
Weather and Climate Extremes 41 (2023) 100573

Available online 25 May 2023
2212-0947/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Identical hierarchy of physical drought types for climate change signals 
and uncertainty 

Parisa Hosseinzadehtalaei a,*, Bert Van Schaeybroeck b, Piet Termonia a,b, Hossein Tabari b,c 

a Department of Physics and Astronomy, Ghent University, Ghent, Belgium 
b Department of Meteorological and Climate Research, Royal Meteorological Institute of Belgium, Uccle, Belgium 
c Faculty of Applied Engineering, University of Antwerp, Antwerp, Belgium   

A R T I C L E  I N F O   

Keywords: 
Meteorological drought 
Hydrological drought 
Agricultural drought 
Climate change impact assessment 
Uncertainty analysis 

A B S T R A C T   

Climate change may have different impacts on different types of drought through its influence on the mecha
nisms of the propagation of a precipitation lack into a hydrological or agricultural drought. The involvement of 
additional processes in runoff and soil moisture modeling potentially leads to discrepancies in the projection 
uncertainties and signal-to-noise ratios between different drought types. This global study compares climate 
change signals, uncertainty, and signal-to-noise ratios between meteorological, hydrological, and agricultural 
droughts characterized by standardized precipitation index (SPI), standardized runoff index (SRI), and stan
dardized soil moisture index (SSI), respectively. The comparison is made for five drought characteristics 
including median and peak intensity, median and longest duration, and frequency using 18 Coupled Model 
Intercomparison Project Phase 6 (CMIP6) models for four Shared Socioeconomic Pathways (SSPs) SSP1-2.6, 
SSP2-4.5, SSP3-7.0, and SSP5-8.5. We find that the spatial extent and magnitude in all five drought character
istics increase from meteorological to hydrological to agricultural drought. This increase manifests itself, how
ever, at the expense of augmented uncertainty, to the extent that uncertainty for agricultural drought is up to 
sevenfold larger compared to meteorological drought. Despite the augmentation of uncertainty from meteoro
logical to agricultural drought, the hierarchy of drought types for climate change signals still holds for the spatial 
extent of significant signal-to-noise ratios.   

1. Introduction 

Recent years have witnessed a number of severe drought events e.g., 
the 2011–2012 Eastern Africa drought, the 2011–2017 California 
drought, the 2018–2022 Southern African drought, the 2019–2020 
Australian drought, and the 2022 European drought. The occurrence of 
such severe drought events has been increasing at an alarming rate, 
causing profound social, economic, and environmental impacts world
wide (IPCC, 2022). More frequent, longer, and severe droughts during 
recent decades in large parts of the Americas, Africa, and Asia have been 
attributed to anthropogenic factors (Chiang et al., 2021). For instance, 
anthropogenic climate change was found to at least quintupled the risk 
of the 2015 drought in India (Zachariah et al., 2022). This pattern is 
expected to persist and the events become worse in the coming decades 
and towards the end of the 21st century (Tabari and Willems, 2018; 
Ahmadalipour et al., 2019; van der Wiel et al., 2021; Tabari et al., 2021; 
Pokhrel et al., 2021). There is high confidence that, across the 21st 

century, the total exposed area to drought will expand and droughts will 
become more severe and frequent (IPCC, 2022). 

Three physical drought types are commonly recognized in the sci
entific literature: meteorological, agricultural, and hydrological (Chen 
et al., 2022). A drought event normally starts with a shortage of pre
cipitation (known as meteorological drought) that may propagate, as it 
lingers, into a deficit of soil moisture (agricultural drought) and 
streamflow, reservoir levels, and groundwater (hydrological drought). 
Meteorological droughts are, however, not always propagated to soil 
moisture droughts, as such transition depends on many processes 
affecting the surface water balance (Berg and Sheffield, 2018). When the 
anomaly of precipitation propagates through the hydrological system, it 
can be intensified or diminished by other processes at the surface or the 
land-atmosphere interface (Cook et al., 2018), leading to hydrological 
and agricultural droughts of different severities. For instance, higher air 
temperatures can increase evaporative demand which, in turn, increases 
evaporative losses from the surface, resulting in higher soil-moisture 
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deficits (Berg et al., 2017). Some land-surface and plant processes can 
also modulate the manifestation of precipitation droughts in the soil, 
including the reduced plant stomatal conductance in case of drought 
stress or the increased vegetation total water use efficiency under 
elevated atmospheric CO2 (Milly and Dunne, 2016; Mankin et al., 
2019). These processes induce feedbacks on the near-surface climate 
that may vary geographically due to variations in vegetation (e.g., 
phenology, land cover) and land surface properties (e.g., soil moisture 
content, soil type, topography) (Lauenroth et al., 2014), leading to 
spatially-dependent susceptibilities across the three drought types. 

The complexity of drought propagation processes and the diversity of 
the propagation over different regions raise the question of how 
different drought types respond to climate change. Understanding which 
drought type is more sensitive to climate change may allow the identi
fication of socio-economic sectors impacted by future changes in 
drought intensity, duration, and frequency. Moreover, distinguishing 
the areas where the discrepancies among the drought types are more 
pronounced may advance our understanding (or identify knowledge 
gaps) of the complex land and atmosphere processes behind the changes. 
Climate model projections of precipitation are uncertain and vary 
geographically (Lehner et al., 2020) and latitudinally (Tabari et al., 
2019). For soil and runoff, climate models need to simulate soil, land
scape, and vegetation attributes apart from climate processes which can 
add an extra tier of uncertainty to their projections (Schlaepfer et al., 
2017). 

The accuracy of models in representing the essential processes 
related to various drought types is critical in assessing their reliability in 
projecting future changes in drought characteristics. In the Coupled 
Model Intercomparison Project Phase 6 (CMIP6), these processes are 
either explicitly represented or parameterized using mathematical 
equations and empirical relationships. Some models explicitly simulate 
the atmosphere’s response to changes in soil moisture and vegetation 
cover, while others use parameterizations to represent these processes. 
Land surface models (LSMs) in CMIP6 simulate soil moisture, soil tem
perature, and evapotranspiration using physically-based equations that 
describe water and energy fluxes at the land-atmosphere interface. LSMs 
also represent vegetation dynamics and carbon cycle processes, affecting 
the exchange of water and energy between the land and atmosphere 
(Strebel et al., 2022). However, there are still significant differences 
between models in their representations of key processes, resulting in 
varying simulations of runoff and soil moisture even when driven with 
the same external forcings (Arora et al., 2023). These differences can be 
due to variations in model structure, parameterization choices, and 
input data, as well as uncertainties in the underlying physical processes 
themselves (Fisher and Koven, 2020). Moreover, differences between 
Earth System Models (ESMs) and General Circulation Models (GCMs) 
can also be significant, with ESMs including more detailed representa
tions of land surface processes, biogeochemical cycling, and other Earth 
system components, while GCMs typically focus more on atmospheric 
dynamics and radiative transfer (Séférian et al., 2019; Lu et al., 2019). 

The CMIP6 models represent a significant improvement over the 
CMIP5 models, with several enhancements in various areas. These 
include higher-resolution grids, more advanced parameterizations of 
physical processes, and increased use of observational data for model 
initialization and evaluation (Eyring et al., 2016, 2019). Specifically, the 
CMIP6 models offer improved representations of clouds, aerosols, and 
their interactions, which affect precipitation and evaporation, as well as 
more sophisticated representations of land surface processes such as 
vegetation dynamics and biogeochemical cycling, affecting soil moisture 
and runoff (van den Hurk et al., 2016). Additionally, many of the models 
now include realistic processes describing the lake–atmosphere in
teractions, as climate impacts of lakes become more prominent with 
increasing model horizontal resolution (Lu et al., 2019). Overall, the 
CMIP6 ensemble produces reasonable simulations for the climatology, 
spatial distribution, and annual cycle characteristics of soil moisture 
(Qiao et al., 2022) and for the spatial distribution of the number of dry 

days and meteorological drought frequency (Coppola et al., 2021). In 
comparison to the CMIP5 ensemble, the CMIP6 ensemble shows im
provements in soil moisture simulations (Yuan et al., 2021) and mete
orological drought frequency, particularly over Africa (Coppola et al., 
2021). However, despite these improvements, uncertainties and biases 
still exist, and better representations of drought processes and land 
surface feedbacks do not necessarily translate into reduced uncertainties 
in drought risk projections (Cook et al., 2020). Therefore, it is crucial to 
understand how projection uncertainties differ across various types of 
drought. 

Much of the existing research on the impacts of climate change on 
global droughts has focused on a separate analysis of meteorological 
(Spinoni et al., 2020; Ukkola et al., 2020; Wang et al., 2021; Tabari et al., 
2021; Li et al., 2021), hydrological (Prudhomme et al., 2014; Wanders 
and Wada, 2015; Wang et al., 2021), and agricultural (Berg and Shef
field, 2018; Lu et al., 2019; Joo et al., 2020; Tabari and Willems, 2022; Ji 
et al., 2022) droughts. These studies have used different types of data
sets, drought indicators, climate models, and scenarios which hinders 
drawing a perspective on the discrepancies of the results across different 
drought types. Several global studies have compared climate change 
impacts among different drought types but based their analysis on the 
older generations of global climate models, i.e., the simulations of the 
CMIP3 GCMs or Hadley Centre models (HadAM3 and HadCM3C) under 
the Special Report on Emissions Scenarios (SRES) (Burke and Brown, 
2008; Taylor et al., 2013), the CMIP5 GCMs under Representative 
Concentration Pathways (RCPs) (Orlowsky and Seneviratne, 2013; 
Touma et al., 2015; Wartenburger et al., 2017; Ukkola et al., 2018; 
Vicente-Serrano et al., 2020), and the simulations from the 
Inter-Sectoral Impact Model Inter-Comparison Project (ISIMIP) models 
forced by a limited number (4–5) of the CMIP5 GCMs under RCPs (Wan 
et al., 2018; Satoh et al., 2021). 

To the best of our knowledge, only three global studies (Cook et al., 
2020; Zeng et al., 2022; Zhao and Dai, 2022) compared the expected 
changes in the three drought categories using the CMIP6 GCMs. How
ever, they did not consider projection uncertainty, nor did they inves
tigate the significance of climate change signals. More specifically, it is 
currently unclear how total uncertainty and its contributors as well as 
the signal-to-noise ratio vary among different drought types. The 
quantitative description of uncertainty in future drought projections and 
its decomposition into different contributors is essential for a better 
interpretation of climate change impacts for informed policy decisions 
and actions to mitigate the associated risk (Taylor et al., 2013; Hos
seinzadehtalaei et al., 2018). The dominant source of uncertainty in 
climate change projections varies with climate model ensemble, vari
able, and region (Lehner et al., 2020; Tabari et al., 2021; Zhang and 
Chen, 2021). In addition to the lack of uncertainty assessments in the 
CMIP6 studies (Cook et al., 2020; Zeng et al., 2022; Zhao and Dai, 2022), 
these works did not compare different drought characteristics and did 
not address the full range of plausible future scenarios, which is 
particularly important for uncertainty analyses. We thus argue that a 
more systematic, comprehensive comparison of the climate change im
pacts on different drought types is required. 

This study explores the dependency of climate change signals on 
drought types by comparing the spatial distribution, magnitude, and 
uncertainty of climate change signals for meteorological, hydrological, 
and agricultural droughts on a global scale. The comparison is made for 
five drought characteristics, i.e. median intensity, peak intensity, me
dian duration, longest duration, and frequency, and for 3- and 12-month 
time scales. We characterize meteorological, hydrological, and agricul
tural droughts respectively by standardized precipitation index (SPI), 
standardized runoff index (SRI), and standardized soil moisture index 
(SSI) using the simulations from 18 CMIP6 GCMs for four Shared So
cioeconomic Pathways (SSPs) SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5- 
8.5. 
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2. Materials and methods 

2.1. Data 

To cover the traditional three categories of droughts (meteorological, 
agricultural, and hydrological), precipitation flux (including both liquid 
and solid phases), total runoff (total runoff including drainage through 
the base of the soil model), and total soil moisture content (water in all 
phases summed over all soil layers) were used. Precipitation data are 
analyzed only for global land grid cells to be consistent with runoff and 
soil moisture analysis. Though drought results may have limited prac
tical relevance for deserts and hyper-arid regions but might be useful for 
a physical understanding of climate change impact. We thus performed 
our analyses on the entire global land area. 

We used eighteen GCMs from the CMIP6 for which the concept of 
RCPs is integrated into ScenarioMIP and combined with SSPs. While the 
RCPs represent pathways towards different levels of greenhouse gas 
concentrations and their corresponding radiative forcing in the year 
2100 (van Vuuren et al., 2011), the different SSPs describe changes in 
demographics, human development, economy and lifestyle, policies and 
institutions, technology, environment, and natural resources (O’Neill 
et al., 2016). The CMIP6 GCMs include ACCESS-CM2, ACCESS-ESM1-5, 
CAMS-CSM1-0, CanESM5, CAS-ESM2-0, CNRM-CM6-1, CNRM-ESM2-1, 
FGOALS-f3-L, FGOALS-g3, GFDL-ESM4, INM-CM4-8, INM-CM5-0, 
IPSL-CM6A-LR, MCM-UA-1-0, MIROC6, MPI-ESM1-2-HR, 
MPI-ESM1-2-LR, MRI-ESM2-0, all providing monthly data for precipi
tation, runoff, and soil moisture for historical simulations and four 
future tier 1 scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) for 
the continuous period 1971–2100 (historical + SSP). These four most 
plausible scenarios envision different future worlds, respectively refer
ring to the low-forcing sustainability pathway, medium-forcing mid
dle-of-the-road pathway, medium-to high-end forcing pathway, and 
high-end forcing pathway. 

2.2. Characterizing droughts 

We used the SPI (McKee et al., 1993), the SRI (Shukla and Wood, 
2008), and the SSI (Hao and AghaKouchak 2013) to characterize 
meteorological, hydrological, and agricultural droughts, respectively. 
These standardized indices (SPI, SRI, and SSI) were calculated for two 
time-scales of 3 and 12 months, representing anomalies of accumulated 
values for the given month and the two and eleven previous months, 
respectively. The anomalies were calculated for the whole period 
1971–2100 as the baseline to certify a more robust quantification of the 
standardized index (Wu et al., 2005; Spinoni et al., 2020). Although 
parametric approaches to calculate the standardized indices are widely 
used in regional studies (Won et al., 2020; Li et al., 2020; Li et al., 2021), 
they have some disadvantages: 1) parametric approaches might lead to 
spatial sensitivity of distribution (Stagge et al., 2015; Vicente-Serrano 
and Beguería, 2016; Monish and Rehana, 2020; Yimer et al., 2022), 2) 
parametric approaches require the goodness-of-fit test and thus demand 
much more computation time (Dai et al., 2020), and 3) the same dis
tribution (e.g., Gamma distribution) is hard to be applied to data across 
the globe under varying hydroclimatic conditions due to the limitation 
of the nature of distributions (Ukkola et al., 2018). To avoid the bias 
caused by the choice of an inappropriate distribution and massive 
computation time for a global study, a non-parametric distribution was 
used for this study (Farahmand and AghaKouchak, 2015). More specif
ically, we employed the Gringorten plotting position to compute the 
empirical probability for precipitation, runoff, and soil moisture data for 
each month: 

p(xt)=
i − 0.44
n + 0.12

(1)  

where p(xt) is the empirical probability corresponding to month t, i is the 

rank of samples, and n is the sample size. This probability was then 
standardized into SPI, SRI, and SSI values through the inverse normal 
transformation (φ): 

SPIi / SRIi / SSIi =φ− 1(p(xt)) (2)  

2.3. Defining drought properties 

After computing the SPI, SRI, and SSI time series for the period 
1971–2100 for each model grid cell at a global level, the drought 
characteristics were determined for the historical period (1971–2000) 
and two future periods (2041–2070 and 2071–2100). A drought event 
starts when the local drought indicator is less than a threshold (− 0.5 
following Gu et al., 2020 and Tabari and Willems, 2022), lasts when the 
value is below the threshold for at least three consecutive months and 
ends when the index rises above the threshold. Global patterns and 
magnitude of changes in drought properties have shown to be similar 
across different thresholds (Tabari and Willems, 2022). 

We define drought duration as the number of months between the 
start and the end of an event. The longest drought duration refers to the 
maximum duration in each of the historical and future periods for each 
pixel. Drought intensity is the average indicator value of a drought 
event, while drought peak intensity is the maximum drought indicator 
value of an event. The drought frequency is the number of drought 
events for the historical and future periods. After the calculation of 
drought characteristics, the changes were calculated as the ratio of the 
magnitude of drought characteristics in the future periods over that of 
the corresponding characteristics in the historical period. To compute 
the ensemble median, the changes calculated at the native resolution of 
the CMIP6 GCMs are resampled to a 0.5◦ (latitude) × 0.5◦ (longitude) 
grid. Our preliminary analyses show that the CMIP6 ensemble median 
results are not sensitive to the choice of the common grid size for 
interpolation. Due to the importance of drought intensification, we focus 
more on the increasing signals in the drought characteristics in the 
paper. The spatial extent of increasing signals for the drought charac
teristics is defined as the percentage of grid points with an increasing 
signal relative to the total land grid points. 

2.4. Assessing sources of uncertainty 

We quantified the uncertainty in the projected changes for the five 
characteristics of different droughts at each model grid. The uncertainty 
was split into GCM and SSP uncertainties. To exclude the influence of the 
unequal sample sizes of GCMs and SSPs on uncertainty decomposition 
results (Hosseinzadehtalaei et al., 2017), the variance 
decomposition-same sample size method (VD-SSS; Tabari et al., 2019) 
was used for quantifying the GCM uncertainty. Thereby the reference 
ensemble size was first defined as equal to the smallest sample size 
among uncertainty sources (four in this work). After taking the median 
across the four SSPs, the method then iteratively resampled the GCM 
ensemble by randomly selecting GCMs of the reference size (4 out of 18) 
and computed the standard deviation of the changes across the boot
strap samples. This process was iterated (1 000 times) and the median of 
the empirical bootstrap distribution of sample standard deviation was 
taken as the GCM uncertainty. A conventional variance decomposition 
method was used for quantifying the uncertainty of the source with the 
reference size (SSP). The total uncertainty was defined as the sum of 
GCM and SSP uncertainties. 

The signal-to-noise (S2N) was calculated as the ratio of the ensemble 
median of changes to the uncertainty across the ensemble (Kendon et al., 
2008). The statistical significance of S2N ratios was tested by defining a 
t-test statistic in terms of the S2N ratio following Aalbers et al. (2018). 
For our ensemble size (n = 18), the change is significant at the 5% level 
when the absolute value of S2N ratios is larger than 0.54. 
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3. Results 

3.1. How do climate change signals differ across the characteristics of 
different drought types? 

The future changes in different drought types for the far-future 
period (2071–2100) are compared in terms of five characteristics for 
the 12-month scale. The analysis shows that the spatial extent of 
increasing signals in drought intensity increases in the order of meteo
rological, hydrological, and agricultural drought (hereafter MET-HYD- 
AGR hierarchy) across all SSP scenarios (Fig. 1a–c). The percentages 
of the global land area with an increasing signal of drought intensity 
under the SSP1-2.6 scenario are 25%, 41%, and 47% for meteorological, 
hydrological, and agricultural droughts, respectively. For SSP5-8.5, the 
percentages are 33%, 47%, and 54% for the respective drought types. 
The MET-HYD-AGR hierarchy is also found for the intermediate sce
narios (SSP2-4.5 and SSP3-7.0) and also holds for the magnitude of the 
increasing signals of drought intensity (Fig. 2a–c). The magnitude range 
across different drought types is 5–9%, 7–11%, 10–13%, and 12–13% 
for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. Spatially, 
the three drought types agree on an alleviation in northern North 
America, central Africa, and southern Asia and on the intensification of 
droughts in Central America, northern South America, the Mediterra
nean, southern Africa, and Australia (Fig. S1). However, the sign of 
changes varies across different drought types in other regions. 

For peak intensity, analogous regions of similarity and discrepancy 
across various drought types are observed, although the similarity across 
drought types is slightly higher for peak intensity compared to median 
intensity (Fig. S2). The MET-HYD-AGR hierarchy holds for both the 
spatial extent and magnitude of the increasing signals of peak intensity 
(Figs. 1 and 2). The percentage of the global land area with an increasing 
signal varies from 29% for meteorological drought to 46% for agricul
tural drought under SSP1-2.6 and from 31% for meteorological drought 
to 49% for agricultural drought under SSP5-8.5 (Fig. 1d–f). Compared to 
median intensity, the magnitude of changes is larger for peak intensity 

for all drought types. Following the MET-HYD-AGR hierarchy, the global 
median magnitude of increasing signals for peak intensity are 6%, 8%, 
and 12% for meteorological, hydrological, and agricultural droughts 
under SSP1-2.6, respectively, and 11%, 12%, and 16% for the respective 
scenarios under SSP5-8.5 (Fig. 2d–f). 

As can clearly be seen in the results (Figs. 1 and 2), the magnitude of 
changes increases from intensity (average and peak) to duration (me
dian and longest) for all drought types. Similarly, the discrepancy be
tween various drought types grows for duration. The global median 
magnitudes of prolonging droughts respectively for meteorological, 
hydrological, and agricultural droughts are 8%, 11%, and 17% under 
SSP1-2.6, 11%, 13%, and 23% under SSP2-4.5, 15%, 19%, and 29% 
under SSP3-7.0, and 18%, 20%, and 32% under SSP5-8.5 (Fig. 2g–i). The 
percentage of spatial discrepancy across the results of different drought 
types is similar between peak intensity and median duration. The 
spatial-extent discrepancy for median duration resembles that of peak 
intensity (Fig. S3). The discrepancy in the sign of changes is seen in 
16–17% of the global land for median duration, which is close to 
17–18% for peak intensity and lower than 19–22% for median intensity. 
The proportion of the land with an increasing signal of duration varies 
across the three drought types within the range of 24–39% for SSP1 and 
25–42% for SSP5-8.5 (Fig. 1g–i). 

In terms of magnitude, the largest discrepancy among the three 
drought types is seen for longest drought duration (Fig. 2). The regions 
with the greatest differences are primarily located in Europe and Central 
America (Fig. 3, S6-8). The global median magnitudes of increasing 
signals for longest drought duration respectively for SSP1-2.6, SSP2-4.5, 
SSP3-7.0, and SSP5-8.5 are 11%, 14%, 21%, and 26% for meteorological 
drought which rise to 25%, 33%, 41%, and 44% for the respective SSPs 
for agricultural drought (Fig. 2j-l). The spatial discrepancy between 
drought types for the sign of the changes in longest duration bears a 
resemblance to median duration (Fig. S4), albeit the discrepancy rate is 
slightly larger for the former (16–19% vs. 16–17%) (Fig. 2). 

Among the drought characteristics, the largest discrepancy in the 
spatial pattern of changes across the three drought types concerns the 

Fig. 1. Comparison of the spatial extent of the increasing signals in different characteristics (row) of three drought types (column) under different SSP scenarios 
between annual (12-month) and seasonal (3-month) scales. Violin plots depict ensemble probability density, and the ensemble median is shown by black cross. The 
changes are computed by comparing the characteristics between the historical (1971–2000) to the far-future (2071–2100) periods. 
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drought frequency (Fig. S5), which reaches 32% between meteorolog
ical and agricultural droughts. In contrast to the other drought charac
teristics, the spatial extent of increasing signals for drought frequency 
declines with SSP scenarios, which is more noticeable for agricultural 

and hydrological droughts (Fig. 1m-o). It implies that drought duration 
increases with SSP scenarios for the benefit of a decrease in frequency. 
The spatial extent of increasing drought frequency across the drought 
types declines from 25 to 57% for SSP1-2.6 to 24–40% for SSP5-8.5. The 

Fig. 2. Comparison of the median magnitude of the 
increasing signals in different characteristics (row) of 
three drought types (column) under different SSP 
scenarios between annual (12-month) and seasonal 
(3-month) scales. Violin plots depict ensemble prob
ability density, and the ensemble median is shown by 
black cross. The changes are computed by comparing 
the characteristics between the historical 
(1971–2000) to the far-future (2071–2100) periods. 
Due to a large difference of the magnitude of the 
increasing signals between different characteristics, 
for a better visibility of the results, individual y-axis 
limits are selected for each characteristic.   

Fig. 3. Relative change differences (statistical range; largest value minus smallest value) among the three drought types for different characteristics at an annual (12- 
month) scale, under the SSP5-8.5 scenario. The relative changes were computed between the historical (1971–2000) and the far-future (2071–2100) periods. The 
results are based on the ensemble median of 18 CMIP6 GCMs. 
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difference in the magnitude of increasing signals for frequency is smaller 
than that of duration (median and longest) but larger than intensity 
(median and peak). Following the MET-HYD-AGR hierarchy, the global 
median magnitudes of increasing signals for frequency are 10%, 13%, 
and 18% under SSP1-2.6 and 17%, 22%, and 26% under SSP5-8.5 
(Fig. 2m-o). 

In terms of the magnitude of increasing signals, the drought types 
show the largest discrepancy for drought duration (median and longest). 
The drought characteristics in ascending order of discrepancy between 
the magnitude of increasing signals across the three drought types are 
intensity, peak intensity, frequency, duration, and longest duration 
(Fig. 3, S6-8). There are different patterns for the discrepancy in the 
spatial extent of increasing signals: large differences are found between 
the spatial extent of increasing signals across different drought types for 
frequency and intensity and small differences for duration (Figs. 1 and 
2). 

In order to explore the sensitivity of the differences between the 
results of various drought types to the time scale, the results for the 3- 
and 12-month scales are compared (Figs. 1 and 2). For all drought 
characteristics, the sensitivity of the differences to the time scale is much 
larger for the magnitude of increasing signals compared with its spatial 
extent. For drought intensity, the differences in the spatial extent of 
increasing signals become larger with the time scale by 24%, while they 
become smaller with the time scale by 29% for the magnitude of 
increasing signals. This is because the spatial extent of intensifying 
droughts decreases with the time scale at a higher rate for meteorolog
ical drought (23%) compared with hydrological (11%) and agricultural 
(4%) droughts. A similar pattern but in the opposite order is found for 
the magnitude of intensifying droughts where it increases with the time 
scale at a higher rate for meteorological drought (82%) compared with 
hydrological (56%) and agricultural (28%) droughts. 

For peak intensity, the differences between the results of various 
drought types decrease with the time scale by 20% and 40% for the 
spatial extent and magnitude of increasing signals, respectively. Similar 
to intensity, the discrepancy among drought types for duration enlarges 
for the spatial extent (13% for median duration and 18% for longest 
duration) and reduces for the magnitude (44% for median duration and 
26% for longest duration). For frequency, while the discrepancy for the 
spatial extent remains almost the same by changing the time scale 
because of minor changes in peak values from the 12-month to 3-month 
scale, it increases by 22% for the magnitude of increasing signals. 

Climate change signals of different drought types were compared for 
the mid-future period (2041–2070), and the MET-HYD-AGR hierarchy is 

found to hold for this period as well. The areas with large differences 
among the various drought types are similar to those observed in the far- 
future period (2071–2 100) (Figs. S9–S12). 

3.2. How do projection uncertainties and signal-to-noise ratios differ 
across different drought types? 

Along with climate change signals, the uncertainty in the projections 
of all the drought characteristics for the far-future period (2071–2 100) 
at both 3- and 12-month scales also increases from meteorological to 
hydrological to agricultural drought (Fig. 4a and b). The total uncer
tainty for median intensity, peak intensity, median duration, longest 
duration, and frequency of agricultural drought is respectively 4.7, 4.9, 
1.4, 7.2, and 5.4 times larger than that of meteorological drought for the 
3-month scale. For the 12-month scale, the total uncertainty for the 
respective characteristics of agricultural drought is 3.3, 3.7, 1.4, 2.3, and 
3 times larger than that of meteorological drought. As previously re
ported (Lehner et al., 2020), climate change uncertainty increases with 
lead time toward the end of the 21st century (Fig. S13). However, the 
MET-HYD-AGR hierarchy for the uncertainty of drought projections in 
the far-future period holds for the mid-future period. 

The decomposition of the total uncertainty into GCM and SSP sources 
shows that for all three drought types the GCM uncertainty is the 
dominant source for all five characteristics and for two time scales 
(Fig. 4c and d). Depending on drought types and characteristics, GCM 
differences explain 68–84% of the total variance in climate change 
signals for the 3-month scale and 66–82% for the 12-month scale. Both 
GCM and SSP uncertainties also increase from meteorological to hy
drological to agricultural drought. Since this increase is larger for GCM- 
related uncertainty compared to those of SSPs for all characteristics 
(except peak intensity at the 3-month scale), the fractional contribution 
of GCM-related uncertainty follows the MET-HYD-AGR hierarchy while 
that of SSPs is the opposite. 

The spatial distribution of the GCM uncertainty differences among 
the three drought types for the far-future period reveals that the global 
medians of the differences are 9%, 16%, 21%, 34%, and 39% respec
tively for intensity, peak intensity, duration, longest duration, and fre
quency (Fig. 5). The GCM uncertainty difference is not globally uniform. 
For all drought characteristics, the GCM uncertainty differences be
tween the three drought types are larger in the Northern Hemisphere 
compared to the Southern Hemisphere, and the lowest differences are 
present in central Africa and southern and eastern Asia. The GCM un
certainty difference for intensity is less than 20% for almost the entire 

Fig. 4. Total (a, b) and fractional (c, d) uncertainties for changes in different drought types at the times scales of 3 (a, c) and 12 months (b, d) for the far-future 
period (2071–2100). 
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world. While the GCM uncertainty difference of >50% is found in <10% 
of the global land area for peak intensity and duration, it exceeds 30% of 
the land for longest duration and frequency. 

The increase of both signal and noise (uncertainty) from meteoro
logical to hydrological to agricultural drought raises the question of how 

the signal-to-noise ratios (S2N) would change between the three drought 
types. Our results indicate that the MET-HYD-AGR hierarchy holds for 
the spatial extent of significant S2N for all drought characteristics except 
frequency (Fig. 6). It implies a more important role of climate change 
signals than uncertainty for the spatial distribution of droughts. For 

Fig. 5. GCM uncertainty differences (statistical range; largest value minus smallest value) among the three drought types for different characteristics for the far- 
future period (2071–2100). 

Fig. 6. Comparison of the spatial extent (left column) and magnitude (right column) of significant signal-to-noise ratios (S2N) in different characteristics (row) of 
three drought types under different SSP scenarios based on the ensemble median of 18 CMIP6 GCMs. The increases from the historical period (1971–2000) to the far- 
future (2071–2100) period at the annual (12-month) scale are shown. 
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increasing signals, a significant S2N ratio for drought intensity under 
SSP1-2.6 is found in 5% of the global land area for meteorological 
drought, 8% for hydrological drought, and 9% for agricultural drought. 
The percentages of the land with a significant S2N of intensity for SSP5- 
8.5 grows to 16%, 16%, and 19% for the respective drought types. The 
percentages for the intermediate scenarios (SSP2-4.5and SSP3-7.0) are 
within the range of the extreme scenarios (SSP1-2.6 and SSP5-8.5). 
Similarly, for increasing peak intensity, the percentage of the land 
with a significant S2N increases from 3 to 10%, depending on the SSP 
scenarios, for meteorological drought to 9–16% for agricultural drought. 
A significant S2N for prolonging duration is seen in 3–7%, 5–9%, and 
5–10% of the global land for meteorological, hydrological, and agri
cultural droughts, respectively. A similar spatial extent of significant 
S2N is found for longest duration, accounting for 3–6% for meteoro
logical drought, 5–7% for hydrological drought, and 6–10% for agri
cultural drought. Among all the characteristics, frequency shows a 
different pattern. In contrast to the spatial extent of significant S2N, its 
magnitude is similar across different drought types. The MET-HYD-AGR 
hierarchy for S2N also holds for the mid-future period (Fig. S14). 

The largest S2N discrepancy among drought types is found in the 
Northern Hemisphere, especially where a decreasing signal of meteo
rological drought is projected (Fig. 7, S15-S17). For all drought char
acteristics, the S2N discrepancy increases with the SSP scenarios. For 
SSP5-8.5, the global medians of the S2N difference are 76%, 74%, 
99%, 107%, and 90% for median intensity, peak intensity, median 
duration, longest duration, and frequency, respectively. The global 
medians of the S2N difference decrease to 64%, 57%, 80%, 89%, and 
71% for the respective characteristics under SSP1-2.6. 

4. Discussion 

The results of this study highlight the increasing climate change 
signals from meteorological to hydrological to agricultural drought, 
where the characteristics of agricultural drought show, on average, 

twice as large an increase in spatial extent and magnitude compared to 
meteorological drought. Precipitation shortage can be strengthened 
through a positive loop feedback where dry soil and reduced vegetation 
cover would increase the surface albedo, limit evapotranspiration, and 
increase surface warming, thereby intensifying meteorological drought 
(Taylor et al., 2002; Dai et al., 2018). The changes in soil moisture and 
runoff are mainly driven by the changes in precipitation and evapo
transpiration (Zhao and Dai, 2015, 2022). The projected ubiquitous 
increase in evapotranspiration (Tabari et al., 2021), which is missing in 
meteorological drought, reinforces precipitation decreases in some re
gions and offsets precipitation increases in other regions, while 
increased runoff can offset soil moisture increases due to increased 
precipitation (Zhao and Dai, 2022). 

The changes in all the characteristics of meteorological and hydro
logical droughts are consistent in the Southern Hemisphere. However, 
opposite changes are found in some regions in the Northern Hemisphere 
such as North America, Europe, and central Asia. These are mostly snow- 
dominated regions where snow dynamics are important. In these re
gions, global warming induced changes in snowmelt timing (Musselman 
et al., 2017), snow water equivalent (SWE; Shi and Wang, 2015), and 
snow-rain partitioning (Burn and Whitfield, 2016) play central roles. 
Similarly, flood changes in these regions would not follow the changes in 
extreme precipitation due to the role of snow dynamics (Tabari, 2021). 

Similar to climate change signals, total uncertainty also increases 
from meteorological to hydrological to agricultural drought. This 
enlarging pattern is observed for both GCM and SSP uncertainties. The 
enlargement of GCM uncertainty is due to the increasing complexity 
from precipitation to runoff to soil moisture to be modeled by GCMs. 
This complexity is evident from the larger bias of surface runoff and soil 
moisture simulations compared to precipitation in CMIP6 GCMs (Qiao 
et al., 2022). As models struggle to accurately represent hydrological 
and agricultural droughts and their related mechanisms, a large uncer
tainty is expected in future projections due to the different representa
tions of these mechanisms by GCMs. In fact, runoff and soil moisture 

Fig. 7. Signal-to-noise ratio differences (statistical range; largest value minus smallest value) among the three drought types for different characteristics under the 
SSP5-8.5 scenario for the far-future period (2071–2100). 
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projections inherit the uncertainty associated with precipitation (i.e., 
error propagation) next to their own uncertainties arising from different 
representations of hydrological processes by GCMs (Lu et al., 2019). To 
accurately project future soil moisture, a variety of factors must be 
considered, such as future precipitation under warming, sophisticated 
hydrological processes, land surface changes, wind speed, and atmo
spheric CO2 (Sheffield and Wood, 2008). However, many CMIP6 GCMs 
employ simplified hydrological models that omit complex treatments of 
certain hydrological processes (Mueller and Seneviratne, 2014), leading 
to greater uncertainties in modeled soil moisture. Some of the hydro
logical processes that have been omitted include lateral groundwater 
flow, lateral flow of reinfiltrating river water, and irrigation with river 
water (Zampieri et al., 2012; Greve et al., 2014; Clark et al., 2015). 
Additionally, the highly variable data output among different models is 
due to the employment of various structures and physical parameteri
zation schemes (Gleckler et al., 2008; Jamison and Kravtsov 2010). The 
representation of snow cover and its links with climate in LSMs is a 
known source of bias in runoff and soil moisture simulations of climate 
models. To ensure accurate capturing of the timing and atmospheric 
response to snowmelt in climate models, it’s important to consider the 
temporal dynamics of snow-atmospheric coupling throughout different 
stages of snow depletion (Xu and Dirmeyer, 2011, 2012). Snow-albedo 
feedback, the energy sink caused by spring snow melting, and the 
thermal insulation effect of snow on the underlying soil are all factors 
that can lead to biases in climate models related to snow (Koven et al., 
2013; Gouttevin et al., 2012; Bart Van den Hurk et al., 2016). LSMs were 
found to be an important source of GCM uncertainty in historical CMIP5 
runoff and soil moisture drought simulations (Ukkola et al., 2018). A 
lower GCM uncertainty for the average drought duration and intensity 
of meteorological drought compared to those of hydrological and agri
cultural droughts for historical periods was partly attributed to the 
shorter duration of meteorological droughts (Ukkola et al., 2018). 

5. Conclusions 

This work compared climate change signals and signal-to-noise ra
tios for five drought characteristics between meteorological, hydrolog
ical, and agricultural droughts at the global scale using CMIP6 GCM 
simulations. The results show that the spatial distribution and magni
tude of increasing signals in all five drought characteristics rise from 
meteorological to hydrological to agricultural drought. Similarly, un
certainty increases from meteorological to hydrological to agricultural 
drought. Despite this uncertainty enlargement, the MET-HYD-AGR hi
erarchy holds for the spatial extent of significant signal-to-noise ratios 
for all drought characteristics except frequency. The magnitude of sig
nificant S2N, however, revealed a mixed pattern. 

Our results show that precipitation drought cannot substitute as 
proxies for runoff and soil moisture droughts because of their spatially- 
varying responses to climate change, different uncertainties, and signal- 
to-noise ratios. The difference in the results of different drought types is 
particularly pronounced in regions where opposite signs of changes and 
very different levels of confidence (in terms of signal-to-noise ratios) are 
found. Particular care is required when using drought indicators for 
different drought categories, e.g., use of precipitation drought for 
analyzing the vulnerability of crop production to droughts (Kim et al., 
2019; Leng and Hall, 2019), which might lead to inadequately-targeted 
mitigation and adaptation strategies. Larger uncertainties of runoff and 
soil moisture droughts highlight the need for a better understanding of 
the key processes governing runoff and soil moisture droughts and their 
representations in land-surface models, although these might not 
necessarily lead to reduced uncertainties in the projections. Our study 
compared drought types based on their hazards, but recent studies have 
shown that exposure and vulnerability play significant roles in shaping 
future drought risks (Tabari et al., 2021). Therefore, future research can 
compare drought types based on impacts such as exposed population or 
assets, as done in recent studies (Spinoni et al., 2021; Yin et al., 2023). 
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