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Abstract Predictive systems based on high-dimensional behavioral and textual
data have serious comprehensibility and transparency issues: linear models require
investigating thousands of coefficients, while the opaqueness of nonlinear models
makes things worse. Counterfactual explanations are becoming increasingly popular
for generating insight into model predictions. This study aligns the recently pro-
posed Linear Interpretable Model-agnostic Explainer (LIME) and Shapley Additive
Explanations (SHAP) with the notion of counterfactual explanations, and empir-
ically compares the effectiveness and efficiency of these novel algorithms against
a model-agnostic heuristic search algorithm for finding Evidence Counterfactuals
(SEDC) using 13 behavioral and textual data sets. We show that different search
methods have different strengths, and importantly, that there is much room for
future research.

Keywords comparative study · counterfactual explanations · instance-level
explanations · explainable artificial intelligence · explanation algorithms · binary
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1 Introduction

The proliferation of big data architectures has resulted in many applications hav-
ing an increasingly large impact on business and society (Junqué de Fortuny et
al. 2013). We focus on two sorts of big data. The first is behavioral data, defined
as data that capture human behavior through the actions and interactions of peo-
ple (Shmueli 2017), which can be used for various predictive purposes. For instance,
what you “Like” on Facebook is predictive of your openness and many other person-
ality traits (Kosinski et al. 2013, 2017), while the accounts you pay to or webpages
you visit are predictive features for product interest (Martens et al. 2016) and cred-
itworthiness (De Cnudde et al. 2019). The second sort of big data is textual data.
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Text classification is ubiquitous in business and government (Provost et al. 2013).
Example applications are automatic identification of spam emails (Attenberg et al.
2009), objectionable web content detection (Martens and Provost 2014) and legal
document classification (Chhatwal et al. 2018), just to name a few.

Mining behavior and text data can result in highly accurate classification mod-
els (Junqué de Fortuny et al. 2013; Provost et al. 2015), but also in very complex
model structures. The complexity arises from either the learning technique (e.g.,
deep learning) or the data, or both. Behavioral and textual data are typically high-
dimensional and sparse. Let us consider an example that we will refer back to. We
want to predict the gender of users based on the movies they have viewed. A user
having watched a movie is represented by a binary feature for each movie, which
results in an enormous feature space. However, each user only has watched a small
number of movies, which results in an extremely sparse data matrix (almost all el-
ements are zero). A user having watched a movie is represented by a corresponding
non-zero value for that binary feature, and we refer to such features as “active”.
In other words, because of the sparsity, the number of active features m′ of a user
(the movies someone watched) is much smaller than the dimensionality m of the
full feature space (all possible movies someone could watch). Because of these data
characteristics, even intrinsically interpretable linear models are difficult to interpret
because there are many thousands of features, each with their own linear coefficient;
further, the features that will be brought to bear for prediction are different for
every individual. Applying nonlinear techniques normally renders the reasons for a
particular prediction completely opaque.

The importance of understanding individual classification decisions is well-argued
in the literature (Gregor and Benbasat 1999; Freitas 2014; Martens and Provost
2014; Goodman and Flaxman 2016; Doshi-Velez and Kim 2017; Ras et al. 2018;
Lipton 2018). Explanations for model predictions are often necessary for users to
trust and improve the model (Gregor and Benbasat 1999). In some domains, like
medical diagnosis and credit scoring, it even is a legal requirement (Martens and
Provost 2014; Gregor and Benbasat 1999; Martens et al. 2007) (e.g., why was my
loan application rejected?). According to Doshi-Velez and Kim (2017), the demand
for interpretable models stems from a mismatch between “formal” objectives (e.g.,
minimal prediction error) and “ethical” objectives (e.g., privacy), which can only be
validated when a certain level of interpretability is achieved.

Various approaches have been proposed for explaining model predictions (Craven
1996; Martens and Provost 2014; Ribeiro et al. 2016; Lundberg and Lee 2017; Lip-
ton 2018; Wachter et al. 2018), varying in scope and flexibility. The scope indicates
whether the method generates global explanations (for the entire feature/instance
space) or instance-level explanations (for a single prediction) (Martens and Provost
2014), whereas the flexibility indicates whether the approach is model-specific or
model-agnostic. Much research focuses on model-specific explanation techniques tai-
lored to a specific type of prediction models such as deep learning models (Samek
et al. 2015; Arras et al. 2017) or random forests (Breiman 2001). In contrast,
model-agnostic methods explain model predictions of any prediction model. This
increases flexibility; however, often it results in substantially more computational
effort (Martens and Provost 2014; Arras et al. 2017).

For this paper, we focus on the increasingly popular notion of “counterfactual”
explanations (Martens and Provost 2014; Provost 2014; Chen et al. 2017; Wachter et
al. 2018; Nguyen 2018; Flach 2019). A counterfactual explanation of a model-based
system’s decision for a particular instance is defined as a set of “evidence” of the
instance without which the system would not have made that decision. In our setting
of behavioral and textual data this evidence corresponds to a set of active features of
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the instance where changing these feature values to zero would lead the system not to
have made that decision. Ideally, this set is minimal, meaning that the predicted class
only changes when all features that are part of the counterfactual explanation are
removed (feature values set to zero). Note that minimality is not always guaranteed
and depends on the algorithm that is used to compute counterfactuals.

Counterfactuals have been argued to be crucial for explaining predictions on the
instance-level as they pinpoint the features that led to the decision (Flach 2019)
and make the decision actionable (Chen et al. 2017; Wachter et al. 2018; Fernandez
et al. 2019). In our running movie example, if we want an explanation of why a
user called, say, Sam was predicted to be “male”, we want to know which movies
were critical for the model’s decision. A counterfactual explanation shows a set of
movies such that removing them from Sam’s movie list would lead the predicted
class to no longer be “male” (see Fig. 1a). In the context of textual and behavioral
data, removing the feature from the instance is equivalent to setting the original
feature value to zero or “removing the evidence”. In the remaining of this study, we
will consider counterfactuals based on the removal of evidence that is present in the
data—for example, words that appear in a document or items that an individual has
“Liked” on Facebook. These correspond to “active” features—those that are present
in a sparse representation, or those that are non-zero in a traditional feature-vector
representation.

In this study, we are interested in finding minimum-sized counterfactual expla-
nations. A possible approach to find the counterfactual is to conduct a complete
search through the entire space of feature combinations, starting with one feature
and incrementally increasing the number of features until an explanation is found.
However, this strategy scales up exponentially with the number of features, making
it impracticable for high-dimensional feature spaces (Martens and Provost 2014).
Consequently, there is a need for an algorithm that computes counterfactuals with
a good trade-off between effectiveness (selecting the most important features for the
explanation) and efficiency (computation time).

Martens and Provost (2014) proposed a heuristic best-first search for Evidence
Counterfactuals (SEDC ),1 which is able to counterfactually explain predictions of
any classification model with sparse features. To the best of our knowledge, SEDC is
the only existing model-agnostic explanation algorithm for counterfactuals which is
able to deal with behavioral and textual data. For this reason, we use this algorithm
as a benchmark in this study. The proposed algorithm by Wachter et al. (2018)
cannot deal with many binary variables—a common representation for explanations
for behavioral and textual data—which eliminates their algorithm from this study.

In the literature, other instance-level explanation types have been proposed
for high-dimensional data sources, such as additive feature attribution explana-
tions (Ribeiro et al. 2016; Lundberg and Lee 2017). In our movie running exam-
ple, additive feature attribution explanations would show an ordered list of im-
portant movies and their corresponding importance weights—specifically, impor-
tance for this particular model decision (see Fig. 1b). Such algorithms generate
an importance-ranked list of features, i.e., coefficients of a linear model, for a sin-
gle instance. The idea of developing hybrid methods which connect counterfactuals
with additive feature attribution explanations stems from the following reasoning:
if these importance-rankings of features are sufficiently accurate, it may be possible
to compute counterfactuals from them: starting from the highest-ranked feature, we

1 The original paper presented the framework for counterfactual explanations, subsequently
referred to as Evidence Counterfactuals (Provost 2014; Moeyersoms et al. 2016; Chen et al. 2017).
The paper discussed several methods for finding such explanations. We evaluate the heuristic
best-first search SEDC algorithm here.
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Fig. 1 Example outputs of two different types of instance-level explanations that show why Sam
was classified as “male” based on his movie viewing data: a counterfactual explanation (a) and
an additive feature attribution explanation (b).

remove features until the predicted class changes.2 One novelty of this study resides
in the idea that these importance rankings may be an “intelligent” starting point for
searching for counterfactuals. The resulting algorithm for computing counterfactuals
may be better than the existing SEDC algorithm. For this reason, we empirically
compare the counterfactual explanation algorithms to help researchers and practi-
tioners better understand which method is most suitable when facing behavioral or
textual data.

This paper’s main contributions are fourfold: (1) we propose two novel model-
agnostic explanation algorithms, creating them via the combination of counterfactual
explanations and additive feature attribution methods (LIME-C and SHAP-C ); (2)
we define quantitative evaluation criteria that proxy the effectiveness and efficiency
of these algorithms; (3) we perform an in-depth evaluation of the explanation quality
of LIME-C and SHAP-C when applied to high-dimensional behavioral and textual
data and benchmark their performance against the SEDC algorithm, and lastly, (4)
we propose changes to the model-agnostic methods for generating counterfactuals,
and discuss research directions stemming out of our findings.

2 Counterfactual Explanation Algorithms

To our knowledge, counterfactual explanations were first used to explain document
classifications (Martens and Provost 2014), and since that time have been applied
more broadly (Provost 2014; Chen et al. 2017; Wachter et al. 2018; Nguyen 2018;
Flach 2019). Martens and Provost (2014) define an explanation in counterfactual
terms as a minimal set of active features such that, when removing these features
from the instance, the predicted class changes.3 For instance, in Fig. 1a, the movies
“Die Hard”, “Taxi Driver” and “Mission Impossible” explain why Sam was classified
as “male”.

Consider instance x=(x1, . . . ,xm) and the feature indices Ix={1, . . . ,m} form∈N.
Let IA⊆Ix represent the indices of the active features of x such that ∀j∈IA: xj 6=0,
∀j /∈IA: xj=0. Let I⊆IA be a subset of the indices of active features, then a perturbed

2 Fernandez et al. (2019) show that having a high importance weight (from SHAP) is neither
necessary nor sufficient for a feature to be part of a counterfactual explanation. Therefore, we
should be clear that this is an alternative heuristic approach.

3 Such explanations have been called Evidence Counterfactuals, referring to the feature evi-
dence that leads the classifier to make its classification (Provost 2014; Chen et al. 2017); we will
adopt this terminology to differentiate such explanations from the additive feature attribution
explanations described next.
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instance zI of instance x (hereafter referred to as z) is defined as ∀l∈I: zl=xl, ∀l /∈I
zl=0. Let C be a trained classifier that is a function from instances to k classes.
Instance x is classified by classifier C: x → {0,. . . ,k} as class c. In this study, we
define a counterfactual explanation as follows:

DEFINITION 1 A counterfactual explanation for instance x’s classification is
a set of active features with indices E⊆IA such that removing all features with in-
dices E from the instance x leads C to produce another classification. The perturbed
instance zI with I=IA\E denotes the result of removing the features with indices E
from instance x. Further, a counterfactual explanation is minimal in the sense that
removing any subset of E does not yield a change in class. Specifically:
A set of features with indices E is a counterfactual explanation for C(x) ⇔
1. E⊆IA (the features are active for instance x),
2. C(zIA\E) 6= c (the class changes), and
3. ¬∃ E′ ⊂ E: C(zIA\E′) 6= c (E is minimal).
Note that, for behavioral and textual data, removing features corresponds to setting
the (original) feature values to zero.

We implemented the model-agnostic SEDC heuristic search algorithm, presented
by Martens and Provost (2014), which conducts a best-first search strategy. For ex-
plaining individual predictions of linear classification models, SEDC is optimal in
the sense that it always finds a minimum-sized feature set that changes the predicted
class (formal proof can be found in Martens and Provost (2014)). For explaining non-
linear model predictions, optimality is not guaranteed because the algorithm cuts off
its search after a limit has been reached (Martens and Provost 2014). Also, because
of the search cut-off, the explanations may not be minimal, i.e., a subset of the expla-
nation set may also be a counterfactual. We further limit SEDC ’s search by stopping
after the first explanation has been found. As the empirical results below show, this
means that the method is very fast; we leave assessing the full effectiveness vs. time
tradeoff to future work.

Additive feature attribution methods use an explanation model g as an inter-
pretable approximation of the trained classification model C (with corresponding
scoring function fc: x → R) in the neighborhood of an instance x. Two recently
proposed model-agnostic methods are the Linear Interpretable Model-agnostic Ex-
plainer (LIME) (Ribeiro et al. 2016) and Shapley Additive Explanations (SHAP) (Lund-
berg and Lee 2017). In the context of text and behavior, the explanation model g is a
linear function of binary variables that indicate whether the feature is “active” (orig-
inal value) or “removed” (zero). Consider again the instance x=(x1, . . . ,xm) that has
m′ active features (note that the full feature dimension m can be much larger). The
additive feature attribution explanation of instance x can be represented as a linear
model:

g(x′) = φ0 +
m∑

j=1

φjx
′
j (1)

where x′
j ∈ {0,1} is the binary representation of xj (where x′

j is 1 if xj is non-
zero, else it equals 0), m is the number of features of instance x, and φ0, φj ∈ R.
For SHAP, the weights retrieved from the model also represent the (approximate)
Shapley values, which have theoretically attractive properties (see Lundberg and
Lee (2017) for more details). The main differences between LIME and SHAP are (1)
how they generate the sample of perturbed instances, (2) the distance function π
and (3) the complexity control of the explanation.
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Suppose we want to explain the instance x. Both LIME and SHAP first map
the instance to a binary representation x′=(x′

1, . . . ,x
′
m) using a mapping function

h(x)=x′. Next, perturbed instances are generated from x′, and each perturbed in-
stance z′ is assigned a distance weight πx

′(z′). LIME generates perturbed instances
by sampling ñ instances and randomly removing active features from x′. Each per-
turbed instance z′ is then mapped onto the original feature space to obtain the
predicted score using the scoring function fc(z), which is then used as a label for
training the explanation model g. Each perturbed sample is assigned a corresponding
weight. For textual data, LIME uses the cosine distance as the distance function to
measure the similarity between x′ and z′, which seems a suitable choice for behav-
ioral data as well.4 SHAP starts by estimating distance weights for different subset
sizes. A subset size is the number of non-zero elements of a perturbed instance z′.
For each subset size s, a distance weight is estimated.5 Then, the method samples ñ
perturbed instances from the subset spaces, starting from the smallest (and largest)
subsets. LIME trains the explanation model by using ℓ2-regularized linear regres-
sion and controls the complexity even more by allowing exactly K features in the
explanation. SHAP trains the model using ℓ1-regularized linear regression.

Note that neither LIME nor SHAP produce non-trivial counterfactual explana-
tions natively. However, it is straighforward to produce variants of the algorithm
that do. Specifically, we can apply the efficient search algorithm for counterfactuals
for linear models (Martens and Provost 2014), which we refer to as lin-SEDC,6 to
the importance-ranked lists generated by LIME and SHAP. We refer to these novel
algorithms as LIME-C and SHAP-C where C stands for “Counterfactual”. The
(general) pseudo-code of a hybrid algorithm of additive feature attribution expla-
nations and counterfactuals is shown in Algorithm 1. In a first step, an additive
feature attribution explanation is generated, without regularizing the linear expla-
nation model g. For LIME, this means that the complexity parameter K is set to
the number of active features m′, whereas for SHAP, no regularization is used. From
this step, a linear model with the binary representation of the features is obtained
(original value versus zero), or equivalently, we retrieve an importance-ranked list of
features.

In a second step, the linear algorithm for finding counterfactuals (lin-SEDC ) (Martens
and Provost 2014) is applied to the ranked list to efficiently generate a counterfac-
tual, if possible. In more detail: the (active) features of the linear explanation model
are ranked by their estimated coefficients (from high to low coefficient). Then, in a
first iteration, the feature that is ranked at the top is removed from the instance, or
equivalently, its value is set to zero. If this results in a class change, a counterfactual
explanation is found. If not, the set of two top-ranked features is checked for being a
counterfactual explanation. If not, the set of three top-ranked features are removed
from the instance, and so on, until a counterfactual explanation has been found.
Both LIME-C and SHAP-C rely on random sampling to generate counterfactuals,
and thus, are stochastic explanation algorithms. This is in contrast to SEDC, which

4 The cosine distance is defined as cosine(x′,z′) = x
′·z′

||x′||·||z′||
and measures how similar two

data instances are irrespective of their size i.e., the number of active features. This seems a
suitable choice for behavioral and textual data instances, which can vary a lot in size (e.g.,
documents with varying lengths, users with different number of movies watched or Facebook
pages “Liked”, etc.).

5 The distance function of SHAP is defined as π
x
′ (z′)=

(m′−1)
(m′ choose s)s(m′−s)

where

(m′ choose s)= m′!
s!(m′−s)!

. The number of active features of x′ is represented by m′ and the

subset size s refers to the number of non-zero elements in perturbed instance z′.
6 See https://github.com/yramon/edc/tree/master/LinearEDC for open-source code

(see Martens and Provost (2014) for more details on the algorithm).
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Algorithm 1 Additive Feature Attribution + Counterfactuals
Input:
x=(x1,. . . ,xm) % Instance to explain with m features
Ix=(1,. . . ,m) % Indices of m features of x
IA⊆Ix % Indices of the m′ active features of x
C: x → {0,. . . ,k} % Classifier C that maps instances to k classes, with scoring function fc
h(x) : x → x′ = (x′

1,. . . ,x
′
m) % Function h maps instance to binary representation

maxf % Maximum number of features in counterfactual explanation
maxtime % Maximum computation time in minutes

Output:
Feature indices of the counterfactual explanation, E % Set of feature indices E that coun-
terfactually explains the prediction of x

Step 1: AFA(x, h, fc) % Additive Feature Attribution without complexity control
Output:
Φ=(φ1,. . . ,φm) % Estimated coefficients of all features in explanation model g
ΦA=(φj)∀j∈IA

% Estimated coefficients of active features in explanation model g
t % Time elapsed in minutes
Step 2: lin-SEDC(ΦA, maxf , maxtime, t, C) % lin-SEDC algorithm

Sort coefficients φA,j in ΦA in descending order as 1. . .m′

Sort j in IA according to the sorted coefficients vector ΦA

c = C(x) % Class predicted by the binary classifier
E = {} % Initialize set of indices for counterfactual explanation
ttotal = t

j=1
while cnew = c & j≤maxf & ttotal≤maxtime & φA,j ≥ 0 do

E = E ∪ {IA,j} % Add the j-th element of IA to E

cnew = C(zIA\E) % Class predicted if features in E are removed from x
j = j + 1 % Add extra iteration
ttotal = ttotal + telapsed % Add extra time

end while
if cnew = c then

E = {} % No counterfactual explanation is found
end if

always results in the same search tree path for finding explanations when re-running
the algorithm. Moreover, note that there is no guarantee that the counterfactuals
from the hybrid algorithms are always minimal.

3 Experimental Setup

3.1 Data sets and Models

Our experimental data comprise 10 behavioral and 3 textual data sets. All data
are public, except the Facebook and Fraud data. The classification tasks are binary
and vary from gender prediction to sentiment analysis. Table 1 summarizes the
characteristics of the data. All data have high-dimensional feature spaces with up
to hundreds of thousands of features. Movielens 1m, Movielens 100k, KDD2015,
Airline and Twitter have lower-dimensional feature spaces compared to the other
data sets. For all data sets, the “class-of-interest” is the minority class. A large
class imbalance is present for the Fraud data. Also, 20news has a large imbalance
compared to the other data sets. Relatively balanced data are Facebook, TaFeng and
LibimSeTi (imbalance values b larger than 30%). The large sparsity values p for all
data indicate that the number of active features is very small compared to the total
number of possible active features.

Table 1 also shows the number of test instances per data set and the average
number of active features m′, which is very different between the data sets. Ecom-
merce and Flickr have very small instances (only 2 to 3 active features), in contrast
to other data such as Movielens 1m with instances having over 150 active features.
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Table 1 Data characteristics of the data sets (references are placed in brackets): data type
(B:behavioral, T:textual), target variable, number of instances and features, the class imbalance
b of the target, the sparsity p and test set for linear and nonlinear models (percentage of instances
predicted as positive are placed in brackets). We use 20% of the data as test set. A * indicates
that the number of positively predicted test instances used for the experiments was a random
subset of 300. The average number of active features m′

lin
and m′

nonlin
are measured over the

positively predicted test instances of the linear and nonlinear model respectively. We sort the
data by increasing values of m′

lin
.

Dataset Type Target Instances Features b p Test set (%) m′
lin

m′
nonlin

Flickr* (Cha et al. 2009) B comments 100,000 190,991 36.91% 99.99% 20,000 (20%) 2.02 2.96
Ecommerce* (PKDD’15 data mining competition) B gender 15,000 21,880 21.98% 99.99% 3,000 (15%) 2.60 2.67

Airline* (Airline data 2015) T sentiment 14,640 5,183 16.14% 99.82% 2,928 (15%) 7.81 8.21
Twitter (Twitter 2013) T topic 6,090 4,569 9.15% 99.74% 1,218 (10%) 9.52 9.35

Fraud* (n/a) B fraudulent 858,131 107,345 6.4e-5% 99.99% 171,627 (1%) 11.83 14.09
YahooMovies* (Yahoo! Movie 2003) B gender 7,642 11,915 28.87% 99.76% 1,529 (20%) 25.24 25.00

TaFeng* (Hsu et al. 2004) B age 31,640 23,719 45.23% 99.90% 6,328 (15%) 44.32 37.24
KDD2015* (KDD2015 2015) B dropout 120,542 4,835 20.71% 99.67% 24,109 (20%) 49.01 46.40
20news (20 Newsgroups 2012) T atheism 18,846 41,356 4.24% 99.84% 3,770 (5%) 67.96 62.77

Movielens 100k (Harper et al. 2015) B gender 943 1,682 28.95% 93.69% 189 (25%) 68.73 73.42
Facebook* (Chen et al. 2017) B gender 386,321 122,924 44.57% 99.94% 77,265 (30%) 83.03 84.55

Movielens 1m* (Harper et al. 2015) B gender 6,040 3,706 28.29% 95.53% 1,208 (25%) 168.46 153.46
LibimSeTi* (Brozovsky et al. 2007) B gender 137,806 166,353 44.53% 99.93% 27,562 (30%) 229.16 226.97

For the behavioral data, we build ℓ2-regularized Logistic Regression (ℓ2-LR) mod-
els and Multi-Layer Perceptrons (MLP). Logistic Regression has proven to be the
best-performing shallow model for big behavioral data (De Cnudde et al. 2019a),
while a follow-up study demonstrated a (modest) performance improvement by deep
learning models (De Cnudde et al. 2019b). For the textual data, we build bag-of-
words support vector machines (SVM) with linear and RBF kernel, because they
are well-established to be successful for text mining applications (Joachims 1998;
Martens and Provost 2014). For preprocessing text, we remove stopwords and lem-
matize tokens using the NLTK package in Python, and then, use TF-IDF.7 vec-
torization (Joachims 1998; Martens and Provost 2014) We use 80% of the data for
training the models and 20% as test set. For ℓ2-LR and SVM, we fine-tune the reg-
ularization parameter using a holdout set (25% of training data). For MLP, we use
the best parameter configuration found by De Cnudde et al. (2019a). We build mod-
els using the Scikit-learn library. To make classifications, we sort the test instances
by decreasing predicted scores and classify the k% top-ranked instances as positive,
such that the fraction of test instances classified as positive equals the fraction of
positives in the training data.

3.2 Explanations

For the experiments, we generate counterfactuals for the positively predicted test
instances and we set the maximum size of the counterfactual explanation to 30, in
line with questions as to the utility of explanations sets that are too large (Flach 2019;
Martens and Provost 2014). As a second algorithmic choice, we set the maximum
time to compute an explanation to 5 minutes. For SEDC, we set the maximum
number of iterations to 50 and we use our own Python implementation.8 For LIME-
C,9 we use LimeText explainer10 for generating the importance-ranked list. We set
the complexity parameter K equal to the number of active features (Ribeiro et al.
2016) and we set the number of perturbed samples ñ equal to 5000 (Ribeiro et

7 TF-IDF is short for term frequency and inverse document frequency.
8 See https://github.com/yramon/edc for open-source code.
9 See https://github.com/yramon/LimeCounterfactual for open-source code.

10 See https://github.com/marcotcr/lime. Currently, no implementation exists for behavioral
data, where a single reference value of zero is used. For this reason, we artificially generated text
data from the behavioral features and use the CountVectorizer.
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al. 2016; Nguyen 2018). Next, we compute counterfactuals from the ranked feature
list using lin-SEDC (Martens and Provost 2014). For SHAP-C,11 we first compute
the linear model using the model-agnostic implementation KernelExplainer12 with a
single reference value (zero), default ℓ1-regularization and the identity link function.
Similar to LIME-C, we set the size of the neighborhood ñ equal to 5000. Here as
well, counterfactuals are computed from the importance-ranked list using lin-SEDC.

3.3 Evaluation criteria

We define the following set of performance metrics for evaluating counterfactual
explanations generated by the three different algorithms:

1. Effectiveness

– Switching point: number of features that need to be removed before the
classification changes. The switching point equals the size of the counterfac-
tual explanation.

– Percentage explained: fraction of positively predicted instances for which
a counterfactual explanation smaller than 30 features is found.

2. Efficiency

– Computation time: number of seconds it takes to generate an explanation.

To compare effectiveness of the different algorithms, we need a common defini-
tion for assessing (counterfactual) explanations. Feature-ranking explanations were
tied to the notion of the counterfactual implicitly by Nguyen (2018), who introduces
the notion of the switching point, which is the number of features that need to be re-
moved (or set zero)—when traversing the ranked list—before the prediction switches
to another class. (This is essentially the procedure of lin-SEDC.) The switching point
was originally introduced as a proxy for the method’s ability to rank features from
high to low relative importance (Arras et al. 2017; Nguyen 2018); it also gives us a
straightforward method for turning the feature-ranked explanations into counterfac-
tual explanations. (For explanations already represented as counterfactuals, such as
those produced by SEDC, the switching point simply equals the number of features
in the explanation.) Measuring the switching point is important, because in cases
where the prediction is not the default prediction, simply selecting all the features
would produce a class change, but would be a trivial “explanation”. All else being
equal, for a better importance-ranked list one would not have to choose as many fea-
tures to create a counterfactual explanation, resulting in a lower switching point. We
do not allow counterfactuals to be larger than 30; therefore, the switching points also
will be no larger than 30. In the experiments, we also compute a random explainer
for estimating the switching point, against which we benchmark our counterfactual
algorithms. It randomly selects a feature and sets it to zero. If the class changes,
then a switching point is found. If not, it verifies whether the predicted score at least
decreased. If not, it selects another random feature. If yes, then it selects a new, ran-
dom feature and evaluates whether leaving out these two features together results in
a class change. This is repeated until the random algorithm finds a switching point.

Information on effectiveness is captured by the percentage explained, which in-
dicates the fraction of instances for which a counterfactual explanation smaller than
30 features is found. More specifically, when the explanation method is not very
good at identifying the most relevant features, the method will most likely result in
larger swiching points. This will result in fewer instances for which a counterfactual
smaller than 30 is found.

11 See https://github.com/yramon/ShapCounterfactual for open-source code.
12 See https://github.com/slundberg/shap. We used version 0.29.3 for the experiments.
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Table 2 Percentage explained (counterfactuals smaller than 30 features). For stochastic LIME-
C/SHAP-C, these are average percentages over 5 runs. The best percentages are indicated in
bold. The percentages are underlined if a method is significantly worse than the best method on
a 1% significance level using a McNemar mid-p test (Fagerland et al. 2013).

Linear Nonlinear
Dataset SEDC (%) LIME-C (%) SHAP-C (%) SEDC (%) LIME-C (%) SHAP-C (%)

Flickr 100 99.33 100 28.67 28.67 28.67
Ecommerce 100 97.33 100 95.00 96.67 99.67

Airline 100 100 100 100 100 100
Twitter 100 100 100 100 100 100
Fraud 100 100 81.67 100 100 75

YahooMovies 100 100 100 98.67 100 100
TaFeng 100 100 100 93.33 100 100

KDD2015 100 100 100 99.67 100 99.67
20news 100 99.47 100 100 98.94 100

Movielens 100k 100 100 100 100 100 100
Facebook 96.67 95.33 95.00 70.33 93.67 90.00

Movielens 1m 98.67 98.67 98.67 89.67 95.67 95.67
LibimSeTi 95.67 91.00 89.33 77.33 91.33 89.67

Average 99.31 98.55 97.28 88.67 92.69 90.64
# wins 13 8 10 6 11 9

Lastly, we also compare the efficiency of available implementations of the ex-
planation algorithms, as finding counterfactual explanations can be a hard compu-
tational problem. The computation time is important to a greater or lesser degree
depending on the timeliness needs of the application. For example, whether one
will compute an explanation on demand for a small number of instances at human-
cognition speeds versus one will compute and cache explanations for all predictions
in a high-throughput application (e.g., why was I shown this?).

4 Results: Effectiveness

Table 2 shows the percentage explained by each of the algorithms. For the linear
models, there are very small differences between the methods and SEDC is always
better than or as good as the other methods. For the LibimSeTi data, LIME-C and
SHAP-C find significantly fewer counterfactual explanations than SEDC.

For the nonlinear models, however, SEDC never produces more explanations
than LIME-C and SHAP-C. SEDC has a significantly lower percentage explained
than LIME-C and/or SHAP-C for 5 out of 13 data sets. Since in theory, without an
iteration limit, the best-first search will find (all) explanations for every case, this
phenomenon is due to the heuristic cut-off of the search at 50 iterations—it does not
expand more than 50 feature sets (search nodes). In more detail: for some nonlinear
models, removing one feature does not result in a predicted score change for any
of the features. Consequently, the algorithm selects a random feature to continue
with in the following iteration. The same may happen in the second iteration. These
“bad” feature choices are what makes the algorithm need more than 50 iterations
to find a counterfactual explanation.

Lastly, SHAP-C seems to have difficulties for the Fraud data. For Fraud/nonlin,
only 75% of the test instances are explained. For the non-explained instances, all
estimated coefficients (step 1 in Algorithm 1) are zero, so no linear explanation
model was generated. We conjecture this is due to the random sampling procedure,
which results in a higher number of required instances ñ. When setting the sample
size ñ to 7000 (instead of 5000), the percentage explained increases to a maximum
of 100, indicating that this is the required number of perturbed samples needed to
generate explanations. We conjecture that the “critical number of perturbed sam-
ples” increases for highly imbalanced data like Fraud and that this is related to the
sampling procedure of SHAP-C.
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Table 3 Median and interquantile range of switching point. For stochastic LIME-C/SHAP-C,
this is the average median/range over 5 runs. The switching point is measured over the subset of
instances where all methods have found a switching point. The best (median) switching points
are indicated in bold. The values are underlined if a method is significantly worse than the best
method on a 1% significance level using a McNemar mid-p test (Fagerland et al. 2013).

Linear Nonlinear

Dataset SEDC LIME-C SHAP-C Random SEDC LIME-C SHAP-C Random

Flickr 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-2)
Ecommerce 1(1-1) 1(1-1) 1(1-1) 1(1-2) 1(1-1) 1(1-1) 1(1-1) 1(1-1)

Airline 1(1-2) 1(1-2) 1(1-2) 2(1− 3) 1(1-1) 1(1-1) 1(1-1) 2(1− 3)

Twitter 2(1-3) 2(1-3) 2(1-3) 3(2− 5) 1(1-1) 1(1-1) 1(1-1) 3(2− 5.5)

Fraud 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-1) 1(1-2)
YahooMovies 2(1-4) 2(1-4) 2(1-4) 4(2− 7) 1(1-3) 2(1− 3) 2(1− 3) 4(2− 12)

TaFeng 2(1-4) 2(1-4) 2(1-4) 5(3− 11) 2(1-8) 2(1-3) 2(1-4) 6(3− 17)

KDD2015 3(1-7) 3(1-7) 3(1-7) 8(3− 17) 2(1-3) 2(1-3.8) 2(1-4) 4.5(2− 9)

20news 2(1-4) 2(1-4) 2(1-4) 11(4− 24) 1(1-3) 1(1-3) 1(1-3) 8(3− 19)

Movielens 100k 2(1-4) 2(1-4) 2(1-4) 5.5(3− 10) 2(1-4) 2(1-4) 2(1-4) 5(2− 9.75)

Facebook 3(2-8) 4(2− 8.6) 4(2− 8) 8(4− 20) 4.5(1− 13.25) 4(2-9.2) 4.4(2− 10.4) 9.5(4− 20)

Movielens 1m 3(2-7) 3(2-7) 3(2-7) 9(4− 19) 3(1-6) 3(2-8) 3(2-8) 7(3− 14.5)

LibimSeTi 3(2-7) 3(2-8.2) 3(2-7.4) 30(13.75− 55) 2.5(1-5) 3(2− 8.2) 3(2− 7.2) 22(9.75− 43.25)

# wins 13 12 12 3 12 11 10 3

Table 3 indicates the median and interquantile range of the switching points.13

A first observation is that the data sets with large instances, such as Movielens 1m
and Facebook, have a wider range of switching points (large third quantile value)
compared to data sets with small instances such as Flickr and Ecommerce, where
the first quantile, the median and the third quantile are equal to 1. We also ob-
serve that, for linear models, there are no differences in the median switching point
between the algorithms. For linear models, in general, the low switching points of
SEDC are not a surprising result: it is optimal for linear models, i.e., it will always
find the minimum-sized subset of features (Martens and Provost 2014). Comparing
the results of the novel algorithms LIME-C and SHAP-C, which are approximation
methods, against SEDC, for linear models they usually find the smallest-sized expla-
nations as well. For the nonlinear models, however, no method dominates. LIME-C
and SHAP-C perform worse than SEDC on the YahooMovies and LibimSeTi data
sets. SEDC performs worse in terms of median switching points than LIME-C and
SHAP-C on the Facebook data. The Facebook data present an interesting case. The
mean switching points of SEDC, LIME-C and SHAP-C for Facebook/nonlin are
respectively 8.34, 3.59 and 4.13, indicating that there are more outlier values for
SEDC. The reason here is similar to the discussion of the iteration limit above, but
there is an additional factor: we stop the search after the first explanation is found.
This may be penalizing SEDC in terms of explanation length, but giving it an ad-
vantage in terms of computational efficiency. Finally, when comparing the methods
with the random benchmark, we conclude that all approaches are significantly better
at pinpointing the most important features, except for the Ecommerce, Flickr and
Fraud data, where random performs as well because of the few active features per
instance.

5 Results: Computational efficiency

Table 4 summarizes the computation times. We observe that the median compu-
tation times of SEDC are very small, compared to LIME-C and SHAP-C : for all
our data and models, the median computation time for SEDC is less than 1 sec-

13 Median and interquantile range reported rather than the mean and standard deviation be-
cause the switching point only takes positive values and is right-skewed.
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Table 4 Median and interquantile range of computation time in seconds. For stochastic LIME-
C/SHAP-C, this is the average median/range over 5 runs. The best (median) computation times
are indicated in bold. The values are underlined if a method is significantly worse than the best
method on a 1% significance level using a McNemar mid-p test (Fagerland et al. 2013).

Linear Nonlinear

Dataset SEDC LIME-C SHAP-C SEDC LIME-C SHAP-C

Flickr 0.00(0.00-0.00) 0.19(0.19− 0.23) 0.01(0.00− 0.01) 0.00(0.00-0.02) 0.24(0.23− 0.25) 0.01(0.01− 0.08)

Ecommerce 0.00(0.00-0.01) 0.22(0.19− 0.24) 0.00(0.00-0.01) 0.00(0.00-0.02) 0.27(0.26− 0.28) 0.01(0.01− 0.01)

Airline 0.02(0.01-0.04) 0.79(0.62− 0.91) 0.08(0.02− 0.59) 0.02(0.02-0.03) 1.18(0.96− 1.33) 0.10(0.02− 0.79)

Twitter 0.03(0.01-0.05) 1.21(1.09− 1.32) 0.37(0.09− 1.09) 0.01(0.01-0.01) 0.89(0.82− 0.95) 0.13(0.03− 0.43)

Fraud 0.00(0.00-0.02) 0.24(0.22− 0.28) 0.02(0.01− 0.17) 0.02(0.02-0.02) 0.65(0.60− 0.72) 0.05(0.02− 0.82)

YahooMovies 0.07(0.02-0.19) 0.27(0.26− 0.31) 0.80(0.77− 0.83) 0.09(0.04-0.30) 0.63(0.62− 0.67) 1.11(1.08− 1.16)

TaFeng 0.05(0.02-0.19) 0.53(0.43− 0.63) 1.99(1.68− 2.27) 0.03(0.02-0.39) 0.55(0.47− 0.68) 1.45(1.26− 1.63)

KDD2015 0.09(0.02-0.74) 0.36(0.32− 0.43) 0.87(0.82− 0.92) 0.14(0.03-0.53) 0.57(0.52− 0.64) 1.07(1.02− 1.13)

20news 0.19(0.05-1.43) 2.95(1.88− 3.96) 3.36(2.49− 4.16) 0.10(0.03-0.76) 1.94(1.34− 2.69) 2.39(1.88− 2.95)

Movielens 100k 0.07(0.02-0.32) 0.35(0.31− 0.57) 0.87(0.83− 1.04) 0.14(0.07-0.70) 0.42(0.34− 0.66) 0.93(0.88− 1.13)

Facebook 0.11(0.02-1.19) 0.35(0.28− 0.51) 0.90(0.84− 1.03) 0.17(0.02-2.03) 0.39(0.32− 0.55) 0.95(0.88− 1.07)

Movielens 1m 0.34(0.06-2.92) 0.56(0.35− 0.99) 1.06(0.30− 1.39) 0.35(0.06-1.59) 0.72(0.51− 1.24) 2.49(2.21− 3.33)

LibimSeTi 0.37(0.13-3.12) 0.70(0.59− 0.97) 1.17(1.09− 1.38) 0.84(0.19-3.48) 0.71(0.58− 0.97) 1.18(1.09− 1.39)

# wins 13 0 1 13 0 0

ond. The interquantile ranges and the mean computation times also inform us about
the efficiency of SEDC. More specifically, for all data, there are many outlier values
for computation times. This is because SEDC ’s efficiency (mostly) depends on the
number of features in the explanation. We observe that, for the data with very low
switching points (e.g., YahooMovies), SEDC is very efficient over the entire set of
test instances: there are not many extreme values. For instances that need more fea-
tures to be removed before a predicted class change is obtained,14 SEDC is slower
(Movielens 1m, Facebook, LibimSeTi). This becomes an issue for classification prob-
lems where instances are “harder” to explain with counterfactuals, i.e., more features
need to be removed to change the predicted class. For data with small instances (e.g.,
Ecommerce) or classification problems where data instances are “easier” to explain
by a counterfactual, SEDC is always the most efficient method. Note that, despite
the fact that LibimSeTi has, on average, a smaller switching point than Facebook,
it still takes much longer to generate counterfactual explanations for the Libim-
SeTi data. This is because the number of active features is, on average, very large
for LibimSeTi, which also plays an important role in determining the computation
time.

Overall, LIME–C and SHAP–C have a stable efficiency and the computation
time does not depend on the switching point. (In contrast to SEDC, for which
the computation time is sensitive to the number of features in the explanation.) The
efficiency of LIME-C and SHAP-C depends mostly on the number of active features
of an instance. The results indicate that SHAP-C ’s efficiency seems more prone to
the number of active features of the instance (median and interquantile range values
are relatively larger starting from YahooMovies).

Lastly, the algorithms are generally slower for textual data than for behavioral
data. We conjecture this is because of the time to evaluate the SVM scoring function
f , which may be higher compared to the ℓ2-LR and MLP scoring functions. As an
illustration, take the Facebook data (behavioral) and 20news data (textual). Even
though the Facebook data has more active features per instance and more features
in the model (122,924 compared to 41,356), the median time to compute a counter-
factual for all three algorithms is higher for the 20news data than for the Facebook
data.

14 These instances are “harder” to explain by counterfactuals as they, for example, have many
active features that contribute to the model prediction (positive evidence).
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6 Conclusion and future work

From this study applying existing model-agnostic, instance-level explanation meth-
ods to the finding of counterfactual explanations for high-dimensional behavioral
and textual data, we can draw several conclusions. First, the (straightforward) ex-
tensions LIME-C and SHAP-C as expected find reasonable, if not always optimal,
counterfactual explanations. Furthermore, extending these algorithms to find coun-
terfactual explanations addresses an open problem with the application of these
methods to high-dimensional data, namely, which features should be reported in the
explanation. The answer for LIME-C and SHAP-C is: those that allow the creation
of an Evidence Counterfactual. SHAP-C does have problems with highly unbalanced
data sets. Despite this, SHAP-C may still be preferable when the user is particularly
interested in the theoretical interpretation of the importance weights (Lundberg and
Lee 2017). LIME-C showed a stable effectiveness for all data and models, and even
for very large data instances that require many features to be removed for a pre-
dicted class change, LIME-C computes counterfactuals relatively fast. Moreover,
the results indicate that the efficiency of LIME-C is less sensitive to the number of
active features compared to SHAP-C.

SEDC, which was designed to find counterfactual explanations, is generally fast
and effective, but not always. In the main results, SEDC was clearly the fastest. It
is provably optimal for linear models, and also empirically found smaller counterfac-
tuals (on average) for the nonlinear models on two data sets. However, for certain
instances on certain data sets, SEDC ’s run time was comparably quite large. Fur-
thermore, the search stopping criteria were met before SEDC found explanations
in a non-negligible number of cases. As a best-first search algorithm, there is an
effectiveness vs. efficiency tradeoff that we did not explore comprehensively in this
paper.

This work indicates that there is a good deal of room for more research on
this topic. For example, instead of LIME-C and SHAP-C, other hybrid algorithms
could be created. For example, LIME (or SHAP) could be run first to fix a search
order for a search algorithm like SEDC. In those cases where LIME-C (SHAP-C )
produces a great explanation, this new hybrid would find it fast. But the algorithm
could keep searching, and would be biased towards trying the best features found
by LIME (SHAP) before the others, which likely would lead to finding even better
explanations faster. Furthermore, we see optimized search algorithms performing
quite well for computationally hard problems (Schreiber et al. 2018); we conjecture
that similar algorithms could be applied in the context of classification from big,
sparse data to find optimal explanations fast.
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