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Introduction

In this thesis we develop techniques to study sums of squares in fields. We produce
methods to write sums of squares in fields using few squares, and we establish lower
bounds for the number of squares that are necessary to represent sums of squares.

The earliest known human investigations about squares and sums of squares date back
to no less than three and a half millennia ago, with ancient tablets from around 1800 b.C.
witnessing the interest of the Old Babylonians in finding pythagorean triples, (that is,
integers x, y, z such that x2 + y2 = z2); see [Neug57, Sections 2.19, 2.20]. Since then,
issues about sums of squares were frequently raised and solved in the four corners of the
world, but it is mostly in the last three centuries that such a subject assumed its current
shape. Two turning points in particular can be easily identified in this period. The first
one is Euler’s and Lagrange’s seminal works on sums of squares in Q and in Z during
the eighteenth century, which culminated into Lagrange’s renowned four-square theorem
stating that every positive integer is a sum of four squares, and which laid the foundations
of modern number theory. The second one is Hilbert’s works on sums of squares in number
fields and in real polynomials at the turn of the nineteenth century. Hilbert postulated
that any sum of squares in a number field is a sum of four squares (which was later proved
by C. Siegel in [Si21]), and investigated positive definite forms over the real numbers. The
latter enquiry led him to ask, in the seventeenth of the 23 problems of his influential list
[Hi02], “whether every (ed: real positive) definite form may not be expressed as a quotient
of sums of squares of forms.” E. Artin [Ar27] gave a positive answer to Hilbert’s question,
showing that real positive definite forms are exactly the quotients of sums of squares of
forms, but did not provide any bound on the number of squares appearing in such sums.
This led other mathematicians to investigate systematically the following questions.

Question 1. Given a commutative ring R, does there exist n ∈ N such that any sum of
squares in R is a sum of n squares in R? If so, what is the smallest such number?

Such a minimum number was later called the Pythagoras number of R and denoted by
p(R); in case the answer to the first question is negative, one sets p(R) = ∞. We adopt
the notation ΣR2 for the sums of squares in R and ΣnR

2 for the sums of n squares in R,
for any positive integer n. In view of this notation, p(R) = inf{n ∈ N+ | ΣR2 = ΣnR

2},
and Question 1 amounts to the computation of the Pythagoras number of a ring. In
case R is a field, a specific range of techniques that may be applied to tackle this issue is
available in the literature. In this thesis we focus mainly on the study of sums of squares
in fields of characteristic different from 2 (any sum of squares in a field of characteristic
2 is a square). Our principal objective is to develop methods to compute upper bounds
on the Pythagoras number of fields.

The investigation of sums of squares is inseparably connected with the study of
quadratic forms. Indeed, let K be a field and n ∈ N. Then sums of n squares in K
are exactly the elements of K that are represented by the quadratic form X2

1 + . . .+X2
n

over K. In view of this, we begin the first chapter of this document by introducing the
reader to the basics of the theory of quadratic forms over fields of characteristic different

3
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from 2, and only in Section 1.2 we focus our attention to sums of squares in fields. A
crucial property of the quadratic form X2

1 + . . . + X2
n discovered by A. Pfister [Pfi65b]

is that it is multiplicative whenever n is a power of 2. In terms of sums of squares, this
entails for any m ∈ N that the product of two sums of 2m squares in a field is again a sum
of 2m squares, that is, (Σ2mK

2)× = Σ2mK
2 ∖ {0} is a multiplicative subgroup of K× for

any field K. In the perspective of computing upper bounds for the Pythagoras number
of fields, this is a very useful property, since it is often possible to write sums of squares
as products of sums of squares with certain properties, and thus reduce the problem to
bound the number of squares necessary to represent sums of squares with such properties.
In Chapter 1, we focus on products of quadratic forms.

Set m = ⌈log2 n⌉. From the multiplicativity of (Σ2mK
2)× for a rational function

field in n variables, we obtain that the product of two positive definite quadratic forms
in R[X1, . . . , Xn] is a sum of 2m squares in R(X1, . . . , Xn). It is straightforward that
X2

1 · (X2
1 + . . . +X2

n) is not a sum of n − 1 squares in R(X1, . . . , Xn), hence this bound
is optimal when n is a power of 2. When n is not a power of 2, it is not clear in general
whether the bound 2m is optimal. Nevertheless, it was already known to Hilbert [Hi88]
that this bound is not optimal when n = 3; in this case any product of two positive
definite quadratic forms is a sum of three squares of fractions of real forms in three
variables. A modern proof of this due to C. Scheiderer [Sche10, §9] inspired us the work
in Section 1.4, where we show that this bound is in fact not optimal for all integers of the
form n = 2k+1 + 1 where k ∈ N. More precisely, we show the following.

Theorem 1 (Theorem 1.4.10). Let k ∈ N, let n = 2k+1+1 and let ϕ1, ϕ2 ∈ R[X1, . . . , Xn]
be positive definite quadratic forms. Then ϕ1 · ϕ2 can be written as a sum of (3n − 1)/2
rational functions in R(X1, . . . , Xn).

Note that for large k, the bound (3n−1)/2 = 2k+2−2k+1 provided by Theorem 1 is
significantly smaller than the bound 2k+2 discussed above. Nevertheless, we do not know
whether the new bound is actually optimal for arbitrary k. In fact, we show that the bound
is not yet optimal for k = 1, that is, for n = 5. In this situation, Theorem 1 implies that
the product of two positive definite quadratic forms in R[X1, . . . , X5] is a sum of 7 squares
in R(X1, . . . , X5); we prove that it is actually a sum of 6 squares. Furthermore, we show
that it is possible to obtain an explicit formula to write the former product as a sum of
6 squares, provided that one is able to compute an explicit simultaneous diagonalisation
of the two quadratic forms in question. However, this is made by means of the so-called
Degen-Cayley’s identity for products of the sums of 8 squares. In view of A. Hurwitz’
work [Hur98], the existence of an analogous formula for products of sums of a higher
number of squares can be excluded. Hence we cannot obtain any further improvement
to the bound in Theorem 1 for higher k by reproducing this method. Furthermore, it
remains open whether the bound 6 is optimal.

Question 2. Is the product of two positive definite quadratic forms in R[X1, . . . , X5] a
sum of five squares in R(X1, . . . , X5)?

The behaviour of quadratic forms is heavily depending on the underlying base field.
Luckily, in certain situations it is possible to infer information about quadratic forms
over a field, and more specifically about the elements that they represent, from the
understanding of quadratic forms over more familiar fields. This is the case for henselian
valued fields, where it is often possible to obtain information on quadratic forms from the
study of the quadratic forms over the residue field. Valued field, valuations and valuation
rings will be thoroughly discussed in Chapter 2, since their use in the following chapters
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will be pervasive. In Section 2.4, we focus on their applications to the study of sums
of squares. We also discuss the connections between valuations and absolute values; see
Section 2.3. Absolute values will be involved in the other key tool to move the study of
quadratic forms to familiar fields, that is, the so-called local-global principles. The most
famous local-global principle is undoubtedly the one due to H. Hasse and H. Minkowski,
which can be stated as follows.

Theorem A (Hasse-Minkowski). Let K be a number field, let x ∈ K and let ϕ be a
quadratic form over K. Then x is represented by ϕ over K if and only if it is represented
by ϕ over the completion of K with respect to any absolute value on K.

The usefulness of Theorem A lies in the fact that studying quadratic forms in a number
field is more difficult than doing so in its completions, which are indeed henselian valued
fields with a finite residue field.

Another local-global principle that will play a crucial role in this dissertation is due
to K. Kato. Boiled down to the quadratic forms in which we are interested, it may be
stated as follows.

Theorem B (Kato). Let F be a finite field extension of Q(X) and let f ∈ ΣF 2. Then

f ∈ Σ4F
2 if and only if f ∈ Σ4(F ⊗Q Q2)

2
, where Q2 is the field of the dyadic numbers.

In Chapter 3, we examine holomorphy rings, that is, intersections of valuation rings
of a field. Our attention for such objects is explained by the fact that in presence of an
adequate local-global principle they may contain, roughly speaking, all the information
about sums of squares that one can extract from the completions. Another advantage of
holomorphy rings is that they have very nice algebraic properties, under mild assumptions.
In full generality, they are integrally closed domains. When the intersection is finite, they
are semilocal Bézout domains. In Chapter 7 we will exploit this property extensively.

Another type of holomorphy ring carrying good algebraic properties -and which will
play an important role in this thesis- is given by the intersection of all real valuations on
a field. Let K be a field. We say that K is real if −1 /∈ ΣK2, and nonreal otherwise.
Given a valuation ring O of K, we say that O is real if the residue field of O is real, and
nonreal otherwise. The intersection of all real valuation rings of K is denoted by H(K)
and is called the real holomorphy ring of K; if no real valuation ring of K exists, we set
H(K) = K. It is known that H(K) is a Prüfer domain, that its fraction field is K, and
that (x1H(K)+. . .+xnH(K))∗2 = (x21+. . .+x

2
n)H(K) for any n ∈ N, x1, . . . , x1 ∈ H(K);

see e.g. [Bec82]. It is also known that H(F ) is a Dedekind domain for any finite field
extension F/Q(X); see e.g. [FJ08, Proposition 3.3.2].

In Section 3.2, we will show for a real field K that H(K) can be obtained as the
intersection of certain valuation rings, which are associated to the orderings on K. After
that, in Section 4.1, the most relevant results in the literature around Pythagoras number
of function fields in one variable will be presented to the reader. This integrates the
introduction to the Pythagoras number of a field given in Section 1.2, where ample
attention is dedicated to the connection between the Pythagoras number of a nonreal
field and its level.

Let K be a field. The level of K, which we denote by s(K), is defined as the minimal
n ∈ N such that −1 ∈ ΣnK

2 if such an n exists (that is, if K is nonreal), and as
∞ otherwise. A fascinating property of the level of a field is that it is always ∞ or a
power of 2; this was proven by Pfister [Pfi65a] as a consequence of the multiplicativity of
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(Σ2kK
2)× for k ∈ N. Furthermore, the identity

x =
(x+ 1)

2

2

− (x− 1)

2

2

allows us to establish elementarily the relation s(K) ⩽ p(K) ⩽ s(K) + 1 and the identity
ΣK2 = K for every nonreal field K of characteristic different from 2. As a consequence,
the Pythagoras number of a nonreal field is always equal to 2k or 2k + 1 for some k ∈ N.
Moreover, any pair of the form (2k, 2k) or (2k, 2k+1) with k ∈ N is realised as (s(K), p(K))
for some field K; see e.g. [Pfi95, Example 3.1.2 (9) and Proposition 7.1.5].

The situation of real fields is not quite the same. Though for a while only real fields of
Pythagoras number ∞, 2k or 2k+1 for k ∈ N were known, eventually D. Hoffman [Ho99]
showed that there exist real fields of arbitrary Pythagoras number. Nevertheless, to this
date the only known examples of real fields with finite Pythagoras number not contained
in {2k, 2k + 1 | k ∈ N} are constructed by infinite iterations of function field extensions.
This comes from the fact that it is not yet understood how the Pythagoras number of
a field behaves under finitely generated extensions. Even finite extensions produce big
problems. A. Prestel [Pre78] found real fields K with prescribed Pythagoras number in
{2k, 2k + 1 | k ∈ N+} ∪ {∞} admitting a real quadratic field extension F/K such that
p(F ) = 2; this implies that the Pythagoras number can drop drastically when extending a
field. On the other hand, for any real fieldK and any finite field extension F/K it is known
[Pfi95, Proposition 7.1.13] that p(F ) ⩽ [F : K] · p(K), but this upper bound does not
seem very satisfactory, since no example is known where p(F ) ⩾ p(K)+2. For finite field
extensions of Q, the situation became completely clear after the publication of Theorem A
in [Ha23]. Let K be a number field. If K is nonreal, then p(K) = min{s(K) + 1, 4}. If K
is real and there exists a dyadic absolute value of K having odd degree, then p(K) = 4,
otherwise p(K) = 3; see [Pfi95, Examples 7.1.4 (2), (3)]. Note that s(K) can also be
computed explicitly using Theorem A; see [Pfi95, Examples 3.1.2 (6)].

When we turn our attention to transcendental field extensions, the behaviour of the
Pythagoras number is even more obscure. A fundamental discovery by J.W.S. Cassels
[Cas64, Theorem 2] was that p(K(X)) ⩾ p(K) + 1 for any real field K. Since p(R) = 1
and p(R(X)) = 2, it is elementary that such a bound is optimal. On the other hand,
examples of fields K such that p(K(X)) ⩾ p(K) + 2 are known [Pfi95, Example 7.1.11],
therefore the converse inequality fails to hold generally. As a matter of fact, it is not even
known whether p(K) <∞ implies p(K(X)) <∞ for any real field K.

Nevertheless, classic fields seem to behave quite well under rational function field
extensions. For instance, it was shown by Y. Pourchet [Pou71] that p(K(X)) ⩽ 5 for any
number field K; soon after [HJ74], J.S. Hsia and R.P. Johnson concluded the following.

Theorem C (Pourchet, Hsia, Johnson). Let K be a real number field. Then

p(K(X)) = p(K) + 1.

The lion’s share in the proof of this statement lies in Pourchet’s paper, which is very
technical, and relies on four main ingredients. The first one is a local-global principle for
quadratic forms over K(X), where K is a number field. This may be seen as a special
case of Theorem B when K = Q, and more generally as a special case of Kato’s local-
global principle from [Kat86], though the statement for rational function fields was known
much earlier. In Chapter 5 we give a new argument for this local-global principle, which
only makes use of classical instruments of quadratic forms. As a matter of fact, its only
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ingredients are Springer’s theorem for non-dyadic completely valued fields and the Hasse-
Minkowski Local-Global Principle. Furthermore, our argument also holds slightly more
generally, allowing us to prove the following theoretical statement.

Theorem 2 (Theorem 5.2.2). Let m ∈ N+ and let E be a set of field extensions of K.
Assume that for every l ∈ {m − 1,m}, p ∈ PK , f1, . . . , fl ∈ K[X] ∖ pK[X] such that
⟨⟨fvp1 , . . . , f

vp
l ⟩⟩K(X)vp is anisotropic, there exist L ∈ E and α ∈ L such that p(α) = 0

and ⟨⟨f1(α), . . . , fl(α)⟩⟩L is anisotropic. Then every anisotropic m-fold Pfister form over
K(X) is anisotropic over L(X) for some L ∈ E.

From Theorem 2 we recover Theorem B for the case F = Q(X), but also an analogous
statement for Q((t1)) · · · ((tn))(X); see Corollary 5.3.12.

The other main ingredients of the proof of Theorem C are a classical approximation
theorem and the so called root-continuity. The first one is standard and will not require
much attention. The second one will be discussed thoroughly in sections 6.2 and 6.4;
the central idea is to exploit Krasner’s lemma [EP05, Theorem 4.1.7] to show that for
polynomials with coefficients in a henselian valued field, being represented by a given
quadratic form -and thus, in particular, being a sum of n squares, for n ∈ N+- is an open
property. Roughly speaking, this amounts to saying that the property of being represented
by a given quadratic form is preserved modulo small movements in the topology induced
by the Gauss extensions of the valuation over the base field; see Corollary 6.4.1 for a
more precise statement. Our result is valid over arbitrary non-dyadic henselian valued
fields, thus in a much broader environment than the one -completions of a number field-
adopted by Pourchet.

The last crucial ingredient in Pourchet’s proof is the identity

4gh = (λg + λ−1h)2 − (λg − λ−1h)2,

which holds over a field K for any f, g ∈ K[X] and λ ∈ K×. Such an elementary identity
and its clever use are arguably Pourchet’s most groundbreaking contribution in his proof.
This inspires Section 6.1, which is quite technical, but is developed as arbitrarily as
possible, generalising remarkably the original proof, which was only working in p-adic
fields; we state the main result in Corollary 6.1.8. Finally, in Section 6.3 we put together
all the ingredients and recover that p(K(X)) ⩽ 5 for every number field K.

In the light of what was explained above, it should not surprise that very little is
known for transcendental field extensions that are not purely transcendental, even when
the transcendence degree is low and even over very well known base fields. In Chapter 4
we focus on bounding from above the Pythagoras number of field extensions of Q of
transcendence degree 1, that is, of algebraic field extensions of Q(X). This can easily
be reduced to the finitely generated case, that is, to bounding Pythagoras number of
finite field extensions of Q(X). This issue is particularly interesting and has already been
studied by F. Pop, who showed in an unpublished note [Pop90] the following upper bound.

Theorem D (Pop). Let K be a finite field extension of Q(X). Then p(K) ⩽ 6.

In Section 4.2, we provide an argument for Theorem D which is inspired by Pop’s
work, but which differs in the techniques involved: Pop’s argument is based on standard
geometrical techniques, whereas ours is inherently algebraic. We observe for a finite field
extension K/Q(X) that the real holomorphy ring of K contains much of the information
about Σ5K

2; more precisely, we show that H(K)× ∩ ΣK2 ⊆ Σ5K
2, and we recover

Theorem D from the properties of H(K), and in particular from the fact that it is a
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Dedekind domain. Our argument also recovers for a rational function field over a number
field that a large class of sums of squares -morally half of them- are indeed sums of five
squares; see Corollary 4.2.8. As opposed to Pourchet’s argument, we obtain this through
an elementary and elegant argument. Unfortunately, it remains open whether the bound
6 in Theorem D is optimal, or can be lowered down to 5.

In Chapter 7 we provide for a field K and for n ∈ N+ a sufficient condition to satisfy
p(K) ⩽ 2n+1, namely the presence of a Bézout subring ofK possessing certain properties.
We name such subrings square-effective. Given a field K and a subring H ⊆ K, we set
p∗(H) = inf{k ∈ N | H× ∩ΣK2 ⊆ ΣkK

2} ∈ N ∪ {∞}. By using only elementary algebra,
we show the following result.

Theorem 3 (Theorem 7.1.3). Let K be a field and H a square-effective subring of K
having fraction field K. Let J be the Jacobson radical of H. If (1 + ΣK2) ∩ J ̸= ∅, then

p(K) ⩽ p∗(H) + 1.

In Section 7.1 and Section 7.2, we examine square-effective domains, in order to
identify situations in which Theorem 3 may be applied. This happens for example when a
field K contains a semilocal-Bézout subring H such that Frac(H) = K and 1+H2 ⊆ H×.
This sends us back to the holomorphy rings given by a finite intersection of valuation
rings, and therefore to local-global principles involving valuations. Indeed, in certain
fields K the presence of such a local-global principle is sufficient to produce a subring
H ⊆ K satisfying at the same time the hypotheses of Theorem 3, and an upper bound
for p∗(H) of the form 2k for some k ∈ N.

In Section 7.3, we apply Theorem 3 in the context of field extensions of transcendence
degree 1, retrieving the following statement contained in [BGVG14, Theorem 6.13].

Theorem E (Becher, Grimm, Van Geel). Let n, r ∈ N. Let K be a field such that
p(E) ⩽ 2n+1 for every finite field extension E/K(X). Let F/K((t1)) · · · ((tr))(X) be a
finite field extension. Then p(F ) ⩽ 2n+1 + 1.

This applies in particular to K = R, for n = 0. The proof given in [BGVG14] is based
on [CTPS12, Theorem 3.1], which is a sophisticated local-global principle involving the
most modern techniques of field patching, and which is exploited for 2n + 1 and 2n + 2-
dimensional quadratic forms over F . Our argument only exploits the local-global principle
for 2n+1-dimensional quadratic forms that are Pfister neighbours, which makes the proof
simpler and easier to reproduce in other situations. As an example of this phenomenon,
we show the following.

Theorem 4 (Example 7.3.4). Set M(X,Y ) = X2Y 4 + X4Y 2 − 3X2Y 2 + 1 ∈ R[X,Y ],

K = R(Y )((t)) and F = K(X)
(√

(tX − 1)M(X,Y )
)
. Then p(F ) = 5.

The polynomial X2Y 4 + X4Y 2 − 3X2Y 2 + 1 from Theorem 4 is known as Motzkin
polynomial and is known to be a sum of 4 but not of 3 squares in R(X,Y ); see [CEP71].
Theorem 4 could be obtained from [CTPS12, Theorem 3.1], but using our method (which
is inspired by Becher and Van Geel in [BVG09, Lemma 3.8 - Theorem 3.10]) we only
involve Milnor’s exact sequence as a local-global principle ingredient.

In Section 7.4, we apply Theorem 3 to the fraction fields of a complete local domain of
Krull dimension 2. We retrieve the upper bound p(F ) ⩽ 3 for every finite field extension
F/R((t2, t1)), which is contained in [Hu15]. In order to do so, we use a local-global
principle from [HHK15, Corollary 4.7] and techniques from algebraic geometry. Roughly
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speaking, for a finite field extension F/R((t0, t1)) we identify finitely many valuation rings
of F , whose intersection produces the desired square-effective ring, as the valuation rings
corresponding to the (finitely many) irreducible components of a regular model of the
affine scheme associated to the integral closure of R[[t0, t1]] in F . We also obtain the
following.

Theorem 5 (Corollary 7.4.11). Let K be a field and let n ∈ N be such that p(E) ⩽ 2n+1

for any finite field extension E/K(X). Let r ∈ N and let F/K((t1)) · · · ((tr))((tr+1, tr+2))
be a finite field extension. Then p(F ) ⩽ 2n+1 + 1.

The hypothesis of Theorem 5 applies in particular when K is a field extension of
transcendence degree n of R (or of transcendence degree n − 1 ⩾ 1 of Q); in this case,
we obtain that p(F ) ⩽ 2n+1 + 1 for any field F as in the statement. When n ⩾ 2, this is
a significant improvement compared to the bound p(F ) < 2n+2, which one could derive
from [Hu17, Corollary 4.7] by using [BVG09, Theorem 3.5].
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Notations

We fix some general terminology that will be used throughout this thesis. We denote by

⋄ N the set of natural numbers, including 0;

⋄ N+ the set N∖ {0};

⋄ Z the ring of integers;

⋄ Q the field of rational numbers;

⋄ R the field of real numbers;

⋄ C the field of complex numbers.

Given a matrix A, we denote by At the transpose matrix of A. For a set S, we set:

⋄ S(1) = S;

⋄ S(n) = S × S(n−1) for n ∈ N+.

In this thesis we will only make use of rings with unit, so by a commutative ring we
will mean a commutative ring with unit. For a commutative ring R, we denote by

⋄ char(R) the characteristic of R;

⋄ 0R the zero ideal of R;

⋄ Rn the set {xn | x ∈ R}, for n ∈ N;

⋄ ΣnR
2 the set {Σni=1 x

2
i | x1, . . . , xn ∈ R} for n ∈ N;

⋄ ΣR2 the set {Σni=1 x
2
i | n ∈ N, x1, . . . , xn ∈ R};

⋄ Spec(R) the set of prime ideals of R, with its affine scheme structure when considered
as a scheme;

⋄ Max(R) the set of maximal ideals of R;

⋄ S× the set {x ∈ S | there exists y ∈ S such that xy = 1}, for any S ⊆ R;

⋄ Jac(R) the Jacobson radical ideal of R, that is, Jac(R) = {x ∈ R | 1−Rx ⊆ R×};

⋄ (x)R or simply xR the principal ideal of R generated by x ∈ R;

⋄ Rp the localisation of R at p ∈ Spec(R).

For a function f , we denote by Im(f) the image of f .



Nederlandse samenvatting

In deze thesis worden er methoden ontwikkeld om sommen van kwadraten in lichamen te
bestuderen. In het bijzonder zoeken we het minimal aantal kwadraten dat nodig is om
sommen van kwadraten in een lichaam te representeren.

In het eerste hoofdstuk van deze thesis, bestuderen we producten van twee kwadratische
vormen over R. Zij n ∈ N+ en ϕ, ψ ∈ R[X1, . . . , Xn] positief definiete kwadratische
vormen. Stel m = ⌈log2 n⌉. Het is bekend dat ϕ · ψ een som van 2m kwadraten is in
R(X1, . . . , Xn). In het geval dat n = 2k+1+1 voor k ∈ N, tonen we dat ϕ ·ψ een som van
(3n − 1)/2 kwadraten in R(X1, . . . , Xn) is. Deze bovengrens is lager dan 2m als n ⩾ 5.
In het algemeen weten we niet of (3n − 1)/2 een optimale grens is voor de lengte van
ϕ · ψ; we tonen toch dat het niet optimaal is voor n = 5, wanneer ϕ · ψ een som van zes
kwadraten in R[X1, . . . , Xn] is.

Voor een lichaam K heet het minimale aantal kwadraten dat nodig is om al de
sommen van kwadraten in K te schrijven het Pythagorasgetal van K, en we noteren
het als p(K). F. Pop toonde dat p(F ) ⩽ 6 voor elk functielichaam F/Q in één variabele.
Pop’s bewijs volgt uit een lokaal-globaal principe door K. Kato en standaard technieken
van algebräısche meetkunde. Pop’s werk geeft inspiratie voor een alternatief argument
dat volgt uit hetzelfde lokaal-globaal principe door middel van algebraische technieken.
Specifieker, stel een functielichaam F/Q in één variabele. De doorsnede van de discrete
valuatieringen van F met een reëel residulichaam heet de reële holomorfie ring van F , en
wordt aangeduid met H(F ). Men kan bewijzen dat H(F ) een Dedekinddomein is en dat
het andere nuttige algebräısche eigenschappen heeft. Dankzij deze eigenschappen, kunnen
we tonen dat elke som van kwadraten in F die invertebaar is in H(F ), een som van 5
kwadraten is; we vinden ook de grens p(K) ⩽ 6 met elementaire berekeningen terug.

Eerder had Y. Pourchet getoond dat p(F ) ⩽ 5, als F = K(X) voor een getallenlichaam
K. Pourchet’s bewijs maakt sterk gebruik van het feit dat K een getallenlichaam is, maar
het maakt niet duidelijk welke van zijn eigenschappen noodzakelijk zijn. We ontleden
het in verschillende stukken en we bewijzen dat elk van deze stukken onder zwakkere
voorwaarden geldt. We geven ook een nieuw bewijs van het lokaal-globaal principe dat in
Pourchet’s bewijs gebruikt wordt. Ons argument werkt in een meer algemene setting en
levert ook een lokaal-globaal principe voor de lichamen K((t1)) . . . ((tr))(X) waar r ∈ N.

Zij K nu een lichaam. In het laatste hoofdstuk wordt er een methode ontwikkeld
om bovengrenzen voor het Pythagorasgetal van K van de vorm 2n + 1 met n ∈ N
te bewijzen. Onze methode steunt op de aanwezigheid van een deelring van K met
bepaalde algebraische eigenschappen. In enkele situaties kan de aanwezigheid van zo’n
ring worden getoond door een lokaal-global principe voor 2n+1-dimensionale kwadratische
vormen. Buiten het gebruik van lokaal-globaal principes, is onze methode elementair.
We gebruiken deze techniek om de grens p(F ) ⩽ 2n+1 + 1 te tonen voor elke eindige
lichaamsuitbreiding F/K((t1)) . . . ((tr))((tr+1, tr+2)) waar r, n ∈ N en K een lichaam is
zodat p(E) ⩽ 2n+1 voor elke eindige lichaamsuitbreiding E/K(X). Hieruit halen we
terug dat p(E) ⩽ 3 voor elke eindige lichaamsuitbreiding E/R((t1, t2)), wat eerder door
Y. Hu was bewezen. We halen ook terug uit onze methode dat p(F ) ⩽ 3 voor elk
functielichaam F in één variabele over R((t1)) . . . ((tr)) waar r ∈ N; dit werd eerder door

11
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K. Becher, D. Grimm en J. Van Geel bewezen.
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Quadratic forms

Given a field K, sums of squares in K are the elements that are represented by the
quadratic form X2

1 + . . .+X
2
n over K for some n ∈ N+. Classical methods from quadratic

form theory appear thus naturally in the context of sums of squares. In Section 1.1 we
provide the basics of the theory of quadratic forms, which will then be used in Section 1.4
and in the following chapters, especially in Chapter 5 and Chapter 6. We will mostly
focus on fields of characteristic different from 2. In Section 1.2 we introduce the reader to
quadratic forms over real fields and to the Pythagoras number of a field. In Section 1.3
we outline the current knowledge about simultaneous diagonalisations of quadratic forms
over fields. In Section 1.4 we study products of two quadratic forms over a field; we
present an upper bound for the number of squares that are necessary to represent as a
sum of squares a product of two positive definite quadratic forms over a real closed field.

1.1 Basic concepts

This section is a partial introduction to the theory of quadratic forms over fields. A reader
who is already familiar with the theory of quadratic forms might want to skip Section 1.1.
In the following overview we largely rely on [Pfi95] and [Lam05].

In some situations, we will make use of quadratic forms over commutative rings that
are not fields, and in particular over polynomial rings. In view of this, the most basic
definitions in this section will be given in the context of arbitrary commutative rings. For
details about the theory of quadratic forms over arbitrary commutative rings, we refer an
interested reader to [Ba78]. We fix, for the rest of Section 1.1, a commutative ring R.

Given n ∈ N+, we call n-ary quadratic form over R any homogeneous polynomial of
degree 2 in n variables with coefficients in R; by convention, we also consider the zero
polynomial as an n-ary quadratic form over R. A 2-ary quadratic form is also called
binary. We call quadratic form over R any n-ary quadratic form over R for any n ∈ N+.

Let n ∈ N+. We adopt the notations Rn = {xn | x ∈ N} and

R(n) = R× · · · ×R︸ ︷︷ ︸
n

.

By interpreting polynomials as R-valued functions via evaluation, an n-ary quadratic
form over R can be viewed as a polynomial function R(n) → R. In most situations we
only care about the polynomial functions induced by quadratic forms.

Let S/R be an extension of commutative rings and let ϕ ∈ R[X1, . . . , Xn] be a
quadratic form. Of course ϕ can also be seen as a quadratic form in S[X1, . . . , Xn],
that is, as a function Sn → S, in which case we denote it by ϕS . Given s ∈ S, we say that
s is represented by ϕ over S if there exist s1, . . . , sn ∈ S such that ϕS(s1, . . . , sn) = s. We

13
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denote by DS(ϕ) the set of all nonzero elements of S that are represented by ϕ over S,
and we say that ϕ is universal over S if DS(ϕ) = S ∖ {0}. Furthermore, we say that ϕ is
isotropic over S if there exists a vector s ∈ S(n) ∖ {0} such that ϕS(s) = 0; otherwise we
say that ϕ is anisotropic over S. A vector s ∈ S(n) such that ϕ(s) = 0 is called isotropic
with respect to ϕ. When there is no possibility of misunderstanding, we adopt simplified
notations and write for r ∈ R that r is represented by ϕ if r represented by ϕ over R, that
ϕ is universal if ϕ is universal over R and that ϕ is isotropic (respectively, anisotropic) if
ϕ is isotropic (respectively, anisotropic) over R.

1.1.1 Examples. (a) The 1-ary quadratic form X2 ∈ R[X] is anisotropic if and only if R
is reduced.

(b) Set ϕ = X2
1 −X2

2 ∈ R[X1, X2]. Clearly ϕ is isotropic whenever R ̸= {0}. If 2 = 0 in
R, then DR(X

2
1 −X2

2 ) = R×2, trivially. If 2 ∈ R×, then ϕ is called hyperbolic plane
over R; furthermore ϕ is universal, since for any x ∈ R we have the identity

x =

(
(x+ 1)

2

)2

−
(
(x− 1)

2

)2

.

1.1.2 Proposition. Let ϕ be a quadratic form over R. Then

R×2DR(ϕ) = DR(ϕ).

Proof. The statement follows trivially from the identity r−1 = r · r−2 for r ∈ R×.

Let n ∈ N+. Given two n-ary quadratic forms ϕ1, ϕ2 over R, we say that ϕ1 and ϕ2 are
isometric if there exists an invertible matrix A ∈ (Mn(R))

× such that ϕ1(x) = ϕ2(A · xt)
for every x ∈ R(n). It is clear from the definition that isometry is an equivalence relation
on the quadratic forms over R. In the sequel, we will often abuse of notation and denote
the class modulo isometry of a quadratic form by the quadratic form itself.

Let K be a field of characteristic different from 2 and let ϕ be an n-ary quadratic
form over K. We say that ϕ is regular if for any x ∈ K(n) we have that x = 0 whenever
ϕ(x+ y)− ϕ(x)− ϕ(y) = 0 for all y ∈ K(n). A regular quadratic form is a regular n-ary
quadratic form for a unique n ∈ N; in view of this, n will at times be omitted in the
sequel.

1.1.3 Examples. (a) Let ϕ be a regular quadratic form over R. By Sylvester’s law of
inertia [Lam05, Proposition II.3.2 (3)], there exist unique m,n ∈ N such that

ϕ ≃R X
2
1 + . . .+X2

m −X2
m+1 − . . .−X2

m+n.

(b) Any regular quadratic form over C is isometric to X2
1 + . . .+X2

n for a unique n ∈ N.
Given n ∈ N+ and a1, . . . , an ∈ R, we denote by ⟨a1, . . . , an⟩R the n-ary quadratic

form a1X
2
1 + . . .+anX

2
n ∈ R[X1, . . . , Xn]; when the base ring R is clear from the context,

we may omit it and write just ⟨a1, . . . , an⟩. A quadratic form of the form ⟨a1, . . . , an⟩R
for some n ∈ N+ and a1, . . . , an ∈ R is called diagonal . Given a quadratic form ϕ over R,
we call a diagonalisation of ϕ any diagonal quadratic form over R that is isometric to ϕ.
Any quadratic form over a field of characteristic different from 2 has a diagonalisation;
see [Lam05, Corollary 1.2.4].

Quadratic forms can be added and multiplied in the following way. Let m,n ∈ N+

and let ϕ, ψ be respectively an m-ary and an n-ary quadratic form over R. We denote by
ϕ ⊥ ψ the orthogonal sum of ϕ and ψ, that is, the (m+ n)-ary quadratic form over R

ϕ(X1, . . . , Xm) ⊥ ψ(Xm+1, . . . , Xm+n) ∈ R[X1, . . . , Xm+n].
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We also denote
n× ϕ = ϕ ⊥ · · · ⊥ ϕ︸ ︷︷ ︸

n times

and, by convention, we set 0× ϕ = 0.

Given c ∈ R, m,n ∈ N+ and a1, . . . , am, b1, . . . , bn ∈ R∖ {0}, we denote

c⟨a1, . . . , am⟩R = ⟨ca1, . . . , cam⟩R and

⟨a1, . . . , am⟩R ⊗ ⟨b1, . . . , bn⟩R = a1⟨b1, . . . , bn⟩R ⊥ · · · ⊥ am⟨b1, . . . , bn⟩R.

LetK be a field of characteristic different from 2 and ϕ, ψ regular quadratic forms over
K. Consider m,n ∈ N+ and a1, . . . , am, b1, . . . , bn ∈ K× such that ϕ ≃ ⟨a1, . . . , am⟩K and
ψ ≃ ⟨b1, . . . , bn⟩K . We define ϕ⊗ψ = ⟨a1, . . . , am⟩K ⊗⟨b1, . . . , bn⟩K . It is straightforward
that ϕ⊗ ψ is well-defined up to isometry.

1.1.4 Example. Let n ∈ N+. Then DR(n × ⟨1⟩R) is the set of the nonzero sums of n
squares in R, that is,

DR(n× ⟨1⟩R) = {Σni=1 x
2
i | xi ∈ R for every i ∈ N with 1 ⩽ i ⩽ n}∖ {0}.

In order to facilitate readability, we introduce the notation DR(n) = DR(n× ⟨1⟩R), and
we denote by ΣnR

2 the set of the sums of n squares in R, that is, ΣnR
2 = DR(n) ∪ {0}.

We also denote by ΣR2 the set of all the sums of squares in R, that is, ΣR2 =
⋃
n∈N ΣnR

2.

We are now able to state the following characterisations of isotropy for quadratic
forms over a field.

1.1.5 Proposition (First Representation Theorem). Let K be a field of characteristic
different from 2, a ∈ K× and ϕ a regular quadratic form over K. Then a ∈ DK(ϕ) if and
only if ϕ ⊥ ⟨−a⟩K is isotropic.

Proof. See [Lam05, Corollary I.3.5 (First Representation Theorem)].

Let ϕ, ψ be quadratic forms over R. We say that ψ is a subform of ϕ if there exists a
quadratic form ψ′ over R such that ϕ ≃ ψ ⊥ ψ′; in this case we write ψ ⊆ ϕ. Evidently,
if ψ is a subform of ϕ, then DR(ψ) ⊆ DR(ϕ) and ϕ is isotropic whenever ψ is so.

1.1.6 Proposition. Let K be a field of characteristic different from 2.

(a) A regular binary isotropic quadratic form over K is isometric to the hyperbolic plane.

(b) Let ϕ be a regular quadratic form over K. Then ϕ is isotropic if and only if the
hyperbolic plane is a subform of ϕ.

Proof. See [Lam05, Theorem I.3.4].

1.1.7 Corollary. Any regular isotropic quadratic form over a field of characteristic
different from 2 is universal.

Proof. The statement follows trivially from Proposition 1.1.6, together with the fact from
Example 1.1.1 (b) that the hyperbolic plane over a field of characteristic different from 2
is universal.

The next example witnesses that the assumption on the characteristic of the base field
in Corollary 1.1.7 is necessary.
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1.1.8 Example. Let ϕ = X2
1 + X2

2 ∈ F2(t)[X1, X2]. Then ϕ(1, 1) = 0, whereby ϕ is
isotropic, but t /∈ DF2(t)(ϕ), whereby ϕ is not universal.

A field extension F/K is called quadratic if [F : K] = 2. The following two statements
are classical results about the behaviour of isotropy of quadratic forms under finite field
extensions, and more precisely under odd degree extensions and quadratic extensions.

1.1.9 Theorem (Springer). Let F/K be a finite field extension of odd degree and let ϕ
be a quadratic form over K. If ϕ is anisotropic, then ϕF is anisotropic.

Proof. See [Sp52] or [Lam05, Theorem VII.2.7].

1.1.10 Theorem. Let K be a field of characteristic different from 2, let d ∈ K× ∖K×2

and let F = K(
√
d). Let ϕ be an anisotropic quadratic form over K. Then ϕF is isotropic

if and only if there exists a ∈ K× such that ⟨a,−da⟩K is a subform of ϕ.

Proof. See e.g. [Lam05, Theorem VII.3.1].

Given four quadratic forms ϕ, ϕ′, ψ, ψ′ over R, we have that ϕ ⊥ ψ ≃ ϕ′ ⊥ ψ′ whenever
ϕ ≃ ϕ′ and ψ ≃ ψ′. In fields of characteristic different from 2 we have also an opposite
phenomenon, which is summarised in the following statements due to E. Witt [Wi37].

1.1.11 Theorem (Witt’s Cancellation Theorem). Let K be a field of characteristic
different from 2 and let ϕ, ϕ1, ϕ2 be regular quadratic forms over K. If ϕ ⊥ ϕ1 ≃ ϕ ⊥ ϕ2,
then ϕ1 ≃ ϕ2.

Proof. See e.g. [Pfi95, Theorem 2.1.1].

1.1.12 Corollary (Witt’s Decomposition). Let K be a field of characteristic different
from 2 and ϕ a regular quadratic form over K. Then there exist a unique i ∈ N and, up to
isometry, a unique anisotropic quadratic form ϕ0 over K such that ϕ ≃ i×⟨1,−1⟩K ⊥ ϕ0.

Proof. The existence of such i and ϕ0 follows from Proposition 1.1.6, and the uniqueness
from Theorem 1.1.11.

Let K be a field of characteristic different from 2. Given two regular quadratic forms
ϕ, ψ overK, we say that ϕ and ψ are Witt equivalent if there exist an anisotropic quadratic
form ϕ0 over K and i, j ∈ N such that ϕ ≃ i× ⟨1,−1⟩K ⊥ ϕ0 and ψ ≃ j × ⟨1,−1⟩K ⊥ ϕ0.
This defines an equivalence relation on the quadratic forms over K. Denote by WK the
set of equivalence classes of regular quadratic forms overK modulo Witt equivalence. The
operation ⊥ induces a group structure on WK having the class of 0 as neutral element,
and the operation ⊗ turns WK into a commutative ring whose unit element is the class
of ⟨1⟩K ; see [Pfi95, Theorem 1.9] for more details. We call WK the Witt ring of K.

Assume that 2 ∈ R× and let k ∈ N+. Given a1, . . . , ak ∈ R∖ {0}, we set

⟨⟨a1, . . . , ak⟩⟩R = ⟨1,−a1⟩R ⊗ · · · ⊗ ⟨1,−ak⟩R.

1.1.13 Remark. Observe that [Pfi95] and [Lam05] use this notation with a different sign
convention. Nevertheless, the quadratic forms that can be presented in this way are the
same.

Let ϕ be a quadratic form over R and k ∈ N+. We say that ϕ is a k-fold Pfister form
over R if there exist a1, . . . , ak ∈ R ∖ {0} such that ϕ ≃ ⟨⟨a1, . . . , ak⟩⟩R. By convention,
we say that ϕ is a 0-fold Pfister form over R if ϕ ≃ ⟨1⟩R.
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1.1.14 Examples. Assume that 2 ∈ R×. Then we have the following.

(a) The hyperbolic planeX2
1−X2

2 ∈ R[X1, X2] coincides with the quadratic form ⟨1,−1⟩R,
and thus with the Pfister form ⟨⟨1⟩⟩R.

(b) Let k ∈ N+. In this thesis a fundamental role will be played by the k-fold-Pfister
form over R corresponding to the sum of 2k squares, that is, by

2k × ⟨1⟩R = ⟨⟨−1, . . . ,−1︸ ︷︷ ︸
k times

⟩⟩R.

The elements that are represented by a Pfister form can be characterised as follows.

1.1.15 Theorem. Let K be a field of characteristic different from 2 and let ϕ be a Pfister
form over K. Then

DK(ϕ) = {a ∈ K× | aϕ ≃ ϕ}.

In particular, DK(ϕ) is a subgroup of K×.

Proof. See e.g. [Lam05, Theorem X.1.8].

The following fact is known.

1.1.16 Theorem. Let K be a field of characteristic different from 2 and k ∈ N. Then
Σ2kK

2 ∖ {0} is a subgroup of K×.

Proof. Observe that Σ2kK
2 ∖ {0} = DK(2k). By Theorem 1.1.15 and Example 1.1.14

(b), we have that DK(2k) is a subgroup of K×, whereby the statement.

Let S/R be a ring extension and let ϕ be a quadratic form over R. We say that ϕ is
hyperbolic over S if it is isometric to n×⟨1,−1⟩S over S for some n ∈ N. Again we adopt
a simpler notation when there is no possibility of misunderstanding and write that ϕ is
hyperbolic if it is hyperbolic over R. It is clear that a hyperbolic form is isotropic. For
Pfister forms over a field, the converse also holds.

1.1.17 Theorem. A Pfister form over a field is hyperbolic if and only if it is isotropic.

Proof. See [Lam05, Theorem X.1.7] for the non-trivial implication.

In the sequel, we will use the following known statements about isotropy of Pfister
forms.

1.1.18 Theorem. Let K be a field of characteristic different from 2, let n ∈ N+ and let
a, a1, . . . , an ∈ K×. Then ⟨⟨a1, . . . , an, a⟩⟩K is isotropic if and only if a is represented by
⟨⟨a1, . . . , an⟩⟩K .

Proof. We set ϕ = ⟨⟨a1, . . . , an⟩⟩K . If a ∈ DK(ϕ), then it is clear that ϕ ⊥ ⟨−a⟩K is
isotropic; see also Proposition 1.1.5. Since ϕ ⊥ ⟨−a⟩K is a subform of ⟨⟨a1, . . . , an, a⟩⟩K ,
we conclude that the latter is isotropic as well. Vice versa, assume that ⟨⟨a1, . . . , an, a⟩⟩K
is isotropic. If ϕ is isotropic, then ϕ is universal, by Corollary 1.1.7, and thus there is
nothing to show. Assume now that ϕ is anisotropic. Since ⟨⟨a1, . . . , an, a⟩⟩K ≃ ϕ ⊥ −aϕ,
there exist x, y ∈ DK(ϕ) such that 0 = x− ay, that is, a = x/y. By Theorem 1.1.15, we
have that DK(ϕ) is a multiplicative subgroup of K×. Therefore a ∈ DK(ϕ).
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1.1.19 Theorem. Let K be a field of characteristic different from 2, let d ∈ K ∖ K2

and let L = K(
√
d). Let ϕ be an anisotropic Pfister form over K and let ψ be such that

ϕ ≃ ⟨1⟩ ⊥ ψ. Then ϕL isotropic if and only if −d ∈ DK(ψ).

Proof. Observe that ψ is unique up to isometry, by Theorem 1.1.11, thus DK(ψ) does not
depend on the choice of ψ. Assume first that ϕL is isotropic. Then by Theorem 1.1.10
there exists a ∈ K such that ⟨a,−da⟩K is a subform of ϕ. It follows that a ∈ DK(ϕ) and
a⟨a,−da⟩K ≃ ⟨1,−d⟩K is a subform of aϕ. By Theorem 1.1.15, we have that aϕ ≃ ϕ, thus
⟨1,−d⟩K is a subform of ϕ ≃ ⟨1⟩K ⊥ ψ. Then ⟨−d⟩K is a subform of ψ by Theorem 1.1.11,
that is, −d ∈ DK(ψ). Assume now that −d ∈ DK(ψ). Since d ∈ L×2 = DL(1), we obtain
that 0 is nontrivially represented by ⟨1⟩L ⊥ ψL ≃ ϕL.

1.1.20 Corollary. Let ϕ be a Pfister form over K such that ϕL is isotropic for every
quadratic field extension L/K. Let ψ be such that ϕ ≃ ⟨1⟩ ⊥ ψ. Then K∖−K2 ⊆ DK(ψ).

Proof. Consider x ∈ K ∖ −K2. Then −x /∈ K2, thus K(
√
−x)/K is a quadratic

extension. By the hypothesis, it follows that ϕK(
√
−x) is isotropic. Hence x ∈ DK(ψ), by

Theorem 1.1.19.

We conclude this section by recalling several classic results of the theory of quadratic
forms over polynomial rings. The following statement is known as Cassels-Pfister Theorem.
It was proven by Cassels [Cas64] for the quadratic forms corresponding to sums of squares
and later generalised by Pfister [Pfi65b] to arbitrary quadratic forms.

1.1.21 Theorem (Cassels-Pfister). Let K be a field, let f ∈ K[X] and let ϕ be a regular
quadratic form over K. If ϕ represents f over K(X), then ϕ represents f over K[X].

Proof. See [Lam05, Cassels-Pfister Theorem IX.1.3].

1.1.22 Remark. Theorem 1.1.21 does not hold for rings of multivariate polynomials. For
instance, the polynomial

M(X1, X2) = X2
1X

4
2 +X4

1X
2
2 − 3X2

1X
2
2 + 1

is represented by the quadratic form 4 × ⟨1⟩ over the field R(X1, X2), but not over the
polynomial ring R[X1, X2]. The polynomialM is known as the Motzkin polynomial , after
T.S. Motzkin, who came up with it in [Mo67].

The following statement shows that any isotropic quadratic form over a given field of
characteristic different from 2 remains universal when extended to polynomial rings.

1.1.23 Proposition. Let K be a field of characteristic different from 2 and let ϕ be a
regular isotropic quadratic form over K. Then ϕS is universal for any extension S/K of
commutative rings.

Proof. Since ϕ is isotropic over K, it follows by Proposition 1.1.6 that we may choose a
quadratic form ψ over K such that ϕ ≃ ⟨1,−1⟩K ⊥ ψ. Then

f =

(
f + 1

2

)2

−
(
f − 1

2

)2

+ ψ(0, . . . , 0) ∈ DS(ϕ)

for every extension S/K and f ∈ S ∖ {0}. Therefore ϕS is universal.

Given a nonzero polynomial f ∈ R[X], we denote by lc(f) its leading coefficient, that
is, lc(f) ∈ R such that f = lc(f)Xdeg(f) + g, for some g ∈ R[X] with deg(g) < deg(f).
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1.1.24 Theorem. Let K be a field of characteristic different from 2, ϕ a Pfister form
over K and f ∈ K[X] ∖ {0}. Then f ∈ DK[X](ϕ) if and only if lc(f) ∈ DK(ϕ) and
ϕK[X]/(p) is isotropic for every irreducible factor p of f with odd multiplicity.

Proof. The statement follows from Theorem 1.1.17 and Theorem 1.1.21, together with
[Lam05, Theorem X.2.13].

1.2 Sums of squares and real fields

In this section, we introduce the reader to the basics of sums of squares in fields. We
explore their connections with real fields, and thus to orderings on fields. In this section
we largely rely on [Lam05], [Pfi95] and [Pre84].

Let R be a commutative ring. In the context of the study of sums of squares in R, one
may wonder how many squares are necessary to represent an arbitrary sum of squares in
R, and if there exists m ∈ N such that all sums of squares in R can be represented as sums
of m squares in R. In order to investigate these questions, we introduce the following
(standard) notations.

We say that R is pythagorean if ΣR2 = R2. This is equivalent to having Σ2R
2 = R2,

that is, every couple of elements in R can be extended to a pythagorean triple.

Given x ∈ R, we denote by ℓR(x) the length of x in R, which we define as

ℓR(x) = inf{k ∈ N | x ∈ ΣkR
2} ∈ N ∪ {∞}.

Here we are only interested in distinguishing elements of finite length from elements of
infinite length, hence ∞ is simply a symbol denoting infinity. The same convention is
used in the following definitions. We set

p(R) = sup{ℓR(x) | x ∈ ΣR2} ∈ N ∪ {∞} and

s(R) = ℓR(−1) ∈ N ∪ {∞}.

We call p(R) the Pythagoras number of R. The name Pythagoras number is motivated
by the fact that R is pythagorean if and only if p(R) = 1. We also call s(R) the level of
R (the notation s(R) for the level of R comes indeed from the German word Stufe, from
which the English term was inspired). Observe that

p(R) = inf{k ∈ N | ΣR2 = ΣkR
2} and

s(R) = inf{k ∈ N | −1 ∈ ΣkR
2},

whereby s(R) = ∞ if and only if −1 /∈ ΣR2. If R is a field, we call R real if −1 /∈ ΣR2,
and nonreal otherwise.

1.2.1 Remarks. (a) In any nontrivial ring R we have ℓR(1) = 1, and thus p(R) ⩾ 1.

(b) For an extension of commutative rings S/R we have s(S) ⩽ s(R), by definition.

(c) For every field K of characteristic 2 we have p(K) = s(K) = 1. In view of this, in
the sequel we will focus on fields of characteristic different from 2.

1.2.2 Examples. (a) p(R) = p(C) = s(C) = 1, s(R) = ∞.

(b) Let K be a finite field of odd cardinality. Then s(K) = 1 if |K| ≡ 1 mod 4, and
s(K) = 2 otherwise. Furthermore, p(K) = 2. See [Pfi95, Examples 3.1.2 and 7.1.2].
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The Pythagoras number of Q was computed in [Eu51, 98. Theorem 20, Coroll. 1] by
Euler. Note that this was shown before Lagrange’s Four Squares Theorem from [Lag70]
stating that p(Z) = 4, for which one needs a more refined argument.

1.2.3 Theorem (Euler). p(Q) = 4.

Proof. See e.g. [Lam05, Theorem XI.1.4].

It is natural to introduce the Pythagoras number and the level in the context of
arbitrary commutative rings. Nevertheless, their behaviour in the setting of fields is
significantly different from the general one, and the techniques that are used in their
analysis are also somewhat different. In this dissertation we focus on the Pythagoras
number (and incidentally the level) of fields. More details about the level and the
Pythagoras number of a commutative ring that is not a field can be found e.g. in [CDLR82]
or [Pfi95, §3.2 and 7.2].

As witnessed by the following known statement, the level and the Pythagoras number
of nonreal fields are tightly related.

1.2.4 Proposition. Let K be a nonreal field. Then we have s(K) ⩽ p(K) ⩽ s(K) + 1.
If, furthermore, char(K) ̸= 2, then K = ΣK2 = Σs(K)+1K

2.

Proof. If char(K) = 2, then s(K) = p(K) = 1, trivially. Otherwise, the statement follows
directly from the identity

x =

(
x+ 1

2

)2

−
(
x− 1

2

)2

,

which holds for every x ∈ K.

1.2.5 Corollary. Let K be a field with char(K) ̸= 0. Then s(K) ⩽ 2 and K = Σ3K
2.

Proof. Set p = char(K). Recall from Example 1.2.2 (b) that s(Fp) ⩽ 2. Since Fp ⊆ K,
we have s(K) ⩽ s(Fp) ⩽ 2. Hence K = Σ3K

2, by Proposition 1.2.4.

In view of Proposition 1.2.4, it is natural to wonder which pairs (n, n), (n, n + 1) for
n ∈ N can be obtained as (s(K), p(K)) for a field K. The following statement shows that
s(K) can only assume certain values.

1.2.6 Theorem (Pfister). Let K be a nonreal field. Then there exists n ∈ N such that

s(K) = 2n.

Proof. See [Pfi95, Theorem 3.1.3].

As a consequence of Proposition 1.2.4 and Theorem 1.2.6, the Pythagoras number of
a nonreal field is always a power of 2 or a power of 2 plus one. The following statement
shows that any power of 2 is the level of a field.

1.2.7 Theorem. Let n ∈ N+ and let K be a real field. Set d = X2
1 + . . . + X2

2n and
F = K(X1, . . . , X2n)(

√
−d). Then

s(F ) = 2n.

Proof. See e.g. [Pfi95, Theorem 3.1.4].
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1.2.8 Proposition. Let K be a field. Then s(K) = s(K(X)). Furthermore, if K is
nonreal and char(K) ̸= 2, then we have that p(K(X)) = s(K) + 1, and there exists an
algebraic field extension L/K such that p(L) = s(L) = s(K).

Proof. See [Pfi95, Example 3.1.2 (9) and Proposition 7.1.5].

It follows by Theorem 1.2.7 and Proposition 1.2.8 that for n ∈ N there exist fields
K,L such that (s(K), p(K)) = (2n, 2n) and (s(L), p(L)) = (2n, 2n + 1). This concludes
the study of the Pythagoras number of nonreal fields. In the following two statements,
which will be used in Section 6.2, we briefly study the level of products of fields. These
results should be know to experts of the subject.

1.2.9 Lemma. Let n ∈ N+ and let K1, . . . ,Kn be fields. Then

s(K1 × · · · ×Kn) = max{s(K1), . . . , s(Kn)} ∈ {∞} ∪ {2n | n ∈ N}.

Proof. Set s = s(K1 × · · · × Kn) and m = max{s(K1), . . . , s(Kn)}. We show first that
s ⩾ m. If s = ∞, this is trivial. Assume that s < ∞ and let x1, . . . ,xs ∈ K1 × · · · ×Kn

be such that x2
1 + . . . + x2

s = −1 in K1 × · · · × Kn. Consider now 1 ⩽ i ⩽ n and let
πi : K1 × · · · × Kn → Ki be the i-th projection. For 1 ⩽ j ⩽ s, set yj = πi(xj) ∈ Ki.
Since x2

1+ . . .+x2
s = −1 in K1×· · ·×Kn, we have that y

2
1+ . . .+y

2
s = −1 in Ki, whereby

s(Ki) ⩽ s. Since this holds for 1 ⩽ i ⩽ n, we conclude that s ⩾ m.

We show now that m ⩾ s. If m = ∞, this is trivial, thus we may assume that s <∞.
For any 1 ⩽ i ⩽ n, let xi1, . . . , xim be such that x2i1 + . . .+ x2im = −1. For 1 ⩽ j ⩽ m, we
set xj = (x1j , . . . , xnj). Then x

2
1 + . . .+ x2m = −1 in K1 × · · · ×Kn, whereby m ⩾ s.

We say that a polynomial is square-free if it is not divisible by the square of any
nonconstant polynomial.

1.2.10 Proposition. Let K be a field, k ∈ N and F,G ∈ K[X] square-free such that

lc(G) ∈ Σ2kK
2. Assume that F ∈ Σ2kK[X]

2
and K[X]/(F ) ≃ K[X]/(G) as K-algebras.

Then G ∈ Σ2kK[X]
2
.

Proof. If k = 0, then F,G ∈ K×, and the statement is trivial. Assume now k ⩾ 1.
Since F ∈ Σ2kK[X]

2
, we have s(K[X]/(F )) < 2k. Thus s(K[X]/(F )) ⩽ 2k−1, by

Theorem 1.2.6. Consider an irreducible factor H of G. By Lemma 1.2.9, we have
that s(K[X]/(H)) ⩽ s(K[X]/(G)) ⩽ 2k−1. Denoting by ϕ the k-fold Pfister form
⟨⟨−1, . . . ,−1⟩⟩K[X]/(F ), this implies that ϕ is isotropic over K[X]/(H). Since this holds
for any monic irreducible factor of G and since lc(G) ∈ (Σ2kK

2)× = DK(ϕ), we conclude
by Theorem 1.1.24 that G ∈ DK(X)(ϕ). Hence G ∈ DK[X](ϕ), by Theorem 1.1.21.

In the rest of this thesis we will focus on the study of sums of squares in real fields.
It is known that real fields are the ones that can be endowed with an ordering.

Let K be a field. By a preordering on K we mean a subset P ⊆ K such that K2 ⊆ P ,
P + P ⊆ P , P · P ⊆ P and −1 ̸∈ P . In certain sources, including [Pre84], preorderings
are called prepositive cones.

1.2.11 Proposition. Let K be a field. Then K is real if and only if ΣK2 is a preordering
on K.

Proof. It is straightforward that K2 ⊆ ΣK2, ΣK2+ΣK2 ⊆ ΣK2 and ΣK2 ·ΣK2 ⊆ ΣK2.
Furthermore, K is real if and only if −1 ̸∈ ΣK2, whereby the statement.
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1.2.12 Remark. Let K be a field. If K is real, it follows by Proposition 1.2.11 that ΣK2 is
the minimal preordering on K with respect to inclusion. In other words, any preordering
on K contains ΣK2, and there exists a preordering on K if and only if K is real. In
particular, only fields of characteristic 0 may admit a preordering; all other fields are
nonreal.

Let K be a field and let P be a preordering on K. Given a, b ∈ K, we write a ⩽P b
whenever b− a ∈ P . Then ⩽P constitutes a binary relation on K.

1.2.13 Proposition. Let K be a field and let P be a preordering on K. Then ⩽P is a
partial order on K. Furthermore, for every a, b, c ∈ K such that a ⩽P b, we have that
a+ c ⩽P b+ c and, if 0 ⩽P c, we have that ac ⩽P bc.

Proof. The binary relation ⩽P is reflexive because 0 ∈ P . Assume now that b ⩽P a.
Then −(a − b)2 = (a − b)(b − a) ∈ P . If a − b ̸= 0, then −(a − b)2/(a − b)2 ∈ P , which
contradicts the assumption that −1 /∈ P . Therefore a− b ̸∈ K×, that is, a = b. Thus ⩽P
is antisymmetric. If b ⩽P c, then c − a = (c − b) + (b − a) ∈ P , hence ⩽P is transitive.
Therefore ⩽P is a partial order on K. Finally, we have that a + c ⩽P b + c because
P + P ⊆ P and, if c ⩾P 0, we have that ac ⩽P bc because P · P ⊆ P .

Let K be a field. An ordering on K (also a positive cone of K) is a preordering on K
that is maximal with respect to inclusion. Given a preordering P on K, it is elementary
to show that P is an ordering if and only if P ∪−P = K [Lam05, Corollary VIII.9.4 (1)],
or equivalently, if and only if ⩽P is a total order on K.

1.2.14 Examples. (a) R2 is an ordering on R. The total order ⩽R2 is the natural order
relation on R, and is the unique ordering on R.

(b) ΣQ2 is an ordering on Q. The total order ⩽ΣQ2 is the natural order relation on Q.

(c) Let K = Q(
√
2) and set P = ΣK2. Then P is a preordering on K, but not an

ordering. One can show that 0 ̸⩽P
√
2 ̸⩽P 0.

A standard application of Zorn’s Lemma shows that any preordering onK is contained
in an ordering on K. Together with Proposition 1.2.11, this can be seen as part of the
following statement from [AS27], known as Artin-Schreier’s Criterion.

1.2.15 Theorem (Artin-Schreier). For a field K, the following are equivalent:

(i) K is real.

(ii) ΣK2 is a preordering on K.

(iii) There exists an ordering on K.

Proof. The equivalence between (i) and (ii) has already been given in Proposition 1.2.11.
See [Lam05, Theorem VIII.1.10] for the equivalence between (i) and (iii).

Furthermore, the following statement shows that we can recover preorderings on a
field from its orderings.

1.2.16 Theorem (Artin). Let K be a field and let P be a preordering on K. Then

P =
⋂

{Q ⊆ K | Q ordering on K and P ⊆ Q}.

In particular, ΣK2 is the intersection of all orderings on K.
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Proof. See [Lam05, Theorem VIII.9.6].

Let K be a real field, let n ∈ N+ and let ϕ be an n-ary quadratic form over K. We say
that ϕ is positive definite if ϕ(x) >P 0 for every ordering P on K and for every nonzero
vector x ∈ K(n). In view of Theorem 1.2.16, this amounts to having ϕ(x) ∈ (ΣK2)× for
every nonzero vector x ∈ K(n).

Let K be a field. We say that K is real closed if K is real and if every proper finite
field extension of K is nonreal. The following statement lists some of the most common
characterisations of real closed fields.

1.2.17 Theorem. Let K be a field. Then the following are equivalent:

(i) K is real closed.

(ii) K is real, |K×/K×2| = 2 and any odd degree polynomial in K[X] has a root in K.

(iii) K(
√
−1) is algebraically closed, but K is not.

Proof. See [Lam05, Theorem VIII.2.5].

1.2.18 Corollary. Let K be a real closed field. Then K2 is an ordering on K.

Proof. By Theorem 1.2.17, we have K× = K×2 ∪−K×2 and K×2 ∩−K×2 = ∅, whereby
we obtain the statement.

Let K be a real closed field. It follows by Corollary 1.2.18 that ⩽K2 is a total order
relation on K; we denote it by ⩽K and we call it the order on K.

Let ϕ be a quadratic form over K. By Sylvester’s law [Lam05, Proposition II.3.2 (3)],
there exist unique n+, n− ∈ N such that ϕ ≃ n+ × ⟨1⟩ ⊥ n− × ⟨−1⟩; we call n+ × ⟨1⟩
the positive definite part of ϕ and n− × ⟨−1⟩ the negative definite part of ϕ. Note that
n+, n− depend on ϕ, and that n+ × ⟨1⟩ of a quadratic form is indeed positive definite
when nonzero.

1.2.19 Example. The field R is real closed. The field Q is not real closed. One can show
that the real algebraic numbers are the smallest real closed field containing Q; see e.g.
[Pfi95, Example 6.1.18].

1.3 The Principal Axis Theorem

Let n ∈ N+ and let K be a field of characteristic different from 2. Recall from Section 1.1
that any regular quadratic form in K[X1, . . . , Xn] may be diagonalised by applying a
K-linear automorphism of the underlying K-vector space K(n), that is, up to a change of
basis ofK(n). It is known that two positive definite quadratic forms over a real closed field
can be simultaneously diagonalised -actually it is enough that one of the two is positive
definite; see the Principal Axis Theorem (Theorem 1.3.2)-. This will help our work with
products of positive definite quadratic forms in Section 1.4. In this section, we discuss
over which fields a simultaneous diagonalisation of two quadratic forms one of which is
positive definite can be obtained.

Let n ∈ N+ and let ϕ be an n-ary quadratic form over K. We may associate to ϕ the
symmetric bilinear form bϕ : K(n) ×K(n) → K defined by setting

bϕ(x,y) = (ϕ(x+ y)− ϕ(x)− ϕ(y))/2
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for any x,y ∈ K(n). We call bϕ the symmetric bilinear form associated to ϕ. Conversely,
to any symmetric bilinear form b : K(n) × K(n) → K, we may associate the quadratic
form ϕb : K

(n) → K defined by ϕb(x) = b(x,x) for every x ∈ K(n). These two procedures
are the inverse to one another. We may thus inspect quadratic forms over K by studying
the corresponding symmetric bilinear forms. We may also translate quadratic forms into
matrices as follows. For i, j ∈ {1, . . . , n}, let aij ∈ K be such that ϕ = Σ1⩽i,j⩽n aijXiXj .
Let further Aϕ ∈ Mn(K) be the n× n symmetric matrix

Aϕ = ((aij + aji)/2)1⩽i,j⩽n,

which we call the symmetric matrix associated to ϕ. Vice versa, given a symmetric
matrix A = (aij)1⩽i,j⩽n ∈ Mn(K), we define the quadratic form associated to A as
ϕA(X1, . . . , Xn) = Σni,j=1 aijXiXj . Then ϕA(x) = xtAϕx for every x ∈ K(n).

Let B be a K-basis of K(n). We say that B is orthogonal with respect to ϕ, or that
B is an orthogonal basis for ϕ, if M tAϕM is diagonal, where M is the matrix associated
to the base change from the canonical basis of K(n) to B. Given another n-ary quadratic
form ψ over K, we say that the pair (ϕ, ψ) can be simultaneously diagonalised if there
exists a K-basis of K(n) that is orthogonal with respect to both ϕ and ψ.

1.3.1 Example. Let (e1, e2) be the canonical R-basis of R(2), that is, e1 = (1, 0) and
e2 = (0, 1). Set

ϕ = 3
4X

2
1 + 1

2X1X2 +
3
4X

2
2 ∈ R[X1, X2] and ψ = 4X1X2 ∈ R[X1, X2].

Then we have

Aϕ =

(
3/4 1/4
1/4 3/4

)
and Aψ =

(
0 2
2 0

)
.

Set b1 = (1, 1), b2 = (1,−1) and let B = (b1, b2). Let M ∈ M2(R) be the matrix
associated to the base change from (e1, e2) to B. A simple computation shows that

M tAϕM =

(
2 0
0 1

)
and M tAψM =

(
4 0
0 −4

)
,

whereby B is orthogonal with respect to both ϕ and ψ. As a matter of fact, under the
basis B (that is, after the substitution Y1 = X1 +X2 and Y2 = X1 −X2), we may write
ϕ(Y1, Y2) = 2Y 2

1 + Y 2
2 and ψ(Y1, Y2) = 4Y 2

1 − 4Y 2
2 .

The fact that ϕ and ψ from Example 1.3.1 can be simultaneously diagonalised is a
special case of the following more general phenomenon, known as Principal Axis Theorem.

1.3.2 Theorem (Principal Axis Theorem). Let K be a real closed field, let n ∈ N+ and
let ϕ, ψ ∈ K[X1, . . . , Xn] be quadratic forms. Suppose that ϕ is positive definite. Then
there exists a basis of K(n) that is orthogonal with respect to both ϕ and ψ.

Proof. See [Lan02, Corollary XV.7.3] for the case K = R; the very same argument carries
through whenever K is real closed.

1.3.3 Remark. Let K be a real closed field, n ∈ N+ and ϕ, ψ ∈ K[X1, . . . , Xn] quadratic
forms with ϕ positive definite. By Theorem 1.3.2 we may assume, after a change of basis,
that ϕ = X2

1 + . . .+X2
n and ψ = a1X

2
1 + . . .+ anX

2
n for some a1, . . . , an ∈ K.

The Principal Axis Theorem can actually be proven under milder assumptions. In
particular, the hypothesis that K is real closed can be weakened. In order to do this, we
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introduce PAP-fields. Given a field K, we say that K has the Principal Axis Property
or, in short, that K is a PAP-field , if for every n ∈ N+ and every symmetric A ∈ Mn(K)
there exist B,M ∈ Mn(K) such that B is diagonal, M is orthogonal and A =M t ·B ·M .

PAP-fields are exactly the fields to which the Principal Axis Theorem can be extended.
This was shown by W. C. Waterhouse in [Wa76] for fields of characteristic different from
2 and by A. Charnow and E. Charnow in [CC86] in arbitrary characteristic. Nevertheless,
in view of the following statement, only real fields can be PAP-fields.

1.3.4 Proposition. A PAP-field is real and pythagorean.

Proof. This follows for example from [MSV93, Lemma 1].

1.3.5 Theorem. Let K be a real field. Then the following are equivalent:

(i) K is a PAP-field.

(ii) K is the intersection of its real closed field extensions.

(iii) Every symmetric matrix over K has an eigenvalue over K.

(iv) For every n ∈ N+, every pair of n-ary quadratic forms over K with one of the two
positive definite can be simultaneously diagonalised.

Proof. See [Wa76, Theorem 2].

1.3.6 Corollary. Let K be a PAP-field, let n ∈ N+ and let ϕ, ψ ∈ K[X1, . . . , Xn] be
quadratic forms such that ϕ is positive definite. Set X = (X1, . . . , Xn)

t. Then there
exists an invertible matrix M ∈ Mn(K) such that ϕ(M ·X) = X2

1 + . . .+X
2
n and ψ(M ·X)

is diagonal.

Proof. Consider the symmetric matrices Aϕ, Aψ associated to ϕ, ψ respectively. By
Theorem 1.3.5, there exists a K-basis B of K(n) which is orthogonal with respect to
both ϕ and ψ, and thus an invertible matrix A ∈ Mn(K) such that AtAϕA and AtAψA
are diagonal. Let TA be the endomorphism of K(n) defined by setting TA(x) = Ax for
every x ∈ K(n), and set ϕ′ = ϕ ◦ TA. Consider 1 ⩽ i ⩽ n and set ai = (AtAϕA)ii.
Observe that ai = ϕ′(ei) where ei is the i-th vector of the canonical basis of K(n). Hence
ai ∈ DK(ϕ′) = DK(ϕ). Since K is real and ϕ is positive definite, we obtain ai ∈ (ΣK2)×.
Therefore ai ∈ K×2, by Proposition 1.3.4. Let bi ∈ K× be such that ai = b2i . Let B be
the diagonal matrix such that Bii = b−1

i for any 1 ⩽ i ⩽ n and set M = BA. Since B is
diagonal, we have that ϕ(M ·X) = X2

1 + . . .+X2
n and that ψ(M ·X) is diagonal.

1.3.7 Corollary. Let K be a PAP-field and n ∈ N+. Let further ϕ, ψ ∈ K[X1, . . . , Xn]
be quadratic forms such that ϕ is positive definite and let ⩽ be an ordering on K. Set
X = (X1, . . . , Xn)

t. Then there exists M ∈ Mn(K) invertible and a1, . . . , an ∈ K such
that ϕ(M ·X) = X2

1 + . . .+X2
n, ψ(M ·X) = a1X

2
1 + . . .+ anX

2
n and ai+1 ⩽ ai for every

1 ⩽ i ⩽ n− 1.

Proof. In view of Corollary 1.3.6, there exist an orthogonal matrix M ∈ Mn(K) and
a1, . . . , an ∈ K such that ϕ(M ·X) = X2

1 + . . .+X2
n and ψ(M ·X) = a1X

2
1 + . . .+ anX

2
n.

Since ⩽ is a total order on K, we may simply permute the variables in order to obtain
that ai+1 ⩽ ai for every 1 ⩽ i ⩽ n− 1.
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1.3.8 Example. Let ϕ, ψ ∈ R[X1, X2] be as in Example 1.3.1; we have seen there that
ϕ = 2Y 2

1 + Y 2
2 and ψ = 4Y 2

1 − 4Y 2
2 , up to a change of basis. In particular, it is clear that

ϕ is positive definite. In view of Corollary 1.3.7, it is possible to orthonormalize ϕ via a
change of basis that keeps ψ diagonal. More precisely, the substitution Z1 = Y1/

√
2 and

Z2 = Y2 allows us to write ϕ(Z1, Z2) = Z2
1 + Z2

2 and ψ(Z1, Z2) = 2Z2
1 − 4Z2

2 .

1.3.9 Remark. Let K be a PAP-field that is not real closed. Then K has multiple
orderings, and it is in general not possible to order elements simultaneously with respect
to all of its orderings; this prevents us to order the ai’s in Corollary 1.3.7 simultaneously
with respect to multiple orderings. This is the only obstruction that prevents us from
formulating all of our results in the following section for a PAP-field instead of real closed
field; cf. Question 1.4.17.

1.3.10 Example. As an example of the phenomenon described in Remark 1.3.9, let K be
the intersection of two minimal real closed field extensions of Q(

√
2) and let a1 =

√
2,

a2 = −
√
2. Then K has precisely two orderings ⩽1,⩽2 such that 0 <1 a1, 0 <2 a2; see

[Lam05, p. 243,244]. Then a2 <1 a1, but a1 <2 a2.

1.4 Products of two quadratic forms

Products of sums of squares have been studied for a long time, with the first results
dating back to the 3rd century a.D., when Diophantus of Alexandria wrote his treatise
Arithmetica; in the 19th problem of its third book (see [He81] for an English translation
of the original problem), Diophantus showed the following identity:

(x21 + x22) · (y21 + y22) = (x1y1 − x2y2)
2 + (x1y2 + x2y1)

2. (1.4.1)

Diophantus’ formula is also referred to as Brahmagupta–Fibonacci identity, from the
names of the mathematicians who respectively re-discovered it and re-introduced it to
Europe centuries later, and can be easily verified to hold in any commutative ring.

In 1748 [Eu48] Euler found an analogous formula for products of sums of 4 squares,
which now carries his name, and around 1818, F. Degen [De22] detected an analogous
identity for products of sums of 8 squares. A couple of decades later, the latter was
rediscovered independently by J.T. Graves and by A. Cayley, and is nowadays usually
referred to as Degen or Degen-Cayley identity.

It is natural to look for generalisations of such identities; this is known as Hurwitz’
problem, from the mathematician A. Hurwitz, who showed in 1898 [Hur98] that an
identity for products of sums of n squares analougous to Equation (1.4.1) can only
exist for sums of 1, 2, 4, or 8 squares. More precisely, Hurwitz showed that, given a
field K of characteristic different from 2 and n ∈ N+, if there exist n quadratic forms
f1, . . . , fn ∈ K[X1, . . . , Xn, Y1, . . . , Yn] that are linear in the Xi’s and in the Yi’s and such
that

(X2
1 + . . .+X2

n)(Y
2
1 + . . .+ Y 2

n ) = f21 + . . .+ f2n, (1.4.2)

then n ∈ {1, 2, 4, 8}.
A few years later, Hurwitz himself [Hur22] and (independently) J. Radon [Ra22]

showed that similar formulas can be obtained in a slightly different situation, namely
when sums of squares of different lengths are multipied.

Given n ∈ N, we let a, b, c ∈ N be the unique numbers such that c is odd, n = 2(4a+b)c
and 0 ⩽ b ⩽ 3; we also set ρ(n) = 8a+ 2b. This association defines a function ρ : N → N,
called the Hurwitz-Radon function.
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1.4.3 Theorem (Hurwitz-Radon). Let K be a field of characteristic different from 2 and
let r, n ∈ N+. Then there exist n quadratic forms f1, . . . , fn ∈ K[X1, . . . , Xr, Y1, . . . , Yn]
that are linear in the Xi’s and in the Yj’s and such that

(X2
1 + . . .+X2

r )(Y
2
1 + . . .+ Y 2

n ) = f21 + . . .+ f2n

if and only if r ⩽ ρ(n).

Proof. See [Lam05, Theorem V.5.11].

Even when explicit identities for products of sums of squares are not available, it is
still possible, at least in certain situations, to find upper bounds for the number of squares
necessary to write the product of two sums of squares as a sum of squares. An example of
this phenomenon can be obtained from Hilbert’s famous theorem stating that all positive
definite ternary forms of degree 4 with real coefficients are sums of 3 squares; see [Hi88].
This implies that for every l1, l2, l3 ∈ R[X1, X2, X3] that are linear in the Xi’s, there exist
quadratic forms f1, f2, f3 ∈ R[X1, X2, X3] such that

(X2
1 +X2

2 +X2
3 )(l

2
1 + l22 + l23) = f21 + f22 + f23 , (1.4.4)

though the corresponding identity of the form 1.4.2 does not exist, by Hurwitz’s theorem.

An elementary proof of the existance of the identities (1.4.4) due to C. Scheiderer
[Sche10, §9] inspired our results on products of positive definite quadratic forms over real
closed fields, which take the remainder of this section.

Let n ∈ N+, let K be a real closed field, and let ϕ1, ϕ2 ∈ K[X1, . . . , Xn] be positive

definite quadratic forms. Since ϕ1, ϕ2 ∈ ΣnK[X1, . . . , Xn]
2
, it follows by Theorem 1.1.16

that ϕ1 · ϕ2 ∈ Σ2kK(X1, . . . , Xn)
2
, where k ∈ N is the minimal integer such that 2k ⩾ n.

In the following, we improve this bound and show that ϕ1 · ϕ2 ∈ ΣmK(X1, . . . , Xn)
2
for

m < 2k, under certain conditions on n.

Let K be a field of characteristic different from 2, let n ∈ N+ and let ϕ be an n-ary
quadratic form over K. Recall that bϕ denotes the symmetric bilinear form corresponding
to ϕ. Given m ∈ N and u1, . . . ,um ∈ K(n), we say that u1, . . . ,um are orthogonal with
respect to ϕ if bϕ(ui,uj) = 0 for every i, j ∈ {1, . . . ,m} with i ̸= j. Note that of a K-basis
of K(n) that is orthogonal with respect to ϕ is precisely an orthogonal K-basis for ϕ as
defined in Section 1.3. As a consequence, the existence of such a basis is equivalent to
the existence of a diagonalisation of Aϕ.

1.4.5 Theorem. Let K be a real closed field, n ∈ N+ and ϕ1, ϕ2 ∈ K[X1, . . . , Xn] two
quadratic forms such that ϕ1 is positive definite. Let λ ∈ K× and set ϕ = ϕ2 − λϕ1.
Let further s, t ∈ N be such that ϕ ≃ s × ⟨1⟩ ⊥ t × ⟨−1⟩ and denote N = n − max{s, t}.
Then there exists N nonzero vectors in K(n) that are orthogonal with respect to ϕ1, ϕ2
and isotropic with respect to ϕ.

Proof. Let T be a K-automorphism of K(n), let k ∈ N+ and v1, . . . ,vk ∈ K(n). For
i ∈ {1, 2}, it is clear from the definitions that v1, . . . ,vk are orthogonal with respect to
ϕi ◦ T if and only if T−1(v1), . . . , T

−1(vk) are orthogonal with respect to ϕi. Similarly,
v1, . . . ,vk are isotropic with respect to ϕ if and only if T−1(v1), . . . , T

−1(vk) are isotropic
with respect to ϕ ◦ T . Therefore we may prove the statement up to a change of basis of
K(n). By Corollary 1.3.7, up to such a change of basis we may assume that

ϕ1 = X2
1 + . . .+X2

n and ϕ2 = a1X
2
1 + . . .+ anX

2
n,
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for certain a1, . . . , an ∈ K such that ai+1 ⩽K ai for every 1 ⩽ i ⩽ n − 1. Therefore
ai+1 − λ ⩽K ai − λ for every 1 ⩽ i ⩽ n− 1.

Consider the canonical K-basis C = (e1, . . . , en) of K(n). Evidently C is orthogonal
with respect to ϕ1, ϕ2 and ϕ. We denote m = min{s, t} and M = max{s, t}. Since
Σni=1(ai−λ)X2

i = ϕ ≃ s×⟨1⟩ ⊥ t×⟨−1⟩ and ai+1−λ ⩾K ai−λ for every 1 ⩽ i ⩽ n−1, we
conclude that ai−λ >K 0 for every 1 ⩽ i ⩽ s, ai = λ for every s < i ⩽ n−t and ai−λ <K 0
for every n− t < i ⩽ n. By the definition of ⩽K , there exist α1, . . . αs, αn−t, . . . , αn ∈ K×

such that
ϕ = Σsi=1 α

2
iX

2
i − Σni=n−t+1 α

2
iX

2
i .

Consider 1 ⩽ i ⩽ m. Let Vi denote the 2-dimensional K-subspace of K(n) generated
by {ei, en−i}. Since ϕ|Vi

= α2
iX

2
i − α2

n−iX
2
n−i ≃ ⟨1,−1⟩K , there exists a nonzero vector

ui ∈ Vi that is isotropic with respect to ϕ. We observe that for every v ∈ K(n) having
null i-th and (n− i)-th coordinates, ui and v are orthogonal with respect to ϕ1 and ϕ2.

For every s < i ⩽ n − t, we denote ui = ei. Then u1, . . . ,um,us+1, . . . ,un−t are
m + (n − s − t) = n −M = N nonzero vectors that are isotropic with respect to ϕ and
are orthogonal with respect to both ϕ1 and ϕ2.

1.4.6 Corollary. Let K be a real closed field, let n ∈ N+ and let ϕ1, ϕ2 ∈ K[X1, . . . , Xn]
be positive definite quadratic forms. Set N = ⌈n2 ⌉. Then there exist u1, . . . ,uN ∈ K(n)

nonzero and λ ∈ K× such that u1, . . . ,uN are orthogonal with respect to ϕ1 and ϕ2, and
are isotropic with respect to the quadratic form ϕ2 − λϕ1.

Proof. As for Theorem 1.4.5, it is enough to prove the statement up to a change of basis.
Hence we may assume, by Corollary 1.3.7 that

ϕ1 = X2
1 + . . .+X2

n and ϕ2 = a1X
2
1 + . . .+ anX

2
n,

for a1, . . . , an ∈ K such that ai+1 ⩽K ai for every 1 ⩽ i ⩽ n − 1. Let λ = aN . Set
s = |{N < i ⩽ n | ai ̸= aN}| and t = |{1 ⩽ i < N | ai ̸= aN}|. Then

ϕ2 − λϕ1 = Σni=1(ai − λ)X2
i ≃ s× ⟨1⟩ ⊥ t× ⟨−1⟩.

By Theorem 1.4.5, there exist n−max{s, t} vectors as in the statement. Since aN−λ = 0,
we have s, t ⩽ N −1. Thus n−max{s, t} ⩾ n− (N −1) ⩾ N , whereby the statement.

Let K be a field of characteristic different from 2, let n ∈ N+ and let ϕ be an n-ary
quadratic form. Given m ∈ N+ and u1, . . . ,um ∈ K(n), we say that u1, . . . ,um are
orthonormal with respect to ϕ if they are orthogonal with respect to ϕ and if ϕ(ui) = 1
for every 1 ⩽ i ⩽ m.

1.4.7 Remark. Let K be a real closed field and let ϕ be a positive definite quadratic form.
We retrieve from Corollary 1.3.6 the existence of a K-basis of K(n) that is orthonormal
with respect to ϕ. As a matter of fact, any set of vectors of K(n) that are orthonormal
with respect to ϕ can be extended to a K-basis of K(n) that is orthonormal with respect
to ϕ. This will be exploited in the next statement.

The following statement, together with Theorem 1.4.5 and Corollary 1.4.6, allows us
to write two positive definite quadratic forms over a real closed field with a “common”
part, and thus to express their product in a convenient way.

1.4.8 Lemma. Let N,n ∈ N+, let K be a real closed field and let ϕ1, ϕ2 ∈ K[X1, . . . , Xn]
be two positive definite quadratic forms. Assume that there exist u1, . . . ,uN ∈ K(n)∖{0}
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and λ ∈ K× such that u1, . . . ,uN are orthogonal with respect to ϕ1 and to ϕ2, and are
isotropic with respect to ϕ2−λϕ1. Set X = (X1, . . . , Xn)

t. Then there exists M ∈ Mn(K)
and hN+1, . . . , hn ∈ K[X1, . . . , Xn] linear such that

ϕ1(M ·X) = X2
1 + . . .+X2

N +X2
N+1 + . . .+X2

n and

ϕ2(M ·X) = λ(X2
1 + . . .+X2

N ) + h2N+1 + . . .+ h2n.

Proof. Set ϕ = ϕ2−λϕ1 and let U be the K-subspace of K(n) generated by {u1, . . . ,uN}.
Choose a K-basis (v1, . . . ,vN ) of U that is orthonormal with respect to ϕ1, and extend
it to a K-basis (v1, . . . ,vn) of K(n) that is orthonormal with respect to ϕ1. Let M be
the change-of-basis matrix from the canonical basis to (v1, . . . ,vn). Since ϕ|U = 0, we
have ϕ2|U = λϕ1|U . Furthermore, v1, . . . ,vN are orthonormal with respect to ϕ1, thus
(ϕ1(M · X))|U = X2

1 + . . . + X2
N and (ϕ2(M · X))|U = λ(X2

1 + . . . + X2
N ). Therefore

ϕ1(M ·X) = X2
1 + . . .+X

2
n and ϕ2(M ·X) = λ(X2

1 + . . .+X
2
N )+h(X1, . . . , Xn), for some

quadratic form h ∈ K[X1, . . . , Xn].

On the other hand, the K-basis (v1, . . . ,vN ) of U can also be extended to a K-
basis of K(n) that is orthogonal with respect to ϕ2. Since ϕ2 is positive definite, under
such a basis ϕ2 can be written as ϕ2 = λ(X2

1 + . . . + X2
N ) + h2N+1 + . . . + h2n for some

hN+1, . . . , hn ∈ K[X1, . . . , Xn] linear.

1.4.9 Lemma. Let k,m,N ∈ N be such that N ⩽ 2k+1 and m ⩽ min{2k+1 − 1, N − 2k}.
Set n = 2k+1+m. Let K be a real closed field, let hN+1, . . . , hn ∈ K[X1, . . . , Xn] be linear
and let λ ∈ K×2. Set ϕ1 = X2

1 + . . .+X2
n and ϕ2 = λ(X2

1 + . . .+X2
N )+h2N+1 + . . .+h2n.

Then ϕ1 · ϕ2 can be written as a sum of (3n− 1)/2 rational functions in K(X1, . . . , Xn).

Proof. If m = 0, then n = 2k+1, thus ϕ1 ·ϕ2 ∈ ΣnF
2 ·ΣnF 2 ⊆ ΣnF

2, by Theorem 1.1.16;
furthermore, we have n = 2k+1 ⩽ (2k+2+2k+1−1)/2 = (3n−1)/2, whereby the statement.

Assume now m > 0. Let µ ∈ K be such that µ2 = λ. We set F = K(X1, . . . , Xn),
f = X2

1 + . . . +X2
N , g = X2

N+1 + . . . +X2
n, and h = h2N+1 + . . . + h2n. Then ϕ1 = f + g

and ϕ2 = µ2f + h, whereby ϕ1 ∈ DF (⟨f, g⟩F ) and ϕ2 ∈ DF (⟨f, h⟩F ). Observe that
f ∈ ΣNF

2 ⊆ Σ2k+1F 2, and g, h ∈ Σn−NF
2 ⊆ Σ2kF

2, because n−N ⩽ 2k+1+m−N ⩽ 2k.
Set π = ⟨1, fg, fh, gh⟩F . Then

ϕ1 · ϕ2 ∈ DF (⟨f, g⟩F ) ·DF (⟨f, h⟩F ) = fDF (⟨1, fg⟩F ) · fDF (⟨1, fh⟩F ) ⊆ DF (π).

Since g, h ∈ Σ2kF
2, we have gh ∈ Σ2kF

2, by Theorem 1.1.16. Hence gh ∈ DF (2
k),

and we obtain gh(2k×⟨1⟩F ) ≃ 2k×⟨1⟩F , by Theorem 1.1.15. Thus 2k×⟨gh⟩F ≃ 2k×⟨1⟩F .
Analogously, since f, g ∈ Σ2k+1F 2, we have gh ∈ Σ2k+1F 2, by Theorem 1.1.16,

whereby 2k+1 × ⟨fg⟩F ≃ 2k+1 × ⟨1⟩F . As 2k × ⟨1, gh⟩F = 2k × ⟨1⟩F , we obtain that

2k × π = 2k × (⟨1, fg⟩F ⊗ ⟨1, gh⟩F ) = 2k+1 × (⟨1, fg⟩F ) = 2k+2 × ⟨1⟩F .

Since (2k−1)×⟨1⟩F ⊥ π ⊆ 2k×π, it follows by Witt’s Cancellation (Theorem 1.1.11)
that π ⊆ (2k+2 − 2k + 1)× ⟨1⟩F . Hence ϕ1 · ϕ2 can be written as a sum of 2k+2 − 2k + 1
squares in F . Observe now that

2k+2 − 2k + 1 = 3 · 2k + 1 = (3 · 2k+1 + 3− 1)/2 = (3(2k+1 + 1)− 1)/2.

Since m > 0, we have that 2k+1 + 1 ⩽ n, that is, 3(2k+1 + 1) ⩽ 3n. We obtain that
2k+2 − 2k + 1 ⩽ (3n− 1)/2, which concludes the proof.
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1.4.10 Theorem. Let k ∈ N, let n = 2k+1 + 1. Let K be a real closed field and let
ϕ1, ϕ2 ∈ K[X1, . . . , Xn] be positive definite quadratic forms. Then ϕ1 · ϕ2 can be written
as a sum of (3n− 1)/2 squares of rational functions in K(X1, . . . , Xn).

Proof. Set N = ⌈n2 ⌉ and m = 1. Then N = 2k +m ⩽ 2k+1 and 2k+1 +m−N = 2k. Up
to a change of basis, we may choose λ ∈ K×2, hN+1, . . . , hn ∈ K[X1, . . . , Xn] such that
ϕ1 = X2

1 + . . . +X2
n and ϕ2 = λ(X2

1 + . . . +X2
N ) + h2N+1 + . . . + h2n, by Corollary 1.4.6

and Lemma 1.4.8. Then the statement follows from Lemma 1.4.9.

1.4.11 Remark. Let k ∈ N+ and n = 2k+1 + 1. Then 2k − 1 > 0, hence

3n− 1

2
= 2k+2 − 2k + 1 < 2k+2 = 2n− 2.

Hence Theorem 1.4.10 improves significantly the upper bound 2n−2 = 2k+2, which can be
obtained from Theorem 1.1.16. Furthermore, recalling that ρ denotes the Hurwitz-Radon
function, we have ρ(n) = 1 < n. Therefore Theorem 1.4.3 does not help producing upper
bounds for the squares necessary to represent the product ϕ1 · ϕ2 from Theorem 1.4.10
as a sum of squares. Nevertheless, we do not know whether the upper bound from
Theorem 1.4.10 is optimal.

1.4.12 Question. For which k ∈ N+ is the bound (3n − 1)/2 from Theorem 1.4.10
optimal?

The following examples show that the bound (3n − 1)/2 is not optimal for n = 3, 5
(that is, for k = 0, 1). We also show for k ⩽ 1 that an explicit identity of the type of
(1.4.2) can be constructed, after simultaneously diagonalising two quadratic forms.

1.4.13 Example. Let K a real closed field and let ϕ1, ϕ2 ∈ K[X1, X2, X3] be positive
definite quadratic forms. Theorem 1.4.10 applied with k = 0 only shows that

ϕ1 · ϕ2 ∈ Σ4K(X1, X2, X3)
2
,

producing thus no improvement to Pfister’s bound from Theorem 1.1.16.

However, by Corollary 1.4.6 and Lemma 1.4.8 we may assume, up to a change of
basis, that ϕ1 = X2

1 + X2
2 + X2

3 and ϕ2 = λ(X2
1 + X2

2 + Y 2
3 ) for some λ ∈ K×2 and

Y3 ∈ K[X1, X2, X3] linear. Then ϕ1 · ϕ2/λ = (X2
1 +X2

2 +X3Y3)
2 + (X2

1 +X2
2 )(X3 − Y3)

2

Since λ ∈ K×2, we conclude that ϕ1 · ϕ2 ∈ Σ3K[X1, X2, X3]
2
.

1.4.14 Example. Let K a real closed field and let ϕ1, ϕ2 ∈ K[X1, . . . , X5] be positive
definite quadratic forms. In view of Theorem 1.4.10, we have that

ϕ1 · ϕ2 ∈ Σ7K(X1, . . . , X5)
2
.

However, by Corollary 1.4.6 and Lemma 1.4.8 we may assume, up to a change of basis,
that ϕ1 = X2

1 + . . .+X2
5 and ϕ2 = λ(X2

1 +X2
2 +X2

3 + Y 2
4 + Y 2

5 ) for some λ ∈ K×2 and
Y4, Y5 ∈ K[X1, . . . , X5] linear. We may then apply Degen’s 8-square identity to compute
ϕ1 · ϕ2/λ. We obtain

ϕ1 · ϕ2/λ = (X2
1 +X2

2 +X2
3 +X4Y4 +X5Y5)

2

+ (X4Y5 −X5Y4)
2

+ (X1Y5 −X5Y1)
2

+ (X1Y4 −X4Y1)
2

+ (X2Y4 −X3Y5 −X4Y2 +X5Y3)
2

+ (X2Y5 +X3Y4 −X4Y3 −X5Y2)
2.



1.4. PRODUCTS OF TWO QUADRATIC FORMS 31

Since λ ∈ K×2, we conclude that ϕ1 · ϕ2 ∈ Σ6K[X1, . . . , X5]
2
.

1.4.15 Remarks. (a) Example 1.4.13 can be found in [Sche10, §9], and the upper bound
3 on the number of squares that are needed to represent ϕ1 · ϕ2 is trivially optimal.

(b) In the context of Example 1.4.14, one may wonder whether a permutation of the
variables in Degen’s identity produces a formula that allows us to write ϕ1 · ϕ2 as a
sum of 5 squares of polynomials (which would then be evidently an optimal upper
bound). In order to check this, we have run a simple magma program on a computer,
and it turned out that this does not happen.

1.4.16 Question. Can the product of any two positive definite 5-ary quadratic forms
over a real closed field be written as a sum of 5 squares of fractions of polynomials? If
so, can we represent it as the sum of 5 squares of polynomials?

Finally, observe that most of this section would also hold for a field K that has the
Principal Axis Property, but that is not real closed, that is, an intersection of multiple
real closed fields. As a matter of fact, the only exception to this is Theorem 1.4.5, in
which proof we ordered some elements with respect to the ordering on K, by means of
Corollary 1.3.7. We could not have done the same if K possessed multiple orderings; cf.
Remark 1.3.9. This is the only obstacle that prevents us from substituting the real closed
field K with a PAP-field in Theorem 1.4.5-Theorem 1.4.10 and Examples 1.4.13, 1.4.14.

1.4.17 Question. Does Theorem 1.4.10 still hold if we replace the assumption that K is
real-closed with the one that K is a PAP-field?
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Valuation theory

In this chapter we introduce the reader to valuation theory. In doing so, we largely rely
on [EP05]. The tools given here will be extensively exploited in the upcoming chapters.

2.1 Basic concepts

An ordered abelian group (or, more concisely, an ordered group) is an abelian group
(Γ,+, 0) with a total order relation ⩽ on Γ such that, for every x, y ∈ Γ, we have that
x ⩽ y if and only x−y ⩽ 0. Let (Γ,+, 0,⩽) be an ordered abelian group. When there is no
possibility of confusion, we will denote (Γ,+, 0,⩽) simply by (Γ,⩽) or Γ. Furthermore,
given γ, δ ∈ Γ, we adopt the standard notations γ ⩾ δ to indicate δ ⩽ γ, and γ < δ
(respectively, γ > δ) to denote γ ̸= δ and γ ⩽ δ (respectively, γ ̸= δ and γ ⩾ δ).

2.1.1 Example. The group Z can be turned into an ordered group in two ways. The
natural way is to define an order on Z, which we call natural, by setting 1 > 0, the other
one by setting 0 > 1. In the sequel, when talking about the ordered group Z, we always
use the natural order.

Let (Γ,⩽Γ), (∆,⩽∆) be two ordered groups. A morphism of ordered groups from
(Γ,⩽Γ) to (∆,⩽∆) is a morphism of groups ϕ : Γ → ∆ that preserves the orders, that is,
such that ϕ(x) ⩽∆ ϕ(y) for every x, y ∈ Γ such that x ⩽Γ y. We say that two ordered
groups are ordered-isomorphic if they are isomorphic as ordered groups.

Let Γ be an ordered group. We say that Γ is discrete if the set {γ ∈ Γ | γ > 0} has
a minimal element. A subgroup ∆ of Γ is a convex ordered group if for every γ ∈ Γ and
δ ∈ ∆ such that 0 ⩽ γ ⩽ δ, we have that γ ∈ ∆. If Γ has only finitely many convex
subgroups, then we define the rank of Γ as the number of proper convex subgroups of Γ,
otherwise we define it to be ∞. We denote the rank of Γ by rk(Γ). Note that in [EP05] a
finer notion of rank is introduced, which distinguishes between different order types, and
carries therefore more information than the concept we introduced.

2.1.2 Examples. (a) Let ⩽ be the natural order on R. Then (R,⩽) is an ordered group
of rank 1, and it is not discrete.

(b) Any non-trivial subgroup of R, together with the order induced by the natural order
on R, is an ordered group of rank 1. It is well known that the converse is also true,
that is, any ordered group of rank 1 is order-isomorphic to a non-trivial subgroup of
R with the order induced by the natural order on R; see [EP05, Proposition 2.1.1].

(c) In this dissertation, we will mostly exploit ordered groups of rank 1. Nevertheless,
it is easy to build ordered groups of arbitrary rank as follows. Let n ∈ N and let

33
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(Γ1,⩽1), . . . (Γn,⩽n) be ordered groups. Set

Γ =

n∏
i=1

Γi.

We define an order on Γ as follows: for every 1 ⩽ i ⩽ n and γi, δi ∈ Γi, we set
(γ1, . . . , γn) ⩽ (δ1, . . . , δn) if γj = δj for 1 ⩽ j ⩽ n or if there exists 1 ⩽ k ⩽ n such
that γk <k δk and γj = δj for every 1 ⩽ j ⩽ k−1. Then the relation ⩽ is an order on
Γ, called the lexicographical order on Γ. Furthermore, any proper convex subgroup of
(Γ,⩽) is of the form

k−1∏
i=1

{0} ×∆×
n∏

i=k+1

Γi

for some 1 ⩽ k ⩽ n and some convex subgroup ∆ of (Γk,⩽Γk
). It follows in particular

that rk(Γ) = Σni=1 rk(Γi).

(d) Let n ∈ N and let ⩽ be the lexicographical order on Z(n) induced by the natural order
on Z. Then (Z(n),⩽) is a discrete ordered group of rank n.

(e) The rank of an ordered group is not independent of the order considered. For example,
let G1 = Z× Z and let ⩽1 be the lexicographical order on G1 introduced above. Let
G2 = Z + πZ ⊆ R and let ⩽2 be the order on G2 induced by the natural order on
R. Then G1 and G2 are isomorphic as groups, but not as ordered groups; in fact,
rk(G1) = 2, whereas rk(G2) = 1.

Given an ordered abelian group (Γ,+, 0,⩽), we extend the semi-group structure
(Γ,+, 0) by introducing a symbol ∞ that does not belong to Γ and by setting x+∞ = ∞
for every x ∈ Γ; we also extend the order relation ⩽ to Γ ∪ {∞} by setting x ⩽ ∞ for
every x ∈ Γ.

Let K be a field. A valuation on K is a map v : K → Γ ∪ {∞} such that Γ is an
ordered abelian group and such that the following conditions hold for every x, y ∈ K:

(i) v(x) = ∞ if and only if x = 0,

(ii) v(xy) = v(x) + v(y),

(iii) v(x+ y) ⩾ min{v(x), v(y)}.

A pair (K, v) where K is a field and v is a valuation on K is called valued field .

Remark. In several of the sources used in this thesis, among which [OM73] and [Neuk99],
the term valuation is attached to a different concept, namely to what is called absolute
value in [EP05], which are essentially the same thing as valuations of rank 1; see Section 2.3.

Let K be a field and let v be a valuation on K. Simple computations show that
v(1) = v(−1) = 0 and that v(x + y) = min{v(x), v(y)} for every x, y ∈ K such that
v(x) ̸= v(y). Furthermore, we denote Ov = {x ∈ K | v(x) ⩾ 0}. It is easy to see that Ov

is a local ring, whose unique maximal ideal is given by {x ∈ K | v(x) > 0}. We denote
this maximal ideal by mv, we denote the quotient field Ov/mv by Kv, we denote by vK
the ordered group v(K×), and we set rk(v) = rk(vK). For any x ∈ Ov, we denote by xv

the class of x in Kv. Note that O×
v = Ov ∖ mv = {x ∈ K | v(x) = 0}. We call Kv the

residue field of v, we call vK the value group of v, and we call rk(v) the rank of v. We
say that v is discrete if vK is discrete.
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We say that v is dyadic if char(Kv) = 2, and that v is non-dyadic otherwise. This
distinction is often relevant when studying quadratic forms over (K, v).

Let S ⊆ K. We say that v is trivial on S if v(S) ⊆ {0,∞}, that is, if S ⊆ O×
v ∪ {0}.

This is especially relevant when S is a subfield of K, in which case v is trivial on S if and
only if S ⊆ Ov. We say that v is trivial if v is trivial on K, that is, Ov = K.

Let v, w be valuations on K. We say that v and w are equivalent if there exists an
isomorphism of ordered groups ϕ : vK → wK such that w = ϕ ◦ v, and that they are
inequivalent otherwise. If v and w are equivalent, we write v ∼ w. In other words, v ∼ w
if and only if Ov = Ow. Clearly, ∼ is an equivalence relation on the valuations on K.

Given two valued fields (K, v), (L,w) and a field isomorphism ϕ : K → L, we say
that ϕ is an isomorphism between the valued fields (K, v) and (L,w) if v ◦ϕ = v; if (K, v),
(L,w) are isomorphic valued fields, we denote it by (K, v) ≃ (L,w).

2.1.3 Examples. (a) Let p ∈ N be a prime number. For every x ∈ Q×, let vp(x) ∈ Z be
the unique integer n ∈ Z such that x = pna/b for some a, b ∈ Z ∖ pZ. Then the map
vp : Q → Z∪{∞} sending 0 to ∞ and x ∈ Q× to vp(x) is a valuation on Q with value
group Z, which is called the p-adic valuation on Q. The residue field of v is naturally
isomorphic to Z/pZ. Furthermore, any non-trivial valuation on Q is equivalent to the
p-adic valuation for a unique prime p ∈ N; see [EP05, Theorem 2.1.4 (a)].

(b) Let K be a field and p ∈ K[X] irreducible. Mimicking Example 2.1.3 (a), we build
a valuation on K(X) as follows. For any f ∈ K(X)×, let vp(f) ∈ Z be the unique
integer n ∈ Z such that f = png/h for some g, h ∈ K[X] ∖ pK[X]. Then the map
vp : K(X) → Z ∪ {∞} sending 0 to ∞ and x ∈ K(X)× to vp(x) is a valuation on
K(X) with value group Z, which is called the p-adic valuation on K(X), and which
is trivial on K. The residue field of vp is naturally isomorphic to K[X]/pK[X].

(c) An analogous, more general construction can be made in order to build the p-adic
valuation on K whenever K is the fraction field of a unique factorization domain R
and p ∈ R is a prime element; the value group is again Z, and the residue field of the
p-adic valuation on K is naturally isomorphic to Frac(R/pR).

(d) Let K be a field. There exists a valuation on K(X) that is not the p-adic valuation
for any p ∈ K[X] prime. For any f ∈ K(X)×, set v∞(f) = deg(h) − deg(g), where
g, h ∈ K[X] are such that f = g/h. Setting v∞(0) = ∞, we obtain a valuation v∞ on
K(X) with value group Z, which is trivial on K, and whose residue field is canonically
isomorphic to K. The valuation v∞ is called the degree valuation on K(X). One can
show that any non-trivial valuation on K(X) that is trivial on K is equivalent to
the degree valuation on K(X) or to the p-adic valuation vp for a (unique) monic
irreducible polynomial p ∈ K[X]; see [EP05, Theorem 2.1.4 (b)]. Furthermore, v∞
is not the p-adic valuation for any p ∈ K[X] prime, but is the 1/X-adic valuation
obtained by viewing K(X) as the fraction field of the principal ideal domain K[1/X].

All valuations in Examples 2.1.3 are discrete valuations of rank 1. These are frequently
involved in algebraic geometry, and are the only valuations necessary in the upcoming
chapters of this thesis. Nevertheless, there exist valuations with arbitrary value groups.

2.1.4 Examples. (a) Let p ∈ Z be prime. Consider the p-adic valuation vp on Q described
in Example 2.1.3 (a) and the X-adic valuation vX on Q(X) described in Example
2.1.3 (b). For every f ∈ Q(X)×, let g, h ∈ Q[X]∖XQ[X] be such that f = XvX(f)g/h
and let f0 = g(0)/h(0) ∈ Q. Then the map v : Q(X) → (Z× Z) ∪ {∞} sending 0 to
∞ and f ∈ Q(X)× to (vX(f), vp(f0)) is a discrete valuation of rank 2 on Q(X).
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(b) Let K be a field and let Γ be an ordered abelian group. Let K[[tΓ]] be the ring of Hahn
series in the variable t over K; see [EP05] for the definition of K[[tΓ]]. We denote by
K((tΓ)) the field of fractions of K[[tΓ]]. For every {aγ}γ∈Γ ⊆ K having well-ordered
support, we set v(Σγ∈Γ aγt

γ) = min{γ ∈ Γ | aγ ̸= 0}. For every g, h ∈ K[[tΓ]] ∖ {0},
we set v(g/h) = v(g) − v(h). Then the map v : K((tΓ)) → Γ ∪ {∞} sending 0 to ∞
and f ∈ K((tΓ))× to v(f) ∈ Γ is a valuation on K((tΓ)). Furthermore, the residue
field of v is naturally isomorphic to K, and vK((tΓ)) = Γ.

When Γ = Z, the ring K[[tΓ]] is called ring of formal power series in the variable t
over K and is denoted by K[[t]]; similarly, the fraction field of K[[t]] is called field of
formal power series in the variable t over K and is denoted by K((t)). In this case,
the valuation v is called the t-adic valuation on K((t)) and is denoted by vt. When
Γ = Q, the valuation v on L has rank 1, but it is not discrete.

Let O be a domain. We denote the fraction field of O by Frac(O). We call any
intermediate ring extension of Frac(O)/O an overring of O. We call O a valuation ring
if for every x ∈ Frac(O)× we have that x ∈ O or x−1 ∈ O. Clearly, any overring of a
valuation ring is again a valuation ring. Given a valuation v on K, it is straightforward
that Ov is a valuation ring.

Let K be a field. A valuation ring of K is a valuation ring having fraction field K.
Let O be a valuation ring of K. We use O to build a valuation on K as follows. For
x, y ∈ K×, we set xO× ⩽ yO× if yO ⊆ xO. Then (K×/O×, ·,O×,⩽) is an ordered
abelian group and is the value group of a valuation v on K, which we define by setting
v(0) = ∞ and v(x) = xO× for any x ∈ K×. Then O = Ov. We call v the natural
valuation corresponding to O. We define the rank of O as the rank of v. Note that rk(O)
coincides with the Krull dimension of O; see [EP05, Lemma 2.3.1].

2.1.5 Examples. (a) Let p ∈ N be prime. Let Z(p) be the localisation of Z at p, that is,

Z(p) = {m/n | m ∈ Z, n ∈ Z ∖ pZ}.

Then Z(p) is a valuation ring of Q of rank 1. As a matter of fact, Z(p) = Ovp where
vp is the p-adic valuation on Q described in Example 2.1.3 (a).

(b) Let K be a field and let p ∈ K[X] be an irreducible polynomial. Let K[X](p) be the
localisation of K[X] at p, that is,

K[X](p) = {f/g | f ∈ K[X], g ∈ K[X]∖ pK[X]}.

Then K[X](p) is a valuation ring of K(X) of rank 1. Indeed, K[X](p) = Ovp where
vp is the p-adic valuation on K(X) from Example 2.1.3 (b).

(c) Let K be a field and let

O = {f/g | f, g ∈ K[X], g ̸= 0 and deg g ⩾ deg f}.

Then O is a valuation ring of K(X) of rank 1. Indeed, O = Ov∞ where v∞ is the
degree valuation on K(X) from Example 2.1.3 (d).

Given a field K, a valuation ring O of K and a valuation v on K such that O = Ov,
there exist 1-1 correspondences between prime ideals of O, convex subgroups of vK and
valuation rings of K lying over O. The next lemma gives an explicit description of such
correspondences.

Given a ring R, we denote by Spec(R) the set of prime ideals of R.
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2.1.6 Lemma. Let K be a field, let O be a valuation ring and let v be a valuation on
K such that O = Ov. Let S1 = Spec(O), let S2 be the set of the convex subgroups of vK
and let S3 be the set of overrings of O. Consider p ∈ S1, ∆ ∈ S2 and O′ ∈ S3. Let m′ be
the maximal ideal of O′. We set the following:

ϕ12(p) = {γ ∈ vK | γ,−γ < v(x) for every x ∈ p}
ϕ13(p) = Op

ϕ21(∆) = {x ∈ K | v(x) > δ for every δ ∈ ∆}
ϕ23(∆) = {x ∈ K | v(x) ⩾ δ for some δ ∈ ∆}
ϕ31(O′) = m′ ∩ O
ϕ32(O′) = {γ ∈ vK | γ,−γ < v(x) for every x ∈ m′ ∩ O}.

Then for every 1 ⩽ i, j ⩽ 3 such that i ̸= j, we have that ϕij is a bijection between
Si and Sj, whose inverse map is ϕji. Furthermore, the rank of O coincides with the
Krull-dimension of O.

Proof. The statement summarises [EP05, Lemma 2.3.1] and the discussion immediately
before, at page 43.

2.1.7 Corollary. Let K be a field and let O be a valuation ring of K. Then rk(O) = 1
if and only if O is a proper maximal subring of K.

Proof. Let v be a valuation on K such that O = Ov. Then the statement follows
from Lemma 2.1.6, in view of the correspondence between convex subgroups of Kv and
valuation rings of K containing O.

2.1.8 Example. Let K = Q(X). Let vX be the X-adic valuation on K(X) described
in Example 2.1.3 (b) and let v be the valuation on K described in Example 2.1.4 (a).
Set O = Ov and O′ = OvX . Then O ⊆ O′. By Lemma 2.1.6, there exist bijections
between prime ideals of O, convex subgroups of vK and overrings of O. More precisely,
XO ∈ Spec(O) is the prime ideal of O and {0}×Z is the convex subgroup of vK = Z×Z
corresponding to O′.

Let K be a field. Given subrings O,O′ of K, we denote by OO′ the smallest subring
of K containing both O and O′. Let O,O′ be valuation rings of K. Then OO′ is an
overring of O (and of O′), and thus it is also a valuation ring of K. We say that O and
O′ are dependent if OO′ ⊊ K, and that they are independent otherwise. Let v, w be
valuations on K. We say that v, w are dependent if Ov and Ow are dependent, and that
they are independent otherwise.

2.1.9 Theorem (Weak Approximation Theorem). Let K be a field, n ∈ N and let
v1, . . . , vn be pairwise independent valuations on K. Then for every x1, . . . , xn ∈ K and
(γ1, . . . , γn) ∈

∏n
i=1 viK, there exists x ∈ K such that vi(x− xi) > γi for all 1 ⩽ i ⩽ n.

Proof. See e.g. [EP05, Theorem 2.4.1].

It follows by Corollary 2.1.7 that any set of inequivalent valuations of rank 1 on a field
is independent, therefore we may apply Theorem 2.1.9 to it.

An important class of valuations of rank 1 is the one of Z-valuations. Let K be a
field and let v be a valuation on K. Then v is discrete and of rank-1 if and only if vK is
order-isomorphic to Z. We call v a Z-valuation on K if vK = Z.
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A discrete valuation ring is a local principal ideal domain that is not a field. Given a
discrete valuation ring O, a generator of the maximal ideal of O is called a uniformizer of
O. A number of characterisations for discrete valuation rings are known in the literature.
In the following statement we list some of those, which will be used later in this thesis.

2.1.10 Proposition. Let O be a domain. Then the following are equivalent:

(i) O is a discrete valuation ring.

(ii) O is a noetherian valuation ring that is not a field.

(iii) O = Ov for a Z-valuation v on Frac(O).

(iv) O is local, noetherian, integrally closed and has a unique nonzero prime ideal.

(v) O is a regular local ring of Krull-dimension 1.

Proof. The statement follows from [Mat86, Theorems 11.1 and 11.2].

2.2 Extensions of valuation rings and Hensel’s Lemma

Let K be a field and let v be a valuation on K.

Let K0 be a subfield of K. Let v0 be the restriction of v to K0, that is, v0 = v|K0 .
Then v0 is a valuation on K0 whose value group is a subgroup of vK and whose residue
field embeds canonically into Kv. Furthermore Ov ∩K0 = Ov0 . We denote vK0 = v0K0

and K0v = K0v0.

Let now L/K be a field extension and let w be a valuation on L. We say that w
is an extension of v to L if w|K = v. We say that w is an unramified extension of v
if vK = wL, and that it is a ramified extension of v otherwise. If w is an unramified
extension of v and Lw = Kv, we say that w is an immediate extension of v.

2.2.1 Example. Let (K, v) be a valued field. For k ∈ N and a0, . . . , ak ∈ K, we set

w(Σki=0 aiX
i) = min{v(ai) | 1 ⩽ i ⩽ k} ∈ vK ∪ {∞}.

For g, h ∈ K[X] ∖ {0} we set w(g/h) = w(g) − w(h). Set L = K(X). Then w is a
valuation on L, which is called Gauss extension of v to L with respect to X. Note that
w(X) = 0. Let X be the class of X in Lw. Then X ∈ Lw is transcendental over Kv,
Lw = Kv(X) and wL = vK. Furthermore, w is the unique extension of v to L such that
w(X) = 0 and X ∈ Lw is transcendental over Kv; see e.g. [EP05, Corollary 2.2.2]. As a
consequence, w is an unramified but not immediate extension of v.

2.2.2 Theorem (Chevalley). Given a field extension L/K, any valuation on K admits
an extension to L.

Proof. See e.g. [EP05, Theorem 3.1.1].

2.2.3 Remark. The proof of Theorem 2.2.2 given in [EP05, Theorem 3.1.1] is based on
Zorn’s Lemma, and relies thus on the axiom of choice. By using the Gauss extension,
it is possible to give an alternative, constructive argument of Theorem 2.2.2 for rational
function fields and for finite field extensions.

In view of its crucial role in the study of extensions of valuations, the equations in the
following statement are known as Fundamental Inequality and Fundamental Equality.
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2.2.4 Theorem (Fundamental Inequality and Fundamental Equality). Let L/K be a
finite field extension and let v be a valuation on K. Then there exist only finitely many
extensions of v to L. Furthermore, let n ∈ N+ be the number of extensions of v to L and
let v1, . . . , vn be these extensions. Then we have that

Σni=1[viL : vK] · [Lvi : Kv] ⩽ [L : K].

Finally, if vK = Z and L/K is separable, then

Σni=1[viL : vK] · [Lvi : Kv] = [L : K].

Proof. See [EP05, Theorems 3.3.4 and 3.3.5].

2.2.5 Corollary. Let L/K be a finite field extension, let v be the trivial valuation on K
and let w be an extension of v to L. Then w is trivial.

Proof. By Lagrange’s theorem we have |wL| = |vK| · [wL : vK]. Since v is trivial,
we have |vK| = 1. By the Fundamental Inequality in Theorem 2.2.4, we have that
[wL : vK] ⩽ [L : K], hence [wL : vK] is finite. Thus |wL| is finite. Since wL is
torsion-free, by [Ef06, Lemma 2.1.1], we conclude that wL = {0}.

2.2.6 Corollary. Let L/K be a finite field extension, v a valuation on K and w an
extension of v to L. Then rk(w) = rk(v). If, moreover, w is discrete, then v is discrete.

Proof. This follows directly from Theorem 2.2.4.

In the sequel, we will often use the Fundamental Inequality for quadratic extensions.
In this setting, we have the following statement.

2.2.7 Corollary. Let K be a field, let a ∈ K× ∖K×2 and set L = K(
√
a). Let v be a

non-dyadic valuation on K and let w be an extension of v to L. Then the following hold:

(1) Assume that v(a) ̸∈ 2vK. Then w is the unique extension of v to L. Furthermore,
we have that [wL : vK] = 2 and [Lw : Kv] = 1.

(2) Assume that v(a) ∈ 2vK. Then we have that wL = vK, that aK×2 ∩ O×
v ̸= ∅, and

that Lw ≃ Kv(
√
xv) for every x ∈ aK×2 ∩ O×

v . Furthermore, if [Lw : Kv] = 2,
then w is the unique extension of v to L, otherwise there exist exactly two different
extensions of v to L.

Proof. Let α ∈ L be such that α2 = a. In L we have that w(a) = w(α2) = 2w(α), hence
w(a) ∈ 2wL. If v(a) ̸∈ 2vK, we obtain that [wL : vK] = 2, otherwise wL = vK. Then
the statement follows trivially from the Fundamental Equality in Theorem 2.2.4.

2.2.8 Example. Let K = R((t))(X) and let v be the Gauss extension to K with respect
to X of the t-adic valuation on R((t)). Set a = X2 + 1 and L = K(

√
a), and let w be an

extension of v to L. Since v(a) = 0, it follows by Corollary 2.2.7 that wL = vK = Z and

Lw ≃ Kv
(√

av
)
.

Thus Lw ≃ R(X)(
√
a), and w is the unique extension of v to L, since [Lw : Kv] = 2.
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Let K be a field and let v be a valuation on K. We say that v is henselian if for every
algebraic field extension L/K, v has a unique extension to L. Of course this is equivalent
to v having a unique extension to every finite field extension of K. Furthermore, the
definition implies directly that any extension of a henselian valuation to an algebraic field
extension is again henselian.

The name henselian is motivated by the fact that v is henselian if and only if an
analogous statement to Hensel’s Lemma holds with respect to v. Let R be a local ring,
let m be its maximal ideal and let κ = R/m. Given a ∈ R, we denote a = a+ m. Given
f ∈ R[X] and n ∈ N, a1, . . . , an ∈ R such that f = a0+a1X+. . .+anX

n, we denote by ∂f
the formal derivative of f with respect to X, and we set f = a0+a1X+. . .+anX

n ∈ κ[X].
We say that R is henselian if for every f ∈ R[X] monic and α ∈ κ such that f(α) = 0
and ∂f(α) ̸= 0, there exists a ∈ R such that f(a) = 0 and a = α. We have the following:

2.2.9 Theorem. For a valued field (K, v), the following are equivalent:

(i) v is henselian.

(ii) Ov is henselian.

Proof. See [EP05, Theorem 4.1.3].

Let R be a local ring and let I be its maximal ideal. LetB = {x+InR | x ∈ R,n ∈ N}.
Then B is the basis of a topology on R, which we call the I-adic topology on R. The I-
adic topology on R makes the operations of R continuous. The set of quotient R-modules
{R/InR}n∈N and the set of the natural maps {R/InR → R/ImR | n,m ∈ N, n ⩾ m}
form an inverse system. Hence we may construct its inverse limit, which we denote by
R̂ and call the completion of R. Then R̂ is a local ring, and in fact an R-algebra via the
natural ring homomorphism R→ R̂. Its maximal ideal is IR̂. We say that R is complete
if R→ R̂ is a ring isomorphism.

The most important class of henselian valuations is given by complete Z-valuations.
This can be obtained as an example of the following general statement.

2.2.10 Theorem. A complete local ring is henselian.

Proof. This follows from [Mat86, Theorem 8.3] and [EP05, Theorem 4.1.3].

Given a Z-valuation v, we say that v is complete if Ov is a complete local ring.

2.2.11 Corollary. A complete Z-valuation is henselian.

Proof. Since v is complete, we have that Ov is complete. Hence the statement follows
from Theorem 2.2.9 and Theorem 2.2.10.

2.2.12 Examples. (a) Let K be a field and n ∈ N. Set K[[t1, . . . , tn]] = K[[t1]] . . . [[tn]].
Then K[[t1, . . . , tn]] is a henselian local ring, by Theorem 2.2.10. In particular, K[[t]]
is a henselian discrete valuation ring.

(b) For p ∈ N prime, the ring of p-adic numbers is a henselian discrete valuation ring.

The implication (i) =⇒ (ii) of the following statement is commonly known as
Krasner’s Lemma, or as Krasner-Ostrowski’s Lemma.

2.2.13 Lemma. Let (K, v) be a valued field, let Kalg be an algebraic closure of K and
let w be an extension of v to Kalg. Then the following are equivalent:
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(i) v is henselian.

(ii) For every α, β ∈ Kalg such that w(α−σ(α)) < w(α−β) for every K-automorphism
σ of Kalg with σ(α) ̸= α, we have that K(α, β)/K(β) is purely inseparable.

Proof. The statement can be obtained for example from [Ef06, Lemma 18.5.1], by using
the characterisation of relative henselian valuations given in [Ef06, Lemma 18.1.2].

Krasner’s Lemma is also known in the following form. Let K be a field, Kalg an
algebraic closure of K and m ∈ N. Given F ∈ Kalg[X]∖ {0} having precisely m roots of
F in Kalg, we set Cv(F ) = −∞ if m ⩽ 1, and we set

Cv(F ) = sup{v(αi − αj) | 1 ⩽ i < j ⩽ m}

where α1, . . . , αm are the distinct roots of F in Kalg otherwise. Furthermore, given
α ∈ Kalg, we set Cv(α/K) = Cv(F ) where F is the minimal poynomial of α over K.

2.2.14 Theorem (Krasner). Let α, β ∈ Kalg be such that v(α − β) > Cv(α/K). Then
the extension K(α, β)/K(β) is purely inseparable. In particular, if α is separable, we have
K(α) ⊆ K(β).

Proof. See for example [EP05, Theorem 4.1.7].

2.3 Absolute values

Let K be a field. An absolute value on K is a map | | : K → R such that the following
hold for every x, y ∈ K:

(i) |0| = 0 and |x| > 0 whenever x ̸= 0;

(ii) |x · y| = |x| · |y|;

(iii) |x+ y| ⩽ |x|+ |y|.

Given an absolute value | | on K, we say that | | is non-archimedean if we have
|x + y| ⩽ max{|x|, |y|} for every x, y ∈ K, and we say that | | is archimedean otherwise.
Non-archimedean absolute values are characterised in the following way:

2.3.1 Proposition. Let K be a field and let | | be an absolute value on K. Then | | is
non-archimedean if and only if there exists c ∈ R such that |n · 1| ⩽ c for every n ∈ Z.

Proof. See [EP05, Proposition 1.1.1].

2.3.2 Examples. (a) The map sending 0 to 0 and every x ∈ K× to 1 is an absolute value,
called the trivial absolute value on K.

(b) The euclidean absolute value | | on C, given by |a+ bi| =
√
a2 + b2 for every a, b ∈ R,

is an archimedean absolute value.

(c) Given a subfield K of C, it follows by Proposition 2.3.1 that the absolute value on K
induced by the euclidean absolute value on C is an archimedean absolute value on K.
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(d) Let p ∈ N be prime. We define an absolute value | |p on Q as follows. Given q ∈ Q×,
let r, n,m ∈ Z be such that m,n /∈ pZ and q = prm/n, and set |q|p = e−r. Set further
|0|p = 0. Then | |p is a non-archimedean absolute value on Q, called p-adic absolute
value on Q.

(e) The construction in (d) can be generalised as follows. Let v : K → R ∪ {∞} be a
valuation and let x ∈ K×. Set |x|v = e−v(x). Then | |v is a non-archimedean absolute
value on K, which we call the absolute value induced by v on K.

The procedure of Example 2.3.2 (e) can be reversed as follows. Let K be a field and
let | | be a non-archimedean absolute value. We define a valuation on K, which we call
the valuation induced by | |, by setting v(0) = ∞ and v(x) = log |x| ∈ R for every x ∈ K×.
Recall from Examples 2.1.2 that ordered groups of rank 1 are essentially the nontrivial
ordered subgroups of R. Hence v has rank 1.

We can also extend the construction from Example 2.3.2 (e) to valuations of rank
1, up to a choice of an embedding of ordered groups vK → R. We may thus see non-
archimedean absolute values as valuations of rank 1, and arbitrary absolute values as a
generalisation of the latter; alternatively, we may see valuations as a generalisation of non-
archimedean absolute values towards arbitrary ranks. In order to avoid the embarrassment
of the choice of the aforementioned embedding, we define an equivalence relation on the
absolute values of K in the following way. Let | |1 and | |2 be two absolute values on K.
We say that | |1 and | |2 are equivalent if there exists c ∈ R×2 such that |x|1 = |x|c2 for any
x ∈ K. When | |1 and | |2 are non-archimedean, we see that | |1 and | |2 are equivalent
if and only if the corresponding induced valuations are equivalent. As for valuations, it
will often be convenient to work with absolute values up to equivalence.

2.3.3 Example. Let K be a number field and | | a non-archimedean absolute value on K.
Then there exists, up to equivalence, a unique p ∈ N prime such that | | restricts to | |p
on Q.

We discuss now completions of fields. Let K be a field and let | | be an absolute value
on K. Since the euclidean topology on R is a metric, | | induces a metric on K. We
say that K is complete with respect to | | if every Cauchy sequence in K with respect
to the metric on K induced by | | converges in K; see [EP05, page 9] for more details.
The following statement shows that K possesses a field extension that is complete with
respect to an absolute value that restricts to | | on K.

2.3.4 Theorem. For a field K and an absolute value | | on K, we have the following:

(1) There exists a field K̂, an absolute value | |K̂ on K̂ and an embedding ι : K → K̂

such that K̂ is complete with respect to | |K̂ , Im(ι) is dense in K̂ with respect to the
metric induced by | |K̂ , and |x| = |ι(x)|K̂ for every x ∈ K.

(2) Let L be a field, let | |L be an absolute value on L such that L is complete with respect
to | |L and let θ : K → L be an embedding such that |x| = |θ(x)|L for every x ∈ K.

Then there exists a unique continuous embedding η : K̂ → L such that η|K = θ and

|η(x)|L = |x|K̂ for every x ∈ K̂. If, moreover, Im(θ) is dense in L with respect to the
metric induced by | |L, then η is an isomorphism.

Proof. (1) is contained in [EP05, Theorem 1.1.4] literally. The argument for (2) is also
contained in [EP05, Theorem 1.1.4], but the statement is formulated in a slightly different
way, since it is assumed from the beginning that Im(θ) is dense in L with respect to the
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metric induced by | |L. Nonetheless, this assumption is only needed to obtain that η is
surjective; see the proof of [EP05, Theorem 1.1.4] at page 12.

Under the notation of Theorem 2.3.4, the pair (K̂, | |K̂) is called the completion of K
with respect to | |. Theorem 2.3.4 (2) ensures that the completion of K with respect to
| | is unique, up to isomorphism.

2.3.5 Example. The only fields that are complete with respect to an archimedean absolute
value are, up to isomorphism, R and C, which are complete with respect to the ordinary
absolute value; see [EP05, Theorem 1.2.3] for an argument.

Let L/K be a field extension and let | | be an absolute value on L. It is straightforward
that the restriction of | | to K is an absolute value on K.

2.3.6 Corollary. Let L/K be a field extension. Let | | be an absolute value on L and let

L̂ be the completion of L with respect to | |. Let | |K be the restriction of | | to K and

let K̂ be the completion of K with respect to | |K . Then there exists a unique continuous

K-embedding η : K̂ → L̂ such that |η(x)|L̂ = |x|K̂ for every x ∈ K̂.

Proof. The statement follows directly from Theorem 2.3.4 (2).

2.3.7 Corollary. Let L/K be a field extension and w a Z-valuation on L. Assume that
there exists a Z-valuation v on K that is equivalent to w|K . Then there exists a unique
continuous K-embedding of valued fields η : Kv → Lw such that ŵ ◦ η is equivalent to v̂.
Furthermore, if L/K is finite, then Lw/Kv is finite as well.

Proof. The first statement follows from Corollary 2.3.6. See e.g. [Neuk99, p. 161] for the
finiteness of Lw/Kv when L/K is finite.

2.3.8 Examples. Let K be a number field.

(a) Let | | be an archimedean absolute value on K. In view of Example 2.3.5 and
Corollary 2.3.7, the completion of K with respect to | | is isomorphic to R or C.

(b) Let | | be a non-archimedean absolute value on K. In view of Example 2.3.3 and
Corollary 2.3.7, the completion of K with respect to | | is isomorphic to a finite
extension of Qp for a unique p ∈ N prime. See also [Neuk99, Proposition II.5.2].

Let K be a field. When working with different absolute values on K, we might
want to attach to the completion of K with respect to an absolute value a name that
depends explicitly on the absolute value generating the completion, in order to avoid
possible misunderstandings. For this reason, and in view of the correspondence between
non-archimedean absolute values and valuations of rank 1, we take inspiration from the
notation of valuations. We denote by WK the set of absolute values on K and, given
w ∈ WK , we denote by (Kw, ŵ) the completion of K with respect to w.

2.3.9 Example. Let w ∈ WQ. Then Qw ≃ C, Qw ≃ R or Qw ≃ Qp for p ∈ N prime; see
e.g. [EP05, Appendix A].

Let K be a field and let v be a Z-valuation on K. Denote by | | the absolute value on
K induced by v and by (K̂, | |K̂) the completion of K with respect to | |. Set Kv = K̂,

and denote by v̂ the Z-valuation on K̂ associated to | |K̂ . We call the valued field (Kv, v̂)
the completion of (K, v), and we call Kv the completion of K with respect to v. We say
that the valued field (K, v) is complete if (K, v) ≃ (Kv, v̂). This is equivalent to having

that v is complete; furthermore, Kv ≃ Frac(Ôv) and Kv ≃ Kv v̂ in a canonical way; see
[EP05, Theorem 2.4.3 and Proposition 2.4.4].
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2.3.10 Examples. (a) Let p ∈ N be prime, and let vp be the p-adic valuation on Q. Then
Qvp = Qp and Ov̂p = Zp, which is a complete discrete valuation ring of Qp; see e.g.
[Ef06, Example 9.2.1]. Equivalently, the valued field (Qp, v̂p) is complete.

(b) Let K be a field and let vX be the X-adic valuation on K(X). Set O = K[X](X).
Then O is a discrete valuation ring, but it is not complete. As a matter of fact,
the completion of O is the ring of formal power series in one variable K[[X]]; see for
example [Ef06, Example 9.2.2]. In other words, (K(X), vX) is not complete, and its
completion is (K((X)), v̂X), where v̂X is the X-adic valuation on K((X)).

We end this chapter by stating a celebrated local-global principle by H. Hasse and
H. Minkowski. A global field is a finite extension of Q or of F (X) for some finite field F .

2.3.11 Theorem (Hasse-Minkowski). Let K be a global field and let ϕ be an anisotropic
quadratic form over K. Then there exists w ∈ WK such that ϕKw is anisotropic.

Proof. See [OM73, Theorem 66:1] for the case char(K) ̸= 2, and [Pol70, Theorem 3.2] for
the case char(K) = 2.

2.4 Valuations and sums of squares

In this section, we present standard tools on valuations and sums of squares in arbitrary
fields, which will be useful in the sequel. We also state several classic results about the
level and the Pythagoras number of familiar fields from number theory.

We begin with a preliminary result, which we state for an arbitrary domain. Let R be
a commutative ring. We denote by Max(R) the set of maximal ideals of R and by Jac(R)
the Jacobson radical of R, which is the ideal of R defined by

Jac(R) = {x ∈ R | 1−Rx ⊆ R×} .

We recall that Jac(R) =
⋂
Max(R); see [AMD69, Proposition 1.1.9]. We say that R is

semilocal if Max(R) is finite, that is, if R has only finitely many maximal ideals.

2.4.1 Lemma. Let R be a domain and k ∈ N+. Then the following hold:

(1) 1 + Σk−1R
2 ⊆ R× if and only if s(R/m) ⩾ k for every m ∈ Max(R).

(2) If (1 + ΣkR
2) ∩ Jac(R) ̸= ∅, then s(R/m) ⩽ k for every m ∈ Max(R).

(3) If R is semilocal and such that s(R/m) ⩽ k for every m ∈ Max(R), then we have
(1 + ΣkR

2) ∩ Jac(R) ̸= ∅.

Proof. Parts (1) and (2) follow immediately from the definition of the level and from the
fact that R× = R∖

⋃
Max(R) and Jac(R) =

⋂
Max(R).

(3) Assume that R is semilocal and s(R/m) ⩽ k for every m ∈ Max(R). For every
m ∈ Max(R), choose fm,1, . . . , fm,k ∈ R with 1 + f2m,1 + . . . + f2m,k ∈ m. By the Chinese
Remainder Theorem, for 1 ⩽ i ⩽ k we find fi ∈ R such that fi ≡ fm,i mod m for
all m ∈ Max(R). Then 1 + f21 + . . . + f2k ∈

⋂
Max(R) = Jac(R). This shows that

(1 + ΣkR
2) ∩ Jac(R) ̸= ∅.

For the remainder of this section, we fix a field K. We call a valuation ring O of K
real if its residue field is real, and nonreal otherwise; similarly, we call a valuation v on K
real if Ov is real, and nonreal otherwise. In the sequel, we often use the following result
from [BGVG14]. Because of its direct link with Lemma 2.4.1, we include the proof.
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2.4.2 Proposition. Let v be a valuation on K and n ∈ N. Then the following hold:

(1) s(Kv) ⩾ n if and only if, for every x1, . . . , xn ∈ K, we have

v(x21 + . . .+ x2n) = 2min{v(xi) | 1 ⩽ i ⩽ n}.

(2) v is real if and only if, for every n ∈ N and x1, . . . , xn ∈ K, we have

v(x21 + . . .+ x2n) = 2min{v(xi) | 1 ⩽ i ⩽ n}.

Proof. (1) By Lemma 2.4.1 (1), we have that s(Kv) ⩾ n if and only if 1+Σn−1Ov
2 ⊆ O×

v ,
that is, v(1 + Σn−1Ov

2) = {0}. For all x1, . . . , xn ∈ K such that v(x1) ⩽ . . . ⩽ v(xn),
we have that x21 + . . . + x2n ∈ x21(1 + Σn−1Ov

2). Therefore s(Kv) ⩾ n if and only if
v(x21 + . . .+ x2n) = 2min{v(xi) | 1 ⩽ i ⩽ n} for all x1, . . . , xn ∈ K.

(2) This follows from (1), since v is real if and only if s(Kv) ⩾ n for every n ∈ N.

2.4.3 Lemma. Let v be a non-dyadic valuation on K, x ∈ O×
v . Then ℓK(x) ⩾ ℓKv(x

v).
Furthermore, if 1 +mv ⊆ K×2, then ℓK(x) = ℓKv(x

v).

Proof. Set l = ℓK(x) and m = ℓKv(x
v). If l = ∞, then l ⩾ m, trivially. Assume l < ∞.

If s(Kv) < l, then xv ∈ Σl(Kv)
2
, by Proposition 1.2.4. Assume that s(Kv) ⩾ l. Consider

x1, . . . , xn ∈ K such that x21 + . . .+ x2l = x. Since x ∈ Ov, it follows by Proposition 2.4.2
that x1, . . . , xl ∈ Ov. Hence xv = (xv1)

2 + . . .+ (xvl )
2. This shows that l ⩾ m.

Assume now that 1 + mv ⊆ K×2. If m = ∞, then l ⩽ m, trivially. Assume m < ∞.
By the definition ofm, there exist x1, . . . , xm ∈ Ov such that x21+. . .+x

2
m−x ∈ mv. Since

x ∈ O×
v , we may assume x1 ∈ O×

v . Set z = x−x21−. . .−x2m and f = (x−x22−. . .−x2m)/x21.
Since z ∈ mv, we have z/x

2
1 ∈ mv. Furthermore, we have f = 1+(z/x1)

2 ∈ 1+mv ⊆ K×2,
whereby f ∈ K×2. Let y ∈ K× be such that f = y2. Then x = (x1y)

2 + x22 + . . . + x2m,
whereby l ⩽ m. Therefore l = m.

2.4.4 Remark. The assumption char(Kv) ̸= 2 in Lemma 2.4.3 is necessary. As an example,
consider K = Q2(X), and let v be the Gauss extension to K with respect to X of the
dyadic valuation on Q2. Then s(K) ⩽ s(Q2), and thus ℓK(X) ⩽ 5, by Proposition 1.2.4
and [Pfi95, Example 3.1.2 (6)]. Furthermore, Kv ≃ Z/2Z(Xv

), and ℓKv(X
v
) = ∞.

2.4.5 Corollary. Let v be a valuation on K. Then s(K) ⩾ s(Kv). Furthermore, if v is
nondyadic and 1 +mv ⊆ K×2, then s(K) = s(Kv).

Proof. If v is dyadic, then s(Kv) = 1, and thus s(K) ⩾ s(Kv), trivially. If v is non-dyadic,
then the statement follows directly from Lemma 2.4.3, since s(K) = ℓK(−1).

Remark. It is easy to see that the assumption 1 + mv ⊆ K×2 in Corollary 2.4.5 cannot
be dropped. For instance, the (X2 + 1)-adic valuation on R(X) has residue field of level
1, whereas R(X) has infinite level.

2.4.6 Proposition. Let v be a non-dyadic henselian valuation on K. Then 1+mv ⊆ K×2.
In particular, s(K) = s(Kv).

Proof. Consider x ∈ mv and set f = X2 − 1 − x ∈ Ov[X]. Observe that f(1) ∈ mv, and
∂f(1) = 2 /∈ mv, since v is non-dyadic. Since v is henselian, there exists y ∈ Ov such that
f(y) = 0, whereby 1+x = y2 ∈ F×2. Then the statement follows from Corollary 2.4.5.
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2.4.7 Example. If char(K) = 2, then s(K) = s(K((t))) = 1, trivially. Otherwise, since the
t-adic valuation onK((t)) is henselian and has residue fieldK, it follows by Proposition 2.4.6
that s(K((t))) = s(K).

For a valuation v on K, we have the following inequality of Pythagoras numbers,
which is analogous to the inequality s(K) ⩾ s(Kv) from Corollary 2.4.5.

2.4.8 Proposition. Let v be a valuation on K. Then p(K) ⩾ p(Kv).

Proof. If v is dyadic, then p(Kv) = 1, and the statement is trivial. Assume that v is
non-dyadic. Consider x ∈ Ov such that xv ∈ ΣKv2. Let n ∈ N, x1, . . . , xn ∈ Ov be such
that xv = (xv1)

2 + . . .+ (xvn)
2. Then ℓK(x21 + . . .+ x2n) ⩾ ℓKv(x

v), by Lemma 2.4.3. Thus

sup{ℓKv(xv) | x ∈ Ov such that xv ∈ Σ(Kv)2} ⩽ sup{ℓK(x) | x ∈ Σ(Kv)2},

that is, p(Kv) ⩽ p(K).

Even for a henselian valuation v on K, we do not have the equality p(K) = p(Kv). As
an example, consider K = C((t)), and let v be the t-adic valuation on K. Then Kv ≃ C,
whereby p(Kv) = 1. But since v(t) = 1, we have that t /∈ K2, whereby p(C((t))) ⩾ 2.
Nevertheless, we are often interested in bounding p(K) from above in terms of p(Kv).
The issue was examined in [BGVG14], where the following notation was introduced:

p′(K) =

{
p(K) if K is real,
s(K) + 1 if K is nonreal.

By Proposition 1.2.4, we obtain that p(K) ⩽ p′(K) ⩽ p(K)+1. The advantage of the
invariant p′ compared to p is its better behaviour with respect to henselian valuations,
which is expressed in the following statement, which extends [BGVG14, Proposition 4.3].

2.4.9 Theorem. Let v be a non-dyadic henselian valuation on K with 1 + mv ⊆ K×2.
Then

p′(K) = p′(Kv) .

Proof. By Corollary 2.4.5, we have s(K) = s(Kv). Hence K and Kv are either both real,
or both nonreal. In the latter case, p′(K) = s(K)+1 = s(Kv)+1 = p′(Kv). Assume that
K and Kv are real. Then p(K) ⩾ p(Kv), by Proposition 2.4.8, thus p′(K) ⩾ p′(Kv). If
p(Kv) = ∞, then p′(K) = p′(Kv) = p(Kv) = ∞. Assume p(Kv) <∞. In order to show
p(K) ⩽ p(Kv), consider x ∈ (ΣK2)×. Then v(x) ∈ 2vK, by Proposition 2.4.2. Hence
there exists t ∈ K× such that t2x ∈ O×

v . Set y = t2x. Clearly ℓK(x) = ℓK(y). Since
1 +mv ⊆ K2, it follows by Lemma 2.4.3 that ℓK(y) = ℓKv(y

v). As ℓKv(y
v) ⩽ p(Kv), we

obtain that ℓK(x) ⩽ p(Kv). Therefore p(K) ⩽ p(Kv). Thus p′(K) = p′(Kv).

2.4.10 Example. By Theorem 2.4.9, we have that p(K((t))) = p(K) if K is real, and
p(K((t))) = s(K)+1 otherwise. By Proposition 1.2.4 we have that p(K) ∈ {s(K), s(K)+1}
if K is nonreal, and both cases are actually possible [Lam05, Theorem XI.5.7].

The techniques developed above can be used to compute the Pythagoras number and
the level of global and local fields, to which we dedicate the remainder of this section. We
call K local if it is the completion of a global field with respect to an absolute value (see
Section 2.3).

2.4.11 Proposition. A field is local if and only if it is isomorphic to R, C or a finite
field extension of Qp or Fp((t)) for p ∈ N prime.
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Proof. This follows from the characterisation of absolute values over number fields; see
e.g. [EP05, Appendix B].

We say that a local field is archimedean if it is isomorphic to R or to C, and non-
archimedean otherwise.

2.4.12 Proposition. Non-archimedean local fields are precisely the fields that are complete
with respect to a Z-valuation having finite residue field; furthermore, such a Z-valuation
is uniquely determined by the field.

Proof. See e.g. [Jac89, Section 9.12].

We say that a local field is dyadic if it is complete with respect to a dyadic Z-valuation,
and non-dyadic otherwise.

2.4.13 Proposition. Let K be a nonreal, non-dyadic local field and v the Z-valuation
with respect to which K is complete. Then s(K) = 1, p(K) ⩽ 2 if |Kv| ≡ 1 mod 4, and
s(K) = 2, p(K) ⩽ 3 otherwise.

Proof. If K ≃ C, then s(K) = 1. Assume now K ̸≃ C. Then K ≃ Kw
0 for a global field

K0 and an absolute value w on K0, by Proposition 2.4.11. Since K is nonreal, we have
that w is non-archimedean. Therefore ŵ is a complete non-dyadic Z-valuation on K such
that Kŵ is finite. Hence s(K) = s(Kŵ), by Proposition 2.4.6. In view of Example 1.2.2,
we have that s(K) = 1 if |Kv| ≡ 1 mod 4, and s(K) = 2 otherwise. By Proposition 1.2.4,
we conclude that p(K) ⩽ 2 if |Kv| ≡ 1 mod 4, and p(K) ⩽ 3 otherwise.

2.4.14 Proposition. Let K/Q2 be a finite field extension. Then s(K) ⩽ 2 if [K : Q2] is
even, and s(K) = 4 otherwise.

Proof. See [Pfi95, Example 3.1.2 (6)].

The Hasse-Minkowski Local-Global Principle allows us to express the level of a global
field in terms of the level of certain local fields. Recall from Section 2.3 that WK denotes
the set of absolute values on K.

2.4.15 Theorem. Let K be a global field. Then we have

s(K) = max{s(Kw) | w ∈ WK}.

Proof. Set m = max{s(Kw) | w ∈ WK}. Since s(Kw) ⩽ s(K) for every w ∈ WK , it
is clear that m ⩽ s(K). Set now ϕ = (m + 1) × ⟨1⟩K . Then ϕKw is isotropic for every
w ∈ WK , by the definition ofm. It follows by the Hasse-Minkowski Local-Global Principle
(Theorem 2.3.11) that ϕ is isotropic. Therefore s(K) ⩽ m, by Proposition 1.1.5.

2.4.16 Corollary. For a nonreal global field K, we have s(K) ⩽ 4.

Proof. This follows from Theorem 2.4.15, Proposition 2.4.13 and Proposition 2.4.14.

It follows from Corollary 2.4.16 that a nonreal local field has Pythagoras number at
most 5. As a matter of fact, any local or global field has Pythagoras number at most 4.
More precisely, we have the following statements.

2.4.17 Theorem. For a local field K, we have p(K) = min{s(K) + 1, 4}.
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Proof. See [Pfi95, Example 7.1.4 (a)].

2.4.18 Theorem. Let K be a number field. Then we have the following:

(1) If K is nonreal, then p(K) = min{s(K) + 1, 4}.

(2) Assume that K is real. If there exists a dyadic Z-valuation v on K such that [Kv : Q2]
is odd, then p(K) = 4, otherwise p(K) = 3.

Proof. See [Pfi95, Examples 7.1.4 (2), (3)].

2.4.19 Example. p(Q(
√
5)) = 3.

Theorem 2.4.18 and the previous results cover the following classic statement.

2.4.20 Theorem (Euler, Hilbert, Siegel). If K is a number field, then p(K) ⩽ 4.

Theorem 2.4.20 was originally announced by Hilbert, according to C.L. Siegel [Si21],
but only proven by Siegel himself [Si21, Hauptsatz (Satz 1)]. Theorem 2.4.20 implies that
p(K) ⩽ 4 for every algebraic field extension K/Q. This is part of a more general fact,
which allows one to extend a bound on the Pythagoras number of finitely generated field
extensions to arbitrary field extensions. More precisely, we have the following statement.

2.4.21 Proposition. Let K/K0 be a field extension. Then

p(K) ⩽ sup{p(F ) | F/K0 is a finitely generated field extension contained in K/K0}.

Proof. Set S = {p(F ) | F/K0 is a finitely generated field extension contained in K/K0}
and p = supS. If p = ∞, then there is nothing to show. Assume that p < ∞. In order
to show that p(K) ⩽ p, consider x ∈ ΣK2. Let n ∈ N, x1, . . . , xn ∈ K be such that
x = Σni=1 x

2
i and let F = K0(x1, . . . , xn) ⊆ K. Since F ∈ S, we have p(F ) ⩽ p, whereby

x ∈ ΣpF
2 ⊆ ΣpK

2. Therefore p(K) ⩽ p.
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The Real Holomorphy Ring

This chapter is dedicated to the study of the real holomorphy ring of a field, that is,
the intersection of all its real valuation rings. We are especially interested in the real
holomorphy ring of a function field in one variable F/Q, whose algebraic properties will
be exploited in the following chapters to obtain information about sums of squares in F .
Before introducing real holomorphy rings, we study arbitrary intersections of valuation
rings of a field.

3.1 Intersections of valuation rings

In this section we summarise several known properties of intersections of valuation rings
of a field that will be used in the sequel.

3.1.1 Proposition. The following statements hold:

(1) The intersection of integrally closed subrings of a field is integrally closed.

(2) Every valuation ring is integrally closed.

Proof. See e.g. [Kap74, Theorem 52] for (1), and [EP05, Theorem 3.1.3] for (2).

3.1.2 Theorem. Let K be a field and let R be a subring of K. Then the integral closure
of R in K is given by the intersection of all valuation rings of K containing R. In
particular, if K is the fraction field of R, then R is integrally closed if and only if it is
the intersection of all the valuation rings of K containing R.

Proof. The statement follows from [EP05, Theorem 3.1.3] and Proposition 3.1.1.

Valuation rings are especially related to Prüfer domains, which are a specific type of
integrally closed domains. Let R be a domain. For two R-submodules I, J of Frac(R), set

I ∗ J = {Σnk=1 xkyk | n ∈ N and xk ∈ I, yk ∈ J for 1 ⩽ k ⩽ n} ⊆ Frac(R),

and observe that I ∗ J is an R-submodule of Frac(R). A fractional ideal of R is an R-
submodule I of Frac(R) such that there exists r ∈ R ∖ {0} such that rI ⊆ R. Given a
fractional ideal I of R, we set I∗0 = R and I∗n = I∗(n−1) ∗I for any n ∈ N+; furthermore,
we say that I is invertible if there exists a fractional ideal J of R such that I ∗ J = R. A
Prüfer domain is a domain in which any nonzero finitely generated ideal is invertible.

3.1.3 Theorem. Let R be a domain. Then the following are equivalent:

(i) R is a Prüfer domain.

49
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(ii) For every a, b ∈ R not both zero, the ideal aR+ bR is invertible.

(iii) Rp is a valuation ring for every p ∈ Spec(R).

(iv) Rm is a valuation ring for every m ∈ Max(R).

Proof. See [Gi92, Theorem 22.1].

3.1.4 Corollary. Every Prüfer domain is integrally closed.

Proof. For any domain R we have, by [Kap74, Theorem 53], that

R =
⋂

m∈Max(R)

Rm.

Then the statement follows by Proposition 3.1.1 and Theorem 3.1.3.

The concept of Prüfer domain generalises the one of Dedekind domain. A Dedekind
domain is a domain whose nonzero fractional ideals are invertible.

3.1.5 Proposition. For a domain R that is not a field, the following are equivalent:

(i) R is a Dedekind domain.

(ii) R is integrally closed, noetherian and of Krull dimension 1.

(iii) R is noetherian and its localisations at its maximal ideals are discrete valuation
rings.

Proof. See e.g. [Bo98, Theorem VII.2.1].

3.1.6 Corollary. Let R be a domain. Then R is a Dedekind domain if and only if R is
a noetherian Prüfer domain.

Proof. Recall that a noetherian valuation ring that is not a field is a discrete valuation
ring, by Proposition 2.1.10. Since the localisation of a noetherian ring is noetherian, the
statement follows from Proposition 3.1.5 and Theorem 3.1.3.

A Bézout domain is a domain whose finitely generated ideals are principal.

3.1.7 Proposition. Bézout domains are Prüfer domains and, in particular, integrally
closed.

Proof. The statement follows from Corollary 3.1.6 and Corollary 3.1.4.

Let K be a field. By a Bézout ring of K we mean a subring R of K which is a Bézout
domain and such that Frac(R) = K.

3.1.8 Proposition. Let R be a domain and let K = Frac(R). Then the following are
equivalent:

(i) R is a semilocal Bézout ring of K.

(ii) R is a finite intersection of valuation rings of K.
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Proof. (i ⇒ ii) Assume that R is a Bézout ring of K. Then for each m ∈ Max(R), Rm

is a valuation ring of K, by [Kap74, Theorem 64]. Furthermore R =
⋂

m∈Max(R)Rm, by

[Kap74, Theorem 53], and if R is semilocal, then this is a finite intersection.

(ii⇒ i) See [Kap74, Theorem 107].

An analogous relation to the one described in Corollary 3.1.6 connects Bézout domains
with principal ideal domains.

3.1.9 Proposition. A ring is a noetherian Bézout domain if and only if it is a principal
ideal domain.

Proof. The statement follows directly from the definitions.

In order to study intersections of valuation rings, we introduce the following notations.
Let F be a field. We denote by Ω(F ) the set of valuation rings of F . Given T ⊆ F , we
denote by Ω(F/T ) the set of valuation rings of F containing T .

Let now S ⊆ Ω(F ). We set HS = {x ∈ F | x ∈ O for every O ∈ S}, that is,

HS =
⋂
S =

⋂
O∈S

O,

if S ̸= ∅, and HS = F otherwise. We call HS the holomorphy ring of F associated to S.

Observe that HS is integrally closed, by Proposition 3.1.1. Furthermore, let O ∈ S
and let m be the maximal ideal of O. Then we have that m ∩HS ∈ Spec(HS).

3.1.10 Proposition. Let ∅ ⊊ S ⊆ Ω(F ). Then we have

H×
S =

⋂
O∈S

O×.

Proof. Let x ∈ F× and let x−1 be its inverse in F . For every O ∈ S, we have that x ∈ O×

if and only if x, x−1 ∈ O. Then x ∈
⋂

O∈S O× if and only if x, x−1 ∈
⋂

O∈S O = HS , that

is, if and only if x ∈ H×
S , whereby the statement.

It is particularly interesting to study intersections of valuation rings of a function
field in one variable. By a function field in one variable we mean a finitely generated field
extension of transcendence degree 1. Given a function field in one variable F/K, there
exists x ∈ F such that F/K(x) is a finite extension; clearly such elements x exist and are
exactly the elements of F that are transcendental over K.

3.1.11 Proposition. Let F/K be a function field in one variable and let O ∈ Ω(F/K).
If O ≠ F , then O is a discrete valuation ring of F .

Proof. Assume that O is nontrivial. Let x ∈ F be such that F/K(x) is finite. Then x
is transcendental over K and O ∩K(x) is a valuation ring of K(x), which is a rational
function field in one variable overK. It follows by [EP05, Theorem 2.1.4 (b)] thatO∩K(x)
is a discrete valuation ring. ThenO is also a discrete valuation ring, by Corollary 2.2.6.

3.1.12 Theorem. Let F/K be a function field in one variable and let S ⊊ Ω(F/K).
Then HS is a Dedekind domain and Frac(HS) = F .

Proof. See [FJ08, Proposition 3.3.2].
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3.2 The real holomorphy ring of a field

In this section, we describe what is known in the literature about the real holomorphy
ring of a field; in doing so, we largely rely on [Lam81], [Lam05] and [Pre84].

Given a field F , we denote by R(F ) the set of real valuation rings of F .

Let F be a real field. We define the real holomorphy ring of F as H(F ) =
⋂

R(F ), i.e.,

H(F ) = {x ∈ K | x ∈ O for every O ∈ R(F )}.

3.2.1 Lemma. Let F be a real field and x ∈ F× such that x2 ̸= −1. Then

x/(1 + x2), x2/(1 + x2) ∈ H(F ).

Proof. For every real valuation v on F we have that v(1 + x2) = 2min{0, v(x)}, by
Proposition 2.4.2; thus

v(1 + x2) = min{0, v(x2)} ⩾ min{0, v(x)}.

Hence x/(1 + x2), x2/(1 + x2) ∈ H(F ).

In certain situations we are interested in a specific overring of the real holomorphy
ring. Let F be a real field and S ⊆ F . We set R(F/S) = {O ∈ R(F ) | S ⊆ O}, and we
define the real holomorphy ring of F relative to S as H(F/S) =

⋂
R(F/S), that is,

H(F/S) = {x ∈ F | x ∈ O for every O ∈ R(F/S)}.

In this thesis, we will mostly encounter real holomorphy rings relative to a subfield.

3.2.2 Corollary. Let F be a real field and S ⊆ F . Then Frac(H(F/S)) = F .

Proof. As Frac(H(F/S)) ⊆ F by construction, it is enough to show the opposite inclusion.
Let x ∈ K. By Lemma 3.2.1, we have x/(1 + x2), x2/(1 + x2) ∈ H(F ) ⊆ H(F/S). Since

x = x2/(1 + x2) ·
(
x/(1 + x2)

)−1
,

we obtain that x ∈ Frac(H(F/S)). Hence F ⊆ Frac(H(F/S)).

3.2.3 Theorem. Let F be a real field, let S ⊆ K and set H = H(F/S). Let n ∈ N and
x1, . . . , xn ∈ H. Then we have

(x1H+ . . .+ xnH)∗2 = (x21 + . . .+ x2n)H .

Proof. Set x = x21+ . . .+x
2
n. It is straightforward that x ∈ (x1H+ . . .+xnH)∗2, whereby

xH ⊆ (x1H + . . . + xnH)∗2. In order to prove the opposite inclusion, consider a real
valuation v on K. By Proposition 2.4.2, we have v(x) = 2min{v(xi) | 1 ⩽ i ⩽ n}.
Consider 1 ⩽ i, j ⩽ n. We have v(xixj) ⩾ v(x), that is, xixj/x ∈ Ov. We obtain that
xixj/x ∈

⋂
R(F/S) = H, that is, xixj ∈ xH, whereby (x1H+ . . .+ xnH)∗2 ⊆ xH.

3.2.4 Corollary. Let F be a real field and S ⊆ F . Then H(F/S) is a Prüfer domain.

Proof. By Theorem 3.2.3, any nonzero finitely generated ideal of H(F/S) is invertible.
Hence H(F/S) is a Prüfer domain.
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3.2.5 Proposition. Let F/K be a real field extension and let S ⊆ K. Then we have
H(K/S) ⊆ H(F/S).

Proof. Let O ∈ R(F/S). Recall from Section 2.2 that O ∩ K is a valuation ring of K
containing S and that its residue field embeds canonically into the residue field of O. The
latter is real by assumption, therefore O ∩K ∈ R(K/S). We conclude that

H(K/S) ⊆
⋂

{x ∈ K | x ∈ O for every O ∈ R(F/S)} ⊆ H(F/S).

3.2.6 Proposition. Let F/K be a real function field in one variable. Then H(F/K) is
a Dedekind domain.

Proof. Let x ∈ F be transcendental over K and denote by v the (x2+1)-adic valuation on
K(x). By Theorem 2.2.2, there exists an extension of v to F , which we denote by w. Note
that K(x)v ≃ K(

√
−1), whereby v is nonreal. Since K(x)v embeds into Fw, the latter

is nonreal as well. Since w is trivial on K, we obtain that Ow ∈ Ω(F/K)∖R(F/K). We
conclude thatR(F/K) ⊊ Ω(F/K). Hence the statement follows from Theorem 3.1.12.

3.2.7 Lemma. Let F/K be a real function field in one variable and let I be an ideal of
H(F/K). Then the following are equivalent:

(i) There exists f ∈ ΣH(F/K)
2
such that I = fH(F/K).

(ii) There exists an ideal J of H(F/K) such that I = J∗2.

(iii) There exist a, b ∈ H(F ) such that I = (a2 + b2)H(F/K).

Proof. (i ⇒ ii) Let f ∈ ΣH(F/K)
2
be such that I = fH(F/K) and consider n ∈ N,

f1, . . . , fn ∈ H(F/K) such that f = Σni=1 f
2
i . Set J = f1H(F/K) + . . . + fnH(F/K).

Then I = J∗2, by Theorem 3.2.3.

(ii⇒ iii) Note that H(F/K) is a Dedekind domain, by Proposition 3.2.6. Hence there
exist a, b ∈ H(F/K) such that J = aH(F/K) + bH(F/K). It follows by Theorem 3.2.3
that I = (a2 + b2)H(F/K).

(iii⇒ i) This implication is trivial.

We focus now on function fields in one variable over number fields.

3.2.8 Proposition. Let K be a real number field and S ⊆ K. Then R(K/S) ⊆ {K},
and H(K/S) = K.

Proof. Recall from Example 2.1.3 (a) that any nontrivial valuation on Q is equivalent to
the p-adic valuation for some p ∈ N prime, and is thus nonreal. Then R(Q/S) ⊆ {Q},
whereby H(Q/S) = Q. Hence R(K/S) ⊆ {K} and H(K/S) = K for any number field
K, by Corollary 2.2.5.

3.2.9 Corollary. Let F/Q be a real function field in one variable and I an ideal of H(F ).
Then H(F ) is a Dedekind domain, and the following are equivalent:

(i) There exists f ∈ ΣH(F )
2
such that I = fH(F ).

(ii) There exist a, b ∈ H(F ) such that I = (a2 + b2)H(F ).
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Proof. By Proposition 3.2.8, we have that H(Q) = H(Q/∅) = Q. Then Q ⊆ H(F ),
by Proposition 3.2.5. Therefore H(F ) = H(F/Q). Then the statement follows form
Proposition 3.2.6 and Lemma 3.2.7.

Let F be a field and let P be a preordering on F . Since char(F ) = 0, we have that
Z ⊆ F . We may thus set

O(P ) = {x ∈ F | ∃n ∈ N such that − n ⩽P x ⩽P n}.

3.2.10 Theorem. Let F be a field and let P be an ordering on F . Then O(P ) is a
valuation ring of F .

Proof. See [Lam81, Theorem 2.6].

Let F be a field and let P be an ordering on F . We denote by m(P ) the maximal
ideal of O(P ) and we set κ(P ) = O(P )/m(P ), P = (P ∩ O(P ) +m(P ))/m(P ) ⊆ κ(P ).

We say that P is archimedean if for every x ∈ F there exists n ∈ N such that x ⩽P n.
Clearly, this is equivalent to having O(P ) = F .

3.2.11 Theorem. Let F be a field and let P be an ordering on F . Then P is an
archimedean ordering on κ(P ). In particular, we have that O(P ) ∈ R(F ).

Proof. By [Lam81, Theorem 2.6, Proposition 2.9] we have that P̄ is an ordering on κ(P ).
Moreover, P is also archimedean; see [Lam81, p. 19].

Given a field F , we denote by XF the set of orderings on F .

3.2.12 Corollary. Let F be a real field. Then we have

H(F ) =
⋂

P∈XF

O(P ).

Proof. Set

H =
⋂

P∈XF

O(P ).

Then H(F ) ⊆ H, by Theorem 3.2.11. Conversely, we obtain by [Lam81, Proposition 3.8],
that for any O ∈ H(F ) there exists an ordering PO on F such that O(PO) ⊆ O. Hence
we also have that H ⊆ H(F ).

3.2.13 Proposition. Let F be a field, let P ∈ XF and let κ(P ) be the residue field
of O(P ). Then there exists a unique embedding iP : κ(P ) → R such that for every
x ∈ O(P )× we have that x ∈ P if and only if iP (x+m(P )) > 0.

Proof. Set P = P ∩ O(P ) + m(P ). In view of Theorem 3.2.11, we know that P is an
archimedean ordering on the residue field κ(P ). We conclude by [PD01, Theorem 1.1.5]
that there exists a unique embedding of ordered fields from (κ(P ), P ) into (R,R2). Hence
the statement is proven.

Let F be a real field and let P ∈ XF . We denote by iP the embedding of ordered
fields κ(P ) → R described in Proposition 3.2.13. Fix x ∈ H(F ). Note that x ∈ O(P ), by
Theorem 3.2.11. Thus we may define a map x̃ : XF → R by setting x̃(P ) = iP (x+m(P ))
for any P ∈ XF .
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3.2.14 Remark. Let F be a real field, x, y ∈ H(F ) and a, b ∈ Q, and set z = ax+ by ∈ F .
Then we have that z̃ = ax̃+ bỹ. In particular, the association x 7→ x̃ is an embedding of
Q-vector spaces H(F ) → RXF .

Let F be a field. For every x ∈ F , let Hx = {P ∈ XF | x ∈ P}; let τF be the topology
on XF having {Hx | x ∈ F} as a subbasis. The topology τF is called the Harrison topology
on XF . The Harrison topology satisfies the following properties.

3.2.15 Theorem. For a field F , the topological space (XF , τF ) is compact and Hausdorff.

Proof. See [Lam05, Theorem VIII.6.3].

3.2.16 Lemma. Let F be a real field and let x ∈ H(F ). Then the following hold:

(1) Let τe denote the euclidean topology on R. Then x̃ is a continuous map from the
topological space (XF , τF ) to the topological space (R, τe).

(2) There exist a, b ∈ Q such that Im(x̃) ⊆ [a, b].

(3) x ∈ ΣF 2 if and only if Im(x̃) ⊆ [0,∞).

(4) x ∈ H(F )× if and only if 0 /∈ Im(x̃).

Proof. (1) The statement follows from [Lam81, Theorem 9.7].

(2) By Theorem 3.2.15, we have that (XF , τF ) is compact. Since the continuous image
of a compact set is compact, we obtain that Im(x̃) is a compact subspace of (R, τe). Hence
Im(x̃) is bounded, whereby the statement.

(3) By construction of the map x̃, we have that Im(x̃) ⊆ R2 if and only if x ∈ P
for every P ∈ XF , that is, if and only if x ∈

⋂
XF . By Theorem 1.2.15, we have that⋂

XF = ΣF 2, whereby the statement is proved.

(4) Recall that H(F )× =
⋂
P∈XF

O(P )×, by Proposition 3.1.10. Hence x ∈ H(F )× if
and only if x /∈ m(P ) for every P ∈ XF . By construction of the map x̃, for every P ∈ XF
we have that x /∈ m(P ) if and only if x̃(P ) ̸= 0, whereby the statement.

We conclude this section with the following characterisation of the real holomorphy
ring, which will prove useful in Chapter 6.

3.2.17 Lemma. For a field F and a preordering P on F , we have that

O(P ) = {x ∈ F | ∃n ∈ N such that n− x2 ∈ P}.

Proof. Set O = {x ∈ F | ∃n ∈ N such that n− x2 ∈ P}. Let x ∈ O(P ) and let n ∈ N be
such that −n ⩽P x ⩽P n. Since P ·P ⊆ P , we have that n2 − x2 ∈ P . Hence O(P ) ⊆ O.
Vice versa, let x ∈ O and let n ∈ N be such that n − x2 ∈ P . If 1 ⩽P x, then we have
−n ⩽ 0 ⩽P x ⩽P x2 ⩽P n. If x ⩽P −1, then we have −n ⩽P −x2 ⩽P x ⩽P −1 ⩽P n.
Otherwise, we have −1 ⩽P x ⩽P 1. In any case x ∈ O(P ). Thus O ⊆ O(P ).

3.2.18 Theorem. Let F be a real field. Then we have

H(F ) = {x ∈ F | ∃n ∈ N such that n− x2 ∈ ΣF 2}.

Proof. Set H = {x ∈ F | ∃n ∈ N such that n−x2 ∈ ΣF 2}. In view of Corollary 3.2.12, it
is enough to show that H =

⋂
P∈XF

O(P ). Consider P ∈ XF . Since ΣF 2 ⊆ P , it follows
by Lemma 3.2.17 that H ⊆ O(P ). Hence H ⊆ H(F ). Let now x ∈

⋂
P∈XF

O(P ). Then
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XF =
⋃
n∈NHn−x2 . By Theorem 3.2.15 we have that (XF , τF ) is compact, hence there

exist k, n1, . . . nk ∈ N such that XF =
⋃k
i=1Hni−x2 . Set m = max{n1, . . . , nk}. Then

XF = Hm−x2 , that is, m − x2 ∈ P for every P ∈ XF . By Theorem 1.2.15, we conclude
that m− x2 ∈ ΣF 2. Therefore

⋂
P∈XF

O(P ) ⊆ H, whence the statement is proven.
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The Pythagoras number of function
fields

In this chapter we show that the Pythagoras number of a function field in one variable
over a number field is at most 6. This was originally proven by F. Pop in his unpublished
preprint [Pop90]. The argument we present is inspired by Pop’s one, but uses different
techniques.

4.1 Function fields in one variable

This section presents several known results from the literature about Pythagoras numbers
of function fields in one variable, which will be used in the remainder of this dissertation.
In the following overview we largely rely on [Pfi95].

All fields mentioned in the previous chapters have Pythagoras number 2n or 2n + 1
for some n ∈ N. For nonreal fields, this is simply by Proposition 1.2.4 and Theorem 1.2.6.
Though for some time only real fields of Pythagoras number 2n or 2n+1 for some n ∈ N
were known, it was eventually proven by D. Hoffmann that every positive integer occurs as
the Pythagoras number of some real field [Ho99]. Nevertheless, to this date the only known
examples of real fields with Pythagoras number not contained in {2n, 2n+1 | n ∈ N}∪{∞}
are constructed by an infinite iteration of function field extensions. In particular, no field
of Pythagoras number not in {2n, 2n+1 | n ∈ N}∪{∞} is known that is finitely generated
over any proper subfield. It is indeed an open problem to understand the behaviour of
the Pythagoras number under field extensions with a real base field. It has been a crucial
discovery by J.W.S. Cassels [Cas64, Theorem 2] that p(K(X)) > p(K) holds whenever
K is real. However, we do not know yet whether the Pythagoras number grows slowly
or fast when passing from a real field to the rational function field over it. To this date,
a few examples of K are known where p(K(X)) = p(K) + 2 [Pfi95, Example 7.1.11],
[BL11, Example 7.16], but there is no confirmed example where p(K(X)) > p(K) + 2.
Nevertheless, in most of the known situations, the growth is minimal. For example, this
is the case for number fields, for which we have the following.

4.1.1 Theorem (Pourchet, Hsia, Johnson). Let K be a number field. If K is real, then
p(K(X)) = p(K) + 1, otherwise p(K(X)) = s(K) + 1.

Proof. See [HJ74].

Note that the work of Hsia and Johnson in [HJ74] completed the work of Pourchet,
who had shown the following in [Pou71].

4.1.2 Theorem (Pourchet). For any number field K, we have p(K(X)) ⩽ 5.
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Proof. See [Pou71]; in Chapter 6, we give an extended exposition of Pourchet’s proof.

A simple computation shows that the growth of the Pythagoras number in a rational
extension is minimal also for the field R, that is, p(R(X)) = 2. The fields K that satisfy
p(K(X)) = 2 were characterized by E. Becker in [Bec78].

We say that a field K is hereditarily pythagorean if it is real and if every finite real
field extension of K is pythagorean.

4.1.3 Example. A real closed field is hereditarily pythagorean.

4.1.4 Theorem (Becker). A field K is hereditarily pythagorean if and only if −1 /∈ K×2

and p(K(X)) = 2.

Proof. Whenever K is real, it has been shown in [Bec78, Theorem III.4] that K is
hereditarily pythagorean if and only if p(K(X)) = 2. On the other hand, if −1 /∈ K×2

and p(K(X)) = 2, then K is real by Proposition 1.2.8, whence the statement.

4.1.5 Proposition. Let (K, v) be a valued field such that Kv is hereditarily pythagorean
and v is henselian. Then K is hereditarily pythagorean.

Proof. Consider a real finite field extension L/K. Since v is henselian, it extends uniquely
to a valuation w on L, and w is also henselian non-dyadic. Since L/K is finite, it follows
by the Fundamental Inequality (Theorem 2.2.4) that Lw/Kv is a finite extension. Since
w is henselian non-dyadic, it follows by Proposition 2.4.6 that Lw is a real field. Since
Kv is henselian, we have that p(Lw) = 1. Therefore p(L) = 1, by Theorem 2.4.9. This
shows that K is hereditarily pythagorean.

4.1.6 Proposition. For a hereditarily pythagorean field K, the field K((t)) is hereditarily
pythagorean.

Proof. The statement follows from Theorem 4.1.4 and [BGVG14, Theorem 6.9].

4.1.7 Corollary. For a hereditarily pythagorean field K and n ∈ N, the field K((t1)) . . . ((tn))
is hereditarily pythagorean.

Proof. The statement follows from Proposition 4.1.6 by induction.

The behaviour of the Pythagoras number for arbitrary function fields in one variable
is even more obscure, and even finding upper bounds is remarkably complicated. A
fundamental result concerning the Pythagoras number of function fields in one variable
over R was obtained by E. Witt in [Wi34]. Below we give a more general version of it,
where R is replaced by a hereditarily euclidean field.

Let K be a field. We say that K is euclidean if K is real and K× = K×2 ∪ −K×2.
We say that K is hereditarily euclidean if K is real and every real finite field extension of
K is euclidean.

4.1.8 Theorem (Witt). Let K be a hereditarily euclidean field and F/K a function field
in one variable. Then p(F ) = 2.

Proof. See [ELP73, Theorem F].

The inequality p(F ) ⩾ 2 from Theorem 4.1.8 can be proven much more generally.

4.1.9 Theorem. Let F/K be a finitely generated transcendental field extension where
char(K) ̸= 2. Then p(F ) ⩾ 2.
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Proof. The statement follows for example from [Lam05, Corollary VIII.5.9].

In the following statement, a characterisation is given of all the base fields over which
every function field in one variable has Pythagoras number exactly 2.

4.1.10 Theorem. Let K be a field such that −1 /∈ K2. Then K is hereditarily euclidean
if and only if p(F ) = 2 for every function field in one variable F/K.

Proof. Assume that K is hereditarily euclidean and let F/K be a function field in one
variable. Since char(K) ̸= 2, it follows by Theorem 4.1.9 that p(F ) ⩾ 2. The inequality
p(F ) ⩽ 2 follows by [ELP73, Theorem F]. Therefore p(F ) = 2. If K is not hereditarily

euclidean, then p
(
K(X)(

√
−(1 +X2))

)
⩾ 3, by [TI03, Theorem 4].

Function fields in one variable over Q have also been studied for a long time. We
reserve the next section to their study.

4.2 Function fields over a number field

In [CT86, Theorem 2], J.L. Colliot-Thélène exploited the local-global principle obtained
by K. Kato in [Kat86] to show that the Pythagoras number of a function field in one
variable over Q is at most 7. Later F. Pop strengthened this bound to 6 in the preprint
[Pop90]. At this date, a more recent version is available on Pop’s webpage [Pop23].
Besides Kato’s local-global principle, Pop’s argument uses classical geometric tools, plus
a trick to obtain a certain identity in Q2. In this section, we present an alternative
proof for the upper bound p(F ) ⩽ 6 for any function field in one variable F/Q. Our
argument differs from Pop’s one in the tools that it involves, among which is the real
holomorphy ring of F . It turns out that the algebraic properties of the latter, which were
discussed in Chapter 3, are all what is necessary to retrieve the aforementioned bound,
using Pop’s trick and Kato’s local-global principle, by means of elementary observations.
The innovation contained in this section does not rely in the statements themselves, but
rather in their proofs, and in particular in the proofs of Theorems 4.2.6 and 4.2.8. Our
methods also produce a neat proof that ΣK[X]

2
= Σ5K[X]

2
for every number field K;

see Corollary 4.2.8.

We begin by rewriting Kato’s local-global principle advantageously. Let F/K be a
field extension. We call F/K regular if it is separable and K is relatively algebraically
closed in F . If F/K is regular, it follows by [Jac75, Corollary IV.10.1], that F ⊗K E is a
domain for every field extension E/K. Let E/K be a field extension. If E/K or F/K is
regular, we denote EF = Frac(E ⊗K F ).

4.2.1 Lemma. Let F/Q be a function field in one variable, let K be the relative algebraic
closure of Q in F and let w be an absolute value on K. Then we have the following:

(1) F/K is regular.

(2) F ⊗K Kw is a domain, and FKw/Kw is a function field in one variable.

(3) F/K is the function field of a smooth projective curve over K.

Proof. (1) As char(K) = 0, we have that F/K is separable. By assumption, K is relatively
algebraically closed in F . Therefore F/K is regular.
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(2) Since F/K is regular, it follows by [Jac75, Corollary IV.10.1] that F ⊗K Kw is a
domain, and by [Liu06, Proposition 1.13 and Example 1.15] that FKw/Kw is a function
field in one variable.

(3) As F/K is a function field in one variable, we get by [Liu06, Proposition 7.3.13]
that F/K is the function field of a normal projective curve C over K. Then C is regular,
by [Liu06, Proposition 4.1.12; see also Example 4.2.9]. Since char(K) = 0, we have that
K is perfect. Therefore C is smooth, by [Liu06, Corollary 4.3.33].

Let K be a field. Recall from Section 2.3 that we denote by WK the set of absolute
values on K. Given w ∈ WK , we say that w is dyadic if it is non-archimedean and
corresponds to a dyadic valuation on K, and non-dyadic otherwise.

4.2.2 Proposition. Let F/Q be a function field in one variable and let K be the relative
algebraic closure of Q in F . Then p(FKw) ⩽ 3 for every w ∈ WK non-dyadic.

Proof. Let w ∈ WK and set L = FKw. Then L/Kw is a function field in one variable,
by Lemma 4.2.1 (2). Recall from Section 2.3 that Kw is a local field. If K ≃ R, then
p(L) ⩽ 2, by Theorem 4.1.8. Otherwise s(L) ⩽ s(Kw) ⩽ 2, by Proposition 2.4.13, and
thus p(L) ⩽ 3, by Proposition 1.2.4.

4.2.3 Theorem (Kato). Let F/Q be a function field in one variable and let f ∈ ΣF 2.

Then f ∈ Σ4F
2 if and only if f ∈ Σ4(F ⊗Q Q2)

2
.

Proof. If f ∈ Σ4F
2, then f ∈ Σ4(F ⊗Q Q2)

2
, trivially. Assume that f ∈ Σ4(F ⊗Q Q2)

2
.

Let K ⊆ F be the relative algebraic closure of Q in F and consider w ∈ WK dyadic.
Then Q2 ⊆ Kw, and we have a natural homomorphism h : F ⊗Q Q2 → F ⊗K Kw. Since

f ∈ Σ4(F ⊗Q Q2)
2
and h is a ring homomorphism, we obtain that f ∈ Σ4(F ⊗K Kw)

2
.

Together with Proposition 4.2.2, this shows that f ∈ Σ4(FK
w)

2
for all w ∈ WK .

Recalling from [Lam05, §III.2] that ⟨⟨−1,−1⟩⟩FKw is the norm form of the quaternion
algebra (−1,−1)FKw , we get that f is a norm of (−1,−1)FKw . Observe that F is the
function field of a smooth projective curve C over K, by Lemma 4.2.1 (3). Recall that C
is proper; see e.g. [Liu06, Proposition 3.3.16]. Furthermore, FKw is the function field of
the base change of C to Kw.

In view of this, it follows by [Kat86, Theorem 0.8 (2)] and [MS82, Theorem 12.2]
that ⟨⟨−1,−1, f⟩⟩F is hyperbolic; see also the discussion on [Kat86, page 146]. Therefore
f ∈ Σ4F

2, by Proposition 1.1.5.

4.2.4 Corollary (Colliot-Thélène). Let F/Q be a nonreal function field in one variable.
Then p(F ) ⩽ 5.

Proof. Since F is nonreal, we have that −1 ∈ ΣF 2. By Proposition 2.4.14, we have that
−1 ∈ Σ4Q2

2. Since Q2 ⊆ F ⊗Q Q2, we obtain that −1 ∈ Σ4(F ⊗Q Q2)
2
. It follows by

Theorem 4.2.3 that −1 ∈ Σ4F
2, whereby p(F ) ⩽ 5.

The following example shows that the bound in Corollary 4.2.4 is optimal.

4.2.5 Example. Let K = Q(
√
−7) and F = K(X). Then s(F ) = 4, by Theorem 1.1.10,

and p(F ) = 5, by Proposition 1.2.8.

Let F be a field. Recall from Section 3.2 that the real holomorphy ring of F is defined
as H(F ) =

⋂
R(F ) where R(F ) is the set of real valuation rings of F .

4.2.6 Theorem (Pop). Let F/Q be a real function field in one variable. Then we have
the following:
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(1) H(F )× ∩ ΣF 2 ⊆ Σ5F
2.

(2) ΣF 2 = Σ2F
2(ΣF 2 ∩H(F )×).

Proof. (1) Consider f ∈ H(F )× ∩ ΣF 2. Clearly we have (f + 1)2/f ∈ H(F ) ∩ ΣF 2. By
Lemma 3.2.16, there exists a ∈ R×2 such that (f̃(P ) + 1)2/f̃(P ) ⩽ a for all P ∈ X(F ).
Let k ∈ N be such that k ⩾ max{2, log2(a)/2} and set

g = f − (f + 1)2/22k.

We will show that g ∈ ΣF 2 and g ∈ Σ4(F ⊗Q Q2)
2
. Consider an ordering P on F .

Then g̃(P ) = f̃(P )−(f̃(P )+1)2/22k. Since (f̃(P )+1)2/f̃(P ) ⩽ a and 22k ⩾ a, we obtain
g̃(P ) ⩾ 0. Thus Im(g̃) ⊆ [0,∞), and g ∈ ΣF 2, by Lemma 3.2.16 (3). Moreover, we have

22kg = 22kf − f2 − 2f − 1 = −1
(
f2 + 2f(1− 22k−1) + 1

)
= −1

(
(f + 1− 22k−1)2 + 22k(1− 22k−2)

)
Since k ⩾ 2, we have that 2k − 2 ⩾ 2. Therefore 1 − 22k−2 ≡ 1 mod 4. It follows by

[Lam05, Corollary VI.2.24] that 1− 22k−2 ∈ Σ2Q2
2. By Proposition 2.4.14, we have that

−1 ∈ Σ4Q2
2. Thus 22kg ∈ Σ4(F ⊗Q Q2)

2
, by Theorem 1.1.16. Since F/Q is a function

field in one variable, we conclude by Theorem 4.2.3 that 22kg ∈ Σ4F
2, whereby g ∈ Σ4F

2.
Since f = g + ((f + 1)/2k)2, we conclude that f ∈ Σ5F

2. Hence H(F )× ∩ ΣF 2 ⊆ Σ5F
2.

(2) The inclusion Σ2F
2(ΣF 2∩H(F )×) ⊆ ΣF 2 is clear. In order to prove the opposite

inclusion, consider f ∈ (ΣF 2)× and set g = f/(1 + f2). Note that g ∈ H(F ), by
Lemma 3.2.1, hence g ∈ ΣF 2 ∩ H(F ). Recall that H(F/Q) = H(F ). By Lemma 3.2.7,

there exists a ∈ (Σ2H(F )
2
)× such that aH(F ) = gH(F ), that is, such that g/a ∈ H(F )×.

Then f = a(1 + f2) · g/a, where g/a ∈ ΣF 2 ∩ H(F )× and a(1 + f2) ∈ Σ2F
2 by

Theorem 1.1.16. Therefore ΣF 2 ⊆ Σ2F
2(ΣF 2 ∩H(F )×), which concludes the proof.

4.2.7 Corollary (Pop). Let F/Q be a function field in one variable. Then p(F ) ⩽ 6.

Proof. By Theorem 4.2.6, we get ΣF 2 = Σ2F
2(ΣF 2∩H(F )×) and ΣF 2∩H(F )× ⊆ Σ5F

2.
Furthermore Σ5F

2 ·Σ2F
2 ⊆ Σ6F

2, by Theorem 1.1.16. Thus ΣF 2 ⊆ Σ2F
2 ·Σ5F

2 ⊆ Σ6F
2,

and p(F ) ⩽ 6.

The bound obtained in Corollary 4.2.7 is the best upper bound for the Pythagoras
number of function fields in one variable over Q that is currently available in the literature.
Nonetheless, no such field of Pythagoras number 6 is known at the moment, leaving the
question open whether this bound is optimal or not. We have already mentioned that
Pourchet showed in [Pou71] that p(K(X)) ⩽ 5 for every number field K. Furthermore,
Corollary 4.2.4 shows that the bound 6 is not optimal when we restrict to nonreal function
fields in one variable over Q, and Theorem 4.2.6 shows that even for real ones, a large
class of elements actually consists of sums of 5 squares. As witnessed by the following
statement, the techniques developed here also provide a nice conceptual argument that
another large set of sums of squares (morally half of them) in a rational function field
over Q consists of sums of five squares.

4.2.8 Corollary. Let K be a real number field and f ∈ ΣK[X]
2
square-free in K[X] such

that deg (f) ∈ 4Z. Then f ∈ Σ5K[X]
2
.

Proof. Set H = H(K(X)) and S = {Ov | v real valuation on K(X)}, so that H = HS .
Denote by PK the set of monic irreducible polynomials in K[X], and, for p ∈ PK , by
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vp the p-adic valuation on K(X); denote further by v∞ the degree-valuation on K(X).
Recall from Proposition 3.2.8 that a nontrivial valuation on a number field is nonreal.
Hence any real valuation on K(X) is trivial on K, and is thus equivalent to either v∞ or
vp for some p ∈ PK ; see Example 2.1.3 (d). Observe further that H× =

⋂
O∈S O×, by

Proposition 3.1.10.

Let k ∈ N be such that deg (f) = 4k and set g = f/(1 + X2)2k. Observe first that
v∞(g) = 4k − deg (f) = 0, that is, g ∈ O×

v∞ . Consider now p ∈ PK such that vp is real.
Let n ∈ N, f1, . . . , fn ∈ K[X] be such that f = Σni=1 f

2
i . By Proposition 2.4.2, we have

vp(g) = 4k(min{vp(fi) | 1 ⩽ i ⩽ n} − min{vp(1), vp(X)}). Since f is square-free, there
exists i ∈ {1, . . . , n} such that p does not divide fi in K[X], whereby vp(fi) = 0. Since
vp(fj) ⩾ 0 for every 1 ⩽ j ⩽ n, vp(1) = 0 and vp(X) ⩾ 0, we get by Proposition 2.4.2
that vp(1 +X2) = vp(f) = 0. Hence vp(g) = 0, that is, g ∈ O×

vp .

This shows that g ∈ H(K(X))×. Since f ∈ ΣK(X)
2
, we have g ∈ ΣK(X)

2
. Therefore

g ∈ Σ5K(X)
2
, by Theorem 4.2.6. Thus f = ((1 + X2)k)2g ∈ Σ5K(X)

2
as well. By

Theorem 1.1.21, we conclude that f ∈ Σ5K[X]
2
.

4.2.9 Question. Does p(F ) ⩽ 5 hold for every function field in one variable F/Q?
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A local-global principle for rational
function fields

In Section 4.2, we have obtained a characterisation of sums of four squares in a function
field in one variable over a number field from the local-global principle for 3-fold Pfister
forms contained in [Kat86]. Kato’s argument for such a local-global principle mostly relies
on classical cohomological instruments. For the rational function field in one variable over
a number field we provide here an alternative, simpler argument for Kato’s local-global
principle, based on standard quadratic form theory and valuation theory. The central
idea of this argument is to combine Springer’s theorem for non-dyadic discretely valued
fields and Milnor’s exact sequence, and it is due to P. Gupta, who showed it to the author
for the base field Q and for the 3-fold Pfister forms ⟨⟨−1,−1, a⟩⟩Q(X) where a ∈ ΣQ(X)

2
.

In Section 5.1 we study quadratic forms on discretely valued fields in order to develop
the tools that we will later apply in Section 5.2 to obtain the local-global principle. Finally,
in Section 5.3, we state the local-global principle explicitly for several fields.

5.1 Quadratic forms over rational function fields

In this section, we study the behaviour of quadratic forms over discretely valued fields,
and in particular over rational function fields equipped with the p-adic valuation for an
irreducible polynomial p. In order to do this, we fix a field K of characteristic different
from 2.

Given a non-dyadic Z-valuation v on K and a Pfister form ϕ over K, we say that ϕ is
unramified with respect to v if ϕ ≃ ⟨⟨a1, . . . , am⟩⟩K for some m ∈ N and a1, . . . , am ∈ O×

v ,
and ramified with respect to v otherwise.

5.1.1 Example. In this chapter we are especially interested in the n-fold Pfister form
2n × ⟨1⟩K for n ∈ N. This is obviously unramified with respect to any valuation on K.

The next statement describes the structure of a ramified Pfister form and will help us
defining its residue form.

5.1.2 Lemma. Let v be a non-dyadic Z-valuation on K and π a uniformizer of v. Let
m ∈ N+ and let ϕ be an m-fold Pfister form over K that is ramified with respect to v.
Then there exists an (m − 1)-fold Pfister form ψ over K that is unramified with respect
to v and u ∈ O×

v such that ϕ ≃ ψ ⊥ uπψ.

Proof. Up to isometry, we may assume that ϕ ≃ ⟨⟨a1, . . . , ak−1, akπ, . . . , amπ⟩⟩K for some
a1, . . . , am ∈ O×

v and 1 ⩽ k ⩽ m. Observe that ⟨⟨ajπ, aj+1π⟩⟩K ≃ ⟨⟨−ajaj+1, aj+1π⟩⟩K
for every k ⩽ j ⩽ m− 1. Hence we may assume, up to isometry, that k = m. Therefore
the statement follows by setting u = am and ψ = ⟨⟨a1, . . . , am−1⟩⟩K .
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Let v be a non-dyadic Z-valuation onK and ϕ a Pfister form overK. If ϕ is unramified
with respect to v, we let m ∈ N and a1, . . . , am ∈ O×

v be such that ϕ ≃ ⟨⟨a1, . . . , am⟩⟩K ,
and we set ϕ

v
= ⟨⟨av1, . . . , avm⟩⟩Kv. If ϕ is ramified with respect to v, we let ψ be an

(m− 1)-fold Pfister form over K as in Lemma 5.1.2, and we set ϕ
v
= ψ

v
. We call ϕ

v
the

residue form of ϕ with respect to v.

5.1.3 Remark. By [Lam05, Corollary VI.1.5], the residue form ϕ
v
only depends on ϕ, and

not on the choice of a1, . . . , am and ψ, up to Witt equivalence. By Theorem 1.1.17, a
Pfister form over K is isotropic if and only if it is hyperbolic. Hence ϕ

v
only depends on

ϕ, up to isometry.

5.1.4 Lemma. Let v be a non-dyadic Z-valuation on K, m ∈ N+ and a1, . . . , am ∈ O×
v .

If ⟨av1, . . . , avm⟩Kv is isotropic, then there exists t ∈ DK(⟨a1, . . . , am⟩) such that v(t) = 1.

Proof. Assume that ⟨av1, . . . , avm⟩Kv is isotropic and let x1, . . . , xm ∈ Ov be such that
av1x

v2
1 + . . . + avmx

v2
m = 0 and (xv1, . . . , x

v
m) ̸= (0, . . . , 0). Up to a permutation of the

indices, we may assume that xv1 ̸= 0, that is, x1 ∈ O×
v . Since av1x

v2
1 + . . . + avmx

v2
m = 0,

we have that v(a1x
2
1 + . . .+ amx

2
m) ⩾ 1. If v(a1x

2
1 + . . .+ amx

2
m) = 1, then the statement

is already shown. Otherwise, let π ∈ K be such that v(π) = 1. We have that

a1(x1 + π)2 + a2x
2
2 + . . .+ amx

2
m = (a1x

2
1 + . . .+ amx

2
m) + 2a1x1π + a1π

2.

Since v(a1x
2
1 + a2x

2
2 + . . .+ amx

2
m), v(a1π

2) ⩾ 2 and v(2a1x1π) = v(π) = 1, we conclude
that v

(
a1(x1 + π)2 + . . .+ amx

2
m

)
= 1, whereby the statement is proven.

5.1.5 Corollary. Let v be a non-dyadic Z-valuation on K and ϕ a Pfister form over K
that is ramified with respect to v. Then ϕ

v
is anisotropic.

Proof. By Lemma 5.1.2, there exists a Pfister form ψ over K that is unramified with
respect to v and a uniformizer π of v such that ϕ ≃ ψ ⊥ πψ and ϕ

v
= ψ

v
. For the

sake of a contradiction, assume that ϕ
v
is isotropic. Then there exists π′ ∈ DK(ψ) with

v(π′) = 1, by Lemma 5.1.4. Since ψ is a Pfister form, it follows by Theorem 1.1.15 that
π′ψ ≃ ψ. Set u = π/π′. Then u ∈ O×

v , and ψ ⊥ πψ ≃ ψ ⊥ uψ, which contradicts the
hypothesis that ϕ is ramified with respect to v.

5.1.6 Lemma. Let F/E be a field extension and ϕ a Pfister form over E. Let further v
be a non-dyadic Z-valuation on E and w a non-dyadic Z-valuation on F such that v is
equivalent to w|E and [wF : wE] is finite and odd. Then (ϕF )

w
= (ϕ

v
)Fw.

Proof. If ϕ is unramified with respect to v, then ϕF is unramified with respect to w, since
Ov = Ow ∩ E, and thus ϕF

w
= (ϕ

v
)Fw. Assume now that ϕ is ramified with respect

to v. Then there exists a uniformizer π ∈ E of v and a Pfister form ψ over E that is
unramified with respect to v such that ϕ = ψ ⊥ πψ, by Lemma 5.1.2. Let t ∈ E be a
uniformizer of w and let u ∈ O×

w be such that π = utw(π). Then w(π) = [wF : wE],
which is odd by assumption. Hence ϕF = ψF ⊥ utw(π)ψF ≃ ψF ⊥ utψF . Therefore
(ϕF )

w
= (ψF )

w
= (ψ

v
)Fw = (ϕ

v
)Fw.

The following statement is a special case of Springer’s Theorem, which plays a crucial
role in the study of quadratic forms over discretely valued fields.

5.1.7 Theorem (Springer). Let v be a complete non-dyadic Z-valuation on K and let ϕ
be a Pfister form over K. Then ϕ is anisotropic if and only if ϕ

v
is anisotropic.
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Proof. The statement follows from [Lam05, Proposition VI.1.9], using Lemma 5.1.2 when
ϕ is ramified with respect to v.

In the rest of this section we study the behaviour of residue forms in the context
of p-adic valuations on K(X), and more specifically their behaviour under specific field
extensions of K(X). We denote by PK the set of monic irreducible polynomials in K[X].
As in Example 2.1.3 (b), given p ∈ PK , we denote by vp the p-adic valuation on K(X).

5.1.8 Lemma. Let L/K be a field extension and p ∈ PK . Let α ∈ L be a root of p and
denote by w the (X−α)-adic valuation on L(X). Then w(p) is odd and w|K(X) = w(p)·vp.

Proof. Since char(K) ̸= 2, there exist p′ ∈ PK separable and n ∈ N odd such that
p(X) = p′(Xn). Since p′ is separable and p′(αn) = p(α) = 0, there exists q ∈ L[X] such
that p = (X−α)n ·q and q(α) ̸= 0. Hence w(p) = n and w|K(X) = n ·vp, by the definition
of w.

Let p ∈ PK and let ϕ be a Pfister form over K(X). Since vp is non-dyadic, we may
call ϕ unramified at p if ϕ is unramified with respect to vp. We also call residue form of
ϕ modulo p the residue form of ϕ modulo vp.

5.1.9 Corollary. Let p ∈ PK and ϕ a Pfister form over K(X) that is anisotropic over
K(X)vp . Let L/K be a field extension, α ∈ L a root of p and denote by w the (X−α)-adic
valuation on L(X). Assume that (ϕ

vp
)L is anisotropic. Then ϕL(X)w is anisotropic.

Proof. Set E = K(X)vp , v = v̂p and F = L(X)w. By Lemma 5.1.8, we have that w(p)
is odd, therefore [wL(X) : wK(X)] = w(p) is odd. Identify K(X)vp with K(α) ⊆ L. By

Lemma 5.1.6, we find (ϕ
vp
)L = ϕL(X)

w
. Hence (ϕ

vp
)L = ϕF

ŵ
, which is then anisotropic.

Since ŵ is complete and non-dyadic, it follows by Theorem 5.1.7 that ϕF is anisotropic.

5.2 A local-global principle for rational function fields

In this section we use Milnor’s Exact Sequence and the tools developed in Section 5.1 to
obtain a Local-Global Principle for rational function fields. We formulate our main result
(Theorem 5.2.2) in a very general context. This will prove useful in Section 5.3, where it
will be applied to different situations. In order to do this, we fix a field K of characteristic
different from 2. We first rework Milnor’s Exact Sequence in the following way.

5.2.1 Theorem. Let ϕ be a quadratic form over K(X). If ϕ is not hyperbolic, then there
exists p ∈ PK such that ϕK(X)vp is not hyperbolic.

Proof. Suppose that ϕK(X)vp is hyperbolic for every p ∈ PK . By Milnor’s Exact Sequence
(see [Lam05, Milnor’s Theorem IX.3.1]), there exists a quadratic form ψ over K such
that ϕ is Witt equivalent to ψK(X). By the assumption on ϕ, we have that ψK(X)vp

is hyperbolic for every p ∈ P. This holds in particular for p = X, for which we have
K(X)vp ≃ K((X)) and K(X)vp ≃ K. Hence ψ is hyperbolic over K((X)). It follows by
Theorem 5.1.7 that ψ is hyperbolic. Thus ϕ is hyperbolic as well.

Let E be a set of field extensions of K and m ∈ N+. We say that E is local-global for
K at m if for every p ∈ PK , f1, . . . , fm ∈ K[X]∖ pK[X] such that ⟨⟨fvp1 , . . . , f

vp
m ⟩⟩K(X)vp

is anisotropic, there exist L ∈ E and α ∈ L such that p(α) = 0 and ⟨⟨f1(α), . . . , fm(α)⟩⟩L
is anisotropic. This is equivalent to saying that, for every p ∈ PK and m-fold Pfister form
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ϕ on K(X) that is unramified at p and such that ϕ
vp

is anisotropic, there exist L ∈ E and
α ∈ L such that p(α) = 0 and ϕL(X)

v
is anisotropic where v is the (X−α)-adic valuation

on L(X). We say that E is local-global for K if it is local-global for K at every m ∈ N+.
By convention, we assume that any set of field extensions of K is local-global for K at 0.

5.2.2 Theorem (Local-Global Principle). Let m ∈ N+ and let E be a set of field
extensions of K. Assume that E is local-global for K at m and m − 1. Then every
anisotropic m-fold Pfister form over K(X) is anisotropic over L(X) for some L ∈ E.

Proof. Let ϕ be an anisotropic m-fold Pfister form over K(X). By Theorem 5.2.1,
there exists p ∈ PK such that ϕK(X)vp is not hyperbolic, and thus anisotropic, by
Theorem 1.1.17. Set ℓ = m if ϕ is unramified at p, and ℓ = m − 1 otherwise. Then
ϕ
vp

is an ℓ-fold Pfister form over K(X)vp, by Lemma 5.1.2, and is anisotropic, by

Theorem 5.1.7. Let f1, . . . , fℓ ∈ O×
vp ∩ K[X] be such that ϕ

vp ≃ ⟨⟨fvp1 , . . . , f
vp
ℓ ⟩⟩K(X)vp .

By the hypothesis on E , there exists L ∈ E and α ∈ L such that p(α) = 0 and
⟨⟨f1(α), . . . , fl(α))⟩⟩L is anisotropic. Let v be the (X − α)-adic valuation on L(X). Since
⟨⟨f1(α), . . . , fl(α))⟩⟩L = ϕL(X)

v
, it follows by Corollary 5.1.9 that ϕL(X)v is anisotropic.

Since L(X) embeds into L(X)v, we conclude that ϕL(X) is anisotropic.

5.3 Applications

In this section we apply Theorem 5.2.2 to obtain several local-global principles for Pfister
forms over rational function fields. Besides Theorem 5.2.2, the main ingredient is the
Hasse-Minkowski Local-Global Principle (Theorem 2.3.11), which is used in the argument
of Lemma 5.3.1.

Recall from Section 2.3 that a global field is a finite extension of Q or of Fq(X) for
some q ∈ N prime, and that for a field K we call WK the set of absolute values on K.

For a field K and p ∈ PK , we set Kp = K[X]/(p), and we identify K(X)vp with Kp.

5.3.1 Lemma. Let K be a global field such that char(K) ̸= 2. Then the set

{Kw
p | p ∈ PK , w ∈ WKp

}

is local-global for K.

Proof. Consider p ∈ PK , m ∈ N+ and f1, . . . , fm ∈ K[X] ∖ pK[X] such that the
form ⟨⟨fvp1 , . . . , f

vp
m ⟩⟩Kp is anisotropic. Since Kp/K is finite, Kp is a global field. By

Theorem 2.3.11, there exists w ∈ WKp
such that ⟨⟨fvp1 , . . . , f

vp
m ⟩⟩Kw

p
is anisotropic. Consider

a root α ∈ Kw
p of p. Then ⟨⟨f1(α), . . . , fm(α)⟩⟩Kw

p
≃ ⟨⟨fvp1 , . . . , f

vp
m ⟩⟩Kw

p
is anisotropic. This

shows that the set {Kw
p | p ∈ PK , w ∈ WKp

} is local-global for K at m. Since m ∈ N+

was taken arbitrary, we obtain the statement.

We recover a local-global principle for Pfister forms over the rational function field
over a global field. When restricted to 3-fold Pfister forms, it can be seen as a special case
of the local-global principle for 3-fold Pfister forms from [Kat86, p. 146] that we used to
obtain Theorem 4.2.3.

5.3.2 Theorem. Let K be a global field with char(K) ̸= 2 and let ϕ be an anisotropic
Pfister form over K(X). Then there exists w ∈ WK such that ϕKw(X) is anisotropic.
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Proof. By Lemma 5.3.1, the set {Kw
p | p ∈ PK , w ∈ WKp} is local-global for K. By

Theorem 5.2.2, there exist p ∈ PK and w̃ ∈ WKp
such that ϕ is anisotropic over Kw̃

p (X).

Set w = w̃|K . Then w ∈ WK , and Kw naturally embeds into Kw̃
p , by Corollary 2.3.6.

Thus Kw(X) embeds into Kw̃
p (X). Hence ϕ is anisotropic over Kw(X).

Recall from Section 2.3 that an absolute value is dyadic if it is non-archimedean and
corresponds to a dyadic valuation, and non-dyadic otherwise. We obtain the following
local-global principles, for sums of two and of four squares respectively.

5.3.3 Corollary. Let K be a global field and h ∈ ΣK[X]2. Then h ∈ Σ2K[X]
2
if and

only if h ∈ Σ2K
w(X)

2
for all w ∈ WK non-archimedean such that |Kw| ̸≡ 1 mod 4.

Proof. For h = 0, the statement holds trivially. Assume that h ̸= 0. If h ∈ Σ2K[X]
2
,

then h ∈ Σ2K
w(X)

2
for all w ∈ WK . Vice versa, assume that h ∈ Σ2K

w(X)
2
for all

w ∈ WK non-archimedean such that |Kw| ̸≡ 1 mod 4. If char(K) = 2, then h ∈ K[X]2,
trivially. Assume that char(K) ̸= 2. Consider w ∈ WK . If w is archimedean, then
Kw ≃ R or Kw ≃ C, by Example 2.3.8 (a); thus p(Kw(X)) = 2. If w is non-archimedean
and |Kw| ≡ 1 mod 4, then s(Kw(X)) = s(Kw) = 1, by Proposition 2.4.13, and thus

p(Kw(X)) ⩽ 2, by Proposition 1.2.4. In either case, we obtain h ∈ Σ2K
w(X)

2
. By the

assumption on h, this shows that ⟨⟨−1, h⟩⟩Kw(X) is isotropic for every w ∈ WK . Therefore

⟨⟨−1, h⟩⟩K(X) is isotropic, by Theorem 5.3.2. Hence h ∈ Σ2K(X)
2
, by Theorem 1.1.18,

and thus h ∈ Σ2K[X]
2
, by Theorem 1.1.21.

5.3.4 Corollary. Let h ∈ ΣQ[X]
2
. Then h ∈ Σ2Q[X]

2
if and only if h ∈ Σ2Qp(X)

2
for

every prime p ∈ N such that p ̸≡ 1 mod 4.

Proof. The statement follows from Corollary 5.3.3 and from the fact that, for every prime
p ∈ N, Qp is, up to isomorphism, the unique completion of Q having residue field of
characteristic p; see Example 2.3.9.

5.3.5 Corollary. Let K be a global field and h ∈ ΣK[X]2. Then h ∈ Σ4K[X]
2
if and

only if h ∈ Σ4K
w(X)

2
for every dyadic w ∈ WK .

Proof. For h = 0, the statement holds trivially. If char(K) ̸= 0, then s(K) ⩽ 2; thus

ΣK(X)
2
= Σ4K(X)

2
, by Corollary 1.2.5, and the statement is trivial. Assume now that

h ̸= 0 and char(K) = 0. If h ∈ Σ4K[X]
2
, then h ∈ Σ4K

w(X)
2
for every w ∈ WK . Vice

versa, assume h ∈ Σ4K
w(X)

2
for every dyadic w ∈ WK . Consider w ∈ WK non-dyadic. If

w is archimedean, then Kw ≃ R or Kw ≃ C, by Example 2.3.8 (a), thus p(Kw(X)) = 2.
If w is non-archimedean, then s(Kw(X)) = s(Kw) ⩽ 2, by Proposition 2.4.13, thus

p(Kw(X)) ⩽ 3, by Proposition 1.2.4. In either case we get h ∈ Σ4K
w(X)

2
. This shows

that ⟨⟨−1,−1, h⟩⟩Kw(X) is isotropic for all w ∈ WK . Hence ⟨⟨−1,−1, h⟩⟩K(X) is isotropic,

by Theorem 5.3.2. Therefore h ∈ Σ4K(X)
2
, by Theorem 1.1.18, and thus h ∈ Σ4K[X]

2
,

by Theorem 1.1.21.

5.3.6 Corollary. Let h ∈ ΣQ[X]
2
. Then h ∈ Σ4Q[X]

2
if and only if h ∈ Σ4Q2(X)

2
.

Proof. The statement follows from Corollary 5.3.5, together with the fact that Q2 is, up
to isomorphism, the unique dyadic completion of Q; see Example 2.3.9.

Another application of Theorem 5.2.2 provides a local-global principle for Pfister forms
over K((t1)) · · · ((tn))(X), where K is a global field and n ∈ N. Before proving this local-
global principle, we briefly study finite field extensions of iterated formal power series.
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5.3.7 Lemma. Let K be a field, n ∈ N and F/K((t1)) · · · ((tn)) a finite field extension.
Then F is K-isomorphic to E((s1)) · · · ((sn)) for some finite field extension E/K.

Proof. The statement follows by induction from the case where n = 1. Assume therefore
that n = 1, and denote t = t1 for simplicity. By [OM73, Theorem 14:1], the complete
discrete valuation ring K[[t]] extends to a unique valuation ring O of F , which is also
complete and discrete. Let κ be the residue field of O. By [Sta, Lemma 10.160.8] (Cohen’s
Structure Theorem), there exists a subfield E of O such that the residue map of O
induces an isomorphism E ≃ κ; see also [Sta, Remark (1) after Definition 10.160.4]. By
[Sta, Lemma 10.160.10 (2)], there exists an E-isomorphism O ≃ E[[s]], and thus an E-
isomorphism F ≃ E((s)). Since O extends K[[t]], the residue field of K[[t]], which is K,
embeds naturally in κ, and it follows by Theorem 2.2.4 that [κ : K] ⩽ [F : K((t))] < ∞,
whereby κ/K is finite. Since E ≃ κ, we may see E as a finite extension of K, and thus
there exists a K-isomorphism F ≃ E((s)).

Given a field extension L/K, we call finite intermediate field extension of L/K any
finite field extension F/K where F is a subfield of L.

5.3.8 Theorem. Let K be a field with char(K) ̸= 2 and Kalg an algebraic closure of
K. For every finite intermediate field extension F/K of Kalg/K, let EF be a set of field
extensions of F . Set

E = {L((t)) | L ∈ EF for some finite intermediate field extension F/K of Kalg/K}.

For m ∈ N+, if EF is local-global for F at m− 1 and m for every finite intermediate field
extension F/K of Kalg/K, then E is local-global for K((t)) at m. In particular, if EF is
local-global for F for every finite intermediate field extension F/K of Kalg/K, then E is
local-global for K((t)).

Proof. Let m ∈ N+ be such that EF is local-global for F at m− 1 and m for every finite
intermediate field extension F/K of Kalg/K. In order to show that E is local-global for
K((t)) at m, consider p ∈ PK((t)) and f1, . . . , fm ∈ K((t))[X] ∖ (p) such that the m-fold

Pfister form ⟨⟨fvp1 , . . . , f
vp
m ⟩⟩K((t))p is anisotropic. Set F = K((t))p and let α ∈ F be such

that p(α) = 0 and F = K((t))(α). Then ⟨⟨f1(α), . . . , fm(α)⟩⟩F = ⟨⟨fvp1 , . . . , f
vp
m ⟩⟩F . Since

F/K((t)) is finite, it follows by Lemma 5.3.7 that F is K-isomorphic to E((s1)) · · · ((sn))
for some finite field extension E/K. We may thus assume that E is a subfield of Kalg

and F = E((s)). Let v be the s-adic valuation on F . Set l = m if ⟨⟨f1(α), . . . , fm(α)⟩⟩F is
unimodular with respect to v, and l = m− 1 otherwise. In view of Lemma 5.1.2 we may
assume, up to a permutation of the indices 1, . . . , l, that v(f1(α)) = . . . = v(fl(α)) = 0.
As v is complete non-dyadic, Fv = E and ⟨⟨f1(α), . . . , fm(α)⟩⟩F is anisotropic, and it

follows by Theorem 5.1.7 that ⟨⟨f1(α)
v
, . . . , fl(α)

v
⟩⟩E is anisotropic. As E/K is a finite

intermediate field extension of Kalg/K, the set EE is local-global at m and m− 1. Hence

there exists L ∈ EE such that ⟨⟨f1(α)
v
, . . . , fl(α)

v
⟩⟩L is anisotropic. By Theorem 5.1.7

applied to the t-adic valuation on L((t)), we conclude that ⟨⟨f1(α), . . . , fm(α)⟩⟩L((t)) is
anisotropic. This shows that E is local-global forK((t)) atm. The second part of statement
follows trivially from the first.

5.3.9 Corollary. Let K be a global field with char(K) ̸= 2 and n ∈ N. Then the set

{Fw((t1)) · · · ((tn)) | F/K finite intermediate field extension of Kalg/K, w ∈ WF }

is local-global for K((t1)) · · · ((tn)).
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Proof. Consider m ∈ N+. Set

E = {Fw | F/K finite intermediate field extension of Kalg/K, w ∈ WF } and

En = {Fw((t1)) · · · ((tn)) | F/K finite intermediate field extension of Kalg/K, w ∈ WF }.

Observe that
{Kw

p | p ∈ PK , w ∈ WKp
} ⊆ E ,

and recall that {Kw
p | p ∈ PK , w ∈ WKp} is local-global for K at m, by Lemma 5.3.1.

Then E is local-global for K at m, trivially. It follows by Theorem 5.3.8 via an elementary
induction argument that the set En is local-global for K((t1)) · · · ((tn)) at m. Since this
holds for arbitrary m ∈ N+, this shows that En is local-global for K((t1)) · · · ((tn)).

5.3.10 Proposition. Let K be a global field with char(K) ̸= 2 and n ∈ N. Let ϕ be an
anisotropic Pfister form over K((t1)) · · · ((tn))(X). Then there exists w ∈ WK such that ϕ
is anisotropic over Kw((t1)) · · · ((tn))(X).

Proof. By Corollary 5.3.9, the set

En = {Fw((t1)) · · · ((tn)) | F/K finite intermediate field extension of Kalg/K, w ∈ WF }

is local-global for K((t1)) · · · ((tn)). It follows by Theorem 5.2.2 that there exist a finite
intermediate field extension F/K of Kalg/K and w̃ ∈ WF such that ϕ is anisotropic
over F w̃((t1)) · · · ((tn))(X). Set w = w̃|K . Then w ∈ WK , and Kw naturally embeds
into F w̃, by Corollary 2.3.6. Thus Kw((t1)) · · · ((tn))(X) embeds into F w̃((t1)) · · · ((tn))(X).
Therefore ϕ is anisotropic over Kw((t1)) · · · ((tn))(X).

Similarly as before, we specialize the result to sums of four squares.

5.3.11 Corollary. Let K be a global field and n ∈ N. Set F = K((t1)) · · · ((tn)) and let

h ∈ ΣF [X]2. Then h ∈ Σ4F [X]
2
if and only if h ∈ Σ4K

w((t1)) · · · ((tn))(X)
2
for every

dyadic w ∈ WK .

Proof. If h ∈ Σ4F [X]
2
, then h ∈ Σ4K

w((t1)) · · · ((tn))(X)
2
for every dyadic w ∈ WK ,

trivially. Vice versa, suppose that h ∈ Σ4K
w((t1)) · · · ((tn))(X)

2
for all dyadic w ∈ WK .

If char(K) ̸= 0, then s(K) ⩽ 2, by Corollary 1.2.5; thus ΣF (X)
2

= Σ4F (X)
2
, by

Proposition 1.2.4, and the statement holds trivially. Assume now that char(K) = 0.
Consider w ∈ WK non-dyadic and set L = Kw((t1)) · · · ((tn))(X). If w is archimedean,
then Kw ≃ R or Kw ≃ C, by Example 2.3.8 (a); in the first case, we find that p(L) = 2 by
Corollary 4.1.7 and Theorem 4.1.4, in the second case p(L) = 2 by Proposition 1.2.8. If
w is non-archimedean, then it follows by Proposition 2.4.13 that p(L) ⩽ 3. In either case,
we obtain h ∈ Σ4L

2. By the assumption, this shows that ⟨⟨−1,−1, h⟩⟩ is isotropic over
Kw((t1)) · · · ((tn))(X) for every w ∈ WK . By Proposition 5.3.10, we get that ⟨⟨−1,−1, h⟩⟩
is isotropic over F (X). Hence h ∈ Σ4F (X)

2
, by Theorem 1.1.18, and thus h ∈ Σ4F [X]

2
,

by Theorem 1.1.21.

5.3.12 Corollary. Let n ∈ N, h ∈ ΣQ((t1)) · · · ((tn))[X]
2
. Then h ∈ Σ4Q((t1)) · · · ((tn))[X]

2

if and only if h ∈ Σ4Q2((t1)) · · · ((tn))(X)
2
.

Proof. The statement follows from Corollary 5.3.11, together with the fact that Q2 is, up
to isomorphism, the unique dyadic completion of Q; see Example 2.3.9.
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The Pythagoras number of a rational
function field over a number field

Y. Pourchet proved in [Pou71] that the Pythagoras number of a rational function field
over a number field is at most 5. Pourchet’s exposition seems at a first glimpse to rely
heavily on the assumption that the base field is a number field, but it does not make
immediately clear which properties of number fields are necessary for the proof. In the
following, we decompose Pourchet’s argument into different steps and we highlight the
hypotheses that are relevant for each step. It is interesting, in view of possible applications
of this kind of argument to different settings, that each step turns out to require only
milder assumptions than having a number field as a base field.

6.1 Representation of polynomials by quadratic forms

In this section we inquire whether and when it is possible to bound the degrees of the
polynomials in the representation of a given polynomial by a quadratic form. More
precisely, given a field K, m,n ∈ N, an n-ary quadratic form ϕ over K and a polynomial
f ∈ DK[X](ϕ) of degree 2m, we investigate whether it is possible to find f1, . . . , fn ∈ K[X]
such that f = ϕ(f1, . . . , fn) and deg(fi) ⩽ m for every 1 ⩽ i ⩽ n.

Throughout this section it might help to keep in mind the following example, related
to sums of five squares in Q2[X]. Consider f ∈ Q2[X] of even degree. Recall from

Section 2.4 that s(Q2(X)) = s(Q2) = 4, whereby Q2(X) = ΣQ2(X)
2
= Σ5Q2(X)

2
. It is

thus easy to show that there exist f1, . . . , f5 ∈ Q2[X] such that f = f21 + . . .+f
2
5 , by using

the Cassels-Pfister Theorem (Theorem 1.1.21). It is possible, but more difficult, to show
that there exist such f1, . . . , f5 having deg(fi) ⩽ deg(f)/2 for every 1 ⩽ i ⩽ 5. This was
shown in [Pou71, Theorem 1] as a crucial step to show that p(Q(X)) ⩽ 5. In this section
we discuss when and how these kind of problems can be solved; the following statements
cover and extend the techniques for local fields developed in [Pou71, Étude Locale].

In the sequel, let K be a field of characteristic different from 2. Recall from Chapter 5
that we denote by PK the set of monic irreducible polynomials with coefficients in K.

6.1.1 Lemma. Let a ∈ (K× ∖−K×2) ∪ {−1}. Let U ⊆ PK be finite and g1, g2 ∈ K[X]
such that, for all p ∈ U , p2 does not divide g21+ag

2
2 in K[X]. Then there exist |K|−1−2|U |

pairs (h1, h2) ∈ K[X] ×K[X] such that h1 is coprime in K[X] to any polynomial in U
and g21 + ag22 = h21 + ah22; furthermore, for |K| − 3 − 2|U | of these pairs, we also have
deg(h1) = max{deg(g1),deg(g2)}.

Proof. For x, y ∈ K× such that ay2 + 1 ̸= 0, we set

Ax =
1

2

(
x+ x−1 x− x−1

x− x−1 x+ x−1

)
and By =

1

ay2 + 1

(
ay2 − 1 2ay

2y 1− ay2

)
.
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We will use the matrices {Ax}x∈K× to prove the statement for a = −1, and the matrices
{By}y∈K× for a ̸= −1. Set ϕ = ⟨1, a⟩K . If a = −1, then for every x ∈ K×, we have
ϕ ◦Ax = ϕ; if −a ∈ K× ∖K×2, then ax2 + 1 ̸= 0 and ϕ ◦Bx = ϕ for every x ∈ K×.

Fix p ∈ U and α ∈ K[X]/(p) such that K[X]/(p) = K(α). Consider M,N ∈ M2(K)
such that ϕ ◦M = ϕ ◦N = ϕ and M · (g1, g2)t, N · (g1, g2)t ∈ (p)×K[X], that is,

M · (g1(α), g2(α))t, N · (g1(α), g2(α))t ∈ {0} ×K(α).

Assume that a = −1 and M = Ax, N = Ay for x, y ∈ K×. From the first component,
we obtain that (x2+1)g1(α)+ (x2− 1)g2(α) = (y2+1)g1(α)+ (y2− 1)g2(α) = 0. Since p
does not divide both g1, g2 and x, y ∈ K×, we have g1(α) ̸= 0 or g2(α) ̸= 0. Assume that
g1(α) ̸= 0. Then x2 ̸= 1, otherwise 2 = x2 + 1 = 0, which would contradict char(K) ̸= 2.
Analogously we find y2 ̸= 1. Thus g2(α)/g1(α) = (x2 + 1)/(1− x2) = (y2 + 1)/(1− y2),
whereby x2 = y2. Similarly, we obtain that x2 = y2 if g2(α) ̸= 0. Hence x = y, or x = −y.

Assume that a /∈ −K×2 and M = Bx, N = By for x, y ∈ K×. From the first
component, we obtain that (ax2 − 1)g1(α) + 2xg2(α) = (ay2 − 1)g1(α) + 2yg2(α) = 0.
Since p does not divide both g1, g2 and x, y ∈ K×, we have g1(α) ̸= 0. Therefore
2g2(α)/g1(α) = (1− ax2)/x = (1− ay2)/y, whereby either x = y, or x = −1/ay.

If a = −1, we have shown that for every p ∈ U there exist xp, yp ∈ K such that
Ax · (g1, g2)t /∈ K[X] × (p) for any x ∈ K ∖ {0, xp, yp}; set S = {0} ∪ {xp, yp | p ∈ U}.
If a /∈ −K×2, we have shown that, for every p ∈ U , there exist xp, yp ∈ K such that
Bx · (g1, g2)t /∈ K[X]× (p) for any x ∈ K ∖ {0, xp, yp}; set S = {0} ∪ {xp, yp | p ∈ U}.

An elementary computation shows for every x, y ∈ K× that x = y if a = −1 and
Ax · (g1, g2)t = Ay · (g1, g2)t, or if a /∈ −K×2 and Bx · (g1, g2)t = By · (g1, g2)t. Hence there
exist |K ∖ S| ⩾ |K| − 1 − 2|U | couples (h1, h2) ∈ K[X] ×K[X] such that h1 is coprime
in K[X] to every polynomial in U and ϕ(g1, g2) = ϕ(h1, h2).

Set now m = max{deg(g1),deg(g2)}. For every i ∈ {1, 2}, let ci ∈ K be such that
gi = ciX

m + Gi, for some Gi ∈ K[X] such that deg(Gi) < m. Consider x ∈ K×.
Observe that lc((x2 + 1)g1 + (x2 − 1)g2) = (x2 + 1)c1 + (x2 − 1)c2 and, analogously,
lc((ax2 − 1)g1 + 2xg2) = (ax2 − 1)c1 + 2xc2. Then there exist x0, y0 ∈ K× such that
deg((x2 + 1)g1 + (x2 − 1)g2)) = m for every x ∈ K× ∖ {x0, y0}, and x1, y1 such that
deg((ax2 − 1)g1 + 2xg2) = m for any x ∈ K× ∖ {x1, y1}. Set T = S ∖ {x0, y0} if
a = −1, otherwise T = S ∖ {x1, y1}. Then there exist |K ∖ T | ⩾ |K| − 1 − 2|U |
couples (h1, h2) ∈ K[X] ×K[X] such that h1 is coprime in K[X] to any polynomial in
U , ϕ(g1, g2) = ϕ(h1, h2) and deg(h1) = m.

6.1.2 Corollary. Let ϕ be a regular binary quadratic form over K, let g ∈ DK[X](ϕ)
be square-free in K[X] with 2 deg(g) < |K| − 1 and let f ∈ K[X]. Then there exist
f1, f2 ∈ K[X] such that f ≡ ϕ(f1, f2) mod g.

Proof. Observe that the statement only depends on ϕ up to isometry, thus we may assume
that ϕ = c⟨1, a⟩K for some a, c ∈ K×. Furthermore, we may assume c = 1. Since
2 deg(g) < |K| − 1, g has at most (|K| − 2)/2 monic irreducible factors. By Lemma 6.1.1,
there exist g1, g2 ∈ K[X] such that g1 is coprime to g and g = g21 + ag22 . Then we have
ag22 ≡ −g21 mod g, whence

4g21f = g21(f + 1)2 − g21(f − 1)2

≡ g21(f + 1)2 + ag22(f − 1)2 mod g

≡ ϕ(g1(f + 1), g2(f − 1)) mod g.

Let h ∈ K[X] be an inverse of g1 mod g, that is, such that g1h ≡ 1 mod g. Then we have
that ϕ((f + 1)/2, hg2(f − 1)/2) ≡ f mod g.
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6.1.3 Proposition. Let d ∈ N and let ϕ be a regular d-ary quadratic form over K. Let
a ∈ DK(ϕ) and ϕ′ ⊆ ϕ be such that ϕ ≃ ⟨a⟩ ⊥ ϕ′. Let f ∈ K[X] ∖ K be square-free
and such that deg(f) < |K| − 1. Assume that there exist g ∈ K[X] not dividing f with
2 deg(g) = deg(f) and f1, . . . , fd−1 ∈ K[X] such that af ≡ ϕ′(f1, . . . , fd−1) mod g. Then
there exists F ∈ K[X] with deg(F ) = deg(f) such that F/a−f ∈ K[X]2, lc(F ) ∈ DK(ϕ)
and ϕL is isotropic for every field extension L/K containing a root of F .

Proof. Let n ∈ N be such that deg(f) = 2n. By the hypotheses we have n > 0 and d > 1.
Let g ∈ K[X] not dividing f with deg(g) = n, and let f1, . . . , fd−1 ∈ K[X] be such that
af ≡ ϕ′(f1, . . . , fd−1) mod g. Since we are working modulo g and deg(g) = n, we may
assume that deg(fi) < n for 1 ⩽ i ⩽ d− 1. Hence there exists h ∈ K[X] with deg(h) = n
and such that

af = ϕ′(f1, . . . , fd−1) + agh.

Let U be the set of the common monic prime factors of f1, . . . , fd−1 in K[X]. Since
deg(f1), . . . ,deg(fd−1) ⩽ n− 1, it follows that |U | ⩽ n− 1. Since 2n < |K| − 1, we obtain
that 2|U | < |K|− 3. Since f is square-free, we have for any p ∈ U that p2 does not divide
gh. Set g1 = (g + h)/2 and g2 = (g − h)/2. Then gh = g21 − g22 . By Lemma 6.1.1, there
exist h1, h2 ∈ K[X] with deg(h2) ⩽ deg(h1) = n such that h1 is coprime in K[X] to every
polynomial from U and h21 − h22 = g21 − g22 = gh. Therefore we have

af + ah22 = ϕ′(f1, . . . , fd−1) + ah21.

Set F = af + ah22. Then the choice of h1 implies that ϕK[X]/(p) is isotropic for every
prime factor p of F in K[X]. Since deg(fi) < n for any 1 ⩽ i ⩽ d − 1 and deg(h1) = n,
we have that deg(F ) = 2n and lc(F ) = a · lc(h1)2, and thus lc(F ) ∈ DK(ϕ).

6.1.4 Lemma. Let ϕ be a regular quadratic form in at least two variables over K and
let k ∈ N. Then there exists a set S ⊆ K[X] of monic, separable, pairwise coprime
polynomials of degree 2k that are represented by ϕ over K[X] with |S| = |K×2|.

Proof. Observe that it suffices to show the statement for the case where ϕ is binary;
furthermore, the statement only depends on ϕ up to isometry, thus we may assume that
ϕ = c⟨1, a⟩K for some a, c ∈ K×. Finally, we may assume c = 1. thus we may assume
that ϕ ≃ ⟨1, a⟩K for some a ∈ K×.

Assume first that char(K) does not divide k. Consider b ∈ K×. Set gb = X2k + ab2.
Then gb = ϕ(Xk, b), thus gb is represented by ϕ over K[X]. Since char(K) does not divide
2k, we have that gb is separable. Consider now b1, b2 ∈ K× such that b1 ̸= ±b2. We have
that gb1 − gb2 = a(b21 − b22) ∈ K[X]×, hence gb1 and gb2 are coprime in K[X].

Assume now that char(K) divides k. Consider b ∈ K×. Set gb = X2k + ab2(X + 1)2.
Then gb = ϕ(Xk, b(X+1)), thus gb is represented by ϕ over K[X]. Since char(K) divides
k, the formal derivative of gb is 2ab

2(X +1), which is coprime to gb in K[X]. Hence gb is
separable. Consider b1, b2 ∈ K× such that b1 ̸= ±b2. Since gb1 −gb2 = a(b21− b22)(X+1)2,
we have that gb1 and gb1 − gb2 are coprime in K[X], thus gb1 gb2 are coprime in K[X].

In either case, we obtain the statement by setting S = {gb | b ∈ K×}.

6.1.5 Theorem. Let ϕ be a regular quadratic form over K in at least 3 variables and
let f ∈ K[X] be square-free of even degree. If deg(f) ≡ 2 mod 4, then assume further
that f has a factor of odd degree. Let a ∈ DK(ϕ). Then there exists F ∈ K[X] with
deg(F ) ⩽ deg(f), F/a − f ∈ K[X]2, lc(F ) ∈ DK(ϕ) and such that ϕL is isotropic for
every extension L/K containing a root of F .



74
CHAPTER 6. THE PYTHAGORAS NUMBER OF A RATIONAL FUNCTION

FIELD OVER A NUMBER FIELD

Proof. If lc(f) ∈ DK(ϕ) and ϕL is isotropic for every extension L/K containing a root
of f , set F = af . Then the statement holds trivially.

Assume now that lc(f) ̸∈ DK(ϕ) or ϕL is anisotropic for some extension L/K
containing a root of f . Observe that K is infinite, in view of [Lam05, Proposition II.3.4].
Let d ∈ N be such that ϕ is a regular d-ary quadratic form. Then ϕ ≃ ϕ′ ⊥ ⟨a⟩ for some
(d−1)-ary quadratic form ϕ′ overK. We want to show, in order to apply Proposition 6.1.3,
that there exist g, f1, . . . , fd−1 ∈ K[X] with 2 deg(g) = deg(f) such that g does not divide
f and af ≡ ϕ′(f1, . . . , fd−1) mod g. If we show this for d− 1 = 2, then the same follows
for all d ⩾ 3 by replacing ϕ′ with a binary subform of it. We may thus assume that d = 3.

Suppose first that deg(f) = 4k for some k ∈ N. By Lemma 6.1.4, there exist at least
three separable pairwise coprime polynomials in DK[X](ϕ

′) of degree 2k. Hence there
exists g ∈ DK[X](ϕ

′) separable with deg(g) = 2k not dividing af . Since K is infinite, it
follows by Corollary 6.1.2 that af ≡ ϕ′(f1, f2) mod g for some f1, f2 ∈ K[X].

Suppose now that deg(f) = 4k + 2 for some k ∈ N and that f has a factor of odd
degree. Then f has an irreducible factor p of odd degree with deg(p) ⩽ 2k + 1.

Assume first deg(p) ⩽ 2k − 1 and set m = k + (1 − deg(p))/2. Note that m ⩾ 1.
By Lemma 6.1.4, there exist at least three separable pairwise coprime polynomials in
DK[X](ϕ

′) of degree 2m. Therefore there exists h ∈ DK[X](ϕ
′) separable, coprime to p,

not dividing f and such that deg(h) = 2m. Set g = p · h. Then g does not divide af
and deg(g) = 2k + 1. Since h is separable, it is square-free. Since h ∈ DK[X](ϕ

′) and
deg(h) < deg(g) = 2k+1 <∞, it follows by Corollary 6.1.2 that there exist f1, f2 ∈ K[X]
such that af ≡ ϕ′(f1, f2) modulo every prime factor of h. Since af ≡ 0 ≡ ϕ′(0, 0) mod p,

it follows by the Chinese Remainder Theorem that there exist f̂1, f̂2 ∈ K[X] such that

af = ϕ′(f̂1, f̂2) mod g.

Assume now that deg(p) = 2k+1. Let q ∈ K[X] be such that f = pq and let λ ∈ K×

be such that λ2 ̸= lc(q)/lc(p). Set g = (q−λ2p). Then deg(g) = 2k+1 and f−λ2p2 = pg,
therefore af ≡ a(λp)2 mod g, and a(λp)2 ∈ DK[X](ϕ). Since f is square-free, we have
that p does not divide q. Hence p does not divide g. Therefore g does not divide aλ2p2,
that is, g does not divide f .

In either case we have shown that there exists g ∈ K[X] satisying the hypothesis of
Proposition 6.1.3. Hence the statement follows from Proposition 6.1.3.

6.1.6 Corollary. Let m ∈ N with m ⩾ 2, let ϕ be an m-fold Pfister form over K and
f ∈ K[X] square-free of even degree. If deg(f) ≡ 2 mod 4, then assume further that
f has a factor of odd degree. Let a ∈ DK(ϕ). Then there exists F ∈ DK[X](ϕ) with
deg(F ) ⩽ deg(f) such that F/a− f ∈ K[X]2.

Proof. By Theorem 6.1.5, there exists F ∈ K[X] such that ϕL is isotropic for every
field extension L/K containing a root of F , deg(F ) ⩽ deg(f), F/a − f ∈ K[X]2 and
lc(F ) ∈ DK(ϕ). It follows by Theorem 1.1.24 that F ∈ DK[X](ϕ).

Recall from Section 4.1 that K is euclidean if K is real and K× = K×2 ∪ −K×2.

6.1.7 Proposition. Let ϕ be a Pfister form over K such that ϕL is isotropic for every
quadratic field extension L/K. Then ϕ is universal or K is euclidean.

Proof. If ϕ is isotropic, then ϕ is universal, by Corollary 1.1.7. Suppose that ϕ is
anisotropic and let ψ be a quadratic form over K such that ϕ ≃ ⟨1⟩K ⊥ ψ. By
Corollary 1.1.20, we have DK(ψ) ∪ −K2 = K. Assume that ϕ is not universal. Then
DK(ψ) = K ∖ −K2 = DK(ϕ). As DK(ϕ) is a proper subgroup of K×, we get that
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K×/DK(ϕ) = {DK(ϕ),−DK(ϕ)} and −DK(ϕ) = −K×2, thus K×2 = DK(ϕ) and
K× = K×2 ∪ −K×2. Furthermore, it follows by [Lam05, Kneser’s Lemma VII.6.5] that
K is real. Therefore K is euclidean.

6.1.8 Corollary. Assume that K is not euclidean. Let m ∈ N with m ⩾ 2 and ϕ an
m-fold Pfister form over K such that ϕL is isotropic for every finite field extension L/K
of even degree. Let f ∈ K[X] be square-free of even degree and a ∈ K×. Then there exists
F ∈ DK[X](ϕ) with deg(F ) ⩽ deg(f) and such that F/a− f ∈ K[X]2.

Proof. If f has a factor of odd degree, then the statement follows by Corollary 6.1.6.
Assume now that f has no factor of odd degree. Set F = af . For any prime factor p
of F , we have that [K[X]/(p) : K] = deg(p) ∈ 2N+, hence ϕ is isotropic over K[X]/(p)
by the hypothesis. Since K is not euclidean, it follows by Proposition 6.1.7 that ϕ is
universal, whereby lc(F ) ∈ DK(ϕ). Therefore F ∈ DK[X](ϕ) by Theorem 1.1.24.

Recall from Section 4.1 that K is a local field if it is isomorphic to R, to C, to a finite
field extensions of Qp or of Fp((t)) for p ∈ N prime. We retrieve the following statement,
contained in [Pou71, Théorème 1].

6.1.9 Corollary. Assume that K is a nonreal local field. Let ϕ be a regular 4-ary quadratic
form over K, let a ∈ K× and let f ∈ K[X] be square-free and of even degree. Then there
exists F ∈ DK[X](ϕ) with deg(F ) ⩽ deg(f) such that F/a− f is a square in K[X].

Proof. Recall that DK[X](ϕ) = DK(X)(ϕ)∩K[X], by the Cassels-Pfister Theorem 1.1.21.
If ϕ is isotropic, then ϕK(X) is universal by Proposition 1.1.23, wherebyDK[X](ϕ) = K[X],
and we retrieve the statement by setting F = af . Assume now that ϕ is anisotropic. Then
it follows by [Lam05, Corollary VI.2.15] that ϕ is isometric to a 2-fold Pfister form over K,
which is universal over K, by [Lam05, Corollary VI.2.11]. By [Lam05, Lemma VI.2.14],
we conclude that ϕL is isotropic for every field extension L/K of even degree. Hence the
statement follows from Corollary 6.1.8.

We retrieve from Corollary 6.1.9 the example about polynomials over Q2 that was
discussed at the beginning of this section.

6.1.10 Corollary. Let f ∈ Q2[X] be of even degree. Then there exist f1, . . . , f5 ∈ Q2[X]
such that deg(fi) ⩽ deg(f) for any 1 ⩽ i ⩽ 5 and f = f21 + f22 + f23 + f24 + f25 .

Proof. Set ϕ = ⟨1, 1, 1, 1⟩Q2 . Recall from Section 2.4 that Q2 = Σ4Q2
2, that is, ϕ is

universal. Let g ∈ Q2[X] be such that f/g2 is square-free and f/g2 ∈ Q2[X]. It follows
by Corollary 6.1.9 that there exists F ∈ DQ2[X](ϕ) with deg (F ) ⩽ deg (f/g2) and such
that −F + f/g2 ∈ K[X]2. Therefore, there exist h, F1, F2, F3, F4 ∈ Q2[X] such that
h2 = −F +f/g2 and F = ϕ(F1, F2, F3, F4). Then f/g

2 = F +h2, that is, f = g2F +g2h2,
and 2 deg (Fi), 2 deg (h) ⩽ deg (f/g2) for any 1 ⩽ i ⩽ 4. We find that

f = (gF1)
2 + (gF2)

2 + (gF3)
2 + (gF4)

2 + (gh)2,

and 2 deg (gFi), 2 deg (gh) ⩽ deg (f) for any 1 ⩽ i ⩽ 4. Hence we obtain the statement
by setting fi = gFi for 1 ⩽ i ⩽ 4 and f5 = gh.

6.2 Continuity of roots and quadratic forms

We fix a henselian valued field (K, v) of characteristic different from 2. In this section we
show, for n ∈ N+, that being a sum of 2n squares over K[X] is a continuous property



76
CHAPTER 6. THE PYTHAGORAS NUMBER OF A RATIONAL FUNCTION

FIELD OVER A NUMBER FIELD

with respect to the v-adic topology. Roughly speaking, we show that changing by a little
the coefficient of a polynomial which is a sum of 2n squares produces another sum of 2n

squares. We are not aware of these results in the literature, though the techniques of
root-continuity which we exploit have been mature for several years; see e.g. [Bri06]. In
order to follow this section, it might help the reader to keep in mind that we are especially
interested in fields K which are finite extensions of Q2. In Section 6.4, we will generalise
these tools to arbitrary quadratic forms.

For this section, we fix an algebraic closure Kalg of K and we denote the unique
extension of v to Kalg again by v, and the valuation ring of Kalg corresponding to v
again by Ov. The value group of the latter is vK ⊗Z Q, and it contains the value group
of the extension of v to any finite extension of K contained in Kalg; see [EP05, p. 78].
We denote the Gauss extension of v to Kalg(X) with respect to X again by v.

6.2.1 Proposition. Let f ∈ K[X]∖ {0} and let α ∈ Kalg be a root of f . Then we have
v(α) ⩾ v(f)− v(lc(f)).

Proof. Write f = (X − α)g with g ∈ Kalg[X]. Then v(g) ⩽ v(lc(g)) = v(lc(f)) and
v(X − α) ⩽ v(α). Hence v(f) = v(g) + v(X − α) ⩽ v(α) + v(lc(f)).

6.2.2 Proposition. Let f, g ∈ K[X]∖ {0} with deg(g) ⩽ deg(f). Let α ∈ Kalg be a root
of f . Then we have

v(g(α)) ⩾ v(f − g) + deg(f)(v(f)− v(lc(f))).

Proof. Set n = deg(f) and let a0, b0, . . . , an, bn ∈ K be such that f = Σni=0 aiX
i and

g = Σni=0 bnX
n. Since f(α) = 0, we have that

g(α) = g(α)− f(α) = (bn − an)α
n + . . .+ (b1 − a1)α+ (b0 − a0).

We obtain that

v(g(α)) ⩾ min{v(bk − ak) + k · v(α) | 0 ⩽ k ⩽ n}
⩾ min{v(bk − ak) | 0 ⩽ k ⩽ n}+min{k · v(α) | 0 ⩽ k ⩽ n}
= v(g − f) +min{k · v(α) | 0 ⩽ k ⩽ n}.

By Proposition 6.2.1, we have v(α) ⩾ v(f)− v(an). Since v(f)− v(an) ⩽ 0, we obtain

min{k · v(α) | 0 ⩽ k ⩽ n} ⩾ min{k(v(f)− v(an)) | 0 ⩽ k ⩽ n}
= n(v(f)− v(an)).

Hence v(g(α)) ⩾ v(f − g) + n(v(f)− v(an)).

6.2.3 Proposition. Let f, g ∈ K[X] ∖ {0} with deg(g) = deg(f) and let α ∈ Kalg be a
root of f . Then there exists a root β ∈ Kalg of g such that

v(β − α) ⩾
v(f − g)− v(lc(g))

deg(f)
+ v(f)− v(lc(f)).

Proof. Set n = deg(f). Let β1, . . . , βn ∈ Kalg such that g = lc(g) ·
∏n
i=1(X − βi). Then

g(α) = lc(g) ·
n∏
i=1

(α− βi).
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For the sake of a contradiction, assume that, for every 1 ⩽ i ⩽ n, we have

v(α− βi) < (v(f − g)− v(lc(g)))/n+ v(f)− v(lc(f)).

Then we have

v(g(α)) = v(lc(g)) + Σni=1 v(α− βi)

< v(lc(g)) + n
((
v(f − g)− v(lc(g))

)
/n+ v(f)− v(lc(f))

)
.

Hence v(g(α)) < v(f − g) + n(v(f)− v(lc(f))), which contradicts Proposition 6.2.2.

Recall from Section 2.2 that for n ∈ N and F ∈ Kalg[X] ∖ {0} having precisely n
roots in Kalg, we set Cv(F ) = −∞ if n ⩽ 1, and we set

Cv(F ) = sup{v(αi − αj) | 1 ⩽ i < j ⩽ n}

where α1, . . . , αn are the distinct roots of F in Kalg otherwise. Recall also that for
α ∈ Kalg, we set Cv(α/K) = Cv(F ) where F is the minimal poynomial of α over K.

6.2.4 Proposition. Let F ∈ K[X] ∖ {0}. For every root α ∈ Kalg of F , we have that
Cv(F ) ⩾ Cv(α/K) and, if F is monic with v(F ) ⩾ 0, then Cv(α/K) ⩾ 0 and v(α) ⩾ 0.

Proof. The first part of the statement follows directly from the definitions. Assume now
that F is monic and v(F ) ⩾ 0. Then F ∈ Ov[X], by the definition of the Gauss extension.
Consider a root α ∈ Kalg of F . Since Ov is integrally closed, F ∈ Ov[X] and F is monic,
we obtain that α ∈ Ov, that is, v(α) ⩾ 0. Since this holds for all roots of F , we also
conclude that Cv(α) ⩾ 0.

For F ∈ Kalg[X]∖ {0}, we set

γv(F ) = deg(F ) ·
(
Cv(F )− v(F ) + v(lc(F ))

)
+ v(lc(F )).

6.2.5 Theorem. Let F,G ∈ Kalg[X]∖{0} with v(F−G) > γv(F ) and deg(G) = deg(F ),
and let β ∈ Kalg be a root of G. Then there exists a root α ∈ Kalg of F such that
v(β − α) > Cv(F ).

Proof. Set m = deg(F ). Let F0, G0, . . . , Fm, Gm ∈ Kalg be such that F = Σmi=0 FiX
i

and G = Σmi=0GiX
i, and let α1, . . . , αm ∈ Kalg be such that F = Fm ·

∏m
i=1(X − αi).

Furthermore, denote M = max{v(β − αi) | 1 ⩽ i ⩽ m}. Observe that

mM ⩾ Σmi=1 v(β − αi) = v

(
m∏
i=1

(β − αi)

)
= v(F (β)/Fm) = v(F (β))− v(Fm).

Since F (β) = (F −G)(β) = Σmi=1(Fi −Gi)β
i, we find

mM ⩾ min{v(Fi −Gi) + iv(β) | 0 ⩽ i ⩽ m} − v(Fm)

⩾ v(F −G) +min{iv(β) | 0 ⩽ i ⩽ m} − v(Fm)

By Proposition 6.2.1, we have v(β) ⩾ v(G) − v(Gm) and Cv(F ) ⩾ v(F ) − v(Fm).
From the latter inequality, we find γv(F ) ⩾ v(Fm). Since v(G− F ) > γv(F ), and by the
definition of the Gauss extension, it follows that v(Gm−Fm) ⩾ v(G−F ) > v(Fm) ⩾ v(F ).
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In particular, we have v(G−F ) > v(F ), whereby v(G) = v(F ), and v(Gm−Fm) > v(Fm),
whereby v(Gm) = v(Fm). We obtain that v(β) ⩾ v(F )− v(Fm), whence

min{iv(β) | 0 ⩽ i ⩽ m} = m ·min{0, v(β)} ⩾ m ·min{0, v(F )− v(Fm)}.

Since v(Fm) ⩾ v(F ), we get that min{0, v(F ) − v(Fm)} = v(F ) − v(Fm). Therefore
mM ⩾ v(F − G) + m(v(F ) − v(Fm)) − v(Fm). Since v(F − G) > γv(F ), we conclude
that mM > mCv(F ), whereby M > Cv(F ). By the definition of M , there exists a root
α ∈ Kalg of F with v(β − α) > Cv(F ).

6.2.6 Proposition. Let F ∈ K[X] be separable. Then for every G ∈ K[X] such that
deg(G) = deg(F ) and v(F −G) > γv(F ), we have

K[X]/(F ) ≃ K[X]/(G).

Proof. Set m = deg(F ) and let α1, . . . , αm ∈ Kalg denote the roots of F . Consider
1 ⩽ i ⩽ m. By Theorem 6.2.5, there exists a root βi ∈ Kalg of G such that

v(αi − βi) > Cv(F ) ⩾ Cv(αi/K).

Therefore for 1 ⩽ i < j ⩽ m, we have that

v(βi − βj) = v(αi − αj) ̸= ∞.

Hence β1, . . . , βm are all different. Since deg(G) = m, it follows that

G = lc(G) · (X − β1) · · · · · (X − βm),

and in particular G is separable.

Consider now 1 ⩽ i ⩽ m. By Theorem 2.2.14, we have that K(αi) ⊆ K(βi). We
claim that K(αi) = K(βi). Assume, for the sake of a contradiction, that K(αi) ⊊ K(βi).
Since G is separable, there exists a K(αi)-automorphism σ of Kalg such that σ(βi) ̸= βi.
Hence βj = σ(βi) for some j ∈ {1, . . . , n}∖ {i}. Since v ◦ σ = v, we obtain

v(αi − βj) = v(σ(αi − βi)) = v(αi − βi) > Cv(αi/K) ⩾ v(αi − αj).

Thus v(αj−βj) = v(αj−αi) ⩽ Cv(αi/K), which contradicts the way in which β1, . . . , βm
were obtained. Hence K(αi) = K(βi) for every 1 ⩽ i ⩽ n. Therefore

K[X]/(F ) ≃ K(α1)× · · · ×K(αm) = K(β1)× · · · ×K(βm) ≃ K[X]/(G).

6.2.7 Corollary. Let m, k ∈ N and let F ∈ K[X] ∩Σ2kK(X)
2
be separable of degree m.

Then there exists γ ∈ vK such that for every G ∈ K[X] of degree m with lc(G) ∈ Σ2kK
2

and v(F −G) > γ, we have G ∈ Σ2kK[X]
2
.

Proof. By Proposition 6.2.6, there exists γ ∈ vK such that, for every G ∈ K[X] of degree
m such that lc(G) ∈ Σ2kK

2 and v(F − G) > γ, we have that K[X]/(F ) ≃ K[X]/(G).

Then G ∈ Σ2kK[X]
2
, by Proposition 1.2.10.

6.2.8 Corollary. Assume that K is a non-archimedean local field and v is the valuation
determined by K. Let m ∈ N and F ∈ Σ4K[X]

2
separable of degree m. Then there exists

γ ∈ vK such that, for any G ∈ K[X] of degree m such that v(F − G) > γ, we have

G ∈ Σ4K[X]
2
.

Proof. Recall from Section 2.4 that Kv = Σ4K
v2. Then the statement follows directly

from Corollary 6.2.7.
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6.3 Pourchet’s global theorem

In this section we use the local-global principle from Chapter 5 and the instruments that
were developed in Sections 6.1 and 6.2 to retrieve the bound p(K(X)) ⩽ 5 for every
number field K contained in [Pou71]. Before proving Pourchet’s theorem, we develop a
few more tools. The following statement is an application of the Weak Approximation
(Theorem 2.1.9) to polynomials in one variable over a field.

6.3.1 Lemma. Let K be a field, let S be a finite set of pairwise independent valuations on
K and n ∈ N. For every v ∈ S, let γv ∈ vK and let gv ∈ Kv[X] be such that deg(gv) ⩽ n.
Then there exists g ∈ K[X] such that deg(g) ⩽ n and v(g − gv) > γv for every v ∈ S.

Proof. Consider v ∈ S. Let av0, . . . , avn ∈ Kv be such that gv = Σni=0 aviX
i. Recall from

Section 2.3 that K is dense in Kv with respect to the v-adic topology. Then for every
1 ⩽ i ⩽ n we may choose bvi ∈ K such that v(bvi − avi) > γv.

By applying Theorem 2.1.9 n+1 times, we find b0, . . . , bn ∈ K such that v(bi−bvi) > γv
for every v ∈ S and 0 ⩽ i ⩽ n. Set g = Σni=0 biX

i. Then for every v ∈ S we have that
v(g − gv) = min{v(bi − bvi) | 0 ⩽ i ⩽ n}, whereby v(g − gv) > γv, since v(bi − bvi) > γv
for every 0 ⩽ i ⩽ n.

Recall from Section 3.2 that given a real field K and an ordering P on K, we say
that P is archimedean if for every x ∈ K there exists n ∈ N such that x ⩽P n (that is,
n − x ∈ P ); this is equivalent to having O(P ) = K. We say that a field is archimedean
if it admits an archimedean ordering and is totally archimedean if it is real and if all of
its orderings are archimedean; clearly, this amounts to the whole field being the only real
valuation ring, and to having the whole field as real holomorphy ring.

6.3.2 Proposition. Let K be a totally archimedean field, f ∈ ΣK[X]
2
square-free and

g ∈ K[X] such that 2 deg(g) ⩽ deg(f). Then g2/f ∈ H(K(X)).

Proof. Set P = {p ∈ PK | K[X]/(p) is real}. Consider p ∈ P. Note that vp is real, since

K(K)vp = K[X]/(p). Since f ∈ ΣK[X]
2
, it follows by Proposition 2.4.2 that vp(f) ∈ 2Z.

Since f is square-free, we have that vp(f) ∈ {0, 1}. Therefore vp(f) = 0. This shows that
vp(g

2/f) ⩾ 0 for each p ∈ P. Since K is totally archimedean, the only real valuation
ring of K is K itself. It follows by Example 2.1.3 (d) that the only real valuation rings of
K(X) are Ov∞ and Ovp where p ∈ P. Therefore g2/f ∈ H(K(X)).

6.3.3 Lemma. Let K be a totally archimedean field. Let S be a finite set of valuations
on K, let f ∈ ΣK[X]2 be square-free and let g ∈ K[X] be such that 2 deg(g) ⩽ deg(f).
For every v ∈ S, let γv ∈ vK. Then there exists c ∈ K× such that f − c2g2 ∈ ΣK[X]2

and such that v(c− 1) > γv for every v ∈ S.

Proof. Without loss of generality, we may assume that γv ⩾ 0 for every v ∈ S. By
Theorem 2.1.9, there exists x ∈ K× such that v(x) > γv for every v ∈ S. Since K
is totally archimedean, we have that K = H(K). Hence there exists n ∈ N such that
n − x−2 ∈ ΣK2. Set y = nx2. Then y − 1 ∈ ΣK2 and v(y) > γv for every v ∈ S.
Consider k ∈ N+ and set ck = 1+yk/(1−yk) = 1/(1−yk). For every v ∈ S, we have that
v(ck − 1) = v(yk/(1 − yk)) = kv(y), hence v(ck − 1) > γv. In view of Proposition 6.3.2,
we have g2/((y − 1)2f) ∈ H(K(X)). By Theorem 3.2.18, there exists m ∈ N such
that m − g2/((y − 1)2f) ∈ ΣK(X)2. Thus m2 − g2/((y − 1)2f) ∈ ΣK(X)2, that is,

m2(y − 1)2 − g2/f ∈ ΣK(X)
2
. Since y − 1 ∈ ΣK2, we have that yi − 1 ∈ ΣK2 for all
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i ∈ N, and thus (y−1)(ym+1+ · · ·+y+1−m) ∈ ΣK2, whereby ym−1−m(y−1) ∈ ΣK2.
Hence (ym − 1)2 − (m(y − 1))2 ∈ ΣK2, thus (ym − 1)2 − g2/f ∈ ΣK(X)2. Therefore

c−2
m − g2/f ∈ ΣK(X)

2
, whence f − c2mg

2 ∈ ΣK(X)2.

6.3.4 Example. Let K be a real number field, let f ∈ ΣK[X]2 and g ∈ K[X]∖ {0}. Let
S be a set of dyadic Z-valuations on K. Then S is finite, by Theorem 2.2.4. For every
v ∈ S, let γv ∈ N. By Lemma 6.3.3, there exists c ∈ K× such that v(c− 1) > γv − 2v(g)
for every v ∈ S and f − c2g2 ∈ ΣK[X]2. Therefore f − c2g2 ∈ ΣK[X]2 and for every
v ∈ S we have v(c2g2 − g2) = v(c+ 1) + v(c− 1) + 2v(g) > γv.

Finally, we retrieve Pourchet’s upper bound for p(K(X)) where K is a number field.
The following statements were originally proven in [Pou71, Théorème 2, Corollaire 4].

6.3.5 Lemma. Let K be a real number field and let f ∈ ΣK[X]2 be square-free. Then

there exists h ∈ K[X] such that f − h2 ∈ ΣK[X]2 and f − h2 ∈ Σ4K
v[X]

2
for every

dyadic valuation v on K.

Proof. Set ϕ = ⟨⟨−1,−1⟩⟩K . Since f ∈ ΣK[X]
2
, we have that deg(f) is even. Let S be the

set of dyadic Z-valuations on K. Since K/Q is finite, it follows by Theorem 2.2.4 that S is
finite. Consider v ∈ S. By Corollary 6.1.9, there exists gv ∈ Kv[X] with deg(f−g2v) = 2n
such that f − g2v ∈ DKv [X](ϕ). Let hv ∈ Kv[X] be such that (f − g2v)/h

2
v is square-free in

Kv[X], and thus separable. By Corollary 6.2.8, there exists γv ∈ Z such that, for every
G ∈ Kv[X] such that deg(G) = deg(f − g2v)− 2 deg(hv) and v((f − g2v)/h

2
v −G) > γv, we

have G ∈ DKv[X](ϕ).

By Lemma 6.3.1, there exists g ∈ K[X] such that, for every v ∈ S, we have

v(gv − g) > max{v(2g), γv − v(2g) + 2v(hv)}.

Consider v ∈ S. By the choice of g, we have that v(gv − g) > γv − v(2g)+ 2v(hv) and
v(gv + g) = v(2g). Therefore

v((f − g2)/h2v − (f − g2v)/h
2
v) = v(g2v − g2)− 2v(hv)

= v(gv − g) + v(gv + g)− 2v(hv)

> γv − v(2g) + v(2g) + 2v(hv)− 2v(hv) = γv.

By the choice of γv, we obtain that (f−g2)/h2v ∈ DKv[X](ϕ), whence f−g2 ∈ DKv [X](ϕ).

If g = 0, then since f ∈ ΣK[X]2, we may take h = 0 to obtain the claim. Suppose
g ̸= 0. Then, by Lemma 6.3.3, there exists c ∈ K× such that f − c2g2 ∈ ΣK[X]2 and
v(c2g2−g2) > γv+2v(hv) for all v ∈ S. Set h = cg. As v((f−g2)/h2v−(f−h2)/h2v) > γv,
and again by the choice of γv, we have that (f − h2)/h2v ∈ DKv [X](ϕ) for every v ∈ S.
Thus f − h2 ∈ DKv [X](ϕ) for every dyadic Z-valuation v of K.

6.3.6 Theorem (Pourchet). Let K be a number field, f ∈ ΣK[X]
2
. Then f ∈ Σ5K[X]

2
.

Proof. If K is nonreal, then s(K(X)) = s(K) ⩽ 4, by Corollary 2.4.16. Therefore
p(K(X)) ⩽ s(K) + 1 ⩽ 5, by Proposition 1.2.4. Assume that K is real. For every

g ∈ K[X] such that g2 divides f in K[X], we have that f ∈ Σ5K[X]
2
if and only if

f/g2 ∈ Σ5K[X]
2
. Thus we may assume that f is square-free. By Lemma 6.3.5, there

exists h ∈ K[X] such that f − h2 ∈ ΣK[X]
2
and f − h2 ∈ Σ4K

v[X]
2
for any dyadic Z-

valuation v onK. By Corollary 5.3.5 we get f−h2 ∈ Σ4K[X]
2
, whence f ∈ Σ5K[X]

2
.
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6.4 Variations on root continuity

In this section we generalise the techniques developed in the second part of Section 6.2
to arbitrary quadratic forms. As in Section 6.2, we fix a henselian valued field (K, v) of
characteristic different from 2 and an algebraic closure Kalg of K. We denote the unique
extension of v to Kalg again by v.

6.4.1 Corollary. Let F ∈ K[X] be separable and let ϕ be an anisotropic quadratic form
over K such that ϕK[X]/(p) is isotropic for every irreducible factor p of F in K[X]. Then
there exists γ ∈ vK such that for each G ∈ K[X] with deg(G) = deg(F ) and v(F−G) > γ,
and for every irreducible factor p ∈ K[X] of G, we have that ϕK[X]/(p) is isotropic.

Proof. Set m = deg(F ) and γ = γv(F ). We claim that γ satisfies the desired properties.
Consider G ∈ K[X] of degree m such that v(F −G) > γ. Consider an irreducible factor
p of G in K[X] and a root β ∈ Kalg of p. By Theorem 6.2.5, there exists a root α ∈ Kalg

of F such that v(α − β) > Cv(F ). Thus v(α − β) > Cv(α/K), by Proposition 6.2.4. It
follows by Theorem 2.2.14 that K(α, β) is purely inseparable over K(β). As char(K) ̸= 2,
we have that [K(α, β) : K(β)] is odd. Since ϕK(α) is isotropic, it follows that ϕK(α,β) is
isotropic. Hence ϕK(β) is isotropic, by Theorem 1.1.9.

6.4.2 Corollary. Let ϕ be an anisotropic Pfister form over K and let F ∈ DK[X](ϕ) be
square-free in K[X]. Then there exists γ ∈ vK such that, for every G ∈ K[X] such that
deg(G) = deg(F ), lc(G) ∈ DK(ϕ) and v(F −G) > γ, we have that G ∈ DK[X](ϕ).

Proof. By Theorem 1.1.24, we have that lc(F ) ∈ DK(ϕ) and that ϕK[X]/(p) is isotropic
for any irreducible factor p of F . By Corollary 6.4.1, there exists γ ∈ vK such that, for any
G ∈ K[X] with deg(F ) = deg(G) and v(F −G) > γ, and for any irreducible factor p of G,
we have that ϕK[X]/(p) is isotropic. By Theorem 1.1.24, we conclude for every G ∈ K[X]
with deg(F ) = deg(G), lc(G) ∈ DK(ϕ) and v(F −G) > γ, that G ∈ DK[X](ϕ).

6.4.3 Example. We retrieve Corollary 6.2.8. Assume that v is a Z-valuation and K is
a non-archimedean local field that is complete with respect to v. Set ϕ = ⟨⟨−1,−1⟩⟩K
and recall from Section 4.1 that ϕ is universal. Let F ∈ DK[X](ϕ) be square-free. By
Corollary 6.4.2, there exists γ ∈ Z such that, for anyG ∈ K[X] such that deg(F ) = deg(G)
and v(F −G) > γ, we have that G ∈ DK[X](ϕ).
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Bounding the Pythagoras number by
2n + 1

In this chapter we provide a sufficient condition for a field K to satisfy p(K) ⩽ 2n+1 for
a given n ∈ N, and we show that said condition applies to several families of fields. After
developing the new setup in the first two sections, we recover two upper bounds mentioned
in the introduction: the one by Becher, Grimm and Van Geel for the Pythagoras number
of a function field in one variable over R((t)) and Y. Hu’s one for the Pythagoras number
of a finite field extension of R((t0, t1)).

Our method relies on the presence of a local-global principle for certain quadratic
forms. As such, this is a fairly standard approach. Indeed, let n ∈ N and let F be a field.
We have already seen that, given a ∈ ΣF 2, the question whether a ∈ Σ2n+1F

2 can be
reformulated in terms of isotropy of the (2n+2)-ary quadratic form Σ2n+1

i=1 X2
i − aX2

0 . In
our approach, however, we use a valuation theoretic local-global principle to characterise
the sums of 2n squares (rather than the sums of 2n + 1 squares) while aiming for the
bound p(F ) ⩽ 2n + 1. This is reminiscent of Pop’s and Pourchet’s methods described in
Chapter 4 and Chapter 6, where a description of the sums of 4 squares in the considered
fields via local conditions is essential to write certain elements as sums of 5 squares.
We focus thus on the quadratic forms Σ2n

i=1X
2
i − aX2

0 with a ∈ (ΣF 2)×, which are in
particular Pfister neighbors. Due to the direct link of such forms to Galois cohomology
classes, a local-global principle for such forms may be easier to establish than for the
corresponding quadratic forms of dimension 2n+2. As a matter of fact, function fields in
one variable F/Q provide an example where a local-global criterion for sums of 4 squares
in F is available (see Theorem 4.2.3), while a similar local-global criterion for being a sum
of 5 squares is not known. Our method is elementary, up to the local-global ingredient.

7.1 Square-effective rings

Let F denote a field of characteristic different from 2. Our method for obtaining the
bound p(F ) ⩽ 2n + 1 for n ∈ N depends on the presence of a certain subring H of F
that provides a characterisation of Σ2nF

2. In this section we discuss which properties are
required by such a ring.

Let H be a subring of F having F as its field of fractions. We set

p∗(H) = inf{k ∈ N | H× ∩ ΣF 2 ⊆ ΣkF
2} ∈ N ∪ {∞} .

Note that if F is nonreal, then −1 ∈ H× ∩ ΣF 2, therefore s(F ) ⩽ p∗(H).

7.1.1 Proposition. Assume that ΣF 2 ⊆ F 2 · ((1 + ΣF 2) ∩ Jac(H)). Then

p(F ) ⩽ p∗(H) + 1 .

83
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Proof. We set p = p∗(H). Consider g ∈ ΣF 2. By the hypothesis, there exist c ∈ F and
f ∈ (1 +ΣF 2) ∩ Jac(H) such that g = c2f . Since f ∈ Jac(H), we have 1− 4f ∈ H×, and
since f ∈ 1+ΣF 2, we have 4f−1 ∈ 3+4ΣF 2 ⊆ ΣF 2. Hence 4f−1 ∈ H×∩ΣF 2 ⊆ ΣpF

2.
We conclude that

g − ( 12c)
2 = ( 12c)

2(4f − 1) ∈ ΣpF
2 ,

whereby g ∈ Σp+1F
2. This shows that ΣF 2 = Σp+1F

2.

We say that H is square-effective if, for every f1, f2 ∈ F , there exist g1, g2 ∈ F such
that f21 + f22 = g21 + g22 and f1H + f2H = g1H ⊇ g2H. Recall from Section 3.1 that a
Bézout domain is a domain in which every finitely generated ideal is principal, and that
Bézout domains are integrally closed.

7.1.2 Proposition. Assume that H is square-effective. Let k ∈ N+. Then:

(1) H is a Bézout domain.

(2) For every f1, . . . , fk ∈ F , there exist g1, . . . , gk ∈ F such that
f21 + . . .+ f2k = g21 + . . .+ g2k and f1H+ . . .+ fkH = g1H ⊇ g2H ⊇ · · · ⊇ gkH.

(3) ΣkF
2 = F 2 · (1 + Σk−1H2).

(4) If 1 + Σk−1H2 ⊆ H×, then H ∩ ΣkF
2 = ΣkH2.

(5) If 2 ∈ H×, then for every m ∈ Max(H), we have H ∩ ΣkF
2 ⊆ ΣkH2 +m.

Proof. (1) Since H is square-effective, any ideal of H generated by two elements is
principal. Therefore any finitely generated ideal of H is principal.

(2) We prove the statement by induction on k. For k ⩽ 1 there is nothing to show.
Assume now that the statement holds for some k ⩾ 1. In order to prove the statement for
k+1, we consider f0, . . . , fk ∈ H. By the induction hypothesis, there exist h1, . . . , hk ∈ F
such that f21 + . . . + f2k = h21 + . . . + h2k and f1H + . . . + fkH = h1H ⊇ · · · ⊇ hkH. It
follows that f0H + . . . + fkH = f0H + h1H. As H is square-effective, we may choose
g0, h ∈ F such that f20 + h21 = g20 + h2 and f0H + h1H = g0H ⊇ hH. Then we have
f20 + . . .+f

2
k = g20+h

2+h22+ . . .+h
2
k and f0H+ . . .+fkH = g0H ⊇ hH+h2H+ . . .+hkH.

Again by the induction hypothesis, there exist g1, . . . , gk ∈ F for which we have that
h2+h22+. . .+h

2
k = g21+. . .+g

2
k and hH+h2H+. . .+hkH = g1H ⊇ g2H ⊇ · · · ⊇ gkH. We

conclude that f20 + . . .+f
2
k = g20+ . . .+g

2
k and f0H+ . . .+fkH = g0H ⊇ g1H ⊇ · · · ⊇ gkH.

(3) By (2), we have ΣkF
2 ⊆ F 2 · (1+Σk−1H2). The opposite inclusion holds trivially.

(4) Let f ∈ H ∩ ΣkF
2. By (3), we obtain that f = x2 · h for certain x ∈ F and

h ∈ 1 + Σk−1H2. If h ∈ H×, then since x is a root of X2 − fh−1 and H is integrally
closed, we get that x ∈ H, whereby f ∈ H2 · (1 + Σk−1H2) ⊆ ΣkH2. Therefore, if
(1 + Σk−1H2) ⊆ H×, then H ∩ ΣkF

2 = ΣkH2.

(5) Let m ∈ Max(H). Since H is square-effective, so is Hm. Assume first s(H/m) ⩾ k.
Then 1 + Σk−1H2

m ⊆ H×
m, since H/m ≃ Hm/mHm. By Proposition 7.1.2 (4), we obtain

Hm∩ΣkF
2 = ΣkH2

m. Again using that H/m ≃ Hm/mHm, we get H∩ΣkF
2 ⊆ ΣkH2+m.

Assume now that k > s(H/m). Then −1 ∈ Σk−1H2 + m. Using this and the identity

x =
(
x+1
2

)2
+ (−1)

(
x−1
2

)2
for x ∈ H, we conclude that H ⊆ ΣkH2 +m.

7.1.3 Theorem. Assume that H is square-effective and (1 + ΣF 2) ∩ Jac(H) ̸= ∅. Then

p(F ) ⩽ p∗(H) + 1 .
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Proof. Set M(H) = (1 + ΣF 2) ∩ Jac(H). If 0 ∈ M(H), then F is nonreal, and therefore
p(F ) ⩽ s(F ) + 1 ⩽ p∗(H) + 1. Assume now that 0 /∈ M(H). Since M(H) ̸= ∅ by
the hypothesis, we may fix an element g ∈ M(H). Then g2 ∈ F×2 ∩ M(H), whereby
we find F 2 = F 2g2 ⊆ F 2 · M(H). Since M(H) · (1 + ΣH2) ⊆ M(H), we conclude that
F 2·(1+ΣH2) ⊆ F 2·M(H)·(1+ΣH2) ⊆ F 2·M(H). By Proposition 7.1.2 (3), we obtain that
ΣF 2 ⊆ F 2 ·(1+ΣH2) ⊆ F 2 ·M(H). Now the statement follows from Proposition 7.1.1.

We will mainly consider the condition that H is square-effective in combination with
the condition that 1 +H2 ⊆ H×.

7.1.4 Lemma. Assume that 1 +H2 ⊆ H×. Then f2 + g2 ∈ H× for every f, g ∈ H with
fH+ gH = H.

Proof. Consider f, g ∈ H such that f2+g2 /∈ H×. Then f2+g2 ∈ m for some m ∈ Max(H).
If f /∈ m, then there exists h ∈ H such that fh ≡ 1 mod m, whereby we obtain that
1+ (gh)2 ≡ h2(f2 + g2) ≡ 0 mod m, which contradicts the hypothesis that 1+H2 ⊆ H×.
Therefore f ∈ m, and similarly we obtain that g ∈ m. Hence fH + gH ⊆ m and in
particular fH+ gH ̸= H.

7.1.5 Proposition. The following are equivalent:

(i) H is square-effective and 1 +H2 ⊆ H×.

(ii) H is a Bézout domain and H× ∩ (H2 +H2) = H×2(1 +H2).

Proof. (i ⇒ ii) Condition (i) evidently implies that H×2(1 + H2) ⊆ H× ∩ (H2 + H2)
and thus, by Proposition 7.1.2, that H is a Bézout domain. It remains to show that
H× ∩ (H2 + H2) ⊆ H×2(1 + H2). Consider f ∈ H× ∩ (H2 + H2). Since H is square-
effective, there exist g1, g2 ∈ F such that f = g21 + g

2
2 and g1H ⊇ g2H. We then have that

f = g21(1+ (g−1
1 g2)

2), and g−1
1 g2 ∈ H. Since 1+H2 ⊆ H×, we have that f ∈ g21H× ∩H×,

whereby g21 ∈ H×. Since H is integrally closed, we conclude that g1 ∈ H×, whereby
f = g21(1 + (g−1

1 g2)
2) ∈ H×2 · (1 +H2).

(ii ⇒ i) Assume that H is a Bézout domain and H× ∩ (H2 + H2) = H×2(1 + H2).
Then clearly 1+H2 ⊆ H×. It remains to show that H is square-effective. To this purpose,
consider f1, f2 ∈ F , not both equal to zero. Since H is a Bézout domain and its fraction
field is F , there exists g ∈ F× such that f1H + f2H = gH. Then f1g

−1, f2g
−1 ∈ H

and H = f1g
−1H + f2g

−1H. Since 1 + H2 ⊆ H×, it follows by Lemma 7.1.4 that
f21 g

−2 + f22 g
−2 ∈ H×. Since H× ∩ (H2 +H2) ⊆ H×2(1 +H2), we may choose l1 ∈ H×,

l2 ∈ H such that f21 g
−2 + f22 g

−2 = l21 + l22. Letting g1 = gl1 and g2 = gl2, we obtain that
f21 +f

2
2 = g21+g

2
2 and f1H+f2H = g1H ⊇ g2H. This shows that H is square-effective.

7.1.6 Lemma. Assume that 1 + H2 ⊆ H×. Let M be a finite subset of Max(H) and
f1, f2 ∈ H such that f21 + f22 /∈

⋃
M. Then there exist g1 ∈ H ∖

⋃
M and g2 ∈ H such

that f21 + f22 = g21 + g22.

Proof. Consider G1 = (X2 − 1)f1 + 2Xf2 and G2 = 2Xf1 + (1 − X2)f2 in H[X] and
observe that G2

1 + G2
2 = (1 + X2)2 · (f21 + f22 ). Consider m ∈ M. Since 1 + H2 ⊆ H×,

we have char(H/m) ̸= 2, whereby |H/m| > 2. Hence there exists xm ∈ H such that
G1(xm) /∈ m. Since M is finite, by the Chinese Remainder Theorem, there exists x ∈ H
with x ≡ xm mod m for all m ∈ M , whereby we find G1(x) ∈ H ∖

⋃
M. We now set

gi = (1 + x2)−1Gi(x) for i = 1, 2 to obtain the desired conclusion.
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7.1.7 Proposition. Assume that H is semilocal and 1 +H2 ⊆ H×. Then

H× ∩ (H2 +H2) = H×2(1 +H2) .

Proof. Let f1, f2 ∈ H with f21 + f22 ∈ H×. We have H ∖
⋃

Max(H) = H×, and since
by the hypothesis Max(H) is finite, we can apply Lemma 7.1.6 to choose g1 ∈ H× and
g2 ∈ H such that f21 + f22 = g21 + g22 = g21(1 + (g−1

1 g2)
2) ∈ H×2 · (1 + H2). This shows

that H× ∩ (H2 + H2) ⊆ H×2 · (1 + H2). The opposite inclusion is obvious, because
1 +H2 ⊆ H×.

7.1.8 Corollary. Assume that H is a semilocal Bézout domain with 1+H2 ⊆ H×. Then
H is square-effective.

Proof. This follows by Proposition 7.1.7 and Proposition 7.1.5.

7.2 Semilocal Bézout rings

Let n ∈ N+ and let F be a field of characteristic different from 2. In this section we present
a technique to search for a subring H of F satisfying the hypotheses of Corollary 7.1.8
and Theorem 7.1.3 and such that p∗(H) ⩽ 2n, so as to show that p(F ) ⩽ 2n + 1.

We call a semilocal Bézout domain H square-effective of order n if

1 + Σ2n−1H2 ⊆ H× and (1 + Σ2nH2) ∩ Jac(H) ̸= ∅ .

By Corollary 7.1.8, the first of the two conditions implies that H is square-effective. We
can reformulate each of the two conditions in terms of levels of residue fields.

7.2.1 Proposition. Let H be a semilocal Bézout ring of F . Let S ⊆ Ω(F ) be such that
H = HS. Then H is square-effective of order n if and only if the residue field of every
O ∈ S has level n.

Proof. Note that such S exists and is finite, by Proposition 3.1.8. Then the statement
follows directly from Lemma 2.4.1.

We say that F is n-effective if F has a semilocal Bézout ring that is square-effective
of order n and such that p∗(H) ⩽ 2n.

7.2.2 Example. Note that F is square-effective of order n if and only if s(F ) = 2n.
Therefore, if s(F ) = p(F ) = 2n, then F is trivially n-effective.

7.2.3 Proposition. Let n ∈ N+. If F is n-effective, then 2n ⩽ p(F ) ⩽ 2n + 1.

Proof. Let H be a semilocal Bézout ring of F which is square-effective of order n and such
that p∗(H) ⩽ 2n. Then we have 1+H2 ⊆ 1+Σ2n−1H2 ⊆ H× and (1+Σ2nH2)∩Jac(H) ̸= ∅.
Hence p(F ) ⩽ p∗(H) + 1 ⩽ 2n+1, by Theorem 7.1.3. If we had Σ2nH2 ⊆ Σ2n−1H2, then
1+Σ2nH2 ⊆ 1+Σ2n−1H2 ⊆ H×, which contradicts (1+Σ2nH2)∩Jac(H) ̸= ∅. Thus there
exists h ∈ Σ2nH2∖Σ2n−1H2. By Proposition 7.1.2 (4), we have H∩Σ2n−1F

2 = Σ2n−1H2.
Hence h /∈ Σ2n−1F

2, whereby p(F ) ⩾ 2n.

7.2.4 Corollary. Let n ∈ N+. If F is nonreal and n-effective, then s(F ) = 2n.

Proof. Assume that F is nonreal and n-effective. Then s(F ) ⩽ p(F ) ⩽ s(F ) + 1, by
Proposition 1.2.4, and 2n ⩽ p(F ) ⩽ 2n +1, by Proposition 7.2.3. Since s(F ) is a 2-power
and n ⩾ 1, the statement follows.
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Let k ∈ N+ and let H be a subring of F . We say that H characterises sums of k
squares in F if{

h ∈ H× ∩ ΣF 2 | h+m ∈ Σk(H/m)
2
for any m ∈ Max(H)

}
⊆ ΣkF

2 .

This condition allows one to check whether a unit in H that is a sum of squares in F is
a sum of k squares in F by inspecting residues modulo maximal ideals.

7.2.5 Example. Let H be a subring of F with fraction field F . Then for any k ∈ N+ with
p∗(H) ⩽ k, we have that H characterises sums of k squares in F .

7.2.6 Proposition. Let n ∈ N+. Let R be a semilocal Bézout ring of F that characterises
sums of 2n squares in F . For every m ∈ Max(R), let H(m) be a semilocal Bézout ring of
R/m that is square-effective of order n and such that p∗(H(m)) ⩽ 2n. Then

H = {f ∈ R | f +m ∈ H(m) for all m ∈ Max(R)}

is a semilocal Bézout ring of F that is square-effective of order n, and p∗(H) ⩽ 2n.

Proof. Recall that

R =
⋂

m∈Max(R)

Rm.

Similarly, for each m ∈ Max(R), we have

H(m) =
⋂

m′∈Max(H(m))

H(m)m′ .

Fix m ∈ Max(R) and m′ ∈ Max(H(m)). It follows by [Kap74, Theorem 107] that
Rm is a valuation ring of F with residue field R/m, and that (H(m))m′ is a valuation
ring of R/m with residue field H(m)/m′. Since H(m) is square-effective of order n, we
have that s(H(m)/m′) = 2n, by Proposition 7.2.1. Let πm : Rm → R/m be the residue
homomorphism of Rm. For a valuation ring O of R/m, we have that π−1

m (O) is a valuation
ring of F having the same residue field as O; see e.g. [EP05, p. 45]. Thus π−1

m (H(m)) is
the intersection of finitely many valuation rings of F whose residue fields have level 2n.

Since R is semilocal, we obtain that H is the intersection of finitely many valuation
rings of F with residue field of level 2n. Thus H is a semilocal Bézout ring of F , by
Proposition 3.1.8, and it is square-effective of order n, by Proposition 7.2.1.

Let f ∈ H× ∩ ΣF 2. For every m ∈ Max(R), it follows by Proposition 7.1.2 (5) that

f +m ∈ Σ(R/m)
2
. By definition of H we have that f +m ∈ H(m)× ∩Σ(R/m)

2
, and since

p∗(H(m)) ⩽ 2n we obtain that f + m ∈ Σ2n(R/m)
2
. Since R characterises sums of 2n

squares in F , we find f ∈ Σ2nF
2. Thus H× ∩ ΣF 2 ⊆ Σ2nF

2, whereby p∗(H) ⩽ 2n.

Let V be a set of valuations on F . We define

HV =
⋂
v∈V

Ov .

For k ∈ N+, we say that V characterises sums of k squares in F if the ring HV

characterises sums of k squares in F .

7.2.7 Theorem. Let n ∈ N+. If there exists a nonempty finite set V of valuations on
F that characterises sums of 2n squares in F and such that Fv is n-effective for every
v ∈ V , then F is n-effective.
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Proof. Assume that V is such a set of valuations on F . Then HV is a semilocal Bézout
ring of F that characterises sums of 2n squares in F . For every v ∈ V we fix a semilocal
Bézout ring Hv of Fv that is square-effective of order n. Set R = HV . For m ∈ Max(R),
it follows by [Kap74, Theorem 107] that m = mv ∩ R for some v ∈ V , and we set
H(m) = Hv for such a v ∈ V . In this setting, we obtain by Proposition 7.2.6 that the
subring H constructed there is square-effective of order n and that p∗(H) ⩽ 2n. Hence F
is n-effective.

Recall from Section 2.1 that we denote by VF the set of Z-valuations on F .

7.2.8 Proposition. Let k ∈ N with k ⩾ 2 and let V be a finite set of Z-valuations on F
such that s(Fv) ⩾ k for all v ∈ V . Then V characterises sums of k squares if and only
if ΣkF

2 = ΣF 2 ∩
⋂
v∈V ΣkF

v2.

Proof. Set S = {x ∈ H×
V ∩ ΣF 2 | x+mv ∈ Σk(Fv)

2
for every v ∈ V } and

T = ΣF 2 ∩
⋂
v∈V

ΣkF
v2.

Note that ΣkF
2 ⊆ T . Hence we have to show that S ⊆ ΣkF

2 if and only if T ⊆ ΣkF
2.

We claim that T = F 2 · S. The statement then follows trivially from this equality.

Consider v ∈ V . Recall that v extends uniquely to a Z-valuation v̂ on F v with
F v v̂ = Fv. We define Sv = {x ∈ O×

v̂ ∩ ΣF v2 | x+mv̂ ∈ Σk(Fv)
2}. Since s(Fv) ⩾ k ⩾ 2,

we obtain by Proposition 7.2.1 that 1 + Σk−1Ov̂
2 ⊆ O×

v̂ and that v̂(2) = 0. It follows by

Proposition 7.1.2 (3) and (5) that ΣkF
v2 ⊆ F v2Sv. As F v is henselian with respect to v̂

and v̂(2) = 0, we also have the converse inclusion. Hence ΣkF
v2 = F v2Sv. This implies

that F 2(ΣF 2∩Sv) ⊆ ΣF 2∩ΣkF
v2. Using that v̂F v = vF and F v v̂ = Fv, we also obtain

the opposite inclusion. Therefore we have ΣF 2 ∩ ΣkF
v2 = F 2(ΣF 2 ∩ Sv). Hence

T =
⋂
v∈V

(ΣF 2 ∩ ΣkF
v2) =

⋂
v∈V

F 2(ΣF 2 ∩ Sv).

Observe that S = ΣF 2 ∩
⋂
v∈V Sv ⊆

⋂
v∈V F

2(ΣF 2 ∩ Sv) = T . Hence it remains to be
shown that T ⊆ F 2 · S. To this purpose, consider f ∈ T ∖ {0}. For every v ∈ V we fix
gv ∈ F and hv ∈ Sv such that f = g2vhv. Since V is a finite set of Z-valuations on F , which
are necessarily pairwise independent, we can apply the Approximation Theorem 2.1.9 to
obtain an element g ∈ F× such that v(g − gv) > v(gv) for every v ∈ V . It follows that
f/g2 ∈

⋂
v∈V Sv. Hence f ∈ F 2(ΣF 2 ∩

⋂
v∈V Sv) = F 2 · S.

We say that a class C of quadratic forms over F satisfies the local-global principle with
respect to VF if, for every form q ∈ C that is isotropic over F v for every v ∈ VF , q is
isotropic over F .

7.2.9 Corollary. Let k ∈ N with k ⩾ 2. Suppose that the quadratic forms over F of the
shape Σki=1X

2
i − aX2

0 with a ∈ F× over F satisfy the local-global principle with respect to
VF and that the set V = {v ∈ VF | p(F v) > k} is finite. Then V characterises sums of k
squares in F .

Proof. It follows from the hypotheses that

ΣkF
2 = ΣF 2 ∩

⋂
v∈VF

ΣkF
v2 = ΣF 2 ∩

⋂
v∈V

ΣkF
v2 .

For any v ∈ V , we have k < p(F v) ⩽ s(Fv)+1, whereby s(Fv) ⩾ k. Hence the statement
follows from Proposition 7.2.8.
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7.3 Function fields in one variable

The tools developed in the previous sections can be used to compute the Pythagoras
numbers of certain function fields in one variable over k((t)) for some base fields k. Note
that any field k is relatively algebraically closed in k((t)), and in particular any irreducible
polynomial in k[X] remains irreducible in k((t))[X].

7.3.1 Proposition. Let n ∈ N. Let k be a real field such that p(L) ⩽ 2n for any finite field

extension L/k. Let h ∈ k[X] be irreducible and such that h ∈ Σk(X)
2 ∖ Σ2n+1−1k(X)

2
.

Then
p
(
k((t))(X)

(√
(tX − 1)h

))
= 2n+1 + 1 .

Proof. We set K = k((t)), f = (tX − 1)h ∈ K[X] and F = K(X)(
√
f). Let K ′ and k′

denote the root fields of h over K and over k, respectively. Observe that K ′/K and k′/k
are finite extensions, and that the t-adic valuation on K extends to a Z-valuation on K ′

with residue field k′, and hence K ′ can be identified with k′((t)). In particular we obtain

K ′× = (k′×∪tk′×)·K ′×2. As p(k′) ⩽ 2n, it follows that ΣK ′2 = K ′×2(Σ2nK
′2∪tΣ2nK

′2).

In particular |(ΣK ′2)×/(Σ2nK
′2)×| ⩽ 2. Set m = n+ 1. By [BVG09, Theorem 3.10], we

obtain that |(ΣF 2)×/(Σ2mF
2)×| ⩽ 2.

Consider the Gauss extension to K(X) of the t-adic valuation on K with respect
to the variable X, and denote by v an extension of this valuation to F . Note that
vK(X) = vK = Z and thatK(X)v can be naturally identified with k(X). Then f

v
= −h,

whereby Fv = k(X)(
√
−h). As −h /∈ k(X)2, we have [Fv : K(X)v] = 2 = [F : K(X)].

By Corollary 2.2.7, it follows that vF = vK(X) = vK = Z. Since k(X) is real and

h ∈ Σ2mk(X)
2∖Σ2m−1k(X)

2
, we obtain by [Scha85, Theorem 4.4.3 (i)] that s(Fv) = 2m.

Since vF = Z, it follows by Proposition 2.4.2 that v(Σ2mF
2) ⊆ 2Z. As tX ∈ ΣF 2 and

v(tX) = 1, we obtain that p(F ) > 2m and O×
v ∩tX Σ2mF

2 = ∅. Since |ΣF 2/Σ2mF
2| ⩽ 2,

we conclude that ΣF 2 = Σ2mF
2 ∪ tX Σ2mF

2 and ΣF 2 ∩ O×
v = Σ2nF

2. Hence Ov is a
Bézout ring of F such that p∗(Ov) ⩽ 2m.

Since s(Fv) = 2m, it follows by Proposition 7.2.1 that Ov is square-effective of order
m. Hence F is m-effective, whereby p(F ) ⩽ 2m + 1, in view of Proposition 7.2.3. This
proves that p(F ) = 2m + 1.

7.3.2 Example. Let F denote the function field of the elliptic curve

Y 2 = (tX − 1)(X2 + 1)

over R((t)). By applying Proposition 7.3.1 to k = R and h = X2 + 1, we obtain a new
argument that

p(F ) = 3 .

7.3.3 Remark. Let F as in Example 7.3.2. The observation that 3 ⩽ p(F ) ⩽ 4 goes back
to [TVGY06, Example 3.10], and the equality p(F ) = 3 to [BGVG14, Corollary 6.13]. The
proof in [BGVG14] relies on a deep local-global principle from [CTPS12, Theorem 3.1],
which is based on field patching and which uses further results from algebraic geometry,
such as embedded resolutions of singularities. In Example 7.3.2, we have retrieved the
equality p(F ) = 3 from our new method and results from [BVG09]. This approach uses
no algebraic geometry, and only Milnor’s Exact Sequence for the rational function field
R((t))(X) as a local-global ingredient (via the proof of [BVG09, Theorem 3.10]).

7.3.4 Example. As mentioned in the introduction, it was shown in [CEP71] that the
polynomial M(X,Y ) = X2Y 4 + X4Y 2 − 3X2Y 2 + 1 ∈ R[X,Y ] is a sum of 4 squares



90 CHAPTER 7. BOUNDING THE PYTHAGORAS NUMBER BY 2n + 1

but not a sum of 3 squares in R(X,Y ). We consider the field K = R(Y )((t)). Then

M(X,Y ) ∈ Σ4K(X)
2 ∖ Σ3K(X)

2
. Furthermore, M(X,Y ) is irreducible in R(Y )[X],

hence also in K[X]. We now consider the field

F = K(X)
(√

(tX − 1)M(X,Y )
)
.

By Proposition 7.3.1, we obtain that p(F ) = 5.

7.3.5 Remark. Let F be as in Example 7.3.2. The observation that p(F ) ⩽ 5 is not
present in the literature, but could be obtained directly from the local-global principle in
[CTPS12, Theorem 3.1]. In Example 7.3.4 we obtained the inequality using only Milnor’s
Exact Sequence for the rational function field R(Y )((t))(X) as a local-global ingredient
(via the proof of [BVG09, Theorem 3.10]), thus by much more elementary means.

Note that Example 7.3.2 and Example 7.3.4 imply that the bounds in Proposition 7.3.7
and Corollary 7.3.10 are sharp for n = 1 and n = 2. After these examples of particular
function fields in one variable, we now turn to consider base fields where our method gives
us a bound on the Pythagoras numbers of all function fields in one variable.

Let n ∈ N and let K be a field. We call K a Pn-field if p(K(X)) ⩽ 2n+1 and if every
function field in one variable F/K with p(F ) > 2n+1 is (n+ 1)-effective.

7.3.6 Example. If p(E) ⩽ 2n+1 holds for every function field in one variable E/K, then
K is a Pn-field. This applies in particular to the following situations:

(i) To K = R(X1, . . . , Xn), by [Pfi67, Theorem 1]; see also [Lam05, Theorem XI.4.10].
For n = 0 this result goes back to [Wi34].

(ii) More generally, if K(
√
−1) is a Cn-field (that is, in terms of Tsen-Lang theory, if

every homogeneous polynomial of degree d ∈ N+ in at least dn + 1 variables has a
nontrivial zero; see e.g. [Scha85, §2.15]). Indeed, this implies for any function field
in one variable F/K that F (

√
−1) is a Cn+1-field. In particular, every (n+ 1)-fold

Pfister form over F represents all elements of F (
√
−1), whereby we obtain that

p(F ) ⩽ 2n+1, by [Lam05, Corollary XI.4.9].

(iii) For n ⩾ 2 to K = Q(X1, . . . , Xn−1). This follows from [CTJ91, Theorem 4.1.2 (c)],
which relies on two deep facts [CTJ91, Conjectures 2.1 and 2.5] proven later in
[Jan16, Theorem 0.1] and [OVV07, Theorem 4.1].

The interest of the notion of Pn-field lies in the following consequence.

7.3.7 Proposition. Let n ∈ N and let K be a Pn-field. Then p(F ) ⩽ 2n+1 + 1 for every
function field in one variable F/K.

Proof. By Proposition 7.2.3, this follows from the definition of Pn-field.

We will now show for n ∈ N that the class of Pn-fields is stable under passage from
a field K to the formal power series field K((t)). To show this, we will use the methods
developed in the previous sections.

A function field in one variable F/K is called ruled if there exist θ ∈ F and a finite
field extension K ′/K such that F = K ′(θ), and nonruled otherwise.

7.3.8 Proposition. Let m ∈ N+. Let K be a field such that p(K(X)) ⩽ 2m. Let F/K((t))
be a function field in one variable and let v ∈ VF . Then K ⊆ Ov, and if p(F v) > 2m,
then Fv/K is a nonruled function field in one variable.
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Proof. If K((t)) ⊆ Ov, then p(F
v) ⩽ p(K(X)) ⩽ 2m by [BGVG14, Lemma 6.3]. Assume

that K((t)) ̸⊆ Ov. Since v is a Z-valuation, we obtain by [BGVG14, Proposition 2.2] that
Ov ∩K((t)) = K[[t]]. Hence K ⊆ Fv and K((t))v = K. Since p(K(X)) ⩽ 2m, it follows by
[BGVG14, Corollary 4.13] that p(L(X)) ⩽ 2m holds for every finite field extension L/K,
and hence also for every algebraic extension L/K.

Assume that Fv/K is algebraic. Then p(Fv(X)) ⩽ 2m, and we conclude by using
[BGVG14, Theorem 4.14] that p(F v(X)) ⩽ 2m. Thus p(F v) ⩽ 2m.

Consider now the case where Fv/K is transcendental. Then Fv/K is a function field
in one variable, by Theorem 2.2.4. Suppose that Fv/K is ruled. Then Fv = L(θ) for a
finite field extension L/K and some element θ ∈ Fv that is transcendental over K. Since
p(K(X)) ⩽ 2m, we get by [BGVG14, Corollary 4.13] that p(Fv) = p(L(X)) ⩽ 2m. If
Fv is real, then p(F v) = p(Fv) ⩽ 2m. If Fv is nonreal, then s(F v) = s(Fv) < 2m by
[BVG09, Theorem 3.5], and therefore p(F v) = s(F v) + 1 ⩽ 2m.

7.3.9 Theorem. Let n ∈ N. If K is a Pn-field, then K((t)) is a Pn-field.

Proof. Let K be a Pn-field. If char(K) = 2, then K((t)) is trivially a Pn-field. Assume
now that char(K) ̸= 2. Since p(K(X)) ⩽ 2n+1, we get by [BGVG14, Theorem 4.14] that
p(K((t))(X)) ⩽ 2n+1. Consider a function field in one variable F/K((t)) with p(F ) > 2n+1.
Let V = {v ∈ VF | p(F v) > 2n+1} and let

W = {w ∈ VF | Fw/K nonruled function field in one variable} .

Then V ⊆ W , by Proposition 7.3.8, and W is finite, by [BGVG14, Corollary 3.9].
Therefore V is finite. By [CTPS12, Theorem 3.1], quadratic forms in at least 3 variables
over F satisfy the local-global principle with respect to VF . Since 2n+1 + 1 ⩾ 3, we
conclude by Corollary 7.2.9 that V characterises sums of 2n+1 squares in F .

In particular, since p(F ) > 2n+1, we obtain that V ̸= ∅. For every v ∈ V , the
residue field Fv is (n + 1)-effective by the hypothesis. Hence F is (n + 1)-effective, by
Theorem 7.2.7. This shows that K((t)) is a Pn-field.

We retrieve the following statement contained in [BGVG14, Theorem 6.13].

7.3.10 Corollary. Let n, r ∈ N. Let K be a field such that p(E) ⩽ 2n+1 for every function
field in one variable E/K. Let F be a function field in one variable over K((t1)) . . . ((tr)).
Then p(F ) ⩽ 2n+1 + 1.

Proof. It follows by Example 7.3.6, via an iterated application of Theorem 7.3.9, that
K((t1)) . . . ((tr)) is a Pn-field. Hence F is 2n+1-effective, and thus p(F ) ⩽ 2n+1 + 1 by
Proposition 7.2.3.

7.4 Geometric global fields

For a domain R and n ∈ N, we denote the ring of iterated formal power series by
R[[t1, . . . , tn]] = R[[t1]] . . . [[tn]], and we set R((t1, . . . tn)) = Frac(R[[t1, . . . tn]]). It was shown
in [CDLR82, Corollary 5.14] that p(R((t1, t2))) = 2. In [Hu15], Hu showed that that
p(R((t1, t2, t3))) = 4, and that p(F ) ⩽ 3 for every finite field extension F of R((t1, t2)). In
this section, we show that one can also obtain this bound by means of Proposition 7.2.3.
To this aim, we study the discrete valuations on a finite field extension of the fraction field
of a complete noetherian local domain. We will use standard notions of modern algebraic
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geometry and assume that the reader is familiar with basic scheme theory, for which our
main reference will be [Liu06].

Let R be a commutative ring. By the dimension of R we refer to its Krull dimension
and we denote it by dimR. Assume now that R is a local ring. We denote by mR its
unique maximal ideal and by κR the residue field R/mR. Recall from Section 2.2 that R
is henselian if for every monic polynomial f ∈ R[X], any simple root of f in κR is the
residue of a root of f in R. By Theorem 2.2.10, every complete local domain is henselian.

We will mostly focus on the case where R is 2-dimensional. We will show that in this
case the fraction field of R has only finitely many discrete valuation rings whose residue
field is a nonruled function field in one variable over κR.

7.4.1 Proposition. Let d ∈ N+ and let R be a complete noetherian local domain with
dimR = d. Then there exist subrings O ⊆ R0 ⊆ R such that O is a complete discrete
valuation ring with residue field κR, R0 ≃ O[[t1, . . . , td−1]] and R is a finite R0-algebra.

Proof. By [Sta, Lemma 10.161.11], there exists a complete regular local domain R0 such
that R is a finite R0-algebra and such that R0 is either isomorphic to κR[[t1, . . . , td]] or
to O[[t1, . . . , td−1]] where O is a complete discrete valuation ring with residue field κR. In
the first case, set O = κR[[td]]; then O is a complete discrete valuation ring with residue
field κR.

7.4.2 Lemma. Let F be a field, R a henselian local subring of F and O a discrete
valuation ring of F such that R = mR +R ∩ O. Then R ⊆ O.

Proof. Since R is henselian, we have 1 + mR ⊆ F×n for any n ∈ N coprime to char(κR).
Since this holds for infinitely many natural numbers n and O is a discrete valuation ring,
we conclude that 1+mR ⊆ O×. In particular mR ⊆ O. Hence R = mR+R∩O ⊆ O.

Let F be a field. Given v ∈ VF and a subring R ⊆ F , we say that v is centred on R if
R ⊆ Ov; in this case, for p ∈ Spec(R), we say that v is centred on R in p if mv ∩R = p.

Assume now that F is the function field of an integral scheme X . For x ∈ X , we denote
by OX ,x the stalk of X at x, by mx its maximal ideal, and we set κ(x) = OX ,x/mx. For
v ∈ VF , we say that v is centred on X in x if OX ,x ⊆ Ov and mv ∩ OX ,x = mx.

In the sequel let R be a complete regular local domain that is not a field. We denote
by E the fraction field of R and we consider a finite field extension F/E.

7.4.3 Proposition. Every Z-valuation on F is centred on R in a nonzero prime ideal of
R.

Proof. Set d = dimR. Since d > 0, it follows by Proposition 7.4.1 that there exist subrings
O ⊆ R0 ⊆ R such that R is a finite R0-algebra, O is a complete discrete valuation ring
and R0 ≃ O[[t1, . . . , td−1]]. Let K ⊆ F be the fraction field of O. Since O is complete, we
have that O is the unique discrete valuation ring of K; see [BGVG14, Proposition 2.2].
Let v ∈ VF . We have that Ov∩K = K or Ov∩K = O, so in any case O ⊆ Ov. Therefore

R0 = mR0
+O ⊆ mR0

+ (R0 ∩ Ov).

Since R0 is complete and in particular henselian, we obtain by Lemma 7.4.2 that R0 ⊆ Ov.
SinceR is a finiteR0-algebra, and thus an integral extension ofR0, we obtain thatR ⊆ Ov.
It follows that mv ∩R ∈ Spec(R). Since F/E is a finite field extension, the restriction of
v to E is nontrivial. As E is the fraction field of R, we conclude that mv ∩R ̸= {0}.
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In the sequel we will use some results from algebraic geometry, including resolution
of singularities for surfaces [Lip75, p. 193], for which we need the following observation.

7.4.4 Remark. By [Sta, Proposition 15.52.3] a complete notherian local ring is excellent,
and hence in particular universally catenary and a Nagata ring. Here, this applies for R
as well as for the integral closure of R in F , which is again a complete noetherian local
ring by [HS06, Theorem 4.3.4].

7.4.5 Proposition. Assume that dim(R) = 2. Let v ∈ VF and let p = mv ∩ R. Then
one of the following holds:

(i) p is a principal ideal of height 1 of R and there exists a complete discrete valuation
ring of Fv whose residue field is a finite field extension of κR.

(ii) p = mR and Fv is either an algebraic extension of κR or a function field in one
variable over κR.

Proof. In view of Proposition 7.4.3, we have {0} ⊊ p ⊆ mR. Since R is a regular local
ring, it is a unique factorization domain, by [Liu06, Theorem 4.2.16]. Hence any height-1
prime ideal of R is principal.

Assume first that p ̸= mR. Since R is local and 2-dimensional, we obtain that p is
a principal ideal of height 1, Ov ∩ E = Rp and R/p is a 1-dimensional complete local
domain with residue field κR. Since Ov ∩ E = Rp, we have Ev ≃ Frac(R/p).

By Proposition 7.4.1, there exists a complete discrete valuation ring O with residue
field κR that is a subring of R/p and such that R/p is a finite O-algebra. Let K be the
fraction field of O. Then Ev/K is finite. Thus Fv/K is finite. By [OM73, Theorem 14:1],
it follows that Fv has a complete discrete valuation ring O′ such that O′∩K = O, whose
residue field is a finite extension of the residue field of O, which is κR.

Assume now that p = mR. As dimR = 2, it follows by [Liu06, Theorem 8.3.26 (a)] that
tr deg(Ev/κR) ⩽ 1. Since the extension F/E is finite, we obtain that tr deg(Fv/κR) ⩽ 1.
If tr deg(Fv/κR) = 0, then Fv/κR is algebraic. Assume that tr deg(Fv/κR) = 1. Let S
be the integral closure of R in F . In view of the properties of S that were pointed out
in Remark 7.4.4, we obtain by [Liu06, Theorem 8.3.26 (b)] that there exists an integral
scheme X , a proper birational morphism X → Spec(S) and x ∈ X of codimension 1
such that Ov = OX ,x. Since any proper morphism is of finite type, OX ,x is a finitely
generated S-algebra, and hence also a finitely generated R-algebra. Thus Fv/κR is a
finitely generated extension. Hence Fv/κR is a function field in one variable.

Let X be a scheme. A model of X is a scheme X ′ together with a birational proper
morphism X ′ → X . For i ∈ N, we denote by X (i) the set of points of X of codimension i.

7.4.6 Corollary. Assume that dimR = 2. Let S be the integral closure of R in F and
let v ∈ VF . There exists a model X of Spec(S) on which v is centred in a point of X (1) if
and only if Fv is either a function field in one variable over κR or a complete discretely
valued field whose residue field is a finite extension of κR.

Proof. Set X0 = Spec(S) and p = mv ∩ S. Since S is integral over R, the height of p in S
is equal to the height of p ∩ R = mv ∩ R in R, and hence it follows by Proposition 7.4.5

that it is either 1 or 2. Hence p ∈ X (1)
0 or p ∈ X (2)

0 .

Assume first that p ∈ X (1)
0 . Then X0 itself is a model of Spec(S) such that v is centred

in a point of X (1)
0 , and by Proposition 7.4.5, Fv is a complete discretely valued field whose

residue field is a finite extension of κR.
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Assume now that p ∈ X (2)
0 . Recall that E is the fraction field of R. We consider the

chain of field extensions κR ⊆ κ(p) ⊆ Ev ⊆ Fv. Since S is an integral extension of R,
κ(p)/κR is an algebraic extension. By [Liu06, Theorem 8.3.26 (b)], there exists a model
X of X0 such that v is centred in a point of X (1) if and only if the extension Fv/κ(p) is
transcendental, that is, if and only if Fv/κR is transcendental. Assume that we are in this
case. Since the extension F/E is finite, so is Fv/Ev. Hence Ev/κR is transcendental.
It follows by Proposition 7.4.5 that Ev/κR is a function field in one variable. As the
extension Fv/Ev is finite, we obtain that Fv/κR is a function field in one variable.

Let X be a scheme. Given x ∈ X , we denote by V (x) the Zariski closure of {x} in X ,
considered with its reduced scheme structure induced by X .

7.4.7 Proposition. Assume that dimR = 2. Let S be the integral closure of R in F
and let X be a regular model of Spec(S). Let v ∈ VF and let x be the centre of v on X .
Assume that x ∈ X (2). If Fv/κ(x) is transcendental, then Fv/κR is a ruled function field
in one variable.

Proof. In view of the properties of S mentioned in Remark 7.4.4 and since Fv/κ(x) is
transcendental, it follows by [Liu06, Theorem 8.3.26 (b)] that

tr deg(Fv/κ(x)) = 1 = dimOX ,x − 1.

We set X0 = X and x0 = x. For i ∈ N we define recursively πi+1 : Xi+1 → Xi as
the blowing up of Xi along the regular subscheme V (xi) and denote by xi+1 the centre
of v on Xi+1. By [Liu06, Theorem 8.1.19 (a) and Proposition 8.1.12 (b)], it follows for
every i ∈ N that Xi+1 is a regular model of Xi, and hence of Spec(S). Furthermore,

it follows by [Liu06, Exercise 8.3.14] that there exists n ∈ N+ such that xn ∈ X (1)
n ,

Ov = OXn,xn
and xi ∈ X (2)

i for 0 ⩽ i < n. In particular we have Fv = κ(xn) and, by
[Liu06, Theorem 8.2.5], κ(xi)/κR is a finite extension for every 0 ⩽ i < n. Since xn ∈ X (1)

n

and since the exceptional fibre π−1
i+1xi is an irreducible subscheme of Xi+1 of dimension

1, we obtain by [Liu06, Theorem 8.1.19 (b)] that V (xn) ≃ P1
κ(xn−1)

, and we conclude that

xn is the generic point of π−1
i+1xi. Therefore κ(xn)/κ(xn−1) is a rational function field in

one variable. Since Fv = κ(xn) and κ(xn−1)/κR is a finite extension, we conclude that
Fv/κR is a ruled function field in one variable.

We obtain an analogue to [BGVG14, Theorem 5.3].

7.4.8 Proposition. Suppose dimR = 2. Then there exist only finitely many Z-valuations
on F whose residue fields are nonruled function fields in one variable over κR.

Proof. Let S be the integral closure of R in F . Then S is excellent; see Remark 7.4.4.
Hence, by [Lip75, p. 193], there exists a regular model η : X → Spec(S) of Spec(S). We
denote by ι : Spec(S) → Spec(R) the morphism of schemes corresponding to the inclusion
R → S. Denote by Xs the fibre of η ◦ ι over mR. Since η is birational, its image is dense
in Spec(S), hence Xs has dimension at most 1. Since Xs is a closed subscheme of X
of dimension at most 1, it has only finitely many irreducible components, and hence we
conclude that Xs ∩ X (1) is finite.

Consider now an arbitrary v ∈ VF such that Fv/κR is a nonruled function field in
one variable. We claim that Ov = OX ,x for some x ∈ Xs ∩X (1). Since Xs ∩X (1) is finite,
this will establish the statement.

Let x ∈ X be the centre of v on X . Since Fv/κR is a function field in one variable, it
follows by Proposition 7.4.5 that v is centred in mR on R, that is, x ∈ Xs. Since Fv/κR



7.4. GEOMETRIC GLOBAL FIELDS 95

is a nonruled function field in one variable, it follows by Proposition 7.4.7 that x ∈ X (1).
Since X is regular, it follows that OX ,x is a discrete valuation ring of F . Since OX ,x ⊆ Ov,
we obtain that OX ,x = Ov.

7.4.9 Proposition. Let m ∈ N+, let K be a field such that p(K(X)) ⩽ 2m and let
F/K((t1, t2)) be a finite field extension. Set V = {v ∈ VF | p(F v) > 2m}. Then V is finite
and, for every v ∈ V , we have that Fv/K is a nonruled function field in one variable.

Proof. Recall from Section 4.1 that we set p′(L) = min{p(L), s(L) + 1} ∈ N ∪ {∞} for
any field L. Consider a finite field extension L/K. By [BGVG14, Corollary 4.6], the
hypothesis on K implies that p(L(X)) ⩽ 2m. Moreover, if L is nonreal, then it follows by
[BVG09, Theorem 3.5] that s(L(X)) = s(L) < 2m. In any case p′(L) ⩽ p′(L(X)) ⩽ 2m.

Consider v ∈ VF . Recall that p(F v) = p′(Fv). If Fv/K is either algebraic or a
ruled function field in one variable, then p(F v) = p′(Fv) ⩽ 2m. If Fv carries a complete
Z-valuation w such that (Fv)w/K is finite, then p(F v) = p′(Fv) = p′((Fv)w) ⩽ 2m.

In view of Proposition 7.4.5, this shows for every v ∈ V that Fv/K is a nonruled
function field in one variable. We conclude by Proposition 7.4.8 that V is finite.

7.4.10 Theorem. Let n ∈ N, let K be a Pn-field and let F/K((t1, t2)) be a finite field
extension. Then

p(F ) ⩽ 2n+1 + 1 .

Proof. We set V = {v ∈ VF | p(F v) > 2n+1}. Then V is finite, by Proposition 7.4.9.
Let S the integral closure of K[[t1, t2]] in F . Recall that S is a 2-dimensional noetherian
complete local ring by [HS06, Theorem 4.3.4], and that F is the fraction field of S. We
may assume that char(F ) = 0, since otherwise we trivially have that p(F ) ⩽ 3 ⩽ 2n+1+1.
Hence char(K) = 0 and thus also the residue field of S has characteristic 0. It follows by
[HHK15, Corollary 4.7] that quadratic forms in at least 3 variables satisfy the local-global
principle with respect to VF . Since 2n+1 + 1 ⩾ 3, we conclude by Corollary 7.2.9 that V
characterises sums of 2n+1 squares F . In particular, if V = ∅, then p(F ) ⩽ 2n+1.

Assume V ̸= ∅. Consider v ∈ V . By Proposition 7.4.9, Fv/K is a function field in one
variable. If p(Fv) > 2n+1, then Fv is (n+1)-effective, since K is a Pn-field. Assume that
p(Fv) ⩽ 2n+1. Then, since 2n+1 < p(F v) ⩽ p(Fv) + 1, we have that p(F v) = 2n+1 + 1
and s(Fv) = p(Fv) = 2n+1. By Example 7.2.2, it follows that Fv is (n + 1)-effective.
Hence Fv is (n + 1)-effective for every v ∈ V . We conclude by Theorem 7.2.7 that F is
(n+ 1)-effective. In particular p(F ) ⩽ 2n+1 + 1, by Proposition 7.2.3.

7.4.11 Corollary. Let n ∈ N be such that p(E) ⩽ 2n+1 holds for every function field
in one variable E/K. Let r ∈ N and let F/K((t1)) . . . ((tr))((tr+1, tr+2)) be a finite field
extension. Then

p(F ) ⩽ 2n+1 + 1.

Proof. The hypothesis implies that K is a Pn-field; see Example 7.3.6. By an iterated
application of Theorem 7.3.9, we obtain that K((t1)) . . . ((tr)) is a Pn-field as well. Hence
p(F ) ⩽ 2n+1 + 1, by Theorem 7.4.10.

7.4.12 Remark. As mentioned in the introduction, for K = R, r = 0 and n = 0, the bound
in Corollary 7.4.11 gives an alternative proof of [Hu15, Theorem 5.1]. Corollary 7.4.11
also applies when K is an extension of transcendence degree n of R (or of transcendence
degree n−1 ⩾ 1 of Q) and gives that p(F ) ⩽ 2n+1+1 for any field F as in the statement.
When n ⩾ 2, this is an improvement compared to the bound p(F ) < 2n+2, which one
could derive from [Hu17, Corollary 4.7] by using [BVG09, Theorem 3.5]; this was first
pointed out to us by Y. Hu.
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7.4.13 Question. Is R((t1, t2)) a P1-field?
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Reinie Erné. Oxford Graduate Texts in Mathematics 6. Oxford Science Publications.
Oxford University Press, Oxford, 2002.

[Mat86] H. Matsumura. Commutative ring theory. Translated from the Japanese by M.
Reid. Second edition. Cambridge Studies in Advanced Mathematics 8. Cambridge
University Press, Cambridge, 1989.



100 BIBLIOGRAPHY

[Mo67] T. S. Motzkin. The arithmetic-geometric inequality. Inequalities (Proc. Sympos.
Wright-Patterson Air Force Base, Ohio, 1965), Academic Press (1967), 205–224.

[MS82] A. Merkurjev, A. Suslin K-cohomology of Severi-Brauer varieties and the norm
residue homomorphism.Izv. Akad. Nauk SSSR Ser. Mat.46 (1982), no.5, 1011–1046,
1135–1136.

[MSV93] M. Mornhinweg, D. Shapiro, K. G. Valente. The principal axis theorem over
arbitrary fields. Amer. Math. Monthly 100 (1993), no. 8, 749–754.

[Neug57] O. Neugebauer. The exact sciences in antiquity. 2nd. ed. Brown University
Press, Providence, RI (1957).

[Neuk99] J. Neukirch. Algebraic number theory. Grundlehren der mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences] 322. Springer-
Verlag, Berlin, 1999.

[OM73] T. O’Meara. Introduction to quadratic forms. Reprint of the 1973 edition. Classics
in Mathematics. Springer-Verlag, Berlin, 2000.

[OVV07] D. Orlov, A. Vishik, V. Voevodsky. An exact sequence for KM
∗ /2 with

applications to quadratic forms. Ann. of Math. 165 (2007), 1–13.

[PD01] A. Prestel, C. N. Delzell. Positive polynomials. From Hilbert’s 17th problem to
real algebra. Springer Monographs in Mathematics.

[Pfi65a] A. Pfister. Zur Darstellung von −1 als Summe von Quadraten in einem Körper.
J. London Math. Soc. 40 (1965), 159–165.

[Pfi65b] A. Pfister. Multiplikative quadratische Formen. Arch. Math. (Basel) 16 (1965),
363–370.

[Pfi67] A. Pfister. Zur Darstellung definiter Funktionen als Summe von Quadraten.
Invent. Math. 4 (1967), 229–237.

[Pfi95] A. Pfister. Quadratic forms with applications to algebraic geometry and topology.
London Mathematical Society Lecture Note Series 217. Cambridge University Press,
Cambridge, 1995.

[Pol70] B. Pollak. Orthogonal groups over global fields of characteristic 2. J. Algebra 15
(1970), 589–595.

[Pop90] F. Pop. Summen von Quadraten in arithmetischen Funktionenkörpern (1990).
Preprint, https://www.math.upenn.edu/~pop/Research/files-Res/dimen1.ps

[Pop23] F. Pop. On the Pythagoras number of function fields of curves over
umber fields (2023). Preprint, https://www2.math.upenn.edu/~pop/Research/

files-Res/Oct-2022_Moshe-Vol-1.pdf

[Pou71] Y. Pourchet. Sur la représentation en somme de carrés des polynômes à une
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