝛼𝑐

. . .

 , 𝑆11(𝑟) = 𝑟𝑞


𝜙1,1
...

. . .

𝜙𝑚,𝑚 . . . 𝜙𝑚,1

 ⊗ 𝐼𝑛𝑝 +

𝑆𝑝

. . .

. . .

𝑆𝑝


,

where ⊗ denotes the Kronecker product and 𝐼𝑘 denotes the identity matrix of size 𝑘 × 𝑘.
The matrix 𝐴0(𝑟) contains the possible transitions for which the level ℓ > 0 remains
unchanged, this is when child jobs are stolen, or when a waiting child moves into service,
or when phase of the job in service changes. Hence

𝐴0(𝑟) = 𝑆(𝑟) − �𝐼 − 𝑟𝑞𝐼.

Here, 𝐼 = 𝐼𝑚𝑛𝑐+(𝑚+1)𝑛𝑝 . Whenever it is clear what dimensions an identity matrix should
have, we simply write 𝐼 for the identity matrix of the appropriate size. Note that even
when there are no child jobs waiting, the rate 𝑟𝑞 appears on the main diagonal of 𝐴0(𝑟)
due to the negative parent arrivals. When ℓ = 0 there are no parent jobs waiting and
therefore the negative parent arrivals that occur in phases (1, 0, 𝑘) and (𝑚 + 1, 1, 𝑘′), for
𝑘 = 1, . . . , 𝑛𝑐 and 𝑘′ = 1, . . . , 𝑛𝑝 , have no impact. This implies that

𝐵0(𝑟) = 𝐴0(𝑟) + 𝑟𝑞𝑉0 = 𝑆(𝑟) − �𝐼 − 𝑟𝑞(𝐼 −𝑉0),

where 𝑉0 = diag
( [

1′𝑛𝑐 0′(𝑚−1)𝑛𝑐 1′𝑛𝑝 0′𝑚𝑛𝑝
] )

, with 1𝑖 a column vector of ones of size 𝑖.
The level ℓ can only decrease by one due to a service completion from a phase with no
pending child jobs, that is, from phases (1, 0, 𝑘) and (𝑚 + 1, 1, 𝑘′), for 𝑘 = 1, . . . , 𝑛𝑐 and
𝑘′ = 1, . . . , 𝑛𝑝 . To capture these events define � =

[
(𝑠𝑐)′ 0′(𝑚−1)𝑛𝑐 (𝑠𝑝)′ 0′𝑚𝑛𝑝

] ′
. The
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level can also decrease due to a negative parent arrival when ℓ > 0. The matrix 𝐴−1(𝑟)
records the transitions for which the level decreases and therefore equals

𝐴−1(𝑟) = �𝛼 + 𝑟𝑞𝑉0.

Finally, parent job arrivals always increase the level by one:

𝐴1 = �𝐼.

Denote by 𝐴(𝑟) = 𝐴−1(𝑟) + 𝐴0(𝑟) + 𝐴1, the generator of the phase process, then

𝐴(𝑟) = 𝑆(𝑟) + �𝛼 − 𝑟𝑞(𝐼 −𝑉0).

Define
𝜋∗(𝑟) = lim

𝑡→∞
𝑃[𝑋𝑡(𝑟) = 0, 𝑌𝑡(𝑟) = 0, 𝑍𝑡(𝑟) = 0,𝑊𝑡(𝑟) = 0],

and for ℓ ≥ 0,

𝜋ℓ (𝑟) = (𝜋ℓ ,1,0(𝑟), . . .𝜋ℓ ,𝑚,0(𝑟),𝜋ℓ ,0,1(𝑟), . . . ,𝜋ℓ ,𝑚,1(𝑟)),

where

𝜋ℓ , 𝑗,0(𝑟) = (𝜋ℓ , 𝑗,0,1(𝑟), . . . ,𝜋ℓ , 𝑗,0,𝑛𝑐 (𝑟))
𝜋ℓ , 𝑗,1(𝑟) = (𝜋ℓ , 𝑗,1,1(𝑟), . . . ,𝜋ℓ , 𝑗,1,𝑛𝑝 (𝑟))

and where

𝜋ℓ , 𝑗,𝑘,𝑤(𝑟) = lim
𝑡→∞

𝑃[𝑋𝑡(𝑟) = ℓ , 𝑌𝑡(𝑟) = 𝑗 , 𝑍𝑡(𝑟) = 𝑘,𝑊𝑡(𝑟) = 𝑤].

Due to the QBD structure [60], we have

𝜋0(𝑟) = 𝜋∗(𝑟)𝑅0(𝑟), (9.2)

where 𝑅0(𝑟) is a row vector of size 𝑚𝑛𝑐 + (𝑚 + 1)𝑛𝑝 and for ℓ ≥ 1,

𝜋ℓ (𝑟) = 𝜋0(𝑟)𝑅(𝑟)ℓ , (9.3)

where 𝑅(𝑟) is a (𝑚𝑛𝑐 + (𝑚 + 1)𝑛𝑝) × (𝑚𝑛𝑐 + (𝑚 + 1)𝑛𝑝) matrix and by [48] the smallest
nonnegative solution to

𝐴1 + 𝑅(𝑟)𝐴0(𝑟) + 𝑅(𝑟)2𝐴−1(𝑟) = 0.

Also, due to the balance equations with ℓ = 0, we have

𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)� 𝑗 + (� + �𝑝(𝑟))𝛼 + 𝑅0(𝑟)𝐵0(𝑟) + 𝑅0(𝑟)𝑅(𝑟)𝐴−1(𝑟) = 0

and due to [48, Chapter 6]
𝐴1𝐺(𝑟) = 𝑅(𝑟)𝐴−1(𝑟),

where 𝐺(𝑟) is the smallest nonnegative solution to

𝐴−1(𝑟) + 𝐴0(𝑟)𝐺(𝑟) + 𝐴1𝐺(𝑟)2 = 0.
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Combining the above yields the following expression:

𝑅0(𝑟) = −
( 𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)� 𝑗 + (� + �𝑝(𝑟))𝛼
)
(𝐵0(𝑟) + �𝐼𝐺(𝑟))−1 , (9.4)

where𝐵0(𝑟)+�𝐼𝐺(𝑟) is a subgenerator matrix and is therefore invertible. We note that𝑅(𝑟)
and 𝐺(𝑟) are independent of �𝑐,1(𝑟), . . . ,�𝑐,𝑚(𝑟) and �𝑝(𝑟) and can be computed easily us-
ing the toolbox presented in [5]. To fully characterize the QBD in terms of �, 𝛼𝑐 , 𝑆𝑐 , 𝛼𝑝 , 𝑆𝑝
and the probabilities 𝑝𝑖 , 𝜙𝑖 , 𝑗 and 𝜓𝑖 , 𝑗 , we need to specify �𝑐,1(𝑟), . . . ,�𝑐,𝑚(𝑟) and �𝑝(𝑟).

To determine these rates we use the following observation: 𝑞 = 1 − 𝜌 should be the
probability that the QBD is in state (0, 0, 0, 0) and in this state batches of 𝑗 child jobs
arrive at rate �𝑐,𝑗(𝑟). Therefore 𝑞�𝑐,𝑗(𝑟) should equal the parent arrival rate � times the
expected number of times that a batch of 𝑗 child jobs is stolen per parent job. The main
difficulty in using this equality lies in the fact that we must also take into account that a
child job can be stolen several times before it is executed.

To this end and as a preparation for Proposition 9.3.3, we define recursively the row vector
𝑝𝑖 , 𝑗(𝑟) such that the 𝑘-th entry of 𝑝𝑖 , 𝑗(𝑟) is the probability that the phase (𝑖 , 𝑗 , 𝑘) is visited
by the queue during the service of a job just after an arrival, a steal or a completion.
By conditioning on whether we first have a service completion or steal event, we have

𝑝1,𝑚(𝑟) = 𝑝𝑚𝛼
𝑝

𝑝1,𝑖(𝑟) = 𝑝𝑖𝛼
𝑝 + 𝑟𝑞

∑
𝑗>𝑖

𝜙 𝑗 , 𝑗−𝑖𝑝1, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−1 ,

for 𝑖 ∈ {0, . . . , 𝑚 − 1}. For 𝑖 ∈ {1, . . . , 𝑚}, with 𝑝0,𝑚+1 = 0, we further have

𝑝0,𝑖(𝑟) = 𝑝1,𝑖(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑝0,𝑖+1(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐

+ 𝑟𝑞
∑
𝑗>𝑖

𝜓 𝑗−1, 𝑗−𝑖𝑝0, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1.

Note that
𝑝1,0(𝑟)1 + 𝑝0,1(𝑟)1 = 1, (9.5)

as every queue eventually visits phase (0, 1, 𝑘) or (1, 0, 𝑘) for some 𝑘 just after a completion
or a steal.
We also define the row vector 𝑝 𝑗

𝑖
(𝑟) recursively, where 𝑘-th entry is the probability that

the queue visits phase (0, 𝑖 , 𝑘) just after a completion or a steal has occurred, given that
the queue started with 𝑗 child jobs. We have

𝑝
𝑗

𝑗
(𝑟) = 𝛼𝑐 ,

𝑝
𝑗

𝑖
(𝑟) = 𝑝

𝑗

𝑖+1(𝑟)(𝑟𝑞𝐼 − 𝑆
𝑐)−1𝑠𝑐𝛼𝑐 + 𝑟𝑞

𝑗∑
𝑘=𝑖+1

𝜓𝑘−1,𝑘−𝑖𝑝
𝑗

𝑘
(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1 ,

for 𝑖 ∈ {1, . . . , 𝑗 − 1}. Note that we have 𝑝 𝑗1(𝑟)1 = 1, for 1 ≤ 𝑗 ≤ 𝑚, as the QBD eventually
visits phase (0, 1, 𝑘) for some 𝑘 just after a completion or a steal. We are now in a position
to define �𝑐,𝑖(𝑟) recursively as:

�𝑐,𝑚(𝑟) =
�
𝑞
𝑟𝑞𝜙𝑚,𝑚𝑝1,𝑚(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−11
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�𝑐,𝑖(𝑟) =
�
𝑞
𝑟𝑞

∑
𝑗≥𝑖

𝜙 𝑗 ,𝑖𝑝1, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−11 + �
𝑞
𝑟𝑞

∑
𝑗>𝑖

𝜓 𝑗−1,𝑖𝑝0, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−11

+ 𝑟𝑞
𝑚∑

𝑗=𝑖+1
�𝑐,𝑗(𝑟)

𝑗∑
𝑘=𝑖+1

𝜓𝑘−1,𝑖𝑝
𝑗

𝑘
(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−11 (9.6)

for 𝑖 ∈ {1, . . . , 𝑚 − 1}. Note that 𝑟𝑞
∑𝑛𝑝

𝑗=1[(𝑟𝑞𝐼 − 𝑆𝑝)−1]𝑖 , 𝑗 is the probability that a steal
happens before the completion of the parent, given that the parent started service in
phase 𝑖. It then follows that 𝑟𝑞𝜙𝑚,𝑚𝑝1,𝑚(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−11 indeed equals the expected
number of batches of size 𝑚 that are stolen per parent job (as the job must spawn 𝑚 child
jobs and these must be stolen as a batch before the parent completes service). For 𝑖 < 𝑚,
the first two sums of (9.6) represent the expected number of size 𝑖 batches that are stolen
from the original server, while the double sum counts the expected number of such steals
that occur on a server different from the original server.

Note, that if parent and child jobs have acyclic phase type1 job requirements, we can
avoid taking inverses of matrices when computing �𝑐,1(𝑟), . . . ,�𝑐,𝑚(𝑟). We illustrate this
through two examples.
Let 𝑝𝑖 , 𝑗 ,𝑘(𝑟) denote the probability that the QBD visits phase (𝑖 , 𝑗 , 𝑘) during the service of
a job. Let further 𝑝 𝑗 ,𝑘

𝑖,ℓ
(𝑟), for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚 and 𝑘, ℓ = 1, . . . , 𝑛𝑐 , denote the probability that

the QBD visits phase (0, 𝑖 , ℓ ) given that it is in the phase (0, 𝑗 , 𝑘) before a job completes
service.

Example 9.3.1 (Hyperexponential job requirements). Suppose parent and child jobs have
PH(𝛼𝑝 ,−𝑑𝑖𝑎𝑔([�𝑝1 , . . . , �

𝑝
𝑛𝑝 ])) and PH(𝛼𝑐 ,−𝑑𝑖𝑎𝑔([�𝑐1 , . . . , �𝑐𝑛𝑐 ])) distributed job require-

ments respectively, i.e. the parent and child job sizes are hyperexponential. We then
have

𝑝1,𝑚,𝑗(𝑟) = 𝑝𝑚𝛼
𝑝

𝑗
,

𝑝1,𝑖 , 𝑗(𝑟) = 𝑝𝑖𝛼
𝑝

𝑗
+

𝑟𝑞

𝑟𝑞 + �
𝑝

𝑗

∑
𝑘>𝑖

𝑝1,𝑘, 𝑗(𝑟)𝜙𝑘,𝑘−𝑖

for 𝑖 ∈ {0, . . . , 𝑚 − 1} and

𝑝0,𝑖 , 𝑗(𝑟) =
( 𝑛𝑝∑
𝑘=1

�
𝑝

𝑘

𝑟𝑞 + �
𝑝

𝑘

𝑝1,𝑖 ,𝑘(𝑟) +
𝑛𝑐∑
𝑘=1

�𝑐
𝑘

𝑟𝑞 + �𝑐
𝑘

𝑝0,𝑖+1,𝑘(𝑟)
)
𝛼𝑐𝑗

+ 𝑟𝑞

𝑟𝑞 + �𝑐
𝑗

∑
𝑘>𝑖

𝑝0,𝑘, 𝑗(𝑟)𝜓𝑘−1,𝑘−𝑖 ,

for 𝑖 ∈ {1, . . . , 𝑚}, with 𝑝0,𝑚+1, 𝑗 = 0. Note that (9.5) can be written as
𝑛𝑝∑
𝑗=1

𝑝1,0, 𝑗(𝑟) +
𝑛𝑐∑
𝑗=1

𝑝0,1, 𝑗(𝑟) = 1.

We further have

𝑝
𝑗 ,𝑘

𝑗,ℓ
(𝑟) = 1[𝑘 = ℓ ],

1A phase type distribution characterized by (𝛼, 𝑆) is acyclic if the rows and columns of 𝑆 can be permuted
to make 𝑆 upper triangular.
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𝑝
𝑗 ,𝑘

𝑖,𝑘′(𝑟) = 𝛼𝑐
𝑘′

𝑛𝑐∑
ℓ=1

�𝑐
ℓ

𝑟𝑞 + �𝑐
ℓ

𝑝
𝑗 ,𝑘

𝑖+1,ℓ (𝑟) +
𝑟𝑞

𝑟𝑞 + �𝑐
𝑘′

𝑗∑
ℓ=𝑖+1

𝜓ℓ−1,ℓ−𝑖𝑝
𝑗 ,𝑘

ℓ ,𝑘′(𝑟).

Note that we have
∑𝑛𝑐
ℓ=1 𝑝

𝑗 ,𝑘

1,ℓ (𝑟) = 1. We can now calculate �𝑐,𝑖(𝑟) by using the following
recursive formula:

�𝑐,𝑚(𝑟) =
�
𝑞
𝜙𝑚,𝑚

𝑛𝑝∑
𝑘=1

𝑟𝑞

𝑟𝑞 + �
𝑝

𝑘

𝑝1,𝑚,𝑘(𝑟)

�𝑐,𝑖(𝑟) =
�
𝑞

∑
𝑗≥𝑖

𝜙 𝑗 ,𝑖

𝑛𝑝∑
𝑘=1

𝑟𝑞

𝑟𝑞 + �
𝑝

𝑘

𝑝1, 𝑗 ,𝑘(𝑟) +
�
𝑞

∑
𝑗>𝑖

𝜓 𝑗−1,𝑖

𝑛𝑐∑
𝑘=1

𝑟𝑞

𝑟𝑞 + �𝑐
𝑘

𝑝0, 𝑗 ,𝑘(𝑟)

+
𝑚∑

𝑗=𝑖+1
�𝑐,𝑗(𝑟)

𝑛𝑐∑
𝑘′ ,𝑘=1

𝛼𝑐
𝑘′

𝑗∑
𝑘=𝑖+1

𝜓𝑘−1,𝑖
𝑟𝑞

𝑟𝑞 + �𝑐
𝑘

𝑝
𝑗 ,𝑘′

𝑘,𝑘
(𝑟).

Example 9.3.2 (Erlang job requirements). Suppose parents and children have Erlang
distributed job requirements with 𝑛𝑐 and 𝑛𝑝 phases respectively and with

𝑆𝑝 =


−�1 �1

. . .
. . .

−�1 �1
−�1

 and 𝑆𝑐 =


−�2 �2

. . .
. . .

−�2 �2
−�2


for some �1 , �2 > 0. For ease of notation, set 𝑝𝑖 , 𝑗 ,0(𝑟) = 0. We have the following recursion

𝑝1,𝑖 ,𝑘(𝑟) = 1[𝑘 = 1]𝑝𝑖 +
�1

𝑟𝑞 + �1
𝑝1,𝑖 ,𝑘−1(𝑟) +

𝑟𝑞

𝑟𝑞 + �1

∑
𝑗>𝑖

𝜙 𝑗 , 𝑗−𝑖𝑝1, 𝑗 ,𝑘(𝑟),

for 𝑖 = 1, . . . , 𝑚 and 𝑘 = 1, . . . , 𝑛𝑝 . We further have

𝑝0,𝑖 ,𝑘(𝑟) = 1[𝑘 = 1] �1

𝑟𝑞 + �1
𝑝1,𝑖 ,𝑛𝑝 (𝑟) + 1[𝑘 = 1] �2

𝑟𝑞 + �2
𝑝0,𝑖+1,𝑛𝑐

+ �2

𝑟𝑞 + �2
𝑝0,𝑖 ,𝑘−1 +

𝑟𝑞

𝑟𝑞 + �2

∑
𝑗>𝑖

𝜓 𝑗−1, 𝑗−𝑖𝑝0, 𝑗 ,𝑘(𝑟)

for 𝑖 = 1, . . . , 𝑚 and 𝑘 = 1, . . . , 𝑛𝑐 . When there are no pending children in a queue, we
can only have a phase change or a completion of the job in service. We therefore have:

𝑝1,0,𝑘(𝑟) = 1[𝑘 = 1]𝑝0 + 𝑝1,0,𝑘−1(𝑟) +
𝑟𝑞

𝑟𝑞 + �1

𝑚∑
𝑗=1

𝜙 𝑗 , 𝑗𝑝1, 𝑗 ,𝑘(𝑟),

𝑝0,1,𝑘(𝑟) = 1[𝑘 = 1]
�1

𝑟𝑞 + �1
𝑝1,1,𝑛𝑝 (𝑟) + 1[𝑘 = 1]

�2

𝑟𝑞 + �2
𝑝0,2,𝑛𝑐

+ 𝑝0,1,𝑘−1 +
𝑟𝑞

𝑟𝑞 + �2

∑
𝑗>1

𝜓 𝑗−1, 𝑗−1𝑝0, 𝑗 ,𝑘(𝑟).

In case of Erlang job requirements, (9.5) becomes

𝑝1,0,𝑛𝑝 (𝑟) + 𝑝0,1,𝑛𝑐 (𝑟) = 1.
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For ease of notation set 𝑝 𝑗 ,𝑘
𝑖,0 (𝑟) = 𝑝

𝑗 ,0
𝑖 ,𝑘
(𝑟) = 0. Then

𝑝
𝑗 ,𝑘

𝑗,𝑘
(𝑟) = 1

𝑝
𝑗 ,𝑘

𝑖,𝑘
(𝑟) = 1[𝑘 = 1] �2

𝑟𝑞 + �2
𝑝
𝑗 ,𝑘

𝑖+1,𝑛𝑐 (𝑟) +
�2

𝑟𝑞 + �2
𝑝
𝑗 ,𝑘

𝑖,𝑘−1
(𝑟) + 𝑟𝑞

𝑟𝑞 + �2

𝑗∑
ℓ=𝑖+1

𝜓ℓ−1,ℓ−𝑖𝑝
𝑗 ,𝑘

ℓ ,𝑘
(𝑟),

for 𝑗 = 2, . . . , 𝑚, 𝑖 = 2, . . . , 𝑗 and 𝑘, 𝑘 = 1, . . . , 𝑛𝑐 . We further have

𝑝1,𝑘
1,ℓ (𝑟) = 1[𝑘 ≤ ℓ ]

𝑝
𝑗 ,𝑘

1,𝑘
(𝑟) = 1[𝑘 = 1] �2

𝑟𝑞 + �2
𝑝
𝑗 ,𝑘

2,𝑛𝑐 (𝑟) + 𝑝
𝑗 ,𝑘

1,𝑘−1
(𝑟) + 𝑟𝑞

𝑟𝑞 + �2

𝑗∑
ℓ=2

𝜓ℓ−1,ℓ−1𝑝
𝑗 ,𝑘

ℓ ,𝑘
(𝑟).

Note that 𝑝 𝑗 ,𝑘1,𝑛𝑐 (𝑟) = 1. We now get the following recursive formula for �𝑐,𝑖(𝑟):

�𝑐,𝑚(𝑟) =
�
𝑞

𝑟𝑞

𝑟𝑞 + �1
𝜙𝑚,𝑚

𝑛𝑝∑
𝑘=1

𝑝1,𝑚,𝑘(𝑟)

�𝑐,𝑖(𝑟) =
�
𝑞

𝑟𝑞

𝑟𝑞 + �1

∑
𝑗≥𝑖

𝜙 𝑗 ,𝑖

𝑛𝑝∑
𝑘=1

𝑝1, 𝑗 ,𝑘(𝑟) +
�
𝑞

𝑟𝑞

𝑟𝑞 + �2

∑
𝑗>𝑖

𝜓 𝑗−1,𝑖

𝑛𝑐∑
𝑘=1

𝑝0, 𝑗 ,𝑘(𝑟)

+ 𝑟𝑞

𝑟𝑞 + �2

𝑚∑
𝑗=𝑖+1

�𝑐,𝑗(𝑟)
𝑗∑

𝑘=𝑖+1
𝜓𝑘−1,𝑖

𝑛𝑐∑̃
𝑘=1

𝑝
𝑗 ,1
𝑘,𝑘

(𝑟).

We now continue with the description of the QBD. We still need to define �𝑝(𝑟), for this
we demand that 𝜋∗(𝑟) = 𝑞 and that

𝜋∗(𝑟) +
∑
ℓ≥0

𝜋ℓ (𝑟)1 = 1.

Then from equations (9.2) and (9.3),

𝑞
(
1 + 𝑅0(𝑟)(𝐼 − 𝑅(𝑟))−11

)
= 1, (9.7)

where the inverse of 𝐼 − 𝑅(𝑟) exists due to Proposition 9.3.3. Using (9.4) and (9.7) we get:

�𝑝(𝑟) =
(1 − 𝑞) − 𝑞(∑𝑚

𝑗=1 �𝑐,𝑗(𝑟)� 𝑗 + �𝛼)𝑤
𝑞𝛼𝑤

, (9.8)

with 𝑤 = −(𝐵0(𝑟) + �𝐼𝐺(𝑟))−1(𝐼 − 𝑅(𝑟))−11. Note that �𝑝(𝑟) is well-defined for 𝑞 > 0, i.e.
𝜌 < 1. This completes the description of the QBD Markov chain.

Proposition 9.3.3. The QBD process {𝑋𝑡(𝑟), 𝑌𝑡(𝑟), 𝑍𝑡(𝑟),𝑊𝑡(𝑟) : 𝑡 ≥ 0} has a unique stationary
distribution for any 𝑟 ≥ 0 if 𝜌 < 1.

Proof. The positive recurrence of the QBD process only depends on the matrices 𝐴−1(𝑟),
𝐴0(𝑟) and 𝐴1 [60]. These three matrices are the same three matrices as those of the QBD
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characterizing the M/MAP/1 queue where the MAP service process is characterized by
(𝑆0(𝑟), 𝑆1(𝑟)) with 𝑆0(𝑟) = 𝑆(𝑟) − 𝑟𝑞𝐼 and 𝑆1(𝑟) = �𝛼 + 𝑟𝑞𝑉0. As such the QBD process
is positive recurrent if and only if the arrival rate � is less than the service completion
intensity of the MAP (𝑆0(𝑟), 𝑆1(𝑟)). This intensity equals�(𝑟)𝑆1(𝑟)1/�(𝑟)1, where the vector
�(𝑟) is such that �(𝑟)(𝑆0(𝑟) + 𝑆1(𝑟)) = 0.

We note that 𝑆0(𝑟) + 𝑆1(𝑟) = 𝐴−1(𝑟) + 𝐴0(𝑟) + 𝐴1 = 𝐴(𝑟) and define

�(𝑟)
(0,1) = 𝑝0,1(𝑟)(−𝑆𝑐)−1 , �(𝑟)

(0,𝑖′) = 𝑝0,𝑖′(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1 ,

�(𝑟)
(1,0) = 𝑝1,0(𝑟)(−𝑆𝑝)−1 , �(𝑟)

(1,𝑖) = 𝑝1,𝑖(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−1 ,

for 𝑖′ = 2, . . . , 𝑚 and for 𝑖 = 1, . . . , 𝑚. Define 𝑣(𝑟) = �(𝑟)𝐴(𝑟). Then

𝑣
(𝑟)
(0,𝑖′) = −𝑝0,𝑖′(𝑟) + 𝑝1,𝑖′(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑝0,𝑖′+1(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐

+ 𝑟𝑞
∑
𝑗>𝑖′

𝜓 𝑗−1, 𝑗−𝑖′𝑝0, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1 = 0,

for 𝑖′ = 1, . . . , 𝑚. By using (9.5), we further get

𝑣
(𝑟)
(1,𝑖) = −𝑝1,𝑖(𝑟) + 𝑝𝑖(𝑝0,1(𝑟)(−𝑆𝑐)−1𝑠𝑐 + 𝑝1,0(𝑟)(−𝑆𝑝)−1𝑠𝑝)𝛼𝑝

+ 𝑟𝑞
∑
𝑗>𝑖

𝜙 𝑗 , 𝑗−𝑖𝑝1, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−1

= −𝑝1,𝑖(𝑟) + 𝑝𝑖𝛼𝑝 + 𝑟𝑞
∑
𝑗>𝑖

𝜙 𝑗 , 𝑗−𝑖𝑝1, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−1 = 0,

for 𝑖 = 0, . . . , 𝑚. Hence �(𝑟)𝐴(𝑟) = �(𝑟)(𝑆0(𝑟) + 𝑆1(𝑟)) = 0. As

�(𝑟)𝑆1(𝑟)1
�(𝑟)1

=
1

�(𝑟)1

(
𝑝0,1(𝑟)(−𝑆𝑐)−1𝑠𝑐 + 𝑝1,0(𝑟)(−𝑆𝑝)−1𝑠𝑝 + 𝑟𝑞𝑝0,1(𝑟)(−𝑆𝑐)−11 + 𝑟𝑞𝑝1,0(𝑟)(−𝑆𝑝)−11

)
≥ 1

�(𝑟)1
(𝑝0,1(𝑟)(−𝑆𝑐)−1𝑠𝑐 + 𝑝1,0(𝑟)(−𝑆𝑝)−1𝑠𝑝) = 1

�(𝑟)1
,

it suffices that � < 1/�(𝑟)1 for the chain to be positive recurrent. For 𝑟 = 0 we have
𝑝1,𝑖(𝑟) = 𝑝𝑖𝛼𝑝 and 𝑝0,𝑖′(𝑟) =

∑
𝑗≥𝑖′ 𝑝 𝑗𝛼

𝑐 , which implies that �(0)1 = 𝜌/�. Therefore
� < 1/�(0)1 is equivalent to demanding that 𝜌 < 1. As �(𝑟)1 is the mean time between
two service completions of the MAP process where the state is reset according to the
vector 𝛼, we have that �(𝑟)1 decreases in 𝑟. This completes the proof as 𝜌 < 1 implies that
� < 1/�(0)1 ≤ 1/�(𝑟)1. □

9.4 Response time distribution

We define 𝑇(𝑟) as the response time of a job in a system with probe rate 𝑟. The response
time is defined as the length of the time interval between the arrival of a parent job and
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the completion of this parent job and all of its spawned child jobs. 𝑇(𝑟) can be expressed
as the sum of the waiting time𝑊(𝑟) and the service time 𝐽(𝑟). The waiting time is defined
as the amount of time that the parent job waits in the queue before its service starts.
Clearly, the waiting and the service time of a job are independent in our QBD model.

By repeating the arguments from the proof of Theorem 7.6.1, we find that 𝑊(𝑟) can be
expressed as:

Theorem 9.4.1. The distribution of the waiting time is given by

𝑃[𝑊(𝑟) > 𝑡] = (1′ ⊗ 𝜋0(𝐼 − 𝑅(𝑟))−1)𝑒W𝑡𝑣𝑒𝑐⟨𝐼⟩

with W = ((𝐴0(𝑟) + 𝐴1)′ ⊗ 𝐼) + ((𝐴−1(𝑟))′ ⊗ 𝑅(𝑟)) and where 𝑣𝑒𝑐⟨·⟩ is the column stacking
operator. The mean waiting time is

𝐸 [𝑊(𝑟)] =
∫ ∞

0
𝑃 [𝑊(𝑟) > 𝑡] 𝑑𝑡

= (1′ ⊗ 𝜋0(𝐼 − 𝑅(𝑟))−1)(−W)−1𝑣𝑒𝑐⟨𝐼⟩.

We now focus on the service time 𝐽(𝑟). We can derive recursive formulas for 𝑃[𝐽(𝑟) < 𝑡]
which turn out to not be very suitable for numerical calculations. Therefore, we omit
them in this chapter. We can also find a formula for the mean service time for general
PH distributed child and parent jobs, however, to improve readability, we opt to present
here a scheme for calculating the mean service time in case of hyperexponential parent
and child job service requirements. The general formula for the mean response time and
its lengthy derivation can be found in the next section.

Consider a set of 𝑗 servers, where the 𝑘-th server contains 𝑖𝑘 child jobs, with the child job
in service being in phase 𝑓𝑘 , where 𝑗 ≥ 1, 0 ≤ 𝑖1+· · ·+𝑖 𝑗 ≤ 𝑚 and 𝑖𝑘 ≥ 0 for 𝑘 = 1, . . . , 𝑗. Let
𝐸
𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟) be the expected time until all these child jobs have completed service. Define

similarly �̄� 𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟), except that the first server contains 𝑖1 pending child jobs and a parent
job that is in service and is in phase 𝑓1. By definition, we can drop 𝑖𝑘 ’s that are zero (except
𝑖1 in �̄� 𝑓1 ,..., 𝑓𝑗

𝑖1 ,...,𝑖 𝑗
(𝑟)) as long as we drop the corresponding upper indices. We also can permute

the indices of 𝐸 𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟) except the first one of �̄� 𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟), as long as we permute upper
and lower indices in the same way. We have 𝐸𝑘1 (𝑟) = 1/𝑠𝑐

𝑘
and �̄�𝑘0 (𝑟) = 1/𝑠𝑝

𝑘
, as 𝐸𝑘1 (𝑟) (resp.

�̄�𝑘0 (𝑟)) simply denotes the mean time until completion of a single child (resp. parent) job
in phase 𝑘. Consider a configuration with 𝑗 ≥ 1 queues, with queue 𝑘 = 1, . . . , 𝑗 having
𝑖𝑘 children and the child in service being in phase 𝑓𝑘 . A service completion in the 𝑘-th
queue therefore occurs at rate 𝑠𝑐

𝑓𝑘
, which decreases 𝑖𝑘 by 1. If 𝑖𝑘 > 1, then the next child

job starts service in phase 𝑠 with probability 𝛼𝑐𝑠 . A steal can only occur in the 𝑘-th queue if
𝑖𝑘 > 1, in this case, at rate 𝑟𝑞, � jobs get transferred with probability𝜓𝑖𝑘−1,� to a new queue
and the first of these children start service in phase 𝑠 with probability 𝛼𝑐𝑠 . The total rate
at which jobs get completed and stolen equals

∑𝑗

𝑘=1 𝑠
𝑐
𝑓𝑘

and 𝑟𝑞
∑𝑗

𝑘=1 1[𝑖𝑘 > 1] respectively.

As such it takes on average 1/∑𝑗

𝑘=1(𝑠
𝑐
𝑓𝑘
+ 𝑟𝑞1[𝑖𝑘 > 1]) units of time until a completion or

a steal occurs and the probability that a completion (resp. a steal) occurs in 𝑘-th server
is given by 𝑠𝑐

𝑓𝑘
/∑𝑗

𝑘=1(𝑠
𝑐
𝑓𝑘
+ 𝑟𝑞1[𝑖𝑘 > 1]) (resp. 𝑟𝑞1[𝑖𝑘 > 1]/∑𝑗

𝑘=1(𝑠
𝑐
𝑓𝑘
+ 𝑟𝑞1[𝑖𝑘 > 1])). We
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therefore get the following recursive relations:

𝐸
𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟) = 1∑𝑗

𝑘=1(𝑠
𝑐
𝑓𝑘
+ 𝑟𝑞1[𝑖𝑘 > 1])

(
1 +

𝑗∑
𝑘=1

𝑠𝑐
𝑓𝑘

𝑛𝑐∑
𝑠=1

𝛼𝑐𝑠𝐸
𝑓1 ,..., 𝑓𝑘−1 ,𝑠 , 𝑓𝑘+1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖 𝑗

(𝑟)

+ 𝑟𝑞
𝑗∑

𝑘=1
1[𝑖𝑘 > 1]

𝑖𝑘−1∑
�=1

𝜓𝑖𝑘−1,�

𝑛𝑐∑
𝑠=1

𝛼𝑐𝑠𝐸
𝑓1 ,..., 𝑓𝑗 ,𝑠

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−�,𝑖𝑘+1 ,...,𝑖 𝑗 ,𝑘
(𝑟)

)
.

Similarly, we can derive a recursive formula for �̄� 𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟), except that now we have a
parent job being served in the first queue:

�̄�
𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟) = 1
𝑠
𝑝

𝑓1
+ 𝑟𝑞1[𝑖1 > 0] +∑𝑗

𝑘=2(𝑠
𝑐
𝑓𝑘
+ 𝑟𝑞1[𝑖𝑘 > 1])

(
1

+ 𝑠𝑝
𝑓1

𝑛𝑐∑
𝑠=1

𝛼𝑐𝑠𝐸
𝑠, 𝑓2 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟) + 𝑟𝑞1[𝑖1 > 0]
𝑖1∑
𝑘=1

𝜙𝑖1 ,𝑘

𝑛𝑐∑
𝑠=1

𝛼𝑐𝑠 �̄�
𝑓1 ,..., 𝑓𝑗 ,𝑠

𝑖1−𝑘,𝑖2 ,...,𝑖 𝑗 ,𝑘(𝑟)

+
𝑗∑

�=2
𝑠𝑐
𝑓�

𝑛𝑐∑
𝑠=1

𝛼𝑐𝑠 �̄�
𝑓1 ,..., 𝑓�−1 ,𝑠 , 𝑓�+1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖�−1 ,𝑖�−1,𝑖�+1 ,...,𝑖 𝑗

(𝑟)

+ 𝑟𝑞
𝑗∑

�=2
1[𝑖� > 1]

𝑖�−1∑
𝑘=1

𝜓𝑖�−1,𝑘

𝑛𝑐∑
𝑠=1

𝛼𝑐𝑠 �̄�
𝑓1 ,..., 𝑓𝑗 ,𝑠

𝑖1 ,...,𝑖�−1 ,𝑖�−𝑘,𝑖�+1 ,...,𝑖 𝑗 ,𝑘
(𝑟)

)
.

We then have

𝐸[𝐽(𝑟)] =
𝑚∑
𝑘=0

𝑝𝑘

𝑛𝑝∑
𝑖=1

𝛼
𝑝

𝑖
�̄�𝑖
𝑘
(𝑟).

Hence, for hyperexponential job sizes we have a recursive formula for the mean service
time. The idea of this formula can be extended to the case where parent and child jobs
have acyclic phase type distributed job requirements, where we condition not only on
whether we have a steal or a service completion, but also on whether we have a phase
change.

We end this section with an explanation on how to implement the recursive formulas
𝐸
𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟) and �̄�
𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟). We first explain how to compute 𝐸 𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟), where we assume
without loss of generality that 𝑖1 ≥ 𝑖2 ≥ · · · ≥ 𝑖 𝑗 . For 𝑘 = 1, 2, . . . , 𝑚, let 𝔭𝑘 denote the
number of unique partitions of integer 𝑘 and let the 𝔭𝑘× 𝑘 matrix 𝑃𝑘 be a list of the unique
partitions of integer 𝑘, for example

𝑃4 =


4 0 0 0
3 1 0 0
2 2 0 0
2 1 1 0
1 1 1 1


and 𝔭4 = 5. If 𝑖1 + 𝑖2 + · · · + 𝑖 𝑗 = 𝑘, then if we ignore the zeros of 𝑃𝑘 , its rows contain
all possible tuples (𝑖1 , . . . , 𝑖 𝑗). Note, that the number of queues in a given configuration
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that can have their jobs stolen is simply given by the number of integers greater than 1 in
the corresponding row of 𝑃𝑘 . Similarly, the number of busy servers in a configuration is
given by the number of non-zero entries in the corresponding row of 𝑃𝑘 .
For 𝑘 = 1, . . . , 𝑚 set 𝐸𝑘 as the zero matrix of size 𝔭𝑘×𝑛𝑘𝑐 . If 𝑖1+· · ·+ 𝑖 𝑗 = 𝑘 and if (𝑖1 , . . . , 𝑖 𝑗)
can be found in the 𝑔-th row of 𝑃𝑘 , then we would like the (𝑔, ℎ)-th entry of 𝐸𝑘 to be equal
to 𝐸 𝑓1 ,..., 𝑓𝑗

𝑖1 ,...,𝑖 𝑗
(𝑟), where ℎ = 1 + ∑𝑗

𝑠=1( 𝑓𝑠 − 1)𝑛𝑠−1
𝑐 . To calculate the entries of the 𝑔-th row of

𝐸𝑘 we only need to know the lower rows of 𝐸𝑘 (due to steals) and the matrix 𝐸𝑘−1 (due
to completions). As 𝐸1 = [1/𝑠𝑐1 , . . . , 1/𝑠𝑐𝑛𝑐 ], we can calculate the entries of 𝐸𝑘 inductively,
where, for every 𝑘, the rows of 𝐸𝑘 are calculated from the bottom up.

�̄�
𝑓1 ,..., 𝑓𝑗
𝑖1 ,...,𝑖 𝑗

(𝑟) can be computed similarly, although we now have to account for the parent in
the first server. W.l.o.g. assume that 𝑖2 ≥ 𝑖3 ≥ · · · ≥ 𝑖 𝑗 , 𝑖1 ≥ 0 and 1 + 𝑖1 + 𝑖2 + · · · + 𝑖 𝑗 = 𝑘.
Let �̄�𝑘 be the matrix containing all the tuples (𝑖1 , . . . , 𝑖 𝑗). Let �̄�𝑘 denote the number of
rows of �̄�𝑘 . We denote the zero matrix of dimension 𝑘 × ℓ as 0𝑘,ℓ , i.e. 0𝑘,ℓ = 0𝑘 ⊗ 0′

ℓ
. Then

�̄�𝑘 can be constructed as follows:

�̄�𝑘 =



𝑘 01,𝑘−1
(𝑘 − 1)1𝔭1 𝑃1 0𝔭1 ,𝑘−2
(𝑘 − 2)1𝔭2 𝑃2 0𝔭2 ,𝑘−3

...
...

...
2 · 1𝔭𝑘−2 𝑃𝑘−2 0𝔭𝑘−2 ,1

1𝔭𝑘−1 𝑃𝑘−1


.

Note that the first column of �̄�𝑘 represents the number of jobs in the first queue (including
the parent job).
For 𝑘 = 1, . . . , 𝑚 + 1 set �̄�𝑘 as the zero matrix of size �̄�𝑘 × 𝑛𝑝𝑛𝑘−1

𝑐 . If 1 + 𝑖1 + · · · + 𝑖 𝑗 = 𝑘

and if (𝑖1 , . . . , 𝑖 𝑗) corresponds to 𝑔-th row of �̄�𝑘 , then we would like the (𝑔, ℎ)-th entry of
�̄�𝑘 to be equal to �̄� 𝑓1 ,..., 𝑓𝑗

𝑖1 ,...,𝑖 𝑗
(𝑟), where ℎ = 1+∑𝑗

𝑠=2( 𝑓𝑠 − 1)𝑛𝑠−2
𝑐 + ( 𝑓1 − 1)𝑛 𝑗−1

𝑐 . To calculate the
entries of the 𝑔-th row of �̄�𝑘 we only need to know the lower rows of �̄�𝑘 (due to steals)
and the matrices �̄�𝑘−1 and 𝐸𝑘−1 (due to child and parent completions respectively). As
�̄�1 = [1/𝑠𝑝1 , . . . , 1/𝑠

𝑝
𝑛𝑝 ], we can calculate the entries of �̄�𝑘 inductively, where, for every 𝑘,

the rows of �̄�𝑘 are calculated from the bottom up.

9.5 Mean service time for PH distributed parents and chil-
dren

In this section we develop a recursive scheme for the mean service time in case of PH
distributed parents and children. Sadly, this scheme is not very practical in most cases.

Consider a set of ℓ servers, where the 𝑘-th server contains 𝑖𝑘 child jobs, with the child job in
service having 𝛽𝑘 as its initial probability distribution, where ℓ ≥ 1, 0 ≤ 𝑖1 + · · · + 𝑖ℓ ≤ 𝑚

and 𝑖𝑘 ≥ 0 for 𝑘 = 1, . . . , ℓ . Let 𝐸𝛽1 ,...,𝛽ℓ

𝑖1 ,...,𝑖ℓ
(𝑟) be the expected time until all these child

jobs have completed service. Define similarly �̄�
�̄�1 ,𝛽2 ,...,𝛽ℓ

𝑖1 ,...,𝑖ℓ
(𝑟), except that the first server

contains 𝑖1 pending child jobs and a parent job that is in service and has initial probability
distribution �̄�1.
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By definition, we can drop 𝑖𝑘 ’s that are zero (except 𝑖1 in �̄��̄�1 ,𝛽2 ,...,𝛽ℓ

𝑖1 ,...,𝑖ℓ
(𝑟)) as long as we drop

the corresponding upper indices at the same time. We also can permute the indices of
𝐸
𝛽1 ,...,𝛽ℓ

𝑖1 ,...,𝑖ℓ
(𝑟) and all indices except the first one of �̄��̄�1 ,𝛽2 ,...,𝛽ℓ

𝑖1 ,...,𝑖ℓ
(𝑟), as long as we permute upper

and lower indices in the same way. Note that due to Theorem 2.2.9 the minimum and
maximum of two PH distributed variables is again PH distributed and it follows that
the minimum and maximum of finitely many PH variables are also PH distributed. Let
𝑋𝑘 ∼ 𝑃𝐻(𝛽𝑘 , 𝑆𝑐) for 𝑘 = 1, . . . , ℓ . Using Theorem 2.2.9, we get a formula for 𝐸𝛽1 ,...,𝛽ℓ

1′
ℓ

(𝑟) as

𝐸
𝛽1 ,...,𝛽ℓ

1′
ℓ

(𝑟) = 𝐸
[

ℓmax
𝑘=1

{𝑋𝑘}
]

is just the expected value of a phase type distribution. Define for 𝑘 = 1, . . . , ℓ the variables
𝑌𝑘 ∼ 𝑃𝐻(𝛽𝑘 , 𝑆𝑐 − 1[𝑖𝑘 > 1]𝑟𝑞𝐼𝑛𝑐 ) and 𝑍𝑘 , where 𝑍𝑘 ∼ exp(𝑟𝑞), if 𝑖𝑘 > 1 and 𝑍𝑘 = +∞
otherwise. We have that

𝐸
𝛽1 ,...,𝛽ℓ

𝑖1 ,...,𝑖ℓ
(𝑟) = 𝐸

[
ℓ

min
𝑘=1

{𝑌𝑘}
]
+

ℓ∑
𝑘=1

𝑃[𝑋𝑘 < min{{𝑌� |� ≠ 𝑘} ∪ {𝑍𝑘}}] · 𝐸
𝛾1
𝑘
,...,𝛾𝑘−1

𝑘
,𝛼𝑐 ,𝛾𝑘+1

𝑘
,...,𝛾ℓ

𝑘

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖ℓ
(𝑟)

+
ℓ∑
𝑘=1

𝑃[𝑍𝑘 < min{{𝑌� |� ≠ 𝑘} ∪ {𝑋𝑘}}] ·
𝑖𝑘−1∑
𝑗=1

𝜓𝑖𝑘−1, 𝑗𝐸
�1
𝑘
,...,�ℓ

𝑘
,𝛼𝑐

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−𝑗 ,𝑖𝑘+1 ,...,𝑖ℓ , 𝑗
(𝑟),

where 𝛾�
𝑘

denotes the distribution of the phases in the �-th server at the time of the
completion in 𝑘-th server and where ��

𝑘
denotes the distribution of the phases in the �-th

server at the time of the steal in 𝑘-th server. We have

𝛾�
𝑘
=

∫ ∞
0 (𝛽�𝑒(𝑆𝑐−1[𝑖�>1])𝑡)(𝛽𝑘 𝑒𝑆𝑐 𝑡 𝑠𝑐)𝑒−1[𝑖𝑘>1]𝑟𝑞𝑡 ∏

�≠𝑘,�(𝛽�𝑒(𝑆
𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡

𝑃[𝑋𝑘 < min{{𝑌𝑖 |𝑖 ≠ 𝑘} ∪ {𝑍𝑘}}]
,

��
𝑘
=

∫ ∞
0 (𝛽�𝑒(𝑆𝑐−1[𝑖�>1])𝑡)(𝑟𝑞𝑒−𝑟𝑞𝑡)𝛽𝑘 𝑒𝑆𝑐 𝑡1∏

�≠𝑘,�(𝛽�𝑒(𝑆
𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡

𝑃[𝑍𝑘 < min{{𝑌𝑖 |𝑖 ≠ 𝑘} ∪ {𝑋𝑘}}]
for � ≠ 𝑘. If � = 𝑘, 𝛾�

𝑘
is simply 𝛼𝑐 , while the formula for ��

𝑘
is slightly different:

�𝑘
𝑘
=

∫ ∞
0 (𝛽𝑘 𝑒𝑆𝑐 𝑡)(𝑟𝑞𝑒−𝑟𝑞𝑡)∏�≠𝑘(𝛽�𝑒(𝑆

𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡
𝑃[𝑍𝑘 < min{{𝑌𝑖 |𝑖 ≠ 𝑘} ∪ {𝑋𝑘}}]

.

In a similar way we calculate the expected service time when one of the servers is serving
a parent. Define the variables 𝑋𝑘 , 𝑌𝑘 , 𝑍𝑘 as before for 𝑘 = 2, . . . , ℓ . Define further the
variables 𝑋1 ∼ 𝑃𝐻(�̄�1 , 𝑆𝑝), 𝑌1 ∼ 𝑃𝐻(�̄�1 , 𝑆𝑝 − 𝑟𝑞𝐼𝑛𝑝 ) and 𝑍1, where 𝑍1 ∼ exp(𝑟𝑞) if 𝑖1 > 0
and 𝑍1 = +∞ otherwise. We first note that

�̄�
�̄�1 ,𝛽2 ,...,𝛽ℓ

0,1′
𝑠−1

(𝑟) = 𝐸
[

ℓmax
𝑘=1

{𝑋𝑘}
]
.

We have

�̄�
�̄�1 ,𝛽2 ,...,𝛽ℓ

𝑖1 ,...,𝑖𝑠
(𝑟) = 𝐸

[
ℓ

min
𝑘=1

{𝑌𝑘}
]
+ 𝑃[𝑋1 < min{{𝑌� |� ≠ 1} ∪ {𝑍1}}] · 𝐸

𝛼𝑐 ,𝛾2
1 ,...,𝛾

ℓ
1

𝑖1 ,...,𝑖ℓ
(𝑟)

+ 𝑃[𝑍1 < min{{𝑌� |� ≠ 1} ∪ {𝑋1}}] ·
𝑖𝑘∑
𝑗=1

𝜙𝑖𝑘 , 𝑗�̄�
�1

1 ,...,�
ℓ
1 ,𝛼

𝑐

𝑖1−𝑗 ,𝑖2 ,...,𝑖ℓ , 𝑗(𝑟)
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+
ℓ∑
𝑘=2

𝑃[𝑋𝑘 < min{{𝑌� |� ≠ 𝑘} ∪ {𝑍𝑘}}] · �̄�
𝛾1
𝑘
,...,𝛾𝑘−1

𝑘
,𝛼𝑐 ,𝛾𝑘+1

𝑘
,...,𝛾ℓ

𝑘

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−1,𝑖𝑘+1 ,...,𝑖ℓ
(𝑟)

+
ℓ∑
𝑘=2

𝑃[𝑍𝑘 < min{{𝑌� |� ≠ 𝑘} ∪ {𝑋𝑘}}] ·
𝑖𝑘−1∑
𝑗=1

𝜓𝑖𝑘−1, 𝑗�̄�
�1
𝑘
,...,�ℓ

𝑘
,𝛼𝑐

𝑖1 ,...,𝑖𝑘−1 ,𝑖𝑘−𝑗 ,𝑖𝑘+1 ,...,𝑖ℓ , 𝑗
(𝑟),

where 𝛾�
𝑘

and ��
𝑘

have similar formulas as before, expect for the first server which services
a parent. For 𝑘, � = 2, . . . , ℓ with 𝑘 ≠ � we therefore have

𝛾�
𝑘
=

∫ ∞
0 (𝛽�𝑒(𝑆𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡)(𝛽𝑘 𝑒𝑆𝑐 𝑡 𝑠𝑐)𝑒−1[𝑖𝑘>1]𝑟𝑞𝑡(�̄�1𝑒(𝑆

𝑝−1[𝑖1>0]𝑟𝑞𝐼)𝑡1)∏�≠1,𝑘,�(𝛽�𝑒(𝑆
𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡

𝑃[𝑋𝑘 < min{{𝑌𝑖 |𝑖 ≠ 𝑘} ∪ {𝑍𝑘}}]
.

Note that now 𝑋1 and 𝑌1 are defined differently. We now have for 𝑘 = 1 and � = 2, . . . , ℓ

𝛾�
1 =

∫ ∞
0 (𝛽�𝑒(𝑆𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡)(�̄�1𝑒𝑆

𝑝 𝑡 𝑠𝑝)𝑒−1[𝑖1>0]𝑟𝑞𝑡 ∏
�≠1,�(𝛽�𝑒(𝑆

𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡
𝑃[𝑋1 < min{{𝑌𝑖 |𝑖 ≠ 1} ∪ {𝑍1}}]

and for 𝑘 = 2, . . . , ℓ and � = 1

𝛾1
𝑘
=

∫ ∞
0 (�̄�1𝑒(𝑆

𝑝−1[𝑖1>0]𝑟𝑞𝐼)𝑡)(𝛽𝑘 𝑒𝑆𝑐 𝑡 𝑠𝑐)𝑒−1[𝑖𝑘>1]𝑟𝑞𝑡 ∏
�≠1,𝑘(𝛽�𝑒(𝑆

𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡
𝑃[𝑋𝑘 < min{{𝑌𝑖 |𝑖 ≠ 𝑘} ∪ {𝑍𝑘}}]

.

Similarly, for 𝑘, � = 2, . . . , ℓ , with 𝑘 ≠ �, we have

��
𝑘
=

∫ ∞
0 (𝛽�𝑒(𝑆𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡)(𝑟𝑞𝑒−𝑟𝑞𝑡)𝛽𝑘 𝑒𝑆𝑐 𝑡1(�̄�1𝑒(𝑆

𝑝−1[𝑖1>0]𝑟𝑞𝐼)𝑡1)∏�≠1,𝑘,�(𝛽�𝑒(𝑆
𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡

𝑃[𝑍𝑘 < min{{𝑌𝑖 |𝑖 ≠ 𝑘} ∪ {𝑋𝑘}}]
,

while for 𝑘 = � with 𝑘, � ≠ 1

�𝑘
𝑘
=

∫ ∞
0 (𝛽𝑘 𝑒𝑆𝑐 𝑡)(𝑟𝑞𝑒−𝑟𝑞𝑡)(�̄�1𝑒(𝑆

𝑝−1[𝑖1>0]𝑟𝑞𝐼)𝑡1)∏�≠1,𝑘(𝛽�𝑒(𝑆
𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡

𝑃[𝑍𝑘 < min{{𝑌𝑖 |𝑖 ≠ 𝑘} ∪ {𝑋𝑘}}]
.

We have for 𝑘 = 1 and � = 2, . . . , ℓ

��1 =

∫ ∞
0 (𝛽�𝑒(𝑆𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡)(𝑟𝑞𝑒−𝑟𝑞𝑡)(�̄�1𝑒𝑆

𝑝 𝑡1)∏�≠1,�(𝛽�𝑒(𝑆
𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡

𝑃[𝑍1 < min{{𝑌𝑖 |𝑖 ≠ 1} ∪ {𝑋1}}]

and for 𝑘 = 2, . . . , ℓ and � = 1

�1
𝑘
=

∫ ∞
0 (�̄�1𝑒(𝑆

𝑝−1[𝑖1>0]𝑟𝑞𝐼)𝑡)(𝑟𝑞𝑒−𝑟𝑞𝑡)(𝛽𝑘 𝑒𝑆𝑐 𝑡1)∏�≠1,𝑘(𝛽�𝑒(𝑆
𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡

𝑃[𝑍𝑘 < min{{𝑌𝑖 |𝑖 ≠ 𝑘} ∪ {𝑋𝑘}}]

and, finally, for 𝑘 = � = 1

�1
1 =

∫ ∞
0 (�̄�1𝑒𝑆

𝑝 𝑡)(𝑟𝑞𝑒−𝑟𝑞𝑡)∏�≠1(𝛽�𝑒(𝑆
𝑐−1[𝑖�>1]𝑟𝑞𝐼)𝑡1)𝑑𝑡

𝑃[𝑍1 < min{{𝑌𝑖 |𝑖 ≠ 1} ∪ {𝑋1}}]
.

We now get

𝐸[𝐽(𝑟)] =
𝑚∑
𝑘=0

𝑝𝑘 �̄�
𝛼𝑝

𝑘
(𝑟).
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9.6 Numerical experiments

In Section 8.6, we defined the class of monotone deterministic (MD) strategies and we
tested in different settings the strategies of stealing a single child job, half of the waiting
children and all waiting children against the optimal MD strategy for those settings in
case of exponential parent/child job sizes. We concluded that the stealing policy where
the half of child jobs gets stolen is in general a good stealing policy for higher values of
𝑟 and moderate system loads 𝜌, while the strategy of stealing all children performs best
for low values of 𝑟 and higher values of 𝜌. We concluded further that stealing only one
child performs the worst in most of the cases. In this section we examine whether these
conclusions remain valid for systems with hyperexponential parent and child job sizes
with two phases (𝐻𝑦𝑝𝐸𝑥𝑝(2)).
To this end we describe a𝐻𝑦𝑝𝐸𝑥𝑝(2)distribution using the parameters𝐸𝑋, 𝑆𝐶𝑉, 𝑓 where
𝐸𝑋 is the mean of the distribution, where 𝑆𝐶𝑉 is the squared coefficient of variation and
where 𝑓 is the fraction of the workload contributed by phase 1 jobs ( 𝑓 is sometimes called
the shape parameter). Using these parameters we can generate a𝐻𝑦𝑝𝐸𝑥𝑝(2) distribution
with parameters ([𝛽1 , 1 − 𝛽1], [�1 , �2]), where

�1 =
𝑆𝐶𝑉 + (4 𝑓 − 1) +

√
(𝑆𝐶𝑉 − 1)(𝑆𝐶𝑉 − 1 + 8 𝑓 (1 − 𝑓 ))

2𝐸𝑋 · 𝑓 (𝑆𝐶𝑉 + 1) ,

�2 =
𝑆𝐶𝑉 + (4(1 − 𝑓 ) − 1) −

√
(𝑆𝐶𝑉 − 1)(𝑆𝐶𝑉 − 1 + 8 𝑓 (1 − 𝑓 ))

2𝐸𝑋 · (1 − 𝑓 )(𝑆𝐶𝑉 + 1)
and 𝛽1 = 𝐸𝑋 · �1 𝑓 . In the remainder of the chapter we use the same values of 𝑆𝐶𝑉
and 𝑓 for parent and child jobs. We assume that parent and child jobs have service
requirements with mean 2 and mean 1 respectively.

Recall that we defined the matrix Ψ as the matrix where [Ψ]𝑖 , 𝑗 = 𝜓𝑖 , 𝑗 and Φ similarly.
Note that a strategy is fully characterized by the matrices Ψ and Φ. The strategies of
stealing a single child job, half of child jobs and all children are defined as follows:

1. Steal one: The strategy of always stealing one child job, that is 𝜙𝑖 ,1 = 𝜓𝑖 ,1 = 1 for
every 𝑖.

2. Steal half: The strategy of always stealing half of the pending child jobs. If 𝑛, the
number of pending child jobs, is uneven, there is a fifty percent chance that ⌊𝑛/2⌋
child jobs get stolen and ⌈𝑛/2⌉ jobs otherwise.

3. Steal all: The strategy of stealing all of the pending child jobs, that is 𝜙𝑖 ,𝑖 = 𝜓𝑖 ,𝑖 = 1
for every 𝑖.

Note that these strategies do not rely on any knowledge on the (mean) job sizes or system
load. In Section 8.6 a strategy was called monotone deterministic (MD) if, for every 𝑖,
𝜓𝑖 , 𝑗 = 1 implies 𝜓𝑖+1, 𝑗′ = 1 for some 𝑗′ ≥ 𝑗 and the same holds for Φ. The optimal MD
strategy is determined using brute force and its response time is denoted as 𝑇𝑀𝐷(𝑟). The
mean response time of other strategies is always normalized by 𝑇𝑀𝐷(𝑟) in the subsequent
experiments.
We now present a selection of performed numerical experiments (due to the lack of
space). The main conclusions in the omitted experiments are in agreement with the
results presented here. Let p = [𝑝0 , 𝑝1 , . . . , 𝑝𝑚].
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Example 9.6.1. In Figure 9.1 we illustrate the effect of increasing the load 𝜌 on the on
performance of the three strategies for different values of 𝑆𝐶𝑉 . We do this for 𝜌 ∈
[0.05, 0.95], 𝑆𝐶𝑉 ∈ {2, 5, 20}, 𝑓 = 1/3, p = [5, 4, 3, 2, 1]/15 and 𝑟 = 2. These results (and
other results omitted here) confirm that stealing all is best when the load is sufficiently
high, while stealing half of the child jobs is a good strategy for systems with a moderate
load.
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Figure 9.1: Example 9.6.1: 𝐸[𝑇(2)]/𝐸[𝑇𝑀𝐷(2)] in function of 𝜌 with 𝑆𝐶𝑉 = 2 (left),
𝑆𝐶𝑉 = 5 (mid) and 𝑆𝐶𝑉 = 20 (right).

Example 9.6.2. In Figure 9.2 we consider the system with 𝜌 = 0.85, 𝑆𝐶𝑉 ∈ [1, 20], 𝑓 =
1/2, p = 1′6/6 and 𝑟 ∈ {1, 5, 10}. We examine the effect of increasing the value of the
𝑆𝐶𝑉 on the performance of the three stealing strategies against the performance of the
system with no stealing. Clearly, as the 𝑆𝐶𝑉 increases the ratio 𝐸[𝑇(𝑟)]/𝐸[𝑇(0)] decreases
for each of the three strategies. In fact, for every stealing strategy we have that as the
𝑆𝐶𝑉 → ∞, the ratio 𝐸[𝑇(𝑟)]/𝐸[𝑇(0)] → 0. This implies that as the 𝑆𝐶𝑉 increases it is
more and more worthwhile to steal.
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Figure 9.2: Example 9.6.2: 𝐸[𝑇(𝑟)]/𝐸[𝑇(0)] in function of 𝑟 with 𝑟 = 1 (left), 𝑟 = 5 (mid)
and 𝑟 = 10 (right).

Example 9.6.3. Example 9.6.2 shows that the mean response time of the strategy of not
stealing grows quicker than those of the strategies where stealing occurs. In this example
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we examine this growth in more detail. In Figure 9.3, we therefore plot𝐸[𝑇(𝑟)] in function
of 𝑆𝐶𝑉 for the three strategies and for the system where no stealing occurs. We do this for
𝜌 = 0.85, 𝑆𝐶𝑉 ∈ [1, 40], 𝑓 = 1/2, p = 1′6/6 and 𝑟 = 5. Clearly, the growth of 𝐸[𝑇(0)] (no
stealing) is linear in function of 𝑆𝐶𝑉 . Further as 𝑆𝐶𝑉 → ∞, 𝐸[𝑇(𝑟)] seems to converge
for any stealing strategy, which is equivalent to saying that from the moment that 𝑆𝐶𝑉
is large enough, there is not much difference in the performance of a stealing strategy
when the 𝑆𝐶𝑉 is increased further.
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Figure 9.3: Example 9.6.3 with the system where no stealing occurs (left) and without
that system (right).

9.7 Model validation

Based on numerical experiments in the previous section, we see that stealing all or half of
the children are good stealing policies, stealing all works best for low values of 𝑟, while
stealing half of the children works well for higher values. Therefore we validate the
model for these two policies by means of simulation. We run all simulations for 𝑇 = 105

with a warm up period of 33% of 𝑇, always starting from an empty system.

In Figure 9.4, we compare the simulated waiting and service time distributions and those
of the QBD model. We do this for 𝜌 = 0.85, 𝑆𝐶𝑉 = 2, 𝑓 = 1/2, p = 1′5/5 and 𝑟 ∈ {1, 5}.
The simulated waiting and service times were calculated based on 5 runs, with the
number of queues 𝑁 = 2000. We see that there is a good match between the simulated
waiting and service time distributions and those of the QBD model. Also, that the match
is less good for 𝑟 = 5 than for 𝑟 = 1. Note that having 2000 or more CPU-cores is not
uncommon in an HPC cluster.

In Table 9.2 we compare the relative error of the simulated mean response time, based on
20 runs, to the one obtained using formula from Section 9.4. In We do this for the policy
of stealing half of the available children. Similar results were obtained when all children
are stolen. We simulate the systems for 𝑓 = 1/2, 𝑆𝐶𝑉 ∈ {2, 20}, p = 1′5/5, 𝜌 ∈ {0.75, 0.85},
𝑟 = 1 and 𝑁 ∈ {250, 500, 1000, 2000, 4000}.



9.7. MODEL VALIDATION 189

Figure 9.4: Waiting and response times from the QBD (blue) and simulations (red) for
the strategies of stealing all children (left) and half of the children (right).

𝜌 = 0.75 𝜌 = 0.85
𝑁 sim. ± conf. rel.err.% sim. ± conf. rel.err.%

𝑆𝐶𝑉 = 2
250 6.4925 ± 6.67e-03 0.4706 9.5338 ± 1.72e-02 0.7855
500 6.4788 ± 3.88e-03 0.2586 9.4893 ± 1.48e-02 0.3156

1000 6.4683 ± 3.94e-03 0.0963 9.4691 ± 7.66e-03 0.1021
2000 6.4638 ± 2.13e-03 0.0260 9.4647 ± 7.38e-03 0.0547
4000 6.4635 ± 9.64e-04 0.0214 9.4597 ± 4.51e-03 0.0024
QBD 6.4621 9.4595

𝑆𝐶𝑉 = 20
250 8.1792 ± 2.88e-02 2.0152 17.1200 ± 1.18e-01 2.3903
500 8.0953 ± 1.77e-02 0.9686 16.8921 ± 7.14e-02 1.0272

1000 8.0473 ± 8.81e-03 0.3701 16.8081 ± 6.00e-02 0.5248
2000 8.0347 ± 8.64e-03 0.2127 16.7477 ± 3.80e-02 0.1637
4000 8.0226 ± 7.66e-03 0.0619 16.7388 ± 3.72e-02 0.1104
QBD 8.0176 16.7204

Table 9.2: Relative error of simulation results for 𝐸[𝑇(𝑟)] for the policy of stealing half of
the children, based on 20 runs.

The relative error in all cases is below 2.5% and tends to increase with the value of the
𝑆𝐶𝑉 . We note that based on simulations omitted here the relative error tends to increase
with the steal rate 𝑟, which is in agreement with Figure 9.4. More importantly the relative
error seems roughly to halve when doubling 𝑁 (which is in agreement with the results
in [24]). This suggests that the approximation error tends to zero as the number of servers
tends to infinity.
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9.8 Mean field model

In this section we present a mean field model for the work stealing system considered
in this chapter and show that it has a unique fixed point that coincides with the steady
state vector of the QBD Markov chain. In this manner we provide additional support for
the claim that the approximation error of the QBD model tends to zero as the number
of servers becomes large. Note that this result is not sufficient to formally prove this.
One of the main challenges in coming up with such a formal proof is to establish global
attractor of the fixed point, which is often done using monotonicity arguments. This
however is not feasible for the system considered in this chapter, as the system is clearly
not monotone in some cases (e.g. a system where out of 5 child jobs always 5 get stolen,
whereas out of 4 children only one is transferred upon a successful steal attempt).

We start by writing down the set of ODEs that capture the evolution of the mean field
model (i.e., the so-called drift equations). We denote by 𝑓ℓ , 𝑗,𝑘,𝑖(𝑡) the fraction of queues at
time 𝑡 with ℓ parent jobs in waiting in the queue, 𝑗 ∈ {1, . . . , 𝑚} child jobs in the queue,
𝑘 ∈ {0, 1} describing whether a parent job is in service (𝑘 = 1) or not (𝑘 = 0) and 𝑖 being
the phase of the job currently in service (if 𝑘 = 1, then 𝑖 ∈ {1, . . . , 𝑛𝑝} and if 𝑘 = 0, then
𝑖 ∈ {1, . . . , 𝑛𝑐}). When there is no job in service we set 𝑖 = 0. Note that ℓ does not count
parent jobs in service, whereas 𝑗 counts child jobs waiting and in service. In particular
for ℓ = 0 and 𝑗 + 𝑘 ≥ 1 the server is busy and there may be child jobs waiting, which can
be transferred. We denote 𝑓0,0,0,0(𝑡) as 𝑓∗(𝑡), the fraction of idle queues. For a statement
𝐴 we set 1[𝐴] to be 1 if 𝐴 is true and 0 if 𝐴 is false.
Let

®𝑓ℓ (𝑡) = ( ®𝑓ℓ ,1,0(𝑡), . . . , ®𝑓ℓ ,𝑚,0(𝑡), ®𝑓ℓ ,0,1(𝑡), . . . , ®𝑓ℓ ,𝑚,1(𝑡))
for every ℓ ≥ 0, where

®𝑓ℓ , 𝑗,0(𝑡) = ( ®𝑓ℓ , 𝑗,0,1(𝑡), . . . , ®𝑓ℓ , 𝑗,0,𝑛𝑐 (𝑡)) and
®𝑓ℓ , 𝑗,1(𝑡) = ( ®𝑓ℓ , 𝑗,1,1(𝑡), . . . , ®𝑓ℓ , 𝑗,1,𝑛𝑝 (𝑡)).

Then, for ℓ > 0 we have

𝑑

𝑑𝑡
®𝑓ℓ (𝑡) = � ®𝑓ℓ−1(𝑡) + ®𝑓ℓ (𝑡)�̃�0(𝑡) + ®𝑓ℓ+1(𝑡)�𝛼 + 𝑟 𝑓∗(𝑡) ®𝑓ℓ+1(𝑡)𝑉0 , (9.9)

for ℓ = 0 and 𝑗 + 𝑘 ≥ 1 we have

𝑑

𝑑𝑡
®𝑓0(𝑡) = � 𝑓∗(𝑡)𝛼 + ®𝑓0(𝑡)�̃�0(𝑡) + ®𝑓1(𝑡)�𝛼 + 𝑟 𝑓∗(𝑡) ®𝑓1(𝑡)𝑉0

+ 𝑟 𝑓∗(𝑡)
∑
ℓ ′≥0

®𝑓ℓ ′(𝑡)𝑇 + 𝑟 𝑓∗(𝑡)
∑
ℓ ′≥1

®𝑓ℓ ′(𝑡)𝑣0𝛼, (9.10)

and for ℓ , 𝑗, 𝑘 = 0

𝑑

𝑑𝑡
𝑓∗(𝑡) = −� 𝑓∗(𝑡) + ®𝑓0(𝑡)� − 𝑟 𝑓∗(𝑡)

(
1 − 𝑓∗(𝑡) − ®𝑓0(𝑡)𝑣0

)
. (9.11)

The first term of (9.9) and (9.10) is due to arrivals. The matrices �̃�0(𝑡) and �̃�0(𝑡) are
the same matrices as 𝐴0(𝑟) and 𝐵0(𝑟) respectively, except with every instance of 𝑞
changed to 𝑓∗(𝑡). The second term of (9.9) and (9.10) therefore denotes the drift due
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to transitions for which the level remains unchanged, due to arrivals to and due to
parent steals from queues of length ℓ . The third and the fourth term are due, respec-
tively, to service completions and parent steals in queues of length ℓ + 1. We denote
𝑣0 =

[
1′𝑛𝑐 0′(𝑚−1)𝑛𝑐 1′𝑛𝑝 0′𝑚𝑛𝑝

] ′
, where the entries are non-zero when 𝑗 + 𝑘 = 1 (i.e.

𝑉0 = diag(𝑣0)). We define the (𝑚 − 1) × (𝑚 − 1) matrix Ψ as [Ψ]𝑖 , 𝑗 = 𝜓𝑖 , 𝑗 and similarly
𝑚 × 𝑚 matrix Φ. Recall that we denote the zero matrix of dimension 𝑘 × ℓ as 0𝑘,ℓ . The
matrix 𝑇 = 𝑇𝜓 +𝑇𝜙 records the distribution of the number of child jobs transferred when
a probe is successful:

𝑇𝜓 =


0𝑛𝑐 ,(𝑚−1)𝑛𝑐 0𝑛𝑐 ,𝑛𝑐+(𝑚+1)𝑛𝑝
Ψ ⊗ (1𝑛𝑐𝛼𝑐) 0(𝑚−1)𝑛𝑐 ,𝑛𝑐+(𝑚+1)𝑛𝑝

0(𝑚+1)𝑛𝑝 ,(𝑚−1)𝑛𝑐 0(𝑚+1)𝑛𝑝 ,𝑛𝑐+(𝑚+1)𝑛𝑝

 , 𝑇𝜙 =

[
0𝑚𝑛𝑐+𝑛𝑝 ,𝑚𝑛𝑐 0𝑚𝑛𝑐+𝑛𝑝 ,(𝑚+1)𝑛𝑝
Φ ⊗ (1𝑛𝑝𝛼𝑐) 0𝑚𝑛𝑝 ,(𝑚+1)𝑛𝑝

]
.

The final two terms of (9.10) are thus due to transfers to empty queues of child jobs and
of parents respectively. Similarly, for 𝑑

𝑑𝑡
𝑓∗(𝑡) the first term is due to job arrivals, the next

is due to service completions and the last is due to job transfers.
Note that if 𝜙𝑖 ,1 = 1 for every 𝑖 ∈ {1, . . . , 𝑚} and if 𝜓 𝑗 ,1 = 1 for every 𝑗 ∈ {1, . . . , 𝑚 − 1},
then 𝑇 = (1 − 𝑣0)�1.

We show that the stationary distribution of the QBD corresponds to the unique fixed
point � of the set of ODEs in Equations (9.9)-(9.11). The following lemma says that, in
equilibrium, the rate at which the level in non-empty queues increases, that is �(1 − �∗),
is exactly the rate at which the level decreases in such queues (which can only happen
due to a service completion or a steal in queues with no pending child jobs).

Lemma 9.8.1. For any fixed point � = (�∗ , ®�0 , ®�1 , . . .) with �∗+
∑
ℓ≥0 ®�ℓ1 = 1 of the set of ODEs

in Equations (9.9)-(9.11) we have

� = ��∗ +
∑
ℓ≥1

®�ℓ� + 𝑟�∗
∑
ℓ≥1

®�ℓ𝑣0.

Proof. As 𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 in a fixed point we get using

∑
ℓ≥0(ℓ + 1) 𝑑

𝑑𝑡
®𝑓ℓ (𝑡) = 0 and

∑
ℓ≥0 ®�ℓ1 =

1 − �∗ that ∑
ℓ≥0

®�ℓ� = � + 𝑟�∗

(
1 − �∗ −

∑
ℓ≥0

®�ℓ𝑣0

)
. (9.12)

The claim now follows by using (9.12) and (9.11) in a fixed point. □

Define recursively the row vector

�1,𝑚 = �𝑝𝑚𝛼
𝑝

and

�1,𝑘 = �𝑝𝑘𝛼
𝑝 + 𝑟�∗

𝑚∑
𝑑=𝑘+1

𝜙𝑑,𝑑−𝑘�1,𝑑(𝑟�∗𝐼 − 𝑆𝑝)−1 ,

for 𝑘 = 0, . . . , 𝑚 − 1, and

�0,𝑘′ = �1,𝑘′(𝑟�∗𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑟�∗
𝑚∑
𝑑=𝑘′

𝜙𝑑,𝑘′�1,𝑑(𝑟�∗𝐼 − 𝑆𝑝)−11𝑛𝑝𝛼𝑐
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+ 1[𝑘′ < 𝑚]�0,𝑘′+1(𝑟�∗𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐

+ 𝑟�∗
𝑚∑

𝑑=𝑘′+1
�0,𝑑(𝑟�∗𝐼 − 𝑆𝑐)−1(𝜓𝑑−1,𝑑−𝑘′ + 𝜓𝑑−1,𝑘′1𝑛𝑐𝛼𝑐),

for 𝑘′ = 1, . . . , 𝑚. �𝑖 , 𝑗 ,𝑘 is the rate at which servers enter into phase (𝑖 , 𝑗 , 𝑘) due to arrivals,
completions and steals.

The intuition behind the next two lemmas is that if the system is in equilibrium, the rate
at which queues enter phase (𝑖 , 𝑗 , 𝑘) should equal to the rate at which queues leave phase
(𝑖 , 𝑗 , 𝑘).

Lemma 9.8.2. For any fixed point � = (�∗ , ®�0 , ®�1 , . . .) with �∗+
∑
ℓ≥0 ®�ℓ1 = 1 of the set of ODEs

in Equations (9.9)-(9.11) we have for 1 ≤ 𝑘 ≤ 𝑚:

∑
ℓ≥0

®�ℓ ©«
0𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑝

𝐼𝑛𝑝
0(𝑚−𝑘)𝑛𝑝 ,𝑛𝑝

ª®¬ (𝑟�∗𝐼 − 𝑆𝑝) = �1,𝑘 . (9.13)

Proof. We prove the lemma using complete backward induction on 𝑘. By demanding
that∑
ℓ≥0

®𝑓ℓ (𝑡)
[
0′
𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑝 , 𝐼𝑛𝑝 , 0

′
(𝑚−𝑘)𝑛𝑝 ,𝑛𝑝

] ′
= 0 for any 𝑘 ∈ {1, . . . , 𝑚}, we find due to Lemma

9.8.1 that

0 = �𝑝𝑘𝛼
𝑝 −

∑
ℓ≥0

®�ℓ ©«
0𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑝

𝐼𝑛𝑝
0(𝑚−𝑘)𝑛𝑝 ,𝑛𝑝

ª®¬ (𝑟�∗𝐼 − 𝑆𝑝)
+ 𝑟�∗

∑
ℓ≥0

®�ℓ
[
0′
𝑚𝑛𝑐+(𝑘+1)𝑛𝑝 ,𝑛𝑝 , 𝜙𝑘+1,1𝐼𝑛𝑝 , . . . , 𝜙𝑚,𝑚−𝑘 𝐼𝑛𝑝

] ′
.

This is equivalent to

∑
ℓ≥0

®�ℓ ©«
0𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑝

𝐼𝑛𝑝
0(𝑚−𝑘)𝑛𝑝 ,𝑛𝑝

ª®¬ (𝑟�∗𝐼 − 𝑆𝑝)
= �𝑝𝑘𝛼

𝑝 + 𝑟�∗
∑
ℓ≥0

®�ℓ
[
0′
𝑚𝑛𝑐+(𝑘+1)𝑛𝑝 ,𝑛𝑝 , 𝜙𝑘+1,1𝐼𝑛𝑝 , . . . , 𝜙𝑚,𝑚−𝑘 𝐼𝑛𝑝

] ′
. (9.14)

(9.14) is equivalent to (9.13) for 𝑘 = 𝑚. Suppose now that 𝑘 < 𝑚 and that (9.13) holds for
all 𝑘′ ∈ {𝑘 + 1, . . . , 𝑚}. Due to (9.14), it suffices to show that

𝑟�∗
∑
ℓ≥0

®�ℓ
[
0′
𝑚𝑛𝑐+(𝑘+1)𝑛𝑝 ,𝑛𝑝 , 𝜙𝑘+1,1𝐼𝑛𝑝 , . . . , 𝜙𝑚,𝑚−𝑘 𝐼𝑛𝑝

] ′
= 𝑟�∗

𝑚∑
𝑑=𝑘+1

𝜙𝑑,𝑑−𝑘�1,𝑑(𝑟�∗𝐼 − 𝑆𝑝)−1.

This is equivalent to∑
ℓ≥0

®�ℓ
[
0′
𝑚𝑛𝑐+(𝑘+1)𝑛𝑝 ,𝑛𝑝 , 𝜙𝑘+1,1𝐼𝑛𝑝 , . . . , 𝜙𝑚,𝑚−𝑘 𝐼𝑛𝑝

] ′
(𝑟�∗𝐼 − 𝑆𝑝) =

𝑚∑
𝑑=𝑘+1

𝜙𝑑,𝑑−𝑘�1,𝑑 ,

which holds due to induction hypothesis. □
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Lemma 9.8.3. For any fixed point � = (�∗ , ®�0 , ®�1 , . . .) with �∗+
∑
ℓ≥0 ®�ℓ1 = 1 of the set of ODEs

in Equations (9.9)-(9.11) we have for 2 ≤ 𝑘 ≤ 𝑚:∑
ℓ≥0

®�ℓ ©«
0(𝑘−1)𝑛𝑐 ,𝑛𝑐

𝐼𝑛𝑐
0(𝑚−𝑘−2)𝑛𝑐+(𝑚+1)𝑛𝑝 ,𝑛𝑐

ª®¬ (𝑟�∗𝐼 − 𝑆𝑐) = �0,𝑘 . (9.15)

Proof. Similarly to the proof of Lemma 9.8.2, we use complete backward induction on 𝑘.
By demanding ∑

ℓ≥0

𝑑

𝑑𝑡
®𝑓ℓ (𝑡)

[
0′(𝑚−1)𝑛𝑐 ,𝑛𝑐 , 𝐼𝑛𝑐 , 0

′
(𝑚+1)𝑛𝑝 ,𝑛𝑐

] ′
= 0,

we get ∑
ℓ≥0

®�ℓ ©«
0(𝑚−1)𝑛𝑐 ,𝑛𝑐

𝐼𝑛𝑐
0(𝑚+1)𝑛𝑝 ,𝑛𝑐

ª®¬ (𝑟�∗𝐼 − 𝑆𝑐) =
∑
ℓ≥0

®�ℓ
(

0𝑚𝑛𝑐+𝑚𝑛𝑝 ,𝑛𝑐
(𝑟�∗𝜙𝑚,𝑚1𝑛𝑝 + 𝑠𝑝)𝛼𝑐

)
=

∑
ℓ≥0

®�ℓ
(
0𝑚𝑛𝑐+𝑚𝑛𝑝 ,𝑛𝑝

𝐼𝑛𝑝

)
(𝑟�∗𝜙𝑚,𝑚1𝑛𝑝 + 𝑠𝑝)𝛼𝑐

= �1,𝑚(𝑟�∗𝐼 − 𝑆𝑝)−1(𝑟�∗𝜙𝑚,𝑚1𝑛𝑝 + 𝑠𝑝)𝛼𝑝

= �0,𝑚 ,

where (9.13) was used in the third equality. This shows (9.15) for 𝑘 = 𝑚. Suppose 𝑘 < 𝑚
and that (9.15) holds for all 𝑘′ ∈ {𝑘 + 1, . . . , 𝑚}. By demanding∑

ℓ≥0

𝑑

𝑑𝑡
®𝑓ℓ (𝑡)

[
0′(𝑘−1)𝑛𝑐 ,𝑛𝑐 , 𝐼𝑛𝑐 , 0

′
(𝑚−𝑘−2)𝑛𝑐+(𝑚+1)𝑛𝑝 ,𝑛𝑐

] ′
,

we get∑
ℓ≥0

®�ℓ ©«
0(𝑘−1)𝑛𝑐 ,𝑛𝑐
𝑟�∗𝐼 − 𝑆𝑐

0(𝑚−𝑘−2)𝑛𝑐+(𝑚+1)𝑛𝑝 ,𝑛𝑐

ª®¬
= 𝑟�∗

∑
ℓ≥0

®�ℓ
[
0′𝑘𝑛𝑐 ,𝑛𝑐 ,𝜓𝑘,1𝐼𝑛𝑐 + 𝜓𝑘,𝑘(1𝑛𝑐𝛼𝑐)′, . . . ,𝜓𝑚−1,𝑚−𝑘 𝐼𝑛𝑐 + 𝜓𝑚−1,𝑘(1𝑛𝑐𝛼𝑐)′, 0′𝑚+1

] ′
+ 𝑟�∗

∑
ℓ≥0

®�ℓ
[
0′𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑐 , 𝜙𝑘,𝑘(1𝑛𝑝𝛼

𝑐)′, . . . , 𝜙𝑚,𝑘(1𝑛𝑝𝛼𝑐)′
] ′

+
∑
ℓ≥0

®�ℓ ©«
0𝑘𝑛𝑐 ,𝑛𝑐
𝑠𝑐𝛼𝑐

0(𝑚−𝑘−1)𝑛𝑐+(𝑚+1)𝑛𝑝 ,𝑛𝑐

ª®¬ +
∑
ℓ≥0

®�ℓ ©«
0𝑚𝑛𝑐+𝑘𝑛𝑝 ,𝑛𝑐
𝑠𝑝𝛼𝑐

0(𝑚−𝑘)𝑛𝑝 ,𝑛𝑐

ª®¬ .
By using the induction hypothesis and (9.13) we further get∑

ℓ≥0

®�ℓ ©«
0(𝑘−1)𝑛𝑐 ,𝑛𝑐
𝑟�∗𝐼 − 𝑆𝑐

0(𝑚−𝑘−2)𝑛𝑐+(𝑚+1)𝑛𝑝 ,𝑛𝑐

ª®¬ = 𝑟�∗

𝑚∑
𝑑=𝑘+1

�0,𝑑(𝑟�∗𝐼 − 𝑆𝑐)−1(𝜓𝑑−1,𝑑−𝑘 + 𝜓𝑑−1,𝑘1𝛼𝑐)

+ 𝑟�∗
𝑚∑
𝑑=𝑘

𝜙𝑑,𝑘�1,𝑑(𝑟�∗𝐼 − 𝑆𝑝)−11𝛼𝑐
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+ �0,𝑘+1(𝑟�∗𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐 + �1,𝑘(𝑟�∗𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐

which is equal to �0,𝑘 . This finishes the proof. □

The intuition behind Equation (9.17) is that the rate at which batches of 𝑗 child jobs are
stolen is equal to the rate at which batches of 𝑗 child jobs are transferred to empty queues.

Proposition 9.8.4. For any fixed point � = (�∗ , ®�0 , ®�1 , . . .) with �∗ +
∑
ℓ≥0 ®�ℓ1 = 1 of the set of

ODEs in Equations (9.9)-(9.11) we have

�∗ = 𝑞, (9.16)

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇 = �∗

𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)� 𝑗 , (9.17)

where �𝑐,𝑗(𝑟) was defined in (9.6).

Proof. Denote by 1:𝑘 the column vector [1, . . . , 𝑘]′ for 𝑘 ≥ 1. To prove (9.16) it suffices to
show ∑

ℓ≥0

®�ℓ
(

0𝑚𝑛𝑐
1(𝑚+1)𝑛𝑝

)
= �𝛼𝑝(−𝑆𝑝)−11, (9.18)

∑
ℓ≥0

®�ℓ
(

1𝑚𝑛𝑐
0(𝑚+1)𝑛𝑝

)
= �

(
𝑚∑
𝑖=1

𝑖𝑝𝑖

)
𝛼𝑐(−𝑆𝑐)−11. (9.19)

By demanding
∑
ℓ≥0

𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 and by using Lemma 9.8.1, we find

0 = �𝛼 +
∑
ℓ≥0

®�ℓ �̃� + 𝑟�∗
∑
ℓ≥0

®�ℓ𝑉0 − 𝑟�∗
∑
ℓ≥0

®�ℓ + 𝑟�∗
∑
ℓ≥0

®�ℓ𝑇, (9.20)

Where �̃� is the same matrix as 𝑆(𝑟) except with all instances of 𝑞 changed to �∗. By
multiplying (9.20) with [0′𝑚𝑛𝑐 ,𝑛𝑝 , (1𝑚+1 ⊗ 𝐼𝑛𝑝 )′]′, we get

0 = �𝛼𝑝 +
∑
ℓ≥0

®�ℓ
(

0𝑚𝑛𝑐 ,𝑛𝑝
1𝑚+1 ⊗ 𝑆𝑝

)
, (9.21)

which yields (9.18). By demanding

∑
ℓ≥0

𝑑

𝑑𝑡
®𝑓ℓ (𝑡) ©«

1:𝑚 ⊗ 1𝑛𝑐
0𝑛𝑝

1:𝑚 ⊗ 1𝑛𝑝

ª®¬ = 0

and by using Lemma 9.8.1, one can show that∑
ℓ≥0

®�ℓ
(
1𝑚 ⊗ 𝑠𝑐
0(𝑚+1)𝑛𝑝

)
= �

𝑚∑
𝑖=1

𝑖𝑝𝑖 . (9.22)
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By multiplying (9.20) with [(1𝑚 ⊗ 𝐼𝑛𝑐 )′, 0′(𝑚+1)𝑛𝑝 ,𝑛𝑐 ]
′ and by using (9.12) on the last sum we

get

�𝛼𝑐 =
∑
ℓ≥0

®�ℓ
(

1𝑚 ⊗ 𝑠𝑐
1𝑚+1 ⊗ 𝑠𝑝

)
𝛼𝑐 +

∑
ℓ≥0

®�ℓ
(

1𝑚 ⊗ 𝑆𝑐
0(𝑚+1)𝑛𝑝 ,𝑛𝑐

)
.

Due to (9.21) and (9.22) this is equivalent to

0 = �

(
𝑚∑
𝑖=1

𝑖𝑝𝑖

)
𝛼𝑐 +

∑
ℓ≥0

®�ℓ
(

1𝑚 ⊗ 𝑆𝑐
0(𝑚+1)𝑛𝑝 ,𝑛𝑐

)
,

which gives (9.19). To prove the second claim it suffices to show, due to the definition of
𝑇, that for 𝑖 = 1, . . . , 𝑚 we have:

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇 ©«
0(𝑖−1)𝑛𝑐

1𝑛𝑐
0(𝑚−𝑖)𝑛𝑐+(𝑚+1)𝑛𝑝

ª®¬ = �∗�𝑐,𝑖(𝑟).

This is equivalent to showing the following two equalities:

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇𝜓 ©«
0(𝑖−1)𝑛𝑐

1𝑛𝑐
0(𝑚−𝑖)𝑛𝑐+(𝑚+1)𝑛𝑝

ª®¬ = �𝑟𝑞
∑
𝑗>𝑖

𝜓 𝑗−1,𝑖𝑝0, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−11

+ 𝑟𝑞2
𝑚∑

𝑗=𝑖+1
�𝑐,𝑗(𝑟)

𝑗∑
𝑘=𝑖+1

𝜓𝑘−1,𝑖𝑝
𝑗

𝑘
(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−11, (9.23)

for 𝑖 = 1, . . . , 𝑚 − 1, and

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇𝜙 ©«
0(𝑖−1)𝑛𝑐

1𝑛𝑐
0(𝑚−𝑖)𝑛𝑐+(𝑚+1)𝑛𝑝

ª®¬ = �𝑟𝑞
∑
𝑗≥𝑖

𝜙 𝑗 ,𝑖𝑝1, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−11, (9.24)

for 𝑖 = 1, . . . , 𝑚. Due to (9.13), we have

𝑟�∗
∑
ℓ≥0

®�ℓ𝑇𝜙 ©«
0(𝑖−1)𝑛𝑐

1𝑛𝑐
0(𝑚−𝑖)𝑛𝑐+(𝑚+1)𝑛𝑝

ª®¬ = 𝑟�∗
∑
𝑑≥𝑖

𝜙𝑑,𝑖�1,𝑑(𝑟𝑞𝐼 − 𝑆𝑝)−11.

As
�1,𝑑 = �𝑝1,𝑑(𝑟), (9.25)

where all instances of 𝑞 in the formula of 𝑝1,𝑑(𝑟) have been changed to �∗, equation (9.24)
follows from (9.16). Equation (9.23) requires more work to prove. Due to (9.15), it suffices
to show that

𝑟�∗

𝑚−1∑
𝑘=𝑖

𝜓𝑘,𝑖�0,𝑘+1(𝑟�∗𝐼 − 𝑆𝑐)−11 = �𝑟𝑞
∑
𝑗>𝑖

𝜓 𝑗−1,𝑖𝑝0, 𝑗(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−11

+ 𝑟𝑞2
𝑚∑

𝑗=𝑖+1
�𝑐,𝑗(𝑟)

𝑗∑
𝑘=𝑖+1

𝜓𝑘−1,𝑖𝑝
𝑗

𝑘
(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−11.
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Due to (9.16), it suffices to show that
𝑚∑

𝑘=𝑖+1
𝜓𝑘−1,𝑖�0,𝑘 = �

𝑚∑
𝑘=𝑖+1

𝑝0,𝑘(𝑟)𝜓𝑘−1,𝑖 + 𝑞
𝑚∑

𝑘=𝑖+1

𝑚∑
𝑗=𝑘

�𝑐,𝑗(𝑟)𝑝 𝑗𝑘(𝑟)𝜓𝑘−1,𝑖 . (9.26)

We show that for 𝑘 = 2, . . . , 𝑚, we have

�0,𝑘 = �𝑝0,𝑘(𝑟) + 𝑞
𝑚∑
𝑗=𝑘

�𝑐,𝑗(𝑟)𝑝 𝑗𝑘(𝑟) (9.27)

and (9.26) then follows. We prove (9.27) by complete backward induction on 𝑘. By
definition and (9.16), we have for 𝑘 = 𝑚

�0,𝑚 = �1,𝑚(𝑟�∗𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑟�∗𝜙𝑚,𝑚�1,𝑚(𝑟�∗𝐼 − 𝑆𝑝)−11𝛼𝑐

= �𝑝0,𝑚(𝑟) + 𝑞�𝑐,𝑚(𝑟)𝑝𝑚𝑚 (𝑟).

Suppose now that 𝑘 < 𝑚 and that (9.27) holds for all 𝑘′ ∈ {𝑘 + 1, . . . , 𝑚}. We have by
definition

�0,𝑘 = �1,𝑘(𝑟�∗𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + 𝑟�∗
𝑚∑
𝑑=𝑘

𝜙𝑑,𝑘�1,𝑑(𝑟�∗𝐼 − 𝑆𝑝)−11𝛼𝑐

+ �0,𝑘+1(𝑟�∗𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐 + 𝑟�∗
𝑚∑

𝑑=𝑘+1
�0,𝑑(𝑟�∗𝐼 − 𝑆𝑐)−1(𝜓𝑑−1,𝑑−𝑘 + 𝜓𝑑−1,𝑘1𝛼𝑐).

By induction hypothesis, (9.16) and (9.25) this is equal to

�𝑝1,𝑘(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−1𝑠𝑝𝛼𝑐 + �𝑟𝑞
𝑚∑
𝑑=𝑘

𝜙𝑑,𝑘𝑝1,𝑑(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−11𝛼𝑐

+ ©«�𝑝0,𝑘+1(𝑟) + 𝑞
𝑚∑

𝑗=𝑘+1
�𝑐,𝑗(𝑟)𝑝 𝑗𝑘+1(𝑟)

ª®¬ (𝑟𝑞𝐼 − 𝑆𝑐)−1𝑠𝑐𝛼𝑐

+ 𝑟𝑞
𝑚∑

𝑑=𝑘+1

(
�𝑝0,𝑑(𝑟) + 𝑞

𝑚∑
𝑖=𝑑

�𝑐,𝑖(𝑟)𝑝 𝑖𝑑(𝑟)
)
(𝑟𝑞𝐼 − 𝑆𝑐)−1(𝜓𝑑−1,𝑑−𝑘 + 𝜓𝑑−1,𝑘1𝛼𝑐).

By first using the formula for 𝑝0,𝑘(𝑟) and then for �𝑐,𝑘(𝑟) (9.6) this is further equal to

�𝑝0,𝑘(𝑟) + �𝑟𝑞
𝑚∑
𝑑=𝑘

𝜙𝑑,𝑘𝑝1,𝑑(𝑟)(𝑟𝑞𝐼 − 𝑆𝑝)−11𝛼𝑐

+ 𝑞
𝑚∑

𝑗=𝑘+1
�𝑐,𝑗(𝑟)𝑝 𝑗𝑘+1(𝑟)(𝑟𝑞𝐼 − 𝑆

𝑐)−1𝑠𝑐𝛼𝑐 + �𝑟𝑞
𝑚∑

𝑑=𝑘+1
𝜓𝑑−1,𝑘𝑝0,𝑑(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−11𝛼𝑐

+ 𝑟𝑞2
𝑚∑

𝑖=𝑘+1
�𝑐,𝑖(𝑟)

𝑖∑
𝑑=𝑘+1

𝑝 𝑖
𝑑
(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1(𝜓𝑑−1,𝑑−𝑘 + 𝜓𝑑−1,𝑘1𝛼𝑐)

= �𝑝0,𝑘(𝑟) + 𝑞�𝑐,𝑘(𝑟)𝛼𝑐 + 𝑞
𝑚∑

𝑗=𝑘+1
�𝑐,𝑗(𝑟)𝑝 𝑗𝑘+1(𝑟)(𝑟𝑞𝐼 − 𝑆

𝑐)−1𝑠𝑐𝛼𝑐
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+ 𝑟𝑞2
𝑚∑

𝑖=𝑘+1
�𝑐,𝑖(𝑟)

𝑖∑
𝑑=𝑘+1

𝜓𝑑−1,𝑑−𝑘𝑝
𝑖
𝑑
(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1.

By rearranging the terms and by using the formula for 𝑝 𝑗
𝑘
(𝑟) this equals

�𝑝0,𝑘(𝑟) + 𝑞�𝑐,𝑘(𝑟)𝑝𝑘𝑘 (𝑟)

+ 𝑞
𝑚∑

𝑗=𝑘+1
�𝑐,𝑗(𝑟)

(
𝑝
𝑗

𝑘+1(𝑟)(𝑟𝑞𝐼 − 𝑆
𝑐)−1𝑠𝑐𝛼𝑐 + 𝑟𝑞

𝑗∑
𝑑=𝑘+1

𝜓𝑑−1,𝑑−𝑘𝑝
𝑗

𝑑
(𝑟)(𝑟𝑞𝐼 − 𝑆𝑐)−1

)
= �𝑝0,𝑘(𝑟) + 𝑞

𝑚∑
𝑗=𝑘

�𝑐,𝑗(𝑟)𝑝 𝑗𝑘(𝑟),

which shows (9.27), thus finishing the proof. □

Theorem 9.8.5. The stationary distribution 𝜋(𝑟) of the QBD Markov chain characterized by
𝑄(𝑟) is the unique fixed point � of the set of ODEs in Equations (9.9)-(9.11).

Proof. Using Proposition 9.3.3 we show that the fixed point equations 𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 are

equivalent to the balance equations of the QBD Markov chain characterized by𝑄(𝑟). The
uniqueness of the fixed point follows from the uniqueness of the stationary distribution
of the Markov chain.
For ℓ ≥ 1, 𝑑

𝑑𝑡
®𝑓ℓ (𝑡) = 0 can be written as

0 = ®�ℓ−1(�𝐼) + ®�ℓ �̃�0 + ®�ℓ+1(�𝛼 + 𝑟�∗𝑉0),

where �̃�0 is the same matrix as 𝐴0(𝑟) except with every instance of 𝑞 changed to �∗. This
is exactly the balance equations of 𝑄(𝑟) for ℓ ≥ 1 as �∗ = 𝑞 due to Proposition 9.8.4. This
implies that ®�ℓ = ®�0𝑅(𝑟)ℓ , for all ℓ ≥ 1 for any fixed point.
For ℓ = 0, 𝑑

𝑑𝑡
®𝑓ℓ (𝑡) = 0 implies

0 = ®�0�̃�0 + ®�1(�𝛼 + 𝑟�∗𝑉0) + ��∗𝛼 + 𝑟�∗
∑
ℓ ′≥0

®�ℓ ′𝑇 + 𝑟�∗
∑
ℓ ′≥1

®�ℓ ′𝑣0𝛼,

where �̃�0 is the same matrix as 𝐵0(𝑟) except with every instance of 𝑞 changed to �∗. Due
to Proposition 9.8.4 we can rewrite this as

0 = ®�0𝐵0(𝑟) + ®�1𝐴−1(𝑟) + 𝑞 ©«
𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)� 𝑗 + �𝛼 + 𝑟
∑
ℓ≥1

®�ℓ𝑣0𝛼
ª®¬ .

This implies that

®�0 = −𝑞 ©«
𝑚∑
𝑗=1

�𝑐,𝑗(𝑟)� 𝑗 + �𝛼 + 𝑟
∑
ℓ≥1

®�ℓ𝑣0𝛼
ª®¬ (𝐵0(𝑟) + �𝐼𝐺(𝑟))−1 ,

as �𝐼𝐺(𝑟) = 𝑅(𝑟)𝐴−1(𝑟). As
∑
ℓ≥0 ®�ℓ1 = 1 − 𝑞 = ∑

ℓ≥0 𝜋ℓ (𝑟)1, we find that

𝑟
∑
ℓ ′≥1

®�ℓ ′𝑣0 = �𝑝(𝑟) (9.28)
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defined in (9.8). This indicates that 𝑑
𝑑𝑡
®𝑓ℓ (𝑡) = 0 corresponds to the balance equation for

ℓ = 0. As 𝑇1 = 1 − 𝑣0, we have for 𝑑
𝑑𝑡
𝑓∗(𝑡) = 0 that

0 = −��∗ + ®�0� − 𝑟�∗(1 − �∗ − ®�0𝑣0)

= −�∗

(
𝑟
∑
ℓ ′≥0

®�ℓ ′𝑇1 + � + 𝑟
∑
ℓ ′≥1

®�ℓ ′𝑣0

)
+ ®�0�,

which is exactly the first balance equation due to Proposition 9.8.4 and (9.28). □

9.9 Conclusions and future work

We introduced a model for randomized work stealing in multithreaded large-scale sys-
tems, where parent jobs spawn child jobs and where any number of existing child jobs
can be stolen from a queue by a single probe. We defined a Quasi-Birth-Death (QBD)
Markov chain to approximate the system behaviour and showed, using simulation, that
the approximation error tends to zero as the number of servers tends to infinity. To
further support this observation we introduced a mean field model and showed that the
stationary distribution of the QBD is the unique fixed point of the mean field model.

Using numerical experiments we examined the effect of changing the load 𝜌, the steal
rate 𝑟 and the variability of the job sizes. We studied the performance of some basic
steal strategies and showed that stealing half of the child jobs is in general a good policy
for higher steal rates 𝑟 and/or lower loads 𝜌, while the strategy of stealing all children
performs best for low steal rates 𝑟 and/or higher loads. We further showed that stealing
becomes more and more worthwhile when the job size variability increases.

Possible generalizations include stealing multiple parent jobs per probe and systems
where offspring of a job can spawn further offspring (multigenerational multithreading).
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Join-Up-To(𝑚): Improved

Hyper-scalable Load Balancing

This chapter is based on the paper [42], which was submitted to a journal in 2023. The chapter is
comprised of the paper together with results in case of exponential jobs and jobs of the phase type.
Most of these results are not contained in [42]. As of writing this thesis, this is the last paper I
have worked on.

10.1 Introduction

Load balancing plays a crucial role in any large-scale distributed system. If the dispatcher
responsible for assigning jobs to servers has perfect knowledge of the servers that are
idle, then it is intuitively clear that the waiting time of jobs vanishes as the number of
servers tends to infinity when the system load is below 1. This can be achieved using
a simple algorithm called Join-the-Idle-Queue, where a server informs the dispatcher
whenever it becomes idle [52,72] and incoming jobs are assigned to idle servers (if there
is at least one idle server). It is also clear that in such case the communication overhead is
one message per job. Vanishing waiting times have also been established in the so-called
hyper-scalable regime [3, 75], that is, when the communication overhead is below one
message per job, but this is not possible without information regarding the job sizes [21].

Hyper-scalable load balancers that do not require any job size information have been
studied in [74] and [36]. These do not have vanishing waits when fewer than one
message per job is used, but instead have bounded queue lengths in the large-scale limit.
However as the number of messages per job tends to zero, this upper bound as well as
the mean response time tend to infinity. This means that these load balancers perform
worse than simply assigning jobs to a random server (which requires no communication
overhead at all) when the number of messages per job becomes small as demonstrated
in Table 10.1. For instance, for a load of 0.8 we see that both the asynchronous policy
of [74] and the pull policy of [36] (with 𝛿1 = 0, meaning only idle servers send updates)
perform far worse than random assignment when 𝛿 = 1/40.

In this chapter we propose a new hyper-scalable load balancing scheme called Join-Up-
To(𝑚) that outperforms random assignment irrespective of the communication overhead
(and coincides with random assignment when the communication overhead tends to

201
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policy 𝛿 � = 0.5 � = 0.8 � = 0.95
Random assignment 0 2 5 20
Asynchr. policy [74] 4/10 1.5932 3.1489 6.4542

1/10 4.3563 10.6507 22.7754
1/40 16.0860 41.3408 87.4644

Pull policy, 𝛿1 = 0 [36] 4/10 1.0968 1.5 1.6540
1/10 3 4.5 5.0671
1/40 10.5 16.5 19.4944

JUT(𝑚𝑜𝑝𝑡), this chapter 4/10 1.2170 1.5451 1.7287
1/10 1.6886 2.7712 3.6549
1/40 1.9069 3.9658 6.9149

Table 10.1: Mean response time of some existing hyperscalable policies for exponential
job sizes with mean 1. All policies use on average 𝛿/� < 1 messages per job.

zero). Join-Up-To(𝑚) is also superior to the schemes considered in [74] and [36], unless
the communication overhead is fairly close to one message per job (see Table 10.1). Under
the Join-Up-To(𝑚) policy the dispatcher maintains an upper bound on the queue length
of each server and idle servers occasionally inform the dispatcher about their state (see
Section 10.2 for details). Incoming jobs are assigned to a server with the lowest upper
bound below 𝑚, if such a server exists, and are assigned at random otherwise.

To understand the system behavior when the number of servers tends to infinity, we
study the queue at the cavity for the Join-Up-To(𝑚) policy (see Section 10.3). We derive
explicit expressions for the mean and the variance of the response time, for the parameter
value of 𝑚 that minimizes the mean response time and we derive expressions for the
generating function and Laplace transform of the queue length distribution and response
time distribution, respectively. These results show that the mean response time and
optimal 𝑚 value for the Join-Up-To(𝑚) policy only depend on the first two moments of
the jobs size distribution, while the variance of the response time also depends on the
third moment. We also analytically invert the generating function of the queue length
distribution in case of phase-type distributed job sizes and analytically invert the Laplace
transform of the response time in case of exponential job sizes.

The chapter is structured as follows. In Section 10.2 we describe the system under
consideration and introduce the JUT(𝑚) policy. The queue at the cavity approach, used
to analyse the performance of JUT(𝑚) in a large-scale setting, is discussed in Section 10.3.
The analysis of the queue at the cavity is presented in Section 10.4, while Section 10.5
contains various numerical results. Finally, conclusions can be found in Section 10.6.

10.2 System description and the JUT(𝑚) policy

We consider a set of 𝑁 homogeneous servers, each with its own infinite buffer, and a
central dispatcher. Every server processes the jobs in its queue in First-Come-First-Served
order. Jobs arrive at the dispatcher according to a Poisson process with rate 𝑁�, with
0 < � < 1. The service requirements of a job have a general distribution 𝐺 with mean
one, i.e. 𝐸[𝐺] = 1. For each server the dispatcher maintains an upper bound on its queue
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length. Henceforth, we refer to these upper bounds as “estimates”.

The policy: The load balancing policy called Join-Up-To(𝑚) (JUT(𝑚)) relies on a single
integer parameter 𝑚 and operates as follows. When an arrival occurs and some servers
have an estimate below 𝑚, then the dispatcher assigns the job to a server with lowest
estimate among all such servers (with ties broken uniformly at random). Otherwise, if
all estimates are at least 𝑚, the dispatcher assigns the job to a random server. Whenever
the dispatcher assigns a job to a server, it increases this estimate by one. The estimate of a
server can also be reset to zero. This happens when an idle server informs the dispatcher
that its queue is empty. In order to have an average of 𝛿/� < 1 such messages per arrival,
idle server inform the dispatcher about their state at rate 𝛿0 = 𝛿/(1 − �) as 1 − � is the
fraction of time that a server is idle.

The parameter 𝑚: When 𝑚 > ⌊�/𝛿⌋ the performance of the JUT(𝑚) policy coincides
with the pull policy in [36] (with 𝛿1 = 0) when the number of servers tends to infinity
(as the dispatcher never runs out of servers with an estimate below 𝑚). Recall that this
policy becomes inferior to random assignment for 𝛿 small enough. We therefore focus
on JUT(𝑚) with 𝑚 ≤ ⌊�/𝛿⌋. In Corollary 10.4.8 we present a simple explicit expression
that depends only on �, 𝛿 and 𝐸[𝐺2] for the value of𝑚 that minimizes the mean response
time (for the queue at the cavity with 𝐸[𝐺] = 1).

10.3 Queue at the cavity approach

As the system of 𝑁 servers is hard to analyze directly and simulation experiments do not
provide closed form expressions and become very time consuming for large 𝑁 , we make
use of the so-called “queue at the cavity approach” (see [9] or Section 4.3). The basic
idea of this approach is to focus on the evolution of a single server and to assume that
all other servers have independent and identically distributed queue lengths. In some
particular cases the queue at the cavity method was proven to yield exact results as the
number of servers tends to infinity (see [9, 67]). The system that is closest to ours for
which such a proof was established is [2] which was limited to exponential job sizes. As
proving asymptotic exactness of the queue at the cavity approach is highly challenging
for general service times, we limit ourselves to presenting a set of simulation results that
suggest that the queue at the cavity also provides exact results as 𝑁 tends to infinity in
our setting.

In Table 10.2, we compare the relative error of Corollary 10.4.4 for the queue at the cavity
with the simulated mean response time, for 𝑁 ∈

{
102 , 103 , 104 , 105}, based on 20 runs.

Each run contains 1000𝑁 arrivals and has a warm-up period of 10%. We consider different
values of�, 𝛿,𝑚 and different job size distributions. The job size distributions considered
in Table 10.2 are exponential, Erlang, hyperexponential (HypExp), hyper-Erlang (HypErl)
and truncated Pareto, all with mean 1. The hyperexponential distribution of order 2 is
described using the shape parameter 𝑓 and the squared coefficient of variation 𝑆𝐶𝑉 [34].
The hyper-Erlang distribution HypErl(𝑘, ℓ ) is such that jobs are Erlang-𝑘 with probability
𝑝 and Erlang-ℓ otherwise. The truncated Pareto distribution is characterized by three
values: 𝛼, 𝐿 and 𝑈 , with 0 < 𝐿 < 𝑈 < +∞. The value of 𝛼 is called the shape parameter,
while 𝐿 and 𝑈 respectively denote the lower and upper bound of the support of the
distribution. Note, that we require that jobs have mean 1. Hence, if 𝑋 has a Pareto
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settings N sim. ± conf. rel.err.%
Exponential 100 5.3145 ± 7.28e-03 2.4216
� = 0.8 1000 5.4347 ± 1.75e-03 0.2147
𝛿 = 0.05 10000 5.4450 ± 5.95e-04 0.0268
𝑚 = 10 100000 5.4463 ± 1.38e-04 0.0021

∞ 5.4464 0
HypExp(2) 100 11.7581 ± 5.55e-01 11.6331
𝑓 = 1/2, 𝑆𝐶𝑉 = 15 1000 10.6572 ± 2.14e-01 1.1811
� = 0.95 10000 10.5240 ± 4.34e-02 0.0836
𝛿 = 0.05 100000 10.5349 ± 1.77e-02 0.0195
𝑚 = 15 ∞ 10.5328 0
Erlang(10) 100 3.4231 ± 9.73e-03 1.7598
� = 0.95 1000 3.3728 ± 2.69e-03 0.2661
𝛿 = 0.1 10000 3.3651 ± 1.17e-03 0.0378
𝑚 = 5 100000 3.3640 ± 3.58e-04 0.0046

∞ 3.3639 0
HypErl(3,7) 100 2.0574 ± 3.32e-03 2.0553
𝑝 = 0.85 1000 2.0960 ± 6.11e-04 0.2186
� = 0.9 10000 2.1005 ± 2.61e-04 0.0053
𝛿 = 0.05 100000 2.1006 ± 7.44e-05 0.0001
𝑚 = 7 ∞ 2.1006 0
Pareto(3, [1, 50]) 100 4.4010 ± 1.09e-02 0.2114
� = 0.9 1000 4.3940 ± 2.13e-03 0.0522
𝛿 = 0.05 10000 4.3914 ± 8.19e-04 0.0088
𝑚 = 7 100000 4.3918 ± 3.67e-04 0.0002

∞ 4.3917 0

Table 10.2: Relative error of the simulated mean response time for the JUT(𝑚) strategy
based on 20 runs.

distribution with parameters 𝛼, 𝐿 and 𝑈 , we instead work with the random variable
𝑋/𝐸[𝑋] and denote 𝑋/𝐸[𝑋] ∼ Pareto(𝛼, [𝐿,𝑈]).

The simulation results presented in Table 10.2 are a representative subset of simulations
which we executed. When 𝑁 ≥ 1000 the error always stays below 1.5%. Further, in all
cases the simulated mean response time seems to be 𝑂(1/𝑁) accurate in function of 𝑁 ,
similar to the results in [24].

10.4 Analysis of the queue at the cavity

10.4.1 General job sizes

The queue at the cavity for the JUT(𝑚) policy is defined as an M/G/1 queue with arrival
rate �̃ = �− 𝛿𝑚, except that when the queue is empty there are also batch arrivals of size
𝑚 that occur at rate 𝛿0 = 𝛿/(1 − �). The intuition behind this queue at the cavity is that
in the large-scale limit any idle server that informs the dispatcher about its state (which
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occurs at rate 𝛿0) will immediately receive a batch of 𝑚 jobs. As the overall rate of such
messages is 𝛿, this implies that a fraction 𝛿𝑚/� of the jobs is assigned in this manner.
The remaining fraction 1 − 𝛿𝑚/� of the jobs is assigned at random and corresponds to
the arrivals at rate �̃ = � − 𝛿𝑚. Recall that we assume that 𝑚 < �/𝛿, such that �̃ > 0. As
𝑚 is an integer, we have 𝑚 ≤ ⌊�/𝛿⌋.

Let 𝜋𝑎
𝑖
,𝜋𝑑

𝑖
and 𝜋𝑖 be the steady state probability that there are 𝑖 jobs in the cavity queue

at arrival, departure and at a random time, respectively. Let 𝜋𝑎(𝑧),𝜋𝑑(𝑧) and 𝜋(𝑧) be the
associated generating functions. Note that if a job is the 𝑘-th job of a batch of size 𝑚, then
it sees 𝑘−1 jobs at arrival time. It is well known that 𝜋𝑎(𝑧) = 𝜋𝑑(𝑧). This is clear for single
arrivals and the corresponding departures. This also holds for the batch arrivals in state
0 and the corresponding departures: the 𝑘-th job from a batch of 𝑚 jobs sees 𝑘 − 1 jobs in
the queue upon arrival, namely the 𝑘 − 1 jobs from the same batch that came before the
𝑘-th job. The next theorem relates 𝜋(𝑧) with 𝜋𝑎(𝑧).

Theorem 10.4.1. The generating function 𝜋(𝑧) can be written as

𝜋(𝑧) = �

�̃
𝜋𝑎(𝑧) − 𝛿

�̃

1 − 𝑧𝑚
1 − 𝑧 . (10.1)

Proof. As any batch arrival that occurs when the queue is empty contains a single job that
sees 𝑖 jobs at arrival time, for 0 ≤ 𝑖 < 𝑚, we have the following relationship between the
probabilities 𝜋𝑎

𝑖
and 𝜋𝑖 :

𝜋𝑎𝑖 =
(
�̃𝜋𝑖 + 𝛿0𝜋0

)
𝑐,

for 0 ≤ 𝑖 < 𝑚, where 𝑐 is a normalizing constant. Further, as batch arrivals only occur
when the queue is empty, we have

𝜋𝑎𝑖 = �̃𝜋𝑖𝑐,

for 𝑖 ≥ 𝑚. As 𝜋𝑎(1) = 1 and 𝜋(1) = 1, we have

1/𝑐 = �̃ + 𝛿0𝜋0𝑚 = �̃ + 𝛿𝑚 = �,

as 𝜋0 = 1 − � and 𝛿0 = 𝛿/(1 − �). This implies that 𝜋𝑎
𝑖
= (�̃𝜋𝑖 + 𝛿)/� for 𝑖 < 𝑚 and

𝜋𝑎
𝑖
= �̃𝜋𝑖/� for 𝑖 ≥ 𝑚. Hence,

𝜋𝑎(𝑧) = 𝛿
�

𝑚−1∑
𝑖=0

𝑧 𝑖 + �̃
�
𝜋(𝑧) = 𝛿

�
1 − 𝑧𝑚
1 − 𝑧 + �̃

�
𝜋(𝑧),

and therefore (10.1) holds. □

Recall that for an 𝑀/𝐺/1 queue with arrival rate �̃ and mean job size 1, the generating
function of the queue length is given by the Pollaczek-Khinchine formula (cf. Theorem
3.5.3)

�(𝑧) = (1 − �̃)(1 − 𝑧)𝐺∗(�̃ − �̃𝑧)
𝐺∗(�̃ − �̃𝑧) − 𝑧

, (10.2)

where 𝐺∗(𝑠) is the Laplace-Stieltjes transform of the job size distribution.
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Theorem 10.4.2. The generating function 𝜋𝑎(𝑧) can be written as

𝜋𝑎(𝑧) = 1 − 𝛼(𝑧)
𝛼′(1)(1 − 𝑧)�(𝑧), (10.3)

where �(𝑧) is given by (10.2) and

𝛼(𝑧) = �̃

�̃ + 𝛿0
𝑧 + 𝛿0

�̃ + 𝛿0
𝑧𝑚 .

Note that 𝛼′(1) = (�̃ + 𝑚𝛿0)/(�̃ + 𝛿0).

Proof. Consider an M/G/1 queue with arrival rate �̃ where the server starts a vacation
each time the queue becomes empty. The vacation ends with probability �̃/(�̃+ 𝛿0) when
an arrival occurs or ends when the 𝑚-th arrival occurs otherwise. The queue length
distribution of this vacation queue is the same at arrival, departure and at random times
(due to PASTA) and its generating function 𝜙(𝑧) obeys the well known decomposition
result for vacation queues [19, 20], that is,

𝜙(𝑧) = 1 − 𝛼(𝑧)
𝛼′(1)(1 − 𝑧)�(𝑧),

where �(𝑧) is the generating function of the queue length of a standard M/G/1 queue
with arrival rate �̃ and 𝛼(𝑧) is the generating function of the number of arrivals during a
vacation.

The proof completes by noting that the queue length distribution at departure times in
the queue at the cavity 𝜋𝑑(𝑧) and at departure times in the vacation queue 𝜙(𝑧) are the
same, while 𝜋𝑎(𝑧) = 𝜋𝑑(𝑧). □

Corollary 10.4.3. The generating function 𝜋(𝑧) is given by

𝜋(𝑧) = �

�̃
𝛽(𝑧)�(𝑧) − 𝛿

�̃

1 − 𝑧𝑚
1 − 𝑧 , (10.4)

with 𝛽(𝑧) = (1 − 𝛼(𝑧))/(𝛼′(1)(1 − 𝑧)).

Proof. This is immediate from the previous two theorems. □

Note that 𝛽(𝑧) is the generating function of the number of customers that arrive during
a vacation period after the arrival of the random customer during a vacation [19]. Using
this interpretation we note that

𝛽(𝑧) = �̃

𝛿0𝑚 + �̃
+ 𝛿

�(1 − �̃)

𝑚−1∑
𝑖=0

𝑧 𝑖 , (10.5)

as 𝛿0𝑚/(𝛿0𝑚 + �̃) = 𝛿𝑚/(�(1 − �̃)) is the probability that the random arrival is part of a
vacation with 𝑚 arrivals and its position is uniform within these 𝑚 arrivals.
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Corollary 10.4.4. The mean response time 𝐸[𝑅(𝑚)] in the queue at the cavity is given by

𝐸[𝑅(𝑚)] = 1 + �̃𝐸[𝐺2]
2(1 − �̃)

+ 𝛿
�
𝑚(𝑚 − 1)
2(1 − �̃)

. (10.6)

In particular, we have

lim
�→1−

𝐸[𝑅(𝑚)] = 1 − 𝛿𝑚
2𝛿𝑚 𝐸[𝐺2] + 𝑚 + 1

2 . (10.7)

Proof. Due to Little, we have 𝐸[𝑅(𝑚)] = 𝜋′(1)/�. Using (10.4) we have

𝜋′(1)
�

=
𝛽′(1)
�̃

+ �′(1)
�̃

− 𝛿

�̃

𝑚(𝑚 − 1)
2

1
�
,

where �′(1)/�̃ is the mean response time in a standard M/G/1 queue with arrival rate
�̃, which equals 1 + �̃𝐸[𝐺2]/(2(1 − �̃)) as 𝐸[𝐺] = 1. The first claim therefore follows by
verifying that

𝛽′(1) = 𝛿𝑚(𝑚 − 1)
2�(1 − �̃)

,

which is immediate from (10.5). The second claim follows immediately from (10.6) as �̃
converges to 1 − 𝛿𝑚. □

The formula (10.6) can also be obtained directly through the use of mean value analysis:

Proof. We tag an arbitrary job that just entered the queue. There are two possibilities:
the tagged job arrived in the queue due to the Poisson process with parameter �̃ or the
tagged job arrived in a batch of 𝑚 jobs due to an update event. Let us call these jobs of
type 1 and type 𝑚 and denote by 𝑡𝑎𝑔1 and 𝑡𝑎𝑔𝑚 the case where a tagged job is of type 1
and type 𝑚 respectively. We have

𝐸[𝑊] = 𝐸[𝑊 |𝑡𝑎𝑔1]𝑃[𝑡𝑎𝑔1] + 𝐸[𝑊 |𝑡𝑎𝑔𝑚]𝑃[𝑡𝑎𝑔𝑚].

Jobs of type 1 arrive at the queue with rate �̃, while jobs of type𝑚 arrive at rate 𝛿0(1−�)𝑚 =

𝛿𝑚. The total arrival rate of jobs is �, hence 𝑃[𝑡𝑎𝑔1] = �̃/� and 𝑃[𝑡𝑎𝑔𝑚] = 𝛿𝑚/�.
There is a 1/𝑚 chance that a tagged job of type 𝑚 is the first, second, . . . , 𝑚-th job of the
batch. Hence

𝐸[𝑊 |𝑡𝑎𝑔𝑚] =
1
𝑚

𝑚−1∑
𝑘=0

𝑘 =
𝑚 − 1

2 .

Finding 𝐸[𝑊 |𝑡𝑎𝑔1] requires more work. Due to the PASTA property we have

𝐸[𝑊 |𝑡𝑎𝑔1] = 𝐸[𝑁] + 𝐸[𝑡𝑟𝑒𝑠] = 𝐸[𝑁] + 𝐸[𝑡𝑟𝑒𝑠 | queue busy]𝑃[queue busy],

where 𝑁 denotes the number of waiting jobs and 𝑡𝑟𝑒𝑠 the residual service time of the job
in service. Note that if the queue is empty, then 𝑡𝑟𝑒𝑠 = 0. We have 𝐸[𝑁] = �𝐸[𝑊], due
to Little’s law. Further 𝐸[𝑡𝑟𝑒𝑠] = 𝐸[𝐺2]/2 and as jobs have mean one 𝑃[queue busy] = �.
Putting everything together we have:

𝐸[𝑊] =
(
�𝐸[𝑊] + �

𝐸[𝐺2]
2

)
�̃
�
+ 𝛿𝑚

�
· 𝑚 − 1

2 .
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Solving this equation for 𝐸[𝑊], we get

𝐸[𝑊] = �̃

1 − �̃
· 𝐸[𝐺

2]
2 + 𝛿

�
· 1

1 − � + 𝛿𝑚
· (𝑚 − 1)𝑚

2 .

The claim now follows as �̃ = � − 𝛿𝑚 and 𝐸[𝑅(𝑚)] = 1 + 𝐸[𝑊]. □

Remark 10.4.5. As long as 𝑚 > 0 and 𝛿 > 0, the mean response time remains bounded
when � tends to one, in contrast to an ordinary M/G/1 queue. The mean response time
of JUT(𝑚) converges to that of random assignment when 𝛿 tends to zero, which is an
improvement over the policies in [36,74] where the mean response time tends to infinity
as 𝛿 tends to zero for any � < 1.

Theorem 10.4.6. The Laplace transform 𝑅∗(𝑠) of the response time distribution of the queue at
the cavity can be expressed as

𝑅∗(𝑠) = �̃
�
𝑌∗(𝑠)𝜋(𝐺∗(𝑠)) − �̃(1 − �)

�
(𝑌∗(𝑠) − 𝐺∗(𝑠)) + 𝛿

�

(
1 − 𝐺∗(𝑠)𝑚+1

1 − 𝐺∗(𝑠) − 1
)
, (10.8)

where 𝐺∗(𝑠) and 𝑌∗(𝑠) are the Laplace transforms of the service time and residual service time,
respectively. It is also well known that 𝑌∗(𝑠) = (1 − 𝐺∗(𝑠))/𝑠 as 𝐸[𝐺] = 1.

Proof. The arrivals that occur at rate �̃ arrive at random points in time, therefore such
an arrival sees a workload of one residual service time and 𝑖 − 1 service times with
probability 𝜋𝑖 , for 𝑖 > 0 and no workload with probability 𝜋0. For a tagged arrival that
occurs in a batch of size 𝑚 the workload observed upon arrival is equal to the service
time of the jobs that are part of the same batch and ahead of the tagged arrival. This
implies

𝑅∗(𝑠) = �̃
�

( ∞∑
𝑖=1

𝜋𝑖𝑌
∗(𝑠)𝐺∗(𝑠)𝑖 + 𝜋0𝐺

∗(𝑠)
)
+ 𝛿𝑚

�

𝑚−1∑
𝑖=0

1
𝑚
𝐺∗(𝑠)𝑖+1

=
�̃
�
(𝑌∗(𝑠)(𝜋(𝐺∗(𝑠)) − 𝜋0) + 𝜋0𝐺

∗(𝑠)) + 𝛿
�

(
1 − 𝐺∗(𝑠)𝑚+1

1 − 𝐺∗(𝑠) − 1
)
.

Equation (10.8) then follows as 𝜋0 = 1 − �. □

Remark 10.4.7. We can also retrieve (10.6) using (10.8) by making use of the fact that
𝐸[𝑅(𝑚)] = −𝑅∗′(0). More specifically, we can make use of the equalities 𝐺∗′(0) = −𝐸[𝐺] =
−1 and −𝑌∗′(0) = 𝐸[𝑌] = 𝐸[𝐺2]/2 to find that

𝐸[𝑅(𝑚)] = −𝑅∗′(0)

= − �̃
�
(𝑌∗′(0) − 𝜋′(1) − (1 − �)(𝑌∗′(0) + 1)) + 𝛿

�
𝑚(𝑚 + 1)

2

= �̃
𝜋′(1)
�

− �̃𝑌∗′(0) + �̃(1 − �)
�

+ 𝛿𝑚
�

+ 𝛿
�
𝑚(𝑚 − 1)

2

= �̃𝐸[𝑅(𝑚)] + �̃𝐸[𝐺2]
2 + (1 − �̃) + 𝛿

�
𝑚(𝑚 − 1)

2 ,

as 𝛿𝑚 + �̃ = �. Similarly, we can derive an explicit expression for the second moment of
the response time 𝐸[𝑅(𝑚)2], see Theorem 10.4.11.
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Theorem 10.4.8. The mean response time of the queue at the cavity 𝐸[𝑅(𝑚)] is minimized by
setting 𝑚 equal to 𝑚𝑜𝑝𝑡 = min(�̂�, ⌊�/𝛿⌋) with

�̂� =


√(

1
2 + 1 − �

𝛿

)2
+ �

𝛿
𝐸[𝐺2] −

(
1
2 + 1 − �

𝛿

) . (10.9)

Proof. Using (10.6) we get that

0 =
𝜕𝐸[𝑅(𝑚)]

𝜕𝑚
=

𝛿(𝛿𝑚2 + (2𝑚 − 1)(1 − �) − �𝐸[𝐺2])
2�(1 − � + 𝛿𝑚)2 . (10.10)

This equation has a unique positive root given by

𝑚∗ =

√
(1 − �)2 + 𝛿 [1 + � (𝐸[𝐺2] − 1)] − (1 − �)

𝛿
,

as 1 + �(𝐸[𝐺2] − 1) > 0. One readily verifies that

𝜕2𝐸[𝑅(𝑚)]
𝜕𝑚2 =

𝛿((1 − �)𝛿 + (1 − �)2 + �𝛿𝐸[𝐺2])
�(1 − � + 𝛿𝑚)3 ≥ 0.

for𝑚 ≥ 0. Therefore 𝐸[𝑅(𝑚)] is convex in𝑚 on [0,∞) and𝑚∗ is the minimum of 𝐸[𝑅(𝑚)].
However 𝑚∗ is typically not an integer.

The integer value that minimizes 𝐸[𝑅(𝑚)] is found by defining Δ𝑅(𝑚) = 𝐸[𝑅(𝑚 + 1)] −
𝐸[𝑅(𝑚)] and taking the ceil of its unique positive root. By further using (10.6), one easily
checks that

Δ𝑅(𝑚) = 𝛿𝑚
𝑁�

(
1 − � + 𝛿

(𝑚 + 1)
2

)
− 𝛿
𝑁

· 𝐸[𝐺
2]

2 ,

where 𝑁 = (1 − �)2 + (1 − �)𝛿(2𝑚 + 1) + 𝛿2𝑚(𝑚 + 1) > 0. We have that Δ𝑅(𝑚) = 0 if and
only if

𝑚

�

(
1 − � + 𝛿(𝑚 + 1)

2

)
− 𝐸[𝐺2]

2 = 0,

which has a unique positive root given by

𝑚 =
− 𝛿

2� − 1−�
� +

√( 𝛿
2� + 1−�

�

)2 + 𝛿
�𝐸[𝐺2]

𝛿/� . (10.11)

As �̃ > 0, we have 𝑚 ≤ ⌊�/𝛿⌋ and the result follows by the convexity of 𝐸[𝑅(𝑚)]. □

Remark: The optimal value 𝑚𝑜𝑝𝑡 is decreasing in 𝛿 and increasing in both � and 𝐸[𝐺2].
The next Corollary therefore implies that 𝑚𝑜𝑝𝑡 ≤ ⌈�𝐸[𝐺2]/(2(1 − �))⌉.
Corollary 10.4.9. The optimal value of 𝑚 when 𝛿 → 0+ is given by

𝑚𝛿→0+
𝑜𝑝𝑡 =

⌈
1
2

�
1 − �

𝐸[𝐺2]
⌉
.

The optimal value of 𝑚 when � → 1− is given by

𝑚�→1−
𝑜𝑝𝑡 = min

(⌈√
1
4 + 𝐸[𝐺2]

𝛿
− 1

2

⌉
,

⌊
1
𝛿

⌋)
.
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Proof. The first claim follows by application of l’Hôpital’s rule on (10.9), the second is
immediate. □

Remark 10.4.10. We have

𝜕𝐸[𝑅(𝑚)]
𝜕𝛿

= −
𝑚

(
1 − � + �𝐸[𝐺2] − (1 − �)𝑚

)
2�(1 − �̃)2

= −
(1 − �)𝑚

(
1 + �

1−�𝐸[𝐺2] − 𝑚
)

2�(1 − �̃)2
. (10.12)

We distinguish three possibilities:

1. If 𝑚 > 1 + �
1−�𝐸[𝐺2], then (10.12) is greater than 0, hence increasing the value of

𝛿 increases the mean response time. In this case, having 𝛿 = 0 works the best. If
𝛿 = 0, the queue at the cavity becomes a standard M/G/1 queue with arrival rate
� and (10.6) simplifies to 1 + �

1−�
𝐸[𝐺2]

2 .

2. If 𝑚 = 1 + �
1−�𝐸[𝐺2], then (10.12) is 0, which implies that in this case 𝐸[𝑅(𝑚)] is

independent of 𝛿. In fact, substituting𝑚 = 1+ �
1−�𝐸[𝐺2] into (10.6) gives 𝐸[𝑅(𝑚)] =

1 + �
1−�

𝐸[𝐺2]
2 .

3. If 𝑚 < 1 + �
1−�𝐸[𝐺2], then (10.12) is smaller than 0 and the proposed policy works

better than random assignment for any 𝛿 > 0.

Note that when 𝑚 = 1 or 𝑚 = 𝑚𝑜𝑝𝑡 (due to Corollary 10.4.9), case 3. applies and our
policy improves upon random assignment.

We end this section with the derivation of a formula for the second (raw) moment
𝐸[𝑅(𝑚)2] of the response time, which combined with 𝐸[𝑅(𝑚)] yields a formula for the
variance 𝑉𝑎𝑟[𝑅(𝑚)].

Theorem 10.4.11. The second (raw) moment of the response time of the queue at the cavity
𝐸[𝑅(𝑚)2] is given by

𝐸[𝑅(𝑚)2] = �̃𝐸[𝐺3]
3 + 𝛿�̃(𝑚 − 2)(𝑚 − 1)𝑚

3�(1 − �̃)
+ �̃

𝛿𝑚(𝑚 − 1)
�(1 − �̃)

(
1 + �̃𝐸[𝐺2]

2(1 − �̃)

)
+ �̃4𝐸[𝐺2]2

2(1 − �̃)2
+ �̃3𝐸[𝐺3]

3(1 − �̃)
+ �̃2𝐸[𝐺2]

1 − �̃
+ 2�̃𝐸[𝐺2]

(
1 + �̃𝐸[𝐺2]

2(1 − �̃)
+ 𝛿

�
𝑚(𝑚 − 1)
2(1 − �̃)

)
+ �̃(1 − �)

�
𝐸[𝐺2] + 𝛿

�

(
𝐸[𝐺2]𝑚(𝑚 + 1)

2 + (𝑚 − 1)𝑚(𝑚 + 1)
3

)
.

Proof. We have 𝐸[𝑅(𝑚)2] = 𝑅∗′′(0). By using (10.8) together with 𝐺∗′(0) = −𝐸[𝐺] = −1,
−𝑌∗′(0) = 𝐸[𝑌] = 𝐸[𝐺2]/2 and 𝐺∗′′(0) = 𝐸[𝐺2], we obtain

𝐸[𝑅(𝑚)2] = �̃𝑌∗′′(0) + �̃
�

(
𝜋′′(1) + 2𝜋′(1)𝐸[𝐺2] + (1 − �)𝐸[𝐺2]

)
+ 𝛿

�

(
𝐸[𝐺2]𝑚(𝑚 + 1)

2 + (𝑚 − 1)𝑚(𝑚 + 1)
3

)
.
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One readily checks that 𝑌∗′′(0) = 𝐸[𝐺3]/3 and we already know that 𝜋′(1) = �𝐸[𝑅(𝑚)].
From (10.4) we have

𝜋′′(1) = �

�̃
(𝛽′′(1) + 2𝛽′(1)�′(1) + �′′(1)) − 𝛿(𝑚 − 2)(𝑚 − 1)𝑚

3�̃
.

Making use of (10.5) one finds

𝛽′′(1) = 𝛿

�(1 − �̃)

𝑚−1∑
𝑖=1

𝑖(𝑖 − 1) = 𝛿(𝑚 − 2)(𝑚 − 1)𝑚
3�(1 − �̃)

.

We still need to find �′′(1). �′′(1) can be calculated directly, however this calculation is
rather lengthy. We therefore opt for a different approach. Denote respectively by �̃� and �̃�
the response and waiting time of an ordinary 𝑀/𝐺/1 queue with arrival rate �̃. By using
[30, (5.30)], we get �′′(1) = �̃2𝐸[�̃�2]. We have 𝐸[�̃�2] = 𝐸[(�̃�+𝐺)2] = 𝐸[�̃�2]+2𝐸[�̃�]𝐸[𝐺]+
𝐸[𝐺2]. As 𝐸[𝐺] = 1 and 𝐸[�̃�] = �̃𝐸[𝐺2]

2(1−�̃) , we obtain 2𝐸[�̃�]𝐸[𝐺] + 𝐸[𝐺2] = 𝐸[𝐺2]/(1 − �̃).
𝐸[�̃�2] is given by [14, p.256]:

𝐸[�̃�2] = �̃2𝐸[𝐺2]2

2(1 − �̃)2
+ �̃𝐸[𝐺3]

3(1 − �̃)
.

It follows that

�′′(1) = �̃4𝐸[𝐺2]2

2(1 − �̃)2
+ �̃3𝐸[𝐺3]

3(1 − �̃)
+ �̃2𝐸[𝐺2]

1 − �̃
.

Putting everything together finishes the proof. □

10.4.2 Phase-type distributed job sizes

In this section we provide an explicit formula for the queue length distribution in case of
phase type distributed jobs, meaning we present an explicit formula for the probabilities
𝜋𝑘 appearing in the generating function 𝜋(𝑧) =

∑
𝑘 𝜋𝑘𝑧

𝑘 . Then, we present a way of
deriving explicit formula for 𝜋𝑘,ℓ , the probability that the queue has 𝑘 jobs and the job in
service is in phase ℓ .

Recall that a phase type distribution with 𝑛𝑝 phases can be characterized by a couple
(𝛼, 𝑆), where 𝛼 is a row vector of length 𝑛𝑝 and is called the initial distribution vector, as
𝛼𝑖 is the probability that the distribution starts in phase 𝑖; and where 𝑆 is a 𝑛𝑝 ×𝑛𝑝 matrix
that records the rates of phase changes.

Theorem 10.4.12. Suppose 𝐺 is PH(𝛼, 𝑆) distributed (with mean 1). Then, for 𝑘 = 1, . . . , 𝑚:

𝜋𝑘 =

(
1 − � + 𝛿

�̃

)
𝛼𝑅𝑘1𝑛𝑝 +

𝛿

�̃
𝛼(𝐼 − 𝑅)−1

(
𝑅 − 𝑅𝑘

)
1𝑛𝑝 , (10.13)

and for 𝑘 > 𝑚:

𝜋𝑘 =

[(
1 − � + 𝛿

�̃

)
𝛼 + 𝛿

�̃
𝛼(𝐼 − 𝑅)−1

(
𝑅1−𝑚 − 𝐼

)]
𝑅𝑘1𝑛𝑝 , (10.14)

where 𝑅 = −�̃(𝑆 − �̃𝐼 + �̃1𝑛𝑝𝛼)−1 and where 1𝑛𝑝 is a column vector of ones of height 𝑛𝑝 .



212 CHAPTER 10. IDLES ONLY JUT(𝑚)

Proof. By using [60, Theorem 3.2.1], we get

�(𝑧) = (1 − �̃)
∞∑
𝑘=0

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘 .

Therefore, by (10.4), (10.5) and the fact that �(1 − �̃)/(𝛿0𝑚 + �̃) = 1 − �, we have

𝜋(𝑧) = (1 − �)
∞∑
𝑘=0

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘 +
𝛿

�̃

𝑚−1∑
𝑖=0

𝑧 𝑖
∞∑
𝑘=0

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘 −
𝛿

�̃

𝑚−1∑
𝑖=0

𝑧 𝑖

= (1 − �)
∞∑
𝑘=0

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘 +
𝛿

�̃

𝑚−1∑
𝑖=0

𝑧 𝑖
∞∑
𝑘=1

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘

= (1 − �)
∞∑
𝑘=0

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘 +
𝛿

�̃

∞∑
𝑘=1

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘 +
𝛿

�̃

𝑚−1∑
𝑖=1

𝑧 𝑖
∞∑
𝑘=1

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘 .

On the other hand, by using (10.13)-(10.14) and 𝜋0 = 1 − �, we get

∞∑
𝑘=0

𝜋𝑘𝑧
𝑘 = (1 − �)

∞∑
𝑘=0

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘

+ 𝛿

�̃

∞∑
𝑘=1

𝛼𝑅𝑘1𝑛𝑝 𝑧𝑘 +
𝛿

�̃

𝑚∑
𝑘=1

𝛼(𝐼 − 𝑅)−1
(
𝑅 − 𝑅𝑘

)
1𝑛𝑝 𝑧𝑘

+ 𝛿

�̃

∞∑
𝑘=𝑚+1

𝛼(𝐼 − 𝑅)−1
(
𝑅𝑘−𝑚+1 − 𝑅𝑘

)
1𝑛𝑝 𝑧𝑘 .

Hence, it suffices to show that

𝑚−1∑
𝑖=1

𝑧 𝑖
∞∑
𝑘=1

𝑅𝑘𝑧𝑘 =

𝑚∑
𝑘=1

(𝐼 − 𝑅)−1
(
𝑅 − 𝑅𝑘

)
𝑧𝑘 +

∞∑
𝑘=𝑚+1

(𝐼 − 𝑅)−1
(
𝑅𝑘−𝑚+1 − 𝑅𝑘

)
𝑧𝑘 . (10.15)

The RHS of (10.15) equals

𝑚∑
𝑘=2

𝑧𝑘
𝑘−1∑
ℓ=1

𝑅ℓ +
∞∑

𝑘=𝑚+1
𝑧𝑘

𝑘−1∑
ℓ=𝑘−𝑚+1

𝑅ℓ , (10.16)

while the LHS is equal to

𝑚−1∑
ℓ=1

𝑧ℓ
𝑚−ℓ∑
𝑘=1

𝑅𝑘𝑧𝑘 +
𝑚−1∑
ℓ=1

𝑧ℓ
∞∑

𝑘=𝑚+1−ℓ
𝑅𝑘𝑧𝑘 , (10.17)

where the first sum of (10.17) consists of all terms with the exponent of 𝑧 smaller than or
equal to 𝑚 and the second with exponents greater than 𝑚. The first sum of (10.17) equals

𝑚−1∑
ℓ=1

𝑚∑
𝑘=ℓ+1

𝑅𝑘−ℓ 𝑧𝑘 =
𝑚∑
ℓ=2

𝑚∑
𝑘=ℓ

𝑅𝑘−ℓ+1𝑧𝑘
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=

𝑚∑
𝑘=2

𝑧𝑘
𝑘∑
ℓ=2

𝑅𝑘−ℓ+1 =

𝑚∑
𝑘=2

𝑧𝑘
𝑘−1∑
ℓ=1

𝑅ℓ ,

which is the first sum of (10.16). Proceeding similarly with the second sum of (10.17), we
get that it equals

𝑚−1∑
ℓ=1

∞∑
𝑘=𝑚+1

𝑅𝑘−ℓ 𝑧𝑘 =
∞∑

𝑘=𝑚+1
𝑧𝑘

𝑘−1∑
ℓ=𝑘−𝑚+1

𝑅ℓ ,

which is the second sum of (10.16). This finishes the proof. □

We now derive an explicit formula for 𝜋𝑘,ℓ , the probability that the queue at the cavity
contains 𝑘 jobs and the job in service is in phase ℓ . We call 𝑘 the level and ℓ the phase of
the queue. Throughout the rest of this section we denote

𝜋𝑘 =
[
𝜋𝑘,1 ,𝜋𝑘,2 , . . . ,𝜋𝑘,𝑛𝑝

]
,

for 𝑘 > 0. The behaviour of the cavity queue is exactly the same as that of an ordinary
𝑀/𝑃𝐻/1 queue with arrival rate �̃, except that the state can jump from level 0 to level𝑚 at
rate 𝛿0𝛼. If we order the states lexicographically, then the cavity queue can be described
for 𝑚 > 1 by a CTMC with rate matrix

−(�̃ + 𝛿0) �̃𝛼 𝛿0𝛼
𝑠∗ 𝑆 − �̃𝐼𝑛𝑝 �̃𝐼𝑛𝑝

𝑠∗𝛼 𝑆 − �̃𝐼𝑛𝑝 �̃𝐼𝑛𝑝
. . .

. . .
. . .

𝑠∗𝛼 𝑆 − �̃𝐼𝑛𝑝 �̃𝐼𝑛𝑝
𝑠∗𝛼 𝑆 − �̃𝐼𝑛𝑝 �̃𝐼𝑛𝑝

. . .
. . .

. . .


. (10.18)

and for 𝑚 = 1 by 
−(�̃ + 𝛿0) (�̃ + 𝛿0)𝛼

𝑠∗ 𝑆 − �̃𝐼𝑛𝑝 �̃𝐼𝑛𝑝
𝑠∗𝛼 𝑆 − �̃𝐼𝑛𝑝 �̃𝐼𝑛𝑝

. . .
. . .

. . .


.

The matrix (10.18) can be seen as an example of the infinitesimal generator of an 𝑀/𝐺/1-
type process. Therefore, an invariant distribution for (10.18) can be obtained by the use
of Ramaswami’s formula [63]. As [63] dealt with DTMCs we opt to use the continuous
analogue of Ramaswami’s formula from [70]. In the notation from [70], we have:

�̂� = −(𝛿0 + �̃), �̂� = 𝑠∗ , �̂�(𝑘) =


�̃𝛼, if 𝑘 = 1 and 𝑚 ≠ 1
𝛿0𝛼, if 𝑘 = 𝑚 and 𝑚 ≠ 1

(𝛿0 + �̃)𝛼, if 𝑘 = 𝑚 = 1
0, if 𝑘 ≠ 1, 𝑚

(10.19)
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and

𝐿 = 𝑆 − �̃𝐼 , 𝐵 = 𝑠∗𝛼, 𝐹(𝑘) =

{
�̃𝐼 , 𝑘 = 1
0, 𝑘 ≠ 1 . (10.20)

As our system is a QBD except in level 0, the first step in finding the invariant distribution
is solving the following quadratic matrix equation for the matrix 𝐺:

𝑠∗𝛼 + (𝑆 − �̃𝐼)𝐺 + �̃𝐺2 = 0. (10.21)

The physical interpretation of the matrix 𝐺 is the following [48, proof of Theorem 6.4.1]:
the (𝑖 , 𝑗)-th entry of 𝐺 is the probability that the QBD will first enter level ℓ − 1 in phase
𝑗, given that it starts in phase 𝑖 of level ℓ . One readily checks that 𝐺 = 1𝑛𝑝𝛼 is therefore
the needed solution of (10.21). This implies 𝐺𝑘 = 1𝑛𝑝𝛼 and 𝛼𝐺𝑘′ = 𝛼 for every 𝑘 ≥ 1 and
𝑘′ ≥ 0. Continuing with the notation of [70], we have

�̂�(𝑗) =


(�̃ + 𝛿0)𝛼, 𝑗 = 1

𝛿0𝛼, 2 ≤ 𝑗 ≤ 𝑚
0, 𝑗 > 𝑚

and 𝑆(𝑗) =


𝑆 + �̃(1𝑛𝑝𝛼 − 𝐼), 𝑗 = 0

�̃𝐼 , 𝑗 = 1
0, 𝑗 > 1.

(10.22)

Denote �̃� = 𝑆 + �̃(1𝑛𝑝𝛼 − 𝐼). (In [70] this matrix is denoted as 𝑆(0). As the subsequent
calculations contain the inverse of 𝑆 + �̃(1𝑛𝑝𝛼 − 𝐼), we prefer to denote it by �̃�.)

Remark 10.4.13. We have 𝑅 = −�̃�̃�−1, with 𝑅 defined in Theorem 10.4.12.

Proof. We have 𝑅 = −�̃�̃�−1 if and only if �̃(�̃𝐼 − 𝑆 − 𝑅𝑠∗𝛼)−1 = �̃(�̃𝐼 − �̃1𝑛𝑝𝛼 − 𝑆)−1 if and
only if 𝑅𝑠∗𝛼 = �̃1𝑛𝑝𝛼 if and only if 𝑠∗𝛼 = −𝑆1𝑛𝑝𝛼, which holds. □

As 𝜋0 = 1 − �, we have due to [70, Equation (2.5)]:

𝛼(−�̃�)−1𝑠∗ = 1. (10.23)

We note, that (10.23) can also be obtained by using Woodbury matrix identity and
𝑠∗ = −𝑆1𝑛𝑝 . By using the following Lemma, we can quickly calculate the invariant
distribution:

Lemma 10.4.14. For the JUT(𝑚) policy with job sizes of the phase type (with mean one), probe
rate 𝛿 and arrival rate �, the following relation holds for ℓ = 1, 2, . . . :

𝜋ℓ =

[(
1[ℓ = 1](1 − �) + 1[ℓ ≤ 𝑚] 𝛿

�̃

)
𝛼 + 1[ℓ ≥ 2]𝜋ℓ−1

]
𝑅. (10.24)

Proof. This follows directly from [70, Equation (2.3)]. □

Define for 𝑘 ≥ 1 and 𝑗 = 1, . . . , 𝑛𝑝 : 𝑢𝑘,𝑗 =
∑
ℓ≥𝑘 𝜋ℓ , 𝑗 and 𝑢𝑘 = (𝑢𝑘,1 , . . . , 𝑢𝑘,𝑛𝑝 ). We now get

the following explicit formulas:

Theorem 10.4.15. Suppose 𝐺 is PH(𝛼, 𝑆) distributed (with mean 1). Then, for 𝑘 = 1, . . . , 𝑚:

𝜋𝑘 =

(
1 − � + 𝛿

�̃

)
𝛼𝑅𝑘 + 𝛿

�̃
𝛼(𝐼 − 𝑅)−1

(
𝑅 − 𝑅𝑘

)
, (10.25)
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and for 𝑘 > 𝑚:

𝜋𝑘 =

[(
1 − � + 𝛿

�̃

)
𝛼 + 𝛿

�̃
𝛼(𝐼 − 𝑅)−1

(
𝑅1−𝑚 − 𝐼

)]
𝑅𝑘 , (10.26)

where 𝑅 = −�̃�̃�−1 = −�̃(𝑆 − �̃𝐼 + �̃1𝑛𝑝𝛼)−1 and where 1𝑛𝑝 is a column vector of ones of height
𝑛𝑝 . Further, the following holds for 𝑘 = 2, . . . , 𝑚:

𝑢𝑘 = 𝑢1𝑅
𝑘−1 + 𝛿

�̃
𝛼
𝑘−1∑
ℓ=1

(𝑚 − ℓ )𝑅𝑘−ℓ (10.27)

and for 𝑘 > 𝑚:

𝑢𝑘 = 𝑢𝑚𝑅
𝑘−𝑚 = 𝑢1𝑅

𝑘−1 + 𝛿

�̃
𝛼
𝑚−1∑
ℓ=1

(𝑚 − ℓ )𝑅𝑘−ℓ , (10.28)

where
𝑢1 =

(
1 − � + 𝛿𝑚

�̃

)
𝛼𝑅(𝐼 − 𝑅)−1. (10.29)

Proof. Using induction one can check that (10.25) and (10.26) satisfy (10.24). Further,
from (10.24) and the definition of 𝑢𝑘 , we get

𝑢1 =

[(
1 − � + 𝛿𝑚

�̃

)
𝛼 + 𝑢1

]
𝑅, (10.30)

𝑢𝑘 =

[
(𝑚 − 𝑘 + 1) 𝛿

�̃
𝛼 + 𝑢𝑘−1

]
𝑅, if 2 ≤ 𝑘 ≤ 𝑚, (10.31)

𝑢𝑘 = 𝑢𝑘−1𝑅, if 𝑘 > 𝑚. (10.32)

For 𝑚 > 1, Equations (10.29), (10.27) and (10.28) immediately follow from (10.30), (10.31)
and (10.32) respectively, while for𝑚 = 1, Equations (10.29) and (10.27) follow from (10.30)
and (10.32). □

Remark 10.4.16. We note the following:

• As 𝑢11𝑛𝑝 is the probability that the queue is busy, we have 𝑢11𝑛𝑝 = �. Therefore:
𝛼𝑅(𝐼 − 𝑅)−11𝑛𝑝 = �/(1 − � + 𝛿𝑚/�̃).

• 𝑢1, 𝑗/� is the probability that a job in service is in phase 𝑗, for 𝑗 = 1, . . . , 𝑛𝑝 .

• We can avoid calculating the nested inverse in (10.27), (10.28) and (10.29) as follows:
by using Woodbury matrix identity we get

(𝐼 − 𝑅)−1 =

(
𝐼 + �̃�̃�−1

)−1
=

[
𝐼 + �̃(𝑆 + �̃(1𝑛𝑝𝛼 − 𝐼))−1]−1

= 𝐼 − �̃(𝑆 + �̃1𝑛𝑝𝛼)−1.

Further, due to Sherman-Morrison formula and the assumption that jobs have mean
1, we get (𝑆 + �̃1𝑛𝑝𝛼)−1 = 𝑆−1 − �̃

1−�̃𝑆
−11𝑛𝑝𝛼𝑆−1. This implies that

(𝐼 − 𝑅)−1 = 𝐼 − �̃𝑆−1 + �̃2

1 − �̃
𝑆−11𝑛𝑝𝛼𝑆−1.
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The formula for the mean response time in case of jobs of the phase type can be derived
directly from the explicit formulas for 𝑢𝑘 , without the use of generating function or mean
value analysis:

Proposition 10.4.17. For the JUT(𝑚) policy with job sizes of the phase type (with mean one) and
arrival rate � we find that the mean response time is given by

𝐸[𝑅(𝑚)] = 1 + �̃

1 − �̃
𝛼𝑆−21𝑛𝑝 +

𝛿
�
𝑚(𝑚 − 1)
2(1 − �̃)

. (10.33)

Note, that 2𝛼𝑆−21𝑛𝑝 is the second moment of the PH(𝛼, 𝑆) distribution.

Proof. We first compute the average queue length of the system. By using Theorem
10.4.15 we get:

𝐸[𝑄] =
∑
𝑘≥1

𝑢𝑘1𝑛𝑝

= 𝑢1

𝑚∑
𝑘=1

𝑅𝑘−11𝑛𝑝 +
𝛿

�̃
𝛼

𝑚∑
𝑘=2

𝑘−1∑
ℓ=1

(𝑚 − ℓ )𝑅𝑘−ℓ1𝑛𝑝

+ 𝑢1

∞∑
𝑘=𝑚+1

𝑅𝑘−11𝑛𝑝 +
𝛿

�̃
𝛼

∞∑
𝑘=𝑚+1

𝑚−1∑
ℓ=1

(𝑚 − ℓ )𝑅𝑘−ℓ1𝑛𝑝

= 𝑢1(𝐼 − 𝑅)−11𝑛𝑝 +
𝛿

�̃
𝛼
𝑚−1∑
ℓ=1

(𝑚 − ℓ )(𝐼 − 𝑅)−1(𝑅 − 𝑅𝑚−ℓ+1)1𝑛𝑝

+ 𝛿

�̃
𝛼
𝑚−1∑
ℓ=1

(𝑚 − ℓ )(𝐼 − 𝑅)−1𝑅𝑚−ℓ+11𝑛𝑝

= 𝑢1(𝐼 − 𝑅)−11𝑛𝑝 +
𝛿

�̃

(𝑚 − 1)𝑚
2 𝛼(𝐼 − 𝑅)−1𝑅1𝑛𝑝

= 𝑢1

(
𝐼 + �̃�̃�−1

)−1
1𝑛𝑝 + 𝛿

(𝑚 − 1)𝑚
2 𝛼

(
−�̃� − �̃𝐼

)−1 1𝑛𝑝

= 𝑢1

(
𝐼 + �̃�̃�−1

)−1
1𝑛𝑝 + 𝛿

(𝑚 − 1)𝑚
2 𝛼

(
−𝑆 − �̃1𝑛𝑝𝛼

)−1
1𝑛𝑝 .

We now rewrite both terms. By using the Sherman–Morrison formula, we get that

𝛼
[
−𝑆 − �̃1𝑛𝑝𝛼

]−1 1𝑛𝑝 = 𝛼(−𝑆)−11𝑛𝑝 +
�̃𝛼(−𝑆)−11𝑛𝑝𝛼(−𝑆)−11𝑛𝑝

1 − �̃𝛼(−𝑆)−11𝑛𝑝
.

As jobs have mean 1, this further equals 1 + �̃/(1 − �̃) = 1/(1 − �̃). Hence,

𝐸[𝑄] = 𝑢1

(
𝐼 + �̃�̃�−1

)−1
1𝑛𝑝 + 𝛿

(𝑚 − 1)𝑚
2(1 − �̃)

.

The first terms requires more work. We calculate

𝑢1

(
𝐼 + �̃�̃�−1

)−1
1𝑛𝑝 = (�̃ − �̃� + 𝛿𝑚)𝛼(−�̃�)−1

(
𝐼 + �̃�̃�−1

)−2
1𝑛𝑝
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= �(1 − �̃)𝛼(−�̃� − �̃𝐼)−1
(
𝐼 + �̃�̃�−1

)−1
1𝑛𝑝

= �(1 − �̃)𝛼(−𝑆 − �̃1𝑛𝑝𝛼)−1
(
𝐼 + �̃�̃�−1

)−1
1𝑛𝑝 .

Due to Sherman-Morrison formula this equals:

�(1 − �̃)𝛼
[
(−𝑆)−1 +

�̃(−𝑆)−11𝑛𝑝𝛼(−𝑆)−1

1 − �̃𝛼(−𝑆)−11𝑛𝑝

]
(𝐼 + �̃�̃�−1)−11𝑛𝑝

= �(1 − �̃)
[
𝛼(−𝑆)−1 + �̃

1 − �̃
𝛼(−𝑆)−1

]
(𝐼 + �̃�̃�−1)−11𝑛𝑝

= −�𝛼𝑆−1(𝐼 + �̃�̃�−1)−11𝑛𝑝
= −�𝛼(𝑆 + �̃�̃�−1𝑆)−11𝑛𝑝
= −�𝛼

[
𝑆 + �̃(𝑆 + �̃(1𝑛𝑝𝛼 − 𝐼))−1(𝑆−1)−1]−1 1𝑛𝑝

= −�𝛼
[
𝑆 + �̃(𝐼 + �̃𝑆−1(1𝑛𝑝𝛼 − 𝐼))−1]−1 1𝑛𝑝 .

Due to Woodbury matrix identity we get that 𝑢1
(
𝐼 + �̃�̃�−1)−1 1𝑛𝑝 further equals to

− �𝛼

[
𝑆−1 − �̃𝑆−1

(
𝐼 + �̃𝑆−1(1𝑛𝑝𝛼 − 𝐼) + �̃�−1

)−1
𝑆−1

]
1𝑛𝑝

= �𝛼(−𝑆)−1
[
𝐼 − �̃

(
𝐼 + �̃𝑆−11𝑛𝑝𝛼

)−1
𝑆−1

]
1𝑛𝑝

= � + ��̃𝛼(−𝑆)−1
(
−𝑆 − �̃1𝑛𝑝𝛼

)−1
1𝑛𝑝

By applying Sherman–Morrison formula once again we get:

𝑢1

(
𝐼 + �̃�̃�−1

)−1
1𝑛𝑝 = � + ��̃𝛼(−𝑆)−1

[
(−𝑆)−1 +

�̃(−𝑆)−11𝑛𝑝𝛼(−𝑆)−1

1 − �̃𝛼(−𝑆)−11𝑛𝑝

]
1𝑛𝑝

= � + �
�̃

1 − �̃
𝛼𝑆−21𝑛𝑝 ,

where we used that jobs have mean one in the last equality. It now follows that

𝐸[𝑄] = � + �
�̃

1 − �̃
𝛼𝑆−21𝑛𝑝 + 𝛿

(𝑚 − 1)𝑚
2(1 − �̃)

.

Applying Little’s Law allows us to conclude this proof. □

In case of PH jobs, it is thus possible to derive the formulas for the invariant distribution
and mean response time by only using Ramaswami’s formula, Little’s law and Woodbury
matrix identity (as Sherman-Morrison formula is a special case of the former).
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10.4.3 Exponential job sizes

If we further restrict to exponential job sizes, Theorems 10.4.12 and 10.4.15 further sim-
plify as 𝛼 = 1, 𝑛𝑝 = 1 and 𝑅 = �̃. In fact, from the balance equations we immediately
obtain formula for the probabilities 𝑢𝑘 , 𝑘 ≥ 1.

Theorem 10.4.18. Suppose𝐺 is exponentially distributed (with mean 1). Then, for 𝑘 = 1, . . . , 𝑚:

𝜋𝑘 = (1 − �)�̃𝑘 + 𝛿
1 − �̃𝑘

1 − �̃
,

and for 𝑘 > 𝑚:

𝜋𝑘 = (1 − �)�̃𝑘 + 𝛿
�̃𝑘−𝑚 − �̃𝑘

1 − �̃
.

Further, for 𝑘 = 1, . . . , 𝑚:

𝑢𝑘 = �̃𝑘−1� + 𝛿
𝑘−1∑
ℓ=1

�̃𝑘−ℓ−1(𝑚 − ℓ ),

and for 𝑘 > 𝑚:

𝑢𝑘 = �̃𝑘−𝑚

[
�̃𝑚−1� + 𝛿

𝑚−1∑
ℓ=1

�̃𝑚−ℓ−1(𝑚 − ℓ )
]
,

where 𝑢𝑘 =
∑
ℓ≥𝑘 𝜋ℓ .

Proof. As the up-crossing rate must equal the down-crossing rate in equilibrium, we have
for every 𝑘 ≥ 1:

�̃𝜋𝑘−1 + 1[𝑘 ≤ 𝑚]𝛿0(1 − �) = 𝜋𝑘 .

By summing from 𝑘 to infinity for every 𝑘 ≥ 1, we get:

𝑢𝑘 = �̃𝑢𝑘−1 + max(𝑚 − 𝑘 + 1, 0)𝛿.

This implies immediately that 𝑢1 = �̃ + 𝑚𝛿 = �, which coincides with 𝑢1 = 1 − 𝜋0 = �.
The simple recursive formula above can be further solved to obtain an explicit formula
for 𝑢𝑘 . For 𝑘 < 𝑚 we now get

𝜋𝑘 = 𝑢𝑘 − 𝑢𝑘+1

= �̃𝑘−1� + 𝛿
𝑘−1∑
ℓ=1

�̃𝑘−ℓ−1(𝑚 − ℓ ) − �̃𝑘� − 𝛿
𝑘∑
ℓ=1

�̃𝑘−ℓ (𝑚 − ℓ )

= �̃𝑘−1� − 𝛿𝑚�̃𝑘−1 + 𝛿
𝑘∑
ℓ=2

�̃𝑘−ℓ (𝑚 − ℓ + 1) − �̃𝑘� − 𝛿
𝑘∑
ℓ=2

�̃𝑘−ℓ (𝑚 − ℓ ) + 𝛿�̃𝑘−1

= �̃𝑘 − �̃𝑘� + 𝛿
𝑘∑
ℓ=2

�̃𝑘−ℓ + 𝛿�̃𝑘−1

= �̃𝑘−1� + 𝛿
𝑘−1∑
ℓ=1

�̃𝑘−ℓ−1(𝑚 − ℓ ).

Analogously, we can prove the formula for 𝜋𝑘 in case 𝑘 ≥ 𝑚. □
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In case of exponential job sizes we can also analytically invert the Laplace transform of
the response time distribution given by (10.8).

Theorem 10.4.19. Suppose 𝐺 is exponentially distributed with mean 1. The pdf of the response
time distribution is given by

𝑓𝑅(𝑡) =
𝑒−𝑡(1−�̃)

�

(
𝛿

�̃𝑚−1(1 − �̃)
− 𝛿�̃

1 − �̃
+ �̃(1 − �)

)
− 𝛿𝑒−𝑡

�(1 − �̃)

𝑚−1∑
𝑘=1

𝑡𝑘−1(1 − �̃𝑚−𝑘)
(𝑘 − 1)!�̃𝑚−𝑘

.

(10.34)

Proof. For exponential job sizes with mean 1 we have𝑌∗(𝑠) = 𝐺∗(𝑠) = 1/(1+ 𝑠), where the
first equality follows from the memorylessness. After some simplifications, we further
get

�(𝐺∗(𝑠)) = (1 − �̃)(1 + 𝑠)
1 − �̃ + 𝑠

.

Then, by using (10.5), the equation above and �(1 − �̃)/(𝛿0𝑚 + �̃) = 1 − �, we have

𝜋(𝐺∗(𝑠)) = (1 − �)(1 + 𝑠)
1 − �̃ + 𝑠

+ 𝛿

1 − �̃ + 𝑠

𝑚−1∑
𝑖=0

(
1

1 + 𝑠

) 𝑖
.

By putting everything together, it follows that

𝑅∗(𝑠) = �̃(1 − �)
�(1 − �̃ + 𝑠)

+ 𝛿
�

(
�̃

1 − �̃ + 𝑠
+ 1

) 𝑚∑
𝑖=1

(
1

1 + 𝑠

) 𝑖
=

1
�(1 − �̃ + 𝑠)

(
�̃(1 − �) + 𝛿

𝑚−1∑
𝑖=0

(
1

1 + 𝑠

) 𝑖)
.

Applying the inverse Laplace transform to 𝑅∗(𝑠) gives

𝑓𝑅(𝑡) =
𝑒−𝑡(1−�̃)

��̃𝑚−1

(
𝛿
𝑚−1∑
𝑖=0

�̃𝑖 − �̃𝑚(1 − �)
)
− 𝛿𝑒−𝑡

�

𝑚−1∑
𝑘=1

𝑡𝑘−1

(𝑘 − 1)!�̃𝑚−𝑘

𝑚−𝑘−1∑
𝑖=0

�̃𝑖 ,

which equals (10.34). □

Note that for 𝑚 = 1, Equation (10.34) simplifies to 𝑓𝑅(𝑡) = 𝑒−𝑡(1−�̃)(1 − �̃).

10.5 Numerical Experiments

In this section we compare the performance of JUT(𝑚) with some existing policies and
look at how sensitive its performance is with respect to the parameter 𝑚. We mainly
focus on the regime where the communication overhead is well below 1 message per
job as simple policies otherwise exist that can achieve vanishing delays in the large-scale
limit [52, 72].
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Figure 10.1: Mean response time of JUT(𝑚𝑜𝑝𝑡), random assignment and the pull policy
of [36] for � = 0.9 and exponential (left) or hyperexponential (right) job sizes.
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Figure 10.2: Variance of the response time of JUT(𝑚𝑜𝑝𝑡) and random assignment for
� = 0.9 and exponential (left) or more variable (right) job sizes with 𝐸[𝐺2] = 11 and
𝐸[𝐺3] = 330.

First we compare the performance of JUT(𝑚) with random assignment and with the pull
policy of [36]. We did not include a comparison with the asynchronous push policy
in [74] as this policy is inferior to the pull policy of [36] as illustrated in Table 10.1. For
the pull policy in [36] we set 𝛿1 = 0, meaning only idle servers send updates, as this
tends to yield the best performance. In Figure 10.1 we compare the mean response time
of the different policies as a function of �/𝛿 with � = 0.9, where 𝛿/� represents the mean
number of communication overhead messages used per job. As random assignment does
not require any communication overhead, its mean response time is fixed. We consider
both exponential job sizes (in the left plot) and more variable job sizes (in the right
plot). For the more variable job sizes we used hyperexponential job sizes with balanced
means such that the squared coefficient of variation (SCV) equals 10. This implies that
𝐸[𝐺2] = 11 as 𝐸[𝐺2] = 𝑆𝐶𝑉 + 1 (when 𝐸[𝐺] = 1). Note that the mean response time of
JUT(𝑚) and random assignment only depends on 𝐸[𝐺2] (as 𝐸[𝐺] = 1), thus the results
apply to any job size distribution for which the SCV equals 10.
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Figure 10.3: Mean and variance of the response time of JUT(𝑚) as a function of 𝑚 for
� = 0.8 and exponential job sizes.

The results in Figure 10.1 clearly show that the mean response time of the pull policy
grows almost linearly in �/𝛿 and therefore the pull policy only outperforms random
assignment when �/𝛿 is small enough, meaning when the communication overhead is
large enough. The mean response time of the JUT(𝑚) policy with 𝑚 = 𝑚𝑜𝑝𝑡 on the
other hand grows much more slowly, is superior to random assignment for any �/𝛿 and
outperforms the pull policy unless �/𝛿 is close to one. We further note that both the pull
and JUT(𝑚) policy perform better compared to random assignment when the job sizes
are more variable.

The previous results focused on the mean response time. We now consider the variance
of the response time. As no results for the variance of the response time where presented
in [36] for the pull policy, we only compare the variance of the response time of JUT(𝑚)
with random assignment in Figure 10.2. We consider the same two job size distributions
as in Figure 10.1 and again set � = 0.9. Note that for JUT(𝑚) and random assignment the
variance is only affected by the first three moments of the job size distribution. We see
that JUT(𝑚𝑜𝑝𝑡) not only outperforms random assignment in terms of the mean response
time for any �/𝛿, but also significantly reduces the variance in all cases.

Note, that as�/𝛿 increases, so does𝑚𝑜𝑝𝑡 . This increase of the value of𝑚𝑜𝑝𝑡 corresponds to
a discontinuity in the graphs of the mean response time and the variance of the response
time. These are the discontinuities that are noticeable in Figures 10.1 and 10.2 for low
values of �/𝛿.

In the previous experiments we set 𝑚 = 𝑚𝑜𝑝𝑡 , we now look at the impact of 𝑚 on the
mean and variance of the response time of JUT(𝑚). We start by assuming exponential
job sizes and set � = 0.8. In Figure 10.3 we consider �/𝛿 ∈ {10, 20, 40, 160}. We note that
the mean response time is not highly sensitive to the choice of 𝑚, especially when the
communication overhead is small (that is, �/𝛿 is large). This means that it suffices to get
a good estimate of the arrival rate � and the first two moments 𝐸[𝐺] and 𝐸[𝐺2] of the job
size distribution to get near optimal performance as 𝑚𝑜𝑝𝑡 does not depend on any other
job size characteristics. We further note that while the value of 𝑚 that minimizes the
mean response time does not minimize the variance of the response time, it does yield
a near optimal variance. The value of 𝑚 that actually minimizes the variance appears to
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Figure 10.4: Mean and variance of the response time of JUT(𝑚) as a function of 𝑚 for
�/𝛿 = 20 and exponential job sizes.

be somewhat larger than the value of 𝑚 that minimizes the mean.

In Figure 10.4 we consider the same scenario as in Figure 10.3, but now we fix �/𝛿 = 20
and let � ∈ {0.5, 0.8, 0.95}. The results indicate that the choice of 𝑚 appears to become
more important as � increases (for instance simply setting 𝑚 = 1 is far from optimal for
larger �). The mean response time of random assignment (which requires no overhead)
equals 1/(1 − �). Hence, the JUT(𝑚) policy mostly offers a significant reduction over
random assignment when � is large. Regarding the variance of the response time, we
can make the same remarks as in Figure 10.3.

In the previous two figures jobs were assumed to have an exponentially distributed size.
We now consider job size distributions that are more variable. As before we consider
hyperexponential jobs sizes with balanced means such that the squared coefficient of
variation (SCV) equals 1, 5 and 10. This implies that 𝐸[𝐺2] ∈ {2, 6, 11} and 𝐸[𝐺3] ∈
{6, 90, 330}. Figure 10.5 depicts the results for �/𝛿 = 20 and � = 0.8. Similar trends are
observed for the three SCV values considered. We further note that the mean response
time becomes insensitive to the job size distribution when 𝑚 = �/𝛿 as the mean response
time reduces to 1 + (�/𝛿 − 1)/2 in such case according to (10.6).

10.6 Conclusion

Hyper-scalable load balancing policies operate in the regime where the communication
overhead is below one message per job. Existing hyper-scalable policies such as [36, 74]
work well when the overhead is fairly close to one message per job, but have poor
performance when the allowed overhead is significantly smaller. More specifically, when
the communication overhead of these policies tends to zero, the mean response time tends
to infinity even when the system is only lightly loaded.

In this chapter we introduced a novel hyper-scalable load balancing policy, called JUT(𝑚),
where 𝑚 is an input parameter. Under this policy incoming jobs are assigned in a greedy
manner to a server with the lowest estimated queue length, unless all estimated queue
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Figure 10.5: Mean and variance of the response time of JUT(𝑚) as a function of 𝑚 for
�/𝛿 = 20 and � = 0.8.

lengths are at least 𝑚. In the latter case an incoming job is assigned to a random
server. We studied the performance of the JUT(𝑚) policy in a large-scale system using
the queue-at-the-cavity approach and demonstrated the accuracy of this approach using
simulation.

We presented closed form results for the generating function of the queue length distri-
bution and the Laplace transform of the response time distribution. Using these results
we derived a simple closed form solution for the mean response time and the value of 𝑚
that minimizes the mean response time. These simple solutions indicate that the mean
response time and the optimal value of 𝑚 only depend on the second moment of the job
size distribution (after renormalizing the first moment to one). We also derived a closed
form expression for the second moment (and thus the variance) of the response time.

Numerical results illustrate that the JUT(𝑚) policy is far superior to existing policies when
the communication overhead is well below one message per job and outperforms random
assignment irrespective of the communication overhead allowed. The performance gain
achieved also increases as the job sizes become more variable. Finally, we indicated that
the performance of JUT(𝑚) is not very sensitive to the value of the parameter𝑚, meaning
it suffices to have a good estimate of the arrival rate and first two moments of the job size
distribution in order to properly set the parameter 𝑚, which should not be too difficult
in the present era of big data.
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Chapter 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Other JUT(𝑚) policies: JUT(𝑚, 𝛿1) and

PUT(𝑚)

This chapter contains unpublished research, which may be a basis for future paper. The first results
contained in this chapter were written around the same time as those of Chapter 10, while the last
results here are some of the final results added to the thesis.

11.1 Introduction

In this Chapter we present two load balancing policies related to JUT(𝑚) policy from
Chapter 10. The first of these policies, can be seen as a generalization of JUT(𝑚) policy
from the previous chapter: we assume that upon a completion of a job in queue, there
is a 𝛿1 probability that the queue will update the dispatcher about its length. If 𝛿1 > 0,
we shall call this policy “Busy Join-Up-To 𝑚” and denote it by JUT(𝑚, 𝛿1) for short. We
shall call the second of the policies studied in this Chapter “Push-Up-To 𝑚” (PUT(𝑚) for
short). It differs from JUT(𝑚) and JUT(𝑚, 𝛿1) policies in who initiates the updates: in
case of JUT(𝑚) and JUT(𝑚, 𝛿1) policies the queues initiate the updates, while for PUT(𝑚)
it is the dispatcher that sends update requests to the queues.

The rest of this Chapter is structured as follows: we describe the system and the two
policies in Section 11.2. Through the use of the cavity map, we study the JUT(𝑚, 𝛿1)
and PUT(𝑚) policies in Sections 11.3 and 11.4 respectively. There, for both policies, we
present an algorithm which allows us to numerically determine the invariant distribution
in case of PH distributed jobs. In case of exponential job sizes we also provide recursive
formulas which allow us to speed up this algorithm. We validate the model for the
two policies of this chapter in Section 11.5, while in Section 11.6 we conduct numerical
experiments, where we also compare the three policies. Finally, Section 11.7 contains
some concluding remarks.

11.2 Description of the system and the policies

We consider a set of 𝑁 homogeneous servers, each with its own infinite buffer, and a
central dispatcher. Every server processes the jobs in its queue in FCFS order. Jobs arrive
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at the dispatcher according to a Poisson process with rate𝑁�, with 0 < � < 1. The service
requirements of a job have a PH distribution with parameters (𝛼, 𝑆) and with mean one,
i.e. 𝛼(−𝑆)−11𝑛𝑝 = 1, where 𝑛𝑝 is the number of phases of the job size distribution. We
again denote 𝑠∗ = −𝑆1𝑛𝑝 .

For each server the dispatcher maintains an upper bound on its queue length. We will call
these upper bounds “estimates”. Upon an arrival, the dispatcher directs the incoming
job to a server with minimal estimated number of jobs, with ties broken uniformly at
random, if a server with an estimate of less than 𝑚 jobs is known to the dispatcher.
Otherwise an incoming job is assigned to a random server. When a server receives a job
its estimate is increased by one. The estimates kept by dispatcher can also be updated as
follows:

In case of PUT(𝑚) policy, the dispatcher probes a random server at rate 𝑁𝛿, with 𝛿 > 0.

In case of the JUT(𝑚, 𝛿1) policy empty servers send updates to the dispatcher at rate
𝛿0. Further, every time there is a job completion in a server, this server will update the
dispatcher on its queue length with probability 𝛿1. We assume that 𝛿1 > 0 throughout
the rest of the Chapter.

We define 𝛿 = 𝛿0(1 − �) + 𝛿1� as the overall update rate. When 𝛿 ≥ �, we can set 𝛿1 = 1.
In this case the policy reduces to the JSQ policy, as every time a job is completed, the
dispatcher is updated about the queue length. This implies that if 𝛿1 = 1, then the queue
lengths are always one or zero in the large-scale limit, as for 𝑁 → ∞ there always exist
empty servers. When studying the JUT(𝑚, 𝛿1) policy, we therefore assume that 𝛿 < �.

The system of 𝑁 servers is hard to analyze directly, therefore we use of the so-called
“queue at the cavity approach” (see [9] or Section 4.3) to approximate the system and
in Section 11.5 perform simulations that suggest that as 𝑁 tends to infinity, the cavity
method gives exact results. Recall that the idea of the cavity queue is to focus on the
evolution of a single server and to assume that all other servers have independent and
identically distributed queue lengths.

Define a “slot” as follows. When an update occurs in a queue, we call the spaces that
can be filled with jobs to make the queue length 𝑚 “slots”. For any policy and parameter
setting, we can define some function �(𝑚), with �(𝑚) the average number of discovered
slots upon an update. When studying these policies with a fixed value of 𝑚, we need to
distinguish between two cases:

• Case � > 𝛿�(𝑚). This is the most interesting case. For this case we find that, in the
large-scale limit, when a queue with less than 𝑚 jobs is discovered, the dispatcher
immediately assigns a batch of jobs to it, such that the new length of the queue is
𝑚. Additionally, we have another arrival rate

�̃ = � − 𝛿�(𝑚) (11.1)

of jobs which are assigned arbitrarily.

• Case � ≤ 𝛿�(𝑚). In this case, we never run out of servers with an estimate which
is smaller than 𝑚, therefore the policy will always assign each incoming job to the
server with the smallest estimated queue length. It is not hard to see that in this
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case, the JUT(𝑚, 𝛿1) and PUT(𝑚) policy respectively reduce to the hyperscalable
pull and push policies we studied in [36].

We can find bounds on how the parameter 𝑚 should be chosen such that �̃ ≥ 0:

Theorem 11.2.1. For the JUT(𝑚, 𝛿1) policy with jobs of mean size 1 and arrival rate � and
update rate 𝛿, we have �̃ ≥ 0 if and only if

𝑚 ≤ log(1 − �𝛿1/𝛿)/log(1 − 𝛿1). (11.2)

Proof. The hyperscalable pull system from [36] with � = 0 and maximum queue length
𝑚 coincides with the JUT(𝑚, 𝛿1) system with �̃ = 0. The claim therefore immediately
follows from [36, Theorem 2.]. □

Theorem 11.2.2. For the PUT(𝑚) policy with jobs of mean size 1, arrival rate � and update rate
𝛿, we have �̃ ≥ 0 if and only if

𝑚 ≤
log

(
1
𝑦 +

(
�

𝛿(1−�) − 1
)
· 1−𝑦

𝑦

)
log(1/𝑦) , (11.3)

where 𝑦 = 𝛼(𝛿𝐼 − 𝑆)−1𝑠∗.

Proof. The hyperscalable push system from [36] with � = 0 and maximum queue length
𝑚 coincides with the PUT(𝑚) system with �̃ = 0. The claim therefore immediately
follows from [36, Theorem 1.]. □

In case of the JUT(𝑚, 𝛿1) policy, we can also give a bound on 𝛿 such that �̃ ≥ 0:

Corollary 11.2.3. For the JUT(𝑚, 𝛿1) policy with jobs of mean size 1 and arrival rate �, we have
�̃ > 0 if and only if

𝛿 <
�𝛿1

1 − (1 − 𝛿1)𝑚
.

Proof. This follows immediately by solving (11.2) for 𝛿. □

In the remainder of the next two sections, we will always assume that � > 𝛿�(𝑚) or,
equivalently, that �̃ > 0. Then, the state space of the cavity queue is given by

Ω = {0} ∪ {(𝑘, ℓ ) | 𝑘 ∈ N \ {0}, ℓ ∈ {1, . . . , 𝑛𝑝}},

where the queue is in state 0 if it has no jobs and in state (𝑘, ℓ ) if it has 𝑘 jobs (we shall call
𝑘 the level of the queue) and the job in service is in phase ℓ . As we assumed �̃ ≤ � < 1,
the cavity queue is positive recurrent for both policies. Similarly to Subsection 10.4.2, we
shall denote 𝜋𝑘 =

[
𝜋𝑘,1 ,𝜋𝑘,2 , . . . ,𝜋𝑘,𝑛𝑝

]
, for 𝑘 ≥ 1, where 𝜋𝑘,ℓ is the probability that the

cavity queue is in state (𝑘, ℓ ). For 𝑘 ≥ 1, we shall also denote 𝑢𝑘 =
∑
ℓ≥𝑘 𝜋ℓ .
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11.3 JUT(𝑚, 𝛿1) policy

11.3.1 Phase-type distributed job sizes

If we order the states lexicographically, then the cavity queue for the JUT(𝑚, 𝛿1) policy
and 𝑚 ≥ 2 can be described by a CTMC the rate matrix

𝑄0,0 𝑄0,1 𝑄0,𝑚
𝑄1,0 𝑄1,1 𝑄1,2 𝑄1,𝑚

𝑄2,1 𝑄2,2 𝑄2,3 𝑄2,𝑚
. . .

. . .
. . .

...
𝑄𝑚−2,𝑚−3 𝑄𝑚−2,𝑚−2 𝑄𝑚−2,𝑚−1 𝑄𝑚−2,𝑚

𝑄𝑚−1,𝑚−2 𝑄𝑚−1,𝑚−1 𝑄𝑚−1,𝑚
𝑄𝑚,𝑚−1 𝑄𝑚,𝑚 𝑄𝑚,𝑚+1

𝑄𝑚+1,𝑚 𝑄𝑚+1,𝑚+1 𝑄𝑚+1,𝑚+2
. . .

. . .
. . .


,

(11.4)
where the matrix 𝑄𝑖 , 𝑗 describes the transitions from level 𝑖 to level 𝑗. When the level of
the queue is smaller than or equal to 𝑚, a job completion decreases the level if no update
occurs, hence 𝑄𝑘,𝑘−1 = (1 − 𝛿1)𝑠∗𝛼 for 1 < 𝑘 ≤ 𝑚 and 𝑄1,0 = (1 − 𝛿1)𝑠∗. If the level is
greater than 𝑚, updates do not change the level, hence 𝑄𝑘,𝑘−1 = 𝑠∗𝛼 for 𝑘 > 𝑚.

When a completion occurs, the dispatcher gets updated with probability 𝛿1. If the queue
has at least 𝑚 jobs after the completion an update does not change its level. However is
a queue has less than 𝑚 jobs upon an update, its level is instantly increased to 𝑚. The
level can be increased to 𝑚 following an update, hence 𝑄𝑘,𝑚 = 𝛿1𝑠

∗𝛼 for 1 ≤ 𝑘 ≤ 𝑚 − 2.
If the queue is empty, updates occur with rate 𝛿0, implying 𝑄0,𝑚 = 𝛿0𝛼. The remaining
incoming jobs get assigned randomly and increase the level by one, which means that
𝑄𝑘,𝑘+1 = �̃𝐼 for 𝑘 ∈ N \ {0, 𝑚 − 1} and 𝑄0,1 = �̃𝛼. The level can increase from 𝑚 − 1 to 𝑚
both due to server updates and remaining arrivals, meaning 𝑄𝑚−1,𝑚 = �̃𝐼 + 𝛿1𝑠

∗𝛼.

As we have no other transitions in level 0, 𝑄0,0 = −(𝛿0 + �̃). In non-zero levels transitions
also occur due to phase changes, hence 𝑄𝑘,𝑘 = 𝑆 − �̃𝐼 for 𝑘 ∈ N \ {0, 𝑚}, where −�̃𝐼 is
due to the extra arrivals. When the level is 𝑚 we also have a contribution due to the fact
that a queue can complete a job, send an update and be bounced back to level 𝑚, hence
𝑄𝑚,𝑚 = 𝑆 − �̃𝐼 + 𝛿1𝑠

∗𝛼.

For 𝑚 = 1 the queue at the cavity is given by
𝑄0,0 𝑄0,1
𝑄1,0 𝑄1,1 𝑄1,2

𝑄2,1 𝑄2,2 𝑄2,3
. . .

. . .
. . .

 , (11.5)

where𝑄0,0 = −(𝛿0 + �̃),𝑄0,1 = (𝛿0 + �̃)𝛼,𝑄1,0 = (1− 𝛿1)𝑠∗,𝑄1,1 = 𝑆− �̃𝐼+ 𝛿1𝑠
∗𝛼. Similarly

to (11.4), we further have 𝑄𝑘,𝑘−1 = 𝑠∗𝛼 and 𝑄𝑘,𝑘 = 𝑆 − �̃𝐼 for 𝑘 > 1 and 𝑄𝑘,𝑘+1 = �̃𝐼 for
𝑘 ≥ 1.
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In order to numerically analyze this policy, we need to determine �̃. When a queue of
𝑘 jobs completes service, there is a probability 𝛿1 that is will update the dispatcher, if
𝑘 ≤ 𝑚, then the dispatcher will assign 𝑚 − 𝑘 + 1 jobs to the queue. If the queue is empty
and it updates the dispatcher it gets assigned 𝑚 jobs. This implies the following relation:

�̃ = � − 𝛿0𝑚𝜋0 − 𝛿1

𝑚∑
𝑘=1

𝑛𝑠∑
ℓ=1

(𝑚 − 𝑘 + 1)𝜋𝑘,ℓ 𝑠∗ℓ . (11.6)

We wish to exploit (11.6) to numerically find the invariant distribution of (11.4) (or of
(11.5)). We first explain how we can find the invariant distribution of (11.4) (or of (11.5))
for a given value of �̃. (11.4) clearly has a QBD structure in the levels greater than 𝑚. By
using [48, Section 6.4] we get the following relations for 𝑘 ≥ 2

𝜋𝑚+𝑘 = 𝜋𝑚+1𝑅
𝑘−1 ,

where the matrix 𝑅 is the smallest non-negative solution to the quadratic matrix equation

�̃𝐼 + 𝑅(𝑆 − �̃𝐼) + 𝑅2𝑠∗𝛼 = 0. (11.7)

The solution to (11.7) is given by [27, Theorem 3.] (see also Theorem 3.3.1):

𝑅 = �̃
(
�̃𝐼𝑛𝑝 − �̃1𝑛𝑝𝛼 − 𝑆

)−1
.

Set 𝑁 = −(𝑆 − �̃𝐼 + 𝑅𝑠∗𝛼)−1. Note that due to Remark 10.4.13, we have 𝑅 = �̃𝑁 . Set
further 𝜋0:𝑚 = [𝜋0 ,𝜋1 , . . . ,𝜋𝑚],

𝐵0 =

[
0(𝑚−1)𝑛𝑝+1,𝑛𝑝
𝑄𝑚,𝑚+1

]
and 𝐵2 =

[
0𝑛𝑝 ,(𝑚−1)𝑛𝑝+1 , 𝑄𝑚+1,𝑚

]
.

Finally, set

𝐵1 =



𝑄0,0 𝑄0,1 𝑄0,𝑚
𝑄1,0 𝑄1,1 𝑄1,2 𝑄1,𝑚

𝑄2,1 𝑄2,2 𝑄2,3 𝑄2,𝑚
. . .

. . .
. . .

...
𝑄𝑚−2,𝑚−3 𝑄𝑚−2,𝑚−2 𝑄𝑚−2,𝑚−1 𝑄𝑚−2,𝑚

𝑄𝑚−1,𝑚−2 𝑄𝑚−1,𝑚−1 𝑄𝑚−1,𝑚
𝑄𝑚,𝑚−1 𝑄𝑚,𝑚


if 𝑚 > 1, otherwise set

𝐵1 =

[
𝑄0,0 𝑄0,1
𝑄1,0 𝑄1,1

]
.

Due to [61, Section 2], we have

𝜋𝑚+1 = 𝜋0:𝑚𝐵0𝑁 = 𝜋𝑚�̃𝑁 = 𝜋𝑚𝑅

and we can find the vector 𝜋0:𝑚 by solving

𝜋0:𝑚
[
𝐵1 + 𝐵0𝑁𝐵2 1𝑚𝑛𝑝+1 + 𝐵0𝑁(𝐼 − 𝑅)−11𝑛𝑝

]
= [0′𝑚𝑛𝑝+1 1]. (11.8)

Thus, for a given value of �̃ we can find the invariant distribution of (11.4). Note now
that increasing the value of �̃ decreases 𝜋0 and vice versa. Based on this we can apply a
bisection algorithm to iteratively solve (11.4)-(11.6) (or (11.5)-(11.6)) until we have found
�̃ and 𝜋 with 𝜋0 ≈ 1 − �.
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11.3.2 Exponential job sizes

For high values of 𝑚 and small number of phases, solving (11.8) is the most costly step
in the bisection algorithm from Subsection 11.3.1. In case of exponential job sizes (with
mean 1), Equation (11.7) simplifies to

�̃ + 𝑅(−1 − �̃) + 𝑅2 = 0. (11.9)

(11.9) has two solutions, namely 1 and �̃, hence 𝑅 = �̃. This implies that in case of expo-
nential jobs solving (11.8) is the only possibly costly step. We can however find recursive
formulas which allow us to omit solving (11.8). To this end, we define recursively:

𝑔𝑚 = 𝛿1�̃, 𝑔𝑖 = �̃
𝛿1 + 𝑔𝑖+1

1 + 𝑔𝑖+1
(11.10)

and

𝑓𝑚 = 𝛿
𝛿1 + 𝑔𝑚

1 + 𝑔𝑚
, 𝑓𝑖 =

𝛿1 + 𝑔𝑖

1 + 𝑔𝑖

©«(𝑚 − 𝑖 + 1)𝛿 −
𝑚∑

𝑗=𝑖+1
𝑓𝑗
ª®¬ (11.11)

for 𝑖 = 1, . . . , 𝑚 − 1. Note that (11.10) and (11.11) only depend on 𝛿, 𝛿1 , �̃ and 𝑚. Also
note that if 𝛿1 = 0, 𝑔𝑖 = 𝑓𝑖 = 0 for every 𝑖. We can now prove the following:

Lemma 11.3.1. For the JUT(𝑚, 𝛿1) policy with exponential job sizes (with mean one) and arrival
rate �, the following relations hold for 𝑘 = 1, . . . , 𝑚:

𝑢𝑘−1�̃ + (𝑚 − 𝑘 + 1)𝛿 = (1 + 𝑔𝑘)𝑢𝑘 +
𝑚∑

ℓ=𝑘+1
𝑓ℓ , (11.12)

𝛿1

𝑚∑
ℓ=𝑘

𝑢ℓ+1 = 𝑔𝑘𝑢𝑘 +
𝑚∑

ℓ=𝑘+1
𝑓ℓ . (11.13)

Proof. For every 𝑘 ≥ 1 we have the following detailed balanced equations (see the proof
of Theorem 3.2.3), which are explained below:

(𝑢𝑘−1 − 𝑢𝑘)�̃ + 1[𝑘 ≤ 𝑚]((1 − �)𝛿0 + (� − 𝑢𝑘)𝛿1) = (1 − 1[𝑘 ≤ 𝑚]𝛿1)(𝑢𝑘 − 𝑢𝑘+1). (11.14)

The LHS describes the up-crossing rate over threshold 𝑘, while the RHS denotes down-
crossing rate under 𝑘. The queue up-crosses the threshold 𝑘 due to batch arrivals if
𝑘 ≤ 𝑚, namely due to empty queues sending updates and updates due to completions
in queues with at most 𝑘 − 1 jobs. This is described by the terms (1 − �)𝛿0 and (� − 𝑢𝑘)𝛿1
respectively. An up-crossing can also occur for any 𝑘 due to the additional arrivals with
rate �̃ in queues with exactly 𝑘 − 1 jobs, which is accounted for by the term (𝑢𝑘−1 − 𝑢𝑘)�̃.

A down-crossing can only occur due to a completion in queue with exactly 𝑘 jobs, which
gives the term 𝑢𝑘 − 𝑢𝑘+1. However, when 𝑘 ≤ 𝑚, there is a probability 𝛿1 that an update
will immediately bump the queue to 𝑚 jobs. In this case no down-crossing under the
threshold 𝑘 occurs.

Equation (11.14) is equivalent to

(𝑢𝑘−1 − 𝑢𝑘)�̃ + 1[𝑘 ≤ 𝑚]((1 − �)𝛿0 + (� − 𝑢𝑘+1)𝛿1) = 𝑢𝑘 − 𝑢𝑘+1.
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Summing these equations from 𝑘 to infinity for every 𝑘 ≥ 1, we get

𝑢𝑘−1�̃ + max(𝑚 − 𝑘 + 1, 0)𝛿 = 𝑢𝑘 + 𝛿1

𝑚∑
ℓ=𝑘

𝑢ℓ+1 , (11.15)

where we have used 𝛿 = (1−�)𝛿0 +�𝛿1. Assume now that 𝑘 ≤ 𝑚. We prove both (11.12)
and (11.13) at the same time using backwards induction. For 𝑘 = 𝑚, (11.13) follows
directly from (11.15) with 𝑘 = 𝑚 + 1. We further have 𝑢𝑚−1�̃+ 𝛿 = 𝑢𝑚 + 𝛿1𝑢𝑚+1. By using
(11.15) with 𝑘 = 𝑚 + 1, this is further equal to 𝑢𝑚 + 𝛿1�̃𝑢𝑚 = (1 + 𝑔𝑚)𝑢𝑚 . This shows the
claim for 𝑘 = 𝑚. Now suppose that the two claims hold for 𝑘 = 𝑘′ + 1, . . . , 𝑚. We need to
show that they hold for 𝑘 = 𝑘′. By using the induction hypothesis of (11.13) and (11.12)
respectively, we get

𝛿1

𝑚∑
ℓ=𝑘

𝑢ℓ+1 = 𝛿1𝑢𝑘+1 + 𝑔𝑘+1𝑢𝑘+1 +
𝑚∑

ℓ=𝑘+2
𝑓ℓ

=
𝛿1 + 𝑔𝑘+1

1 + 𝑔𝑘+1

(
𝑢𝑘�̃ + (𝑚 − 𝑘)𝛿 −

𝑚∑
ℓ=𝑘+2

𝑓ℓ

)
+

𝑚∑
ℓ=𝑘+2

𝑓ℓ

= 𝑔𝑘𝑢𝑘 + 𝑓𝑘+1 +
𝑚∑

ℓ=𝑘+2
𝑓ℓ ,

which shows (11.13) for 𝑘 = 𝑘′. By using (11.13), we further have

𝑢𝑘−1�̃ + (𝑚 − 𝑘 + 1)𝛿 = 𝑢𝑘 + 𝛿1

𝑚∑
ℓ=𝑘

𝑢ℓ+1 = 𝑢𝑘 + 𝑔𝑘𝑢𝑘 +
𝑚∑

ℓ=𝑘+1
𝑓ℓ ,

which shows (11.12) for 𝑘 = 𝑘′, thus finishing the proof. □

As 𝑢0 = 1 and 𝑢1 = 1 − 𝜋0 = �, we get from (11.12) that

�̃ + 𝑚𝛿 = (1 + 𝑔1)� +
𝑚∑
ℓ=2

𝑓ℓ . (11.16)

By using Equation (11.1), this implies that the average number of slots discovered per
update is

�(𝑚) = 𝑚 − 1
𝛿

(
𝑔1� +

𝑚∑
ℓ=2

𝑓ℓ

)
.

Unsurprisingly, �(𝑚) < 𝑚 if 𝛿1 ≠ 0 and �(𝑚) = 𝑚 if 𝛿1 = 0. Equation (11.16) also implies
that if 𝑚 = 1, then

�̃ =
� − 𝛿

1 − 𝛿1�
.

This implies that for 𝑚 = 1, we must have 𝛿 < � for �̃ to be greater than 0. With more
effort, it can be shown using Equation (11.16) that for 𝑚 = 2, we have

�̃ =

−𝛿1(𝛿 − 2�) − 1 +
√
𝛿2

1(𝛿 − 2�)2 + 4𝛿𝛿2
1 + 8𝛿𝛿1� − 6𝛿𝛿1 − 4𝛿1�2 + 1

2𝛿1(1 − �)
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and that we must have 𝛿 < �/(2 − 𝛿1) if we want �̃ > 0.

From Lemma 11.3.1, we immediately get:

Proposition 11.3.2. For the JUT(𝑚, 𝛿1) policy with exponential job sizes (with mean one) and
arrival rate �, the probability 𝑢𝑘 that the queue length exceeds 𝑘 is given by:

𝑢𝑘 =
�̃𝑘∏𝑘

ℓ=1(1 + 𝑔ℓ )
+

𝑘∑
𝑗=1

�̃𝑘−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑘
ℓ=𝑗(1 + 𝑔ℓ )

, if 1 ≤ 𝑘 ≤ 𝑚,

(11.17)

𝑢𝑘 = �̃𝑘−𝑚


�̃𝑚∏𝑚

ℓ=1(1 + 𝑔ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + 𝑔ℓ )

 , if 𝑘 > 𝑚.

(11.18)

Proof. (11.17) follows directly from (11.12) and 𝑢0 = 1, while (11.18) follows from (11.17)
and (11.15). □

If �̃ is known we get exact recursive formulas for the invariant distribution as 𝜋𝑘 =

𝑢𝑘 − 𝑢𝑘+1. Otherwise, we can numerically determine �̃ and the value of the different 𝑢𝑘 ’s
using the following bisection algorithm:

1. Set �̃ ≈ 0.

2. Calculate 𝑔ℓ and 𝑓ℓ recursively for ℓ = 1, . . . , 𝑚. Using (11.17), calculate 𝑢1.

3. If 𝑢1 ≈ � (up to a desired precision), then stop. If 𝑢1 > �, decrease �̃, otherwise
increase �̃. Go to step (2).

We can also provide a formula for the mean response time in terms the values of 𝑔ℓ and
𝑓ℓ , ℓ = 1, . . . , 𝑚:

Proposition 11.3.3. For the JUT(𝑚, 𝛿1) policy with exponential job sizes (with mean one) and
arrival rate �, we have

𝐸[𝑅] = 1
�𝛿1

(
(𝛿1 + 𝑔1)� +

𝑚∑
ℓ=2

𝑓ℓ

)

+ �̃2

�(1 − �̃)


�̃𝑚∏𝑚

ℓ=1(1 + 𝑔ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + 𝑔ℓ )

 .
Proof. We first calculate 𝐸[𝑄] = ∑

𝑘≥1 𝑢𝑘 , the average queue length of the system. Due to
(11.13) with 𝑘 = 1 and 𝛿1𝑢1 added to the both sides of the expression, we have

𝑚+1∑
𝑘=1

𝑢𝑘 =
1
𝛿1

(
(𝛿1 + 𝑔1) 𝑢1 +

𝑚∑
ℓ=2

𝑓ℓ

)
=

1
𝛿1

(
(𝛿1 + 𝑔1)� +

𝑚∑
ℓ=2

𝑓ℓ

)
.
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Due to (11.18), we further have

∞∑
𝑘=𝑚+2

𝑢𝑘 =

∞∑
𝑘=𝑚+2

�̃𝑘−𝑚


�̃𝑚∏𝑚

ℓ=1(1 + 𝑔ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + 𝑔ℓ )


=

�̃2

1 − �̃


�̃𝑚∏𝑚

ℓ=1(1 + 𝑔ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + 𝑔ℓ )

 .
Hence

𝐸[𝑄] = 1
𝛿1

(
(𝛿1 + 𝑔1)� +

𝑚∑
ℓ=2

𝑓ℓ

)

+ �̃2

1 − �̃


�̃𝑚∏𝑚

ℓ=1(1 + 𝑔ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + 𝑔ℓ )

 .
Using Little’s law finishes the proof. □

If �̃ is known we thus also get an exact recursive formula for the mean response time.

11.4 PUT(𝑚) policy

11.4.1 Phase-type distributed job sizes

Similarly to Subsection 11.3.1, the cavity queue of the PUT(𝑚) policy, for 𝑚 > 1, can be
described using the CTMC with rate matrix (11.4) but with different matrices 𝑄𝑖 , 𝑗 .

A job completion decreases the level by one, hence 𝑄𝑘,𝑘−1 = 𝑠∗𝛼 for 𝑘 > 1 and 𝑄1,0 = 𝑠∗.

The dispatcher sends update requests to the queue at rate 𝛿. If there are at least 𝑚 jobs
present in the cavity queue upon an update, no change occurs. Otherwise, the queue
gets bumped up to level 𝑚. This implies 𝑄0,𝑚 = 𝛿𝛼 and 𝑄𝑘,𝑚 = 𝛿𝐼 for 1 ≤ 𝑘 ≤ 𝑚 − 2. The
remaining incoming jobs get assigned randomly and increase the level by one, which
means that 𝑄𝑘,𝑘+1 = �̃𝐼 for 𝑘 ∈ N \ {0, 𝑚 − 1} and 𝑄0,1 = �̃𝛼. The level can increase from
𝑚−1 to𝑚 both due to server updates and remaining arrivals, meaning𝑄𝑚−1,𝑚 = (𝛿+ �̃)𝐼.

As we have no other transitions in level 0, 𝑄0,0 = −(𝛿 + �̃). In non-zero levels transitions
also occur due to phase changes, hence 𝑄𝑘,𝑘 = 𝑆 − (𝛿 + �̃)𝐼 for 𝑘 = 1, . . . , 𝑚 − 1, where
−(𝛿 + �̃)𝐼 is due to the updates and extra arrivals. When the level is at least 𝑚 updates
do not change the level, hence 𝑄𝑘,𝑘 = 𝑆 − �̃𝐼 for 𝑘 ≥ 𝑚.

The queue at the cavity of the PUT(1) policy is given by (11.5) with 𝑄0,0 = −(𝛿 + �̃),
𝑄0,1 = (𝛿 + �̃)𝛼, 𝑄1,0 = 𝑠∗. Further for 𝑘 ≥ 1 we have 𝑄𝑘,𝑘 = 𝑆 − (𝛿 + �̃)𝐼 and 𝑄𝑘,𝑘+1 = �̃𝐼,
and 𝑄𝑘,𝑘−1 = 𝑠∗𝛼 for 𝑘 > 1.
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We still need to determine �̃. When the queue has 𝑘 < 𝑚 jobs and an update occurs, the
dispatcher will assign 𝑚 − 𝑘 jobs to the queue. This implies the following relation:

�̃ = � − 𝛿𝑚𝜋0 − 𝛿
𝑚−1∑
𝑘=1

𝑛𝑠∑
ℓ=1

(𝑚 − 𝑘)𝜋𝑘,ℓ .

We can now numerically obtain the stationary distribution analogously to Subsection
11.3.1. If 𝑚 = 1, we can omit using the bisection algorithm as

�̃ = � − 𝛿𝜋0 = � − 𝛿(1 − �). (11.19)

In this case we can immediately determine the invariant distribution as 𝜋0 = 1 − � and,
due to [61, Section 2],

𝜋1 = 𝜋0𝑄0,1𝑁 = (1 − �)(𝛿 + �̃)𝛼𝑁 = �(1 − �)(1 + 𝛿)𝛼𝑁.

Note further, that for 𝑚 = 1 this policy coincides with JUT(1) policy, except that for the
same 𝛿, the latter jumps from state 0 at a rate 𝛿0 = 𝛿/(1 − �), which is greater than 𝛿.
Therefore, PUT(1) policy will always be outperformed by the JUT(1) policy.

11.4.2 Exponential job sizes

Similarly to Subsection 11.3.2, we can find recursive formulas which allow us to omit
solving (11.8) for PUT(𝑚) policy and exponential job sizes (with mean 1). To this end we
define recursively

�̄�𝑚 = 𝛿, �̄�𝑖 = 𝛿 + �̃ �̄�𝑖+1

1 + �̄�𝑖+1
(11.20)

and

𝑓𝑚 =
𝛿2

1 + 𝛿
, 𝑓𝑖 =

�̄�𝑖

1 + �̄�𝑖

©«(𝑚 − 𝑖 + 1)𝛿 −
𝑚∑

𝑗=𝑖+1
𝑓𝑗
ª®¬ (11.21)

for 𝑖 = 1, . . . , 𝑚 − 1. For ease of notation, we set �̄�𝑚+1 = 0. Note that (11.20) and (11.21)
only depend on 𝛿, �̃ and 𝑚. We can now prove the following:

Lemma 11.4.1. For the PUT(𝑚) policy with exponential job sizes (with mean one) and arrival
rate �, the following relations hold for 𝑘 = 1, . . . , 𝑚:

𝑢𝑘−1�̃ + (𝑚 − 𝑘 + 1)𝛿 = (1 + �̄�𝑘)𝑢𝑘 +
𝑚∑

ℓ=𝑘+1
𝑓ℓ , (11.22)

𝛿
𝑚∑

ℓ=𝑘+1
𝑢ℓ =

�̃ �̄�𝑘+1

1 + �̄�𝑘+1
𝑢𝑘 +

𝑚∑
ℓ=𝑘+1

𝑓ℓ . (11.23)

Proof. For every 𝑘 ≥ 1 we have the following detailed balanced equations (see the proof
of Theorem 3.2.3), which are explained below:

(𝑢𝑘−1 − 𝑢𝑘)�̃ + (1 − 𝑢𝑘)𝛿1[𝑘 ≤ 𝑚] = 𝑢𝑘 − 𝑢𝑘+1. (11.24)
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The LHS describes the up-crossing rate over threshold 𝑘, while the RHS denotes down-
crossing rate under 𝑘. The queue up-crosses the threshold 𝑘 due to batch arrivals if
𝑘 ≤ 𝑚, namely due to queues with less than 𝑚 jobs sending updates. This gives the term
(1−𝑢𝑘)𝛿. An up-crossing can also occur for any 𝑘 due to the additional arrivals with rate
�̃ in queues with exactly 𝑘 − 1 jobs, which is accounted for by the term (𝑢𝑘−1 − 𝑢𝑘)�̃. A
down-crossing can only occur due to a completion in queue with exactly 𝑘 jobs, which
gives the term 𝑢𝑘 − 𝑢𝑘+1.

Summing Equations (11.24) from 𝑘 to infinity for every 𝑘 ≥ 1, we get

𝑢𝑘−1�̃ + 𝛿
𝑚∑
ℓ=𝑘

(1 − 𝑢ℓ ) = 𝑢𝑘 , (11.25)

which is equivalent to

𝑢𝑘−1�̃ + max(𝑚 − 𝑘 + 1, 0)𝛿 = (1 + 1[𝑘 ≤ 𝑚]𝛿)𝑢𝑘 + 𝛿
𝑚∑

ℓ=𝑘+1
𝑢ℓ .

Assume now that 𝑘 ≤ 𝑚. We prove both (11.22) and (11.23) at the same time using
backwards induction. For 𝑘 = 𝑚, (11.22) follows immediately from (11.25), while (11.23)
holds trivially. For 𝑘 = 𝑚 − 1, we have due to (11.22) with 𝑘 = 𝑚:

𝛿𝑢𝑚 = �̄�𝑚𝑢𝑚 =
�̄�𝑚

1 + �̄�𝑚
(𝑢𝑚−1�̃ + 𝛿),

which is exactly (11.23). We also have

𝑢𝑚−2�̃ + 2𝛿 = (1 + 𝛿)𝑢𝑚−1 + 𝛿𝑢𝑚 ,

which due to (11.23) with 𝑘 = 𝑚 − 1 further equals

(1 + 𝛿)𝑢𝑚−1 +
�̃ �̄�𝑚

1 + �̄�𝑚
𝑢𝑚−1 + 𝑓𝑚 = (1 + �̄�𝑚−1)𝑢𝑚−1 + 𝑓𝑚 .

Now suppose that the two claims hold for 𝑘 = 𝑘′ + 1, . . . , 𝑚. We need to show that they
hold for 𝑘 = 𝑘′. By using the induction hypothesis of (11.23) and (11.22) respectively, we
get

𝛿
𝑚∑

ℓ=𝑘+1
𝑢ℓ = 𝛿𝑢𝑘+1 +

�̃ �̄�𝑘+2

1 + �̄�𝑘+2
𝑢𝑘+1 +

𝑚∑
ℓ=𝑘+2

𝑓ℓ

= �̄�𝑘+1𝑢𝑘+1 +
𝑚∑

ℓ=𝑘+2
𝑓ℓ

=
�̄�𝑘+1

1 + �̄�𝑘+1

(
𝑢𝑘�̃ + (𝑚 − 𝑘)𝛿 −

𝑚∑
ℓ=𝑘+2

𝑓ℓ

)
+

𝑚∑
ℓ=𝑘+2

𝑓ℓ

=
�̃ �̄�𝑘+1

1 + �̄�𝑘+1
𝑢𝑘 +

𝑚∑
ℓ=𝑘+1

𝑓ℓ ,
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which shows (11.23) for 𝑘 = 𝑘′. By using (11.23), we further have

𝑢𝑘−1�̃ + (𝑚 − 𝑘 + 1)𝛿 = (1 + 𝛿)𝑢𝑘 + 𝛿
𝑚∑

ℓ=𝑘+1
𝑢ℓ

= (1 + 𝛿)𝑢𝑘 +
�̃ �̄�𝑘+1

1 + �̄�𝑘+1
𝑢𝑘 +

𝑚∑
ℓ=𝑘+1

𝑓ℓ

= (1 + �̄�𝑘)𝑢𝑘 +
𝑚∑

ℓ=𝑘+1
𝑓ℓ ,

which shows (11.22) for 𝑘 = 𝑘′, thus finishing the proof. □

As 𝑢0 = 1 and 𝑢1 = 1 − 𝜋0 = �, we get from (11.22)

�̃ + 𝑚𝛿 = (1 + �̄�1)� +
𝑚∑
ℓ=2

𝑓ℓ . (11.26)

Using (11.1), this implies that the average number of slots discovered per update is:

�(𝑚) = 𝑚 − 1
𝛿

(
�̄�1� +

𝑚∑
ℓ=2

𝑓ℓ

)
.

Unsurprisingly, �(𝑚) < 𝑚. Note, that for𝑚 = 1, Equation (11.26) implies �̃ = �− 𝛿(1−�),
which is in agreement with (11.19). This implies that we need 𝛿 < −1 + 1/(1 − �) for �̃ to
be non-zero. Similarly, for 𝑚 = 2, we obtain

�̃ =
� − 𝛿(2 + 𝛿)(1 − �)

1 + 𝛿(1 − �) .

Setting �̃ > 0 in the last equation and solving it for 𝛿, we obtain that we must have
𝛿 < −1 + 1/

√
1 − �. Solving Equation (11.26) for 𝑚 = 3 requires considerably more work.

For 𝑚 = 3, �̃ is given by

�̃ = −(1 + 𝛿) + −1 +
√

4𝛿(1 − �)[−𝛿2(1 − �) + 2𝛿� − 𝛿 + � + 1] + 1
2𝛿(1 − �) .

Setting �̃ > 0 in the last equation and solving for 𝛿, we get the following condition for
�̃ > 0: 𝛿 < −1 + 1/ 3√1 − �. This suggests the following theorem:
Theorem 11.4.2. For the PUT(𝑚) policy with exponential job sizes (with mean one) and arrival
rate �, we have �̃ > 0 if and only if 𝛿 < −1 + 1/ 𝑚

√
1 − �.

Proof. Clearly, 𝛿�(𝑚) is strictly increasing in function of 𝛿. Hence, there exists a unique
value of 𝛿 such that � = 𝛿�(𝑚), or equivalently, �̃ = 0. Suppose that �̃ = 0. Then the
PUT(𝑚) policy with exponential job sizes (with mean one) coincides with the AUJSQexp(𝛿)
policy from [74] with � = 0 and maximum queue length𝑚. But the latter system only has
� = 0 and maximum queue length 𝑚 if 1/(1 + 𝛿)𝑚 = 1 − � [74, p.19], which is equivalent
to 𝛿 = −1 + 1/ 𝑚

√
1 − �.

Alternatively, this also follows by solving (11.3) for 𝛿, as for exponential job sizes with
mean 1, we have 𝑦 = 1/(1 + 𝛿). □
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Remark 11.4.3. For 1 ≤ 𝑚 < 𝑀, one easily checks that 1/ 𝑚
√

1 − � > 1/ 𝑀
√

1 − �, for every
0 < � < 1. This implies that for the PUT(𝑚) policy with exponential job sizes of mean
one, the maximum value of 𝛿 such that �̃ > 0 is decreasing in function of 𝑚.

From Lemma 11.4.1, we obtain recursive formulas that determine the invariant distribu-
tion, if �̃ is known.

Proposition 11.4.4. For the PUT(𝑚) policy with exponential job sizes (with mean one) and
arrival rate �, the probability 𝑢𝑘 that the queue length exceeds 𝑘 is given by:

𝑢𝑘 =
�̃𝑘∏𝑘

ℓ=1(1 + �̄�ℓ )
+

𝑘∑
𝑗=1

�̃𝑘−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑘
ℓ=𝑗(1 + �̄�ℓ )

, if 1 ≤ 𝑘 ≤ 𝑚,

(11.27)

𝑢𝑘 = �̃𝑘−𝑚


�̃𝑚∏𝑚

ℓ=1(1 + �̄�ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + �̄�ℓ )

 , if 𝑘 > 𝑚.

(11.28)

Proof. (11.27) follows directly from (11.22) and 𝑢0 = 1, while (11.28) follows from (11.27)
and (11.25). □

If �̃ is not known, we can numerically determine �̃ and 𝜋 using the same bisection
algorithm as in Subsection 11.3.2 (except with �̄�𝑘 ’s and 𝑓𝑘 ’s instead of 𝑔𝑘 ’s and 𝑓𝑘 ’s).

Proposition 11.4.5. For the PUT(𝑚) policy with exponential job sizes (with mean one) and
arrival rate �, we have

𝐸[𝑅] = 1
�𝛿

(
�̄�1� +

𝑚∑
ℓ=2

𝑓ℓ

)
+ �̃

�(1 − �̃)


�̃𝑚∏𝑚

ℓ=1(1 + �̄�ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + �̄�ℓ )

 .
Proof. We first calculate 𝐸[𝑄] = ∑

𝑘≥1 𝑢𝑘 , the average queue length of the system. Due to
(11.23) with 𝑘 = 1 and 𝛿𝑢1 added to the both sides of the expression, we have

𝑚∑
𝑘=1

𝑢𝑘 =
1
𝛿

((
𝛿 + �̃ �̄�2

1 + �̄�2

)
𝑢1 +

𝑚∑
ℓ=2

𝑓ℓ

)
=

1
𝛿

(
�̄�1� +

𝑚∑
ℓ=2

𝑓ℓ

)
.

Due to (11.28), we further have

∞∑
𝑘=𝑚+1

𝑢𝑘 =

∞∑
𝑘=𝑚+1

�̃𝑘−𝑚


�̃𝑚∏𝑚

ℓ=1(1 + �̄�ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + �̄�ℓ )


=

�̃

1 − �̃


�̃𝑚∏𝑚

ℓ=1(1 + �̄�ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + �̄�ℓ )

 .
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Hence

𝐸[𝑄] = 1
𝛿

(
�̄�1� +

𝑚∑
ℓ=2

𝑓ℓ

)
+ �̃

1 − �̃


�̃𝑚∏𝑚

ℓ=1(1 + �̄�ℓ )
+

𝑚∑
𝑗=1

�̃𝑚−𝑗
(
(𝑚 − 𝑗 + 1)𝛿 −∑𝑚

ℓ=𝑗+1 𝑓ℓ

)
∏𝑚
ℓ=𝑗(1 + �̄�ℓ )

 .
Using Little’s law now finishes the proof. □

Hence, if �̃ is known, we can quickly calculate the mean response time.

11.5 Model Validation

Using simulation, we show in this section that as 𝑁 → ∞, the relative error between the
measured mean response time in the system of 𝑁 servers and the mean response time of
the queue at the cavity approaches zero. We perform the simulations for different param-
eters, different job requirement distributions and for 𝑁 ∈ {102 , 103 , 104 , 105}. Contrary
to Section 10.3 all job size distributions are examples of distributions of the phase type,
namely exponential, hyperexponential, Erlang and hyper-Erlang distributions. Note,
that we describe the hyperexponential distributions used here through the parameters
𝐸[𝑋], 𝑓 , 𝑆𝐶𝑉 (c.f. Subsection 2.3.2). Each simulation is run until 1000𝑁 arrivals occurred,
with a warm-up period of 10% of the arrivals. For every setting, the measured mean
response time and 95% confidence intervals are calculated based on 20 runs. The simula-
tion results can be found in Tables 11.1 and 11.2. For all examples presented here, except
for JUT(𝑚, 𝛿1) with exponential job sizes and 𝑁 = 100, the relative error is less than
2%. Further, the measured mean response time seems to be 𝑂(1/𝑁) accurate, similar to
the results in [24]. Based on simulations presented here and other simulations we also
conclude that the error is increasing as � or the job size variability increases.

11.6 Numerical Experiments

In this section we present several numerical experiments on the policies in this part,
which we will call Join-Up-To-𝑚 policies. We first show that there exist parameter
settings such that any Join-Up-To-𝑚 policy can outperform any other (Example 11.6.1).
In Example 11.6.2, we then show a comparison of performances of the three policies
if the parameter 𝑚 is chosen optimally. Note that in Example 11.6.2 we also check for
parameter settings where the Join-Up-To-𝑚 policies become hyperscalable. Finally, in
Example 11.6.4 we remark on what happens if we do not allow parameter settings where
the policies become hyperscalable.

Example 11.6.1. In [36] we have shown that the hyperscalable pull policy with 𝛿1 = 0
always outperforms the hyperscalable pull policy with 𝛿1 ≠ 0 and we conjectured that
the latter always outperforms the hyperscalable push policy. In this example, we show
that the above ordering does not necessarily hold for the Join-Up-To-𝑚 counterparts of
the hyperscalable policies, if we choose 𝑚 the same for the three Join-Up-To-𝑚 policies.
In fact, we present examples that show that every ordering is possible.
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settings N sim. ± conf. rel.err.%
Exponential 100 4.4892 ± 2.01e-01 25.3970
� = 0.99 1000 3.6394 ± 3.20e-02 1.6592
𝛿 = 0.2, 𝛿1 = 0.1 10000 3.5864 ± 8.29e-03 0.1798
𝑚 = 5 100000 3.5811 ± 2.67e-03 0.0309

∞ 3.5800 0
HypExp(2) 100 9.9324 ± 2.72e-02 3.4494
𝑓 = 1/3, 𝑆𝐶𝑉 = 5 1000 10.2458 ± 7.01e-03 0.4034
� = 0.85 10000 10.2833 ± 2.22e-03 0.0382
𝛿 = 0.1, 𝛿1 = 0.1 100000 10.2871 ± 5.84e-04 0.0020
𝑚 = 15 ∞ 10.2873 0
Erlang(10) 100 5.8629 ± 2.29e-02 3.7044
� = 0.95 1000 6.0710 ± 3.49e-03 0.2863
𝛿 = 0.1, 𝛿1 = 0.05 10000 6.0875 ± 1.07e-03 0.0157
𝑚 = 10 100000 6.0884 ± 3.54e-04 0.0005

∞ 6.0885 0
HypErl(2,5) 100 2.6695 ± 2.42e-03 1.5137
𝑝 = 0.85 1000 2.7065 ± 9.62e-04 0.1474
� = 0.8 10000 2.7102 ± 3.43e-04 0.0104
𝛿 = 0.15, 𝛿1 = 0.05 100000 2.7105 ± 8.64e-05 0.0007
𝑚 = 4 ∞ 2.7105 0

Table 11.1: Relative error of the simulated mean response time for the JUT(𝑚, 𝛿1) strategy
based on 20 runs.

Let 𝐸[𝑅JUT(𝑚)], 𝐸[𝑅JUT(𝑚,𝛿1)] and 𝐸[𝑅PUT(𝑚)] denote the mean response times of the
JUT(𝑚), JUT(𝑚, 𝛿1) and PUT(𝑚) policies respectively. Due to Remark 10.4.10 when
𝑚 < 1 + �

1−�𝐸[𝐺2] (where 𝐺 denotes the job size distribution), we can expect that the
higher the rate of discovering slots, the lower the mean response time of the policies.
This implies that 𝐸[𝑅JUT(𝑚)] < 𝐸[𝑅JUT(𝑚,𝛿1)] when 𝑚 < 1 + �

1−�𝐸[𝐺2] as on average more
slots get discovered by the JUT(𝑚) policy than by the JUT(𝑚, 𝛿1) policy. In this case, we
can also expect that for 𝛿1 close to 0 we have 𝐸[𝑅JUT(𝑚,𝛿1)] < 𝐸[𝑅PUT(𝑚)] as in this case
JUT(𝑚, 𝛿1) policy performs close to the JUT(𝑚) policy. This suggests that we need to
consider systems where 𝑚 > 1 + �

1−�𝐸[𝐺2]. Note, that to this end we have to choose 𝑚
sub-optimally for the JUT(𝑚) policy.

In Figure 11.1 we plot the mean response times for � = 0.5, 𝛿 = 0.05, 𝛿1 ∈ [0, 𝛿], 𝑚 = 2
and Erlang(15) job sizes. For 𝛿1 < 0.023, the figure shows that 𝐸[𝑅JUT(2)] < 𝐸[𝑅JUT(2,𝛿1)] <
𝐸[𝑅PUT(2)], while for larger values of 𝛿1, we have 𝐸[𝑅JUT(2)] < 𝐸[𝑅PUT(2)] < 𝐸[𝑅JUT(2,𝛿1)].
Note, that for the JUT(𝑚) policy in this figure, we have 𝑚 < 1 + �

1−�𝐸[𝐺2].

In Figure 11.2 we plot the mean response times for � = 0.4, 𝛿 = 0.05, 𝛿1 ∈ [0, 𝛿], 𝑚 = 7
and HypExp(2) job sizes, with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 1.8. First note that, although it is not
clear from graph, for 0 < 𝛿1 ≤ 0.004 we have 𝐸[𝑅PUT(7)] < 𝐸[𝑅JUT(7)] < 𝐸[𝑅JUT(7,𝛿1)]. For
0.005 ≤ 𝛿1 < 0.047, the figure shows that 𝐸[𝑅PUT(7)] < 𝐸[𝑅JUT(7,𝛿1)] < 𝐸[𝑅JUT(7)], while
for 𝛿1 ≥ 0.048, we have 𝐸[𝑅JUT(7,𝛿1)] < 𝐸[𝑅PUT(7)] < 𝐸[𝑅JUT(7)].

Finally, in Figure 11.3 we plot the mean response times for � = 0.5, 𝛿 = 0.04, 𝛿1 ∈ [0, 𝛿],
𝑚 = 10 and HypExp(2) job sizes, with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 2. For 𝛿1 ≤ 0.034, the
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Figure 11.1: Example 11.6.1: a comparison of Join-Up-To-𝑚 policies for � = 0.5, 𝛿 = 0.05,
𝛿1 ∈ [0, 𝛿], 𝑚 = 2 and Erlang(15) job sizes.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

3.824

3.826

3.828

3.83

3.832

3.834

3.836

3.838

Figure 11.2: Example 11.6.1: a comparison of Join-Up-To-𝑚 policies for � = 0.4, 𝛿 = 0.05,
𝛿1 ∈ [0, 𝛿], 𝑚 = 7 and HypExp(2) job sizes, with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 1.8.
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settings N sim. ± conf. rel.err.%
Exponential 100 5.2676 ± 6.36e-03 0.7247
� = 0.8 1000 5.3019 ± 2.24e-03 0.0768
𝛿 = 0.1 10000 5.3054 ± 8.98e-04 0.0111
𝑚 = 8 100000 5.3059 ± 3.09e-04 0.0015

∞ 5.3060 0
HypExp(2) 100 7.8233 ± 4.10e-02 1.5167
𝑓 = 1/2, 𝑆𝐶𝑉 = 10 1000 7.9298 ± 8.57e-03 0.1757
� = 0.7 10000 7.9427 ± 3.88e-03 0.0128
𝛿 = 0.1 100000 7.9445 ± 9.81e-04 0.0093
𝑚 = 10 ∞ 7.9438 0
Erlang(5) 100 5.5330 ± 7.51e-03 1.1378
� = 0.9 1000 5.5903 ± 2.00e-03 0.1143
𝛿 = 0.2 10000 5.5957 ± 5.83e-04 0.0181
𝑚 = 8 100000 5.5967 ± 1.78e-04 0.0001

∞ 5.5967 0
HypErl(3,7) 100 7.6313 ± 1.22e-02 0.4069
𝑝 = 0.75 1000 7.6571 ± 5.63e-03 0.0703
� = 0.9 10000 7.6631 ± 1.02e-03 0.0076
𝛿 = 0.05 100000 7.6629 ± 4.17e-04 0.0051
𝑚 = 12 ∞ 7.6625 0

Table 11.2: Relative error of the simulated mean response time for the PUT(𝑚) strategy
based on 20 runs.

figure shows that 𝐸[𝑅JUT(10)] < 𝐸[𝑅JUT(10,𝛿1)] < 𝐸[𝑅PUT(10)], while for 𝛿1 ≥ 0.035, we have
𝐸[𝑅JUT(10,𝛿1)] < 𝐸[𝑅JUT(10)] < 𝐸[𝑅PUT(10)].

Note, that for the JUT(𝑚) policy in the last two figures, we had 𝑚 > 1 + �
1−�𝐸[𝐺2].

In the last example, the parameter𝑚was chosen to be the same for the three Join-Up-To-𝑚
policies. We now present examples where the parameter 𝑚 is chosen optimally for each
policy.

Example 11.6.2. In this example we compare the performance of the different Join-
Up-To-𝑚 strategies when the parameter 𝑚 is chosen optimally, where we allow the
policies to reduce to the hyperscalable policies from [36]. We do this for � ∈ [0.5, 0.95],
𝛿 ∈ {0.01, 0.1, 0.3}, 𝛿1 = 𝛿 and HypExp(2) jobs with balanced means and 𝑆𝐶𝑉 = 20.

We determine the optimal value of𝑚 as follows. We first note, that if we set the parameter
𝑚 too high, then a Join-Up-To-𝑚 policy reduces to the respective hyperscalable policy
from [36]. In other words, for every parameter setting there exist only a finite number of
possible values for 𝑚 before a Join-Up-To-𝑚 policy becomes hyperscalable. For a given
parameter setting and a given Join-Up-To-𝑚 policy, we can thus determine the optimal
value of 𝑚 by brute force. We then compare the mean response time for that value
of 𝑚 with the mean response time of the respective hyperscalable policy. We call the
minimum of these two mean response times and the corresponding value of 𝑚 optimal.
Note, that if the optimal 𝑚-value comes from a hyperscalable policy, then the maximal
queue length of the cavity queue for that policy is 𝑚 + 1.
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Figure 11.3: Example 11.6.1: a comparison of Join-Up-To-𝑚 policies for � = 0.5, 𝛿 = 0.04,
𝛿1 ∈ [0, 𝛿], 𝑚 = 10 and HypExp(2) job sizes, with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 2.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

10

20

30

40

50

60

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

10

20

30

40

50

60

70

Figure 11.4: Example 11.6.2: a comparison of Join-Up-To-𝑚 policies for � ∈ [0.5, 0.95],
𝛿 = 0.01, 𝛿1 = 0.01 and HypExp(2) jobs with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 20. The left plot shows
the values of 𝑚𝑃𝑈𝑇

𝑜𝑝𝑡 , 𝑚
𝛿1
𝑜𝑝𝑡 and 𝑚

𝐽𝑈𝑇
𝑜𝑝𝑡 , while the right plot shows the corresponding mean

response times.
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Figure 11.5: Example 11.6.2: a comparison of Join-Up-To-𝑚 policies for � ∈ [0.5, 0.95],
𝛿 = 0.1, 𝛿1 = 0.1 and HypExp(2) jobs with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 20. The left plot shows
the values of 𝑚𝑃𝑈𝑇

𝑜𝑝𝑡 , 𝑚
𝛿1
𝑜𝑝𝑡 and 𝑚

𝐽𝑈𝑇
𝑜𝑝𝑡 , while the right plot shows the corresponding mean

response times.

We plot the optimal values of𝑚 in Figures 11.4-11.6 (left) and the mean response times for
these values of 𝑚 (right), where Figures 11.4-11.6 show the results for 𝛿 ∈ {0.01, 0.1, 0.3}
respectively.

Let us denote by 𝑚𝐽𝑈𝑇
𝑜𝑝𝑡 , 𝑚𝛿1

𝑜𝑝𝑡 and 𝑚𝑃𝑈𝑇
𝑜𝑝𝑡 the optimal values of 𝑚 of the JUT(𝑚), JUT(𝑚, 𝛿1)

and PUT(𝑚) policies respectively and by 𝐸[𝑅𝑃𝑈𝑇(𝑚𝑃𝑈𝑇
𝑜𝑝𝑡 )], 𝐸[𝑅𝐽𝑈𝑇(𝑚𝛿1

𝑜𝑝𝑡 ,𝛿1)
] and 𝐸[𝑅

𝐽𝑈𝑇(𝑚𝐽𝑈𝑇
𝑜𝑝𝑡 )

]
the respective mean response times.

The figures show that for each policy and value of 𝛿 the values of 𝑚𝐽𝑈𝑇
𝑜𝑝𝑡 , 𝑚𝛿1

𝑜𝑝𝑡 and 𝑚𝑃𝑈𝑇
𝑜𝑝𝑡

are increasing in function of �, except for the JUT(𝑚, 𝛿1) policy with 𝛿 = 0.1. Further, for
every parameter setting there exists a �̃ such that for every � ≥ �̃ we have

𝑚
𝐽𝑈𝑇
𝑜𝑝𝑡 ≤ 𝑚

𝛿1
𝑜𝑝𝑡 ≤ 𝑚𝑃𝑈𝑇

𝑜𝑝𝑡 .

In all three figures the mean response time is increasing as � increases. Further, as � gets
close to 1 the mean response times stay finite except for the push-up-to-𝑚/hyperscalable
push policy. Note, that the discontinuities in the graph of the mean response times occur
at values of �, where the optimal value of 𝑚 changes.

For 𝛿 = 0.01, the Join-Up-To-𝑚 policies clearly outperform the hyperscalable ones. This
is due to the fact that for hyperscalable policies, the mean response times become infinite
when 𝛿 → 0, while the Join-Up-To-𝑚 policies reduce to random assignment. In case
of 𝛿 = 0.3, the hyperscalable policies outperform the respective Join-Up-To-𝑚 policies,
as the former perform very well for high update rates 𝛿. The figure with 𝛿 = 0.1 falls
in between the two former cases: JUT(𝑚) policy is outperformed by the hyperscalable
pull policy with 𝛿1 = 0, while the other Join-Up-To-𝑚 policies (mostly) outperform their
hyperscalable counterparts. Finally, the example suggests the following conjecture, in
agreement with the results in [36]:
Conjecture 11.6.3. For every �, 𝛿, 𝛿1 and job size distribution, we have

𝐸[𝑅𝑃𝑈𝑇(𝑚𝑃𝑈𝑇
𝑜𝑝𝑡 )] > 𝐸[𝑅

𝐽𝑈𝑇(𝑚𝛿1
𝑜𝑝𝑡 ,𝛿1)

] > 𝐸[𝑅
𝐽𝑈𝑇(𝑚𝐽𝑈𝑇

𝑜𝑝𝑡 )
].
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Figure 11.6: Example 11.6.2: a comparison of Join-Up-To-𝑚 policies for � ∈ [0.5, 0.95],
𝛿 = 0.3, 𝛿1 = 0.3 and HypExp(2) jobs with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 20. The left plot shows
the values of 𝑚𝑃𝑈𝑇

𝑜𝑝𝑡 , 𝑚
𝛿1
𝑜𝑝𝑡 and 𝑚

𝐽𝑈𝑇
𝑜𝑝𝑡 , while the right plot shows the corresponding mean

response times.

The above conjecture implies that for every � and every job size distribution, the optimal
policy is either JUT(𝑚) with 𝑚 optimal or the hyperscalable pull policy from [36] with
𝛿1 = 0. But what happens if we do not allow the Join-Up-To-𝑚 policies to reduce to their
hyperscalable counterparts? This is what we examine in the next example.

Example 11.6.4. The last example suggested that if we choose the value of 𝑚 optimally
and allow the policies to be hyperscalable, the PUT(𝑚𝑃𝑈𝑇

𝑜𝑝𝑡 ) policy is always outperformed
by the JUT(𝑚𝛿1

𝑜𝑝𝑡 , 𝛿1) policy (with 𝛿1 ≠ 0), which is in turn outperformed by the JUT(𝑚𝐽𝑈𝑇
𝑜𝑝𝑡 )

policy. In this example, we show that this does not hold anymore, if we do not allow the
policies to be hyperscalable.

Let us denote by �̃�𝐽𝑈𝑇
𝑜𝑝𝑡 , �̃�𝛿1

𝑜𝑝𝑡 and �̃�𝑃𝑈𝑇
𝑜𝑝𝑡 the optimal values of 𝑚 of the JUT(𝑚), JUT(𝑚, 𝛿1)

and PUT(𝑚) policies respectively, provided that we do not allow the policies to become
hyperscalable. Similarly to the previous example, these can be determined by brute force.
Let us denote by𝐸[𝑅𝑃𝑈𝑇(�̃�𝑃𝑈𝑇

𝑜𝑝𝑡 )], 𝐸[𝑅𝐽𝑈𝑇(�̃�𝛿1
𝑜𝑝𝑡 ,𝛿1)

] and𝐸[𝑅
𝐽𝑈𝑇(�̃�𝐽𝑈𝑇

𝑜𝑝𝑡 )
] the corresponding mean

response times.

In Figures 11.7 and 11.8, we plot the values of the parameters �̃�𝐽𝑈𝑇
𝑜𝑝𝑡 , �̃�𝛿1

𝑜𝑝𝑡 and �̃�𝑃𝑈𝑇
𝑜𝑝𝑡

(left) and the corresponding mean response times (right). In Figure 11.7, we do this
for � ∈ [0.5, 1[, 𝛿 = 0.3, 𝛿1 = 0.1 and HypExp(2) job sizes with balanced means and
𝑆𝐶𝑉 = 20. The figure shows that

• 𝐸[𝑅PUT(�̃�𝑃𝑈𝑇
𝑜𝑝𝑡 )] > 𝐸[𝑅JUT(�̃�𝛿1

𝑜𝑝𝑡 ,0.1)
] > 𝐸[𝑅JUT(�̃�𝐽𝑈𝑇

𝑜𝑝𝑡 )
], for � ∈ [0.6, 0.813] ∪ [0.9, 1[;

• 𝐸[𝑅PUT(�̃�𝑃𝑈𝑇
𝑜𝑝𝑡 )] > 𝐸[𝑅JUT(�̃�𝐽𝑈𝑇

𝑜𝑝𝑡 )
] > 𝐸[𝑅JUT(�̃�𝛿1

𝑜𝑝𝑡 ,0.1)
], for � ∈ [0.814, 0.899];

• 𝐸[𝑅JUT(�̃�𝐽𝑈𝑇
𝑜𝑝𝑡 )

] > 𝐸[𝑅PUT(�̃�𝑃𝑈𝑇
𝑜𝑝𝑡 )] > 𝐸[𝑅JUT(�̃�𝛿1

𝑜𝑝𝑡 ,0.1)
], for � ∈ [0.571, 0.599];

• 𝐸[𝑅JUT(�̃�𝛿1
𝑜𝑝𝑡 ,0.1)

] > 𝐸[𝑅JUT(�̃�𝐽𝑈𝑇
𝑜𝑝𝑡 )

] > 𝐸[𝑅PUT(�̃�𝑃𝑈𝑇
𝑜𝑝𝑡 )], for � ∈ [0.517, 0.57];
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Figure 11.7: Example 11.6.4: a comparison of Join-Up-To-𝑚 policies for � ∈ [0.5, 1[,
𝛿 = 0.3, 𝛿1 = 0.1 and HypExp(2) jobs with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 20. The left plot shows
the values of �̃�𝑃𝑈𝑇

𝑜𝑝𝑡 , �̃�
𝛿1
𝑜𝑝𝑡 and �̃�

𝐽𝑈𝑇
𝑜𝑝𝑡 , while the right plot shows the corresponding mean

response times.

• 𝐸[𝑅JUT(�̃�𝛿1
𝑜𝑝𝑡 ,0.1)

] > 𝐸[𝑅PUT(�̃�𝑃𝑈𝑇
𝑜𝑝𝑡 )] > 𝐸[𝑅JUT(�̃�𝐽𝑈𝑇

𝑜𝑝𝑡 )
], for � ∈ [0.503, 0.516];

In Figure 11.8, we plot the values of �̃�𝑃𝑈𝑇
𝑜𝑝𝑡 , �̃�

𝛿1
𝑜𝑝𝑡 and �̃�

𝐽𝑈𝑇
𝑜𝑝𝑡 and the corresponding mean

response times for � ∈ [0.5, 1[, 𝛿 = 𝛿1 = 0.35, HypExp(2) job sizes with balanced means
and 𝑆𝐶𝑉 = 40. The figure shows, among other things, that for � ∈ [0.65, 0.699], we have
𝐸[𝑅JUT(�̃�𝐽𝑈𝑇

𝑜𝑝𝑡 )
] > 𝐸[𝑅JUT(�̃�𝛿1

𝑜𝑝𝑡 ,0.35)] > 𝐸[𝑅PUT(�̃�𝑃𝑈𝑇
𝑜𝑝𝑡 )]. Hence, if we do not allow the Join-Up-

To-𝑚 policies to be hyperscalable, then every ordering is possible when the parameter 𝑚
is chosen optimally for each policy.

Similarly to Example 11.6.2, it is clear that, as � → 1, the optimal value of𝑚 and the mean
response time stay finite for the JUT(𝑚) and JUT(𝑚, 𝛿1) policies but become infinite for
the PUT(𝑚) policy. Further, the discontinuities in mean response times in Figures 11.7
and 11.8 occur when the optimal value of 𝑚 changes.

11.7 Conclusion

In this chapter we introduced two hyper-scalable load balancing policies, called the
JUT(𝑚, 𝛿1) and the PUT(𝑚) policies, where 𝑚 and 𝛿1 are input parameters. Both policies
can be seen as modifications of the JUT(𝑚) policy. The first of these policies is identical
to JUT(𝑚), except now non-empty servers can update the dispatcher with probability 𝛿1
upon finishing a job. The PUT(𝑚) policy can be seen as the “push” variant of the JUT(𝑚)
and JUT(𝑚, 𝛿1) policies, that is, in case of PUT(𝑚) it is the dispatcher that sends update
requests. Under these policies incoming jobs are assigned in a greedy manner to a queue
with lowest estimated number of jobs (with ties broken at random), if there exists a queue
with an estimate of less than 𝑚 jobs. Otherwise an incoming job is assigned to a random
queue.
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Figure 11.8: Example 11.6.4: a comparison of Join-Up-To-𝑚 policies for � ∈ [0.5, 1[,
𝛿 = 𝛿1 = 0.35 and HypExp(2) jobs with 𝑓 = 1/2 and 𝑆𝐶𝑉 = 40. The left plot shows
the values of �̃�𝑃𝑈𝑇

𝑜𝑝𝑡 , �̃�
𝛿1
𝑜𝑝𝑡 and �̃�

𝐽𝑈𝑇
𝑜𝑝𝑡 , while the right plot shows the corresponding mean

response times.

We studied the performance of the two introduced policies in a large-scale system using
the queue-at-the-cavity approach, in case of jobs of the phase type. For both policies
we devised a bisection algorithm to determine the invariant distribution of the queue at
the cavity and the value of �̃, that is the arrival rate of jobs that are assigned at random.
For exponential job sizes, we found for both policies recursive formulas for the invariant
distribution and the mean response time in the case where the value of �̃ is known.

We demonstrated the accuracy of the cavity approach using simulations for different
job size distributions and different parameter settings. Finally, we presented numerical
results that show that for fixed parameter settings any policy can outperform any other.
This is also true when the value of the parameter𝑚 is chosen optimally for every policy if
we do not allow parameter settings where the policies may be hyperscalable. If we allow
the policies to be hyperscalable while choosing the parameter𝑚 optimally for each policy,
then the numerical results suggest that the PUT(𝑚) policy is always outperformed by the
JUT(𝑚, 𝛿1) policy (with 𝛿1 ≠ 0), which is in turn outperformed by the JUT(𝑚) policy.

In this and the previous chapter, we studied systems using cavity queues where, after an
exponential amount of time, the queue jumped from queue length 0 to 𝑚 (JUT(𝑚) and
JUT(𝑚, 𝛿1) policies) and where the queue would jump from queue length smaller than
𝑚 to 𝑚 (PUT(𝑚) policy). In future research we could consider generalizations where it
now takes a PH-distributed amount of time for such a jump to occur.

The cavity queues of the policies presented in this chapter can be seen as examples QBD
Markov chains with a jump (or, in case of exponential job sizes, BD Markov chains with
a jump) to level 𝑚. Future research could also be directed at finding explicit formulas
for the invariant distribution of BD Markov chains with a jump and at finding a matrix
analytic method for calculating the invariant distribution of a QBD Markov chains with
a jump.
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Abbreviations

This Appendix contains a list of all the abbreviations used throughout the thesis.

Markov chains, queues and policies

MC Markov Chain
DTMC Discrete Time Markov Chain
CTMC Continuous Time Markov Chain, see Sections 2.2, 3.2 and 3.3
BD Birth-and-Death (Markov chain), see Section 3.2
QBD Quasi-Birth-Death (Markov chain), see Section 3.3
MAP Markovian Arrival Process/Markovian Service Process, see Section 3.4
PASTA Poisson-Arrivals-See-Time-Averages property, see Theorem 3.2.4
FCFS First Come, First Served
FIFO First In, First Out
JSQ Join Shortest Queue
JSQ(𝑑) Join Shortest out of 𝑑 Queues
PS Processor Sharing
MD Monotone Deterministic
BMD Bounded Monotone Deterministic
JUT(𝑚) Join-Up-To 𝑚
JUT(𝑚, 𝛿1) Busy Join-Up-To 𝑚
PUT(𝑚) Push-Up-To 𝑚

Distributions and related functions

exp Exponential distribution, see Section 2.1
PH (continuous time) Phase-type distribution, see Section 2.2
HypExp Hyperexponential distribution, see Subsection 2.3.2
HypErl Hyper-Erlang distribution, see Subsection 2.3.5
SCV Squared Coefficient of Variation, see Subsection 2.3.2
pdf Probability Density Function
cdf Cumulative Distribution Function
LST Laplace-Stieltjes transform, see Definition 2.5.1
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Other abbreviations

ODE Ordinary Differential Equation
PDE Partial Differential Equation
LHS Left Hand Side
RHS Right Hand Side
W.l.o.g. Without loss of generality
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Symbols

This Appendix contains a list of symbols frequently used throughout the thesis.

𝛼, 𝑆 Unless specified otherwise, (𝛼, 𝑆) are the parameters of a PH-distribution,
𝛼 is the initial distribution vector and 𝑆 the transition rate matrix.

ℎ(𝑡) The state of an ODE at time 𝑡
Ω The state space
𝜋, � If a chapter only deals with a set of ODEs or Markov chains, then 𝜋 is used

to denote the fixed point of the ODEs or the invariant distribution of the
MC respectively. If a Chapter deals with both, then 𝜋 denotes the invariant
distribution of the MC, while � the fixed point of the set of ODEs.

𝑁 the number of servers/queues
𝐵 buffer size of a queue
d(·, ·) the supremum metric
𝑟 steal rate
1[𝐴] The indicator function of 𝐴: for a statement 𝐴, 1[𝐴] is 1 if 𝐴 is true and 0

otherwise.
𝐼𝑛 the identity matrix of dimensions 𝑛 × 𝑛
𝐼 the identity matrix (when its dimensions are clear from the context)
𝑒𝑖 a column vector of appropriate height, with a 1 in its 𝑖-th entry and 0s

elsewhere
� arrival rate
𝜌 Load of the system. When job requirements have mean 1, then 𝜌 = �.
1 a column vector of ones (when its height is clear from the context)
𝑒 Euler’s number
𝑊 waiting time distribution
𝐽 service time distribution
𝑅, 𝑇 𝑅 is used for the response time distribution, unless stated differently, f.e. in

Part II we use 𝑇 for the response time, since 𝑅 is used for a certain matrix.
𝐸[𝑋] the expected value of the random variable 𝑋
𝑣𝑒𝑐⟨·⟩ The vector stacking operator, that is: for an 𝑚 × 𝑛 matrix 𝐴, 𝑣𝑒𝑐⟨𝐴⟩ is a

column vector of height 𝑚𝑛 of the columns of 𝐴 stacked one under another
(starting from the leftmost column). See also Definition 3.6.6.

𝑖:𝑗 for integers 𝑗 ≥ 𝑖, the column vector [𝑖 , 𝑖 + 1, . . . , 𝑗]′.
⊗ the Kronecker product of two matrices, see Definition 3.6.5.
0𝑛 , 1𝑛 column vectors of height 𝑛 of zeros and ones respectively
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0𝑚,𝑛 zero matrix of size 𝑚 × 𝑛, i.e. 0𝑚,𝑛 = 0𝑚 ⊗ 0′𝑛
𝐺 job size distribution. If jobs are executed as a whole then 𝐺 = 𝐽.
𝐺∗(𝑠), 𝑅∗(𝑠), 𝑌∗(𝑠)Laplace-Stieltjes transforms of the job size distribution, the response

time and residual service time respectively
𝛿 update rate
𝜋𝑎 ,𝜋𝑑 steady state distribution measured at arrival and departure instances

respectively
𝜋𝑎(𝑧),𝜋𝑑(𝑧),𝜋(𝑧) generating functions of 𝜋𝑎 ,𝜋𝑑 and 𝜋 respectively
�(𝑧) generating function of the queue length of an 𝑀/𝐺/1 queue
𝑄 queue length distribution
N,Z,R the sets of natural numbers, integers and real numbers respectively
′ When used with a function 𝑓 (𝑥), 𝑓 ′(𝑥) denotes the derivative of 𝑓 (𝑥)

w.r.t. the variable 𝑥, when used with a matrix 𝐴, 𝐴′ is the transpose
of 𝐴.

𝑑
𝑑𝑥
, 𝜕
𝜕𝑥

the derivative and the partial derivative w.r.t. the variable 𝑥 respec-
tively

⌊𝑥⌋ the floor of 𝑥, that is, the largest integer smaller than or equal to 𝑥.
⌈𝑥⌉ the ceiling of 𝑥, that is, the smallest integer larger than or equal to 𝑥.
𝑛! For 𝑛 ∈ N, 𝑛! is the factorial of 𝑛 defined as 𝑛(𝑛 − 1)(𝑛 − 2) · . . . · 2 · 1.(
𝑛
𝑘

)
For 𝑛, 𝑘 ∈ N, with 𝑘 ≤ 𝑛, this denotes the combination of 𝑘 out of 𝑛
and is defined as 𝑛!

(𝑛−𝑘)!𝑘! .



Appendix CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Nederlandse Samenvatting

Wachtrĳtheorie speelt een cruciale rol in het modelleren van systemen met congestie. Ze
wordt al lang toegepast in het analyseren en in het verbeteren van de performantie van
communicatiesystemen. Aangezien moderne communicatiesystemen dikwĳls bestaan
vanuit verscheidene heterogene componenten, kan de traditionele analyse van zulke
grootschalige systemen belemmerend worden. Wanneer men zulke systemen exact pro-
beert te analyzeren, komt men vaak het probleem van de zogenoemnde ontploffing van
de statenruimte tegen.

Grootschalige systemen worden daarom gebruikelĳk bestudeerd via de mean field ana-
lyse: als een systeem bestaat vanuit een groot aantal wachtrĳen, kan zo’n systeem be-
naderd worden door een met oneindig veel wachtrĳen. De analyse van het model van
het latere systeem, het mean field model, is in het algemeen meer voor de hand liggend
omdat ze het probleem van de ontploffing van de statenruimte omzeilt.

Het doel van deze thesis is het analyseren van en inzicht verwerven in de performantie van
bestaande en nieuwe werklastverdelingmethodes door gebruik te maken van mean field
modelleren. Elk hoofdstuk van deze thesis bevat de mean field analyse van een familie van
systemen die gebruik maken van zulke methodes. In de analyze, worden de technieken
vanuit dynamische systemen, stochastisch modelleren, kanstheorie, numerieke analyse
en simulaties gebruikt.

De hoofdstukken zĳn gegroepeerd in drie delen. Het eerste van die delen behandelt
monotone systemen. Dat zĳn systemen met een merkbare rangschikking van staten dat
in de loop van de tĳd behouden blĳft. Het daaropvolgende deel bevat de analyse van
multithreaded computersystemen met werk stelen. In die systemen, kunnen delen van
een job overgedragen worden tussen wachtrĳen en dus kunnen de delen van een job
tegelĳkertĳd uitgevoerd worden in verschillende wachtrĳen. In het laatste deel worden
verscheidene hyperschaalbare methodes met een enkele dispatcher bestudeerd. Dit zĳn
methodes waar een centrale dispatcher jobs uitdeelt aan de wachtrĳen, op basis van het
geschatte aantal jobs in de wachtrĳen. De methodes worden hyperschaalbaar genoemd
als het aantal berichten dat tussen de dispatcher en de wachtrĳen wordt uitgewisseld
gemiddeld minder dan een bericht per job bedraagt. Voor de systemen in de laatste twee
delen worden, in het geval van een eindig aantal wachtrĳen, simulaties uitgevoerd om
de nauwkeurigheid van de mean field benadering te meten.
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