
This item is the archived peer-reviewed author-version of:

A framework and toolkit for testing the correctness of recommendation algorithms

Reference:
Michiels Lien, Verachtert Robin, Ferraro Andres, Falk Kim, Goethals Bart.- A framework and toolkit for testing the correctness of recommendation algorithms

ACM Transactions on Recommender Systems - ISSN 2770-6699 - (2023), 3591109

Full text (Publisher's DOI): https://doi.org/10.1145/3591109

To cite this reference: https://hdl.handle.net/10067/1971150151162165141

Institutional repository IRUA

A Framework and Toolkit for Testing the Correctness of

Recommendation Algorithms

LIEN MICHIELS and ROBIN VERACHTERT, Froomle, Belgium and University of Antwerp, Belgium

ANDRES FERRARO∗,McGill University, Canada

KIM FALK, Shopify, Canada
BART GOETHALS, University of Antwerp, Belgium, Monash University, Australia, and Froomle, Belgium

Evaluating recommender systems adequately and thoroughly is an important task. Significant efforts are

dedicated to proposing metrics, methods and protocols for doing so. However, there has been little discussion

in the recommender systems’ literature on the topic of testing. In this work, we adopt and adapt concepts

from the software testing domain, e.g., code coverage, metamorphic testing, or property-based testing, to help

researchers to detect and correct faults in recommendation algorithms. We propose a test suite that can be used

to validate the correctness of a recommendation algorithm, and thus identify and correct issues that can affect

the performance and behavior of these algorithms. Our test suite contains both black box and white box tests at

every level of abstraction, i.e., system, integration and unit. To facilitate adoption, we release RecPack Tests,

an open-source Python package containing template test implementations. We use it to test four popular

Python packages for recommender systems: RecPack, PyLensKit, Surprise and Cornac. Despite the high

test coverage of each of these packages, we find that we are still able to uncover undocumented functional

requirements and even some bugs. This validates our thesis that testing the correctness of recommendation

algorithms can complement traditional methods for evaluating recommendation algorithms.

CCS Concepts: · Software and its engineering → Software testing and debugging; · Information

systems→ Recommender systems; · Human-centered computing→ Collaborative filtering.

ACM Reference Format:

Lien Michiels, Robin Verachtert, Andres Ferraro, Kim Falk, and Bart Goethals. 2022. A Framework and Toolkit

for Testing the Correctness of Recommendation Algorithms. 1, 1 (June 2022), 47 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 INTRODUCTION

Recommender systems are widely used to help people discover products or content they might like,
for example, on e-commerce websites or online streaming platforms. Their broad adoption makes it
very important to adequately and thoroughly evaluate the performance of these systems. Evaluating
a recommender system is a difficult task that can be accomplished in many ways [76]. The most
often encountered experiment type in the literature is offline evaluation [6, 9, 76]. Here, a dataset is
split into a training, validation and test dataset according to some procedure and the performance
of the recommendation algorithm is compared to that of several ‘baselines’ according to some

∗Currently at Pandora-SiriusXM

Authors’ addresses: Lien Michiels, lien.michiels@uantwerpen.be; Robin Verachtert, robin.verachtert@froomle.com, Froomle,

Belgium and University of Antwerp, Antwerp, Belgium; Andres Ferraro, andresferraro@acm.org, McGill University,

Montréal, Canada; Kim Falk, Kim.falk.jorgensen@gmail.com, Shopify, Canada; Bart Goethals, bart.goethals@uantwerpen.be,

University of Antwerp, Antwerp, Belgium and Monash University, Melbourne, Australia and Froomle, Antwerp, Belgium.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

XXXX-XXXX/2022/6-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: June 2022.

2 Michiels, et al.

metrics. Offline evaluation is frequently criticized, for example, for its poor correspondence to the
performance of recommender systems in the real world [5, 33, 34]. Also, small changes in setup
can lead to vastly different results and performance rankings between algorithms [3, 18, 19, 58].
Because evaluating recommender systems adequately and thoroughly is of great importance, the
community dedicates significant efforts towards proposing new evaluation metrics [73] or data
splits [35, 72] that do not suffer from the same shortcomings as their predecessors. However, the
practice of evaluating a recommendation algorithm only by comparing its performance to that of
other recommendation algorithms, using some evaluation metric that reports a single aggregate
value across users on a held-out dataset, remains a constant throughout these works. We argue that
an additional, complementary perspective on the evaluation of recommender systems is warranted.
Implicitly, the practice of offline evaluation trusts that the recommendation algorithms evaluated
are well-designed and implemented correctly, and are therefore robust, reliable and free of errors.
However, we will show that this is not guaranteed. In software engineering, significant effort is
spent designing test cases to validate that code is indeed reliable and free of errors [51]. Designing
such test cases is considered a software engineering best practice, and is even included in the
ACM/IEEE-CS Software Engineering Code of Ethics [24].

In recent years, software testing research has proposed new paradigms and tools for the automated
testing of complex software systems, and machine learning systems in specific [59, 77]. However, to
the best of our knowledge, these new paradigms and tools have yet to be applied to recommender
systems. In this work, we address this knowledge gap and propose an initial test suite to evaluate the
correctness of recommendation algorithms. This test suite contains both black box and white box
tests at every level of abstraction, i.e., system, integration and unit. Along with this framework, we
release RecPack Tests, an open-source Python package that contains test cases which researchers
can use to test their own and others’ recommendation algorithms and correct the issues that can
affect their performance. We apply RecPack Tests to four open-source recommender systems
packages, Surprise [32], PyLensKit [17], RecPack [47] and Cornac [63]. Despite the high test
coverage of each of these packages, we find that we are still able to uncover bugs, undocumented
functional requirements and interesting undesirable behaviors of algorithms. This validates our
thesis that testing provides a valuable additional perspective on the evaluation of recommendation
algorithms.Without testing our recommendation algorithms, we run the risk of drawing conclusions
based on incorrect results, which is detrimental to progress in scientific research on recommender
systems.

2 BACKGROUND

Currently, traditional software systems are tested, whereas recommender systems and other ma-
chine learning systems are most often said to be evaluated. In this Section, we explore in which
ways testing and evaluation are different, and how testing can provide a complementary perspective
when evaluating machine learning systems, and recommender systems in particular. First, in Section
2.1 we lay the groundwork for our discussion and discuss the main concepts and terms we will
use throughout this work. In Section 2.2, we describe how machine learning systems are typically
evaluated and look at the practice of evaluating machine learning systems from the perspective of
software testing. In Section 2.3 we continue with a brief discussion of how recommender systems
are evaluated and how testing could complement their evaluation. Finally, in Section 2.4, we
examine recent work on testing machine learning systems.

2.1 Testing Software Systems

In the broadest sense, software testing encompasses any action aimed at discovering software
failures so that they may be corrected. These actions can range from code review to unit testing or

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 3

even online AB testing. However, in the remainder of this work we will use the narrower definition,
as proposed by ISO/IEC: łsoftware testing is an activity in which a system or component is executed
under specified conditions, the results are observed or recorded, and an evaluation is made of some
aspect of the system or componentž [1].

In automated testing, we typically define a ‘test suite’ consisting of a series of ‘test cases’. A test
case is ła set of test inputs, execution conditions and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a specific
requirementž [1]. Further, a ‘positive test case’ is a valid test input for which we expect our software
system to provide the correct result. If an error is encountered, or the result is not as expected, the
positive test case will fail. A ‘negative test case’, on the other hand, is an invalid input test for which
we expect our software system to fail gracefully, for example, by displaying an appropriate error
message. Each test case tests some ‘test criteria’. These test criteria are the łcriteria that a system or
component must meet in order to pass a given testž [1]. Finally, the ‘test inputs’, sometimes referred
to as ‘test data’ or ’test fixtures’, are the łdata created or selected to satisfy the input requirements
for executing one or more test casesž [1].

Software tests are typically run before the software system is deployed. The behavior of traditional
software systems is deterministic, and therefore it is reasonable to assume that a program will
not suddenly fail a test case it succeeded previously. After deployment, monitoring and logging
are used to uncover bugs that were not spotted during testing. When such a bug is discovered a
test case is written that reproduces it, after which the behavior is corrected and a new version is
deployed.

In the remainder of this Section, we limit ourselves to a discussion of those concepts and terms
that will support the later discussion of testing machine learning and recommender systems. For a
more complete overview of software testing, we refer the interested reader to the seminal book on
the subject, ‘The Art of Software Testing’ [50].

2.1.1 Unit, Integration and System Level Testing. We can distinguish between different levels of
abstraction at which a test can operate. Conventionally, the literature distinguishes between three
levels: the system, integration and unit level [50]. However, the boundaries between these three
levels of abstraction are somewhat blurred. The unit level is always the lowest possible level. The
‘single responsibility principle’ dictates that a function should fulfill a single purpose. A unit test,
or test at the unit level, verifies whether such a function has fulfilled its purpose. Typically, a unit
test case will first create a minimal, but representative, input to the function, then it will call the
function, and finally it will compare the output of the function to the expected, correct, output.
Take for example a function that sorts a list in ascending order: A test input could be the unsorted
list [2, 3, 1], whereas the expected output would be the same list but sorted [1, 2, 3].
Testing at the unit level alone, even if we would theoretically be able to test all functions for

all possible input values, is insufficient to catch every error in a software system. This is because
software systems require different functions to work together to achieve some more complex task.
For example, imagine we want to know the greatest possible difference between any two items
in a list. This could be accomplished by first sorting the list in ascending order, after which the
first value is subtracted from the last value in the sorted list. However, if the first function sorts
the list in ascending order, while the second assumes the list was ordered in descending order, the
output will be incorrect. Such tests of how different functions inter-operate, are typically called
‘integration tests’. Integration tests can usually only be written after at least some of the individual
components that make up a system have been implemented (and possibly verified by means of a
unit test). System level testing then tests software systems as a whole after development has been
completed. While unit and integration tests can verify that what is implemented was correctly

, Vol. 1, No. 1, Article . Publication date: June 2022.

4 Michiels, et al.

implemented, system level tests go beyond that and test whether or not the software system as a
whole achieves its design goal.

2.1.2 Black or White Box Testing. The most important aspect of testing is the creation and design
of effective test cases [51]. Testing a system ‘completely’ is impossible given a limited budget and
limited amount of time. Therefore, a good testing strategy can help uncover the existence of bugs,
but not prove that a program is entirely bug-free [50]. The question then becomes: łWhat subset of
all possible test cases has the highest probability of detecting the most errors?ž [51]
We can differentiate between two different perspectives when designing tests: black box and

white box testing. Either test perspective can be used at any of the levels of abstraction discussed
previously.
Black box testing is also known as data-driven, input/output-driven, behavioral or functional

testing. As the name suggest, in black box testing we treat the component to be tested as a black
box: We assume only the functional requirements of the component are known, not the actual
implementation logic or source code. As a result, a black box test can verify if a program can
accomplish what it is supposed to do provided the test inputs, but not give insight into how it
accomplishes that goal. The component under test can be a function, in which case all we know
about it is the function’s signature: Its name, the inputs it takes and the values it returns. The
component under test can also be the system as a whole, in which case we evaluate it as would an
end user. Several strategies exist to determine how to achieve the highest possible confidence in
the system with the least amount of test cases. A first important strategy to determine how many
tests are required is ‘equivalence class partitioning’ [51]. In equivalence class partitioning, the idea
is that a tester uses their knowledge of what input values can be considered realistic, and then
divides the input space into classes of ‘equivalent’ values, i.e., groups of input values for which it is
reasonable to assume the system will behave in the same way. For each representative class then,
only one test case should be generated. Another strategy is ‘boundary value testing’. The idea here
is that test cases that explore the boundaries of the input domain are more difficult for the system
to process than other values [51]. For example, a function that determines the sign of an input
value may have no difficulty determining the sign of 100000, but may struggle to determine the
sign of 0.01𝑒−16. Equivalence class partitioning and boundary value analysis can also be combined:
The input space can be divided into a set of representative classes, and then the bounds of those
classes are used to generate test cases. Another strategy is ‘cause-effect graphing’. Here, the causes
and effects are determined from the program specification and then used to generate test cases
of the form: ‘If this .. then that’. Typically, a formal Boolean logic network is created from the
program specification [51]. A final strategy is ‘error guessing’: Given a particular program, using
both intuition and prior experience to determine what are mistakes commonly made or what
aspects of the functional specification are at risk of being overlooked [51]. Although hardly a formal
approach, error guessing is found to be very useful in practice [51].

White box or glass box testing, on the other hand, designs tests on the basis of the implementation
logic. Because of this, white box testing can uncover code faults that black box testing may have
left undiscovered. However, as it starts from the implementation, not the functional requirements
of the program, it cannot be used to test whether the program achieves its design goal. Instead,
it can only verify that the program does what it does correctly. In white box testing, we know
exactly what statements or branches have been executed and which have not. As a result, test
completeness is most often evaluated in terms of test coverage. Test coverage is defined as the
łdegree, expressed as a percentage, to which specified test coverage items have been exercised by a
test case or test casesž [1]. A first coverage criterion is ‘statement coverage’, i.e., every statement in
the program is executed at least once [51]. Statement coverage can be used to identify unreachable

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 5

code, also known as dead code. However, it cannot guarantee that a program will always return
the correct result. Therefore, it is considered a weaker criterion than ‘branch coverage’, also known
as ‘decision coverage’. This coverage criterion requires that at least every decision is taken once,
i.e., every branch in the code is executed once [51]. This means that for every decision, i.e., if-else
statement, in the code, we should make sure that the decision evaluates to both True and False at
least once. An even stronger criterion then is ‘decision/condition coverage’, which requires that not
only is every decision taken once, but also that every condition in a decision takes every possible
outcome at least once [51]. Decision/condition coverage is therefore mostly useful when decisions
contain multiple conditions, for example, if A > 3 and B < 4. With all of the coverage criteria, a
tester needs to determine what percentage of coverage is required for them to have sufficient trust
that the system is free of bugs.
Conventional wisdom dictates that a reasonable testing strategy contains a mix of both black

box and white box tests [51]. Preference should first be given to the development of black box tests,
which should then be supplemented with white box tests until the tester is reasonably confident
that their program is free of bugs [51]. Both for white box and black box tests, both positive and
negative test cases should be generated.

2.1.3 The Oracle Problem. In the previous Section, we discussed how to choose test data, i.e.,
the test inputs, to obtain the greatest possible trust in the system with the least amount of tests.
However, a test case does not only require appropriate test inputs. We also need to know the desired
outcome of the component under test for that input, so that we can evaluate whether or not the
system behaved correctly [4]. To distinguish between correct and incorrect behaviors, we use a
‘test oracle’. Defining such test oracles is not always easy, and therefore often referred to as the
‘the oracle problem’ [4, 46, 64]. Barr et al. [4] identify four different types of oracles, two of which
are of interest to us: Specified and derived oracles.

We say an oracle is specified when the desired behavior of the component is fully specified and
thus known. In many practical settings, this is not a realistic requirement: The desired behavior of
a system given a test input may simply be too complex to express, or the program may have been
written to find the answer to a question for which the answer was previously unknown.

When there is no full specification of the expected behavior of a system, one can try to define
a ‘derived oracle’ instead. A derived oracle, also known as a pseudo-oracle or partial oracle, is a
partial specification of the outputs.
In property-based testing, instead of verifying that the true result of a function matches the

required output, we instead verify if a property of the desired output is upheld [39]. For example,
whereas a test with a fully specified oracle would test if the list [2, 3, 1] has been transformed into
[1, 2, 3] after sorting, a property-based test would instead check that for any input, the property
of monotonicity, i.e., that every next item in a list should always be of the same or greater value
that the previous, is upheld. We can expect this property to be true for all lists sorted in ascending
order. Property-based tests avoid some of the difficulties associated with defining specified test
oracles. If such properties exist, the derived oracles are often easier to express than the specified
oracles. Unfortunately, such properties do not always exist.

Another important approach that relies on a form of derived oracle is metamorphic testing [11,
12, 64]. Rather than relying on an individual output to define an oracle, metamorphic tests use
relationships between different input-output pairs to determine the correctness of the result of a
component [64]. For example, to test if a modulo operation was correctly implemented, we could
check that ∀ 𝑥,𝑦 ∈ N : 𝑥 mod 𝑦 ≡ 𝑥 + 𝑦 mod 𝑦, using a few representative values of 𝑥 and 𝑦.
The above example tests an invariance metamorphic relationship: The result should not change
from one test input 𝑥 to another 𝑥 + 𝑦. Many other types of metamorphic relationships can be

, Vol. 1, No. 1, Article . Publication date: June 2022.

6 Michiels, et al.

expressed [64]. A disadvantage of metamorphic testing is that, like other types of property-based
tests, it requires knowledge of the problem domain to express these metamorphic relations [64].

Finally, we want to highlight ‘differential testing’. In differential testing, we assume that we have
two comparable systems available [46]. In some cases, we can assume that one of the two systems
will give us correct results. For example, we could want to try a faster or more memory-efficient
implementation of a sorting function. Here, we could compare the results of our new function to
the results of the previous function for a random set of inputs, to make sure that the results are still
correct. In other cases, we cannot be sure of the correctness of either system. In these cases, we say
that there is a bug in either one of the systems if they each give different results. Which system
made the correct determination and which did not, is a question left to the tester.

2.2 Evaluating Machine Learning Systems

Machine learning systems are fundamentally different from traditional, deterministic software
systems. Whereas in the latter case we program the exact behavior we expect the program to
exhibit, in the former case this behavior is learnt from data. While virtually all traditional software
systems are tested, machine learning systems are usually said to be ‘evaluated’. In this Section
we discuss the differences and commonalities between evaluating and testing machine learning
systems.

Although many different applications of machine learning exist, some observations can be made
regarding the evaluation procedures used to evaluate supervised learning approaches, which share
some commonalities with the offline evaluation of recommender systems, in general. In supervised
learning, a dataset is typically divided into a training, validation and test dataset. As suggested
by the names, a training dataset is used to train the model, after which a validation dataset is
used to determine the hyperparameters that correspond to optimal performance, until finally the
performance on a test dataset can be obtained. For a typical classification task, performance is most
often evaluated in terms of accuracy, precision or recall.

If we look at this evaluation procedure through a software testing lens, we spot many similarities.
A test dataset is a set of previously unseen data points in the shape of input-output pairs, where
the input consist of all features needed to create a prediction and the output is the expected label.

In essence, this is a form of black box testing where each data point is actually a test case for our
system: The input features are nothing less than the test inputs and the labels are the test oracles.
If we adopt this mindset, an important shortcoming of this evaluation procedure becomes obvious:
Whereas software testers spend the majority of their time selecting the right test cases, in machine
learning evaluation, we simply take these test cases from the data. However, there is no guarantee
that the test cases in the test dataset are free of unwanted biases, or span the entirety of the allowed
input space [70]. A systematic and automatic exploration of the allowed (and disallowed) input
space, however, is crucial to build trust in the decisions machine learning systems make [15, 71].
Failing to systematically test machine learning models may lead to catastrophic error in production
settings, especially in applications where safety is critical [70].

2.3 Evaluating Recommender Systems

Zangerle and Bauer [76] distinguish between three types of experiments that can be used to evaluate
recommender systems: offline evaluations, user studies and online evaluations. Offline evaluations
use a dataset of users’ explicit or implicit feedback on items collected from a live system over a
period of time [9]. This dataset is split into a training, validation and test dataset, according to
some procedure, e.g., leave-last-one-out, and then the performance of different algorithms on one
or more such datasets is compared [76]. Often, ‘benchmark datasets’ are used, which were made
public for the purpose of repeated experimentation [9], e.g., the MovieLens datasets [28].

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 7

In user studies, a small set of human test subjects is recruited to perform some predefined task
that requires them to interact with the recommender system, after which their experience with the
system is evaluated using a combination of objective and subjective measures [76].

Finally, in online evaluations, the recommender system is deployed in a real-world, live setting,
where users interact with the system organically to perform self-selected real-world tasks [76].

While online evaluations offer the greatest degree of ‘reality’, offline evaluations are by far
the most common experiment type encountered in the academic literature [6, 76], often the only
experiment type available to researchers in academia and are conducted by practitioners in industry
as well to evaluate and select new ideas to evaluate online [9]. In the remainder of this Section, we
will focus our attention on offline evaluation.

Recommendation algorithms are most often evaluated in terms of accuracy, although beyond-
accuracy objectives are gaining popularity [76]. Current methods to evaluate the accuracy, also
termed utility, of recommender systems in offline evaluations find their origins in methods used to
evaluate other types of machine learning systems. The earliest works on recommender systems
evaluated the systems with a focus on prediction error, e.g., by means of RMSE, accuracy or
precision, similar to how supervised learning approaches are typically evaluated [9]. Later methods
drew inspiration from the evaluation of information retrieval tasks and adopted metrics such as
Precision@K, Recall@K or nDCG@K [9]. Although prediction error is still used by some, the
metrics that were adopted from the domain of informational retrieval dominate the space today.

However, the offline evaluation of recommendation algorithms poses some additional difficulties
that the evaluation of information retrieval systems does not. Most prominently, whereas in super-
vised learning and information retrieval the offline datasets used offer a reasonable approximation of
the ground truth, in recommender systems, they often do not [9]. For example, in offline evaluation
of information retrieval systems judgments are ‘pooled’ between different annotators to obtain
ground truth datasets. On the other hand, offline datasets for the evaluation of recommendation
algorithms typically consist of logged user interactions collected from a live system over some
period of time. These datasets therefore suffer from significant presentation and selection biases [9].
In the context of recommender systems, ‘correctness’ is also a more elusive notion [9]. Whether
a recommendation is accepted, e.g., clicked or bought, is dependent on the user’s needs in that
moment and other contextual factors, which are most often unobserved. This has fueled criticism
that results obtained in offline evaluations have poor correspondence with online results [5, 6] and
that we should look at beyond-accuracy objectives, and different experiment types, to get a better
idea of how recommendation algorithms will perform in the real world [34, 76].

Offline evaluations have also received criticism for their apparent sensitivity to the exact experi-
mental conditions. Recent independent reproducibility studies of ‘state-of-the-art’ recommendation
algorithms have found results łdon’t add upž, i.e., many methods published years ago are still able
to outperform recent models [3, 18, 19, 58]. Even between these independent reproducibility stud-
ies, there is considerable disagreement on the performance ranking of different recommendation
algorithms. For example, Anelli et al. [3] and Rendle et al. [58], although published within months
of each other, do not agree on the ranking of algorithms, even for the same dataset and accuracy
metric, as shown in Table 1. Also of note is that, despite only small differences between the data
splits used in both works, the reported accuracy values differ greatly. This indicates that measuring
performance in terms of accuracy measures in offline evaluation is not robust.
Finally we want to highlight that the relentless focus on ‘accurate’ recommender systems

ignores important factors that contribute to the trustworthiness of recommender systems, such as
transparency, fairness and robustness to noise and attack [74].
Because offline evaluation of recommendation algorithms is so prevalent, the community ded-

icates significant efforts towards proposing new evaluation metrics [e.g. 73] or data splits [e.g.

, Vol. 1, No. 1, Article . Publication date: June 2022.

8 Michiels, et al.

Anelli et al. [3] Rendle et al. [58]

EASE 0.336 0.449
SLIM 0.335 0.447
iALS 0.306 0.453

NeuMF 0.277 0.477

Table 1. NDCG@10 for the ML1M dataset for all algorithms that were evaluated in both Anelli et al. [3] and
Rendle et al. [58]. Results taken directly from the respective papers.

35, 72] that do not suffer from the same shortcomings as their predecessors. However, the practice
of evaluating a recommendation algorithm only by comparing its performance to that of other
recommendation algorithms, using some evaluation metric that reports a single aggregate value
across users, on a held-out dataset, is a constant throughout all works on offline evaluation. We
argue that testing could provide an interesting complementary perspective on the (offline) evalua-
tion of recommendation algorithms, in much the same way as it has for other machine learning
systems. First, testing can ensure that a recommendation algorithm is reliable and free of errors,
before further evaluations are performed. Second, the definition of carefully selected test cases
would allow us to evaluate important properties such as the algorithm’s robustness to noise and
attack or undesired biases the model may have learned.

2.4 Testing Machine Learning Systems

Testing can provide a complementary perspective on the evaluation of machine learning systems,
including recommender systems, that can increase our level of trust in the system’s proper func-
tioning. For the testing of machine learning systems, we can take inspiration from testing practices
applied to traditional software systems [77]. However, the behavior of machine learning systems is
dependent on both the code and data, which causes a number of additional challenges [70, 77].

Testing machine learning systems is a relatively new research domain. Interest in the domain has
been steadily rising since 2016 [77] and continues to rise with the increased adoption of machine
learning systems in practical settings [60], which has led researchers and practitioners to re-examine
their reliability [7, 15, 68, 71, 77].
Naturally, application domains in which safety is critical, such as autonomous driving, have

received the most attention [77]. Despite its relative novelty as a research domain, a number of
success stories have been reported. For example, DeepXplore [55], a differential white box testing
technique for deep learning models, was able to uncover thousands of incorrect behaviors in
autonomous driving systems. OGMA [70], a differential black box technique for natural language
processing classifiers, was similarly able to uncover thousands of erroneous behaviors.

There are four main difficulties when testing machine learning systems that we wish to highlight.
In the remainder of this Section, we discuss these difficulties and how they have been addressed in
the literature.
As mentioned earlier, a first issue is that the behavior of machine learning systems depends

not only on the code, but also on the data [77]. This has two important consequences. Firstly,
the system’s behavior is no longer deterministic. As a result, the system may have learned the
desired behavior from the data, but may also have picked up undesirable behaviors. This gives rise
to several different ‘properties’ of machine learning systems that can be tested. In their survey,
Zhang et al. [77] identify eight that have been of interest to the community: correctness, robustness,
privacy, security, fairness, efficiency and interpretability. However, they stress that most papers they

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 9

collected focus on correctness and robustness. They define ‘correctness’ as łthe ability of a machine
learning system to get things rightž. ‘Robustness’ then, is defined as łthe degree to which a system
or component can function correctly in the presence of invalid inputs or stressful environmental
conditionsž. This interest in robustness is no surprise, as machine learning systems have been found
to be susceptible to adversarial attacks that may exploit security vulnerabilities by using inputs that
force models to produce erroneous outputs [10, 45]. Secondly, because the behavior is a function of
the data, the behavior can also change every time new data is incorporated [77]. Therefore, unlike
traditional software systems, machine learning systems should ideally be (re-)tested every time
new data is incorporated [77].
A second important challenge is that the behavior of a machine learning system is often the

result of different smaller components working together. This naturally migrates testing away from
the unit level to the integration and system level [7, 59, 77]. Because of this, Riccio et al. [60] define
the concepts of unit, integration and system level in machine learning systems as follows: They
argue that the machine learning model should be considered a ‘unit’, and the parts surrounding
it, such as mapping services and API, form the integration and system levels together with the
machine learning model. However, this view assumes that the implementations of machine learning
algorithms are already free of errors, which other works have shown to be incorrect [e.g. 55, 70].
Thirdly, machine learning systems suffer an especially difficult case of the oracle problem [36].

Machine learning systems are often used to answer questions for which no answers are known [70,
77], making it difficult to define specified oracles. Because of this, most of the literature on machine
learning testing focuses on metamorphic and differential testing. Differential testing is of interest
because it does not require the correct result to be known, but instead relies on disagreement
between two very similar systems. As Udeshi and Chattopadhyay [70] write: łAccording to the
robustness property, the classification classes of two similar inputs do not vary substantially for
well trained machine-learning modelsž. In other words, disagreement can be interpreted to mean
one of both, or potentially both, systems are wrong.

Similarly, metamorphic testing is of interest because it relies only on metamorphic relationships
between input-output pairs. Examples of the use of metamorphic tests in the natural language
processing domain are found in Ribeiro et al. [59]. They propose a series of test cases that require
either invariance to certain perturbations, or require that the label assigned to an output changes in
a certain direction after perturbation. For example, they propose a metamorphic test that requires
that if a neutral word is replaced with another neutral word, the sentiment assigned to a sentence
does not change. A disadvantage of metamorphic testing is that it relies heavily on domain-specific
knowledge, and thus requires the definition of reasonable metamorphic relations for every problem
domain individually [70]. Another important type of test that has been designed specifically for
machine learning systems is what we will call a ‘minimal functionality test’, as in Ribeiro et al.
[59]. A similar idea was also described in Breck et al. [7] where it was referred to as ‘purposeful
overfitting’. The idea of both types of tests is to validate that the machine learning model is learning
reliably. In the former, the ‘minimal functionality’ required is that negation changes the sentiment
of a sentence. In the latter, they try to get a model to overfit the training data. If it is unable to do
so, this points to an error in the algorithm’s implementation. They also mention the use of ‘toy
examples’, i.e., small datasets with straightforward patterns, to validate algorithm implementations.
The purpose is then to learn the pattern present in the toy example, which can be validated by
means of a specified oracle. However, determining suitable error tolerances on these specified
oracles poses another problem [36].

A final challenge is to determine when amachine learning system has been tested sufficiently [36].
Machine learning systems have extremely large and complex input spaces in comparison to tradi-
tional software systems. This makes applying techniques such as equivalence class partitioning and

, Vol. 1, No. 1, Article . Publication date: June 2022.

10 Michiels, et al.

boundary value analysis, to reduce the number of test cases required, infeasible. Manually selecting
a sufficient set of test cases is similarly challenging. Additionally, training machine learning systems
often takes a long time, so running a large number of test cases to satisfy coverage criteria may also
be impractical. Some efforts have been made to define new completeness criteria and strategies for
test case generation, specific to machine learning systems. For example, Sun et al. [68] suggest four
coverage criteria for white box testing of deep neural networks. They highlight that simple coverage
criteria, such as 100% neuron coverage, are trivial to achieve and may lead to insufficient testing.
Udeshi and Chattopadhyay [70] then propose a grammar-based test case generation strategy for
natural language processing classifiers.

Finally, we note that within the domain of recommender systems, prior work on testing is limited.
In their abstract, Saberian and Basilico [61] write that unit and integration tests are an important
aspect of ‘RecSysOps’, but do not describe the actual tests used. Then, with RecList, Chia et al. [13]
propose a framework to facilitate behavioral (black box) testing of recommender systems. However,
their focus is on providing the necessary tooling to allow easier definition of tests, not providing
a test suite of predefined test cases. The test cases they do propose are not automated tests that
use an oracle to determine success or failure, but rely on human judgment of the outputs, e.g.,
plots, instead. Finally, there exists some work that proposes methods to verify the robustness of the
system under attack, usually shilling or profile injection attacks [e.g. 26, 49]. Such an attack can be
seen as a type of test: A test input is generated that contains some amount of false profiles, after
which the behavior of the new model can be compared to the previous, clean, model. However,
again, currently these tests are not formulated as an automated test suite.

3 TESTING THE CORRECTNESS OF RECOMMENDATION ALGORITHMS

In this work, we propose an initial test suite to evaluate the correctness of implicit feedback,
collaborative filtering recommendation algorithms, i.e., their ability to ‘get things right’ [77]. To
define the test cases, we use a combination of ‘error guessing’, drawing from our experience
building RecPack, as well as draw inspiration from prior work on testing machine learning systems,
discussed in Section 2.4. It is important to highlight that our test suite does not come with any
guarantees of completeness. Instead, it is intended as a first step towards comprehensive testing of
recommendation algorithms.
The test suite comprises a combination of black box and white box tests, at every level of

abstraction. For the purpose of this work, we define the unit, integration and system levels as
follows. We use the term ‘system’ to refer to a recommendation algorithm trained on real data,
i.e., a recommendation model. We believe this definition of the term is most similar to how it is
used in software testing, where system level tests are used to validate whether the system as a
whole achieves its design goal. Similarly, the system level tests we propose here validate whether
our recommendation models are able to achieve their design goals. In our ‘integration’ tests, we
aim to test the correctness of the implementation of the recommendation algorithm. Like other
machine learning algorithms, recommendation algorithms often consist of several components
that need to work together. Our integration tests validate whether they do so correctly. Finally, in
our ‘unit’ tests, we validate that specific functions or small components of the algorithm function
as expected. As argued in Section 2.4, the behavior of any machine learning system or model is
usually the result of different smaller components working together, and therefore most of the tests
we propose here are situated at the integration level.

Even within the subdomain of implicit feedback, collaborative filtering recommendation algo-
rithms, there is great diversity in algorithms. They range from complex neural networks to models
that have simple, closed-form solutions, such as EASE𝑟 [66]. Because a thorough discussion of this
entire ‘algorithm design space’ would lead us too far, we focus on a few properties of algorithms

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 11

that are shared between many collaborative filtering recommendation algorithms. A first property
is the task the recommendation algorithm is trained and evaluated on. The two most common
tasks are top-K recommendation and sequence-aware (sequential) recommendation [40, 56]. An
implicit feedback dataset typically consists of logged interactions of users with items at some time
in the past. In top-K recommendation, we make the implicit assumption that every one of these
logged interactions is equally valuable to predict the top-K items the user is most likely to interact
with next. On the other hand, in sequence-aware recommendation it is assumed that the order of
interactions matters, and a user’s most recent interactions are more predictive of what they will do
next [40, 56]. We will distinguish between these two tasks in our black box tests when appropriate.
A second property is the representation of items and/or users the recommendation algorithm

learns. Once again, we focus on the two most common types of representations learned by collab-
orative filtering recommendation algorithms. The first representation is a matrix of similarities
between items. This representation is used by all item neighborhood-based algorithms, but many
others too, e.g., EASE𝑟 [66]. The second representation is an item embedding in some latent space.
This representation is used by all matrix factorization algorithms and many deep learning algo-
rithms, e.g., most graph neural networks. We will distinguish between these two representations in
our white box tests, where we assume access to the implementation internals.

Finally, we note that recommendation models can be learned in different ways. Some algorithms,
such as EASE𝑟 [66] and ItemKNN [16] have a closed-form solution. Others learn a model by means
of alternating least squares (ALS) or stochastic gradient descent, which require several iterations to
obtain a final solution. Typically, these ‘iterative’ methods require initial values from which to start
learning increasingly better solutions. We will propose some tests, both black and white box, that
are only applicable to iterative algorithms.
We will assume that every collaborative filtering recommendation algorithm implements two

methods: one to fit a model and one to obtain predictions from a model. This assumption is generally
true, at least in publicly available implementations [such as 2, 17, 32, 47].

In Table 2 we give an overview of the tests we propose, the questions they answer, and the types
of collaborative filtering recommendation algorithms they are applicable to. The remainder of this
Section is structured as follows. First, we introduce some notation that will be used throughout
this Section in the presentation of test cases. Then, tests are organized by level of abstractions and
whether they rely only on functional requirements (black box) or require access to implementation
details (white box).

Notation

We will use𝑈 = {𝑢1, 𝑢2, . . .} to denote a set of users and 𝐼 = {𝑖1, 𝑖2, . . .} to denote a set of items. We
use 𝑋 to denote any matrix of size |𝑈 | × |𝐼 |.
We use 𝑋 train ∈ {0, 1} |𝑈 |× |𝐼 | to denote the training dataset used to fit a Top-K recommendation

model and 𝑋 test ∈ {0, 1} |𝑈 |× |𝐼 | the test dataset, i.e., the user-item interaction matrix used as input
at prediction time. Finally, we will use 𝑋 out ∈ {0, 1} |𝑈 |× |𝐼 | to denote the matrix of interactions we
are trying to predict. We will use 𝑋𝑢 to refer to the row vector of 𝑋 corresponding to a user 𝑢.
Individual elements of a matrix are denoted using lowercase letters, e.g., the value of 𝑥 train𝑢𝑖 indicates
whether a user 𝑢 has an interaction with item 𝑖 in the training dataset.

For the sequential recommendation task, we will represent the training and test dataset as a set
of sequences S =

⋃
𝑢∈𝑈 𝑆𝑢 where every 𝑆𝑢 = (𝑠0, 𝑠1, . . . , 𝑠𝐿) can be of arbitrary length 𝐿 and every

element 𝑠𝑘 is an item from 𝐼 the user has interacted with. Then, Strain is used to denote the training
dataset and Stest the test dataset. Typically, the goal in sequential recommendation is to predict
𝑆out = (𝑠𝑘 , . . . , 𝑠𝐿) based on 𝑆 test = (𝑠0, . . . , 𝑠𝑘−1).

, Vol. 1, No. 1, Article . Publication date: June 2022.

12 Michiels, et al.

Test ID Description Task Item

Represen-

tation

Learning

Method

BBST1+ Does the model make recommendations

for the right users?

- - -
BBST1- - - -

BBST2 Does the model recommend items a user

previously interacted with?

- - -
BBST2c - - -

BBST3 Is the algorithm prone to sub-optimal local
optima?

- - Iterative

WBST1Sim+
Does the algorithm learn representations

for the right items?

- Similarities -
WBST1Sim- - Similarities -

WBST1Emb+ - Embeddings -
WBST1Emb- - Embeddings -

BBIT1TopK Is the algorithm able to learn simple

patterns in the training data?

Top-K - -
BBIT1Seq Seq. - -

BBIT2TopK-A
Does the algorithm effectively personalize

recommendations?

Top-K - -
BBIT2TopK-B Top-K - -
BBIT2Seq-A Seq. - -
BBIT2Seq-B Seq. - -

BBIT3 Can the algorithm use new interactions at

prediction time?

- - -
BBIT4 - - -

BBIT5
Can results be reproduced?

- - -
BBIT6 - - -

WBIT1Emb Is the algorithm able to learn simple

patterns in the training data?

Top-K Embeddings -
WBIT1Sim Top-K Similarities -

WBIT2Sim Does the algorithm learn self-similarity? Top-K Similarities -

WBUT1Iter+
Are gradients updated at the right time?

- - Iterative
WBUT1Iter- - - Iterative

Table 2. Overview of the test suite. Every test case is assigned a Test ID which identifies a test case by its
attributes. Its type: black (BB) or white box (WB), system (ST), integration (IT) or unit (UT); positive (+) and
negative (-) test cases; complementary test cases (c); their defining property, e.g., sequential recommendation
(Seq); and finally, multiple tests with a different approach that test the same property (-A, -B). For every test
case we provide a description and the task, item representation and learning method they can be used for. A
‘-’ indicates the test can be applied to all collaborative filtering recommendation algorithms regardless of the
task, item representation or learning method.

Finally, we will use𝑀 to denote a fitted recommendation model and 𝑋 pred to denote the predic-
tions obtained from the model,𝑋 pred

= 𝑀 (𝑋) for the top-K recommendation task and𝑋 pred
= 𝑀 (𝑆)

for the sequential recommendation task.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 13

3.1 Black Box System Tests

We propose a set of black box system tests that verify fundamental properties of a recommendation
model. The first two tests, BBST1 and BBST2 are applicable to all collaborative filtering recom-
mendation algorithms, whereas BBST3 is only applicable to iterative algorithms. If the test cases
succeed, the tester can be confident that the performance metrics they compute are not unduly
influenced by the random seed used to compute the model, or users for whom the model cannot
make reasonable recommendations, and that the model exhibits expected behavior with regards to
re-recommendation, i.e., recommendation of items the user interacted with previously.

3.1.1 BBST1: Does the model make recommendations for the right users? In offline evaluation, as
detailed in Section 2.3, we typically compute one or more metrics to evaluate the performance of
our recommendation algorithms. Most of these metrics, for example, NDCG@K and Recall@K, will
compute a score for each ranked top-K list of recommendations presented to a user and then take
the average across all users to be the final score for this recommendation algorithm. Thus, if we fail
to make recommendations for a user for whom we expect to make recommendations our evaluation
metrics will be affected negatively. Alternatively, trying to make recommendations for a user for
whom we do not have any information may lead to recommendations of low quality. Below, we
propose two test cases that when used together verify that the algorithm makes recommendations
for the ‘right’ users only.

BBST1+: Assert all ‘known’ users receive recommendations. Different collaborative filtering algo-
rithms may have different interpretations of what are ‘known’ users. A first group of ‘item-based
algorithms’ learn only a representation of the items and treat users as a bag or sequence of items
at prediction time. These algorithms can make reasonable recommendations for all users 𝑢 with
interactions in 𝑋 test, regardless of whether they had any interactions in 𝑋 train. In contrast, user-
based algorithms, which learn a representation of the user at fitting time, require that a user 𝑢 had
interactions in 𝑋 train. To accommodate for both, we set 𝑋 test

= 𝑋 train. Now, we train a model𝑀 on
the training dataset and generate predictions 𝑋 pred

= 𝑀 (𝑋 test). We then create vector 𝑌 ∈ {0, 1} |𝑈 |

depicting the users for which the model made predictions, where element

𝑦𝑢 =

{
1 if ∃ 𝑖 : 𝑥

pred
𝑢𝑖 > 0

0 otherwise

and partial oracle 𝑍 ∈ {0, 1} |𝑈 | depicting the users for which we expected the model to make
predictions, where element

𝑧𝑢 =

{
1 if ∃ 𝑖 : 𝑥 test𝑢𝑖 > 0

0 otherwise.

We require that

𝑍 · 𝑌 =

∑︁

𝑢∈𝑈

𝑧𝑢

i.e., the model made predictions for all users we expected it to make predictions for.

BBST1-: Assert no ‘unknown’ user receives recommendations. Now, we define the negative test
case that is the counterpart to BBST1+. Here, we verify that ‘unknown’ users do not receive
recommendations. Again, we take 𝑋 test

= 𝑋 train and train a model𝑀 which we then use to generate
predictions 𝑋 pred. Using 𝑍 and 𝑌 as defined in the previous test, we now require that the model
made no predictions for users we did not expect it to make predictions for. Formally,

¬𝑍 · 𝑌 = 0.

, Vol. 1, No. 1, Article . Publication date: June 2022.

14 Michiels, et al.

3.1.2 BBST2: Does the model recommend items a user previously interacted with? In some use cases,
it can be beneficial to have an algorithm make recommendations of items the user has interacted
with before.

For example, in music recommendation, users will listen to the same song or artist over and
over again. In other use cases, it may be beneficial to never recommend an item again after an
interaction has taken place, e.g., users will typically read the same news article just once. It is
therefore important to verify whether the algorithm matches the functional requirement of the use
case regarding re-recommendation. If the algorithm does re-recommend when it is not supposed to,
it is essentially wasting valuable slots in the ranked top-K recommendation list on items it knows a
user will not interact with again. This gives it a significant disadvantage compared to algorithms
that do take this functional requirement into account. We propose two complementary test cases
to verify that either the algorithm does, or does not re-recommend items a user has interacted with
previously.

BBST2: Assert model recommends items a user previously interacted with. Using a property-based
test, we verify that at least 𝑁 users receive a recommendation of an item they previously interacted
with in their ranked top-K list of recommendations, where both 𝑁 and 𝐾 can be configured by the
tester. We assert that

|{𝑢 : top-K(𝑋
pred
𝑢) ∩ 𝐼 train𝑢 ≠ ∅}| ≥ 𝑁,

where the function top-K is defined as

top-K(𝑋
pred
𝑢) := argmax𝐼 ′⊂𝐼 , |𝐼 ′ |=𝐾

∑︁

𝑖∈𝐼 ′

𝑥
pred
𝑢𝑖 (1)

and the set of items 𝐼𝑢 as

𝐼𝑢 := {𝑖 : 𝑥𝑢𝑖 > 0} (2)

for any 𝑋 , e.g., 𝑋 train (𝐼 train𝑢) and 𝑋 test (𝐼 test𝑢).

BBST2c: Assert model never recommends items a user previously interacted with. To accommodate
use cases where it is undesirable that a model recommends items a user previously interacted with,
we present a complementary test case to BBST2. With top-K and 𝐼𝑢 as defined in Equations 1 and 2
respectively, we assert that

|{𝑢 : top-K(𝑋
pred
𝑢) ∩ 𝐼 train𝑢 ≠ ∅}| = 0.

3.1.3 BBST3: Is the algorithm prone to sub-optimal local optima?

BBST3: Assert impact of changing the seed on performance is below threshold. In theory, an iterative
algorithm should be able to obtain the same performance regardless of the random seed used to
set the initial values, given sufficient training epochs and an appropriate learning rate. However,
it is well-known that some neural architectures are more prone to getting stuck in sub-optimal
local optima [67]. It is therefore desirable to verify how reliant a recommendation algorithm is
on finding the ‘right seed’ to lead to good recommendation performance. The performance of
recommendations is measured using a variety of metrics, as discussed in Section 2.2. Here, as an
example, we will use the Recall@K metric, computed as

Recall@K(𝑋 pred) :=
1

|𝑈 |

∑︁

𝑢∈𝑈

∑

𝑖∈top-K(𝑋
pred
𝑢)

𝑥out𝑢𝑖

∑
𝑗∈𝐼
𝑥out𝑢 𝑗

,

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 15

with top-K as defined in 1. In this test, we will train 𝑛 recommendation models, 𝑀1, 𝑀2, . . . , 𝑀𝑛 ,
with 𝑛 configurable, on the same training data, 𝑋 train, using the same hyperparameters but different
random seeds. For each of the learned models, we then evaluate the performance in terms of
Recall@K. We verify that the coefficient of variation of these 𝑛 values of Recall@K, 𝐶𝑉 =

𝜎
𝜇
,

is below a threshold: 𝐶𝑉 < 𝜉 . Parameters 𝐾 , 𝑛 and 𝜉 should be defined by the tester. For 𝜉 , we
recommend values 0.1 < 𝜉 < 0.25.

3.2 White Box System Tests

The white box system tests we propose here verify an expected property of the internal representa-
tion of a trained recommendation model. For both algorithms that learn item similarities and those
that learn item embeddings, we can expect that the model has learned something about every item
in the training dataset. Conversely, we want the model to be aware that it has no knowledge of an
item that was not in the training dataset and therefore make no recommendations based on these
items. However, when an iterative algorithm sets initial values, it typically does so for all items,
not just the items in the training dataset. As a result, items that were not in the training dataset
will have a random representation. Therefore, for both item representations, we propose a positive
and a negative test case that should be used in conjunction to verify that the algorithm indeed only
makes recommendations for the right items.

3.2.1 WBST1Sim: Does the model learn item similarities for the right items? Item similarity models,
such as item-item neighborhood models, learn similarities between the items in the training dataset
at fitting time and then typically represent a user as a bag or sequence of items at prediction time.
Therefore, the trained model should have learned neighbors for all items in the training dataset
and have learned no neighbors for all items that were not a part of the training dataset.

WBST1Sim+: Assert all items in the training dataset have neighbors. In this positive test case we
verify the property that every item in the training dataset has neighbors. Formally, we define the
neighbors of item 𝑖 as the set of items which optimises the following:

neighbors(𝑖) := argmax𝐼 ′⊂𝐼

∑︁

𝑗∈𝐼 ′

sim(𝑖, 𝑗) (3)

where sim(𝑖, 𝑗) is defined as the similarity between item 𝑖 and item 𝑗 . Then we define the set of
items in the training dataset as

𝐼 train =

⋃

𝑢∈𝑈

𝐼 train𝑢 , (4)

with 𝐼 train𝑢 as defined in Equation 2. We then require that

∀𝑖 ∈ 𝐼 train : neighbors(𝑖) ≠ ∅.

WBST1Sim-: Assert no item that was not in the training dataset has neighbors. In this negative
test case we verify the property that all items that were not in the training dataset do not have
neighbors. Formally,

∀𝑖 ∈ 𝐼 \ 𝐼 train : neighbors(𝑖) = ∅

with neighbors(i) as defined in Equation 3.

3.2.2 WBST1Emb: Does the model learn embeddings for the right items? Some collaborative filtering
algorithms, such as matrix factorization algorithms, learn embeddings of items, and sometimes also
users, at fitting time. At prediction time, a user is either represented as a user embedding vector or
a bag or sequence of items. Therefore, we require that the trained model has an embedding for

, Vol. 1, No. 1, Article . Publication date: June 2022.

16 Michiels, et al.

every item in the training dataset and sets the embedding of all items that were not in the training
dataset to zero, such that they can have no influence on predictions.

WBST1Emb+: Assert all items that were in the training dataset have a nonzero embedding. In this
positive test case, we verify that every item in the training dataset has a nonzero embedding and as
such can contribute to recommendations. We will represent the item embeddings as 𝑉 ∈ R |𝐼 |×𝐾 ,
with 𝐾 the dimension of the latent space, and use𝑉𝑖 ∈ R

𝐾 to indicate the item embedding vector of
item 𝑖 . Then, after a model𝑀 has been trained, we assert that

∀𝑖 ∈ 𝐼 train : 𝑉𝑖 ≠ 0

with 𝐼 train as defined in Equation 4.

WBST1Emb-: Assert all items that were not in the training dataset have a zero embedding. In
this negative test case, we verify that no item that was not in the training dataset has a nonzero
embedding. This way, these items can never be recommended. Formally,

∀𝑖 ∈ 𝐼 \ 𝐼 train : 𝑉𝑖 = 0.

3.3 Black Box Integration Tests

When a recommendationmodel fails tomake good predictions, this can havemany causes: the data it
was trained on may not be representative or we may be using the wrong hyperparameters. However,
recommendation algorithms can also fail due to flaws in their design or other implementation errors.
Therefore, we propose a set of black box integration tests intended to verify that a recommendation
algorithm’s design is sound and free of errors. More specifically, we propose a series of minimum
functionality tests to verify the algorithm’s capacity to learn reasonable representations and
actually personalize recommendations. Tests BBIT1, BBIT2 and BBIT3 verify common functional
requirements of recommendation algorithms. Additionally, tests BBIT4 and BBIT5 verify if results
are reproducible, which is an important requirement in the context of offline evaluation. All of the
tests proposed are applicable to all algorithms regardless of representation or task.

3.3.1 BBIT1: Is the algorithm able to learn simple patterns in the training data? To verify whether
the recommendation algorithm is able to learn meaningful patterns, we can perform a minimum
functionality test. In such a test, the recommendation algorithm is given a very simple training
dataset with a pattern that is easy to overfit. We then verify if the algorithm was indeed able to
learn the pattern. The required minimum functionality depends on the recommendation task, and
therefore we define separate tests for every task.

BBIT1TopK: Assert algorithm can overfit the training dataset in a Top-K recommendation task. The
purpose of this test is to verify that an algorithm developed for the top-K recommendation task has
the capacity to learn. To do so, we create a toy dataset 𝑋 toy ∈ {0, 1} |𝑈 |× |𝐼 | with |𝑈 | and |𝐼 | to be
defined by the tester. We recommend relatively small values, e.g., |𝑈 | = |𝐼 | = 100. This dataset is
populated as follows. Let 𝐴, 𝐵 ∼ Bernoulli(𝜌), with 𝜌 a configurable parameter which represents

the density of matrices 𝐴, 𝐵 ∈ {0, 1}
|𝑈 |
2 ×

|𝐼 |
2 . We recommend setting 𝜌 > 0.3. Then, we define

𝑋 toy
=

[
𝐴 0
0 𝐵

]
.

We use 𝑈𝐴 to denote the users belonging to 𝐴 and 𝑈 𝐵 the users belonging to 𝐵. Due to the way
we constructed 𝑋 toy, there is no overlap between both sets of users, i.e.,𝑈𝐴 ∩𝑈 𝐵

= ∅. The same
property applies to the items: If we use 𝐼𝐴 to denote the items belonging to 𝐴 and 𝐼𝐵 the items
belonging to 𝐵, 𝐼𝐴 ∩ 𝐼𝐵 = ∅. Because of this, we can expect a model𝑀 trained on 𝑋 toy to rank all

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 17

items in 𝐼𝐴 higher than items in 𝐼𝐵 for every user in 𝑈𝐴, and vice versa. Therefore, we will assert
that

∀𝑢 ∈ 𝑈𝐴, 𝑖 ∈ 𝐼𝐴, 𝑗 ∈ 𝐼𝐵 : 𝑀 (𝑥
toy
𝑢𝑖) > 𝑀 (𝑥

toy
𝑢 𝑗)

and

∀𝑢 ∈ 𝑈 𝐵, 𝑖 ∈ 𝐼𝐴, 𝑗 ∈ 𝐼𝐵 : 𝑀 (𝑥
toy
𝑢 𝑗) > 𝑀 (𝑥

toy
𝑢𝑖).

BBIT1Seq: Assert that the algorithm can overfit a sequence of interactions in a sequential recom-
mendation task. Similar to the previous test, we wish to verify if the recommendation algorithm
has the capacity to learn, but then in the context of a sequential recommendation task. To do so,
we create another toy dataset Stoy, which is a set of ordered interaction logs. We construct Stoy

such that it is made up of two sets of users, 𝑈𝐴 and 𝑈 𝐵 , where |𝑈𝐴 | = |𝑈 𝐵 | = 𝑚 is a parameter
to be defined by the tester. For each of these sets of users we sample a proto-sequence of items
𝑆𝐴, 𝑆𝐵 ∼ Mult(𝑛, |𝐼 |, 𝑃 |𝐼 |), where the parameter 𝑛 is the length of the proto-sequences and every
item 𝑖 has equal probability of being sampled, i.e. 𝑃 |𝐼 | ∼ Unif(0, |𝐼 | −1). Now, we assign to every user

𝑢 ∈ 𝑈𝐴 a sub-sequence of 𝑆𝐴 and to every user 𝑢 ∈ 𝑈 𝐵 a sub-sequence of 𝑆𝐵 . We use 𝑆𝑘 :𝑙 to denote
the sub-sequence of a sequence 𝑆 between positions 𝑘 and 𝑙 , where 0 ≤ 𝑘 < 𝑙 and 𝑙 < 𝑛. Formally,
∀𝑢 ∈ 𝑈𝐴, ∃ 𝑘, 𝑙 : 𝑆𝐴𝑢 = 𝑆𝐴

𝑘 :𝑙
, and to every user𝑢 ∈ 𝑈 𝐵 a sub-sequence of 𝑆𝐵 , ∀𝑢 ∈ 𝑈 𝐵, ∃ 𝑘, 𝑙 : 𝑆𝐵𝑢 = 𝑆𝐵

𝑘 :𝑙
.

We can then define our toy dataset as

Stoy
= (

⋃

𝑢∈𝑈𝐴

𝑆𝐴𝑢) ∪ (
⋃

𝑢∈𝑈 𝐵

𝑆𝐵𝑢).

We can now train a model𝑀 on Stoy. Next, we evaluate its ability to predict element 𝑗 + 1 for every
sub-sequence 𝑠0:𝑗 of both 𝑆

𝐴 and 𝑆𝐵 . Formally, we assert that

∀𝑆0:𝑗 ∈ 𝑆
𝐴 : top-1(𝑀 (𝑆0:𝑗)) = 𝑠 𝑗+1

and

∀𝑆0:𝑗 ∈ 𝑆
𝐵 : top-1(𝑀 (𝑆0:𝑗)) = 𝑠 𝑗+1.

Depending on whether or not the recommendation algorithm allows re-recommendation of
items that a user has interacted with in the past, 𝑆𝐴 and 𝑆𝐵 can be selected such that they either do
or do not contain repetitions.

3.3.2 BBIT2: Does the algorithm effectively personalize recommendations? Most recommendation
algorithms have the purpose of providing personalized recommendations to each individual user.
In this minimum functionality test, we verify the algorithm’s ability to do so by checking that the
algorithm serves different recommendations to users with different interaction histories. Once
again, we create separate test cases for Top-K recommendation and sequential recommendation, as
each task makes different assumptions.

BBIT2TopK-A: Assert similar users receive different recommendations in a Top-K recommendation
task. In this test, we wish to verify that similar users do not receive exactly the same recommen-
dations. To do so, we create another toy dataset 𝑋 toy. First, we sample a user-item interaction
matrix 𝐴 ∈ {0, 1} |𝑈 |× |𝐼 | ∼ Bernoulli(𝜌), where 𝜌 represents the density of 𝐴. With 𝐼𝑢 as defined
in Equation 2, we use 𝐼𝐴𝑢 to denote the items that user 𝑢 ∈ 𝑈 has interacted with according to 𝐴.

Now, we create another matrix �̃� ∈ {0, 1} |�̃� |× |𝐼 | where �̃� is of the same cardinality as𝑈 , |�̃� | = |𝑈 |.

We require that the items each user �̃� ∈ �̃� has interacted with are a subset of the items user 𝑢 ∈ 𝑈

interacted with. Formally,

∀𝑢 ∈ 𝑈 , ∃ �̃� ∈ �̃� : 𝐼 �̃��̃� ⊂ 𝐼𝐴𝑢 .

, Vol. 1, No. 1, Article . Publication date: June 2022.

18 Michiels, et al.

We express the cardinality of 𝐼 �̃�
�̃�
as a percentage of the cardinality of 𝐼𝐴𝑢 , i.e., |𝐼

�̃�
�̃�
| = 𝜓 |𝐼𝐴𝑢 |. We

recommend setting 0.7 < 𝜓 < 1. We assume the set of items 𝐼𝐴
�̃�
is sampled uniformly at random

from 𝐼𝐴𝑢 . Now we have a new user �̃� that is very similar to user 𝑢 for every user 𝑢 ∈ 𝑈 . We can

formally define �̃� with elements 𝑎�̃�𝑖 as

𝑎�̃�𝑖 =

{
1 if 𝑖 ∈ 𝐼 �̃�

�̃�

0 otherwise.

and

𝑋 toy
=

[
𝐴

�̃�

]
.

Next, we train a model 𝑀 on 𝑋 toy and request recommendations for this same dataset, 𝑋 pred
=

𝑀 (𝑋 toy). We assert that for every pair of users 𝑢 and �̃�, their top-K recommendations are different,
with K to be defined by the tester. Formally,

∀(𝑢, �̃�) : top-K(𝑋
pred
𝑢) ≠ top-K(𝑋

pred

�̃�
),

with top-K as defined in Equation 1.

BBIT2TopK-B: Assert similar users receive different recommendations in a Top-K recommendation
task. In this test, we offer a different approach to verifying that similar users do not receive exactly
the same recommendations. Rather than removing some interactions of a user we replace some

interactions with different items. With 𝐼 �̃�
�̃�
as defined above, we define

𝐼�̃� = 𝐼 �̃��̃� ∪ 𝐼 rand𝑢

where

𝐼 rand𝑢 ∼ Mult(𝑛𝑢, |𝐼 |, 𝑃 |𝐼 |)

with 𝑛𝑢 the number of items sampled for user𝑢 and 𝑃 |𝐼 | assigning uniform probability to every item.

We take 𝑛𝑢 such that ∀(𝑢, �̃�) : 𝑛𝑢 = |𝐼𝑢 | − |𝐼�̃� |. We then define 𝐴{0, 1} |�̃� |× |𝐼 | , where each element
𝑎�̃�𝑖 is

𝑎�̃�𝑖 =

{
1 if 𝑖 ∈ 𝐼�̃�

0 otherwise.

and

𝑋 toy
=

[
𝐴

𝐴

]
.

Following the previous test, we again assert that the model 𝑀 trained on 𝑋 toy gives different
predictions for pairs of users 𝑢 and �̃� Formally,

∀(𝑢, �̃�) : top-K(𝑋
pred
𝑢) ≠ top-K(𝑋

pred

�̃�
).

BBIT2Seq-A: Assert similar users receive different recommendations in a sequential recommendation
task. In this test, we verify that similar users do not receive the same recommendation in a sequential
recommendation task. To do so, we create a toy dataset Stoy. For this, we sample |𝑈 | sequences
𝑆𝑢 ∼ Mult(𝑛𝑢, |𝐼 |, 𝑃 |𝐼 |) where 𝑛𝑢 is the length of the sequence, |𝐼 | the total number of items in the
toy dataset and every item 𝑖 has equal probability of being sampled, i.e. 𝑃 |𝐼 | ∼ Unif(0, |𝐼 | − 1) and
define the set S𝑈 =

⋃
𝑢∈𝑈 𝑆𝑢 . As in test case BBIT2TopK-A, we create a user �̃� that is similar to user

𝑢 by taking a subset of that user’s interaction history. Because in the sequential recommendation
task later interactions of a user carry more weight when making recommendations, we create this

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 19

user �̃� such that they have the same interaction history up to 𝑘 − 1, with 𝑘 = 𝜓𝑛𝑢 and 0.7 < 𝜓 < 1.
Formally,

∀𝑢, ∃ �̃� : 𝑆�̃� = 𝑆𝑢0:𝑘−1 .

We can then define the set of sequencesS�̃� =
⋃
�̃�∈�̃� 𝑆�̃� . Now, we train a model𝑀 onStoy

= S�̃� ∪S𝑈
and request recommendations 𝑋 pred

= 𝑀 (Stoy). Similar to the previous two test cases, we verify
that for every pair of users 𝑢 and �̃�, their top-K recommendations are different. Formally,

∀(𝑢, �̃�) : top-K(𝑋
pred
𝑢) ≠ top-K(𝑋

pred

�̃�
).

BBIT2Seq-B: Assert similar users receive different recommendations in a sequential recommendation
task. In this test case, we offer a second approach to verify that similar users don’t receive exactly
the same recommendations for the sequential recommendation task, in a similar vein to BBIT2TopK-
A and BBIT2TopK-B. As in BBIT2TopK-B, rather than removing some interactions of a user 𝑢 to
create similar user �̃�, we swap these interactions for a randomly selected set of items. Formally,

∀�̃� : 𝑆�̃� = (𝑆�̃�, 𝑆
rand
𝑢)

with 𝑆rand𝑢 ∼ Mult(𝑛𝑢−𝑘, |𝐼 |, 𝑃 |𝐼 |) where 𝑛𝑢 is the length of 𝑆𝑢 . We then create Ŝ�̃� =
⋃
�̃�∈�̃� 𝑆�̃� . Again

we train a model 𝑀 on Stoy
= Ŝ�̃� ∪ S𝑈 and request recommendations 𝑋 pred

= 𝑀 (Stoy). Once
again, we verify that for every pair of users 𝑢 and �̃�, their top-K recommendations are different.
Formally,

∀(𝑢, �̃�) : top-K(𝑋
pred
𝑢) ≠ top-K(𝑋

pred

�̃�
).

3.3.3 BBIT3-4: Can the algorithm use new interactions at prediction time? In some offline evaluation
scenarios, such as the ‘strong generalization’ scenario [47], users are split such that they only occur
in either the training or the test dataset. In other offline evaluation scenarios users do occur in
both datasets, but with different interaction histories [47]. To verify whether the recommendation
algorithm is compatible with the desired offline evaluation scenario, we propose two tests that verify
if the algorithm is able to make predictions for a new user (BBIT3) and can use new interactions of
a user that are part of the test dataset but were not part of the training dataset (BBIT4).

BBIT3: Assert algorithm can predict for a new user. In this test case, we verify if a recommendation
algorithm can make recommendations for all users in 𝑋 test that were not in 𝑋 train. To that end, we
define 𝑋 toy ∈ {0, 1} |𝑈 |× |𝐼 | ∼ Bernoulli(𝜌). We then split 𝑋 toy such that the first 𝐾 rows make up

the training dataset and the final |𝑈 | − 𝐾 rows the test dataset, or formally, 𝑋 train
= 𝑋

toy
0:𝐾−1,: and

𝑋 test
= 𝑋

toy

𝐾 : |𝑈 |−1,:
. We define 𝐾 such that 𝐾 = 𝜙 |𝑈 | with 𝜙 < 1. Now, we fit a model 𝑀 on 𝑋 train

and request predictions 𝑋 pred
= 𝑀 (𝑋 test). Then, the bottom 𝐾 : |𝑈 | − 1 rows of 𝑋 pred contain the

predictions for the users which were new to the algorithm at prediction time. We assert that

∀𝑢 ∈ 𝐾, . . . , |𝑈 | − 1 :
∑︁

𝑖∈𝐼

𝑥
pred
𝑢𝑖 > 0.

BBIT4: Assert algorithm can predict using new user interactions. In this test case, we verify if a
recommendation algorithm can use new interactions by a user that are part of the test dataset
but were not part of the training dataset. With 𝑋 toy as defined in the previous test, we set the test
dataset equal to this toy dataset 𝑋 test

= 𝑋 toy and create the training dataset 𝑋 train in such a way

that ∀𝑢 ∈ 𝑈 : 𝑋 train
𝑢 ⊂ 𝑋

toy
𝑢 . We then train a model and later request recommendations twice, once

to obtain 𝑋 pred
= 𝑀 (𝑋 test) and the second time to obtain 𝑋 pred

= 𝑀 (𝑋 train). We then verify that

∀𝑢 ∈ 𝑈 : top-K(𝑋
pred
𝑢) ≠ top-K(𝑋

pred
𝑢).

, Vol. 1, No. 1, Article . Publication date: June 2022.

20 Michiels, et al.

3.3.4 BBIT5-6: Can results be reproduced? When running offline experiments with recommendation
algorithms, we want to ensure that results are reproducible, i.e., with the exact same setup we
can obtain the same results every time. Obtaining reproducible results is not a straightforward
task. For example, iterative recommendation algorithms rely on randomization in sampling batches
for training or setting initial values. Implementations of recommendation algorithms that aim for
reproducibility usually expose a ‘seed’ parameter that can be used to set the seed of the random
numbers generator that is used to initialize parameter values and when sampling batches. Another
common source of errors is dropout, i.e., the practice of dropping out some values in the input or
hidden layers of a neural architecture to regularize learning and avoid overfitting. While dropout
aids in training, applying dropout at prediction time can lead to unintentional stochasticity of
predictions. Here, we will propose two tests, one to verify that model prediction is reproducible
and the other to verify that model training can be reproduced.

BBIT5: Assert predictions are reproducible. This test is applicable to all deterministic recommenda-
tion algorithms, i.e., algorithms where the same model should lead to the same predictions every
time. We create a dataset 𝑋 toy ∈ {0, 1} |𝑈 |× |𝐼 | ∼ Bernoulli(𝜌), which we will use to both train a
model and obtain predictions, 𝑋 toy

= 𝑋 train
= 𝑋 test. We first train the model 𝑀 on the training

dataset and then compute 𝑋 pred
= 𝑀 (𝑋 test) twice and verify that

∀𝑢 ∈ 𝑈 : top-K(𝑋1
pred) = top-K(𝑋2

pred)

BBIT6: Assert training is reproducible. This test is applicable to all recommendation algorithms
that expose a ‘seed’ parameter. The goal of this test is to find out that training with the same
training data and identical hyperparameters and seed lead to identical models. However, as this is
a black box test, we assume no access to the algorithm’s internals. Therefore, to verify that the
two recommendation models are identical, we verify that the predictions they make are identical.
As such, this test case assumes that the algorithm has passed test case BBIT5, which verifies that
predictions are reproducible. Formally, let𝑀1 and𝑀2 be two models trained on the same training
data 𝑋 train, as defined in the previous test, and using identical hyperparameters and seed parameter.
We then make predictions using both models, i.e., we obtain

𝑋
pred
1 = 𝑀1 (𝑋

train) and 𝑋
pred
2 = 𝑀2 (𝑋

train).

Now, we verify that

∀𝑢 ∈ 𝑈 : top-K(𝑋1
pred) = top-K(𝑋2

pred)

3.4 White Box Integration Tests

To verify that the algorithm’s design is sound and free of errors, we can use white box integration
tests that look at the representations it learned. To this end, we propose two tests. The first,WBIT1,
verifies that the algorithm is able to learn simple patterns in the training data, in a similar vein to
BBIT1. The second, verifies that the algorithm does not learn ‘self-similarity’. If an algorithm learns
that an item is exactly similar to itself, the presence of that item in a user’s interaction history will
cause the item to be recommended again, which is not always desirable.

3.4.1 WBIT1: Is the algorithm able to learn simple patterns in the training data? To verify whether
the recommendation algorithms learn meaningful internal representations, we perform a minimum
functionality test in which we give the algorithm a simple pattern in the training dataset to
overfit. We propose one test case for each internal representation, i.e., item embeddings and item
similarities.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 21

WBIT1Emb: Assert identical items are close in the embedding space. A key assumption in item
embedding-based algorithms is that if two items appear in the interaction history of many of the
same users, they must be located near each other in the embedding space. To verify this, we create
a dataset 𝐴 ∈ {0, 1} |𝑈 |× |𝐼 | ∼ Bernoulli(𝜌) with 𝜌 the density of the matrix. Next, we construct

a second matrix 𝐴 by sampling a subset of 𝑁 items, i.e., columns, from 𝐴, with 𝑁 = 𝜓 |𝐼 | and
𝜓 configurable by the tester. Now, we can define 𝑋 toy as the concatenation of the two matrices:

𝑋 toy
= [𝐴 𝐴]. We train the model𝑀 on 𝑋 toy, which will learn item embeddings 𝑉 ∈ R |𝐼 |×𝐾 . Then

we verify that the distance between the original item and its duplicate is below a threshold 𝜖 ,

∀𝑖, 𝑗 ∈ 𝐼 toy | 𝑋
toy
𝑖 = 𝑋

toy
𝑗 : 𝑑 (𝑉𝑖 ,𝑉𝑗) < 𝜖.

WBIT1Sim: Assert identical items are close neighbors. In item similarity-based algorithms, we find
a similar assumption: If two items appear in the interaction history of many of the same users, they
must belong to each other’s close neighborhoods. Using 𝑋 toy as defined in the previous test, we
assert that

∀𝑖, 𝑗 ∈ 𝐼 toy | 𝑋
toy
𝑖 = 𝑋

toy
𝑗 : 𝑗 ∈ neighbors(𝑖) ∧ 𝑖 ∈ neighbors(𝑗).

3.4.2 WBIT2: Does the algorithm learn self-similarity? In most use cases, it is not desirable that
an algorithm learns that an item is similar to itself. For example, in EASEr [66], Steck chooses to
explicitly require that the diagonal of the similarity matrix consists of all zeros. However, depending
on the implementation, an item similarity-based algorithm could learn that an item is similar to
itself. For example, in the scikit-learn [54] implementation of cosine similarity, the similarity
between a vector 𝑇 and itself, sim(𝑇,𝑇) = 1. Therefore, we propose a test case to verify that in a
trained model, no item is similar to itself.

WBIT2Sim: Assert no item is similar to itself. For the last time, we define 𝑋 toy ∈ {0, 1} |𝑈 |× |𝐼 | ∼

Bernoulli(𝜌) and train a model𝑀 on this dataset. Then, with neighbors as defined in Equation 3,
we verify that

∀𝑖 ∈ 𝐼 : 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑖) ∩ 𝑖 = ∅.

3.5 Black Box Unit Tests

Black box unit tests verify that a function is free of errors based on the signature and functional
requirements alone. Black box unit tests are therefore often mentioned in the same context as
test-driven development, i.e., when first an appropriate test case is written, after which the same
person or a different person implements the actual function. As black box unit tests are very
specific to the recommendation algorithm’s internals, we will not propose any generic black box
unit tests here, but rather give the reader an intuition for how to write such tests themselves. We
will use the ItemKNN [16] algorithm as our example. ItemKNN was originally presented with
two possible similarity functions: conditional probability and cosine similarity. As such, we can
expect that our ItemKNN algorithm implementation will implement a cosine_similarity(X) and
a conditional_probability(X) method to compute similarities between the items, i.e., columns,
of 𝑋 . We will test the correctness of conditional_probability(X). First, we define a minimal 𝑋 ,

𝑋 =

1 0 1
0 1 1
1 0 1

.

, Vol. 1, No. 1, Article . Publication date: June 2022.

22 Michiels, et al.

Then, we manually compute the expected conditional probability similarity between the items,

sim(𝑖, 𝑗) =
| (
∑

𝑢 (𝑥𝑢𝑖∩𝑥𝑢𝑗)) |∑
𝑢 𝑥𝑢𝑖

and add those to a matrix

𝐸𝑃 =

1. 0. 1.
0 1. 1.

0.66 0.33 1.

.

We then compute 𝐶𝑃 = conditional_probability(𝑋) and verify that 𝐶𝑃 = 𝐸𝑃 .

3.6 White Box Unit Tests

White box unit tests then assume that we have access to a function’s implementation to verify
that it is free of errors. Similarly to black box unit test, they are therefore usually defined for each
function and algorithm separately. Here, we present two white box unit tests that are applicable to
recommendation algorithms that use PyTorch [53] to learn a model. The tests verify that gradients
are updated at the right time.

3.6.1 WBUT1Iter: Are gradients updated at the right time? Iterative algorithms that use gradient
descent compute gradients to learn a better model. However, if the algorithm was ill-specified,
parts of the model may stagnate and hamper learning. Therefore, at model fitting time, we want to
make sure that all gradients are updated. When we are evaluating the performance of the model at
fitting time, typically after every few epochs, we want to make sure that gradients are not updated
so that this model evaluation has no influence on the model we learn. Similarly, we do not want
the model to compute gradients at prediction time. Therefore we define two test cases that test that
either gradients are or are not updated.

WBUT1Iter+: Assert gradients are updated. Typically, an iterative recommendation algorithm
learns a model𝑀 by refining their internal representation 𝑅 over the course of 𝑁 training epochs.
In each training epoch, the training dataset is split and fed to the model in batches 𝐵1, 𝐵2, We
will use 𝑅0 to denote the internal representation of the model at the start of model fitting and
𝑅1, 𝑅2, . . . to denote the internal representations learned after batch 1, 2 and so on. In each of these
batches, the model computes the gradients with respect to the batch, ∇𝑅1 (𝐵1). After every batch we
can therefore verify that all gradients have been updated by asserting that ∇𝑅𝑖−1 (𝐵𝑖−1) ≠ ∇𝑅𝑖 (𝐵𝑖).

WBUT1Iter-: Assert gradients are not updated. When we are using a model to generate predictions
or evaluating the performance of our model after some training epochs have passed, we do not want
our model to update its gradients. Here, we use generating predictions as our example. To verify
whether gradients are not updated when generating predictions, we run a few batches to obtain
∇𝑅𝑖 (𝐵𝑖) and store it in a temporary variable 𝐺 := ∇𝑅𝑖 (𝐵𝑖). We then request recommendations
from our model, after which we can verify that ∇𝑅𝑖 (𝐵𝑖) = 𝐺 , i.e., ∇𝑅𝑖 (𝐵𝑖) was not updated during
prediction.

4 RECPACK TESTS

As Kanewala and Bieman [36] pointed out, scientific software, such as recommendation algorithms,
is usually not written by software engineers, but by scientists. Not all of these scientists can be
expected to be familiar with automated software testing best practices. To support them to adopt the
test suite proposed in Section 3, we release RecPack Tests, an open-source Python implementation
of the test suite. It is licensed under AGPL [20]. The source code can be found on GitLab1.
As discussed in Section 2, a test case consists of test inputs, a test procedure and the expected

results, which can be either a fully specified or partial oracle. In RecPack Tests, we have two

1https://gitlab.com/recpack-maintainers/recpacktests

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 23

types of objects: test functions and test fixtures. When the test case verifies the outcome by means
of a partial oracle, the test procedure and expected results together make up a ‘test function’ and
take a ‘test fixture’ as test inputs. When the test case instead verifies a fully specified oracle, the
outcome and expected results are tightly linked, and so the test inputs are embedded in the ‘test
function’. This division of responsibility allows the reuse of test fixtures for multiple test cases.
After describing the test functions and test fixtures in Sections 4.1 and 4.2 respectively, we show
how to use them to create test cases for your recommendation algorithms in Section 4.3.

4.1 Test Functions

As mentioned in Section 3, we assume all algorithms implement a fit and predict method. This
interface was popularized by scikit-learn [54] and is used in RecPack [47]. Most implementations
of recommendation algorithms have similar interfaces, e.g., Surprise [32] and PyLensKit [17],
which can be easily transformed to the scikit-learn interface using a wrapper. Further, we
assume that both methods take a RecPack InteractionMatrix [47] as input. An example of a
wrapper can be found in Appendix A.

In our white box tests, we need to make a few additional assumptions. We assume all item
embeddings are stored in a variable item_embeddings_ as a NumPy ndarray and item similarities
are stored in a variable item_similarities_ as a SciPy Sparse CSR Matrix. Most algorithm
implementations in RecPack already conform to this interface. Making other packages conform
should not require much more than creating a new property with the correct name and possibly a
transformation from one storage format to another, e.g., from Torch Tensor to Numpy ndrray.
Test functions for system and integration level tests use one of three interfaces:

• System tests use the interface assert_ (model, train_data, Optional[]). They take
as inputs a trained model and the data it was trained on, train_data, and optionally some
configuration parameters for the test, e.g., the seed.

• Integration tests that rely on a partial oracle use the interface assert_ (algorithm,

toy_data, Optional[]). They take as inputs an algorithm instance and a toy dataset,
toy_data, as well as optionally some configuration parameters.

• Integration tests that rely on a fully specified oracle use the interface assert_ (algorithm,

Optional[]). Here, the toy dataset is embedded in the test function.

4.2 Test Fixtures

In Section 3, we defined toy datasets for all integration tests. We provide implementations of each of
these toy datasets in RecPack Tests. Each of them comes with default values for the configurable
parameters, which can be overwritten by the tester. For system tests, the dataset, i.e., the test fixture,
needs to be supplied the tester.

BBIT3, BBIT4, BBIT5, BBIT6, WBIT1. This test fixture is used by integration tests that do not
require specific patterns to be present in the dataset. We sample 𝑋 toy ∈ {0, 1} |𝑈 |× |𝐼 | ∼ Bernoulli(𝜌),
with |𝑈 | = 100, |𝐼 | = 20 and 𝜌 = 0.35.

BBIT1TopK. This test fixture constructs 𝑋 toy as described in Section 3.3.1, i.e.,

𝑋 toy
=

[
𝐴 0
0 𝐵

]
.

We sample 𝐴, 𝐵 ∼ Bernoulli(𝜌) with |𝑈 |
2 = 300, |𝐼 |

2 = 4 and 𝜌 = 0.4 such that 𝑋 toy is of size 600× 8.

, Vol. 1, No. 1, Article . Publication date: June 2022.

24 Michiels, et al.

BBIT1Seq. This test fixture creates Stoy as described in 3.3.1. In this test case we assign to every
user a sub-sequence of one of two proto-sequences, 𝑆𝐴 and 𝑆𝐵 . We set the length of the proto-
sequences 𝑛 = 5 and the number of users assigned a sub-sequence of each of the proto-sequences
|𝑈𝐴 | = |𝑈 𝐵 | = 300. The final toy dataset Stoy contains 600 sequences.

BBIT2TopK-A. This test fixture constructs 𝑋 toy as described in Section 3.3.2, i.e.,

𝑋 toy
=

[
𝐴

�̃�

]
.

where𝐴 ∼ Bernoulli(𝜌) with |𝑈 | = 100 and �̃� is constructed by sampling a subset of items for each
copy of a user with𝜓 = 0.9, such that 10% of a user’s interaction history is removed.

BBIT2TopK-B. This test fixture uses the fixture created for BBIT2TopK-A, but then adds 𝐼 rand𝑢 ∼

Mult(𝑛𝑢, |𝐼 |, 𝑃 |𝐼 |) to the interaction history of every copy of a user with 𝑛𝑢 = 0.1|𝐼𝑢 | such that every
user and their copy have the same number of interactions in their interaction history.

BBIT2Seq-A. This test fixture constructs Stoy as described in 3.3.2. First, we sample |𝑈 | sequences
𝑆 ∼ Mult(𝑛, |𝐼 |, 𝑃 |𝐼 |), also with |𝑈 | = 100 and with 1 ≤ 𝑛𝑢 ≤ 20. Once again we set 𝜓 = 0.9 such
that 10% of a user’s interaction history is removed.

BBIT2Seq-B. This test fixture uses the fixture created for BBIT2Seq-A, but then adds 𝑆rand𝑢 ∼

Mult(𝑛𝑢 −𝑘, |𝐼 |, 𝑃 |𝐼 |) to the interaction history of every copy of a user with 𝑘 = 𝜓𝑛𝑢 such that every
user and their copy have the same number of interactions in their interaction history.

4.3 Using RecPack Tests

RecPack Tests provides test functions and fixtures, but leaves defining the relevant test cases for
their algorithms to the tester. In this Section we illustrate how to define test cases with RecPack

Tests and run them using pytest [38]. In our example we test the ItemKNN algorithm, both with
the conditional probability and cosine similarity function, using four system-level black box tests.

4.3.1 Step 1: Defining pytest fixtures. First, we define both algorithms and datasets as a pytest
fixture such that we can reuse them in multiple test cases. We create a fixture for a random
dataset using the RecPack DummyDaset and one for the MovieLens Latest Small dataset. Then, we
create a parameterized fixture that returns an instance of the ItemKNN algorithm. A parameterized
will generate a test case for each of the parameters specified.

import pytest

from recpack.algorithms import ItemKNN

from recpack.datasets import DummyDataset , MovieLensLatestSmall

We use scope=session such that the dataset is created once

for the entire test suite

@pytest.fixture(scope="session")

def dummy_dataset ():

return DummyDataset(seed=12345).load()

@pytest.fixture(scope="session")

def ml_latest_small ():

return MovieLensLatestSmall ().load()

We parametrize the fixture ,

such that we cover both conditional probability

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 25

and cosine similarity to achieve full branch coverage

@pytest.fixture(

scope="session",

params=[

{"K": 20, "similarity": "cosine"},

{"K": 20, "similarity": "conditional_probability"}

]

)

def item_knn(request):

return ItemKNN(** request.param)

Next we create two trained model fixtures.

Each will evaluate to two separate instances

one for each parametrization of ItemKNN

@pytest.fixture(scope="session")

def item_knn_ml_model(item_knn , ml_latest_small):

item_knn.fit(ml_latest_small)

return item_knn , ml_latest_small

@pytest.fixture(scope="session")

def item_knn_dd_model(item_knn , dummy_dataset):

item_knn.fit(dummy_dataset)

return item_knn , dummy_dataset

4.3.2 Step 2: Defining the test cases. Given these fixtures, we can now define the test cases using
the test functions provided by Recpack Tests. We define 4 test cases, corresponding to BBST1+,
BBST1-, BBST2 and BBST3.

from recpacktests.system_level.black_box import (

assert_bbst1plus , assert_bbst1min , assert_bbst2 , assert_bbst3)

def test_bbst1plus_ml(item_knn_ml_model):

assert_bbst1plus(

item_knn_ml_model[0], item_knn_ml_model[1]

)

def test_bbst1min_ml(item_knn_ml_model):

assert_bbst1min(

item_knn_ml_model[0], item_knn_ml_model[1]

)

def test_bbst2_ml(item_knn_ml_model):

assert_bbst2(

item_knn_ml_model[0], item_knn_ml_model[1]

)

def test_bbst3_ml(item_knn_ml_model):

assert_bbst3(

item_knn_ml_model[0], item_knn_ml_model[1]

)

def test_bbst1plus_dd(item_knn_dd_model):

assert_bbst1plus(

item_knn_dd_model[0], item_knn_dd_model[1]

, Vol. 1, No. 1, Article . Publication date: June 2022.

26 Michiels, et al.

)

def test_bbst1min_dd(item_knn_dd_model):

assert_bbst1min(

item_knn_dd_model[0], item_knn_dd_model[1]

)

def test_bbst2_dd(item_knn_dd_model):

assert_bbst2(

item_knn_dd_model[0], item_knn_dd_model[1]

)

def test_bbst3_dd(item_knn_dd_model):

assert_bbst3(

item_knn_dd_model[0], item_knn_dd_model[1]

)

4.3.3 Step 3: Running and analysing the results. Finally, we run the test cases using

pytest test_packages/test_example.py

and obtain the following result

======================= 16 passed, 10 warnings in 2.78s =======================

which indicates all tests passed.
If instead of BBST2 we had run BBST2c, we would have obtained the following output

============================ short test summary info ============================

FAILED test_packages/test_example.py::test_bbst2c_ml[item_knn0] -

AssertionError: Algorithm recommended an item a user previously interacted with.

FAILED test_packages/test_example.py::test_bbst2c_dd[item_knn0] -

AssertionError: Algorithm recommended an item a user previously interacted with.

FAILED test_packages/test_example.py::test_bbst2c_ml[item_knn1] -

AssertionError: Algorithm recommended an item a user previously interacted with.

FAILED test_packages/test_example.py::test_bbst2c_dd[item_knn1] -

AssertionError: Algorithm recommended an item a user previously interacted with.

=================== 4 failed, 12 passed, 10 warnings in 3.34s ===================

indicating which test case failed for which dataset and which algorithm.

5 EVALUATING RECPACK TESTS

In this Section, we evaluate the usefulness of our proposed test suite, and the accompanying open-
source implementation, RecPack Tests. To do so, we use RecPack Tests to test the correctness
of recommendation algorithms implemented in four popular Python packages for recommender
systems, RecPack [47], PyLensKit [17], Surprise [32] and Cornac [63]. We chose these packages
because their interfaces are very similar to the interface of RecPack, i.e., the scikit-learn interface.
As the name suggests, RecPack Tests was created by the authors of RecPack.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 27

The three packages are also among the most starred recommender systems Python packages
on GitHub2,3,4. We test the latest release, at the time of writing, of each of the packages. The test
results for each of the packages are reported in Sections 5.1, 5.2, 5.3 and 5.4 respectively.
For each of the four packages, we evaluate three aspects of the proposed test suite. Firstly,

we require that we have at least one test case for every implicit feedback collaborative filtering
recommendation algorithm in the package. This gives an indication of how broadly applicable
our proposed test suite is. Secondly, we measure the completeness of the proposed test suite by
means of its statement coverage. In Section 2.1, we saw that statement coverage is the weakest
coverage we may require of a program. Nonetheless, in the absence of viable alternatives, it is a
useful requirement. Thirdly, we make note of whether we are able to uncover bugs, undocumented
functional requirements or design flaws. Finally, we report some overarching conclusions in Section
5.5.

To run the system level tests, we require a real dataset. For this, we make use of the ‘MovieLens
Latest Small Dataset’ [28], as provided with PyLensKit under theMIT License. This dataset contains
100, 004 ratings by 671 users on 9, 125 movies between January 09, 1995 and October 16, 2016.

5.1 RecPack

RecPack [47] is a Python package that focuses on Top-N recommendation with implicit feedback
data.We test version 0.3.5 of RecPack. An overview of the recommendation algorithms implemented
in the package and their properties can be found in Table 3. We find that our black box system tests
are applicable to all of RecPack’s algorithms and all personalized recommendation algorithms have
at least one property that can be tested using our test suite. Although GRU4Rec and BPRMF both
learn an item embedding, they are currently stored in a way that is different from all other item
embedding-based algorithms in RecPack. As a result, we do not runWBITEmb on these algorithms.
For algorithms that have clear ‘branches’, i.e. they execute disjoint code paths depending on the
value of a hyperparameter, we run the test suite for every value of the hyperparameter. For iterative
algorithms that rely on stochastic gradient descent to learn a model we run an initial grid search to
determine a reasonable value for the batch size, number of training epochs and learning rate and
use those for all algorithms and all test cases. For hyperparameters that are unique to an algorithm
we manually determine a reasonable value.

In Table 4 we report test results aggregated per algorithm for RecPack. We refer the interested
reader to Appendix B for the full test results. We run a total of 375 test cases, resulting in 43 failures
and 332 successes. We achieve a total statement coverage of 85%.
The test suite allows us to uncover the following bugs5:

• Multiple failures on the BBIT6 test case indicate that training is not reproducible from some of
the RecPack algorithm implementations. Algorithms that use TorchMLAlgorithm (GRU4Rec,
RecVAE, MultVAE and Prod2Vec) as their base class set the global seed for the PyTorch

random numbers generator, which causes issues when multiple algorithms attempt to set
this same global seed.

• Further, attempting to run BBIT6 allows us to uncover that two iterative algorithms do not
expose a seed parameter (SLIM and WMF) and so experiments with these algorithms are not
reproducible.

2https://github.com/NicolasHug/Surprise,
3https://github.com/lenskit/lkpy
4https://github.com/PreferredAI/cornac
5All of these bugs are fixed in RecPack version 0.3.6.

, Vol. 1, No. 1, Article . Publication date: June 2022.

28 Michiels, et al.

Algorithm Task Item Representation Learning Method

BPRMF [57] Top-K Embeddings Iterative
EASER [66] Top-K Similarities -
GRU4Rec [30] Sequential - Iterative
ItemKNN [16] Top-K Similarities -
MultVAE [42] Top-K - Iterative
NMF [14] Top-K Embeddings -
NMFItemToItem [14] Top-K Similarities -
Popularity - - -
Prod2Vec [25] Top-K Similarities Iterative
Random - - -
RecVAE [65] Top-K - Iterative
SLIM [52] Top-K Similarities -
TARSItemKNN [43] - Similarities -
Sequential Rules [44] Sequential Similarities -
SVD [27] Top-K Embeddings -
SVDItemToItem [27] Top-K Similarities -
STAN [22] Sequential - -
WMF [31] Top-K Embeddings -

Table 3. Overview of the properties of algorithms included in RecPack that determine which tests can be run.
A ‘-’ indicates the algorithm implementation has a task, item representation or learning method for which
there is no test in the test suite.

• BPRMF fails BBIT4, but not BBIT3. This allows us to uncover that BPRMF does not set the user
embeddings of users who were not seen in training to zero. Because of this, the algorithm
makes random recommendations for these users.

Not all test failures can be attributed to bugs in the implementation. These are:

• STAN and GRU4Rec fail BBIT1Seq, which verifies whether the algorithm can learn simple
sequential patterns in the data.

• TARSItemKNN fails BBST1+ and WBST1Sim+ which indicates a failure to recommend for all
users we expect the algorithm to. This is due to the fact that the algorithm has not learned
neighbors for all items. We speculate that this can be attributed to the discounting of older
interactions in the model.

• Both SVD and NMF fail test cases BBIT3 and BBIT4, indicating that they cannot use new
interactions at prediction time. Both algorithms compute user embeddings that are not
updated at prediction time. The inability of both algorithms to recommend for new users
or using new interactions is currently not documented and so the documentation should be
updated to reflect this limitation.

• BPRMF is the only algorithm to fail BBST3, which indicates that the seed has a significant
impact on the performance of the algorithm.

• NMF and RecVAE fail BBIT2TopK-A and BBIT2TopK-B whereas Prod2VecClustered fails
BBIT2TopK-A. Similarly, GRU4Rec fails both BBIT2Seq-A and BBIT2Seq-B. This indicates that
these algorithms do not strongly personalize recommendations and similar users may receive
exactly the same recommendations.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 29

Algorithm #Successes #Tests Run Success Rate

BPRMF 9 13 69.23
EASE 14 14 100.00
GRU4RecCrossEntropy 9 13 69.23
GRU4RecNegSampling 9 13 69.23
ItemKNN 56 56 100.00
MultVAE 12 13 92.31
NMF 10 14 71.43
NMFItemToItem 15 15 100.00
Popularity 6 7 85.71
Prod2Vec 45 51 88.24
Prod2VecClustered 13 16 81.25
Random 6 6 100.00
RecVAE 10 13 76.92
SLIM 39 42 92.86
STAN 9 10 90.00
SVD 11 14 78.57
SVDItemToItem 15 15 100.00
SequentialRules 13 14 92.86
TARSItemKNN 23 28 82.14
WMF 9 10 90.00

Table 4. Summary of test results for all RecPack algorithms. For each algorithm we report the number of
successful tests, the total number of tests run and the success rate.

5.2 PyLensKit

PyLensKit [17] is the successor to the Java version of LensKit. It contains both algorithms for
rating prediction and Top-N recommendation with implicit feedback data. We test version 0.14.2 of
PyLensKit. Our experiments focus on the algorithms that work with implicit feedback data. We
run both the black and white box tests included in the test suite, because PyLensKit allows easy
access to internal item representations. As none of the algorithms use PyTorch, we cannot run the
white box unit tests. Additionally, we cannot run BBIT3 and BBIT4, as PyLensKit memorizes the
training dataset and at prediction time represents a user solely by their user ID. In Table 5 we list
all of PyLensKit algorithms that are tested.

Algorithm Task Item Representation Learning Method

ImplicitMF [31] Top-K Embeddings -
ItemKNN [16] Top-K Similarities -
Popular - - -
UserKNN [8] Top-K - -

Table 5. Overview of the properties of algorithms included in PyLensKit that determine which tests can be
run. A ‘-’ indicates the algorithm implementation has a task, item representation or learning method for
which there is no test in the test suite.

, Vol. 1, No. 1, Article . Publication date: June 2022.

30 Michiels, et al.

For PyLensKit a total of 37 test cases are run, of which 3 fail and 34 succeed. The summary of
these results is presented in Table 6, the interested reader can find the full results in Appendix B.
We reach a coverage of the lenskit.algorithms module of 40%. Note that PyLensKit contains
both algorithms that use implicit feedback data and rating data, and the latter are not tested.

Algorithm #Successes #Tests Run Success Rate

ImplicitMF 10 12 83.33
ItemKNN 11 12 91.67
Popular 5 5 100.00
UserKNN 8 8 100.00

Table 6. Summary of test results for all PyLensKit algorithms. For each algorithm we report the number of
successful tests, the total number of tests run and the success rate.

We find the following interesting failures:

• ImplicitMF fails BBIT6, which indicates that setting the seed does not guarantee reproducible
training.

• ItemKNN fails WBST1Sim- and ImplicitMF fails WBST1Emb-, indicating that items that were
not in the training dataset have neighbors and nonzero embeddings. However, because
PyLensKit memorizes users, this can never affect results negatively.

5.3 Surprise

Where the previously discussed packages support or focus on Top-K recommendation with implicit
feedback data, Surprise [32] only supports rating prediction. In order to use the package with
implicit feedback data we had to transform the implicit feedback data to rating data. We decide to
provide binary ratings, i.e., a rating of either 0 or 1. All items a user interacted with are assumed
to be rated 1 by the user. All items a user did not interact with are assumed to be rated 0. We test
version 1.1.3 of Surprise. The algorithms we test and their properties can be found in Table 7. For
both ItemKNN and UserKNN, we generate test cases for all supported similarity functions and as
such cover all code branches. Because the algorithm implementations in Surprise take a very long
time to fit a model and make predictions, we use the DummyDataset included with RecPack for
system level tests, rather than the MovieLens Latest Small Dataset.

Algorithm Task Item Representation Learning Method

CoClustering [23] Top-K - -
ItemKNN [16] Top-K Similarities -
NMF [14] Top-K Embeddings -
SVD [27] Top-K Embeddings -
SVDpp [27] Top-K Embeddings -
UserKNN [8] Top-K - -

Table 7. Overview of the properties of algorithms included in Surprise that determine which tests can be
run. A ‘-’ indicates the algorithm implementation has a task, item representation or learning method for
which there is no test in the test suite.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 31

Algorithm #Successes #Tests Run Success Rate

CoClustering 5 9 55.56
ItemKNN 38 48 79.17
UserKNN 28 32 87.50
NMF 10 12 83.33
SVD 7 12 58.33
SVDpp 7 12 58.33

Table 8. Summary of test results for all Surprise algorithms. For each algorithm we report the number of
successful tests, the total number of tests run and the success rate.

We execute a total of 125 test cases of which 30 fail and 95 succeed. Results are summarized
by algorithm in Table 8. Full test results can be found in Appendix B The tests reach a statement
coverage of 54% of the surprise.prediction_algorithms module. We find that most of the
uncovered statements pertain to code paths that perform transformations of rating data, e.g.,
centering ratings on a scale of 1-5.
Our test run results in the following failures, most of which are due to the transformation of

implicit feedback data into rating data:

• Both SVD and SVDpp fail BBIT1TopK, which verifies if the algorithm can learn a simple pattern
in the data, andWBIT1Emb, which verifies if identical items have similar item embeddings.
Although these failure can be due to our transformation of the implicit feedback data into
rating data, we would expect the algorithm to pass WBIT1Emb.

• Similarly, CoClustering and NMF fail BBIT2TopK-A and BBIT2TopK-B. In the case of CoClus-
tering, this can be due to the amount of clusters: If similar users are in the same cluster, they
get the same recommendations.

• ItemKNN failsWBIT2Sim because it does not remove self-similarity and as a result, each item
is its own closest neighbor.

• ItemKNN also fails WBST1Sim-, and both SVD and SVDpp fail WBST1Emb- due to our
transformation of the implicit feedback data into rating data, which created explicit 0 ratings.

• For cosine similarity, the similarity computation will throw a DivisionByZero error when
one of the users has only 0 ratings in the dataset. This causes WBST1Sim+ and BBST1- to fail.

• SVD, SVDpp and CoClustering fail BBST3 indicating that results are heavily dependent on the
random seed. However, as we used the DummyDataset, which contains random interactions
instead of a real dataset, additional variation is to be expected as there are no patterns in the
data which the algorithm can learn.

5.4 Cornac

Cornac [63] is a comparative framework for multi-modal recommendation algorithms. Itt con-
tains a number of collaborative filtering recommendation algorithms that can learn a model using
implicit feedback data only. We test version 1.14.2 of Cornac. The list of algorithms we test is
presented in Table 9. We cannot not run the proposed white box unit tests because Cornac does
not use PyTorch. White box system and integration tests are also not run because internal item
representations are stored differently between the different algorithms, which makes it difficult
to automate testing. As we did for the other packages, if an algorithm executes a different code
path based on the value of a hyperparameter, we make sure to cover each code path and report
results across hyperparameter values. For example, VAECF has a hyperparameter to determine the

, Vol. 1, No. 1, Article . Publication date: June 2022.

32 Michiels, et al.

Algorithm Task Item Representation Learning Method

BPR [57] Top-K Embeddings Iterative
BiVAECF [69] Top-K - Iterative
GMF [29] Top-K Embeddings Iterative
IBPR [41] Top-K Embeddings Iterative
ItemKNN [16] Top-K Similarities -
MF [37] Top-K Embeddings Iterative
MLP [29] Top-K Embeddings Iterative
MMMF [75] Top-K Embeddings Iterative
MostPop - - -
NMF [14] Top-K Embeddings Iterative
NeuMF [29] Top-K Embeddings Iterative
PMF [48] Top-K Embeddings Iterative
SKMeans [62] Top-K - -
UserKNN [8] Top-K - -
VAECF [42] Top-K - Iterative
WBPR [21] Top-K Embeddings Iterative
WMF [31] Top-K Embeddings Iterative

Table 9. Overview of the properties of algorithms included in Cornac that determine which tests can be run.
A ‘-’ indicates the algorithm implementation has a task, item representation or learning method for which
there is no test in the test suite.

activation function (sigmoid, tanh, elu, relu and relu6) and one to decide the likelihood (Poisson,
Bernoulli, Gaussian). Therefore we run eight tests in total to obtain the highest possible statement
coverage.

We run a total of 498 tests of which 396 succeed and 102 fail. The aggregated results for these tests
are presented in Table 10. The exact statement coverage for Cornac is difficult to measure as many
algorithms are implemented using Cython and wrappers around C++ code. The statement coverage
of the Python code in the models module is 30%. Note that we are unable to test algorithms that
require side-info and the various available options for handling side-info.
We identify the following failures:
• BPR fails BBIT2TopK-A and BBIT2TopK-B, which indicates that results are not strongly
personalized and similar users receive exactly the same recommendations. BiVAECF also
fails BBIT2TopK-A and BBIT2TopK-B, but only for some activation functions and the Gaussian
likelihood. Other hyperparameter values do succeed these tests. Similarly, VAECF fails for
the Poisson, Bernoulli and Gaussian likelihood and sigmoid and relu6 activation functions.

• MLP, NeuMF and GMF fail BBIT6, indicating that training is not reproducible.
• BiVAECF, VAECF, MLP, NeuMF, PMF, IBPR, WMF, NMF, MMMF, MF, WBPR and GMF all fail
BBIT1TopK, i.e., they are unable to learn the simple pattern in the data. This could be due to
poor choices of hyperparameters, although the same hyperparameters did work when used
for implementations of the same algorithm in RecPack.

• For MLP, NeuMF and GMF, the Adagrad and SGD optimizers fail BBST3, whereas the Adam
optimizer does not. This suggests that the Adam optimizers is less prone to getting stuck in
sub-optimal local minima for these algorithms.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 33

Algorithm #Successes #Tests Run Success Rate

BPR 6 9 66.67
BiVAECF 59 72 81.94
GMF 26 36 72.22
IBPR 6 8 75.00
ItemKNN 8 8 100.00
MF 28 36 77.78
MLP 61 81 75.31
MMMF 8 9 88.89
MostPop 5 6 83.33
NMF 14 18 77.78
NeuMF 68 90 75.56
PMF 16 18 88.89
SKMeans 9 9 100.00
UserKNN 8 8 100.00
VAECF 58 72 80.56
WBPR 8 9 88.89
WMF 8 9 88.89

Table 10. Summary of test results for all Cornac algorithms. For each algorithm we report the number of
successful tests, the total number of tests run and the success rate.

5.5 Discussion

5.5.1 Shared Algorithms. Some algorithms are implemented in more than one package, e.g.,
ItemKNN is implemented in all four packages and BPRMF in both RecPack and Cornac. Interest-
ingly, two implementations of the same algorithms sometimes expose different hyperparameters.
When a hyperparameter is shared between different implementations of an algorithm, we made
sure to set them to the same values to allow comparison. We find that different implementations do
not always succeed at the same tests.
For example, MultVAE/VAECF is implemented in both RecPack and Cornac. Whereas the

RecPack implementation succeeded 12 out of 13 tests, the Cornac implementation succeeded
only 58 out of 72 tests. The much larger number of tests run on Cornac is due to the large amount
of hyperparameter values that can be chosen for the activation function between hidden layers and
likelihood, whereas RecPack sets the activation function to ‘tanh’ and the likelihood to Multinomial,
as in the original paper [42]. Evidently, different choices of activation and likelihood function result
in sub-par performance of the algorithm. On the other hand, BPRMF, NMF and WMF are also
implemented in both RecPack and Cornac and succeed a similar percentage of tests.

These findings highlight that automated testing of the correctness of recommendation algorithms
can contribute interesting insights on the performance of recommendation algorithms.

5.5.2 Test Case Success Rates. In Table 11, we present an overview of how often a test case was
run and how successful they were. In general, we notice that our black box tests could be applied
to many more algorithms than our white box tests. This is of course to be expected, as white
box tests rely on the algorithm’s internal item representations and as such could not be run for
all packages. Because only RecPack contains some sequential recommendation algorithms, the
test cases developed specifically for this recommendation task, BBIT2Seq-A, BBIT2Seq-B, BBIT1Seq
were used only a few times. However, it is interesting to note that half of the times these test

, Vol. 1, No. 1, Article . Publication date: June 2022.

34 Michiels, et al.

Test ID #Successes #Runs Success Rate

BBST1+ 98 100 98.000000
BBST1- 93 100 93.000000

BBST2 96 96 100.000000
BBST2c 4 4 100.000000

BBST3 49 70 70.000000

WBST1Emb+ 3 6 50.000000
WBST1Emb- 6 6 100.000000
WBST1Sim+ 19 22 86.363636
WBST1Sim- 17 22 77.272727

BBIT1TopK 44 90 48.888889
BBIT1Seq 1 4 25.000000

BBIT2TopK-A 77 92 83.695652
BBIT2TopK-B 79 92 85.869565
BBIT2Seq-A 2 4 50.000000
BBIT2Seq-B 2 4 50.000000

BBIT3 26 28 92.857143
BBIT4 24 28 85.714286

BBIT5 99 99 100.000000
BBIT6 60 99 60.606061

WBIT1Emb 4 6 66.666667
WBIT1Sim 17 22 77.272727

WBIT2Sim 18 22 81.818182

WBUT1Iter+ 9 9 100.000000
WBUT1Iter- 9 9 100.000000

Table 11. Summary of test results aggregated by test case. For each test case we report the number of
successful tests, the total number of times it was run and the success rate.

cases were run, they failed, indicating potential design flaws in the sequential recommendation
algorithms tested. We also notice a lot of failures of BBIT1TopK. Most of these can be attributed to
Cornac, where many matrix factorization algorithms failed this test for multiple hyperparameter
values. The cause of these failures is not immediately obvious. Interestingly, simple algorithms
such as ItemKNN and EASE𝑟 do consistently succeed at this test case. Many algorithms are also
sensitive to the random seed used, as evidenced by the success rate of BBST3. Finally, we note that
many algorithms fail BBIT6. Clearly, implementing an algorithm in such a way that results can
be reproduced exactly is a difficult task. Overall, we have demonstrated that our test suite can
be applied broadly and is able to uncover both bugs, as well as interesting behaviors that could
possibly be attributed to design flaws.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 35

6 CONCLUSION AND FUTURE WORK

In this work we propose an automated test suite to evaluate the correctness of implicit feedback,
collaborative filtering recommendation algorithms. Using the test suite, researchers can identify
potential issues with the algorithms that can affect their performance. Test cases were designed
drawing from our experience building RecPack and using techniques encountered in the prior
work on testing machine learning systems. We stress that automated testing can provide a comple-
mentary perspective to traditional methods for evaluation. To facilitate the adoption of testing in
the recommender systems community, we release RecPack Tests, an open-source implementation
of the test suite proposed. We show the efficacy of RecPack Tests by testing the correctness of
algorithm implementations in four popular Python packages for recommender systems, RecPack,
PyLensKit, Surprise and Cornac. In doing so, we demonstrate the importance of testing rec-
ommendation algorithms: Our test suite was able to identify and uncover interesting (undesired)
behaviors and even bugs in these popular open-source packages. We also show that Recpack Tests

can be broadly used, as we are able to test at least one property of each of the algorithms tested,
across all four open-source packages.
This work is only a first step towards comprehensive testing of recommendation algorithms.

We identify several interesting directions for future research based in our discussion of testing
machine learning systems in Section 2.4. A first has to do with extending the test suite in several
directions. Firstly, the test suite can be extended with more (complex) test cases for the same
task, item representation and learning method to obtain a greater measure of ‘test completeness’.
Next, differential testing could provide additional insight into how implementations of the same
algorithm differ and could lead to the discovery of incorrect behavior that cannot be captured
with the property-based and metamorphic tests proposed. Then, the test suite can be further
extended to cover more (specific) use cases. For example, the requirements for recommendations
in e-commerce may be different from those in the music domain and specific test cases can be
developed for each. The test suite can also be extended to other recommendation tasks than top-K
and sequential recommendation and to other internal representations than item embeddings and
item similarities. Many more representations exists that are not covered here, e.g., user embeddings
and the bottleneck layers typically encountered in auto-encoder architectures.

Another direction could be to invest in the development of formal completeness guarantees for
test suites. The test cases proposed here were developed using error guessing and by identifying
promising techniques in earlier works on testing machine learning systems. Our test suite therefore
comes with no guarantees of completeness.

We can also look at applying testing to other properties of recommendation algorithms beyond
correctness. Test suites could be defined to automatically examine the robustness of algorithms
under attack, their explainability, fairness, or any of the properties identified by Zhang et al. [77].

Finally, we can define similar test suites for other types of recommendation algorithms than purely
collaborative filtering algorithms, such as content-based, knowledge based, or hybrid techniques.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their insightful feedback and their valuable sugges-
tions for future work.

REFERENCES

[1] Technical Committee ISO/IEC JTC 1. 2017. ISO/IEC/IEEE International Standard - Systems and Software Engineer-

ingśVocabulary. , 541 pages. https://doi.org/10.1109/IEEESTD.2017.8016712

, Vol. 1, No. 1, Article . Publication date: June 2022.

36 Michiels, et al.

[2] Vito Walter Anelli, Alejandro Bellogin, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo,

Francesco Maria Donini, and Tommaso Di Noia. 2021. Elliot: A Comprehensive and Rigorous Framework for Repro-

ducible Recommender Systems Evaluation. In Proceedings of the 44th International ACM SIGIR Conference on Research and

Development in Information Retrieval. ACM, Virtual Event Canada, 2405ś2414. https://doi.org/10.1145/3404835.3463245

[3] Vito Walter Anelli, Alejandro Bellogín, Tommaso Di Noia, Dietmar Jannach, and Claudio Pomo. 2022. Top-N Recom-

mendation Algorithms: A Quest for the State-of-the-Art. In Proceedings of the 30th ACM Conference on User Modeling,

Adaptation and Personalization. ACM, Barcelona Spain, 121ś131. https://doi.org/10.1145/3503252.3531292

[4] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The Oracle Problem in Software

Testing: A Survey. IEEE Transactions on Software Engineering 41, 5 (May 2015), 507ś525. https://doi.org/10.1109/TSE.

2014.2372785

[5] Joeran Beel, Marcel Genzmehr, Stefan Langer, Andreas Nürnberger, and Bela Gipp. 2013. A Comparative Analysis of

Offline and Online Evaluations and Discussion of Research Paper Recommender System Evaluation. In Proceedings of

the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation - RepSys ’13. ACM

Press, Hong Kong, China, 7ś14. https://doi.org/10.1145/2532508.2532511

[6] Joeran Beel, Stefan Langer, Marcel Genzmehr, Bela Gipp, Corinna Breitinger, and Andreas Nürnberger. 2013. Research

Paper Recommender System Evaluation: a Quantitative Literature Survey. In Proceedings of the International Workshop

on Reproducibility and Replication in Recommender Systems Evaluation - RepSys ’13. ACM Press, Hong Kong, China,

15ś22. https://doi.org/10.1145/2532508.2532512

[7] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. 2017. The ML test score: A rubric for ML

production readiness and technical debt reduction. In 2017 IEEE International Conference on Big Data (Big Data). IEEE,

Boston, MA, 1123ś1132. https://doi.org/10.1109/BigData.2017.8258038

[8] John S. Breese, David Heckerman, and Carl Kadie. 1998. Empirical Analysis of Predictive Algorithms for Collaborative

Filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (Madison, Wisconsin)

(UAI’98). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 43ś52.

[9] Pablo Castells and Alistair Moffat. 2022. Offline recommender system evaluation: Challenges and new directions. AI

Magazine 43, 2 (June 2022), 225ś238. https://doi.org/10.1002/aaai.12051

[10] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. 2018. Adver-

sarial Attacks and Defences: A Survey. https://doi.org/10.48550/arXiv.1810.00069

[11] T Y Chen. 1998. Metamorphic Testing: New Approach for Generating Next Test Cases. Technical Report. Department of

Computer Science, The Hong Kong University of Science and Technology.

[12] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2019.

Metamorphic Testing: A Review of Challenges and Opportunities. Comput. Surveys 51, 1 (Jan. 2019), 1ś27. https:

//doi.org/10.1145/3143561

[13] Patrick John Chia, Jacopo Tagliabue, Federico Bianchi, Chloe He, and Brian Ko. 2022. Beyond NDCG: Behavioral

Testing of Recommender Systems with RecList. In Companion Proceedings of the Web Conference 2022. ACM, Virtual

Event, Lyon France, 99ś104. https://doi.org/10.1145/3487553.3524215

[14] Andrzej Cihocki and Anh-Huy Phan. 2009. Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor

Factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E92.A, 3

(2009), 708ś721. https://doi.org/10.1587/transfun.E92.A.708

[15] European Commission. 2019. Ethics Guidelines for Trustworthy AI. https://digital-

strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.

[16] Mukund Deshpande and George Karypis. 2004. Item-Based Top-N Recommendation Algorithms. ACM Trans. Inf. Syst.

22, 1 (jan 2004), 143ś177. https://doi.org/10.1145/963770.963776

[17] Michael D. Ekstrand. 2020. LensKit for Python: Next-Generation Software for Recommender Systems Experiments. In

Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM, Virtual Event

Ireland, 2999ś3006. https://doi.org/10.1145/3340531.3412778

[18] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. 2021. A Troubling Analysis of

Reproducibility and Progress in Recommender Systems Research. ACM Transactions on Information Systems 39, 2

(April 2021), 1ś49. https://doi.org/10.1145/3434185

[19] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress?

A worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on

Recommender Systems. ACM, Copenhagen Denmark, 101ś109. https://doi.org/10.1145/3298689.3347058

[20] Free Software Foundation. 2016. GNU Affero General Public License Version 3 (AGPL-3.0). Accessed 26 July 2022.

[21] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2011. Personalized Ranking

for Non-Uniformly Sampled Items. In Proceedings of the 2011 International Conference on KDD Cup 2011 - Volume 18

(KDDCUP’11). JMLR.org, 231ś247.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 37

[22] Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff. 2019. Sequence and Time Aware

Neighborhood for Session-Based Recommendations: STAN. In Proceedings of the 42nd International ACM SIGIR

Conference on Research and Development in Information Retrieval (Paris, France) (SIGIR’19). Association for Computing

Machinery, New York, NY, USA, 1069ś1072. https://doi.org/10.1145/3331184.3331322

[23] Thomas George and Srujana Merugu. 2005. A Scalable Collaborative Filtering Framework Based on Co-Clustering.

In Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM ’05). IEEE Computer Society, USA,

625ś628. https://doi.org/10.1109/ICDM.2005.14

[24] Don Gotterbarn, Keith Miller, and Simon Rogerson. 1997. Software Engineering Code of Ethics. Commun. ACM 40, 11

(nov 1997), 110ś118. https://doi.org/10.1145/265684.265699

[25] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit Savla, Varun Bhagwan, and Doug

Sharp. 2015. E-Commerce in Your Inbox: Product Recommendations at Scale. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia) (KDD ’15). Association for

Computing Machinery, New York, NY, USA, 1809ś1818. https://doi.org/10.1145/2783258.2788627

[26] Ihsan Gunes, Cihan Kaleli, Alper Bilge, and Huseyin Polat. 2014. Shilling attacks against recommender systems: a

comprehensive survey. Artificial Intelligence Review 42, 4 (Dec. 2014), 767ś799. https://doi.org/10.1007/s10462-012-

9364-9

[27] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. 2011. Finding Structure with Randomness: Probabilistic

Algorithms for Constructing Approximate Matrix Decompositions. SIAM Rev. 53, 2 (2011), 217ś288. https://doi.org/10.

1137/090771806 arXiv:https://doi.org/10.1137/090771806

[28] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Trans. Interact.

Intell. Syst. 5, 4, Article 19 (dec 2015), 19 pages. https://doi.org/10.1145/2827872

[29] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative

Filtering. In Proceedings of the 26th International Conference on World Wide Web (Perth, Australia) (WWW ’17).

International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 173ś182.

https://doi.org/10.1145/3038912.3052569

[30] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent Neural Networks with Top-k Gains for Session-Based

Recommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management

(Torino, Italy) (CIKM ’18). Association for Computing Machinery, New York, NY, USA, 843ś852. https://doi.org/10.

1145/3269206.3271761

[31] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets. In 2008

Eighth IEEE International Conference on Data Mining. IEEE Computer Society, Los Alamitos, CA, USA, 263ś272.

https://doi.org/10.1109/ICDM.2008.22

[32] Nicolas Hug. 2020. Surprise: A Python library for recommender systems. Journal of Open Source Software 5, 52 (Aug.

2020), 2174. https://doi.org/10.21105/joss.02174

[33] Dietmar Jannach and Gediminas Adomavicius. 2016. Recommendations with a Purpose. In Proceedings of the 10th ACM

Conference on Recommender Systems (Boston, Massachusetts, USA) (RecSys ’16). Association for Computing Machinery,

New York, NY, USA, 7ś10. https://doi.org/10.1145/2959100.2959186

[34] Dietmar Jannach and Christine Bauer. 2020. Escaping the mcnamara fallacy: towards more impactful recommender

systems research. AI Magazine 41, 4 (2020), 79ś95.

[35] O. Jeunen, K. Verstrepen, and B. Goethals. 2018. Fair Offline Evaluation Methodologies for Implicit-feedback Recom-

mender Systems with MNAR Data. adrem.uantwerpen.be/bibrem/pubs/OfflineEvalJeunen2018.pdf. , 9 pages.

[36] Upulee Kanewala and James M. Bieman. 2018. Testing Scientific Software: A Systematic Literature Review. http:

//arxiv.org/abs/1804.01954

[37] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Techniques for Recommender Systems.

Computer 42, 8 (2009), 30ś37. https://doi.org/10.1109/MC.2009.263

[38] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and Florian Bruhin. 2004.

pytest x.y. https://github.com/pytest-dev/pytest

[39] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage guided, property based testing.

Proceedings of the ACM on Programming Languages 3, OOPSLA (Oct. 2019), 1ś29. https://doi.org/10.1145/3360607

[40] Sara Latifi, Dietmar Jannach, and Andrés Ferraro. 2022. Sequential recommendation: A study on transformers, nearest

neighbors and sampled metrics. Information Sciences 609 (Sept. 2022), 660ś678. https://doi.org/10.1016/j.ins.2022.07.079

[41] Dung D. Le and Hady W. Lauw. 2017. Indexable Bayesian Personalized Ranking for Efficient Top-k Recommendation.

In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (Singapore, Singapore) (CIKM

’17). Association for Computing Machinery, New York, NY, USA, 1389ś1398. https://doi.org/10.1145/3132847.3132913

[42] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational Autoencoders for

Collaborative Filtering. In Proceedings of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18). In-

ternational World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 689ś698.

, Vol. 1, No. 1, Article . Publication date: June 2022.

38 Michiels, et al.

https://doi.org/10.1145/3178876.3186150

[43] Nathan N. Liu, Min Zhao, Evan Xiang, and Qiang Yang. 2010. Online Evolutionary Collaborative Filtering. In Proceedings

of the Fourth ACM Conference on Recommender Systems (Barcelona, Spain) (RecSys ’10). Association for Computing

Machinery, New York, NY, USA, 95ś102. https://doi.org/10.1145/1864708.1864729

[44] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-Based Recommendation Algorithms. User Modeling

and User-Adapted Interaction 28, 4ś5 (dec 2018), 331ś390. https://doi.org/10.1007/s11257-018-9209-6

[45] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2019. Towards Deep

Learning Models Resistant to Adversarial Attacks. https://doi.org/10.48550/arXiv.1706.06083

[46] William M McKeeman. 1998. Differential Testing for Software. 10, 1 (1998), 8.

[47] Lien Michiels, Robin Verachtert, and Bart Goethals. 2022. RecPack: An(other) Experimentation Toolkit for Top-N

Recommendation using Implicit Feedback Data. In Sixteenth ACM Conference on Recommender Systems. ACM, Seattle

WA USA, 648ś651. https://doi.org/10.1145/3523227.3551472

[48] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic Matrix Factorization. In Advances in Neural Information

Processing Systems, J. Platt, D. Koller, Y. Singer, and S. Roweis (Eds.), Vol. 20. Curran Associates, Inc. https://proceedings.

neurips.cc/paper/2007/file/d7322ed717dedf1eb4e6e52a37ea7bcd-Paper.pdf

[49] Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. 2007. Toward trustworthy recommender

systems: An analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology 7, 4 (Oct.

2007), 23śes. https://doi.org/10.1145/1278366.1278372

[50] Glenford J. Myers, Tom Badgett, and Corey Sandler. 2012. The Psychology and Economics of Software Testing. In

The Art of Software Testing (1 ed.), Glenford J. Myers, Tom Badgett, and Corey Sandler (Eds.). Wiley, 5ś18. https:

//doi.org/10.1002/9781119202486.ch2

[51] Glenford J. Myers, Tom Badgett, and Corey Sandler. 2012. Test-Case Design. In The Art of Software Testing (1 ed.),

Glenford J. Myers, Tom Badgett, and Corey Sandler (Eds.). Wiley, 41ś84. https://doi.org/10.1002/9781119202486.ch4

[52] Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N Recommender Systems. In 2011 IEEE 11th

International Conference on Data Mining. 497ś506. https://doi.org/10.1109/ICDM.2011.134

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems

32. Curran Associates, Inc., 8024ś8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.

Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825ś2830.

[55] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2019. DeepXplore: Automated Whitebox Testing of Deep

Learning Systems. Commun. ACM 62, 11 (oct 2019), 137ś145. https://doi.org/10.1145/3361566

[56] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-Aware Recommender Systems. ACM

Comput. Surv. 51, 4, Article 66 (jul 2018), 36 pages. https://doi.org/10.1145/3190616

[57] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian Personalized

Ranking from Implicit Feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence

(Montreal, Quebec, Canada) (UAI ’09). AUAI Press, Arlington, Virginia, USA, 452ś461.

[58] Steffen Rendle, Walid Krichene, Li Zhang, and Yehuda Koren. 2022. Revisiting the Performance of iALS on Item

Recommendation Benchmarks. In Sixteenth ACM Conference on Recommender Systems. ACM, Seattle WA USA, 427ś435.

https://doi.org/10.1145/3523227.3548486

[59] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond Accuracy: Behavioral Testing

of NLPModels with CheckList. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.

Association for Computational Linguistics, Online, 4902ś4912. https://doi.org/10.18653/v1/2020.acl-main.442

[60] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael Weiss, and Paolo Tonella. 2020.

Testing machine learning based systems: a systematic mapping. Empirical Software Engineering 25, 6 (Nov. 2020),

5193ś5254. https://doi.org/10.1007/s10664-020-09881-0

[61] Mohammad Saberian and Justin Basilico. 2021. RecSysOps: Best Practices for Operating a Large-Scale Recommender

System. In Fifteenth ACM Conference on Recommender Systems. ACM, Amsterdam Netherlands, 590ś591. https:

//doi.org/10.1145/3460231.3474620

[62] Aghiles Salah, Nicoleta Rogovschi, and Mohamed Nadif. 2015. A Dynamic Collaborative Filtering System via a

Weighted Clustering approach. Neurocomputing 175 (10 2015). https://doi.org/10.1016/j.neucom.2015.10.050

[63] Aghiles Salah, Quoc-Tuan Truong, and Hady W Lauw. 2020. Cornac: A Comparative Framework for Multimodal

Recommender Systems. Journal of Machine Learning Research 21, 95 (2020), 1ś5.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 39

[64] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. 2016. A Survey on Metamorphic Testing.

IEEE Transactions on Software Engineering 42, 9 (Sept. 2016), 805ś824. https://doi.org/10.1109/TSE.2016.2532875

[65] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I. Nikolenko. 2020. RecVAE: A New

Variational Autoencoder for Top-N Recommendations with Implicit Feedback. In Proceedings of the 13th International

Conference on Web Search and Data Mining (Houston, TX, USA) (WSDM ’20). Association for Computing Machinery,

New York, NY, USA, 528ś536. https://doi.org/10.1145/3336191.3371831

[66] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In The World Wide Web Conference

(San Francisco, CA, USA) (WWW ’19). Association for Computing Machinery, New York, NY, USA, 3251ś3257.

https://doi.org/10.1145/3308558.3313710

[67] Ruoyu Sun, Dawei Li, Shiyu Liang, Tian Ding, and Rayadurgam Srikant. 2020. The Global Landscape of Neural Networks:

An Overview. IEEE Signal Processing Magazine 37, 5 (2020), 95ś108. https://doi.org/10.1109/MSP.2020.3004124

[68] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and Rob Ashmore. 2019. Testing Deep

Neural Networks. https://doi.org/10.48550/arXiv.1803.04792

[69] Quoc-Tuan Truong, Aghiles Salah, and Hady W. Lauw. 2021. Bilateral Variational Autoencoder for Collaborative

Filtering. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (Virtual Event, Israel)

(WSDM ’21). Association for Computing Machinery, New York, NY, USA, 292ś300. https://doi.org/10.1145/3437963.

3441759

[70] Sakshi Udeshi and Sudipta Chattopadhyay. 2019. Grammar Based Directed Testing of Machine Learning Systems.

http://arxiv.org/abs/1902.10027

[71] UNESCO. 2021. Recommendation on the Ethics of Artificial Intelligence.

https://unesdoc.unesco.org/ark:/48223/pf0000380455.

[72] Robin Verachtert, Lien Michiels, and Bart Goethals. 2022. Are We Forgetting Something? Correctly Evaluate a

Recommender System With an Optimal Training Window. In Proceedings of the Perspectives on the Evaluation of

Recommender Systems Workshop 2022. CEUR-WS.org, Seattle WA USA.

[73] Sanne Vrijenhoek, Gabriel Bénédict, Mateo Gutierrez Granada, Daan Odijk, and Maarten De Rijke. 2022. RADio ś

Rank-Aware Divergence Metrics to Measure Normative Diversity in News Recommendations. In Proceedings of the

16th ACM Conference on Recommender Systems (Seattle, WA, USA) (RecSys ’22). Association for Computing Machinery,

New York, NY, USA, 208ś219. https://doi.org/10.1145/3523227.3546780

[74] Shoujin Wang, Xiuzhen Zhang, Yan Wang, Huan Liu, and Francesco Ricci. 2022. Trustworthy Recommender Systems.

https://doi.org/10.48550/ARXIV.2208.06265

[75] Markus Weimer, Alexandros Karatzoglou, and Alex Smola. 2008. Improving Maximum Margin Matrix Factorization.

Machine Learning 72. https://doi.org/10.1007/978-3-540-87479-9_12

[76] Eva Zangerle and Christine Bauer. 2022. Evaluating Recommender Systems: Survey and Framework. ACM Comput.

Surv. 55, 8, Article 170 (dec 2022), 38 pages. https://doi.org/10.1145/3556536

[77] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine Learning Testing: Survey, Landscapes and Horizons.

IEEE Transactions on Software Engineering 48, 1 (Jan. 2022), 1ś36. https://doi.org/10.1109/TSE.2019.2962027

, Vol. 1, No. 1, Article . Publication date: June 2022.

40 Michiels, et al.

A ALGORITHM WRAPPER

from lenskit import batch , util

from lenskit.algorithms import Recommender

from pandas import DataFrame

from scipy.sparse import csr_matrix

from recpack.algorithms import Algorithm

from recpack.matrix import InteractionMatrix

def create_lenskit_dataset(X: InteractionMatrix) -> DataFrame:

""" Translate an InteractionMatrix into a

dataframe structured as expected by LensKit algorithms."""

lenskit_data = X._df[['uid', 'iid', 'ts']].copy()

lenskit_data["rating"] = 1

lenskit_data.rename(

columns={'uid': 'user', 'iid': 'item', 'ts': 'timestamp '}, inplace=True)

lenskit_data = lenskit_data[['user', 'item', 'rating ', 'timestamp ']].copy()

Lenskit does not allow duplicates

lenskit_data.drop_duplicates(

subset=["user", "item"], keep="first", inplace=True)

return lenskit_data

class LenskitWrapper(Algorithm):

""" Wrapper class to use LensKit algorithms in the RecPack framework.

:param model_class: The LensKit algorithm class

:type model_class: type

:param kwargs: The arguments for the LensKit model , as keyword arguments

"""

def __init__(self , model_class , ** kwargs):

fittable = model_class(** kwargs)

fittable = util.clone(fittable)

self.lenskit_model = Recommender.adapt(fittable)

def _transform_fit_input(self , X: InteractionMatrix) -> csr_matrix:

self._assert_is_interaction_matrix(X)

return X

def _transform_predict_input(self , X: InteractionMatrix) -> csr_matrix:

self._assert_is_interaction_matrix(X)

return X

def _fit(self , X: InteractionMatrix):

self.lenskit_model.fit(create_lenskit_dataset(X))

self.fitted_ = True # for check_fitted

def _predict(self , X: InteractionMatrix) -> csr_matrix:

users = X.active_users

recs = batch.recommend(self.lenskit_model , users , 100)

values = recs.score.values

indices = recs[["user", "item"]].values

indices = indices[:, 0], indices[:, 1]

matrix = csr_matrix ((values , indices), dtype=float , shape=X.shape)

return matrix

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 41

class LensKitSimilarityAlgorithmWrapper(LenskitWrapper):

""" Specific wrapper for Similarity algorithms ,

translating the similarity matirx from the lenskit model

to the expected RecPack structure

"""

@property

def similarity_matrix_(self):

return self.lenskit_model.predictor.sim_matrix_.to_scipy ()

class LensKitFactorizationAlgorithmWrapper(LenskitWrapper):

""" Specific wrapper for factorization algorithms ,

translating the embeddings from the lenskit model

to the expected RecPack structure

"""

@property

def item_embedding_(self):

return self.lenskit_model.predictor.item_features_.T

B DETAILED TEST RESULTS

, Vol. 1, No. 1, Article . Publication date: June 2022.

42 Michiels, et al.

B
B
ST

1+

B
B
ST

1-

B
B
ST

2

B
B
ST

3

W
B
ST

1S
im

+

W
B
ST

1S
im

-

W
B
ST

1E
m
b-

W
B
ST

1E
m
b+

BPRMF 1✓ 1✓ 1✓ 1×
EASE 1✓ 1✓ 1✓ 1✓ 1✓
GRU4RecCrossEntropy 1✓ 1✓ 1✓ 1✓
GRU4RecNegSampling 1✓ 1✓ 1✓ 1✓
ItemKNN 4✓ 4✓ 4✓ 4✓ 4✓
MultVAE 1✓ 1✓ 1✓ 1✓
NMF 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
NMFItemToItem 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
Popularity 1✓ 1✓ 1✓
Prod2Vec 3✓ 3✓ 3✓ 3✓ 3✓ 3✓
Prod2VecClustered 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
Random 1✓ 1✓ 1✓
RecVAE 1✓ 1✓ 1✓ 1✓
SLIM 3✓ 3✓ 3✓ 3✓ 3✓
STAN 1✓ 1✓ 1✓
SVD 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
SVDItemToItem 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
SequentialRules 1✓ 1✓ 1✓ 1✓ 1✓
TARSItemKNN 2× 2✓ 2✓ 2× 2✓
WMF 1✓ 1✓ 1✓

Table 12. Part 1 of the detailed test results for RecPack. A ✓indicates the algorithm passed the test case, a ×
indicates it failed the test case. A blank space signifies the test case was not run for this algorithm. When an
algorithm has hyperparameters that give rise to distinct code paths, multiple instances of the algorithm were
tested with different values of the hyperparameter. The numbers indicate how many of these instances failed
or passed a test, e.g., 2✓2× implies two instances passed and two failed.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 43

B
B
IT
1T
op
K

B
B
IT
1S
eq

B
B
IT
2T
op
K
-A

B
B
IT
2T
op
K
-B

B
B
IT
2S
eq
-A

B
B
IT
2S
eq
-B

B
B
IT
3

B
B
IT
4

B
B
IT
5

B
B
IT
6

BPRMF 1× 1✓ 1✓ 1✓ 1× 1✓ 1×
EASE 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
GRU4RecCrossEntropy 1× 1× 1× 1✓ 1✓ 1✓ 1×
GRU4RecNegSampling 1× 1× 1× 1✓ 1✓ 1✓ 1×
ItemKNN 4✓ 4✓ 4✓ 4✓ 4✓ 4✓ 4✓
MultVAE 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1×
NMF 1✓ 1× 1× 1× 1× 1✓ 1✓
NMFItemToItem 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
Popularity 1✓ 1× 1✓ 1✓
Prod2Vec 3✓ 3✓ 3✓ 3✓ 3✓ 3✓ 3×
Prod2VecClustered 1× 1✓ 1✓ 1✓ 1✓ 1×
Random 1✓ 1✓
RecVAE 1✓ 1× 1× 1✓ 1✓ 1✓ 1×
SLIM 3✓ 3✓ 3✓ 3✓ 3✓ 3✓ 3×
STAN 1× 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
SVD 1✓ 1✓ 1✓ 1× 1× 1✓ 1×
SVDItemToItem 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
SequentialRules 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
TARSItemKNN 2✓ 2✓ 2✓ 2✓ 2✓ 2✓
WMF 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1×

Table 12. Part 2 of the detailed test results for RecPack. A ✓indicates the algorithm passed the test case, a ×
indicates it failed the test case. A blank space signifies the test case was not run for this algorithm. When an
algorithm has hyperparameters that give rise to distinct code paths, multiple instances of the algorithm were
tested with different values of the hyperparameter. The numbers indicate how many of these instances failed
or passed a test, e.g., 2✓2× implies two instances passed and two failed.

, Vol. 1, No. 1, Article . Publication date: June 2022.

44 Michiels, et al.

W
B
IT
1E
m
b

W
B
IT
1S
im

W
B
IT
2S
im

W
B
U
T
1I
te
r+

W
B
U
T
1I
te
r-

BPRMF 1✓ 1✓
EASE 1✓ 1✓
GRU4RecCrossEntropy 1✓ 1✓
GRU4RecNegSampling 1✓ 1✓
ItemKNN 4✓ 4✓
MultVAE 1✓ 1✓
NMF 1✓
NMFItemToItem 1✓ 1✓
Popularity
Prod2Vec 3× 3✓ 3✓ 3✓
Prod2VecClustered 1× 1✓ 1✓ 1✓
Random
RecVAE 1✓ 1✓
SLIM 3✓ 3✓
STAN
SVD 1✓
SVDItemToItem 1✓ 1✓
SequentialRules 1× 1✓
TARSItemKNN 2✓ 2✓
WMF

Table 12. Part 3 of the detailed test results for RecPack. A ✓indicates the algorithm passed the test case, a ×
indicates it failed the test case. A blank space signifies the test case was not run for this algorithm. When an
algorithm has hyperparameters that give rise to distinct code paths, multiple instances of the algorithm were
tested with different values of the hyperparameter. The numbers indicate how many of these instances failed
or passed a test, e.g., 2✓2× implies two instances passed and two failed.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 45

ImplicitMF ItemKNN Popular UserKNN

BBST1+ 1✓ 1✓ 1✓ 1✓
BBST1- 1✓ 1✓ 1✓ 1✓
BBST2c 1✓ 1✓ 1✓ 1✓
BBST3 1✓
WBST1Sim+ 1✓
WBST1Sim- 1×
WBST1Emb+ 1✓
WBST1Emb- 1×
BBIT1TopK 1✓ 1✓ 1✓
BBIT2TopK-A 1✓ 1✓ 1✓
BBIT2TopK-B 1✓ 1✓ 1✓
BBIT5 1✓ 1✓ 1✓ 1✓
BBIT6 1× 1✓ 1✓ 1✓
WBIT1Emb 1✓
WBIT1Sim 1✓
WBIT2Sim 1✓

Table 13. Detailed test results for PyLensKit. A ✓indicates the algorithm passed the test case, a × indicates
it failed the test case. A blank space signifies the test case was not run for this algorithm. When an algorithm
has hyperparameters that give rise to distinct code paths, multiple instances of the algorithm were tested
with different values of the hyperparameter. The numbers indicate how many of these instances failed or
passed a test, e.g., 2✓2× implies two instances passed and two failed.

, Vol. 1, No. 1, Article . Publication date: June 2022.

46 Michiels, et al.

CoClustering ItemKNN UserKNN NMF SVD SVDpp

BBST1+ 1✓ 4✓ 4✓ 1✓ 1✓ 1✓
BBST1- 1× 3✓1× 1✓3× 1✓ 1× 1×
BBST2 1✓ 4✓ 4✓ 1✓ 1✓ 1✓
BBST3 1× 1✓ 1× 1×
WBST1Sim+ 3✓1×
WBST1Sim- 4×
WBST1Emb+ 1✓ 1✓ 1✓
WBST1Emb- 1✓ 1× 1×
BBIT1TopK 1✓ 4✓ 4✓ 1✓ 1× 1×
BBIT2TopK-A 1× 4✓ 3✓1× 1× 1✓ 1✓
BBIT2TopK-B 1× 4✓ 4✓ 1× 1✓ 1✓
BBIT5 1✓ 4✓ 4✓ 1✓ 1✓ 1✓
BBIT6 1✓ 4✓ 4✓ 1✓ 1✓ 1✓
WBIT1Emb 1✓ 1× 1×
WBIT1Sim 4✓
WBIT2Sim 4×

Table 14. Detailed test results for Surprise. A ✓indicates the algorithm passed the test case, a × indicates it
failed the test case. A blank space signifies the test case was not run for this algorithm. When an algorithm
has hyperparameters that give rise to distinct code paths, multiple instances of the algorithm were tested
with different values of the hyperparameter. The numbers indicate how many of these instances failed or
passed a test, e.g., 2✓2× implies two instances passed and two failed.

, Vol. 1, No. 1, Article . Publication date: June 2022.

A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms 47

B
B
ST

1+

B
B
ST

1-

B
B
ST

2

B
B
ST

3

B
B
IT
1T
op
K

B
B
IT
2T
op
K
-A

B
B
IT
2T
op
K
-B

B
B
IT
5

B
B
IT
6

BPR 1✓ 1✓ 1✓ 1✓ 1× 1× 1× 1✓ 1✓
BiVAECF 8✓ 8✓ 8✓ 4✓4× 6✓2× 4✓4× 5✓3× 8✓ 8✓
GMF 4✓ 4✓ 4✓ 2✓2× 4× 4✓ 4✓ 4✓ 4×
IBPR 1✓ 1✓ 1✓ 1× 1✓ 1✓ 1✓ 1×
ItemKNN 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
MF 4✓ 4✓ 4✓ 4× 4× 4✓ 4✓ 4✓ 4✓
MLP 9✓ 9✓ 9✓ 7✓2× 9× 9✓ 9✓ 9✓ 9×
MMMF 1✓ 1✓ 1✓ 1✓ 1× 1✓ 1✓ 1✓ 1✓
MostPop 1✓ 1✓ 1✓ 1× 1✓ 1✓
NMF 2✓ 2✓ 2✓ 2× 2× 2✓ 2✓ 2✓ 2✓
NeuMF 10✓ 10✓ 10✓ 8✓2× 10× 10✓ 10✓ 10✓ 10×
PMF 2✓ 2✓ 2✓ 1✓1× 1✓1× 2✓ 2✓ 2✓ 2✓
SKMeans 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
UserKNN 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓ 1✓
VAECF 8✓ 8✓ 8✓ 8✓ 3✓5× 4✓4× 3✓5× 8✓ 8✓
WBPR 1✓ 1✓ 1✓ 1✓ 1× 1✓ 1✓ 1✓ 1✓
WMF 1✓ 1✓ 1✓ 1✓ 1× 1✓ 1✓ 1✓ 1✓

Table 15. Detailed test results for Cornac. A ✓indicates the algorithm passed the test case, a × indicates it
failed the test case. A blank space signifies the test case was not run for this algorithm. When an algorithm
has hyperparameters that give rise to distinct code paths, multiple instances of the algorithm were tested
with different values of the hyperparameter. The numbers indicate how many of these instances failed or
passed a test, e.g., 2✓2× implies two instances passed and two failed.

, Vol. 1, No. 1, Article . Publication date: June 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Testing Software Systems
	2.2 Evaluating Machine Learning Systems
	2.3 Evaluating Recommender Systems
	2.4 Testing Machine Learning Systems

	3 Testing the Correctness of Recommendation Algorithms
	3.1 Black Box System Tests
	3.2 White Box System Tests
	3.3 Black Box Integration Tests
	3.4 White Box Integration Tests
	3.5 Black Box Unit Tests
	3.6 White Box Unit Tests

	4 RecPack Tests
	4.1 Test Functions
	4.2 Test Fixtures
	4.3 Using RecPack Tests

	5 Evaluating RecPack Tests
	5.1 RecPack
	5.2 PyLensKit
	5.3 Surprise
	5.4 Cornac
	5.5 Discussion

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Algorithm Wrapper
	B Detailed Test Results

