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Resumo 

Atualmente um dos maiores desafios na área de materiais é a miniaturização dos 

transistores para aplicação em novos processadores e dispositivos lógicos. Uma das altenativas 

viáveis é a utilização da spintrônica, baseada no movimento controlado de nanoestruturas 

magnéticas. Entre os potenciais candidatos, a descoberta de texturas magnéticas conhecidas 

como skyrmions, tem atraído considerável interesse. Skyrmions magnéticos são estruturas de 

spins quirais, topologicamente protegidas, e devido a serem muito estáveis, quando comparados 

com vórtices ou bolhas magnéticas, tem sido objeto de estudo nesses últimos anos. Com o 

objetivo de controlar o movimento dos skyrmions, essencial para aplicações, estudamos o 

comportamento dinâmico de skyrmions em um magneto quiral bidimensional a temperatura 

nula, sob influência de redes periódicas de centros de aprisionamento. As simulações são feitas 

na aproximação onde os skyrmions podem ser tratados como partículas pontuais. Neste modelo, 

o skyrmion está sujeito à interação com os demais skyrmions, com os centros de aprisionamento 

dispostos no material, a uma corrente de spins polarizados e à força de Magnus. Os cálculos 

foram feitos para diversos casos onde há a presença de um único skyrmion e também para 

diversos valores de densidade de skyrmions no material, procurando por possibilidades de 

controle de movimento, diversos regimes dinâmicos e efeitos coletivos. Os resultados mostram 

que ajustando o tamanho, força e densidade dos centros de aprisionamento é possível controlar o 

movimento de skyrmons individuais, e também controlar o fluxo de múltiplos skyrmions. Além 

disso, mostramos que caso haja espécies diferentes de skyrmions com diferentes componentes de 

Magnus, é possível fazer uma seleção topológica utilizando redes periódicas de centros de 

aprisionamento. Utilizando correntes alternadas, mostramos que o efeito ratchet tem um papel 

importante na dinâmica de skyrmions, fazendo com que ocorra movimento direto e controlado 

de skyrmions em determinadas direções apenas ajustando as amplitudes das correntes alternadas. 

A expectativa é que estes resultados possam ser úteis à comunidade científica para um melhor 

entendimento sobre a dinâmica de skyrmions e que resultem em futuras aplicações tecnológicas 

destas quase-partículas. 

 

 

 

Palavras chave: Magnetismo. Skyrmions Magnéticos. Redes de Aprisionamento. Arranjos 

periódicos. Controle de Movimento.  
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Abstract 

The miniaturization of transistors for application in new processors and logic devices 

poses a significant challenge in the field of materials. Spintronics, which relies on controlled 

movement of magnetic nanostructures, offers a promising solution. Among the candidates, 

magnetic skyrmions are considered one of the most promising. These chiral spin structures, 

characterized by topological protection and enhanced stability compared to vortices or magnetic 

bubbles, have been extensively studied. To advance in the control of skyrmion motion, essential 

for practical applications, we investigated their dynamic behavior in a two-dimensional chiral 

magnet at zero temperature. Our study focused on the influence of periodic arrays of pinning 

centers. The simulations considered skyrmions as point-like particles considering the following 

interactions: skyrmion-skyrmion interactions, interactions with pinning center arrays, a current 

of polarized spins, and the Magnus force. We conducted calculations for scenarios involving a 

single skyrmion as well as different skyrmion density values in the material. The aim was to 

explore possibilities for controlled skyrmion motion, investigate different dynamic regimes, and 

examine collective effects. The results demonstrate that by adjusting the size, strength, and 

density of the pinning centers, we can effectively control the motion of individual skyrmions 

and manage the flow of multiple skyrmions. Furthermore, we discovered that periodic arrays of 

pinning centers can facilitate topological selection when different species of skyrmions with 

distinct Magnus components are present. Employing alternating currents, we observed the 

significant role of the ratchet effect in the skyrmion dynamics. By fine-tuning the amplitudes of 

the alternating currents, we achieved direct and controlled motion of skyrmions in specific 

directions. These findings hold potential for advancing our understanding of skyrmion dynamics 

and can inspire future technological applications involving these quasi-particles. Overall, we 

anticipate that our results will be valuable to the scientific community, contributing to a deeper 

comprehension of skyrmion dynamics and paving the way for future technological applications.

  

 

 

 

Keywords: Magnetism. Magnetic Skyrmions. Pinning arrays. Periodic Pinning. Motion Control 
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Abstract 

Op dit moment is een van de grootste uitdagingen op het gebied van materialen de 

miniaturisatie van transistors voor toepassingen in nieuwe processoren en logische apparaten. 

Een van de haalbare alternatieven is het gebruik van spintronica, gebaseerd op gecontroleerde 

beweging van magnetische nanostructuren. Onder potentiële kandidaten heeft de ontdekking van 

magnetische structuren, bekend als skyrmions, aanzienlijke belangstelling gekregen. 

Magnetische skyrmions zijn structuren met chirale spins, topologisch beschermd en vanwege 

hun grote stabiliteit in vergelijking met vortexen of magnetische bubbels, zijn ze de afgelopen 

jaren intensief bestudeerd. Om de beweging van skyrmions te kunnen controleren, wat essentieel 

is voor toepassingen, hebben we het dynamisch gedrag van skyrmions bestudeerd in een 

tweedimensionaal chiraal magnetisch materiaal bij nul temperatuur, onder invloed van 

periodieke netwerken van vangcentra. De simulaties zijn uitgevoerd in de benadering waarbij de 

skyrmions als puntdeeltjes kunnen worden behandeld. In dit model ondergaat de skyrmion 

interactie met andere skyrmions, met de vangcentra gerangschikt in het materiaal, een stroom 

van gepolariseerde spins en de Magnuskracht. De berekeningen zijn uitgevoerd voor 

verschillende gevallen waarbij er een enkele skyrmion aanwezig is, evenals voor verschillende 

waarden van de skyrmiondichtheid in het materiaal. We hebben gezocht naar mogelijkheden om 

de beweging te controleren, verschillende dynamische regimes en collectieve effecten te 

onderzoeken. De resultaten tonen aan dat het mogelijk is om de beweging van individuele 

skyrmions te controleren door de grootte, sterkte en dichtheid van de vangcentra aan te passen. 

Ook is het mogelijk om de stroming van meerdere skyrmions te beheersen. Bovendien hebben 

we aangetoond dat als er verschillende soorten skyrmions met verschillende Magnus-

componenten zijn, het mogelijk is om topologische selectie uit te voeren met behulp van 

periodieke netwerken van vangcentra. Met behulp van wisselstromen hebben we aangetoond dat 

het ratchet-effect een belangrijke rol speelt in de dynamica van skyrmions. Door de amplitudes 

van de wisselstromen aan te passen, kan de beweging van skyrmions direct en gecontroleerd in 

bepaalde richtingen plaatsvinden. De verwachting is dat deze resultaten nuttig kunnen zijn voor 

de wetenschappelijke gemeenschap om een beter begrip van de dynamica van skyrmions te 

krijgen en dat ze kunnen leiden tot toekomstige technologische toepassingen van deze quasi-

deeltjes. 

Trefwoorden: Magnetisme. Magnetische Skyrmionen. Arrays vastzetten. Periodiek vastzetten. 

Beweging controle. 
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1. Introduction 

1.1 Motivation 

There is a very famous projection that relates how dense can transistors be in an 

integrated circuit, which is known as the Moore’s law [1]. Moore’s law refers to Moore’s 

perception that the number of transistors in a microchip double about every two years, tough the 

cost of computer is halved. This leads to an exponential growth of speed and capability of 

computers through time. However, the miniaturization of transistors using the traditional 

complementary-oxide-metal-semiconductor (CMOS) technology appears to be reaching a 

limitation. The increased dissipation of power due to the leakage currents caused by the 

quantum effect [2] has become one of most important issues, which results in the failure of 

Moore’s prediction [3]. Thus, a lot of efforts have been made in order to search for alternatives 

or complementary technologies for further downscaling the transistor’s dimensions. One of the 

possible alternatives is using spintronics, which considers electron spin property rather than 

electron charge to store and process information [4,5]. Using the singular properties of electron 

spin, the storage and manipulation of information can now exhibit low power and 

nonvolatility [6]. As a consequence, spintronics has a great prospect to be one of the most 

promising candidates in the next era of computers, especially for the emerging topological 

particle-like spin configurations known as magnetic skyrmions. 

Magnetic skyrmions were first observed in 2009 [7], and since then there is a great 

interest for skyrmion technological applications due to their stability and reduced size compared 

to other magnetic structures, such as bubbles, vortices or domain walls [8,9]. Besides that, 

skyrmions may be driven by the application of a spin-polarized current with a much-reduced 

energy cost, when compared to domain walls, for example [10]. Both of these features make 

skyrmions an excellent choice as information carriers. On the other hand, skyrmions exhibit a 

strong and non-dissipative Magnus component caused by topology [11]. This affects both on 

how the skyrmion flow due to the applied transport current and how they interact with defects 

present in the sample, which may behave as a pinning (attractive) or an obstacle (repulsive) 

potential. Therefore, a theoretical approach to study and understand the skyrmion dynamics, and 

most importantly, control the skyrmion motion is crucial for future technological applications. 
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One of the alternatives that scientists are considering to control the skyrmion motion is 

using an array of obstacles, or pinning centers that may guide the motion through the sample. 

This idea is inspired in the experience obtained before in other systems, such as, 

superconducting vortices, colloids, electrons and active matter. It is shown that periodic 

structures of defects may stabilize the flow of particles for a range of applied transport 

forces [12–16], or even using alternating currents induce a ratchet effect to move particles in a 

given direction [17–25]. All of these past experiences are being applied to the skyrmion case to 

see how it behaves, considering its unique properties. 

Most of works investigating skyrmion dynamics are very recent due to the novelty of the 

subject. Most works were made considering a random distribution of pinning centers [26–30], 

periodic substrate with a washboard potential [31–34], 1D wells [35] or nanotracks [36–38]. 

However, only few works have considered periodic pinning prior to the start of this 

thesis  [39,40], therefore this is the main motivation for this thesis. In this chapter 1, we 

introduce the physics of skyrmions in magnetic materials and its fundamentals. In chapter 2 we 

describe the fundamental theoretical background to support this thesis, discussing the skyrmion 

formation and its most important interactions: the exchange and Dzyaloshinskii-Moriya 

interactions, and also address the skyrmion dynamics; explaining the two main models used to 

simulate the dynamics, the Landau-Lifshitz-Gilbert (LLG) equation and the particle model. In 

chapter 3 we review some of the most important observations concerning skyrmions interacting 

with pinning centers and substrates. In chapter 4 we present the model and simulation details 

used in this thesis. Chapters 5 – 13 show the results of our work during the thesis, concerning 

skyrmions interacting with different pinning landscapes and possibilities for controlled skyrmion 

motion. In chapter 14 the general conclusions are presented and in chapter 15 the scientific 

production during this work. 

1.2   Skyrmion Discovery and Fundamentals 

The name skyrmion was given due to its mastermind Tony Skyrme which developed the 

theory of skyrmions in the 1960s. Skyrmions were proposed to account for the stability of 

hadrons as quantized topological defects in the three-dimensional non-linear sigma 

model [41,42]. Recently, skyrmions has proven to be highly relevant in spin textures in 

condensed matter systems. Skyrmion structures were found in quantum Hall 

ferromagnets [43,44], ferromagnetic monolayers [45], liquid crystals [46,47] and Bose-Einstein 

condensates [48,49]. The realization of skyrmion in chiral magnets was theoretically 
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predicted [50–52] and then observed recently [7,53]. Magnetic skyrmions compromise spins 

pointing in all directions wrapping a sphere, in a similar way to hedgehog, shown in Fig. 1.1 (a). 

Figure 1.1 – In (a) the Skyrmion illustration as proposed by Tony Skyrme in the 60s. In (b) an illustration of the 

helical state present in chiral magnets as a consequence of the competition between the Dzyaloshinskii-Moriya and 

the ferromagnetic exchange interactions. In (c) the skyrmion representation recently discovered in chiral magnets. 

In (d) an illustration of a skyrmion array in chiral magnets under the influence of a applied magnetic field. Note that 

they arrange themselves in a regular triangular lattice (adapted from S. Seki and M. Mochizuki, 2016, page 2). 

  

One of the major mechanisms for the formation of skyrmions is the competition between 

two spin interactions: the ferromagnetic exchange and the Dzyaloshinkii-Moryia (DM) 

interaction [50–52]. In chiral magnets without spatial inversion symmetry, such as B20 

compounds (MnSi, FeGe, Fe1-xCoxSi), the DM interaction becomes finite, which makes possible 

the formation of skyrmions.  In a continuum spin model, the DM interaction hamiltonian may be 

expressed as [54], 

                                                                      ℋ𝐷𝑀 ∝ ∫𝑑𝐫𝐌 ∙ (∇ × 𝐌),                                               (1.1) 

where 𝐌 is the classical magnetization vector. As can be seen, this interaction alone favors the 

rotating magnetization alignment and competes with the ferromagnetic exchange interaction, 

that favors a colinear spin alignment. Due to this competition between the DM and the 

ferromagnetic exchange interaction, in the absence of an applied magnetic field, the spins tend 

to form a helical spin order with uniform turn angle [55–57], as illustrated in Fig. 1.1 (b). If a 

magnetic field is applied, the helical phase is destroyed and skyrmions begin to appear as a 

vortex-like topological spin textures, as illustrated in Fig. 1.1 (c). In the skyrmion, the 

(a) (b) 

(c) (d) 
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magnetization changes from parallel to the applied field in the periphery to antiparallel to the 

applied field in its center. Once the helical phase is being destroyed and skyrmions are forming, 

they normally organize themselves in a regular triangular lattice called skyrmion crystal, as 

illustrated in Figure 1.1 (d). This ordering occurs due to the repulsive interaction between the 

topologically protected spin textures. In chiral magnets, skyrmions range from 3 − 100 nm in 

size, which is determined by the ration between the DM and the exchange interactions, that is, 

𝐷/𝐽 . For example, if 𝐷  is high, it favors a higher rotation of spins, therefore reducing the 

skyrmion size [9].  

 Since the discovery of skyrmions, a variety of new topological magnetic textures have 

been observed experimentally [58–60]. Some of them are shown in Fig 1.2. Usually, the 

classification of these spin textures is based on their topology. Two dimensional textures 

described by a local magnetization direction, 𝐦, can be classified by the skyrmion winding 

number [61]: 

                                                          𝒲 =
1

4𝜋
∫𝑑𝑥𝑑𝑦 𝐦 ∙ (𝜕𝑥𝐦× 𝜕𝑦𝐦),                                       (1.2) 

 Note that topology is a mathematical concept for continuous systems, where a 

continuous mapping from one structure to the other exists, however in real physical systems it is 

usually discrete, for example, due to the underlying atomic lattice. 

Figure 1.2 – Different types of topological spin textures with distinct winding numbers. In (a) Néel-type skyrmion, 

(b) Bloch-type skyrmion, (c) antiskyrmion, (d) skyrmionium, (e) biskyrmion, (f) example of in-plane skyrmion and 

(g) skyrmion in helical background. The winding numbers for (a)-(c), (f), and (g) is |𝒲| = 1 and for (e) is |𝒲| =
2. (adapted from Everschor-Sitte et. al.  [61], 2018, page 240901-2). 

 

Concerning to skyrmions in chiral magnetic materials, in Fig. 1.3 there is an 

experimental phase-diagram of applied magnetic field, 𝐵(mT), versus temperature, 𝑇(K) based 

on real-space observation for Fe0.5Co0.5Si [53]. In these figures the changing of the spin texture 

is represented by a contour mapping of skyrmion density [See Fig. 1.3 (d)]. In figures 1.3 (a) – 
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(c) it is possible to observe for a fixed value of 𝑇 = 25K how the skyrmion density changes as a 

function of the applied magnetic field, 𝐵. From Fig. 1.3 (a) it is possible to see the experimental 

observation of the helical phase (H) being destroyed and the skyrmion crystal (SkX) formation. 

In Fig. 1.3 (b) the stabilized skyrmion crystal phase, and in Fig. 1.3 (c) the destruction of the 

skyrmion crystal phase and beginning of the ferromagnetic phase (FM). After further increase of 

the applied magnetic field, the skyrmion crystal is completely destroyed and all spins align with 

the magnetic field. 

Figure 1.3 – In (a) observation of the phase H + SkX, which represents the transition between helicoidal (H) to the 

skyrmion crystal phase (SkX). In (b) the stabilized skyrmion crystal phase (SkX). In (c) the transition between the 

skyrmion crystal (SkX) to the ferromagnetic phase (FM). In (d) the phase diagram for Fe0.5Co0.5Si (adapted from 

X. Z. Yu et. al.  [53], 2010, page 903). 

 

 One of the proposed technological applications for skyrmions is to use them as an 

information storage in future logical and memory devices [62,63], where a bit may be associated 

to the skyrmion existence. Moreover, simulations indicate that skyrmion positions in a magnetic 

film may be created [64,65] and manipulated with application of spin polarized currents [9], or 

spin waves [66]. The necessary current for the skyrmion to depin is much lower than the 

necessary current to induce motion of magnetic domain walls, which are the other alternative for 

applications in spintronics [10,67,68]. That is, skyrmions may be set into motion with much less 

energy cost. Then, it is crucial a theoretical approach for a better understanding of the skyrmion 

behavior and future applications in technological devices. Nowadays, there are two most 

common theoretical approaches to simulate skyrmions. One is based on micromagnetism, where 
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it is calculated the time derivative for each local magnetic moment (treated as classic vectors) 

inside the material [29,69–71], the other is a particle model which uses the Thiele’s 

approximation for solitons [72,73], both methods will be discussed in section 2. 

1.3  Skyrmions and Defects   

Most of interesting skyrmion behaviors occur in the presence of defects, which we also 

call pinning centers or obstacles. In experiments conducted by Schultz et. al. [67], the motion of 

skyrmions was inferred from observations of changes in the topological Hall effect. This 

technique provided evidence of a finite depinning threshold for the skyrmion motion, and in 

many subsequent imaging experiments, a wide range of depinning thresholds has been observed 

ranging from 106  to 1011 A/m². Pinning effects for skyrmions can be attributed to various 

factors, including modifications in the DMI (Dzyaloshinskii-Moriya interaction), vacancies in 

the lattice structure, presence of holes in thin films, localized alterations in anisotropy, variations 

in sample thickness, impurity atoms within the material, or adatoms attached to the surface of 

the sample [74]. Examples of such defects can be observed in Fig. 1.4. Surface modulations can 

be implemented by fabricating holes or antidots as in Fig. 1.4 (a), place dots in the form of 

magnetic nanoparticles on the surface, as shown in Fig. 1.4 (b), take advantage of naturally 

occurring atomic defects in the bulk such as missing atoms or substitutions, as shown in Fig. 1.4 

(c), or place adatoms on the surface as shown in Fig. 1.4 (d). 

Figure 1.4 – Schematic illustrations of pinning possibilities in magnetic samples. (a) Surface thickness 

modulations. (b) Implementation of nanodots to the surface. (c) Naturally occurring atomic defects or substitutions 

in the bulk system. (d) Adatoms adhered in the sample surface. (adapted from C. Reichhardt et. al. [74], 2022, page 

11). 

 

 In 2013, Lin et al. [75] conducted micromagnetic simulations on uniform samples 

without defects and demonstrated that there is no threshold current for the skyrmion motion, that 

is, skyrmions flow for even very small applied transport currents. Iwasaki et al. [29] performed 

one of the earliest theoretical studies on skyrmion pinning, using micromagnetic simulations 

with parameters suitable for MnSi. They modeled the pinning as small regions with varying 
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local anisotropy 𝐴. In these systems, the current depinning threshold is 𝑗𝑐 ≈ 10
10 − 1011 A/m², 

and the skyrmion depins elastically. Liu and Li [76] investigated a local exchange mechanism 

for skyrmion pinning by varying the local density of itinerant electrons. Through micromagnetic 

simulations and a Thiele equation approach, they observed that the skyrmion is pinned due to 

the reduction in the skyrmion core energy. They also demonstrated that when subjected to a 

small drive, the skyrmion follows a spiraling trajectory as it returns to the pinning site, in 

contrast to the linear movement of an overdamped particle back to its equilibrium position. The 

spiraling motion is driven by the Magnus force. At higher currents, the skyrmion escapes the 

trap, leading to depinning. For the case of skyrmions interacting with holes, Müller and 

Rosch [77] analyzed the interaction between a skyrmion and a hole or locally damaged region 

using continuum methods and the Thiele equation approach. They discovered that the potential 

generated by the hole exhibits an intriguing combination of long-range repulsion and short-range 

attraction. The competition resulting from applied drive produces an unusual effect: the 

skyrmion moves around the pinning site at low drives due to repulsion, but jumps over the 

longer-range repulsive barrier and gets captured by the short-range attraction at high drives. 

Figure 1.5 – Schematic illustrations of a (a) skyrmion and a (b) superconducting vortex interacting with an 

attractive point-like pinning site. The velocity component induced by the dissipation is indicated by black arrows, 

and that produce by the Magnus force is red. The Magnus force is always perpendicular to the attractive force of the 

pinning center, resulting in a deflection. (adapted from C. Reichhardt et. al. [74], 2022, page 14). 

 

It was initially argued that a skyrmion can move around a point pinning site due to the 

Magnus effect [11]. Micromagnetic simulations by Iwasaki et al. [29] showed that pinning was 

reduced not only by the Magnus effect, but also by the ability of the skyrmions to modify their 

shape. Figure 1.5 provides a schematic illustration of how the Magnus force reduces the 

effectiveness of pinning for a skyrmion interacting with a point pinning site. The black arrows 

indicate the direction of the attractive force from the pinning site, always pointing towards the 

(a) 

(b) 
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pin. The red arrows represent the Magnus force component, always perpendicular to the force 

from the pinning site. As a result, while the dissipative term favors the motion of the skyrmion 

towards the pinning site, the Magnus force causes the skyrmion to deflect around it. In contrast, 

a purely overdamped particle like a type II superconducting vortex moves directly towards the 

center of the pinning site and is more likely to be trapped. This is why skyrmions usually exhibit 

lower depinning thresholds. The deflection of the skyrmion around the pinning site strongly 

depends on the relative size and extent of the skyrmion compared to that of the pinning site. In 

section 5 we compile some of the most important works regarding skyrmions interacting with 

pinning centers in more detail, which is useful for understanding the insights and analysis used 

in this thesis. 

2 Theoretical Background 

2.1   Skyrmion formation 

 As mentioned before, there are several mechanisms responsible for the skyrmion 

formation inside magnets. The main mechanism is the competition between exchange and 

Dzyaloshinskii-Moriya interaction [50,51]. As these are the most important ones, we will 

introduce both spin interactions.  

2.1.1 The exchange interaction 

 The exchange interaction concerns the interaction between two electrons, mainly 

between neighbor atoms, associated with the Pauli exclusion principle [78]. There is an energy 

difference between spin configurations ↑𝑖↑𝑗  and ↑𝑖↓𝑗  of two electrons 𝑖 ,𝑗 . In this section we 

demonstrate this interaction. 

 The Pauli principle [78,79] forbids more than one electron to occupy the same state. As 

electrons are identical and indistinguishable particles, the exchange between two electrons shall 

result in the same electron density, that is,  

                                                                     |Ψ(1,2)|2 = |Ψ(2,1)|2                                                    (2.1) 

 Electrons are fermions, so the only possible solution is that the total wave function of 

two electrons is asymmetric, that is,  

                                                                     Ψ(1,2) = −Ψ(2,1)                                                          (2.2) 
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The total wave function Ψ is the product of the space coordinate function, 𝜙(𝑟1, 𝑟2), and spin, 

𝜒(𝑠1, 𝑠2).  

The example of a H2 molecule, with two atoms where each one has an electron in orbital 

1𝑠, gives us a good idea of how the exchange interaction behaves. In this case, the Schrödinger 

equation for two electrons, neglecting the interaction between them, only considering the 

interactions between the electrons and the ion, is given by [78,80]: 

                                [−
ℏ

2𝑚
(
𝜕2

𝜕𝑟1
2 +

𝜕2

𝜕𝑟2
2) −

𝑒2

4𝜋𝜀0
(
1

𝑟1
+
1

𝑟2
)]Ψ(𝑟1, 𝑟2) = 𝐸Ψ(𝑟1, 𝑟2)                  (2.3) 

For this particular case, there are two molecular orbitals (See Fig. 2.1). One orbital is a 

spatially symmetric bonding orbital 𝜙𝑠, with electronic charge piled up between atoms, and a 

spatially antisymmetric antibonding orbital 𝜙𝑎  having a nodal plane with no charge between 

them. The chemical bonds that describe hybridized wave functions of electrons are given by: 

                                          𝜙𝑠 = (
1

√2
) (𝜓1 + 𝜓2)        𝜙𝑎 = (

1

√2
) (𝜓1 − 𝜓2)                                 (2.4) 

Where 𝜓1 e 𝜓2 are spatial components of the individual wave function of electrons 1 and 2, 

respectively. The wave functions 𝜓1(𝑟1) and 𝜓2(𝑟2) are solution of the Schrödinger equation for 

each atom. 

Figure 2.1 – Representation of molecular orbitals of the H2  molecule (adapted from 

https://www.sparknotes.com/chemistry/bonding/molecularorbital/section1/ accessed on 09/20/2021). 

 

 The symmetric and antisymmetric spin functions are known as the singlet and triplet 

states, respectively. In the singlet state: 

𝑆 = 0;      𝑀𝑆 = 0 

https://www.sparknotes.com/chemistry/bonding/molecularorbital/section1/
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                                                           𝜒𝑎 = (
1

√2
) (|↑1↓2⟩ − |↓1↑2⟩)                                                      (2.5) 

In the triplet state: 

𝑆 = 1;      𝑀𝑆 = 1, 0, −1 

                                    𝜒𝑠 = |↑1↑2⟩ ;     (
1

√2
) (|↑1↓2⟩ + |↓1↑2⟩);    |↓1↓2⟩;                                       (2.6) 

  

According to Eq. (2.2), the symmetric spatial function multiplies the antisymmetric spin 

function, and vice-versa. Thus, the wave functions shall be: 

                                                                        Ψ𝐼 = 𝜙𝑠(1,2)𝜒𝑎(1,2)                                                   (2.7𝑎) 

                                                                       Ψ𝐼𝐼 = 𝜙𝑎(1,2)𝜒𝑠(1,2)                                                   (2.7𝑏) 

 When both electrons are in the spin triplet state, there is no possibility to find them in the 

same point in space. That is, electrons with parallel spins repel each other. However, if the 

electrons are in the spin singlet state, with antiparallel spins, there is a non-zero possibility to 

find them in the same point in space. This phenomena occurs because the spatial part of the 

wave function is symmetric under exchange of electrons [78].  

 The energy between these two states may be calculated through the Hamiltonian 

ℋ(𝐫1, 𝐫2) of Eq. (2.3): 

                                       𝐸𝐼,𝐼𝐼 = ∫𝜙𝑠,𝑎
∗ (𝐫1, 𝐫2)ℋ(𝐫1, 𝐫2)𝜙𝑠,𝑎(𝐫1, 𝐫2)𝑑𝑟1

3𝑑𝑟2
3                                   (2.8) 

 For the hydrogen molecule, 𝐸𝐼 < 𝐸𝐼𝐼, due to the spatial restriction of the triplet spin state. 

If we define the exchange integral as ℐ = (𝐸𝐼 − 𝐸𝐼𝐼)/2, it is possible to write the energy in the 

form: 

                                                                  𝐸 = −2 (
ℐ

ℏ2
) 𝐬1 ∙ 𝐬2,                                                           (2.9) 

Where the product 𝐬1 ∙ 𝐬2 =
1

2
[(𝐬1 + 𝐬2)

2 − 𝐬1
2 − 𝐬2

2]. If the spin quantum number 𝑆 = 𝑠1 + 𝑠2 

is 0 or 1, the eigenvalues are −
3

4
ℏ2  or 

1

4
ℏ2 , respectively. Therefore, the energy difference 

between the singlet state, 𝜓𝐼, and the triplet state, 𝜓𝐼𝐼, is 2ℐ. Thus, ℐ is the exchange integral: 
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                                         ℐ = ∫𝜓1
∗(𝐫′)𝜓2

∗(𝐫)ℋ(𝐫, 𝐫′)𝜓1(𝐫)𝜓2(𝐫′) 𝑑𝑟
3𝑑3𝑟′                               (2.10) 

 In the H2 molecule, the singlet state has lower energy, therefore the integral is negative. 

However, in one of the atoms, the orbitals are orthogonal and the exchange integral becomes 

positive.  

Heisenberg generalized the energy expression of Eq. (2.9) for atoms with many electrons 

through his famous Hamiltonian: 

                                                                           ℋ = −2ℐ�̂�1 ∙ �̂�2,                                                         (2.11) 

where �̂�1  and �̂�2  are dimensionless spin operators. The constant ℏ2  was absorbed by the 

exchange constant ℐ , which has unities of energy. Hence, the exchange integral has now 

dimensions of energy. When ℐ > 0 it is said that the interaction is ferromagnetic, so both spins 

tend to align parallelly. However, when ℐ < 0 it is said that the interaction is antiferromagnetic 

and both spins tend to align antiparallelly.  

 In the presence of a lattice, the Hamiltonian is generalized to a sum over all atom pairs 

on lattice sites 𝑖, 𝑗: 

                                                                      ℋ = −2∑ℐ𝑖𝑗
𝑖>𝑗

�̂�1 ∙ �̂�2,                                                   (2.12) 

 This is simplified to a sum with a single exchange constant ℐ with the condition that only 

first neighbor interactions are considered. The interatomic exchange interaction described by the 

Heisenberg’s Hamiltonian can only be ferromagnetic or antiferromagnetic. 

 

2.1.2 Dzyaloshinkii-Moriya (DM) interaction 

 In 1958, Dzyaloshinskii made a model to describe weak ferromagnetism  [81]. Based on 

symmetry concepts, he introduced an asymmetric term which was later known as Dzyaloshinkii-

Moriya interaction. Moriya was able to insert his name on this term because he discovered later 

that the mechanism responsible for this effect is the spin orbit coupling [82]. In a few words, the 

Dzyaloshinskii-Moriya (DM) interaction is induced by the lack of inversion symmetry of the 

compound, and also by a strong spin orbit coupling. 
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 As an example of such material, one may cite the MnSi. In Fig. 2.2 it is possible to see 

that the inversion symmetry is broken inside the unity cell. Moreover, MnSi exhibits a very 

strong spin orbit coupling [83–86]. 

The DM interaction may be represented by the following Hamiltonian [78]: 

                                                                  ℋ𝐷𝑀 = −𝐃 ∙ (𝐒𝑖 × 𝐒𝑗),                                                     (2.13)  

where 𝐃 is a vector along a high symmetry axis (See Fig. 2.3), therefore the tendency is to 

couple both spins perpendicularly. Then, as this expression shows, the DM interaction only 

occurs when there is a misalignment of spins, otherwise ℋ𝐷𝑀 becomes null. 

Figure 2.2 –Crystal structure of MnSi with B20 cubic symmetry, which is noncentrosymmetric, as revealed by the 

fact that inversion operation ( r → − r ) does not produce identical unit (adapted from T. Y. Ou-Yang et. al., J. Phys. 

Condens. Matter 28, 026004 (2015) [87]). 

 

Figure 2.3 – Vector representation of the Dzyaloshinskii-Moriya interaction. Here, 𝐃 is always perpendicular to the 

plane formed by 𝐒1 and 𝐒2 (Adapted from Coey, 2009, page 139). 
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 For the particular case of skyrmions, its formation occurs due to the DM interaction 

being induced by the broken inversion symmetry, or by the interface in magnetic films. For 

ultrathin films, the interfacial DM interaction was predicted [88,89] to occur due to the 

interaction of two atomic spins (𝐒1 and 𝐒2) interacting with a neighbor atom with high spin orbit 

coupling [See Fig. 2.4 (a)]. The resulting vector, 𝐃1,2, of this interaction is perpendicular to the 

triangle plane, as illustrated in Fig. 2.4 (a). Meanwhile, the interfacial DM interaction occurs on 

the interface between a ferromagnetic material (grey) and another material with high spin orbit 

coupling (light blue) as can be seen in Fig. 2.4 (b). 

Figure 2.4 – In (a) a schematic representation of the DM interaction generated by a triangle with two atomic spins 

interacting with an atom with high spin orbit coupling. In (b) a schematic representation of a interfacial DM 

interaction between a ferromagnetic material (grey) and a metal with high spin orbit coupling (SOC) (light blue). 

The DM interaction vector, 𝐃1,2, is always perpendicular to the triangle plane (Adapted from Fert et. al. [9], 2013, 

pg. 153). 

 

 Considering a ferromagnetic state, with 𝐒1 parallel to 𝐒2, the DM interaction tilts 𝐒1 with 

respect to 𝐒2 by a rotation around 𝐃1,2. In a bidimensional ferromagnet, with uniaxial anisotropy 

and a significant DM interaction, the energy is minimized by a skyrmion structure similar to 

what is shown in Fig 2.5 (a), when 𝐃1,2 is perpendicular to 𝐑1,2, or similar to Fig. 2.5 (b), when 

𝐃1,2 is parallel to 𝐑1,2. The skyrmion of Fig. 2.5 (a) is known as Néel, and in Fig. 2.5 (b) known 

as Bloch  [8,9]. 𝐑1,2  is defined as a vector connecting 𝐒1  to 𝐒2  site. The extension of this 

principle to the three dimensional case is analogous, the skyrmion structure is obtained by the 

translation along the anisotropy axis, forming tubes [9]. In most of this work, we consider the 

case of ultrathin chiral magnets where the skyrmions are present in the Neél configuration, 

however, we also simulate the interaction between Bloch skyrmions in bulk samples in section 

15. 

 

 

(a) (b) 
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Figure 2.5 – Representation of the spin orientation in skyrmions. In (a) the Néel skyrmion and in (b) the Bloch 

skyrmion (Adapted from Fert et. al., 2013, pg. 153). 

   

 

2.2 Landau-Lifshitz-Gilbert (LLG) Equation 

The first theoretical approach to study the magnetism inside materials was elaborated by 

Landau and Lifshitz in 1935 [90], where an equation that described the time evolution of 

magnetic moments was deduced for the first time. Later, Gilbert added a damping term to the 

equation in order to consider the spin alignment to the external magnetic field. In this section we 

aim to explain the foundations of the Landau-Lifshitz-Gilbert (LLG) equation for proper use and 

simplification in the particle model section ahead.  

2.2.1 Foundations of Magnetization Precession 

 First, we consider the case of magnetization precession, where in quantum 

mechanics  [79,91] it states that the time evolution of the mean value of the spin operator derives 

from the Schrödinger’s equation using the Ehrenfest theorem [92]: 

                                                                      𝑖ℏ
𝑑

𝑑𝑡
〈𝐒〉(𝑡) = 〈[𝐒,ℋ(𝑡)]〉                                             (2.14) 

If the spin is under the influence of the solo action of a time-dependent external magnetic 

field, the Hamiltonian simply becomes the Zeeman term, 

                                                  ℋ(𝑡) = −
𝑔𝜇𝐵
ℏ
𝐒 ∙ 𝐁(𝑡),        𝐁(𝑡) = 𝜇0𝐇(𝑡)                                 (2.15) 

Now, looking just at the 𝑥 component for instance, we can combine (2.14) and (2.15) as: 

[𝑆𝑥,ℋ(𝑡)] = −
𝑔𝜇𝐵
ℏ
[𝑆𝑥, 𝑆𝑥𝐵𝑥(𝑡) + 𝑆𝑦𝐵𝑦(𝑡) + 𝑆𝑧𝐵𝑧(𝑡)] 

                                                      = −
𝑔𝜇𝐵
ℏ
(𝐵𝑦(𝑡)[𝑆𝑥, 𝑆𝑦] + 𝐵𝑧(𝑡)[𝑆𝑥, 𝑆𝑧]).                                 (2.16) 

(a) (b) 
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By applying the usual commutation rules for spin: 

[𝑆𝑥, 𝑆𝑦] = 𝑖ℏ𝑆𝑧, 

[𝑆𝑦, 𝑆𝑧] = 𝑖ℏ𝑆𝑥, 

                                                                      [𝑆𝑧, 𝑆𝑥] = 𝑖ℏ𝑆𝑦,                                                                (2.17) 

 

It is possible to apply (2.17) into (2.16) to obtain 

                                               [𝑆𝑥,ℋ(𝑡)] = −
𝑔𝜇𝐵
ℏ
𝑖ℏ(𝐵𝑦(𝑡)𝑆𝑧 − 𝐵𝑧(𝑡)𝑆𝑦).                                 (2.18)  

Thus, rewriting (2.14) using (2.18) we came to a conclusion that the expectation value of 

the spin operator is as follows: 

                                                    
𝑑

𝑑𝑡
〈𝐒〉(𝑡) =

𝑔𝜇𝐵
ℏ
(〈𝐒〉(𝑡) × 𝐁(𝑡)).                                                (2.19) 

 

2.2.2 Relation Between Classical Mechanics and Electromagnetism 

The Equation (2.19) calculates the time variation of the expected value of the spin 

operator, however, for the LLG equation it is necessary to calculate how the magnetization 

behaves as a function of time. Thus, to relate the spin and the magnetization it is necessary to 

consider the magnetic dipole moment, 𝐦. In classical mechanics the angular momentum of a 

moving electron can be written as: 

                                                                         𝓛 = 𝑚𝑒(𝐫 × 𝐯),                                                             (2.20) 

where 𝑚𝑒 is the electron mass, 𝐯 is the velocity and 𝐫 the distance between the electron and the 

center of the circular motion, as illustrated in Fig. 2.6 (a). The force exerted on a current element 

(intensity 𝑖 and length 𝑑𝐥) by the applied magnetic field is given by 

                                                                          𝑑𝐅 = 𝑖𝑑𝐥 × 𝐁.                                                              (2.21) 

 Integrating the Eq. (2.21), the torque exerted by 𝐁 on the current loop, with area 𝐴, is 

given by 

                                                              𝛕 = 𝑖𝐀 × 𝐁,        𝐀 = 𝐴�̂�.                                                       (2.22) 
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 In analogy to the torque acting upon a magnetic dipole due to 𝐁, the current loop dipole 

moment is classically defined as  

                                                                                  𝐌 = 𝑖𝐀                                                                   (2.23) 

Figure 2.6 – The relation between the classic angular momentum (a) and the magnetic dipole moment (b) (Adapted 

from B. Hillebrands and K. Ounadjela 2002, pg. 1283). 

 

 The current intensity in the magnetic dipole of a current loop can be written as  

                                                                                  𝑖 =
𝑞𝑒𝑣

2𝜋𝑟
                                                                  (2.24) 

 Substituting Eq. (2.24) into Eq. (2.23) we find that the magnetic moment reads 

                                                                                 𝐌 =
𝑞𝑒
2𝑚𝑒

𝓛.                                                           (2.25) 

Note that 𝐦 is antiparallel to 𝓛 due to negative charge of the electron, 𝑞𝑒, as illustrated in Fig. 

2.6.  

There is a geometric relation between the spin and the magnetization, which is given by 

                                                                                   𝐌 = 𝛾〈𝐒〉,                                                             (2.26) 

where 𝛾 = 𝑔𝜇𝐵/ℏ is known as the gyromagnetic ratio. In the gyromagnetic ratio, 𝑔 ≅ 2 for a 

free electron and 𝜇𝐵 is the Bohr magneton. 

 The previous Eq. (2.19) for the expected mean value of spin can now be rewritten as the 

time variation of the magnetization 

                                                                
𝑑

𝑑𝑡
𝐌(𝑡) = 𝛾[𝐌(𝑡) × 𝐁(𝑡)]                                                 (2.27) 
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As the magnetization is defined as the sum over all individual dipole moments in the 

material, that is, 

                                                                                 𝐌 =
∑ 𝐦𝑖𝑖

𝑉
,                                                            (2.28) 

Then, using 𝛾0 = 𝜇0
𝑔|𝜇𝐵|

ℏ
= −𝜇0𝛾, Eq. (2.27) becomes 

                                                            
𝑑

𝑑𝑡
𝐦(𝑡) = −𝛾0[𝐦(𝑡) × 𝐇(𝑡)],                                              (2.29) 

From Eq. (2.29) it is clear that 𝐦 ∙𝐦 = const. and 𝐦 ∙ 𝐇 = const. As a consequence, 

the modulus of the magnetization remains unchanged during motion and the angle between the 

field and the magnetization also remains constant as a function of time [93]. This equation 

describes a precessional motion of the magnetization around the applied magnetic field, as 

illustrated in Fig. 2.7 (a). 

2.2.3 Introducing the Gilbert Damping Term 

 In ferromagnetic samples it is well known that above certain critical values of applied 

magnetic field the sample is considered saturated, that is, the magnetization is uniform and align 

with the field. Precession alone does not allow us to reach this limit observed experimentally. 

Therefore, the precession equation must include a damping term that makes the magnetization 

align with the field, this is also known as the Gilbert damping parameter [94]. The simplest way 

to introduce this damping term in Eq. (2.29) is to replace the magnetic field, 𝐇, by an effective 

magnetic field including the dissipation term: 

                                                           𝐇eff = 𝐇 − 𝛼
1

𝛾0𝑚𝑠

𝑑𝐦

𝑑𝑡
,                                                           (2.30) 

where 𝑚𝑠  is the saturation magnetization and 𝛼 is the phenomenological damping parameter. 

Substituting Eq. (2.30) into (2.29) we find that 

                                      
𝑑𝐦(𝑡)

𝑑𝑡
= −𝛾0[𝐦(𝑡) × 𝐇(𝑡)] +

𝛼

𝑚𝑠
[𝐦(𝑡) ×

𝑑𝐦(𝑡)

𝑑𝑡
].                            (2.31) 

 The Eq. (2.31) is known as the Landau-Lifshitz-Gilbert (LLG) equation. The damping 

effect on the magnetization is illustrated in Fig. 2.7 (b). As time evolves, the magnetization 
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spirals around the applied magnetic field until it becomes completely align with the external 

field. All torques acting on 𝐦 vanishes. 

Figure 2.7 – Sketch of the time evolution of the magnetic dipole moment (a) in the presence of an applied magnetic 

field and (b) when the damping term is included (Adapted from M. Lashmanam 2011, pg. 1283). 

 

 Using dimensionless variables 𝜏 = 𝛾0𝑚𝑠𝑡 , 𝐧 = 𝐦/𝑚𝑠 , 𝐡 = 𝐇/𝑚𝑠  and rearranging 

terms, the LLG can also be written as: 

                            (1 + 𝛼2)
𝑑𝐧(𝑡)

𝑑𝜏
= −[𝐧(𝑡) × 𝐡(𝑡)] − 𝛼{𝐧(𝑡) × [𝐧(𝑡) × 𝐡(𝑡)]}.                    (2.32) 

This LLG equation is capable to simulate several spin structures inside ferromagnets, 

like bubbles, domain walls, skyrmions, and others. However, when we are interested to simulate 

the dynamic and collective behavior of many skyrmions in large samples, a simulation using the 

LLG equation requires a high computational demand, since it calculates the time evolution of 

each individual local magnetic moment. So, if you are interested in simulating systems with 

multiple skyrmions in large samples, where each skyrmion has several numbers of local 

magnetic moments, a different approach using some approximations may be useful. 

2.3  The Particle Model 

2.3.1     Equation of Motion 

Recently, a new method was developed to calculate the skyrmion dynamics in chiral 

magnets [73]. The model considers skyrmions as rigid point-like objects, which simplifies 

significantly the dynamics and also reduces the computational cost for these simulations. The 

particle model considers the Thiele approximation [72], used to describe the dynamics of 

magnetic solitons. In order to obtain a simplified expression of the equation of motion, the 

model considers a thin film of a chiral magnet with Dzyaloshinskii-Moriya (DM) interaction 
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that supports skyrmions. Magnetic moments are described by the vector 𝐧(𝐫). Thus, starting 

from an action functional for magnetic moments, which can be written as [73,95], 

                                  𝑆 = 𝑆𝐵 −
𝑑𝛼𝑔

𝛾
∫𝑑𝑡𝑑𝑡′𝑑2𝑟 [

𝐧(𝑡) − 𝐧(𝑡′)

𝑡 − 𝑡′
]

2

−∫𝑑𝑡ℋ                               (2.33) 

                                                 𝑆𝐵 = 𝑑∫𝑑
2𝑟𝑑𝑡𝓏† 𝑖 (

1

𝛾
𝜕𝑡 −

ℏ

2𝑒
𝐉 ∙ 𝛁) 𝓏                                          (2.34) 

where 𝓏 ≡ |𝓏⟩ is the coherent spin state defined as 𝐧 ∙ 𝜎|𝓏⟩ = |𝓏⟩. The Pauli matrices has the 

vector represent by 𝜎, 𝑑 is the thickness of the thin film, 𝛼𝑔 is the Gilbert damping term and 𝛾 =

𝑎3/ℏ𝑠, with 𝑎 being the lattice constant and 𝑠 the total spin. The first term, 𝑆𝐵, corresponds to 

the Berry phase [96] for the spin precession in 𝐫 = (𝑥, 𝑦). In a few words, the Berry phase, also 

known as geometric phase, is a phase difference acquired over the course of a cycle. In the first 

term of 𝑆𝐵 in Eq. (2.34), the conducting electrons, provided by the external applied current 𝐉, 

become polarized by the local magnetic moments 𝐧 (See Fig. 2.8). The second term of 𝑆𝐵 is 

responsible for the Berry phase that the electron acquires when passing through a skyrmion and 

interacting with the internal local magnetic moments of the skyrmion. 

Figure 2.8 – Schematic representation of electrons (yellow spheres with an arrow) passing through a skyrmion 

(colorful arrows). The spin of the electron follows the spin texture of the skyrmion as it passes through the 

skyrmion. The black arrows (or dots) are spin projection in the 𝑥 − 𝑦 plane, and the spins in the ferromagnetic state 

are along the 𝑧 axis (mostly in red). (Adapted from Lin, et. al. (2013), page 214419-2). 
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The spin Hamiltonian, ℋ is given by [73,95]: 

                                           ℋ = 𝑑∫𝑑𝐫2 [
𝐽𝑒𝑥
2
(∇𝐧)2 + 𝐷𝐧 ∙ ∇ × 𝐧 − 𝐇𝑎 ∙ 𝐧].                             (2.35) 

In this Hamiltonian the first term is the Heisenberg exchange interaction, the second term is DM 

and the third is the Zeeman energy, where 𝐇𝑎 is the external magnetic field, which is normal to 

the film surface. Skyrmions are present in systems that follow Eq. (2.35) when the magnetic 

field has values 0.2𝐷2/𝐽 < 𝐻𝑎 < 0.8𝐷2/𝐽  [62].  

 According to expressions in Eq. (2.34) and (2.35), the spin dynamics is governed by the 

Landau-Lifshitz-Gilbert (LLG) equation as [29,97]: 

                                            𝜕𝑡𝐧 =
ℏ𝛾

2𝑒
(𝐉 ∙ ∇)𝐧 − 𝛾𝐧 × 𝐇𝑒𝑓𝑓 + 𝛼𝑔𝜕𝑡𝐧 × 𝐧                                    (2.36) 

Note that Eq. (2.36) is similar to Eq. (2.32) from previous section where we describe the LLG 

equation, however, in the present case the interaction with the conducting electrons from the 

applied transport current, 𝐉, is added. The effective field is given by 𝐇𝑒𝑓𝑓 ≡ 𝛿ℋ/𝛿𝐧. In metallic 

chiral magnets, skyrmion motion gives rise to electric fields, therefore inducing a dissipating 

current 𝐉𝑑𝑖𝑠𝑠 = 𝜎ℏ[𝐧 ∙ (∇𝐧 × ∂t𝐧)]/2𝑒, where 𝜎 is the conductivity [98]. In insulating materials, 

the dissipating current is null, because 𝜎 = 0. Thus, the current density in Eq. (2.36) is given by 

𝐉 = 𝐉𝐵 + 𝐉𝑑𝑖𝑠𝑠, where 𝐉𝐵 is the external applied current. 

2.3.2    Considerations for the Particle Model 

 The expressions shown in Eq. (2.33) to (2.36) are sufficient to describe the skyrmion 

motion in chiral magnets, including their internal deformations due to the application of the 

external current, interaction with other skyrmions or possible obstacles. On the other hand, it is 

also possible to derive a particle model in which the internal deformations are small enough, that 

is, it is assumed a rigid internal structure. Furthermore, it is also necessary to consider that the 

skyrmion density is sufficiently low so that there is no superposition of skyrmion spin textures. 

In this case, spins precess collectively when a rigid skyrmion moves with velocity 𝐯 . The 

internal structure of the skyrmion becomes irrelevant under these circumstances, which are 

satisfied in the low velocity regime for certain magnetic fields [75,98]. Hence, the spin magnetic 

moments can be described as 𝐧𝑠(𝐫 − 𝐯𝑡), and its evolution is governed by the LLG equation 

                                           𝜕𝑡𝐧𝑠 =
ℏ𝛾

2𝑒
(𝐉 ∙ ∇)𝐧𝑠 − 𝛾𝐧𝑠 × 𝐇𝑖 + 𝛼𝑔𝜕𝑡𝐧𝑠 × 𝐧𝑠.                                (2.37) 
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Here, 𝐇𝑖 = 𝐇𝑠 + 𝐇𝑑, with 𝐇𝑠 as the magnetic field produced by other skyrmions, and 𝐇𝑑 the 

magnetic field produced by the defects in the sample. The effective field 𝐇𝑒𝑓𝑓 = 𝛿𝓗/𝛿𝐧𝑠 due 

to the skyrmion 𝐧𝑠 does not contribute to 𝐇𝑖, because 𝐇𝑒𝑓𝑓 × 𝐧𝑠 = 0 for a rigid skyrmion. If 

both sides of Eq. (2.37) are multiplied by × 𝐧𝑠, then by ∙ 𝜕𝜇𝐧𝑠 and integrate over the skyrmion 

area, we find that 

                                         𝛼𝐯 =
𝛾

4𝜋
[𝐅𝑀 + 𝐅𝐷 +∫𝑑𝑟

2𝐇⊥(𝐫 − 𝐫
′) ∙ ∇𝑟𝐧𝑠(𝐫)],                             (2.38) 

where 𝐇⊥  is the component of the magnetic field which is perpendicular to 𝐧𝑠  and using 

∫𝑑𝑟2𝜕𝑥𝐧𝑠 ∙ 𝜕𝑦𝐧𝑠 = 0 for a rigid skyrmion. The potential of the interaction between a skyrmion 

in 𝐫 and another skyrmion in 𝐫′ is 

                                        𝑈𝑠𝑠(𝐫 − 𝐫
′) = −∫𝑑𝑟′′

2
𝐧𝑠(𝐫 − 𝐫

′′) ∙ 𝐇𝑠(𝐫
′ − 𝐫′′),                             (2.39) 

 and the corresponding force is 

                                     𝐅𝑠𝑠 = −∇𝑈𝑠𝑠 = ∫𝑑𝑟
′′2∇𝑟𝐧𝑠(𝐫 − 𝐫

′′) ∙ 𝐇𝑠,⊥(𝐫
′ − 𝐫′′).                          (2.40) 

The self-energy of the skyrmion in the presence of defects is given by  

                                           𝐸𝑠(𝐫 − 𝐫
′) = −∫𝑑𝑟′′

2
𝐧𝑠(𝐫 − 𝐫

′′) ∙ 𝐇𝑑(𝐫
′ − 𝐫′′),                            (2.41) 

where 𝐇𝑑(𝐫) = 𝐽𝑒𝑥(𝐫)∇
2𝐧𝑠/2 − 𝐷(𝐫)∇ × 𝐧𝑠 + 𝐁. Thus, the corresponding pinning force is 

                                           𝐅𝑑 = −∇E𝑠 = ∫𝑑𝑟
′′2∇𝐧𝑠(𝐫 − 𝐫

′′) ∙ 𝐇𝑑,⊥(𝐫
′ − 𝐫′′).                         (2.42) 

Hence Eq. (2.38) can be reduced if we substitute the integral by the corresponding forces shown 

in Eq. (2.41) and (2.42), as shown in Eq. (2.43). 

                                       
4𝜋𝛼

𝛾
 𝐯𝑖 = 𝐅𝑀 + 𝐅𝐷 +∑𝐅𝑠𝑠(𝐫𝑗 − 𝐫𝑖)

𝑗

 +∑𝐅𝑑(𝐫𝑗 − 𝐫𝑖)

𝑗

                     (2.43) 

where 𝐯𝑖 is the velocity of the 𝑖th skyrmion, the term on the left is related to the damping due to 

the precession of the spin and due to the conducting electrons present in the skyrmion core. The 

driving force 𝐅𝐷 = 2𝜋ℏ𝑒−1�̂� × 𝐉  that acts on the skyrmion due to the presence of the spin 

polarized current. 𝐅𝑀 = 4𝜋𝛾
−1�̂� × 𝐯i is the Magnus force per unit length, and it is perpendicular 
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to 𝐅𝐷. 𝐅𝑑 is the force between skyrmions and the defects present in the sample. 𝐅𝑠𝑠 is the force 

between a pair of skyrmions. In the case of thin films, skyrmions are always straight in the 

direction normal to film surface and all forces are defined by unit of length. 

Throughout this work we consider the adiabatic spin transfer torque described in the form of 

ℏ𝛾(𝐉 ∙ ∇)𝐧/(2𝑒) in Eq. (2.37). In some cases it may also exist a nonadiabatic spin transfer 

torque  given by the expression −𝜁ℏ𝛾𝐧 × (𝐉 ∙ ∇)𝐧/(2𝑒)  [99]. If this is the case, the expression 

Eq. (2.43) may be adjusted by introducing the nonadiabatic term 𝐅𝑛𝑜𝑛 = 2𝜋ℏ𝜁𝜂𝑒−1𝐉𝐵, where 𝐉𝐵 

is the applied external current. Thus, the particle-model with nonadiabatic spins transfor torque 

becomes: 

                             
4𝜋𝛼

𝛾
 𝐯𝑖 = 𝐅𝑀 + 𝐅𝐷 + 𝐅𝑛𝑜𝑛 +∑𝐅𝑠𝑠(𝐫𝑗 − 𝐫𝑖)

𝑗

 +∑𝐅𝑑(𝐫𝑗 − 𝐫𝑖)

𝑗

                 (2.44) 

2.3.3    Interaction between Skyrmions and interaction with Defects 

 In order to calculate the interaction between skyrmions and defects, first it is necessary to 

comprehend the skyrmion structure. An isolated skyrmion is described as 𝐧𝑠(𝑟, 𝜙) = sin 𝜃 �̂� +

cos 𝜃 �̂� in polar coordinates, with �̂� and �̂� as the unit vectors  [73,100]. The function 𝜃(𝑟) below 

[Eq. (2.45)] is determined minimizing the Hamiltonian ℋ from Eq. (2.35), using the boundary 

conditions 𝜃(𝑟 = 0) = 𝜋  and 𝜃(𝑟 → ∞) = 0 . The distances 𝑟  are renormalized to 𝑟 →

𝑟/(𝐽𝑒𝑥/𝐷), and 𝛽 = 2𝐻𝑎𝐽𝑒𝑥/𝐷
2. The profile of 𝜃(𝑟) is illustrated in Fig. 2.9. 

                                 −𝑟𝜕𝑟
2𝜃 − 𝜕𝑟𝜃 + cos(2𝜃) +

sin(2𝜃)

2𝑟
+
𝛽

2
𝑟 sin 𝜃 − 1 = 0                          (2.45) 

Figure 2.9 – Profile of 𝜃(𝑟) obtained through a numerical solution of Eq. (2.45) for different values of applied 

magnetic field. (From Lin, et. al. (2013), page 214419-4) 
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There are two scales related to the skyrmion, 𝜃 decreases exponentially with 𝑟 for values 

in which 𝑟 ≪ 1, meanwhile the asymptotic solution far from the skyrmion center, 𝑟 → ∞ is 

𝜃~𝐾0(𝑟/𝜉), where 𝜉 is the skyrmion core radius. 

The interaction between skyrmions is the result of the overlapping of spins textures. 

When skyrmions are far apart, the interaction is mediated by and exchange of massive magnons. 

In this linear region the skyrmion interaction is pairwise. As can be seen in Fig. 2.10, the 

interaction decays exponentially with 𝑟𝑑 and can be well described by 𝐹𝑠𝑠~𝐾1(𝑟𝑑/𝜉). When the 

separation between skyrmions is reduced so that the distance is comparable to the size of the 

skyrmion itself, the interaction is induced by the overlapping of the nonlinear cores. In this 

situation, the interaction is nonlinear, and in principle, there is many-body interaction between 

skyrmions. To calculate the interaction among skyrmions at an arbitrary distance, it was 

calculated the energy of the system by fixing two skyrmions at a separation 𝑟𝑑 by freezing the 

spins within radius 𝑟𝑑 ≤ 𝐽𝑒𝑥/𝐷. As can be seen in Fig. 2.10, the interaction among skyrmions is 

repulsive. 

Figure 2.10 – Force between two skyrmions as a function of the distance between them, 𝑟𝑑, using two different 

applied magnetic fields. The dots of both curves, represented as black triangles and red circles, are obtained through 

a numerical solution of Eq. (2.37) and the lines are the fit using 𝐾1(𝑟𝑑/𝜉). In the inset there is a static skyrmion 

configuration at a distance of 𝑟𝑑 = 3.6𝐽𝑒𝑥/𝐷. The vectors show 𝑛𝑥 and 𝑛𝑦 and the color scale shows 𝑛𝑧. (From Lin, 

et. al. (2013), page 214419-4)  

 

Next, we consider the case where skyrmions interact with defects present in 

inhomogeneous samples. Thus, we assume an inhomogeneous electron density, which gives rise 

to an inhomogeneous exchange interaction 𝐽𝑒𝑥  produced by the double-exchange mechanism. 

The defect is modeled following the profile of 𝐽𝑒𝑥  [73,100]: 
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                                                 𝐽𝑒𝑥(𝑟) = 𝐽0 (1 + ∑𝐽𝑑 exp [−
|𝐫 − 𝐫𝑑,𝑖|

𝜉𝑑
]

𝑖

),                                 (2.46) 

where 𝜉𝑑 is the size of the defect and it is comparable to the interatomic separation. The distance 

between the skyrmion and the center of the pinning potential is given by |𝐫 − 𝐫𝑑,𝑖|, and 𝐽𝑑 

represents the strength of the defects. Normally, skyrmion in the presence of pinning may 

deform to adapt to the pinning potential. For weak pinning case, this deformation is very small 

and we can still use the approximation of a rigid-body skyrmion. Thus, the pinning energy is the 

self-energy of skyrmion [See Eq. (2.41)] using 𝐽𝑒𝑥(𝑟) described in (2.46). It was used two 

methods to calculate the pinning energy of a skyrmion. First, it was obtained a stationary 

skyrmion structure from Eq. (2.46) by using a uniform distribution of 𝐽𝑒𝑥(𝑟), that is, 𝐽𝑑 = 0. 

Then, calculated the self-energy of a skyrmion using 𝐽𝑒𝑥(𝑟) by holding the spin at the center of 

the skyrmion fixed in order to pin the skyrmion at a desired location. Both results are in a good 

agreement with each other (see Fig. 2.11). The pinning for large separation can be fitted by 

𝐹𝑑~𝐽𝑑 exp(−𝑟𝑑/𝜉𝑑). The results show that the force is repulsive for 𝐽𝑑 > 0 and attractive for 

𝐽𝑑 < 0. The pinning force decreases exponentially with the decay length determined by 𝜉𝑑. The 

nonuniformity of the electron density in real solids is of the order of interatomic length, 

𝜉𝑑~0.1 nm, that is much smaller than the size of a typical skyrmion. Thus, the interaction of 

pinning centers and skyrmions is very weak. 

Figure 2.11 – The force between a skyrmion and a defect for different size and strength of the defect. Lines are 

results obtained by numerical solutions of Eq. (2.35) and (2.36). The symbols are results assuming the skyrmion to 

have a rigid internal structure. (From Lin, et. al. (2013), page 214419-4)  
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 In most of this work we consider the particle model of Eq. (2.44) to simulate the 

skyrmion dynamical behavior in chiral magnets thin films. We focus on cases where there is a 

single, or multiple skyrmions in a sample with periodic arrays of obstacles. Further details will 

be discussed in the Model section. 

2.4 Skyrmion Dynamics 

One of the most interesting aspects of skyrmions is that they can be moved through the 

application of an external transport current, moreover, this process has low energy cost 

comparable to magnetic domain walls, for example. The skyrmion lattice motion was observed 

in very early experiments. In 2010, Jonietz et. al. [10] detected  a current-induced rotation of the 

skyrmion lattice in MnSi, and in 2012 it was observed a current-induced flow regime of 

skyrmions in FeGe [68]. A general feature that can be observed in the skyrmion motion is the 

coexistence of a longitudinal motion (which follows the direction of the applied drive) and a 

transverse motion due to gyroscopic forces induced by the skyrmion topology. As shown in Fig. 

2.12 (a), in the transient regime (where 𝑇 < 0.1ns) the skyrmion exhibits both components, the 

longitudinal and tranversal motion [8,101]. However, as this sample is a nanotrack, the 

transversal motion [also known skyrmion Hall effect (SHE)] is counterposed by the skyrmion-

edge interaction, which is repulsive. As a result, the skyrmion keeps on track and has only 

longitudinal motion and the velocity depends on the applied current density. The direction of the 

longitudinal motion depends both on the chirality of the skyrmion and on the sign of the spin 

Hall angle in the metal. The deflection of the skyrmion in the transverse direction depends on 

the polarization in the skyrmion center (up or down). In the nanotracks as shown in Fig. 2.12 (a) 

the skyrmion can only be on track if the applied current densities are sufficiently low. If higher 

currents are applied, the skyrmion can reach the edge, slide along it and be expelled [8,101]. 

The current-induced motion of skyrmions can be well described using the Thiele 

equation for magnetic solitons [72]: 

                                                                         𝐅 + 𝐆 × 𝐯 + 𝛼𝐷𝐯 = 0,                                                 (2.47) 

where 𝐅 is the force exerted by the spin Hall effect, 𝐆 is the gyrovector oriented along the out-

of-plane direction and proportional to the skyrmion number, 𝐯 is the velocity of the soliton, 𝛼 is 

the damping parameter, and 𝐷  is the dissipative tensor that can be calculated following the 

skyrmion parameters [71,72,101,102]. Following the Thiele’s approach, the skyrmion Hall 

effect (SHE) induced longitudinal (𝑣𝑥) and transversal (𝑣𝑦) can be expressed as: 
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                                                                        𝑣𝑥 =
𝛿

1 + 𝛿2
𝐅

𝐺𝑧
,                                                             (2.48) 

                                                                        𝑣𝑦 =
1

1 + 𝛿2
𝐅

𝐺𝑧
,                                                             (2.49) 

                                                            𝜃𝑆𝐻𝐸 = atan (|
𝑣𝑦

𝑣𝑥
|) = atan (

1

𝛿
).                                           (2.50) 

Where 𝛿 = 𝛼𝐷𝑥𝑥/𝐺𝑧. The most important features of the skyrmion motion can be derived using 

the Thiele’s approach. Another interesting feature is the skyrmion dynamics as a function of the 

skyrmion size. The skyrmion radius 𝜉 is defined as the radius of the circle with zero out-of-plane 

magnetization. If 𝜉 is considerably larger than Δ, where Δ = √𝐴/𝐾, 𝐴 is the exchange stiffness 

and 𝐾 is the out-of-plane anisotropy, the resulting dependence of the skyrmion Hall angle and 

the longitudinal and transverse velocities on 𝜉 and 𝛼 can be seen in Fig. 2.12 (b). Note that in 

the present thesis, we use the particle-model for skyrmion, in which skyrmions are considered 

point-like objects, thus in our case here it is considered low values of 𝜉/Δ. 

Figure 2.12 – (a) The skyrmion motion in a nanotrack. Initially in the transient regime the skyrmion moves with 

both transverse and longitudinal velocities, then the trajectory is bended due to the repulsion of the sample edge. 

(From Sampaio et. al. (2013), page 842). (b) The skyrmion Hall angle, 𝜃𝑆𝐻, versus the skyrmion size 𝜉/Δ. (Adapted 

from Fert et. al. (2017), pg. 8). 

 

 

 One of the first and more important works concerning skyrmion dynamics and 

interaction with randomly placed defects in the sample was done by Iwasaki et. al. in 2013 [29]. 

One of the main results in this work was the discovery of a universal current-velocity relation 

and understanding the details of skyrmion deformation and shape adjustment as it moves 

through the sample. Using the LLG equation, Iwasaki et. al. calculated the current-velocity 

curves for both spins textures phases, the helical phase (HL) and also the skyrmion crystal phase 

(a) 

(b) 
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(SkX). In Fig. 2.13 it is shown the average velocities, 𝑣∥, parallel to the applied current density, 

𝐣, as function of the current density magnitude 𝑗 for both HL and SkX phases with different 

values of 𝛽 . The average velocities of the skyrmion lattice and the helical domains are 

calculated using emergent electric fields. 𝛽 is a parameter in the LLG equation that describes the 

coupling between spin-polarized current and local magnetic moments due to non-adiabatic 

effects. As can be seen clearly, the SkX phase has a universal current-velocity curve. 

Meanwhile, the helical phase exhibit very different behaviors according to the parameters used, 

which is similar to the case ferromagnetic domain walls [103]. 

Figure 2.13 – Current-velocity curves, 𝑣∥ vs. 𝑗, for the helical (HL) and skyrmion crystal (SkX) phases. The clean 

case is when 𝑥 = 0, where 𝑥 is the impurity concentration. The dirty case when 𝑥 = 0.1%. Lines for the SkX phase 

are all the same, while for HL phase it greatly depends on the parameters (From Iwasaki et. al. (2013), pg 3).  

 

 The effects of impurities in the system are also considered and can also be seen in Fig. 

2.13. In Fig. 2.14 the effects of the impurities can be clearly seen in the spin textures of the 

sample, where snapshots of magnetizations in the moving HL (a,b) and SkX (c,d,e) phases can 

be seen. The impurity positions are marked as green dots. In the HL case, due to the line-shaped 

spin arrangements the impurities can never be avoided, so the impurities always act on the HL 

dynamics, distorting its shape. The motion of the skyrmion crystal phase is completely different. 

Skyrmions can avoid being trapped by the impurities. Skyrmions can distort their triangular 

arrangement and also modify individually their shape for smoother motion. This may allow 

small fluctuations in the collective skyrmion velocity, but it is much reduced when compared to 

the helical phase bumping in all impurities. 
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Figure 2.14 – Snapshots of magnetizations profile for select cases. (a) Helical phase (HL) with 𝑡 = 4.55 × 10−8s. 

(b) HL with 𝑡 = 4.87 × 10−8s . (c) Skyrmion crystal (SkX) with 𝑡 = 1.30 × 10−8s . (d) SkX with 𝑡 = 2.60 ×

10−8s. (e) SkX with 𝑡 = 4.87 × 10−8s. In (f) a magnified view of (d) where the skyrmion distortion passing 

through the impurities can be seen. (From Iwasaki et. al. (2013), pg 3).  

 

 Since then, many researches have been conducted trying to further understand the 

skyrmion dynamics and also searching for possible ways to control the skyrmion motion in the 

sample. There are many different ideas on how to address skyrmion motion, some of them try to 

control using magnons or temperature gradients [104–106], strain gradients [107], magnetic 

field gradients [108,109], ferromagnetic-superconductor heterostructure [110], but most of them 

focus on the sample interface [71,101,111], using pinning center arrays  [39,40,64,77,112–114] 

or periodic substrates [32–34]. This thesis aims to collaborate on the understanding of skyrmion 

dynamics and control using periodic pinning, hence, in the next section we review some 

important results of skyrmion dynamics using pinning centers. 
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3 Skyrmions Interacting with Substrates: A Review 

In this section we aim to review some important results concerning skyrmions interacting 

with pinning centers. The idea to use pinning centers as an effective way to control skyrmions 

has its origins on previous works that investigated particles interacting with pinning centers, like 

colloids [13,115] and superconducting vortices [116–120]. The main difference is that in the 

case of skyrmions there is a strong Magnus component that modifies significantly the dynamics, 

thus new dynamic studies were necessary. 

3.1 Skyrmions with Random Disorder 

One of the first works to address skyrmions interacting with random disorder was made 

to examine the static and driven phases of skyrmions [26]. It was shown that the depinning 

threshold is reduced due to the Magnus term. Moreover, the skyrmion hall angle is dependent to 

the external drive. 

Using the particle model described in section 2.3 it was calculated the force curves for 

this system. In the particle-model, the force curves are analogous to the current-velocity curves 

found with LLG model and in experiments [29,102,121]. As an illustration of the skyrmion 

motion in random disorder, Fig. 3.1 shows the skyrmion trajectory while moving through the 

disorder using a pinning force of 𝐹𝑃 = 0.03 and driving force 𝐹𝐷 = 0.0125 [26]. Note that due 

to the strong Magnus component, the skyrmion exhibit a series of spiral and curvy motion. In 

systems where the Magnus force is negligible, the particle moves almost directly to the center of 

the pin and remains trapped, however, for skyrmions with strong Magnus components they may 

circle around the inner edge of the pin. 

Figure 3.1 –Illustration of skyrmion (red circles) and the pinning centers randomly placed (blue circles). The black 

line is a selected skyrmion trajectory as it moves through the sample and interact with pinning centers. (From 

Reichhardt et. al. (2015), pg 217202-2  [26]).  
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 In Fig. 3.2 it is shown how the skyrmion hall angle is affected by the random pinning. In 

Fig. 3.2 (a) it is plotted the skyrmion average velocity along the drive direction, 〈𝑉𝑑𝑟𝑖𝑣𝑒〉, and the 

transversal velocity component, 〈𝑉⊥〉 as a function of the applied drive, 𝐹𝐷. For very low drives, 

𝐹𝐷 < 0.00625 the skyrmions are disordered and trapped in the pinning sites. Just above the 

depinning, 〈𝑉𝑑𝑟𝑖𝑣𝑒〉 ≈ 〈𝑉⊥〉, so that the skyrmion Hall angle is about 𝜃𝑠𝑘 = 45°, which is much 

less than the clean-limit value. The clean-limit value is the intrinsic skyrmion Hall angle (𝜃𝑠𝑘
𝑖𝑛𝑡), 

that is, the angle that the skyrmion would move respective to the applied drive if there were no 

impurities in the sample. For this particular system, 𝜃𝑠𝑘
𝑖𝑛𝑡 = 84.25° in the clean-limit.  

Figure 3.2 – (a) 〈𝑉𝑑𝑟𝑖𝑣𝑒〉 and 〈𝑉⊥〉 as a function of the external drive 𝐹𝐷. Inset: Skyrmion Hall angle, 𝜃𝑠𝑘 vs. 𝐹𝐷. (b) 

Corresponding 〈𝑉𝑑𝑟𝑖𝑣𝑒〉 and the fraction of sixfold coordinate particles 𝑃6 vs. 𝐹𝐷. (From Reichhardt et. al. (2015), pg 

217202-3  [26]).  

 

 As the applied drive is increased, 〈𝑉𝑑𝑟𝑖𝑣𝑒〉  decreases and 〈𝑉⊥〉  increases, so that the 

skyrmion Hall angle approaches the clean-limit value, as can be seen in the inset of Fig. 3.2 (a). 

In this high drive regime, skyrmions reorder into a moving crystal phase. In Fig. 3.2 (b) it is 

plotted the fraction of sixfold coordinate particles, 𝑃6, as a function of the drive 𝐹𝐷. The 𝑃6 is a 

measurement that helps looking for order in an arrangement of particles, if 𝑃6 = 1 the particles 

are perfectly ordered in a hexagonal lattice. As can be seen in Fig. 3.2 (b), 𝑃6 reaches its lowest 

level near the depinning of skyrmions, when they are most disordered. However, it reaches 𝑃6 =

1 very quickly around 𝐹𝐷 ≅ 0.03, indicating the dynamical reordering.  

(a) 

(b) 
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 Concerning the skyrmion dynamic phases in random disorder, in Fig. 3.3 it is plotted a 

dynamical phase diagram highlighting static and dynamic phases as 𝐹𝐷 and 𝐹𝑃 is varied. The 

pinning force is very important for this system. In the weak pinning regime, skyrmions form a 

pinned triangular crystal (PC) which depins elastically to a moving crystal phase (MC) for 

increasing 𝐹𝐷. However, if the pinning force is increased skyrmion may form an amorphous 

pinned skyrmion glass (PG) which depins plastically into a fluctuating moving skyrmion liquid 

(ML). The lower inset of Fig. 3.3 shows the structure factor 𝑆(𝐤) = 𝑁𝑠
−1|∑ 𝑒−𝑖𝐤∙𝐫𝑖

𝑁𝑠
𝑖=1 |

2
 for the 

ML phase, where 𝑁𝑠  is the number of skyrmions. As the external drive, 𝐹𝐷 , increases the 

skyrmion dynamically reorder into the moving crystal with sixfold ordering, as illustrated by the 

superior inset of Fig. 3.3. The phase diagram is very similar to the superconducting vortex case 

in random disorder [122], however skyrmions rearrange themselves into a moving crystal phase, 

and vortices rearrange into a smectic phase. In the skyrmion case, additional fluctuations terms 

due to the Magnus term reduces the transverse pinning, allowing the skyrmions to form a more 

isotropic moving structure [26]. 

Figure 3.3 – The dynamical phase diagram of 𝐹𝐷 vs. 𝐹𝑃 highlighting the different static and moving phases. PC is 

pinned crystal, PG is pinned amorphous glass, ML is moving liquid and MC is moving crystal. Circles represent 

elastic depinning from PC to MC; squares represent plastic depinning from PG to ML; triangles are dynamical 

ordering from ML to MC. Upper inset is structure factor for skyrmion positions in the MC phase and lower inset is 

the structure factor for the ML phase. (From Reichhardt et. al. (2015), pg 217202-3  [26]).  

 

Experimental observations of plastic flow as a function of the external drive have been 

made recently with direct imaging for room temperature skyrmion in thin films [123]. The 

skyrmion trajectories show a mix of moving skyrmions and some pinned skyrmions along with 
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some channels or rivers in which skyrmions flow nicely. In Fig. 3.4 it is shown the real image 

and some processed images of the skyrmion motion. Interestingly the skyrmion motion in these 

images are slightly similar to what was observed experimentally in superconducting vortices 

near the depinning transition in random substrates [124]. As the tracking of individual skyrmion 

is difficult using static images of before and after a pulse of current, the authors decided to 

process the image for a better visualization. In Fig. 3.4 (b) is the processed image of 3.4 (a), 

where the white regions are skyrmions. Figs. 3.4 (c) – (f) show the main motion that results after 

4 pulses of current, where the pinned skyrmions are white regions, and the purple regions the 

channels of motion. 

Figure 3.4 – Current induced motion of dipole skyrmions in room temperature experiments with Ta (5 nm)/[Fe 

(0.34 nm)/Gd (0.4 nm)] × 100/Pt (3 nm). (a) Raw image of x-ray microscopy of a closed-pack skyrmion lattice. (b) 

Processed image where the white regions represent the skyrmions. (c,d,e,f) processed images of the skyrmion lattice 

after 4 pulses of applied current, the white regions represent the pinned skyrmions and the purple are the riverlike 

motion of skyrmions. (From Montoya et. al. (2018), pg 104432-5  [123]).  

 

Both experimental and theoretical results show very clearly that skyrmion motion in 

random disorder may exhibit plastic flow. Moreover, in theoretical results, for higher applied 
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drives it can reorder into a moving crystal phase. Another interesting feature is that in the 

presence of random pinning skyrmion may have different skyrmion Hall angles depending on 

the applied drive. This opened the first insights on how the skyrmion behaves under the 

influence of pinning. 

3.2 Skyrmions in Periodic Substrates 

 When a periodic array of pinning centers is used, new type of phenomena emerges from 

the skyrmion dynamics. In this section we are going to discuss some previous important results 

concerning skyrmions with periodic pinning. One of the first works was made by Reichhardt et. 

al. [39] that considered a single skyrmion interacting with a square array of obstacles. Obstacles 

are repulsive potentials to skyrmions.  Due to the periodic array of defects, the skyrmion Hall 

angle exhibit quantized values as a function of the applied external drive. Moreover, for a square 

array the quantized angles follow the rule 𝜃𝑠𝑘 = atan (
𝑛

𝑚
), where 𝑚  and 𝑛  are integers. For 

example, a skyrmion moving with 𝜃𝑠𝑘 = 45° corresponds to the skyrmion moving one lattice 

constant in the 𝑦 direction (𝑛 = 1) and one lattice constant in the 𝑥 direction (𝑚 = 1). In Fig. 

3.5 we show the velocity curves and the 𝑅 curve as a function of the applied drive, 𝐹𝐷. In this 

plot, 𝑅 is analogous to the skyrmion Hall angle curve, where 𝜃𝑠𝑘 = atan𝑅 and the applied drive 

is always in the 𝑥 direction. In this system it is used a rate of 𝛼𝑚/𝛼𝑑 as a free parameter, where 

𝛼𝑚 is the Magnus and 𝛼𝑑 is the damping constant. The intrinsic Hall angle can be found using 

𝜃𝑠𝑘
𝑖𝑛𝑡 = atan(𝛼𝑚/𝛼𝑑) = atan 0.45 = 24.23°. 

Figure 3.5 – (a) The average velocity curves, 〈𝑉∥〉 and 〈𝑉⊥〉, as a function of the applied driving force 𝐹𝐷 for a 

system using 𝛼𝑚/𝛼𝑑 = 0.45. 〈𝑉∥〉 is the velocity parallel to the applied drive and 〈𝑉⊥〉 is perpendicular. (b) The 𝑅 

curve as a function of the applied drive 𝐹𝐷. The velocity dips are related to a change in the skyrmion direction of 

motion. The dashed line in (a) represents null velocities and in (b) it represents the intrinsic skyrmion Hall angle.  

(From Reichhardt et. al. (2015), pg 104426-4  [39]).  

 



44 
 

 
 

From Fig. 3.5 the velocity dips are related to changes in the skyrmion direction of 

motion. These transitions are characterized by a decreasing in the velocity, giving rise to a 

negative differential mobility. Hence, these steps of stabilized motion enable a controlled motion 

for skyrmions, since for a certain range of applied transport force the skyrmion is locked in a 

certain direction. This phenomenon is known as directional locking and has been extensively 

studied for overdamped particles [13–15,115]. However, in overdamped particle systems the 

angle of the external drive must change with respect to the symmetry direction of the substrate 

in order to produce these locking steps, but for the skyrmion just an increase in the external 

drive is sufficient enough, due to the Magnus term. Note that for 𝐹𝐷 > 2.5, the skyrmion moves 

with a skyrmion Hall angle higher than the intrinsic Hall angle. This is another interesting 

feature that periodic arrays of obstacles can induce in the system. Due to the ordering of 

obstacles, skyrmions are forced to move with higher angles, as can be seen in Fig. 3.5 (b). 

In Fig. 3.6 it is shown some selected skyrmion trajectories for the system of Fig. 3.5. In 

Fig. 3.6 (a), for low drives, the skyrmion is moving with 𝜃𝑠𝑘 = 0° and as 𝐹𝐷  increases more 

possible types of motion occur, including a higher angle than the intrinsic angle, as shown in 

Fig. 3.6 (d). 

Figure 3.6 – Illustrations of skyrmion trajectories for the system of Fig. 3.5. The skyrmion is represented as a red 

dot, its trajectories as lines and the obstacles maxima as black dots. In (a) 𝑅 = 0/1, (b) 𝑅 = 1/4, (c) 𝑅 = 2/5 and 

(d) 𝑅 = 1/2. (From Reichhardt et. al. (2015), pg 104426-4  [39]).  
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Figure 3.7 – (a) The average velocity curves, 〈𝑉∥〉 and 〈𝑉⊥〉 and 𝑅 curve, as a function of the applied driving force 

𝐹𝐷  for a system (a,c) using 𝛼𝑚/𝛼𝑑 = 4.925 and (b,d) using 𝛼𝑚/𝛼𝑑 = 9.962. 〈𝑉∥〉 is the velocity parallel to the 

applied drive and 〈𝑉⊥〉 is perpendicular.  (From Reichhardt et. al. (2015), pg 104426-6  [39]).  

 

The force-velocity curves also depend strongly on the rate 𝛼𝑚/𝛼𝑑 . In Fig. 3.7 it is 

illustrated some velocity curves for systems with 𝛼𝑚/𝛼𝑑 = 4.925 and 𝛼𝑚/𝛼𝑑 = 9.962. As can 

be seen, these systems exhibit several new skyrmion directions of motion due to the stronger 

Magnus term that induces a higher intrinsic skyrmion Hall angle. The rate 𝛼𝑚/𝛼𝑑  can be 

understood as skyrmions in different samples, where the samples have distinct values of 𝐷/𝐽. 

For different Dzyaloshinskii-Moriya strengths, the skyrmion can exhibit different sizes and, 

therefore, different dynamics. 

Recently, Feilhauer et. al. [125] studied the effects of damping in the skyrmion motion 

under the influence of a magnetic antidot array. Using micromagnetic simulations and Thiele’s 

approach, it was found that directional locking effects can also emerge for varied damping 

values in the system. Also, skyrmions can be guided to move into plaquettes, that is, regions 

between the magnetic antidots by simply adjusting current pulses intensity and intervals of 

pulse, Δ𝑡. In Fig. 3.8 it is shown the results of the skyrmion behavior in a damping free scenario 

under the influence of the current pulses. In Fig. 3.8 (a) the pulse is not strong enough, so the 

skyrmion just follows a closed isoenergy counter loop. In Fig. 3.8 (b) the pulse is stronger and 

the skyrmion is trapped in a closed orbit around the obstacle. For stronger pulses the skyrmion 

move from a valley to the other, as illustrated in Fig. 3.8 (c), or also move even further between 

valleys, as illustrated in Fig. 3.8 (e). A phase diagram of pulse interval Δ𝑡 versus the current 

intensity 𝑗𝐹𝑀 is shown in 3.8 (f), where the different regions can be related to the skyrmion 
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trajectories of Fig. 3.8 (a) – (e) through color. These insights on how to control the skyrmion 

positions using current pulses may be very useful for future devices. 

Figure 3.8 – (a) – (e) Skyrmion trajectories for a magnetic antidot array and in absence of damping. The phase 

diagram of current pulses interval vs. intensity are illustrated in (f) and for each red dot in (f) represents a trajectory 

in (a) – (e). The skyrmion trajectories follow the corresponding color of the regions in (f).  (From Feilhauer et. al. 

(2020), pg 184425-6  [125]).  

 

 When the damping constant is finite, that is 𝛼 ≠ 0, the skyrmion exhibits again the 

skyrmion Hall effect, which makes it flow with an angle respective to the drive. Now, using a 

fixed uniform current density, in Fig. 3.9 it is shown some skyrmion trajectories for different 

values of damping. In the case of undamped (𝛼 = 0) the skyrmion moves along the 𝑥 direction. 

This is the result of the applied current and the corresponding force 𝐅𝑗 acting on the skyrmion 

being parallel to symmetry axes of the magnetic antidot lattice. For finite damping, the skyrmion 

direction of motion is tilted due to the skyrmion Hall effect. Both Reichhardt et. al. [39] and 

Feilhauer et. al. [125] works corroborate to the idea of a topological separator, that could sort 

skyrmions of different species, with slightly different values of 𝜃𝑠𝑘 just by using a periodic array 

of repulsive potentials. 
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Figure 3.9 – Skyrmion trajectories starting from a valley coordinate (0,0) for various values of damping. The 

skyrmion motion is driven by a uniform fixed current of 𝑗𝐹𝑀 = 90 GA/m2 (or 𝑗𝐻𝑀 = 3.7 GA/m
2) applied along the 

𝑥 (or 𝑦) direction. (From Feilhauer et. al. (2020), pg 184425-6  [125]).  

 

 So far, the works described here considered the dynamics of a single skyrmion in the 

sample, however, when multiple skyrmions are added, the collective behavior emerges and the 

dynamics can be very different from the single skyrmion case. Reichhardt et. al.  [40] studied 

the collective behavior of skyrmions in a square pinning array using particle-based simulations. 

The main focus of this work was to understand the Magnus contribution on the sliding phases. 

One of the most interesting results is that skyrmions may exhibit a moving clustered or 

segregated state, where skyrmions clump into a dense stripe. This clustered state is in agreement 

with Koshibae et. al. [126] findings studying skyrmions under strong quenched disorder in 

continuum-based simulations. However, the mechanism for the clustered state here is different. 

The creation of segregated states in continuum-based simulations was attributed to the emission 

of spin waves that produces an effective attraction among skyrmions and make they clump 

together [126]. Here, in the particle-bases simulations the segregated state occurs due to the 

velocity dependence of the skyrmion Hall angle in the presence of pinning, since no spin waves 

are present in Reichhardt’s simulation. Basically, the regions in the sample are moving with 

different relative velocities, causing each region to move with a different skyrmion Hall angle 

and clumping them into the dense stripe observed [40]. In Fig. 3.10 (a) it is plotted the velocity 

curve 〈𝑉∥〉 vs. 𝐹𝐷 for a system with strong Magnus component, 𝛼𝑚/𝛼𝑑 = 9.96 and filling factor 

𝑓 = 1.0117. The filling factor is number of skyrmions divided by number of pinning centers. In 

Fig 3.10 (b) it is shown the mean-square deviations in the instantaneous velocities for both 

parallel (𝛿𝑉∥) and perpendicular (𝛿𝑉⊥), and in Fig. 5.10 (c) shows the corresponding fraction of 
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sixfold-coordinate skyrmions, 𝑃6. The vertical dashed lines are separating the different dynamic 

phases found.  

Figure 3.10 – (a) The velocity curve 〈𝑉∥〉 vs. 𝐹𝐷 for skyrmion interaction with a square array of pinning centers 

with filling factor 𝑓 = 1.0117 and 𝛼𝑚/𝛼𝑑 = 9.96.The corresponding velocity deviations parallel and perpendicular 

to the drive, 𝛿𝑉∥ and 𝛿𝑉⊥ respectively. (c) The corresponding fraction of sixfold-coordinate of skyrmions, 𝑃6. The 

dashed vertical lines are separating the dynamic phases found. (From Reichhardt et. al. (2018), pg 134418-3  [40]).  

 

Phase I is the pinned phase, where the velocities are null, as illustrated in Fig. 3.11 (a). 

For 𝐹𝐷 = 0, skyrmions form a commensurate state with few skyrmions in interstitial positions 

between pinning sites. Phase II is the phase where interstitial skyrmion flows between the 

pinned ones. This phase exhibits a series of quantized direction of motion as results of 

directional locking. As can be seen there are jumps in 𝛿𝑉∥  and 𝛿𝑉⊥ , and 𝑃6  exhibits strong 

oscillations. Phase III consists of chaotic disordered flow of skyrmions, as illustrated in Fig. 

3.11 (b). Skyrmions flow through the sample and other remain pinned. After further increase of 

the external drive, the skyrmion begin the clustered or segregated phase, illustrated in Fig. 3.11 

(c). This phase is called PS in the Fig. 3.10. Then, for higher drives the skyrmions reorganize 

their motion into the moving crystal phase, called MC, as illustrated in Fig. 3.11 (d). The 

transition to from PS to MC phase is characterized by drops in 𝛿𝑉∥ and 𝛿𝑉⊥, which become 

nearly isotropic, along with an upward jump in 𝑃6 to a value very close to 𝑃6 = 1. 
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Figure 3.11 – Skyrmion positions (blue dots) and pinning center positions (red circles) for the system of Fig. 3.10. 

(a) The pinned Phase I, (b) the disordered flow os skyrmions Phase III, (c) the segregated skyrmion phase PS, and 

(d) the moving crystal MC phase. (From Reichhardt et. al. (2018), pg 134418-4  [40]). 

 

 After a series of simulations it was possible to make the plot illustrated in Fig. 3.12, 

where it shows a phase diagram of 𝐹𝐷 vs. 𝐹𝑃, where 𝐹𝑃 is the strength of pinning interaction. 

This plot enables a better understanding on how the pinning affects the skyrmion dynamics. The 

system considered has 𝑓 = 1.0117, 𝛼𝑚/𝛼𝑑 = 9.96 and has a pinning density of 𝑛𝑝 = 0.1975. 

As can be seen, the PS phase only happens for a certain range of pinning strength and it is in 

agreement with continuum-based simulations [126]. Interestingly it was also found a reentrant 

pinning phase, where after the first depinning the skyrmion system can become pinned again. 

These results are very important to understand some features of skyrmions interacting with 

periodic pinning. 
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Figure 3.12 – Phase diagram of 𝐹𝐷  vs. 𝐹𝑃 , where 𝐹𝐷  is the external driving force and 𝐹𝑃  is the strength of the 

pinning centers. I is the pinned phase, II, is the interstitial skyrmion flow, III is the disordered flow phase, I re is the 

reentrant pinned phase, PS is the phase separated phase, DPS is diagonal separated phase, and MC is the moving 

crystal phase. (From Reichhardt et. al. (2018), pg 134418-8  [40]). 

 

Concerning experimental observations of skyrmions in periodic patterned samples, Saha 

et. al. [64] were one of the first to address how skyrmions could nucleate and stabilize in such 

periodic arrays of antidots.  The sample consists of multilayer films of [Pt (3 nm)/Co (1.1 nm)/ 

Ta (4 nm)]12 deposited on 200-nm-thick x-ray transparent Si3N4 membranes supported by 200-

𝜇m-thick Si frames. The antidot lattice was made with focused Ga+ ion beam that is able to 

produce complete holes in the multilayer film. In Fig. 3.13 there is a representation of the 

multilayer film and also a scanning electron microscope image of the sample with the antidots.  

Considering two samples with different lattice constants, LC, the authors were able to 

understand the influence of the lattice constant on the skyrmion formation in these samples. For 

the sample with LC = 550 nm it was found that skyrmions did not form due to the proximity of 

the defects. The labyrinth domains form connections between the antidots as the magnetic field 

increases, as indicated by the red dashed ellipses. These connections prevent the formation and 

stabilization of skyrmions. On the other hand, when the lattice constant is larger, LC =

1000 nm, there is enough gap between the antidots to allow the skyrmion formation. As the 

magnetic field increases, the magnetic domain connections are disconnected from one of the 

antidots creating an open domain end. These open domains shrink and form magnetic skyrmions 

in the sample, as clearly illustrated in Fig. 3.14 (h). This demonstration of the skyrmion 

formation in antidot lattices is a significant advance towards generation, confinement and 

stabilization of magnetic skyrmions at room temperature. 
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Figure 3.13 – (a) The multilayer film schematic illustration and the Ga+ ion beam producing the antidots. (b) 

Scanning electron microscope image of the antidot lattice with lattice constant of LC = 550 nm patterned in the 

film. (From Saha et. al. (2019), pg 144435-2  [64]). 

  

Figure 3.14 – XMCD-STXM images of the magnetic evolution as the applied magnetic field is varied in the antidot 

array. From (a) – (d) using LC = 550 nm and from (e) – (h) using LC = 1000 nm. Dark and bright contrasts 

represents the magnetization domains point up or down, respectively. Skyrmion are highlighted with solid circles 

and magnetic domains with red dashed circles and ellipses.  (From Saha et. al. (2019), pg 144435-6  [64]). 

 

 

3.3 Skyrmions in Asymmetric Potentials with Alternating Currents 

 In general, when particles interact with an asymmetric potential their motion can be 

controlled by means of the ratchet effect. The ratchet effect is a net dc motion of particles that 

emerges from the combination of a broken spatial symmetry and an oscillating drive. It 

sometimes can also be referred as the diode effect, where the asymmetry produces different 

depinning forces in different directions, yielding a preferential or “easy” direction of 

motion [127]. The ratchet effect has been investigated extensively in several particle systems, 

(a) (b) 
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such as, protein motors [128], molecular motors [17,18], colloids [129], type II superconducting 

vortices [20,23,130], electrons [25], active matter [22] and also recently in 

skyrmions [32,111,112,131]. 

 The first proposal for skyrmion ratchet was studied by Reichhardt et. al. [32] in a type of 

quasi-one-dimensional (1D) asymmetric substrate that was known to induce ratcheting motion 

in superconducting vortices. Using a particle-based approach, the skyrmions were submitted to a 

potential in the form of 

                                                   𝑈(𝑥) = 𝑈0[sin(2𝜋𝑥/𝑎) + 0.25 cos(4𝜋𝑥/𝑎)],                               (3.1) 

where 𝑎 is the substrate periodicity. For the case of overdamped particles, like colloids and 

vortices, when an ac drive is applied in the 𝑥 direction, a ratchet motion is induced in the easy 

(+𝑥) axis, and the particle may move one or more substrates periods under each ac drive cycle. 

As the depinning threshold in +𝑥 is lower than in the −𝑥, in the dc current limit the system acts 

like a diode, easy to flow in +𝑥 and very hard to flow in −𝑥. If the oscillating drive is applied in 

the 𝑦 direction, the skyrmion does not exhibit a ratchet motion due to the lack of asymmetry in 

the 𝑦 direction of this system. Considering now the skyrmion case, which exhibits the skyrmion 

Hall effect, a ratchet effect can occur even when the ac drive is applied only in the 𝑦 direction. 

Due to the skyrmion hall angle, this applied ac drive in 𝑦 will induce a skyrmion motion in the 

transversal component, which has a broken symmetry, thus inducing a ratchet effect. This 

transversal ratchet effect was named Magnus-induced transverse ratchet effect. In Fig. 3.16 

shows the velocity component in both parallel and perpendicular directions for the system of 

Fig. 3.15 under an ac driving 𝐹⊥
𝑎𝑐. In Fig. 3.16 (a) shows the velocity curves for a system with 

𝛼𝑚/𝛼𝑑 = 0.855, in (b) for 𝛼𝑚/𝛼𝑑 = 4.0 and in (c) 𝛼𝑚/𝛼𝑑 = 7.018. The inset in Fig. 3.16 (a) 

illustrates the case of overdamped particles without the Magnus component, which has no net 

motion at all. The profile of the average velocities exhibits well defined quantized values for the 

skyrmion motion, and there are regions of ac drive amplitude where the skyrmion ratchet is 

absent.   

In Fig. 3.17 it shows some selected cases for the skyrmion trajectories. The trajectories 

show that despite the ac drive is applied perpendicular to the asymmetry direction, the skyrmion 

has motion parallel to the asymmetry due to the Magnus term, and therefore inducing the ratchet 

motion.  
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Figure 3.15 – Schematic of sample geometry where the skyrmion is the red ball and the asymmetric potential is the 

yellow terrain. An ac driving, 𝐹𝑎𝑐 may be applied parallel, 𝐹∥
𝑎𝑐 , or perpendicular, 𝐹⊥

𝑎𝑐 , to the asymmetry of the 

substrate. (From Reichhardt et. al. (2015), pg 2  [32]). 

 

Figure 3.16 – The skyrmion average velocity parallel, 〈𝑉∥〉 and perpendicular 〈𝑉⊥〉 to the substrate asymmetry 

versus 𝐹⊥
𝑎𝑐. (a) for 𝛼𝑚/𝛼𝑑  = 0.855, in the inset is shown the overdamped case where the ratchet is absent, (b) 

𝛼𝑚/𝛼𝑑  = 4.0 and (c) 𝛼𝑚/𝛼𝑑  = 7.018, the inset shows a blowup of 〈𝑉∥〉. (From Reichhardt et. al. (2015), pg 

5  [32]). 

 

The direction of the ratchet motion can also be controlled, as Ma et. al. [112] showed 

recently in his work. Using particle-based simulations, they showed that ac driven skyrmions 

with different densities and ac drive amplitudes can ratchet in any direction, up to 360° rotation. 

They call this direction of motion as vector ratchet. This opens a new method to control the 

skyrmion motion in the sample with asymmetric substrates, not just parallel or perpendicular to 

the asymmetry direction. 
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Figure 3.17 – The skyrmion trajectories for the system of Fig. 3.16. The black lines represent the skyrmion 

trajectory, the red ball is the skyrmion position at the snapshot, and the green (white) regions are the high (low) 

areas of the substrate potential. In (a) for 𝛼𝑚/𝛼𝑑 = 0.855 and 𝐹⊥
𝑎𝑐 = 2.0, (b) for 𝛼𝑚/𝛼𝑑 = 4.0 and 𝐹⊥

𝑎𝑐 = 0.7, (c) a 

non-ratcheting orbit for 𝛼𝑚/𝛼𝑑 = 4.0 and 𝐹⊥
𝑎𝑐 = 0.76 and (d) for 𝛼𝑚/𝛼𝑑 = 4.0 and 𝐹⊥

𝑎𝑐 = 1.97. (From Reichhardt 

et. al. (2015), pg 5  [32]). 

 

The skyrmion ratchet can also be applied in racetrack devices to guide the skyrmion 

motion along the racetrack, as shown by Göbel and Mertig in 2021 using continuum-based 

simulations [111]. It is widely known that the skyrmion Hall effect is problematic in racetrack 

devices, since the skyrmion Hall angle can push the skyrmions towards the edge of the sample 

and then can be destroyed. However, Göbel and Mertig proposed a racetrack edge with a broken 

inversion symmetry, so the skyrmion can translate through the sample due to the ratchet effect. 

In Fig. 3.18 it is illustrated the proposed racetrack with asymmetric edge. 

When a skyrmion is introduced in the sample of Fig. 3.18 and the ac drive is applied, a 

dc net skyrmion motion appears, as presented in Fig. 3.19. After a transient period of 𝑇 = 80 ns 

of ac drive (cyan and orange trajectories) the skyrmion moves a length of 𝐿 = 240 nm per 
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current period [See Fig. 3.19 (a)] and oscillates in the valleys of the edge asymmetry (blue and 

red trajectories). The skyrmion average velocity can be seen as the slope of the Fig. 3.19 (b). 

Figure 3.18 – Illustration of the racetrack and the ac propulsion of skyrmions. A Co layer (light gray) is interfaced 

with an Pt layer (dark gray). The applied current 𝑗(𝑡) is applied along the ±𝑥 direction, thus the skyrmion may 

move along ±𝑣 directions. Due to the interaction with the edges, the skyrmion experiences a net propulsion along 

the +𝑥 direction. Note that only of the edges has asymmetry while the other is straight. (From Göbel and Mertig 

(2021), pg 2  [111]). 

 

Figure 3.19 – (a) The skyrmion trajectory along the racetrack with asymmetric edge under the influence of applied 

ac drive. (b) Plot of skyrmion position as a function of time, where the average velocity is the slope of the curve. (c) 

The shape of the skyrmion orbit as a function of the velocity in the 𝑥  component, 𝑣𝑥  versus the relative 

displacement in the 𝑥 from the average position. (From Göbel and Mertig (2021), pg 4  [111]). 

 

 The quasi-periodic motion of the skyrmion can be characterized by 𝑥′-𝑣𝑥 diagram, where 

𝑥′ = 𝑥 − 𝑣𝑥̅̅ ̅𝑡 . The curve shows that almost all the curves are identical after the transient 

behavior. Thus, the skyrmion moves with a periodic trajectory, as can also be seen in Fig. 3.19 

(a). 

 These results show clearly that skyrmion ratchet is a very promising concept to control 

the skyrmion motion in different samples, even in racetrack devices. There are also several other 

(a) 

(b) (c) 
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types of skyrmion ratchet that take into account internal excitations of skyrmion nodes and its 

deformations to induce a ratchet motion [131–133]. However, the focus here is on skyrmion 

ratchet induced by pinning or substrates. 

4 Model and Simulation 

4.1 Model 

 In most of this thesis, we consider the case of a chiral thin film magnet placed in the x-y 

plane in the presence of an applied magnetic field normal to the sample surface. The model used 

in this work is the same developed by Lin et. al. [73], which is well described in section 2.3 of 

this thesis. The equations of motion for skyrmions are obtained using the Thiele’s 

approximation [72], which rules the motion of magnetic solitons. As a result, the equation that 

describes the skyrmion motion used throughout this thesis is:  

                                                𝛼𝑑𝐯𝑖 = 𝐅𝑖
𝑠𝑠 + 𝐅𝑖

𝑃 + 𝛼𝑚 × �̂� + 𝐅𝑖
𝐷 + 𝐅𝑖

𝑎𝑐 + 𝐅𝑖
𝑇                                  (4.1) 

 

Where 𝐯𝑖 is the velocity of the skyrmion 𝑖 and 𝛼 is the damping constant that is related 

both to the spin precession and to the conduction electrons localized in the skyrmion core. The 

𝐅𝑖
𝐷 = 2𝜋ℏ𝑒−1�̂� × 𝐉 is the driving force that rises due to the application of a direct spin polarized 

current. The external drive 𝐅𝑖
𝐷 = 𝐹𝐷�̂� , where is �̂� = �̂� , unless otherwise noted. The 𝐅𝑖

𝑀 =

4𝜋𝛾−1�̂� × 𝐯I is the Magnus term. 𝐅𝑖
𝑎𝑐 is analogous to 𝐅𝑖

𝐷, but 𝐅𝑖
𝑎𝑐 is an ac drive that provokes an 

oscillation of the skyrmion in the sample. The ac drive follows the expression 𝐅𝑖
𝑎𝑐 =

𝐴 sen(2𝜋𝜔1𝑡) �̂� + 𝐵 cos(2𝜋𝜔2𝑡) �̂�, where 𝐴 and 𝐵 are the ac drive amplitudes and 𝜔1,2 are the 

ac drive frequencies. 𝐅𝑖
𝑇 is responsable for the thermal kicks that finite temperatures adds to the 

system, 𝐅𝑖
𝑇  is modeled as a thermal white noise obeying 〈𝐅(𝑡)𝑇〉 = 0  and 〈𝐅(𝑡)𝑖

𝑇𝐅(𝑡)𝑗
𝑇〉 =

2𝜂𝑘𝐵𝑇𝛿𝑖𝑗   [134–136]. The interaction between skyrmions can be modeled as 𝐅𝑖
𝑠𝑠 =

𝐾1 (
𝑟𝑖𝑗

𝜉
) �̂�𝑖𝑗  [73]. Here 𝜉  is the screening length, 𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗|  is the distance between 

skyrmions 𝑖 and 𝑗, and �̂�𝑖𝑗 = (𝐫𝑖 − 𝐫𝑗)/𝑟𝑖𝑗 . In order to enhance computational efficiency, we 

used a cutoff in the skyrmion-skyrmion interaction beyond 𝑟𝑖𝑗 = 6.0𝜉, where the magnitude of 

the interaction becomes negligible. The 𝐅𝑖
𝑃  is the force between skyrmions and the artificial 

pinning centers in the sample, which may be attractive or repulsive to skyrmion. However, the 

general shape of the pinning force 𝐅𝑖
𝑃 was modeled following a Gaussian potential in the form 
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𝑈𝑃 = 𝐶0𝑒
−(𝑟𝑖𝑜/𝑎𝑜)

2
, where 𝐶0  is the potential strength, 𝑎𝑜  is the pinning radius and 𝑟𝑖𝑜  is the 

distance between the pinning 𝑜 and the skyrmion 𝑖. For 𝐶0 > 0 the interaction is repulsive and 

for 𝐶0 < 0 it is attractive. Hence, the force is 𝐅𝑖
𝑃 = −∇𝑈𝑃 = −𝐹𝑜𝑟𝑖𝑜𝑒

−(𝑟𝑖𝑜/𝑎𝑜)
2
�̂�𝑖𝑜, where 𝐹𝑜 =

2𝐶0/𝑎𝑜
2. For values of 𝑟𝑖𝑜 > 2.0𝜉 a cutoff is used since the interaction becomes negligible. We 

measure the skyrmion velocity parallel, 〈𝑉∥〉, and perpendicular, 〈𝑉⊥〉, to the drive, so that 〈𝑉〉 =

√〈𝑉∥〉2 + 〈𝑉⊥〉2. When the skyrmion is flowing without obstacles, it moves with a Hall angle 

respective to the drive direction, 𝜃𝑠𝑘 = arctan(〈𝑉⊥〉/〈𝑉∥〉) = arctan(𝛼𝑚/𝛼𝑑). The damping and 

the Magnus term are normalized by 𝛼𝑚
2 + 𝛼𝑑

2 = 1, unless otherwise noted. The Eq. (6.1) is 

integrated numerically following the second order Runge-Kutta method. In Fig. 1 there is an 

illustration of the skyrmion flowing in an obstacle array, that is, pinning centers that have 

repulsive interaction with skyrmions. The terrain maxima peaks are the center of the obstacles, 

the skyrmion is the dark blue sphere and its trajectory is the light blue line. 

Figure 4.1 – Illustration of skyrmion dynamics in a periodic obstacle array with applied external drive. The 

landscape maxima peaks represent the obstacle positions, the dark blue sphere is the skyrmion and the light blue 

line is the skyrmion trajectory.  (From Vizarim et. al. (2020), pg 4  [137]). 

 

The different results that are described in this thesis use the general Eq. (4.1), however, 

depending on the work some interactions may be neglected or slightly modified. For each 

specific case, before going into details of the results it will be expressed the specific type of Eq. 

(4.1) that was used to simulate the system and its specificities. 

  One of the fundamental steps is to search for the skyrmion ground state using simulated 

annealing technique [138]. Then, this equation of motion will be integrated numerically using 
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Molecular Dynamics (MD) technique, allowing us to obtain the skyrmions trajectories, and 

consequently, skyrmion velocities, depinning forces and dynamic behaviors. In the next sections 

the simulated annealing and molecular dynamics are discussed. 

 

4.2 Simulated Annealing 

Simulated annealing is a very common numerical technique used to search for global 

maxima and minima of n-dimension continuous mathematical functions. This method is based 

on metallurgy, simulating the annealing process of a solid, where initially the solid is set at an 

initial temperature 𝑇, then the temperature is slowly cooling down, accommodating the atoms to 

reach the minimal energy state. For the case of systems where there is only one minimum value 

of energy, any other optimization algorithm based on gradients is sufficient, however, for more 

complex cases where the system can be trapped in metastable states, a more sophisticated 

method must be used [138]. 

In the simulated annealing technique one or more artificial temperatures are added and 

gradually cooled. These artificial temperatures act like a stochasticity source. This randomness 

is very convenient avoid being trapped in metastable configurations [138]. 

The first non-trivial solution was elaborated by Kirkpatrick et. al. [139] for classic 

systems. The algorithm elaborated by Kirkpatrick follows Boltzmann-Gibbs quasi-equilibrium 

statistics, which is known as the Classical Simulated Annealing (CSA). In 1987, Szu and 

Hartley [140] propose a simulated annealing that uses the Cauchy-Lorentz distribution instead of 

the gaussian distribution of Boltzmann. This algorithm developed by Szu and Hartley was 

known as Fast Simulated Annealing (FSA). A few years later, Tsallis [138] looked at both 

simulated annealings and developed the Generalized Simulated Annealing (GSA), which 

generalizes both annealings in a single unified method. As the parameters of the GSA are 

adjusted, it can behave like a FSA or CSA. 

In general words, the simulated annealing technique uses a visiting function which 

determines how the domain of the function is searched. Moreover, there is also an acceptance 

function that determines if a result with higher energy may be accepted or rejected. The 

algorithm that rules this acceptance of higher energy is known as Metropolis algorithm [141] 

and is used in all kinds of simulated annealing. The Metropolis algorithm may be described as 

the following steps: 

1. From an initial set of parameters of the cost function, chosen randomly, an initial 

“energy”, 𝐸𝑟𝑒𝑓, is calculated and an initial artificial temperature 𝑇 = 𝑇0 is chosen. 
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2. A random perturbation is generated in the system parameters using a visiting 

function, and then a new energy, 𝐸𝑛𝑒𝑤, is calculated. 

3. If Δ𝐸 = 𝐸𝑛𝑒𝑤 − 𝐸𝑟𝑒𝑓 ≤ 0, the new set of parameters is better (or at least of the same 

quality) than the previous one, thus the new set of parameters used to generate 𝐸𝑛𝑒𝑤 

is chosen to be the reference parameters, that is, 𝐸𝑟𝑒𝑓 ← 𝐸𝑛𝑒𝑤. 

4. If Δ𝐸 > 0, the new set of parameters is worse than the previous one, but still can be 

accepted depending on the acceptance function defined by the Metropolis criterion. 

5. The temperature 𝑇 is reduced following a function for temperature reduction. 

6. The steps from 2 to 5 are repeated during a given number of iterations or any other 

stop condition is satisfied. 

 

In the classic simulated annealing (CSA), the visiting function was simply a random 

state. However, for more complex problems the used visiting function is the Boltzmann-Gibbs 

probability distribution shown in Eq. (4.2). The acceptance function of the CSA algorithm is 

also the Boltzmann-Gibbs distribution [139], 

                                                                       𝑃(Δ𝐸) = exp (
−Δ𝐸

𝑘𝐵𝑇
).                                                      (4.2) 

 

In CSA the reduction of the temperature is given by the expression [142], 

                                                                       𝑇(𝑡) =
𝑇0

log(1 + 𝑡)
,                                                           (4.3) 

where the time 𝑡 is the iteration step. 

 In the fast simulated annealing (FSA), the visiting function is given by Cauchy-Lorentz 

probability distribution, as shown in Eq. (4.4), where 𝑥 is the variable of interest [140]. 

                                                                           𝐺𝑇𝑐 =
𝑇𝑐(𝑡)

𝑥2 + 𝑇𝑐2(𝑡)
                                                         (4.4) 

 

 The FSA maintain the same acceptance function as the CSA algorithm, which is the 

Boltzmann-Gibbs distribution illustrated in Eq. (4.2). Szu and Hartley showed that in the FSA 

the temperature decay should be inversely proportional to the iteration step, 

                                                                                 𝑇(𝑡) =
𝑇0
1 + 𝑡

,                                                           (4.5) 
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because even in low temperatures the algorithm allows big jumps searching for the global 

minima. This method for reducing the temperature made FSA much faster than the conventional 

CSA. 

 In the generalized simulated annealing (GSA), the visiting function depends on the 

Tsallis probability density, shown in Eq. (4.6), where 𝐷 is the dimension of the cost function 

and 𝑞𝑉(1.0 < 𝑞𝑉 < 3.0) is the visiting parameter, 

                              𝑔𝑞𝑉(𝑥) = (
𝑞𝑉 − 1

𝜋
)

𝐷

2

×
Γ(

1

𝑞𝑉−1
+
𝐷−1

2
)

Γ (
1

𝑞𝑉−1
−
1

2
)
×

𝑇𝑞𝑉
𝐷/ (𝑞𝑣−3) 

[1 +
(𝑞𝑣−1)𝑥2

𝑇𝑞𝑉
2/(𝑞𝑣−3)

]

1

𝑞𝑉−1
+
𝐷−1

2

                 (4.6) 

In order to obtain the distribution of probabilities it is necessary to integrate Eq. (4.6) as 

shown in Eq. (4.7). 

                                                                 𝐺(Δ𝑥1) = ∫ 𝑔𝑞𝑣(𝑥)𝑑𝑥

Δ𝑥1

−∞

                                                      (4.7) 

The perturbation in Δ𝑥1 is determined at each iteration 𝑥𝑡+1 = 𝑥𝑡 + Δ𝑥𝑡 , where Δ𝑥𝑡 =

𝐺−1(Δ𝑥𝑡). The temperature decay is determined by Eq. (4.8). 

                                   𝑇𝑞𝑣(𝑡) =

{
 

 
𝑇𝑞𝑣(1)

1 + 𝑡
                                     , for 𝑞𝑣 = 2

𝑇𝑞𝑣(𝑡)
2𝑞𝑣−1 − 1

(1 + 𝑡)𝑞𝑣−1 − 1
                                        

                            (4.8) 

The acceptance function for GSA is given by Eq. (4.9), where 𝑞𝐴 (1.0 < 𝑞𝐴 < 3.0) is the 

acceptance parameter. 

                                                𝑃𝑞𝐴(Δ𝐸(𝑥)) =
1

1 + {1 +
(𝑞𝐴−1)[𝐸(𝑥𝑡+1)−𝐸(𝑥𝑡)]

𝑇𝑞𝐴(𝑡)
}
                                   (4.9) 

The idea of generalized simulated annealing is related to the behavior of the visiting and 

acceptance parameters, 𝑞𝑉 and 𝑞𝐴 respectively. When (𝑞𝐴, 𝑞𝑉) = (1.0,1.0) the GSA acts like the 

CSA, and when (𝑞𝐴, 𝑞𝑉) = (1.0,2.0) the GSA acts like the FSA [143]. Thus, it is possible to 

ajust the GSA parameters so it behaves more likely to CSA or FSA, depending on what 

parameters minimize the system’s energy. The GSA has been used to search for the global 

maxima or minima in several different systems very successfully [144–146]. It was also shown 

that GSA is more efficient to search for minima in high complex systems when compared to 



61 
 

 
 

FSA and CSA [147]. Our group has also great experience using GSA code to minimize the 

superconducting vortex lattice under the influence of periodic  [148–150] and conformal [151] 

pinning arrays. In this thesis, the GSA algorithm was used to minimize the energy of multiple 

skyrmions, where the cost function is the energy interaction between skyrmions and interaction 

between skyrmions and pinning centers. 

4.3 Molecular Dynamics 

 Molecular Dynamics (MD) is a numerical simulation technique used to calculate the 

motion of particles, such as atoms, molecules, colloids or any other physical object that has a 

particle-like behavior and their motion can be described by an equation of motion. As the 

equation of motion is numerically solved, it is possible to obtain the particles positions and 

velocities at each time step. In general cases, MD has the following steps: 

1. An initial particle configuration is prepared, usually through optimization techniques 

2. The forces exerted in each particle are calculated. These forces may be due to its 

interaction with other particles or interaction with external forces. 

3. Time evolves and the forces are calculated again on the new state 

4. The particles positions at each time step are saved and can be plotted as trajectories 

5. It is possible to calculate the velocities by subtracting the new position by the old one 

and dividing by the time step of the simulation 

For this present thesis, the MD technique is used to describe the motion of skyrmions in 

chiral magnets, as described in section 2.3. In this case, the chiral magnet is a thin-film placed in 

the 𝑥 − 𝑦 plane and subjected to a magnetic field normal to the surface of the sample. The 

sample is infinite in both 𝑥 and 𝑦 directions, the technique used to simulate such system is to use 

a central (main) simulation box and image boxes that mirrors the exact features of the main 

simulation box, as illustrated in Fig. 4.2 (a). The particles in the main simulation box interacts 

between them and also with the particles in the image boxes. The number of image boxes 

necessary to represent an infinite system depends on the interaction between particles, in the 

case of skyrmions that has a Bessel interaction, for separations between skyrmions 𝑟𝑖𝑗 > 6.0 the 

interaction may be neglected. Besides that, during the motion if a skyrmion reaches the border 

of the simulation box, a skyrmion from the opposite image box enters the main simulation box, 

so that the number of skyrmions remain constant. This is called boundary condition, and it can 

be clearly seen in Fig. 4.2 (b), where the particle initially in 𝑃1 is moved by external forces up to 
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the end of the simulation box, and reenters in the opposite side of the box finalizing its motion in 

𝑃2. 

Figure 4.2 – (a) Representation of the simulation boxes, where the central box is the main simulation box and the 

other ones are image boxes. It also shows the main particles 1 and 2, and its images in the other boxes. The model 

predict that the boxes do not need to be square, it may have an inclination with size 𝜉, which in our case is zero. 

(From N. Grønbech-Jensen  [152]) (b) Illustration of particle moving from an initial position 𝑃1 and finilizing its 

motion in 𝑃2. Due to the boundary conditions the particle reenters in the opposite side of the box (Elaborated by the 

author). 

 

However, if there is a great number of particles inside the main simulation box, the 

interaction loop of particle 𝑖 interacting with all other particles 𝑗 on main simulation box and 

image boxes may be too overwhelming. If particles are separated by a distance greater than the 

potential cutoff, the MD could neglect these distant particles and go directly to the end of the 

loop, saving time. The method that takes these distances into consideration is called Neighbor 

Lists [153]. 

 There are two most common Neighbor Lists used: Verlet neighbor lists and Cell 

structures. In 1967, Verlet suggested a technique to improve the speed of a program by 

maintaining a list of the neighbors of a given particle that is updated at intervals. Between a 

certain interval, the program does not check through all the 𝑗 particles, but just those that are 

inside the list. Thus, the number of interactions is significantly reduced and saves time during 

the loop. The Verlet method consists of a potential cutoff sphere, of radius 𝑟𝑐, around a particle. 

This sphere has also a ‘skin’, to give a larger sphere of radius 𝑟1, as shown in Fig. 4.3. The first 

step of the simulation is to construct the neighbor list of all particles, for which the pair 

separation is within 𝑟1.  

From time to time the Verlet list should be reconstructed and the cycle repeated. The 

algorithm is successful because the skin around 𝑟𝑐 is chosen to be thick enough so that between 

(a) (b) 
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reconstructions a particle, such as particle 7 in Fig. 4.3, which is not on the list of particle 1, 

cannot penetrate through the skin. Particles 3 and 4 can move in and out of the sphere, but since 

they are on the list of particle 1, they are always considered in the calculations, until the next 

update. The interval between updates must be chosen according to the system used, but it is 

usually recommended to update every 10 to 20 steps. There are also some algorithms that does 

the updated following some specific rules, but it depends on the system where the Verlet list is 

being used. 

Figure 4.3 – The cutoff and skin spheres around the particle 1. The particles 2, 3, 4, 5 and 6 are on the list of 

particle 1, but particle 7 is not on the list. Only particles 2, 3 and 4 are within the range of the potential cutoff at the 

time the list is constructed (From M. P. Allen, D. J. Tildesley, and L. Allen  [153]). 

 

  

 Although the Verlet list is proven to be good method, it is not ideal for system with great 

number of particles. As the size of the system increases towards 1000 particles, the Verlet list 

becomes too large to store easily, and the logical testing of every pair is inefficient. Therefore, 

another method is necessary. The cell structures method is based on cubic cells divided in a 

regular lattice of 𝑀 ×𝑀, see Fig. 4.4. These cells must be chosen so the side of the cell 𝑙 =

𝐿/𝑀 is greater than the cutoff distance of the forces, where 𝐿 is the side length of the main 

simulation box. As shown in Fig. 6.4, the particles inside cell 13 have neighbors in cells 7, 8, 9, 

14, 19, 18, 17 and 12. In each cell, there is approximately 𝑁𝑐 = 𝑁/𝑀2 particles. Using this cell 

structure, we need only to examine 9𝑁𝑁𝑐  pairs. This is a great contrast with the case of no 

neighbor lists, where it is necessary to examine 𝑁2 pairs. 
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The first step is to sort all particles into the appropriate cells. This sorting process is fast, 

and may be done in every step. After that, the particle in a given cell must interact with all 

particles inside its own cell and then with neighbor cells. Note that a cutoff can be associated in 

this process, as some particles in neighbor cells may surpass the cutoff limit. For example, a 

particle inside cell 13 must interact with all particles inside 13 and also with particles inside 7, 8, 

9, 14, 19, 18, 17 and 12. Some particles inside cell 7, for example, may be over the distance 

𝑟𝑑 = 6.0, so using this method associated with the cutoff is the most efficient. For boxes in the 

edge of the main simulation box, periodic boundary conditions are necessary. For example, the 

particles in box 5 should interact with particles in boxes 4, 9 and 10, and also 24, 25, 21, 1 and 6 

of the image boxes. Fig. 4.5 shows a visual illustration of these periodic boundary conditions for 

the cells. 

Figure 4.4 – The cell method in two dimensions. The main simulation box is divided into 𝑀 ×𝑀 cells (in this 

illustration, 𝑀 = 5) (From M. P. Allen, D. J. Tildesley, and L. Allen  [153]).  

 

Figure 4.5 – Periodic boundary conditions being applied to a cell on the edge of the main simulation box. Particles 

inside the cell in red interact with particles from the opposite side of the main simulation box. 
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 If this method is used with a small quantity of particles inside the simulation box, its 

speeding effect may not be seen, but for high density of particles the speeding effect is very 

significant. In the simulations made in this project, most of them were using a single skyrmion 

interacting with an obstacle array. For a single skyrmion this method is not necessary for 

skyrmion-skyrmion interaction. However, for the skyrmion-obstacle interaction this method is 

efficient, reducing the time for force calculations. In this thesis there are calculations made for a 

high number of skyrmions, as may be explained later. For these particular cases this cell 

neighbor list method was used and improved a lot the MD program running time. 
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Part I  

 Skyrmions Interacting with Periodic Substrates 
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5 Skyrmion Dynamics and Topological Sorting on 

Periodic Obstacle Arrays 

5.1 Obstacle size and Topological Sorting 

In this work we simulate the dynamic behavior of skyrmions under the influence of a 

square lattice of obstacles. This work was published at New Journal Of Physics [137] and was 

the first paper from this thesis. Here, it is considered a single skyrmion dynamics under the 

influence of a square array of obstacle and zero temperature. The effects on varying the size of 

the obstacles are analyzed. A visual representation of this system can be seen in Fig. 6.1, where 

a skyrmion flows under the influence of a square obstacle array. The results show that as the 

obstacle size is changed, several dynamic phases may appear or vanish. For smaller obstacles, 

the system exhibits fewer dynamic phases due to the reduced size of obstacles that reduce its 

influence on the system. On the other hand, if the obstacle size is too large, the system may also 

exhibit fewer dynamic phases due to the reduction in the size of the gaps between the obstacles, 

which reduces the possibilities for skyrmion motion. Hence, the highest number of dynamic 

phases appears for intermediate values of obstacle sizes. We also investigate the influence of the 

damping term, 𝛼𝑑, on the dynamics of the system. For systems with low damping, the skyrmion 

is locked parallel to the applied current, however for systems with high damping the skyrmion is 

locked perpendicular to the applied current. Thus, the damping term and the obstacle size can be 

used to control the skyrmion motion. Motivated by these results, the dynamic behavior of 

skyrmions of different species is analyzed under the influence of the obstacle array. The results 

indicate that it is possible to separate the species according to their skyrmion Hall angles when a 

driving current is applied. 

 

5.2  Model and Simulation details 

In this work we consider a two-dimensional skyrmion system with 𝐿 × 𝐿 with periodic 

boundary conditions on 𝑦 and 𝑥 directions. First, a single skyrmion is subjected to this obstacle 

landscape in order to characterize its movement. Then, we introduce more skyrmions with total 

number as 𝑁 = 𝑁𝑎 + 𝑁𝑏 , where 𝑁𝑎  are the number of skyrmions of species 𝑎 and 𝑁𝑏 are the 

number of species 𝑏 . We also set 𝑁𝑎 = 𝑁𝑏 = 𝑁/2 . Here, skyrmions of different species 

represent skyrmions with different sizes, that can coexist with each other in a given 

sample [8,64,154,155]. The skyrmion density in the sample is 𝑛𝑠 = 𝑁/𝐿2, using 𝐿 = 36𝜉. The 
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dynamical properties of this skyrmion system interacting with the obstacle array were simulated 

using the particle model for skyrmions, shown in Eq. (5.1), using Molecular Dynamics 

technique. 

 

                                                          𝛼𝑑
𝛾
𝐯𝒊 + 𝛼𝑚

𝛾
�̂� × 𝐯𝒊 = 𝐅𝑖

𝑠𝑠 + 𝐅𝑖
𝑜 + 𝐅𝐷                                            (5.1) 

 

 In this equation, the first term on the left is the damping term, where 𝛼𝑑
𝛾
 is the damping 

term of the species 𝛾, where 𝛾 may be 𝑎 or 𝑏. The second term on the left represents the Magnus 

force, where 𝛼𝑑
𝛾
 is the Magnus term of the species 𝛾. The Magnus force produces a force that is 

perpendicular to the skyrmion velocity. The first term on the right is the skyrmion repulsive 

interaction with other skyrmions, where it is described as 𝐅𝑖
𝑠𝑠 = ∑ 𝐾1(𝑟𝑖𝑗/𝜉)�̂�𝑖𝑗

𝑁
𝑖  [73], discussed 

previously in section 2.3. Here, 𝜉  is the screening length which we take to be 1.0  in 

dimensionless units,  𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗|  is the distance between skyrmions 𝑖  and 𝑗 , and  �̂�𝑖𝑗 =

(𝐫𝑖 − 𝐫𝑗)/𝑟𝑖𝑗. The second term on the right of Eq. (5.1) is the interaction between the skyrmions 

and the obstacles. We model this potential energy interaction in the repulsive Gaussian form 

𝑈𝑜 = 𝐶𝑜𝑒
−(𝑟𝑖𝑜 𝑎𝑜⁄ )2, where 𝐶𝑜 is the strength of the obstacle potential, 𝑟𝑖𝑜 is the distance between 

the skyrmion 𝑖 and the obstacle 𝑜, and 𝑎𝑜 is the obstacle radius. Thus, the force between the 

obstacles and the skyrmions take the form 𝐅𝑖
𝑜 = −∇𝑈𝑜 = −𝐹𝑜𝑟𝑖𝑜𝑒

−(𝑟𝑖𝑜 𝑎𝑜⁄ )2�̂�𝑖𝑜 , where 𝐹𝑜 =

2𝐶𝑜/𝑎𝑜
2. The obstacle density used in this work is 0.093/𝜉2. The third term on the right side, 

𝐅𝐷 = 𝐹𝐷�̂�, where �̂� is the direction of the dc driving force, is the force interaction between the 

skyrmion and the external current. In this work the applied dc drive is in 𝑥 direction, so �̂� =  �̂�. 

We measure the skyrmion velocity parallel, 〈𝑉∥〉, and perpendicular, 〈𝑉⊥〉, to the drive. When the 

skyrmion is flowing without obstacles in the overdamped limit 𝛼𝑚/𝛼𝑑 = 0, the skyrmion moves 

only in the direction of the drive. However, if there is a finite value for 𝛼𝑚/𝛼𝑑, the skyrmion 

moves with a Hall angle, Θ = arctan(〈𝑉⊥〉/〈𝑉∥〉) = arctan(𝛼𝑚/𝛼𝑑) . If one increases the 

quantity 𝛼𝑚/𝛼𝑑 , the angle Θ  is increased respective to the drive. In order to quantify the 

direction of the skyrmion motion we measure 𝑅 =  〈𝑉⊥〉/〈𝑉∥〉. The external drive is increased in 

small steps of 𝛿𝐹 = 0.001 and wait 105  simulation time steps between increments to ensure 

steady state. Unless otherwise noted, we normalize the damping and magnus coefficients as 

𝛼𝑑
2 + 𝛼𝑚

2 = 1.  
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5.3 Results 

5.3.1 Obstacle Size Effect 

First, we consider the case of a single skyrmion moving under the influence of the square 

array of obstacles. Our main goal here is to understand how the obstacle size affects the 

dynamics of the system. Thus, we begin looking to the case where 𝑎0 = 0.65 with 𝛼𝑚/𝛼𝑑 =

0.45. In Fig. 5.1 (a), it is plotted the average velocity curves, 〈𝑉∥〉 and 〈𝑉⊥〉, as a function of the 

applied dc drive, 𝐹𝐷. In Fig. 5.1 (b) it is plotted the 𝑅 curve as a function of 𝐹𝐷. 

Figure 5.1 - (a) the average velocity curves 〈𝑉∥〉, 〈𝑉⊥〉 as a function of the transport force 𝐹𝐷 containing a single 

skyrmion where 𝑎𝑜 = 0.65 and 𝛼𝑚/𝛼𝑑 = 0.45. For 𝐹𝐷 < 1.0 the motion is strictly in the 𝑥 direction, parallel to the 

driving force. (b) the corresponding skyrmion Hall angle 𝜃𝑠𝑘 = arctan(𝑅)  vs 𝐹𝐷  curve (From Vizarim et. 

al.  [137], pg. 4).  

 

 If there are no obstacles, the skyrmion flows at the intrinsic skyrmion Hall angle, 𝜃𝑠𝑘
𝑖𝑛𝑡 =

arctan(𝛼𝑚/𝛼𝑑) = 24.23°. However, as can be seen from Fig. 5.1, for 𝐹𝐷 < 1.0 the skyrmion 

velocities are 〈𝑉⊥〉 = 0 and 〈𝑉∥〉 increases with the applied drive, so that the skyrmion Hall 

angles is 𝜃𝑠𝑘 = 0°, that is, moves exclusively in the 𝑥 direction. As shown in Fig. 5.2 (a), at 

𝐹𝐷 = 0.5, the skyrmion exhibits an oscillatory motion in 𝑦 but translates only in the 𝑥 direction. 

As the applied drive, 𝐹𝐷, increases, the skyrmion starts to move in both +𝑥 and −𝑦 directions. 

At the transition to a finite 〈𝑉⊥〉, there is a drop in 〈𝑉∥〉, indicating that the particle is slowing 

down in the 𝑥  direction as a function of 𝐹𝐷  just before the transition. This indicates the 

appearance of a negative differential conductivity with 𝑑〈𝑉∥〉/𝑑𝐹
𝐷 < 0. For higher 𝐹𝐷, several 
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additional dips and cusps appear in both 〈𝑉∥〉 and 〈𝑉⊥〉 indicating other transitions. As shown in 

Fig. 5.1 (b), the skyrmion Hall angle in quantized, similar to what has been found in previous 

work with skyrmions with periodic substrates [39]. 

 In Fig. 5.2 (b), it is illustrated the skyrmion motion for 𝑅 = −0.33 (𝜃𝑠𝑘 = −18.43°) at 

𝐹𝐷 = 1.25 . The orbit winds periodically around the system and the skyrmion undergoes 

multiple collisions with the obstacles during its course. As 𝐹𝐷 increases, the magnitudes of both 

〈𝑉∥〉  and 〈𝑉⊥〉  jumps up and the system reaches the 𝑅 = −0.5 (𝜃𝑠𝑘 = −26.56°) . The 

corresponding motion appears in Fig. 5.2 (c) for 𝐹𝐷 = 2.0, where the skyrmion moves 2 lattice 

constants in +𝑥 for every one lattice in −𝑦. Note that this means that the skyrmion is moving 

with an angle higher than its intrinsic Hall angle, 𝜃𝑠𝑘
𝑖𝑛𝑡 = 24.23°. The strong locking step in 𝑅 =

−0.5 pulls the skyrmion to this higher Hall angle due to the symmetry of the obstacle landscape. 

It is a clear effect of the obstacle array on the skyrmion dynamics. The skyrmion remains locked 

in 𝑅 = −0.5 until 𝐹𝐷 > 2.3, after which the skyrmion motion drops to a lower value of 𝜃𝑠𝑘 , 

which rapidly approaches the intrinsic Hall angle value. 

In Fig. 5.3 it is plotted 𝜃𝑠𝑘 versus 𝐹𝐷 for a system with 𝛼𝑚/𝛼𝑑 = 0.45 at varied obstacle 

sizes 𝑎0 = 0.15 to 𝑎0 = 1.0. For smaller obstacles, the skyrmion initially moves at an angle 

close to the intrinsic Hall angle of 𝜃𝑠𝑘
𝑖𝑛𝑡 = 24.23° since it experiences very few collisions and 

influence of the obstacles in the sample. When 𝑎0 = 0.2 , the system starts off in the 𝑅 =

−0.5 (𝜃𝑠𝑘 = 26.56°) state and jumps to the 𝑅 = −0.45 (𝜃𝑠𝑘 = 24.23°) state at higher drives. 

For 𝑎0 ≥ 0.65, the system initially locks with 𝑅 = 0 state. At the largest value of obstacle size, 

𝑎0 = 1.0, it is possible to a see a series of smaller steps at rational fractions of 𝑅 = −𝑛/𝑚, and 

at large drives, 𝑅  gradually approaches the intrinsic value. In Fig. 5.2 (d) it is plotted the 

skyrmion trajectory for the system in Fig. 5.3 with 𝑎0 = 0.15 at 𝐹𝐷 = 0.5, where the motion is 

locked at 𝑅 = −0.45 state, while in Fig. 5.2 (e) at 𝐹𝐷 = 0.5 and 𝑎0 = 0.2 the motion is now 

locked in 𝑅 = −0.5 state. In Fig. 5.2 (f) it is illustrated the skyrmion trajectory for 𝑎0 = 0.2 and 

𝐹𝐷 = 2.0 , where the trajectory is almost linear due to the reduced size and influence of 

obstacles. 
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Figure 5.2 – (a) – (c) The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 

5.1 with 𝑎0 = 0.65  and 𝛼𝑚/𝛼𝑑 = 0.45 . (a) 𝐹𝐷 = 0.5 , where 𝑅 = 0 . (b) 𝐹𝐷 = 1.25 , where 𝑅 = −1/3  and the 

system is on a locking step. (c) 𝐹𝐷 = 2.0, where 𝑅 = −0.5. (d) Obstacle and skyrmion trajectories for the system in 

Fig. 5.3 with 𝑎0 = 0.15 and 𝛼𝑚/𝛼𝑑 = 0.45 at 𝐹𝐷 = 0.5 and 𝑅 = −0.45. (e) – (f) The same for the system in Fig. 

5.3 with 𝑎0 = 0.2 and 𝛼𝑚/𝛼𝑑 = 0.45. (e) 𝐹𝐷 = 0.5, where 𝑅 = −0.5 and (f) 𝐹𝐷 = 2.0, where 𝑅 = −0.45 (From 

Vizarim et. al.  [137], pg. 5). 
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Figure 5.3 – The skyrmion Hall angle, 𝜃𝑠𝑘 = arctan𝑅 vs. 𝐹𝐷 , where 𝑅 = 〈𝑉⊥〉/〈𝑉∥〉, in samples with 𝛼𝑚/𝛼𝑑 =

0.45 at varied 𝑎0 (From Vizarim et. al.  [137], pg. 5).  

 

  We can also characterize the different locking phases by examining the width of the 

force interval Δ𝐹𝐷 over which the system remains locked to a given direction of motion for 

varied values of 𝑎0. This may be helpful in a given device in which it is necessary to move a 

skyrmion at a given direction, so this may help to choose the appropriate obstacle size and range 

of transport forces to set the direction of the skyrmion motion. In Fig. 5.4 it is plotted the 

locking intervals 𝐹𝐷 for select cases of 𝜃𝑠𝑘 = 0°, −14°, −18.3°, −26.6° steps using 𝛼𝑚/𝛼𝑑 =

0.45. The phase where 𝜃𝑠𝑘 = 0° appears for 𝑎0 > 0.3 and saturates to a maximum width near 

𝑎0 = 0.7. The width of 𝑅 = −26.6° step is large when 𝑎0 = 0.25, decreases for increasing 𝑎0, 

and drops to zero when 𝑎0 > 0.7. The widths of 𝜃𝑠𝑘 = −14.3° and  −18.3° steps are smaller 

but generally increase with increasing 𝑎0. In the presence of random pinning, the skyrmion Hall 

angle increases roughly linear with the external drive, 𝜃𝑠𝑘 ∝ 𝐹
𝐷, until it saturates near 𝜃𝑠𝑘

𝑖𝑛𝑡 [28]. 

This linear increase in 𝜃𝑠𝑘 is preserved when the pinning is periodic, but it is accompanied by 

locking steps that occur when the Hall angles matches the symmetry angles of the square array, 

𝜃𝑠𝑘 = arctan(𝑝/𝑞) with integer 𝑝 and 𝑞. On the locking steps, the skyrmion translates by an 

integer number 𝑝 obstacles in 𝑦 direction and a 𝑞 number of obstacles in the 𝑥 direction. The 

system remains locked on a step over a window of driving forces before unlocking. 
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Figure 5.4 - Range of forces Δ𝐹𝐷  as a function of the obstacle radius 𝑎𝑜  for a single skyrmion in the square 

obstacle array using 𝛼𝑚/𝛼𝑑 = 0.45 (From Vizarim et. al.  [137], pg. 6). 

 

If the ratio 𝛼𝑚/𝛼𝑑 is changed, the skyrmion can move with higher intrinsic Hall angles, 

making it possible to observe a larger number of locking steps. In Fig. 5.5 (a) it is plotted 𝜃𝑠𝑘 vs. 

𝐹𝐷 for samples with 𝛼𝑚/𝛼𝑑 = 1.91 with varied size of obstacles, from 𝑎𝑜 = 0.15 to 𝑎0 = 1.0. 

It can be seen clearly some pronounced locking steps at 𝑅 = 0 (0°) , −1.0 (−45°) , 

−1.5 (−56.3°),−2.0 (−63.4°)  and −1.91 (−62.37°)  along with some higher order steps. 

When 𝑎0 = 0.15  th skyrmion remains locked at 𝑅 = −1.91 , while when 𝑎0 = 0.25 , the 

skyrmion is initially locked in 𝑅 = −2.0, corresponding to Hall angle that is higher than the 

intrinsic Hall angle. When 𝑎𝑜 ≥ 0.65, the 𝑅 = 0 state appears at low drives, and for 𝑎0 = 0.85, 

there are additional number of locking steps such as 𝑅 = −1.25 (−51.34°), −1.33 (−53.06°),

−1.67 (−59.08°). In Fig. 5.6 it is plotted the skyrmion trajectories for the system in Fig. 5.5 (a) 

with 𝑎0 = 0.65  at 𝐹𝐷 = 0.04  in the 𝑅 = 0 (0°)  state, while in Fig. 5.6 (b) it is shown the 

trajectories in the same system but with 𝐹𝐷 = 0.5  and 𝑅 = −1.0 (−45°) . At 𝐹𝐷 = 1.0  the 

skyrmion is in the 𝑅 = −1.5 (−56.3°) state, which is illustrated in Fig. 5.6 (c). In this case the 

skyrmion moves 3 lattice constants in the 𝑦 direction while moving 2 lattice constants in the 𝑥 

direction. If the obstacle size is reduced to 𝑎0 = 0.2, then for 𝐹𝐷 = 1.0 the skyrmion moves in 

the 𝑅 = −1.85 (−61.6°) state, shown in Fig. 5.6 (d). In Fig. 5.5 (b), it is plotted Δ𝐹𝐷versus 𝑎0 

for the same system highlighting some of the most pronounced states 𝜃𝑠𝑘 = 0°, −45°, −56.3° 

and −63.4°. 
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Figure 5.5 – (a) The skyrmion Hall angle, 𝜃𝑠𝑘 = arctan 𝑅 vs. 𝐹𝐷, where 𝑅 = 〈𝑉⊥〉/〈𝑉∥〉, in samples with 𝛼𝑚/𝛼𝑑 =

1.91 at varied 𝑎0. (b) Range of forces Δ𝐹𝐷 as a function of the obstacle radius 𝑎𝑜  for a single skyrmion in the 

square obstacle array using 𝛼𝑚/𝛼𝑑 = 1.91 (From Vizarim et. al.  [137], pg. 6). 

 

Figure 5.6 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 5.5 (a) 

with 𝛼𝑚/𝛼𝑑 = 1.91. (a) The 𝑅 = 0 state for 𝑎0 = 0.65 and 𝐹𝐷 = 0.04. (b) The 𝑅 = −1.0 state for 𝑎0 = 0.65 and 

𝐹𝐷 = 0.5. (c) The 𝑅 = −1.5 state for 𝑎0 = 0.65 and 𝐹𝐷 = 1.0. (d) The 𝑅 = −1.85 state for 𝑎0 = 0.2 and 𝐹𝐷 =

1.0. (From Vizarim et. al.  [137], pg. 6). 

 

 In Fig. 5.7 (a) it is plotted 𝜃𝑠𝑘 = arctan𝑅 versus 𝐹𝐷 for samples with 𝛼𝑚/𝛼𝑑 = 4.925 

where 𝑎0 ranges from 𝑎0 = 0.15 to 𝑎0 = 1.0. Here, even more steps of direction of motion are 

found, ranging from 𝑅 = 0(0°)  to 𝑅 = −4.8(−78.23°) , with prominent steps at 𝑅 =

0(0°),−1.0 (−45°), −2(−63.4°),−3(−71.6°),−4(−75.9°) as well as many additional steps. 

In Fig. 5.7 (b) it is shown Δ𝐹𝐷 versus 𝑎0 for 𝜃𝑠𝑘 = 0° to 𝜃𝑠𝑘 = −78.2°. As the obstacle size 𝑎0 

increases it is possible to observe an increase in the number of different allowed steps. In Fig. 
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5.8 it is illustrated some select trajectories for the system of Fig. 5.7 (a) using 𝑎𝑜 = 1.0. In Fig. 

5.8 (a) shows the 𝑅 = −1.0 (−45°) state where the skyrmion follows a sinusoidal path between 

the large obstacles. In Fig. 5.8 (b) the trajectories for the 𝑅 = −2.0 (−63.4°) state, while in Fig. 

5.8 (c) the trajectories for 𝑅 = −3.0 (−71.6°) state. At 𝑅 = −4.0 (−75.9°) state the skyrmion 

trajectory becomes greatly tilted due to the strong Magnus term. 

Figure 5.7 – (a) The skyrmion Hall angle, 𝜃𝑠𝑘 = arctan 𝑅 vs. 𝐹𝐷, where 𝑅 = 〈𝑉⊥〉/〈𝑉∥〉, in samples with 𝛼𝑚/𝛼𝑑 =

4.925 at varied 𝑎0. (b) Range of forces Δ𝐹𝐷 as a function of the obstacle radius 𝑎𝑜 for a single skyrmion in the 

square obstacle array using 𝛼𝑚/𝛼𝑑 = 4.925 (From Vizarim et. al.  [137], pg. 7). 

 

Figure 5.8 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 5.7 (a) 

with 𝛼𝑚/𝛼𝑑 = 4.925 and 𝑎0 = 1.0. (a) The 𝑅 = −1.0 state, (b) the 𝑅 = −2.0, (c) the 𝑅 = −3.0 state and (d) 𝑅 =

−4.0 state. (From Vizarim et. al.  [137], pg. 8). 

 

 

 



76 
 

 
 

5.3.2 The Damping Effect 

Besides the obstacle array and size, a recent work also provided new insights about a 

controlled motion for skyrmions related to the damping term 𝛼𝑑 and to the parameters of an 

applied current pulse [114]. Here, we investigate the damping effect using a dc drive that is 

increasing slowly. In this section we no longer use the constraint 𝛼𝑑
2 + 𝛼𝑚

2 = 1, we set 𝛼𝑚 = 1 

and vary the term 𝛼𝑑 . In Fig. 5.9 (a) it is plotted the perpendicular and parallel velocity 

components versus 𝐹𝐷 for a system with 𝑎0 = 0.65 at 𝛼𝑑 = 0.0, 0.2 and 0.4. It is possible to see 

that a series of dips in both velocity components that are associated with directional locking 

effects. In Fig. 5.9 (b), where 𝛼𝑑 = 0.6, 0.8 and 1.0, the 𝛼𝑑 = 0.6 exhibits the most prominent 

steps. The velocity force curves for 𝛼𝑑 = 1.5, 2.0, 5.0 and 10.0 in Fig. 5.9 (c) indicate that 〈𝑉∥〉 

becomes more prominent for increased values of 𝛼𝑑. 

Figure 5.9 - In (a), (b) and (c), the average velocity curves 〈𝑉∥〉, 〈𝑉⊥〉 as a function of the transport force 𝐹𝐷 for a 

single skyrmion in the square obstacle array for varied values of 𝛼𝑑, fixed 𝛼𝑚 = 1.0 and 𝑎0 = 0.65 (From Vizarim 

et. al.  [137], pg. 8).  
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In Fig. 5.10 (a) it is plotted 𝜃𝑠𝑘 versus 𝐹𝐷 for the system of Fig. 5.9. As 𝛼𝑑 increases, 

fewer steps appear in the Hall angle curve. The largest number of transitions occurs for the 

lowest value of damping term, 𝛼𝑑 = 0.2. In Fig. 5.10 (b) shows the 𝜃𝑠𝑘 versus 𝐹𝐷 for higher 

values of damping, 𝛼𝑑 = 1.5, 2.0, 5.0 and 10.0, where steps occur at 𝜃𝑠𝑘 = 0°, −18.3°, −26.56° 

and −33.42°.  

Figure 5.10 - In (a) and (b) the 𝜃𝑠𝑘 vs 𝐹𝐷 curve for the system of Fig. 5.9 with fixed 𝛼𝑚 = 1.0 and 𝑎0 = 0.65 

(From Vizarim et. al.  [137], pg. 9). 

 

 In Fig. 5.11 it is plotted the skyrmion trajectories for the systems of Fig. 5.9 and 5.10 for 

𝛼𝑑 = 0, 2.0 and 5.0 at 𝐹𝐷 = 1.0. In the limit case of zero damping, 𝛼𝑑 = 0 , the skyrmion 

moves with 𝜃𝑠𝑘 = 90° with respect to the driving force. For 𝛼𝑑 = 5.0, the skyrmion is locked at 

the state 𝑅 = 0 (0°) , while for 𝛼𝑑 = 2.0  the skyrmion is locked at the state 𝑅 =

−0.5 (−26.56°) , which indicates that the skyrmion motion is strongly dependent on the 

damping term.  

 In Fig. 5.12 it is plotted 〈𝑉⊥〉 and 〈𝑉∥〉 versus 𝐹𝐷 for a system with large obstacle 𝑎0 =

1.3 for damping value of 𝛼𝑑 = 0, 0.2 and 0.4. For zero damping, the parallel skyrmion velocity 

is null, 〈𝑉∥〉 = 0, for all values of external driving force. The depinning threshold occurs for 

𝐹𝐷 = 0.255, where the perpendicular velocity becomes finite. There is also a partial two step 
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depinning process, where the second depinning threshold occurs at 𝐹𝐷 = 0.976. In Fig. 5.12 (b) 

and (c) it is illustrated the skyrmion trajectories for this system. At 𝐹𝐷 = 0.5, shown in Fig. 5.12 

(b), the skyrmion is strongly oscillating between obstacles, while in Fig. 5.12 (c) at 𝐹𝐷 = 1.0, 

above the second step, the skyrmion flows more freely through the column of obstacles, with 

lower oscillation. For the case of 𝛼𝑑 = 0.2, in Fig. 5.12 (a), there is still a sharp depinning 

transition along with a series of jumps in both 〈𝑉∥〉 and 〈𝑉⊥〉. It is also possible to observe an 

extended interval of 𝐹𝐷  over which 〈𝑉∥〉 decreases with increasing 𝐹𝐷 , but for 𝐹𝐷 > 1.0, 〈𝑉∥〉 

increases monotonically with the external driving force. 

Figure 5.11 - The obstacles (open circles) and the skyrmion trajectory (lines) for a system with 𝑎0 = 0.65 at 𝛼𝑑 =

0 (black), 2.0 (green) and 5.0 (orange). (From Vizarim et. al.  [137], pg. 9). 

 

 In Fig, 5.13 (a) it is plotted 〈𝑉⊥〉 and 〈𝑉∥〉 versus 𝐹𝐷 for a system with fixed 𝛼𝑚 = 1.0 

and 𝑎0 = 1.3 using 𝛼𝑑 = 0.6, 0.8 and 1.0. There is a finite depinning threshold for motion in 

both parallel and perpendicular directions, and the width of the state 𝑅 = 0 (0°) grows with 

increasing damping. In Fig. 5.13 (b) it is shown 〈𝑉⊥〉 and 〈𝑉∥〉 versus 𝐹𝐷 for 𝛼𝑑 = 1.5, 2.0, 5.0 

and 10.0, where the depinning transition still sharp and the number of steps in the velocity-force 

curves decreases with increasing damping. In general, for the drive at which 〈𝑉⊥〉 becomes 

finite, the magnitude of 〈𝑉∥〉 drops. In Fig. 5.13 (c) it is shown the Hall angle curve as a function 

of the drive for the samples of Fig. 5.13 (a) and (b), where a series of locking steps occur. 

 These results indicate that the skyrmion Hall angle can be controlled precisely in systems 

with periodic substrates. This also implies that it may be possible to create new types of 

transitor-like devices by exploiting the sharp jumps between the different Hall angles. In this 

case, certain values of 𝑅 or 𝜃𝑠𝑘 could be used to achieve a specific resistance value. It could also 
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be possible to create periodic arrays with obstacles of different sizes that would allow skyrmions 

to have one value of 𝜃𝑠𝑘 in one part of the sample, and different value of 𝜃𝑠𝑘 in another part of 

the sample. 

Figure 5.12 – (a) 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷for a system with 𝛼𝑚 = 1.0 for varied values of 𝛼𝑑 . (b) and (c) The 

obstacles (open circles) and the skyrmion trajectory (black lines) for a system with 𝑎0 = 1.3 and 𝛼𝑑 = 0 for (b) 

𝐹𝐷 = 0.5 and (c) 𝐹𝐷 = 1.0 (From Vizarim et. al.  [137], pg. 10). 
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Figure 5.13 - In (a) and (b) the average velocity curves 〈𝑉∥〉, 〈𝑉⊥〉 as a function of the transport force 𝐹𝐷 for a single 

skyrmion in the square obstacle array using 𝛼𝑚 = 1.0 and 𝑎0 = 1.3. In (c) the 𝜃𝑠𝑘  vs 𝐹𝐷  curve for the different 

damping term values. (Adapted from Vizarim et. al.  [137], pg. 11). 

 

5.3.3 Attractive Pinning Sites 

In this section it is considered the case of attractive pinning sites instead of the repulsive 

obstacles, which can be achieved by just changing the signal of 𝐶0, the strength of the pinning 

potential. A single skyrmion not subjected to a drive stabilizes inside the pinning center, and 

there is a finite depinning threshold or driving force necessary to remove the skyrmion from the 

pinning center and start its motion. In Fig. 5.14 (a) it is plotted 〈𝑉⊥〉 and 〈𝑉∥〉 versus 𝐹𝐷 for the 

same system of Fig. 5.1 containing a single skyrmion where 𝑎𝑜 = 0.65 and 𝛼𝑚/𝛼𝑑 = 0.45, but 

using attractive pinning sites. In Fig. 5.14 (c) shows the corresponding skyrmion Hall angle 
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curve. Unlike the systems with obstacles, where the skyrmion flows along the 𝑥 direction at low 

drives, for the attractive pins it is found a pinned phase where the skyrmion has no motion in 

both 𝑥 or 𝑦 directions. On the other hand, it is still possible to see quantized skyrmion Hall angle 

behavior after the depinning threshold, but they are strongly reduced in size when compared to 

the systems with obstacles. In Fig. 5.14 (b) it is plotted 〈𝑉⊥〉 and 〈𝑉∥〉 versus 𝐹𝐷 for the same 

system, but using 𝛼𝑚/𝛼𝑑 = 1.91 and 𝑎0 = 1.0. In this case the depinning threshold is lower, 

and although steps appear in the velocity and skyrmion Hall angle curves, shown in Fig. 5.14 

(d), they are strongly reduced in size. These results indicate that the attractive pinning sites 

produce much reduced directional locking effects when compared to systems using obstacles. 

Figure 5.14 - (a) The average velocity curves 〈𝑉∥〉, 〈𝑉⊥〉 as a function of the transport force 𝐹𝐷 for a single skyrmion 

in the square attractive pinning array using 𝑎0 = 0.65  and 𝛼𝑚/𝛼𝑑 = 0.45 . (b) The average velocity curves 

〈𝑉∥〉, 〈𝑉⊥〉 as a function of the transport force 𝐹𝐷 using 𝑎0 = 1.0 and 𝛼𝑚/𝛼𝑑 = 1.91 (c) the corresponding skyrmion 

Hall angle curve for panel (a). (d) The corresponding skyrmion Hall angle curve for system of panel (b). (From 

Vizarim et. al.  [137], pg. 12). 

 

5.3.4 Topological Sorting 

In this section it is considered the effects of multiple interacting skyrmions moving in 

periodic obstacle arrays for varied species of skyrmions. It is well known that in experimental 

samples skyrmions may form with different sizes that exhibit different Magnus 

terms [102,155,156].  In Fig. 5.15 (a) it is plotted 〈𝑉⊥〉 and 〈𝑉∥〉 for each species versus 𝐹𝐷 for a 

system containing 44 skyrmions at a density of 𝑛𝑠 = 0.034  and 𝑎0 = 0.65 . Half of the 

skyrmions has 𝛼𝑚/𝛼𝑑 = 0.45 (species 𝑎) and the other half 𝛼𝑚/𝛼𝑑 = 1.91 (species 𝑏). In Fig. 

5.15 (b) it is illustrated the corresponding 𝜃𝑠𝑘 versus 𝐹𝐷 curve for both species. In this case, the 

skyrmions from species 𝑎 have always different Hall angle curves when compared to species 𝑏. 
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Moreover, the 𝜃𝑠𝑘 is always lower than the intrinsic Hall angle value for both species, which 

means that the skyrmion-skyrmion interactions cause a reduction in the Hall angle for both 

species. The pronounced steps observed for the single skyrmion case is not present for multiple 

skyrmions, this occurs due to the disordering effect that occurs when the different skyrmion 

species move at different angles, causing collisions among the skyrmions and resulting in the 

disordered trajectories illustrated in Fig. 5.16 for 𝐹𝐷 = 0.5. In Fig. 5.17, species 𝑎 is moving 

with 𝜃𝑠𝑘 = −18.43°, but when it collides with species 𝑏 skyrmions, the trajectories begin to 

disorder. As 𝐹𝐷  is increase, species 𝑎 eventually jumps out of the phase 𝜃𝑠𝑘 = −18.43° and 

move with higher angle. For collective effects among monodisperse skyrmions, locking steps 

similar to those found for single skyrmion case can occur. The fact that different species can be 

set into motion with different Hall angles opens the possibility to create skyrmion sorting in 

systems containing skyrmions with different sizes or different winding numbers, similar to the 

species fractionation that can be achieved for different species of colloidal particles moving over 

periodic substrates [157–160]. The separation can be more difficult in systems where there are 

only small differences between the skyrmion species, but it should be possible to adjust the 

external drive 𝐹𝐷 carefully to the edge of a locking step that one species is locked in a given 

direction and the other species is not. 

Figure 5.15 - Results for 44 skyrmions (density of 0.034/𝜉2) under the influence of the square obstacle array, 

which half of them are from species 𝑎 (𝛼𝑚/𝛼𝑑 = 0.45) and the other half 𝑏 (𝛼𝑚/𝛼𝑑 = 1.91). In (a) the average 

velocity curves 〈𝑉∥〉, 〈𝑉⊥〉 as a function of the transport force 𝐹𝐷 and in (b) the 𝜃𝑠𝑘 vs 𝐹𝐷 curve. In both figures 𝑎𝑜 =

0.65 (From Vizarim et. al.  [137], pg. 13). 
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Figure 5.16 - The obstacles (open circles) and the skyrmion trajectory (lines) for system of mixed species, where 

species 𝑎  are represented by black lines and species 𝑏 by blue lines, using 𝑎𝑜 = 0.65 and 𝐹𝐷 = 0.5. The skyrmions 

of species 𝑎 are moving with 𝜃𝑠𝑘
𝑎 =  −18.43° while the skyrmions of species 𝑏 moves with 𝜃𝑠𝑘

𝑏 =  −45° [See Fig. 

5.15 (b)] (From Vizarim et. al.  [137], pg. 14). 

 

 If the density of both species is increased an interesting phenomenon occurs, the 

skyrmion-skyrmion interaction becomes stronger and at low drives regimes a jammed state 

emerges, where the two species move while rigidly locked together. In Fig. 5.17 (a) it is shown 

〈𝑉⊥〉 and 〈𝑉∥〉 for each species versus 𝐹𝐷 in a sample with 110 skyrmions, where 𝑛𝑠 = 0.085, 

and in Fig. 5.17 (b) the corresponding Hall angle curve for both species. Species 𝑎 reaches a 

step with 𝜃𝑠𝑘 = −26.56°, which is higher than the intrinsic 𝜃𝑠𝑘
𝑖𝑛𝑡 = −24.22° value for species 𝑎, 

which means that there is a dragging effect from species 𝑏  on species 𝑎 . At higher drives, 

species 𝑎 settles at 𝜃𝑠𝑘 = −21.8°. At the lowest values of 𝐹𝐷, 𝜃𝑠𝑘 is close to 0° when the system 

forms a jammed state where the skyrmions of both species start to form an elastically moving 

lattice due to the repulsive skyrmion-skyrmion interactions. In Fig. 5.18 (a) it is illustrated the 

skyrmion trajectories for the system in Fig. 5.17 at 𝐹𝐷 = 0.01, where skyrmions move mostly in 

the state where 𝜃𝑠𝑘 = 0° in a jammed state. In Fig. 5.18 (b) it shows the skyrmion trajectories 

for 𝐹𝐷 = 0.5, where species 𝑏 is locked at 𝜃𝑠𝑘 = −45° and species 𝑎 is locked at 𝜃𝑠𝑘 = −21.8°. 

In this case the system is not jammed anymore due to the higher drives. 
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Figure 5.17 - Results for 110 skyrmions (density of 0.085/𝜉2) under the influence of the square obstacle array, 

which half of them are from species 𝑎 (𝛼𝑚/𝛼𝑑 = 0.45) and the other half 𝑏 (𝛼𝑚/𝛼𝑑 = 1.91). In (a) the average 

velocity curves 〈𝑉∥〉, 〈𝑉⊥〉 as a function of the transport force 𝐹𝐷 and in (b) the 𝜃𝑠𝑘 vs 𝐹𝐷 curve. In both figures 𝑎𝑜 =

0.65 (From Vizarim et. al.  [137], pg. 14).  

 

Figure 5.18 - The obstacles (open circles) and the skyrmion trajectory (lines) for system of mixed species, where 

species 𝑎 are represented by black lines and species 𝑏 by blue lines, using 𝑎𝑜 = 0.65.  (a) For 𝐹𝐷 = 0.01, the 

skyrmions of both species are locked together in a jammed state moving mostly with 𝜃𝑠𝑘 = 0°. (b) For 𝐹𝐷 = 0.5, 

the species 𝑎 are moving with 𝜃𝑠𝑘
𝑎 =  −21.8° while the skyrmions of species 𝑏 moves with 𝜃𝑠𝑘

𝑏 =  −45° [See Fig. 

5.17 (b)] (From Vizarim et. al.  [137], pg. 15). 

 

 In order to quantify the efficiency of the sorting process, it was measured the difference 

𝐴𝑎𝑏 = 〈𝑉𝑎〉 − 〈𝑉𝑏〉 between the velocity of the two species in both parallel and perpendicular 
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directions. In Fig. 5.19 it is shown that the efficiency 𝐴𝑎𝑏 of the separation drops with increasing 

skyrmion density for the systems in Fig. 5.16 and 5.17. For the perpendicular direction, there is 

a monotonic decrease in the efficiency for increasing skyrmion density, 𝑛𝑠, due to the increased 

drag effect between the two species. Meanwhile, for the parallel direction there is a non-

monotonic behavior of the efficiency as a function of 𝑛𝑠 due to the partial jamming effect. The 

jamming effect appears at low drives and can also occur for motion in different directions. In 

Fig. 5.20 it is plotted the width Δ𝐹𝑗𝑎𝑚 of the jammed phase as a function of 𝑛𝑠. The jammed 

state is defined to extend from the depinning threshold to the drive at which the species 

velocities begin to decouple. 

Figure 5.19 - Area between the velocity curves of the different species, 𝐴𝑎𝑏, versus the skyrmion density, 𝑛𝑠. In 

black the area between the velocities parallel to the drive, 𝐴𝑎𝑏〈𝑉∥〉 , and in red the area between velocities 

perpendicular to the applied drive, 𝐴𝑎𝑏〈𝑉⊥〉. The figure shows the sorting efficiency as a function of the skyrmion 

density (From Vizarim et. al.  [137], pg. 15). 

 

 In Fig. 5.20, for 𝑛𝑠 ≤ 0.0594, there is no jamming since the skyrmion density is low 

enough that skyrmions can easy pass by each other with minimal interactions. For 0.0594 <

𝑛𝑠 < 0.0933, the initial motion occurs in tha jammed state with 𝜃𝑠𝑘 = 0°, while for 0.0933 <

𝑛𝑠 < 0.1188, the skyrmions form a jammed state that moves with 𝜃𝑠𝑘 = −26.56°. Over the 

interval 0.1188 < 𝑛𝑠 < 0.1867, the jammed state moves now with 𝜃𝑠𝑘 = −45°, while for 𝑛𝑠 >

0.1867 another jammed state appears with 𝜃𝑠𝑘 = 0°. For larger skyrmion densities the jammed 

state is larger and can be moved with different directions, that is, even in the same jammed state 

the direction of motion may change due to the dragging effect. 
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Figure 5.20 - Range of forces where the skyrmions are jammed, Δ𝐹𝑗𝑎𝑚
𝐷 , versus the skyrmion density, 𝑛𝑠. The figure 

shows that as the skyrmion density increases, the range of forces where the skyrmions are jammed becomes larger 

and may change the direction of motion (From Vizarim et. al.  [137], pg. 15).  

 

5.3.5 Discussion and Summary 

We have examined individual and multiple interacting skyrmions moving through a 

square array of obstacles. In the single skyrmion case, we observe a series of directional locking 

effects where the skyrmion Hall angle increases in both a quantized and a continuous manner. 

The transitions between the different locking steps are associated with dips or cusps in the 

velocity-force curves as well as with a quantized skyrmion Hall angle. For small obstacles, the 

skyrmion motion is oriented close to the intrinsic Hall angle, but directional locking to higher or 

lower Hall angles can occur. For larger obstacles, the number of directional locking steps is 

increased. The angle of skyrmion motion is 90° with respect to the drive at zero damping, and it 

decreases with increasing damping until, for high damping, the skyrmion remains locked in the 

drive direction. When multiple species of interacting skyrmions are present, we show that it is 

possible to achieve a sorting effect in which one species of skyrmion locks to a symmetry 

direction of the obstacle lattice while the other species does not. The sharp steps in the velocity 

force curves disappear when there are multiple skyrmion species due to the disordering of the 

skyrmion trajectories that occurs when the different species move in different directions and 

collide. At lower drives, as the skyrmion density increases we observe a jammed state in which 

two species form a rigid assembly and all move in the same direction, while at higher drives the 

motion of the two species decouple. For increasing skyrmion density, we observe a series of 

transitions among jammed phases that move at different angles with respect to the drive. 
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6 Shapiro Steps and Nonlinear Skyrmion Hall angles 

6.1 Skyrmions under ac and dc drives 

This works aims to investigate the skyrmion behavior under the influence of dc drives 

associated with ac drives and it was published in Physical Review B [161]. Overdamped 

particles moving over a two-dimensional periodic substrate under combined dc and ac drives 

can exhibit a series of steps that appear in the velocity force curves that are known as Shapiro 

steps [162]. Here we show that for skyrmions driven over a two-dimensional periodic obstacle 

array with a dc drive and an ac drive that is either parallel or perpendicular to the dc drive, the 

system exhibits numerous transverse and longitudinal synchronization dynamics due to the 

Magnus force. These phenomena originate in interactions between two different types of phase 

locking effects: Shapiro steps and directional locking. In some cases, the skyrmion Hall angle is 

constant but longitudinal Shapiro steps appear, while in other regimes the skyrmion Hall angle 

can either increase or decrease with increasing dc drive during the phase locking as the 

skyrmion locks to different symmetry directions of the obstacle lattice. For a transverse ac drive 

we find that strong Hall angle overshoots can occur in certain locked phases where the skyrmion 

is moving at an angle that is considerably larger than the intrinsic Hall angle. For the strongest 

Magnus force, the phase locking effects are reduced and there are larger regions of disordered 

dynamics. It is shown that the skyrmion Hall angle can be controlled by fixing the dc drive and 

changing the amplitude of the ac drive. 

6.2   Model and Simulation details 

In this work, a single skyrmion is subjected to a square obstacle landscape while a dc 

drive is applied in the 𝑥 direction, and ac drives are applied in both 𝑥 and 𝑦 directions. The 

dynamical properties of the skyrmion system interacting with the obstacle array were simulated 

using the particle model for skyrmions, shown in Eq. (6.1), using Molecular Dynamics 

technique. 

 

                                                   𝛼𝑑𝐯𝒊 + 𝛼𝑚�̂� × 𝐯𝒊 = 𝐅𝑖
𝑜 + 𝐅𝐷 + 𝐅𝑎𝑐                                       (6.1) 

 

 The first term on the left 𝛼𝑑 is the damping term, and the second term on the left 𝛼𝑚 is 

the Magnus term that produces a force that is perpendicular to the skyrmion velocity. Unless 

otherwise noted, we used the normalization 𝛼𝑑
2 + 𝛼𝑚

2 = 1. 
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The first term on the right is the interaction between the skyrmions and the obstacles. 

The potential energy of this interaction has a Gaussian form 𝑈𝑜 = 𝐶𝑜𝑒
−(𝑟𝑖𝑜 𝑎𝑜⁄ )2, where 𝐶𝑜 is the 

strength of the obstacle potential, 𝑟𝑖𝑜 is the distance between the skyrmion 𝑖 and the obstacle 𝑜, 

and 𝑎𝑜  is the obstacle radius. The obstacle density used in this work is 0.093/𝜉2 , and the 

obstacle size is fixed in 𝑎0 = 0.65. The third term on the right side, 𝐅𝐷 = 𝐹𝐷�̂�, where �̂� is the 

direction of the dc driving force, is the force interaction between the skyrmion and the external 

current. In this work the applied dc drive is in 𝑥 direction, so �̂� =  �̂�. The last term is the ac 

drive, 𝐅𝑥
𝑎𝑐 = 𝐴 sin(2𝜋𝜔1𝑡) 𝒙 for longitudinal driving and 𝐅𝑦

𝑎𝑐 = 𝐵 cos(2𝜋𝜔2𝑡) �̂� for transversal 

driving, where, unless otherwise noted, we use 𝜔1 = 𝜔2 = 2 × 10−4 inverse simulation steps. 

We measure the skyrmion velocity parallel, 〈𝑉∥〉, and perpendicular, 〈𝑉⊥〉, to the drive. The 

external dc drive is increased in small steps of 𝛿𝐹𝐷 = 0.001 and wait 105 simulation time steps 

between increments to ensure steady state.  

 

6.3 Results 

6.3.1 Dc and Ac Drive In The Same Direction 

 First it is considered the case where ac drive is applied along the same direction as the dc 

drive, 𝐅𝑥
𝑎𝑐 = 𝐴 sin(2𝜋𝜔1𝑡) �̂�. For an overdamped particle moving under the influence of a 

periodic array, this drive configuration produces Shapiro steps in the velocity-force curves, and 

the motion is strictly in the 𝑥 direction, giving a Hall angle of zero degrees. As shown in the 

results of section 5, as 𝐹𝐷 is increased under zero ac driving, a series of quantized jumps appear 

in the velocity-force curves that are associated with different locking directions for the skyrmion 

motion, and are also accompanied by jumps in the skyrmion Hall angle, 𝜃𝑠𝑘. This is a results of 

the pinning-induced velocity dependence of the skyrmion Hall angle, as previously studied 

before [39]. 

 When a finite ac drive of 𝐴 = 0.5 is applied along the 𝑥 direction in a system just like 

described in section 5, the behavior changes as illustrated in Fig. 6.1. In Fig. 6.1 (a) it is plotted 

〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷, while in Fig. 6.1 (b) it is shown the corresponding 𝜃𝑠𝑘 versus 𝐹𝐷 curve. 

The skyrmion motion is initially locked along the 𝑥 direction for 𝐹𝐷 < 0.65, and above this 

drive 〈𝑉⊥〉 becomes finite and starts to increase in a series of steps. Above the first step in 〈𝑉⊥〉, 

the Hall angle is close to 𝜃𝑠𝑘 = −12.5°, and decreases in magnitude with increasing drive to 

𝜃𝑠𝑘 = −8° before increasing in magnitude again. This pattern repeats several times until, at high 

drives, 𝜃𝑠𝑘 saturates to 𝜃𝑠𝑘 = −24.22°, which is the intrinsic skyrmion Hall angle value. At high 
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drives, the steps in the velocity-force curves also become smoother. This type of reducing the 

skyrmion Hall angle with increasing external driving has not been observed before with 

skyrmions interacting with random pinning. 

Figure 6.1 – (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitude 𝐴 = 0.5. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied dc drive 

𝐹𝐷 for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 0.45 and 𝑎𝑜 = 0.65  (From Vizarim et. 

al.  [161], pg. 104413-3). 

 

 In Fig. 6.2 (a) and (b) it is plotted a zoom of Fig. 6.1 for the range of 0 < 𝐹𝐷 < 0.6. In 

this case, the skyrmion Hall angle 𝜃𝑠𝑘 = 0° and 〈𝑉⊥〉 = 0, indicating that the motion is only 

occurring in the 𝑥 direction. However, a set of phase locking steps still appear in 〈𝑉∥〉. These are 

Shapiro steps, which also occurs in the overdamped limit [163–166]. The steps correspond to 

windows of drive over which 〈𝑉∥〉 is locked to a constant value. In contrast, the directional 

locking found in the absence of an ac drive [See section 5 or  [137]] is not associated with 

constant velocity steps, but instead is accompanied by dips and cusps in the velocity curves. 

 In Fig. 6.2 (c) and (d) it is shown a zoomed version of Fig. 6.1 for the interval 0.7 <

𝐹𝐷 < 1.2, where two new features can be found. The first is that 〈𝑉⊥〉 has a finite and constant 

value, indicating that the particle is moving at an angle to the dc drive. The second is that the 

series of steps which appear in 〈𝑉∥〉 are correlated with steps in 𝜃𝑠𝑘 , which is decreasing in 
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magnitude as 𝐹𝐷 increases. This indicates that the velocity is increasing in the 𝑥 direction but 

remains constant in 𝑦, and the different phase locking steps are associated with decreases in the 

magnitude of the skyrmion Hall angle. Near 𝐹𝐷 = 1.2 in Fig. 6.1, there is a substantial jump in 

𝜃𝑠𝑘 to a larger magnitude which coincides with a jump to a new step of 〈𝑉⊥〉. 

Figure 6.2 – (a) The zoom in the range of 0 < 𝐹𝐷 < 0.6 from Fig. 6.1, showing the average velocities 〈𝑉∥〉 (black) 

and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied 

dc drive 𝐹𝐷 . (c) The zoom in the range of 0.7 < 𝐹𝐷 < 1.2 from Fig. 6.1. (d) The corresponding 𝜃𝑠𝑘 curve showing 

the decrease in magnitude of 𝜃𝑠𝑘  with increasing 𝐹𝐷  for a single skyrmion in the square obstacle array using 

𝛼𝑚/𝛼𝑑 = 0.45, 𝑎𝑜 = 0.65 and the ac drive with 𝐴 = 0.5 (From Vizarim et. al.  [161], pg. 104413-3). 

 

 The results in Fig. 6.1 and 6.2 show that the phase-locking behavior found in Fig. 6.1 is 

actually a mixture of two different types of locking. The first one is the Shapiro step phase 

locking associated with the matching of the ac drive frequency or its higher harmonics to the 

increasing frequency of the skyrmion velocity oscillations caused by the periodic collisions with 

the obstacles under an increasing dc drive. This locking is associated with 𝜃𝑠𝑘 value that is either 

constant or increasing in magnitude. The second is the directional locking which occurs even in 

the absence of an ac drive, as shown in previous works [39,125]. These two locking phenomena 

can interact with each other to create regions where the magnitude of the skyrmion Hall angle is 

either constant or decreasing with drive instead of monotonically increasing with 𝐹𝐷 . The 

directional locking effects for a moving particle over a periodic substrate can also occur for 

overdamped systems, such as vortices in type II superconductors moving over 2D periodic 

pinning [167,168] and colloids moving over optical traps [157,169] or periodic 

substrates [170,171]. However, in those systems the direction of the drive with respect to the 

substrate must be varied, whereas for skyrmions, the velocity dependence of the skyrmion Hall 

angle changes the direction of motion even when the direction of the driving is fixed [39,137]. 
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 In Fig. 6.3 (a) it is plotted the skyrmion trajectories for the system of Fig. 6.1 at 𝐹𝐷 =

0.3 where the skyrmion motion is locked in the 𝑥  direction with 𝜃𝑠𝑘 = 0°. Note that in the 

absence of an ac drive, there is still a single locking step at 𝜃𝑠𝑘 = 0° as described in section 5 or 

Ref. [137], where the skyrmion motion has a similar appearance. However, inclusion of the ac 

drive provokes multiple phase locking steps even for motion that remains locked along the 𝑥 

direction. At 𝐹𝐷 = 0.85 in Fig. 6.3 (b), the skyrmion has a finite motion in the −𝑦 direction and 

it moves through five obstacles in the 𝑥 direction for every obstacle in −𝑦, giving a ratio 𝑅 =

1/5 and therefore 𝜃𝑠𝑘 = arctan(1/5) = −11.3°. In Fig. 8.3 (c) at 𝐹𝐷 = 1.0, the velocity in the 

𝑦 direction is unchanged but the skyrmion Hall angle is smaller in magnitude due to increase 

〈𝑉∥〉. In this case, 𝜃𝑠𝑘 = −8.1°, and the skyrmion moves seven lattice constants in 𝑥 and one 

lattice constant in 𝑦 during an ac drive cycle. In Fig. 6.3 (d), where 𝐹𝐷 = 2.0, the skyrmion 

moves with 𝜃𝑠𝑘 = −22.24°. In this case it is not a locking step and the trajectories are more 

disordered. 

Figure 6.3 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 6.1 with 

𝛼𝑚/𝛼𝑑 = 0.45, 𝑎0 = 0.65 and ac driving in 𝑥 direction 𝐴 = 0.5. (a) 𝐹𝐷 = 0.3 where the motion is locked in the 𝑥 

direction. (b) 𝐹𝐷 = 0.85 where there is a finite motion along 𝑦 with 𝜃𝑠𝑘 = −11.3°. (c) 𝐹𝐷 = 1.0, where 𝜃𝑠𝑘 =

−8.1° and (d) 𝐹𝐷 = 2.0 where 𝜃𝑠𝑘 = −22.24°. (From Vizarim et. al.  [161], pg. 104413-4). 

 

 In Fig. 6.4 (a) it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷 for a system with ac drive in the 𝑥 

direction with fixed amplitude 𝐴 = 0.5 as in Fig. 6.1, but now using 𝛼𝑚/𝛼𝑑 = 1.0, where the 

intrinsic Hall angle is 𝜃𝑠𝑘
𝑖𝑛𝑡 = −45°. In Fig. 6.4 (b) it is shown the corresponding 𝜃𝑠𝑘  curve, 

which has only two values, with 𝜃𝑠𝑘 = 0° for small drive followed by a jump to the intrinsic 

skyrmion Hall angle value 𝜃𝑠𝑘 = −45°, indicating that there are no intermediate value of 𝜃𝑠𝑘. 
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Once the system is locked in 𝜃𝑠𝑘 = −45°, a series of Shapiro steps still appear in both parallel 

and perpendicular velocities in Fig. 6.4 (a) that do not correspond to changes in 𝜃𝑠𝑘. This shows 

that it is possible for Shapiro steps to occur even when the system motion is fixed at a locking 

angle. In general, if 𝛼𝑚/𝛼𝑑 produces an intrinsic Hall angle that gives a ratio of 𝑦 to 𝑥 motion 

that is close to 1/4, 1/3, 1/2 or 1, which correspond to strong symmetry directions of the 

square obstacle array, the system locks permanently to this symmetry direction even for very 

low drives, and steps in the velocity appear that are a signature of Shapiro steps instead of 

directional locking steps.  

Figure 6.4 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitude 𝐴 = 0.5. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied dc drive 

𝐹𝐷 for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 1.0  and 𝑎𝑜 = 0.65  (From Vizarim et. 

al.  [161], pg. 104413-5). 

 

In Fig. 6.5 (a) it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷 for a system using 𝛼𝑚/𝛼𝑑 = 1.732 

and exact same parameters of Fig. 6.1. In this case the intrinsic Hall angle is 𝜃𝑠𝑘
𝑖𝑛𝑡 = −60°. Fig. 

6.5 (b) shows the corresponding 𝜃𝑠𝑘 versus 𝐹𝐷, where it is possible to see that the system is 

directionally locked in 𝜃𝑠𝑘 = −45°, but there is still a series of steps in the velocities at low 𝐹𝐷 

despite the fact that the Hall angle is constant in this regime. For 𝐹𝐷 > 0.6, a series of steps 

appear in 𝜃𝑠𝑘 as the system switches between different locking steps. The larger increases in the 

magnitude of 𝜃𝑠𝑘 are followed by regions in which the magnitude of the skyrmion Hall angle 
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decreases by a smaller amount. In Fig. 6.6 (a) it is illustrated the skyrmion trajectory for the 

system in Fig. 6.5 at 𝐹𝐷 = 0.5 where the skyrmion is in the 𝜃𝑠𝑘 = −45° regime. In Fig. 6.6 (b), 

for 𝐹𝐷 = 1.0 the skyrmion is locked to a angle of 𝜃𝑠𝑘 = −50°. At 𝐹𝐷 = 1.3 in Fig. 6.6 (c) the 

skyrmion is moving in an alternating fashion and for 𝐹𝐷 = 1.75, in Fig. 6.6 (d), the Hall angle is 

𝜃𝑠𝑘 = −57.5°. 

Figure 6.5 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitude 𝐴 = 0.5. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied dc drive 

𝐹𝐷 for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 1.732 and 𝑎𝑜 = 0.65 (From Vizarim et. 

al.  [161], pg. 104413-5). 

 

 For increasing Magnus force, the skyrmion dynamics becomes increasingly disordered, 

weakening both the directional locking and the Shapiro steps. Fig. 6.7 (a) shows 〈𝑉∥〉 and 〈𝑉⊥〉 

versus 𝐹𝐷  for a system with 𝑥  direction ac driving with 𝐴 = 0.5 but using 𝛼𝑚/𝛼𝑑 = 9.962, 

where the intrinsic skyrmion Hall angle is 𝜃𝑠𝑘 = −84.3°. Fig. 6.7 (b) shows the corresponding 

skyrmion Hall angle curve. In this case there are only small steps in the velocity force curves 

that are associated with steps in 𝜃𝑠𝑘 curve. For these higher Magnus force systems, the skyrmion 

begin to perform full or partial loops around obstacles, as shown in Fig. 6.7 (c) at 𝐹𝐷 = 0.33. In 

Fig. 6.7 (d), at 𝐹𝐷 = 0.5, the system is in a disordered phase. For 𝐹𝐷 > 1.5, the locking regimes 

are lost and 𝜃𝑠𝑘 gradually approaches the intrinsic value. 
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Figure 6.6 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 6.4 with 

𝛼𝑚/𝛼𝑑 = 1.732, 𝑎0 = 0.65 and ac driving in 𝑥  direction 𝐴 = 0.5. (a) 𝐹𝐷 = 0.5 where the motion is locked in 

𝜃𝑠𝑘 = −45°. (b) 𝐹𝐷 = 1.0. (c) 𝐹𝐷 = 1.3. (d) 𝐹𝐷 = 1.75 where 𝜃𝑠𝑘 = −57.5°. (From Vizarim et. al.  [161], pg. 

104413-5). 

 

Figure 6.7 – (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitude 𝐴 = 0.5. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied dc drive 

𝐹𝐷 for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 9.962 and 𝑎𝑜 = 0.65. (c) – (d) The obstacles 

(open circles) and the skyrmion trajectory (black lines) for the system in (a) and (b). (c) 𝐹𝐷 = 0.33 where loop 

orbits appear due to high Magnus forces. (d) 𝐹𝐷 = 0.5, where the motion is disordered (Adapted from Vizarim et. 

al.  [161], pg. 104413-6). 
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6.3.2 Ac Driving In The Transverse Direction 

In this section we consider the case of an ac drive applied along the 𝑦  direction, 

transverse to the dc drive. In Fig. 6.8 (a) it is plotted the velocity components as a function of 𝐹𝐷 

and in Fig. 6.8 (b) it is plotted the corresponding skyrmion Hall angle curve for a system using 

𝛼𝑚/𝛼𝑑 = 0.45 and 𝐵 = 0.5. The features in the velocity curves exhibit a steplike behavior, 

rather than cusplike shapes found for the case of ac drive in the 𝑥 direction shown in Fig. 6.1. In 

general, it is also possible to observe more locking regions which are associated with both 

directional locking and the ac phase locking. Another interesting feature is that near 𝐹𝐷 = 0.15, 

there is a window of locking to 𝜃𝑠𝑘 = −45°, which is considerably larger in magnitude than the 

intrinsic Hall angle, which in this case is 𝜃𝑠𝑘
𝑖𝑛𝑡 = −24.22°. We call this phenomenon a Hall 

angle overshoot. As 𝐹𝐷  increases, 𝜃𝑠𝑘  undergoes a number of oscillations until it reaches a 

saturation near intrinsic Hall angle value at high drives. 

Figure 6.8 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitude 𝐵 = 0.5. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied dc drive 

𝐹𝐷 for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 0.45 and 𝑎𝑜 = 0.65  (From Vizarim et. 

al.  [161], pg. 104413-6). 

 

 In Figs. 6.9 (a) – (c) it is plotted 〈𝑉∥〉, 〈𝑉⊥〉 and 𝜃𝑠𝑘 versus 𝐹𝐷 for the system in Fig. 6.8 

for the interval 0.4 < 𝐹𝐷 < 0.85. There are sudden jumps both up and down in 𝜃𝑠𝑘. Moreover, 

there are regions where 〈𝑉⊥〉 remains constant but steps appear in 〈𝑉∥〉 that are associated with 

jumps in 𝜃𝑠𝑘. In the interval 1.35 < 𝐹𝐷 < 1.75 shown in Figs. 6.9 (d) – (f), there are regions 

where the velocity can decrease with increasing 𝐹𝐷. 
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Figure 6.9 - The average velocities (a) 〈𝑉∥〉 (black) and (b) 〈𝑉⊥〉 (red) and (c) 𝜃𝑠𝑘 as a function of the applied dc 

force 𝐹𝐷  under a finite ac driving force with amplitude 𝐵 = 0.5 for the interval 0.4 < 𝐹𝐷 < 0.85. The average 

velocities (a) 〈𝑉∥〉 (black) and (b) 〈𝑉⊥〉 (red) and (c) 𝜃𝑠𝑘 as a function of the applied dc force 𝐹𝐷 under a finite ac 

driving force with amplitude 𝐵 = 0.5  for the interval 1.35 < 𝐹𝐷 < 1.75  using 𝛼𝑚/𝛼𝑑 = 0.45  and 𝑎𝑜 = 0.65 

(From Vizarim et. al.  [161], pg. 104413-6). 

 

 In Fig. 6.10 it is illustrate some representative skyrmion trajectories for the system of 

Fig. 6.8. At 𝐹𝐷 = 0.1 in Fig. 6.10 (a) the skyrmion motion is locked in the 𝑥 direction, and the 

skyrmion performs a zigzag pattern. In Fig. 6.10 (b), at 𝐹𝐷 = 0.16, the motion is locked in 

𝜃𝑠𝑘 = −45°. Fig. 6.10 (c) shows the trajectory for 𝐹𝐷 = 0.26, where the skyrmion moves with a 

much smaller angle of 𝜃𝑠𝑘 = −18.4°. In Fig. 6.10 (d), at 𝐹𝐷 = 0.44, the skyrmion still moves 

with 𝜃𝑠𝑘 = −18.4°, but the shape of the trajectory is changed. At 𝐹𝐷 = 0.61, shown in Fig. 6.10 

(e), the motion is along 𝜃𝑠𝑘 = −26.6° , and in Fig. 6.10 (f) at 𝐹𝐷 = 1.4 , 𝜃𝑠𝑘 = −18.4° , 

indicating that the system has returned to the previous state. This trajectory is different than the 

previous ones, indicating that this phase where the skyrmion moves with 𝜃𝑠𝑘 = −18.4° can 

occur in many different ways. 
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Figure 6.10 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 6.8 with 

𝛼𝑚/𝛼𝑑 = 0.45, 𝑎0 = 0.65 and ac driving in 𝑦  direction 𝐵 = 0.5. (a) 𝐹𝐷 = 0.1 where the motion is locked in 

𝜃𝑠𝑘 = 0°. (b) 𝐹𝐷 = 0.16 the overshoot motion where 𝜃𝑠𝑘 = −45°. (c) 𝐹𝐷 = 0.26 where 𝜃𝑠𝑘 = −18.4°. (d) 𝐹𝐷 =

0.44. (e) 𝐹𝐷 = 0.61 and (f) 𝐹𝐷 = 1.4 (From Vizarim et. al.  [161], pg. 104413-7). 

 

In Fig. 6.11 (a) it is plotted the velocity components versus 𝐹𝐷  and in Fig. 6.11 (b) the 

corresponding skyrmion Hall angle curve for a system using 𝛼𝑚/𝛼𝑑 = 1.732, wherethere are 

again a series of steps at which 𝜃𝑠𝑘 increases or decreases. Locking occurs in several regimes 

and the system jumps in and out of 𝜃𝑠𝑘 = −45° locked state since 45° locking is a particularly 

strong symmetry direction for the square obstacle lattice. In Fig. 6.12 (a) and (b) it is plotted the 

trajectories for the system in Fig. 6.11 at 𝐹𝐷 = 0.15 in the 𝜃𝑠𝑘 = −45° locking regime and at 

𝐹𝐷 = 0.175, where the motion occurs with lower Hall angle magnitude, 𝜃𝑠𝑘 = −33.7°. In Fig. 

6.12 (c) at 𝐹𝐷 = 0.3, the system jumps to a new phase where 𝜃𝑠𝑘 = −45° again with a braiding 

pattern, and in Fig. 6.12 (d) at 𝐹𝐷 = 0.43, the motion is along 𝜃𝑠𝑘 = −56.3°. 
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Figure 6.11 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitude 𝐵 = 0.5. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied dc drive 

𝐹𝐷 for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 1.732 and 𝑎𝑜 = 0.65 (From Vizarim et. 

al.  [161], pg. 104413-7). 

 

Figure 6.12 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 6.11 with 

𝛼𝑚/𝛼𝑑 = 1.732, 𝑎0 = 0.65 and ac driving in 𝑦 direction 𝐵 = 0.5. (a) 𝐹𝐷 = 0.15 where the motion is locked in 

𝜃𝑠𝑘 = −45°. (b) 𝐹𝐷 = 0.175 the motion locks with 𝜃𝑠𝑘 = −33.7°. (c) 𝐹𝐷 = 0.3 the motion returns to 𝜃𝑠𝑘 = −45°. 

(d) 𝐹𝐷 = 0.43 where 𝜃𝑠𝑘 = −56.3°. (From Vizarim et. al.  [161], pg. 104413-7). 

 

 



99 
 

 
 

 For higher values of 𝛼𝑚/𝛼𝑑  there are extended regions where the trajectories are 

disordered, and the phase-locking phenomena is generally lost. In Fig. 6.13 it is shown the 

velocity curves for a system using 𝛼𝑚/𝛼𝑑 = 9.962. In this case, there are a number of smaller 

steps, particularly in the range of 0.35 < 𝐹𝐷 < 1.0, along with one larger step near 𝐹𝐷 = 2.5. 

The trajectories become increasingly aligned with the 𝑦  direction as the external drive is 

increased. 

 When the ac drive is in the 𝑦 direction, there is an interplay between three types of phase 

locking. These are the Shapiro steps, the directional locking and the transverse phase locking 

effect. This is the reason why there are a larger number of steps in the velocity and skyrmion 

Hall angle curves compared to the case of ac driving in the 𝑥 direction. 

Figure 6.13 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitude 𝐵 = 0.5. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied dc drive 

𝐹𝐷 for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 9.962 and 𝑎𝑜 = 0.65 (From Vizarim et. 

al.  [161], pg. 104413-8). 

 

6.3.3 Hall Angle Reversal 

In most cases, the results shown so far shows that although the skyrmion Hall angle may 

increase or decrease with drive, it maintains always the same sign. Under certain circumstances, 

however, we find regions in which the skyrmion Hall angle changes from negative to positive. 
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This effect is generally associated with windows of disordered motion at smaller external drive 

values where the skyrmion is jumping among different paths. In Fig. 6.14, it is plotted 〈𝑉∥〉, 〈𝑉⊥〉 

and 𝜃𝑠𝑘  versus 𝐹𝐷  for a system with ac driving in the 𝑦 direction at 𝛼𝑚/𝛼𝑑 = 1.0. If the ac 

driving were applied in the 𝑥 direction, this ratio of Magnus to damping terms would produce a 

constant skyrmion Hall angle of 𝜃𝑠𝑘 = −45° with only Shapiro steps, as it was shown in Fig. 

6.4. When the ac driving is in the 𝑦 direction, however, a variety of locking regions appear that 

are associated with jumps both up and down in 〈𝑉∥〉 and 〈𝑉⊥〉. Jumps also occur in 𝜃𝑠𝑘 among 

the values 𝜃𝑠𝑘 = −45°, −38.65°, −36.87°, −33.6° and −26.56°. The corresponding velocity 

ratios are 〈𝑉⊥〉/〈𝑉∥〉 = 1, 4/5, 4/3, 2/3 and 1/2 respectively. At higher drives, 𝜃𝑠𝑘 decreases in 

magnitude to angles smaller than 45°. Meanwhile, for 𝐹𝐷 < 0.1, in the low drive regime, there 

are several regions in which 〈𝑉∥〉 and 〈𝑉⊥〉 are both finite and positive, which produces a positive 

skyrmion Hall angle of 𝜃𝑠𝑘 ≈ 10°.  

Figure 6.14 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitude 𝐵 = 0.5. (b) The corresponding 𝜃𝑠𝑘 curve as function of the applied dc drive 

𝐹𝐷 for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 1.0  and 𝑎𝑜 = 0.65  (From Vizarim et. 

al.  [161], pg. 104413-8). 

 

The motion in this regime is illustrated in Figs. 6.15 (a) and (b) at 𝐹𝐷 = 0.045, where 

the motion is locked along 𝑥, and at 𝐹𝐷 = 0.065, where the skyrmion is jumping intermittently 

in the positive 𝑦 direction. Fig. 6.15 (c) shows the locking phase with 𝜃𝑠𝑘 = −45° at 𝐹𝐷 = 0.2, 

and in Fig. 6.15 (d) at 𝐹𝐷 = 0.55, the skyrmion Hall angle is locked at 𝜃𝑠𝑘 = −33.7°. It is 
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possible that by varying other parameters such as the size of obstacles, clear regions of skyrmion 

Hall angle reversals may also appear, but the results here indicate that such reversal effects can 

arise for skyrmion under the influence of periodic obstacle arrays.  

Figure 6.15 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 6.14 with 

𝛼𝑚/𝛼𝑑 = 1.0, 𝑎0 = 0.65 and ac driving in 𝑦 direction 𝐵 = 0.5. (a) 𝐹𝐷 = 0.045 where the motion is locked in 

𝜃𝑠𝑘 = 0° . (b) 𝐹𝐷 = 0.065 the skyrmion moves with positive velocity component in 𝑦 , resulting in a positive 

skyrmion Hall angle. (c) 𝐹𝐷 = 0.2 the motion is locked to 𝜃𝑠𝑘 = −45°. (d) 𝐹𝐷 = 0.55 where 𝜃𝑠𝑘 = −33.7°. (From 

Vizarim et. al.  [161], pg. 104413-8). 

 

6.3.4  Influence of varying ac drive at a fixed dc drive 

 Now it is considered the case of a fixed dc drive of 𝐹𝐷 = 1.0 and the ac drive in 𝑥 

direction with changing amplitude 𝐴 using 𝛼𝑚/𝛼𝑑 = 0.45. In Fig. 6.16 (a) it is plotted the 

velocity components as a function of the external ac drive amplitude, 𝐴. In Fig. 6.16 (b) it is 

plotted the corresponding 𝜃𝑠𝑘 curve. When 𝐴 = 0, the skyrmion motion is locked in 𝜃𝑠𝑘 = 0°. 

As 𝐴 increases, 〈𝑉∥〉 remains fairly constant due to the fixed value of 𝐹𝐷, but small cusps are 

present which are correlated to a series of increasing steps in 〈𝑉⊥〉. The steps in 〈𝑉⊥〉 produces a 

series of steps in the skyrmion Hall angle, since 𝜃𝑠𝑘 = arctan 𝑅 = arctan(〈𝑉⊥〉/〈𝑉∥〉). Some 

steps are observed for 𝑅 = 0 , 1/10 , 1/6 , 1/5  and a small step near 1/4 . There are also 

extended steps at 𝑅 = 1/3, 3/7 and 1/2. In general, it can be observed that the magnitude of 

the Hall angle increases with increasing 𝐴 . In Fig. 6.17 (a) it is illustrated the skyrmion 
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trajectories for the systems of Figs. 6.16 (a) and (b) at 𝐴 = 0.2 on the 𝑅 = 1/10 (−5.7°), where 

the skyrmion moves 10 lattice constants in 𝑥 while moving one lattice constant in 𝑦. Fig. 6.17 

(b) shows the same system on the 𝑅 = 1/3 (−18.43°) at 𝐴 = 1.0. 

Figure 6.16 - The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) and 𝜃𝑠𝑘 as a function of the ac drive amplitude 

𝐴 (𝐵) for a fixed dc driving force 𝐹𝐷 = 1.0 in the 𝑥 direction using 𝛼𝑚/𝛼𝑑 = 0.45. (a) and (b) for a ac drive 

applied in the 𝑥 direction. (c) and (d) for ac driving in 𝑦 (Adapted from Vizarim et. al.  [161], pg. 104413-9). 

 

Figure 6.17 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 6.16 with 

𝛼𝑚/𝛼𝑑 = 1.0 and fixed dc drive 𝐹𝐷 = 1.0. (a) At 𝐴 = 0.2 where the skyrmion moves 10 lattice constants in 𝑥 and 

one lattice constant in 𝑦. (b) A 𝑅 = 1/3 step at 𝐴 = 1.0. (c) Skyrmion motion at 𝐵 = 0.34 and (d) for 𝐵 = 1.0. 

(From Vizarim et. al.  [161], pg. 104413-9). 
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 In Figs. 6.16 (c) and (d) it is plotted the velocities and 𝜃𝑠𝑘 versus ac drive amplitude for 

the same system as in Figs. 6.16 (a) and (b) but for ac driving in the 𝑦 direction, that is, 𝐴 = 0 

and 𝐵 finite. In this case, the Hall angle is initially zero since the skyrmion motion is locked in 

the 𝑥 direction. The velocities and skyrmion Hall angle increase and decrease in a series of 

jumps as 𝐵 is varied. In Fig. 6.17 (c) it is illustrated the skyrmion trajectories for 𝐵 = 0.34 

along a step at which the skyrmion moves 11 lattice constants in 𝑥 and 4 lattice constants in 𝑦. 

At 𝐵 = 1.0 in Fig. 6.17 (d), there is a more complicated motion where the skyrmion flow 11 

lattice constants in 𝑥 and 5 lattice constants in 𝑦. These results indicate that it is possible to 

controle the skyrmion Hall angle using an ac drive an adjusting the amplitude of the ac drive. 

6.3.5  Discussion and Summary 

 In this work we have numerically examined a skyrmion moving over a 2D periodic array 

of obstacles under a dc drive with additional ac drive applied either parallel or perpendicular to 

the dc drive. We find that the Magnus force induces new types of dynamical locking effects that 

are not observed for overdamped systems with 2D periodic substrates. When the ac and dc drive 

are parallel, the skyrmion exhibits Shapiro steps similar to those observed in overdamped 

systems as well as directional locking in which the skyrmion motion locks to different symmetry 

directions of the substrate. The locking is associated with steps or cusps in the velocities as well 

as changes in the skyrmion Hall angle. For certain ratios of Magnus force, we find that even 

though the skyrmion Hall angle is fixed in a particular direction of motion, Shapiro steps still 

appear in the velocity curves. At high drives, the skyrmion Hall angle gradually approaches the 

intrinsic value and show oscillations as a function of increasing drive. 

 In the locked phases, the skyrmion performs quantized motion along 𝑥 and 𝑦 directions. 

This suggests that ac drive could be used to control skyrmion motion in different types of 

devices [8]. Such controlled motion could be applied to more complex geometries such as rows 

of pinning or different tailored geometries. It is expected that similar results would appear for 

triangular array of obstacles, however the preferential directions of motion in this case would be 

30° and 60°. A possible future area to address is the inclusion of temperature, where thermal 

effects could strongly affect the transition points or jumps between different locked states, and 

also could produce thermal creeps [172]. For high temperature it is expected that the locking 

effects would vanish. In section 5 it is shown that locking effects are more prominent in systems 

with obstacle arrays, but if pinning arrays were used instead, the locking effects would persist 

but should be smaller steps of directional locking and also smaller Shapiro steps. 
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 The skyrmions are modelled as point-like particles, however, actual skyrmions often 

have additional internal modes of motion. These modes can be excited at much higher 

frequencies where they could induce additional locking frequencies. Such effects could be 

further explored in continuum-based simulations using LLG equations [173], which can also 

capture features like annihilation, or creation of skyrmions and possible distortions of the 

skyrmion structure due to interactions with the obstacles. Moreover, if multiple interacting 

skyrmions are present, additional locking effects could arise as a result of emergent soliton 

dynamics, which would most be pronounced just outside of rational filling fractions of 1/2, or 

1/1  [40,174]. 

Although our results are predicted for skyrmions, similar effects could arise in systems 

with particles in effectively 2D systems where gyroscopic forces can arise, including active 

spinners [175–177] or charged particles in magnetic fields moving over periodic 

substrates [25,178,179].  

 

7 Skyrmion Transverse Mobility and Biharmonic ac 

Drives 

7.1 Skyrmions under biharmonic ac drives 

 Here we further investigate the single skyrmion dynamics under the influence of dc drive 

associated with an ac drive. However, we focus on the case where the ac drives are applied in 

both 𝑥 and 𝑦 directions, that is, biharmonical. There is also a quick analysis on the temperature 

effects on the system dynamics. This work was published on The European Physical Journal 

B [180]. Interestingly, this work had a kind of press release by Springer, and it appeared in some 

science divulgation websites [181–183]. 

In this work, we numerically examine the dynamics of a skyrmion interacting with a 

two-dimensional periodic substrate under dc and biharmonic ac drives. We show that the 

Magnus force of the skyrmion produces circular orbits that can resonate with the ac drive and 

the periodicity of the substrate to create quantized motion both parallel and perpendicular to the 

dc drive. The skyrmion Hall angle exhibits a series of increasing and/or decreasing steps along 

with strongly fluctuating regimes. In the phase locked regimes, the skyrmion Hall angle is 

constant and the skyrmion motion consists of periodic orbits encircling an integer number of 

obstacles per every or every other ac drive cycle. We also observe phases in which the skyrmion 
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moves at 90° with respect to the driving direction even in the presence of damping, a 

phenomenon called absolute transverse mobility that can exhibit reentrance as a function of dc 

drive. When the biharmonic ac drives have different amplitudes in the two directions, we find 

regimes in which the skyrmion Hall angle shows a sign reversal from positive to negative, as 

well as a reentrant pinning effect in which the skyrmion is mobile at low drives but becomes 

pinned at higher drives. These behaviors arise due to the combination of the Magnus force with 

the periodic motion of the skyrmions, which produce Shapiro steps, directional locking, and 

ratchet effects. 

 

7.2 Model and Simulation details 

 This system is modelled exactly as shown in the previous section 6, we just focused here 

on the case where both ac drives are applied together. The dynamical properties of the skyrmion 

system interacting with the obstacle array were simulated using the particle model for 

skyrmions, shown in Eq. (6.1) from section 6, using Molecular Dynamics technique. 

 In this work case, the 𝐅𝑎𝑐 has the following form: 

 

                                                       𝐅𝑎𝑐 = 𝐴 sen(𝜔1𝑡) �̂� + 𝐵 cos(𝜔2𝑡) �̂�                                            (7.1) 

 

Where 𝐴 and 𝐵 are the ac drive amplitudes and 𝜔1,2 are the ac drive frequencies. In the fisrt part 

of the work we fix 𝐴 = 𝐵 and 𝜔1 = 𝜔2 , and throughout the work we fix 𝜔1 = 2 × 10−4  in 

inverse simulation steps. We measure the skyrmion velocity parallel, 〈𝑉∥〉, and perpendicular, 

〈𝑉⊥〉, to the drive. When the skyrmion is flowing without obstacles in the overdamped limit 

𝛼𝑚/𝛼𝑑 = 0, the skyrmion moves only in the direction of the drive. However, if there is a finite 

value for 𝛼𝑚/𝛼𝑑 , the skyrmion moves with a Hall angle, 𝜃𝑠𝑘 = arctan(〈𝑉⊥〉/〈𝑉∥〉) =

arctan(𝛼𝑚/𝛼𝑑). If one increases the quantity 𝛼𝑚/𝛼𝑑, the angle 𝜃𝑠𝑘 is increased respective to 

the drive. In order to quantify the direction of the skyrmion motion we measure 𝑅 =  〈𝑉⊥〉/〈𝑉∥〉. 

The external dc drive is increased in small steps of 𝛿𝐹𝐷 = 0.001 and wait 105 simulation time 

steps between increments to ensure steady state. We normalize the damping and magnus 

coefficients as 𝛼𝑑
2 + 𝛼𝑚

2 = 1. 
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7.3 Results 

7.3.1 Dc and biharmonic ac drives 

 In this section we analyze the case where the skyrmion is subjected to both ac and dc 

drive, where the ac drive is fixed, 𝐴 = 𝐵 = 0.5 and the dc drive is increased slowly for 𝛼𝑚/

𝛼𝑑 = 0.577, 1.732 and 9.962. In all cases in this section the obstacle radius is 𝑎0 = 0.65 and 

𝐹𝑜 = 1.0. In Fig. 7.1 (a) it is plotted the velocity components 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷 for the 

system with 𝛼𝑚/𝛼𝑑 = 0.577 while in Fig. 7.1 (b) it is plotted the corresponding skyrmion Hall 

angle curve. Both velocity components increase in a series of steps. The Hall angle, 𝜃𝑠𝑘, also 

increase with steps, but these steps show oscillatory jumps up and down, indicating that the 

skyrmion Hall angle can both increase and decrease as a function of increasing 𝐹𝐷. This is in 

contrast to the behavior in the absence of ac drive where the skyrmion Hall angle monotonically 

increases with 𝐹𝐷  [39,137]. The intrinsic Hall angle in this case is 𝜃𝑠𝑘
𝑖𝑛𝑡 = −29.98°, and the 

measured 𝜃𝑠𝑘 gradually approaches the intrinsic value for high values of external dc driving. In 

Fig. 7.2 (a) – (c) it is shown a close up of 〈𝑉∥〉, 〈𝑉⊥〉 and 𝜃𝑠𝑘 as a function of 𝐹𝐷 over the range 

0 < 𝐹𝐷 < 1.0 for the system in Fig. 7.1. There is an initial pinned phase for 𝐹𝐷 ≤ 0.075 where 

both velocity components are null. In Fig. 7.3 (a) it is illustrated the skyrmion trajectory in the 

pinned phase at 𝐹𝐷 = 0.028, where the skyrmion moves in a circular orbit around a single 

obstacle. When 𝐴 = 𝐵 = 0, the ac driving is absent and there is no pinned phase since the range 

of obstacles is finite and the skyrmion can always move between obstacles. Under the presence 

of a finite ac drive, the effective dynamical radius of the skyrmion increases, causing the 

skyrmion to interact with a larger number of obstacles during each ac drive cycle and permitting 

it to become trapped even under a finite dc drive. 

In Fig. 7.2, 〈𝑉∥〉 is finite but 〈𝑉⊥〉 = 0 over the range of 0.075 < 𝐹𝐷 < 0.15, resulting in 

a skyrmion Hall angle of 𝜃𝑠𝑘 = 0°. In Fig. 7.3 (b) it is plotted the skyrmion trajectory at 𝐹𝐷 =

0.1, where the skyrmion translates along the 𝑥 direction by one obstacle per ac drive cycle. 

Within the range of dc forces for which the velocity is locked in the 𝑥 direction, it is possible to 

have steps in 〈𝑉∥〉 on which the motion is similar to those found in Fig. 7.3 (b) but where the 

skyrmion encircles each obstacle twice per ac drive cycle befoe translating one lattice constant 

in the 𝑥  direction. For the interval 0.15 ≤ 𝐹𝐷 < 0.2, the skyrmion begins to move in the 𝑦 

direction as well, since 〈𝑉⊥〉 also becomes finite. However, the motion is chaotic, with no drive 

interval at which the motion is locked to a specific direction. For 0.2 ≤ 𝐹𝐷 < 0.4, the skyrmion 

motion is periodic and the Hall angle is locked at 𝜃𝑠𝑘 = −26.56°. In this case, during each ac 
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drive cycle, the skyrmion translates by two lattice constants in the 𝑥 direction and one in the 𝑦, 

giving 𝜃𝑠𝑘 = arctan(1/2) = −26.56°. In Fig. 7.3 (c) it is illustrated a skyrmion trajectory in 

this regime at 𝐹𝐷 = 0.24. 

Figure 7.1 – (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitudes 𝐴 = 𝐵 = 0.5 , 𝜔1 = 𝜔2 , 𝛼𝑚/𝛼𝑑 = 0.577  and 𝑎𝑜 = 0.65 . (b) The 

corresponding 𝜃𝑠𝑘 curve. (From Vizarim et. al.  [180], pg. 3). 

   

Figure 7.2 - The average velocities (a) 〈𝑉∥〉 (black) and (b) 〈𝑉⊥〉 (red) and (c) 𝜃𝑠𝑘 as a function of the applied dc 

force 𝐹𝐷  under a finite ac driving force with amplitudes 𝐴 = 𝐵 = 0.5 for the interval 0 < 𝐹𝐷 < 1.0 using 𝛼𝑚/

𝛼𝑑 = 0.577, 𝑎𝑜 = 0.65 and 𝜔1 = 𝜔2. (From Vizarim et. al.  [180], pg. 4). 
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When 0.4 ≤ 𝐹𝐷 < 0.475, the magnitude of the skyrmion Hall angle decreases and the 

locking angle is 𝜃𝑠𝑘 = −18.43°, where the skyrmion moves three lattice constants in 𝑥 and one 

in 𝑦 direction for each ac drive cycle, as shown in Fig. 7.3 (d) at 𝐹𝐷 = 0.425. As 𝐹𝐷 increases 

further, 𝜃𝑠𝑘 jumps between the two main locking directions 𝜃𝑠𝑘 = −26.56° and 𝜃𝑠𝑘 = −18.43°, 

and additional fractional locking steps appear in the velocities and the skyrmion Hall angle. 

There are also several regions of chaotic motion, denotated by noisy fluctuations in the velocity 

curves. 

Figure 7.3 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 7.1 with 

𝛼𝑚/𝛼𝑑 = 0.577  and ac drive amplitudes 𝐴 = 𝐵 = 0.5 , 𝜔1 = 𝜔2  and 𝑎0 = 0.65 . (a) 𝐹𝐷 = 0.028  in the pinned 

phase. (b) 𝐹𝐷 = 0.1 where the skyrmion motion is locked in the 𝑥 direction. (c) 𝐹𝐷 = 0.24where locking occurs at 

𝜃𝑠𝑘 = −26.56°. (d) 𝐹𝐷 = 0.425, where locking occurs at 𝜃𝑠𝑘 = −18.43°. (From Vizarim et. al.  [180], pg. 4). 

 

 In Fig. 7.4 (a) it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷 for a system using 𝛼𝑚/𝛼𝑑 = 1.732 

and 𝐴 = 𝐵 = 0.5, while in Fig. 7.4 (b) it is plotted the corresponding 𝜃𝑠𝑘  curve. Here, the 

intrinsic Hall angle is 𝜃𝑠𝑘
𝑖𝑛𝑡 = −60°. The number of locking steps is higher than for samples with 

lower intrinsic Hall angles, as it is possible to observe a series of jumps in 𝜃𝑠𝑘 as a function of 

𝐹𝐷. The jumps primarily appear for 𝐹𝐷 < 1.25, while 𝜃𝑠𝑘 has a more oscillating behavior for 

𝐹𝐷 ≥ 1.25. The inset of Fig. 7.4 (b) shows 𝜃𝑠𝑘 over the range 1.6 < 𝐹𝐷 < 1.875, highlighting 

the large number of locking steps that accompany a decrease in the magnitude of 𝜃𝑠𝑘. As 𝐹𝐷 is 

increased further, 𝜃𝑠𝑘 gradually approaches the intrinsic Hall angle value. In Fig. 7.5 (a) it is 
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plotted the skyrmion trajectory for the system of Fig. 7.4 at 𝐹𝐷 = 0.011, where a pinned orbit 

occurs in which the skyrmion encircles two obstacles during each ac drive cycle. In Fig. 7.5 (b), 

at 𝐹𝐷 = 0.067, 〈𝑉∥〉 = 0 and 〈𝑉⊥〉 is finite, giving rise to a 𝜃𝑠𝑘 = −90°. This is an example of an 

absolute transverse mobility in which the skyrmion translation is strictly perpendicular to the dc 

drive. The interval of 𝐹𝐷  over which the transverse mobility occurs is small, but it can be 

extended by varying other parameters as it will be demonstrated later. At 𝐹𝐷 = 0.13 in Fig. 7.5 

(c), the motion is locked to 𝜃𝑠𝑘 = −45° and the skyrmion completes a loop around an obstacle 

during every ac drive cycle. In Fig. 7.6 (d) at 𝐹𝐷 = 0.47, the trajectory is still locked to 𝜃𝑠𝑘 =

−45° but the shape of the orbit has changed. At 𝐹𝐷 = 0.62, in Fig. 7.5 (e), the skyrmion Hall 

angle is 𝜃𝑠𝑘 = −53.13°. In Fig. 7.5 (f), at 𝐹𝐷 = 0.95 is another example of the possibilities for 

the skyrmion to move in this system. 

Figure 7.4 – (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitudes 𝐴 = 𝐵 = 0.5 , 𝜔1 = 𝜔2 , 𝛼𝑚/𝛼𝑑 = 1.732  and 𝑎𝑜 = 0.65 . (b) The 

corresponding 𝜃𝑠𝑘 curve. (From Vizarim et. al.  [180], pg. 4). 

 

 In general, the locking steps arise due to a combination of effects. One of them is the 

directional locking effect associated with the drive dependence of the skyrmion Hall angle that 

occurs in the presence of periodic and absence of ac driving [39,137]. Another effect is the 

Shapiro steps that appear due to locking of the ac drive frequency with periodicity of the 

velocity component induced by the skyrmion motion over the periodic substrate [31,162]. Here, 

since the skyrmion is moving in both 𝑥  and 𝑦  directions, there are two different velocity 
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frequencies that can resonate with the ac drive frequency in order to create Shapiro steps, 

providing additional possible ways in which phase locking can occur. The combined effect of 

the directional locking and the Shapiro steps accounts for the large number of phase locking 

steps that appear in velocity-force curves under combined dc and ac driving. Many of these 

different phase locking effects compete with one another, producing frustration effects where, 

certain driving conditions, the skyrmion can lock to multiple phase locked orbits for the same 

value of 𝐹𝐷 , causing the skyrmion to jump between orbits creating chaotic regimes in the 

velocity force curves. 

Figure 7.5 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 7.1 with 

𝛼𝑚/𝛼𝑑 = 1.732  and ac drive amplitudes 𝐴 = 𝐵 = 0.5 , 𝜔1 = 𝜔2  and 𝑎0 = 0.65 . (a) 𝐹𝐷 = 0.011  in the pinned 

phase. (b) 𝐹𝐷 = 0.068 the absolute transverse mobility where the skyrmion has net motion only in the 𝑦 direction, 

with 𝜃𝑠𝑘 = −90°. (c) 𝐹𝐷 = 0.13 where locking occurs at 𝜃𝑠𝑘 = −45°. (d) 𝐹𝐷 = 0.47. (e) 𝐹𝐷 = 0.62. (f) 𝐹𝐷 =

0.95 (From Vizarim et. al.  [180], pg. 5). 
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In Fig. 7.6 (a) it is plotted the velocity components versus the external dc driving force 

and in Fig. 7.6 (b) its corresponding skyrmion Hall angle curve for a system with 𝛼𝑚/𝛼𝑑 =

9.962 and 𝐴 = 𝐵 = 0.5, where the intrinsic Hall angle is 𝜃𝑠𝑘
𝑖𝑛𝑡 = −85.26°. The windows of 

disordered motion are now larger, but there are still some steps in the velocity force curves 

corresponding to different locking steps. In Fig. 7.7 it is shown a blowup of the velocity force-

curves from Fig. 7.6 over the range 0 < 𝐹𝐷 < 0.15. At low values of 𝐹𝐷 , there is a pinned 

region with 〈𝑉∥〉 = 〈𝑉⊥〉 = 0. For higher values of dc external driving, it is possible to see a 

regime in which 〈𝑉∥〉 = 0 while the magnitude of 〈𝑉⊥〉 is increasing with 𝐹𝐷, which is another 

example of transverse mobility. In Fig. 7.7 (b), the corresponding 𝜃𝑠𝑘vs. 𝐹𝐷 curve shows that 

there is an interval over which the Hall angle is close to 𝜃𝑠𝑘 = −90°. In Fig. 7.8 (a) it is shown 

the skyrmion trajectories for the system of Fig. 7.7 at 𝐹𝐷 = 0.01 in the pinned phase, where the 

skyrmion encircles four obstacles for every ac drive cycle. The radius of the pinned orbit 

increases with increasing Magnus force because the Magnus term effectively magnifies the ac 

driving amplitude. At 𝐹𝐷 = 0.11 in Fig. 7.8 (b), the transverse mobility regime is illustrated, 

where the skyrmion moves in the −𝑦 direction and encircles two obstacles every ac drive cycle. 

In Fig. 7.8 (c) at 𝐹𝐷 = 0.63, the motion is locked to 𝜃𝑠𝑘 = −78.6° and the skyrmion translates 

one lattice constant in the 𝑥 direction and five lattice constants in the 𝑦 direction, giving a 𝑅 =

5. In Fig. 7.8 (d) it illustrated a chaotic regime at 𝐹𝐷 = 0.41. 

Figure 7.6 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitudes 𝐴 = 𝐵 = 0.5 , 𝜔1 = 𝜔2 , 𝛼𝑚/𝛼𝑑 = 9.962  and 𝑎𝑜 = 0.65 . (b) The 

corresponding 𝜃𝑠𝑘 curve. (From Vizarim et. al.  [180], pg. 5). 
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Figure 7.7 – Blowup of Fig. 7.7 for the interval 0 < 𝐹𝐷 < 0.15. (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 

(red) as a function of the applied dc force 𝐹𝐷. (b) The corresponding 𝜃𝑠𝑘 curve. (From Vizarim et. al.  [180], pg. 6). 

 

Figure 7.8 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 7.1 with 

𝛼𝑚/𝛼𝑑 = 9.962  and ac drive amplitudes 𝐴 = 𝐵 = 0.5 , 𝜔1 = 𝜔2  and 𝑎0 = 0.65 . (a) 𝐹𝐷 = 0.01  in the pinned 

phase. (b) 𝐹𝐷 = 0.11 the transverse mobility regime. (c) 𝐹𝐷 = 0.63 where the skyrmion moves in both 𝑥 and 𝑦 

directions. (d) 𝐹𝐷 = 0.41, an example of chaotic motion. (From Vizarim et. al.  [180], pg. 6). 
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7.3.2 Varied ac drive amplitudes 

In this section it is considered the effect on the velocity-force curves of varying the ac 

drive amplitude over a range of 𝐴 = 0 to 𝐴 = 0.5 for a fixed driving frequency. We summarize 

the results for only a few selected locking phases and disordered phases since there is a great 

number of different regimes as the amplitude 𝐴 is varied. In Fig. 7.9 (a) it is plotted the dynamic 

phase diagram as a function of the dc drive 𝐹𝐷 versus ac drive amplitude 𝐴 for a system in Fig. 

7.1 with 𝛼𝑚/𝛼𝑑 = 0.577, 𝐴 = 𝐵 and 𝜔1 = 𝜔2. The highlighted phases are: the pinned phase, 

disordered phase, 𝜃𝑠𝑘 = 0° locking, 𝜃𝑠𝑘 = −26.6° locking, and 𝜃𝑠𝑘 = −45° locking. When 𝐴 =

0 the system is in the pinned phase for 𝐹𝐷 < 0.05 and in the 𝜃𝑠𝑘 = 0° for 0.05 < 𝐹𝐷 < 0.5. As 

𝐹𝐷 increases above 𝐹𝐷 = 0.5, the system jumps to different locking phases that are not shown 

for better visualization of the highlighted phases. When 𝐴 increases, the width of the pinned 

phases grows until it reaches a maximum near 𝐴 = 0.35. The 𝜃𝑠𝑘 = 0° phase is absent for 

0.25 < 𝐴 < 0.4, which coincides with the window in which the 𝜃𝑠𝑘 = −45° phase reaches its 

largest extend. Usually, disordered phases appear between the different locking phases. For 𝐴 <

0.35, the skyrmion orbit is small enough so that the skyrmion is not able to encircle an obstacle, 

while for 𝐴 > 0.35, the orbit becomes large enough to encircle an obstacle.  

In Fig. 7.9 (b) it is plotted the dynamic phase diagram as a function of 𝐹𝐷 versus 𝐴 for 

the system in Figs. 7.6 and 7.7 with 𝛼𝑚/𝛼𝑑 = 9.962, 𝐴 = 𝐵  and 𝜔1 = 𝜔2 . The highlighted 

phases are only the pinned phase, disordered phase and the absolute transverse mobility phase 

with 𝜃𝑠𝑘 = −90°. The maximum extent for the pinned phase occurs for 𝐴 = 0.25, which also 

corresponds to the ac drive at which the transverse mobility reaches its largest extent. There are 

two distinct windows of transverse mobility that are associated with two different types of 

skyrmion orbits. When 𝐴 < 0.1, the skyrmion does not encircle any obstacles, while for larger 

amplitudes it encircles four obstacles. The reduction in the extent of the pinning and transverse 

mobility regions for 𝐴 is the result of the larger orbit generated by the ac driving, with the 

skyrmion jumping to an orbit that encircles nine obstacles for values of 𝐴 > 0.5. 

These results indicate that the transverse mobility is most pronounced for higher values 

of 𝛼𝑚/𝛼𝑑 where the intrinsic Hall angle is the largest. 
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Figure 7.9 – Dynamic phase diagrams as a function of the dc drive, 𝐹𝐷, versus the ac driving amplitude, 𝐴 in 

system with 𝐴 = 𝐵 and 𝜔1 = 𝜔2. (a) The system of Fig. 9.1 where 𝛼𝑚/𝛼𝑑 = 0.577. (b) The system in Fig. 7.7 

where 𝛼𝑚/𝛼𝑑 = 9.962. (From Vizarim et. al.  [180], pg. 7). 

 

7.3.3 Two different ac drive amplitudes and skyrmion Hall angle reversal 

Here it is considered the case where the ac drive amplitudes are different in the two 

directions, that is 𝐴 ≠ 𝐵. In Fig. 7.10 (a) it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷 for a system with 

𝛼𝑚/𝛼𝑑 = 0.577 , 𝐴 = 0.5  and 𝐵 = 1.0 . In Fig. 7.11 (b) it is plotted the corresponding 𝜃𝑠𝑘 

versus 𝐹𝐷 curve. Note that there is an extended region over which the system locks with 𝜃𝑠𝑘 =

−45° followed by a gradual decline to 𝜃𝑠𝑘 = −30° for higher drives while a variety of locking 

steps and disordered regions appear. In Fig. 7.11 it is shown a zoomed version of Fig. 7.10 

where  〈𝑉∥〉, 〈𝑉⊥〉 and 𝜃𝑠𝑘  versus 𝐹𝐷  appear for the interval 0 < 𝐹𝐷 < 0.15. At low values of 

𝐹𝐷, there is an extended region where the skyrmion motion is locked in the 𝑥 direction. The 

system has a reentrant pinned phase near 𝐹𝐷 = 0.09 where both velocity components are null. 
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Figure 7.10 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitudes 𝐴 = 0.5 and 𝐵 = 1.0, 𝜔1 = 𝜔2 , 𝛼𝑚/𝛼𝑑 = 0.577 and 𝑎𝑜 = 0.65. (b) The 

corresponding 𝜃𝑠𝑘 curve. (From Vizarim et. al.  [180], pg. 7). 

 

Figure 7.11 – Blowup of Fig. 9.10 for the interval 0 < 𝐹𝐷 < 0.15. (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 

(red) as a function of the applied dc force 𝐹𝐷. (b) The corresponding 𝜃𝑠𝑘 curve. (From Vizarim et. al.  [180], pg. 7). 

 

 In Fig. 7.11 (b), for 𝐹𝐷 < 0.045, the skyrmion Hall angle is oscillatory and undergoes 

repeated reversals from positive to negative values. The finite value of 𝜃𝑠𝑘 in the pinned region 

near 𝐹𝐷 = 0.09 results from the undefined 𝜃𝑠𝑘  calculation that occurs when both the parallel 
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and perpendicular velocities are zero. In Fig. 7.12 (a) it is illustrated the skyrmion trajectories 

for the system in Fig. 7.11 at 𝐹𝐷 = 0.008 where the transverse mobility occurs. The skyrmion is 

moving in the +𝑦 direction, giving the Hall angle a positive value. In Fig. 7.12 (b) at 𝐹𝐷 =

0.055, the motion is locked in the 𝑥 direction and the skyrmion encircles two obstacles during 

the ac drive cycle. Figure 7.12 (c) shows the pinned orbit at 𝐹𝐷 = 0.093, where the skyrmion 

encircles two obstacles but do not translate. In Fig. 7.12 (d) at 𝐹𝐷 = 0.2, the motion is locked 

with 𝜃𝑠𝑘 = −45°. 

Figure 7.12 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 7.10 with 

𝛼𝑚/𝛼𝑑 = 0.577  and ac drive amplitudes 𝐴 = 0.5  and 𝐵 = 1.0 , 𝜔1 = 𝜔2  and 𝑎0 = 0.65 . (a) 𝐹𝐷 = 0.008  the 

transverse mobility phase. (b) 𝐹𝐷 = 0.055 the skyrmion moving in the 𝑥 direction. (c) 𝐹𝐷 = 0.093 the reentrant 

pinned phase. (d) 𝐹𝐷 = 0.2, where 𝜃𝑠𝑘 = −45°. (From Vizarim et. al.  [180], pg. 8). 

 

 In Fig. 7.13 (a) it is shown a zoom of 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷 for the system in Fig. 7.11 

over the range 0 < 𝐹𝐷 < 0.02, and in Fig. 7.13 (b) the corresponding skyrmion Hall angle 

curve. The system passes through a series of locked phases that are associated with transverse 

mobility, but there are also repeated reversals of the Hall angle with increasing 𝐹𝐷. Another 

interesting feature is that at 𝐹𝐷 = 0, the skyrmion has a finite velocity in the −𝑦 direction. This 

motion, that occurs only where there is an ac drive and absent dc drive, represents a type of 

ratchet effect. In overdamped systems, similar ratchet effects can occurs for a particle on a 

periodic substrate that is subjected to biharmonic ac drives [184,185]. The ratchet effect occurs 

when enough symmetries are broken in a nonequilibrium system. Here, in the skyrmion system, 
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the Magnus force combined with dc and ac driving can produce asymmetric orbits as illustrated 

in Fig. 7.12 (c). In section 8 we will address the ratchet effects with skyrmions more carefully. 

In general, the ratchet effects are more prominent in systems without dc drive, or at least low 

values of 𝐹𝐷, whereas for high dc drives the Shapiro steps and directional locking are more 

prominent. 

Figure 7.13 – Blowup of Fig. 7.10 for the interval 0 < 𝐹𝐷 < 0.02. (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 

(red) as a function of the applied dc force 𝐹𝐷. (b) The corresponding 𝜃𝑠𝑘 curve. (From Vizarim et. al.  [180], pg. 8). 

 

7.3.4  The ac drive frequency effect 

 Next it is considered the effect of holding the ac drive amplitudes fixed at 𝐴 = 𝐵 but 

varying the ac drive frequencies so that 𝜔1 ≠ 𝜔2. In Fig. 7.14 (a) it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 

versus 𝐹𝐷 for systems with 𝛼𝑚/𝛼𝑑 = 0.45, 𝐴 = 𝐵 = 0.5 using 𝜔1 = 2 × 10
−4 and 𝜔2 = 2𝜔1, 

3𝜔1 and 4𝜔1, while in Fig. 7.14 (b) it is shown the corresponding 𝜃𝑠𝑘  curve. Some locking 

phases occurs for all three values of 𝜔2, however, the width of the locked phases varies with 𝜔2. 

When 𝜔2 = 2𝜔1, the system locks to 𝜃𝑠𝑘 = −45° at lower drives and then gradually approaches 

the intrinsic Hall angle value. In Fig. 7.15 (a) it is illustrated the skyrmion trajectory for the case 

of 𝜔2 = 2𝜔1 at 𝐹𝐷 = 0.177, where the motion is locked at 𝜃𝑠𝑘 = −45°. Fig. 7.15 (b) shows the 

skyrmion trajectory for 𝐹𝐷 = 0.3, where the skyrmion moves with 𝜃𝑠𝑘 = −26.56°. 

 In Fig. 7.16 (a) it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐹𝐷 for a system with 𝐴 = 𝐵 = 0.5 and 

𝛼𝑚/𝛼𝑑 = 1.732. When 𝜔2 = 3𝜔1 there is an initial pinned phase at low values of external dc 

driving. The system locks to 𝜃𝑠𝑘 = −45° for several drive intervals, and there is also regions 
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where total transverse mobility occurs, as shown in Fig. 7.16 (b) in the corresponding 𝜃𝑠𝑘 vs. 𝐹𝐷 

curve. When 𝜔2 = 2𝜔1, the pinned phase extends out to higher values of dc driving and there is 

also regions where transverse mobility occurs. Although the systems with different frequencies 

exhibit lots of disordered phases, the results show that the transverse mobility can be induced by 

varying the ac drive frequencies.  

Figure 7.14 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitudes 𝐴 = 𝐵 = 0.5, 𝛼𝑚/𝛼𝑑 = 0.45 and 𝑎𝑜 = 0.65 for varied values of 𝜔2/𝜔1: 

𝜔2 = 2𝜔1 (black and red), 𝜔2 = 3𝜔1 (green and blue),  𝜔2 = 4𝜔1 (orange and yellow),  (b) The corresponding 𝜃𝑠𝑘 

curve, 𝜔2 = 2𝜔1 (black),  𝜔2 = 3𝜔1 (red),  𝜔2 = 4𝜔1 (blue),  . (From Vizarim et. al.  [180], pg. 9). 

 

Figure 7.15 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 7.14 with 

𝛼𝑚/𝛼𝑑 = 0.45  and ac drive amplitudes 𝐴 = 𝐵 = 0.5 , 𝜔2 = 2𝜔1  and 𝑎0 = 0.65 . (a) 𝐹𝐷 = 0.177  the skyrmion 

moving with 𝜃𝑠𝑘 = −45°. (b) 𝐹𝐷 = 0.3 where 𝜃𝑠𝑘 = −26.56°. (From Vizarim et. al.  [180], pg. 9). 
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Figure 7.16 - (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 under a 

finite ac driving force with amplitudes 𝐴 = 𝐵 = 0.5, 𝛼𝑚/𝛼𝑑 = 1.732 and 𝑎𝑜 = 0.65 for varied values of 𝜔2/𝜔1: 

𝜔2 = 2𝜔1 (black and red), 𝜔2 = 3𝜔1 (green and blue).  (b) The corresponding 𝜃𝑠𝑘 curve, 𝜔2 = 2𝜔1 (black),  𝜔2 =

3𝜔1 (red). (From Vizarim et. al.  [180], pg. 9). 

 

 

7.3.5 Discussion and Summary 

 In this work, the temperature effects were neglected. However, thermal effects can be 

important in certain skyrmion systems. Thermal fluctuations can wash out directional phase 

lockings, but in some cases they may also induce other type of phase lockings [186].  As an 

example, in Fig. 7.17 we illustrate the thermal effect in the system of Fig. 7.1, with 𝛼𝑚/𝛼𝑑 =

0.577 , 𝐴 = 𝐵 = 0.5 , and 𝜔1 = 𝜔2  at 𝐹𝐷 = 0.41 . At 𝑇 = 0 , the motion is locked to 𝜃𝑠𝑘 =

−18.43°, but as the temperature grows, the magnitude of the skyrmion Hall angle gradually 

increases. A full exploration of thermal effects may be subject of a future work. 

Experiments that could be performed in these systems include direct imaging of 

skyrmions and measurements of changes in the topological Hall effect. Another route for further 

exploitation would be to examine noise fluctuations [27] in order to observe the emergence of 

narrow band signals associated with phase locking. It has already been shown experimentally 

that such measurements are possible in skyrmion systems [187]. In the locked cases the 

skyrmion motion should be periodic and produce a large narrow band noise signal, while in 

disordered regions this signal should be reduced or lost. It would also be interesting to explore 
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the effect of the internal modes of skyrmions [131,132], which could induce additional 

oscillating signals that might produce different types of phase locking. We focused on the case 

of a single skyrmion, however, if lattices of skyrmions interact with 2D periodic substrates, we 

expect that additional collective effects would occur that would depend on the filling factor. 

Slightly away from commensurate fillings, at which the number of skyrmions is and integer 

multiple of the number of obstacles, soliton-like states can appear which could themselves 

exhibit Shapiro steps and other phase locking phenomena, similar to what has been observed in 

colloidal and superconducting vortices with periodic substrates. In actual physical realizations of 

skyrmions systems, such as, in chiral magnets or liquid crystals, skyrmion nucleation or 

destruction may occur. We assume that skyrmions are not created or destroyed within our 

simulation region, and it should not be difficult to reach such a regime experimentally by 

focusing on a portion of the sample that is not close to the boundaries. 

Figure 7.17 - 𝜃𝑠𝑘 vs. temperature 𝑇 in the system of Fig. 7.1, with 𝛼𝑚/𝛼𝑑 = 0.577, 𝐴 = 𝐵 and 𝜔1 = 𝜔2 at 𝐹𝐷 =

0.41 . At 𝑇 = 0, the motion is ordered along 𝜃𝑠𝑘 = −18.43° . As the temperature rises, the magnitude of the 

skyrmion Hall angle increases (From Vizarim et. al.  [180], pg. 10). 

 

Our results here focus on the case where 𝜔1 = 𝜔2, or where the two frequencies are 

commensurate. If the driving frequencies are not commensurate, the skyrmion orbit can become 

asymmetric, which could lead to ratcheting behavior. We explore the ratching effect in further 

details in section 10. 

 We examined a skyrmion interacting with 2D periodic array of obstacles under applied 

dc drive and biharmonic ac drives, finding a rich variety of nonlinear dynamical effects due to 

the presence of the Magnus force and the velocity dependence of the skyrmion Hall angle. A 

biharmonic ac drive alone creates a circular skyrmion orbit in the absence of obstacles or a dc 
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drive. Under only dc driving and in the presence of the periodic obstacles, the skyrmion passes 

through a serial of directional locking phases due to the skyrmion Hall angle effect. When a 

finite biharmonic ac drive is included, we find that the velocity-force curves show a series of 

jumps and locking intervals in which the skyrmion motion locks to specific symmetry directions 

of the substrate. Within these locking phases, the skyrmion can encircle multiple obstacles 

during each ac drive cycle. We also observe regimes where the skyrmion motion is disordered 

and the motion is not locked to a specific direction. We find that the locking phases can be 

associated with both increases and decreases in the skyrmion Hall angle. Many of the locking 

phases are reentrant and recur repeatedly for increasing dc drive. In general, as the Magnus force 

increases, the skyrmion encircles a larger number of obstacles during each ac drive cycle, and 

for large Magnus forces, we observe a series of absolute transverse mobility phases in which the 

skyrmion moves at exactly 90° with respect to the dc driving direction. We find reentrance in 

both the transverse mobility and the pinning phase.  

 

8 Skyrmion Pinball 

8.1 Skyrmions in periodic pinning under the influence of ac drives 

only 

 In this work the main idea is to understand the skyrmion dynamics under the influence of 

just the ac drive, that is, there is no dc drive applied to the system. The work is inspired on a 

previous work concerning superconducting vortices under the influence of ac drive and a 

periodic obstacle array [188]. This work was recently published in Journal of Physics 

Communications [189]. 

 We examine skyrmions interacting with a square array of obstacles under ac drives 

applied in one or two directions. For a single direction of ac driving, we find that the Magnus 

force in conjunction with the obstacle interactions can create elliptical skyrmion orbits of 

increasing size, leading to localized phases, chaotic phases, and translating or ratcheting orbits. 

Under two ac drives that are out of phase by 90° and applied in two directions, the skyrmions 

form localized commensurate orbits that encircle an integer number of obstacles, similar to the 

electron pinball effect observed for electrons in antidot lattices. As a function of ac amplitude, 

Magnus force strength, and obstacle size, we find that chaotic scattering regimes and directed 

motion can emerge even in the absence of asymmetry in the substrate. The directed motion 
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follows different symmetry axes of the periodic substrate, and we observe a variety of reversed 

ratchet effects. The Magnus force in the skyrmion system produces a significantly larger number 

of directed motion regimes than are exhibited by overdamped systems. We discuss how these 

results could be used to move skyrmions in a controlled way for possible applications. 

 

8.2 Model and Simulation details 

In this work we consider a two-dimensional skyrmion system with 𝐿 × 𝐿 with periodic 

boundary conditions on 𝑦  and 𝑥  directions. A single skyrmion is subjected to this obstacle 

landscape and ac drives are applied in the 𝑥  and 𝑦  direction, as illustrated in Fig. 8.1. The 

dynamical properties of the skyrmion system interacting with the obstacle array were simulated 

using the particle model for skyrmions, shown in Eq. (8.1), using Molecular Dynamics 

technique. 

 

                                                       𝛼𝑑𝐯𝒊 + 𝛼𝑚�̂� × 𝐯𝒊 = 𝐅𝑖
𝑜 + 𝐅𝑎𝑐                                           (8.1) 

 

 In this equation, the first term on the left is the damping term, where 𝛼𝑑 is the damping 

term. The second term on the left represents the Magnus force, where 𝛼𝑚 is the Magnus term. 

We model the skyrmion-obstacle potential energy interaction in the Gaussian form 𝑈𝑜 =

𝐶𝑜𝑒
−(𝑟𝑖𝑜 𝑎𝑜⁄ )2, where 𝐶𝑜 is the strength of the obstacle potential, 𝑟𝑖𝑜 is the distance between the 

skyrmion 𝑖  and the obstacle 𝑜 , and 𝑎𝑜  is the obstacle radius. Thus, the force between the 

obstacles and the skyrmions take the form 𝐅𝑖
𝑜 = −∇𝑈𝑜 = −𝐹𝑜𝑟𝑖𝑜𝑒

−(𝑟𝑖𝑜 𝑎𝑜⁄ )2�̂�𝑖𝑜 , where 𝐹𝑜 =

2𝑈𝑜/𝑎𝑜
2. The obstacle density used in this work is 0.093/𝜉2. The last term is the ac drive, 𝐅𝑥

𝑎𝑐 =

𝐴 sin(2𝜋𝜔1𝑡) �̂� for longitudinal driving and 𝐅𝑦
𝑎𝑐 = 𝐵 cos(2𝜋𝜔2𝑡) �̂� for transversal driving. We 

measure the skyrmion velocity in the 〈𝑉∥〉 = 〈𝐯 ∙ �̂�〉/(2𝜋𝜔1𝑎), and the 𝑦  component, 〈𝑉⊥〉 =

〈𝐯 ∙ �̂�〉/(2𝜋𝜔1𝑎), where 𝑎 is the substrate lattice constant. The velocities are averaged over 100 

ac drive cycles. Under the normalization we use here, when 〈𝑉∥〉 = 1.0 or 〈𝑉⊥〉 = 1.0 indicated 

that the skyrmion is translating by one substrate lattice constant per ac drive cycle in the 𝑥 or 𝑦 

direction, respectively.  The external ac drive amplitude is increased in small steps of 𝐴 (𝐵) =

0.002  and wait 106  simulation time steps between increments to ensure steady state. We 

normalize the damping and Magnus coefficients as 𝛼𝑑
2 + 𝛼𝑚

2 = 1. 
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Figure 8.1 A schematic of the system, which consists of a square array of obstacles (red circles). The black lines 

correspond to the skyrmion trajectories under the influence of both damping, Magnus term, and ac drive. In (a) the 

ac drive is applied along the 𝑥 direction and in (b) both 𝑥 and 𝑦 directions (From Vizarim et. al.  [189], pg. 3) 

 

8.3 Results 

8.3.1 AC drive just in 𝒙 direction 

 In this section we consider the case of a skyrmion subjected to a linear ac drive applied 

along the 𝑥 direction, that is, 𝐵 = 0 and 𝐴 is finite, as whon in Fig. 8.1 (a). In an overdamped 

system, a particle under the influence of such drive would remain localized and would simply 

follow a one-dimensional trajectory along the 𝑥 direction between the obstacles. However, for 

the skyrmion case where there is a finite Magnus term, the skyrmion moves with 2D orbits, as 

illustrated in Fig. 8.2 for a system with 𝛼𝑚/𝛼𝑑 = 0.577 and 𝑎0 = 0.65. At 𝐴 = 0.5 in Fig. 8.2 

(a), the orbiting motion is localized. For a larger ac drive amplitude of 𝐴 = 0.91, in Fig. 8.2 (b), 

the orbit size becomes large enough so the skyrmion collides with multiple obstacles, resulting 

in a delocalization and diffusive chaotic motion but no net drift. In Fig. 8.2 (c) at 𝐴 = 1.22, the 

skyrmion has relocalized with larger orbit. That is, the skyrmion has an orbit large enough to 

stabilize again and remain localized in the substrate lattice. The chaotic regime illustrated in Fig. 

8.2 (b) occurs at the transition between a skyrmion orbit that spans one plaquette and the orbit 

that spans two plaquettes, as illustrated in Figs. 8.2 (a) and (c) respectively. In each case, the 

orbits are oriented at an angle to the linear drive due to the Magnus force. In the absence of a 

substrate, the skyrmion would move in a one-dimensional orbit at an angle of 𝜃𝑠𝑘 =

arctan(𝛼𝑚/𝛼𝑑) to the 𝑥 direction. As 𝐴 increases above 𝐴 = 1.0, the skyrmion remains locked 

in the localized state of Fig. 8.2 (c) until a transition occurs between localized motion spanning 

two plaquettes and the localized motion spanning three plaquettes, that is illustrated in Fig. 8.2 

(e) at 𝐴 = 1.5. A series of such localized phases occurs each time the skyrmion orbit spans an 
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integer number 𝑛 of plaquettes, such as the 𝑛 = 4 state shown in Fig. 8.2 (f) at 𝐴 = 2.0. At the 

transition between different localized states, delocalized or chaotic motion appears. In some 

cases there can also be fractional localization, as shown in Fig. 8.2 (d) at 𝐴 = 1.22, where the 

skyrmion repeatedly switches between localized orbits that spans two and three plaquettes.  

Figure 8.2 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝛼𝑚/𝛼𝑑 =

0.577 and 𝑎0 = 0.65 for linear ac driving along the 𝑥 direction. (a) 𝐴 = 0.5 the skyrmion is oscillating between 

obstacles, spanning one plaquette. (b) 𝐴 = 0.91  the skyrmion motion is delocalized. (c) 𝐴 = 1.0  the skyrmion 

motion is localized spanning two plaquettes. (d) 𝐴 = 1.22, the skyrmion exhibits direct motion, where it moves one 

lattice constant in −𝑦 direction for every two ac drive cycles. (e) 𝐴 = 1.5, where the skyrmion orbit spans three 

plaquettes. (f) 𝐴 = 2.0, where the skyrmion spans four plaquettes. (From Vizarim et. al.  [189], pg. 4). 

 

In the overdamped limit, particles on a 2D substrate under linear ac drive do exhibit any 

kind of directed motion or ratchet effect. However, if two perpendicular ac drives are applied, 

the orbits become two dimensional and direct motion can occur if the ac driving breaks 

symmetry [184,185,190–192]. In the skyrmion case, a linear ac drive in conjunction with 

skyrmion obstacle interactions produces a 2D orbit due to the Magnus force, as illustrated in 

Fig. 8.2 (a). Since the orbit is chiral, temporal symmetry is broken and a ratchet effect can occur. 

Under linear ac driving, only limited regimes of ratcheting were observed, but these results show 
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that even using simple linear ac driving is possible to induce ratchet effects on skyrmions in 

symmetric substrates. 

In Fig. 8.3 it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐴 for the system in Fig. 8.2 with linear ac 

driving along the 𝑥 direction. In the localized states, 〈𝑉∥〉 = 〈𝑉⊥〉 = 0, while in the delocalized 

states, there are finite velocity fluctuations. Since the particle motion is diffusive, these 

fluctuations reduce in magnitude if the velocities are averaged over a long period of time. At 

𝐴 = 1.22, there is a direct skyrmion motion in the −𝑦 direction and it is found that  〈𝑉∥〉 = 0 

and  〈𝑉⊥〉 = −0.5, indicating that the skyrmion is translating one lattice constant every two ac 

drive cycles, as illustrated in Fig. 8.2 (d). The vertical dashed lines in Fig. 8.3 indicate the 

transition points where the skyrmion changes from a phase spanning 𝑛 plaquettes to a 𝑛 + 1 

plaquettes. The transition between phases are characterized by disordered and chaotic phases or 

fractional localized states, where every two ac drive cycles the skyrmion is switching between a 

𝑛 plaquete state and a 𝑛 + 1 plaquette state. 

Figure 8.3 - The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitude 𝐴 for a single skyrmion in 

the square obstacle array using 𝛼𝑚/𝛼𝑑 = 0.577 , 𝑎𝑜 = 0.65  and 𝐵 = 0 . Vertical dashed lines indicate the 

boundaries of the regions where the skyrmion orbits passes through 𝑛 = 1,2,3 or 4 plaquettes, from left to right 

(From Vizarim et. al.  [189], pg. 5). 

 

 In Figs. 8.4 (a) – (f) it is plotted representative skyrmion trajectories for a system using 

larger Magnus component, 𝛼𝑚/𝛼𝑑 = 1.732. For 𝐴 = 0.5 and 𝐴 = 0.934 in Figs. 8.4 (a) and 8.4 

(b), the orbit is localized at 𝑛 = 1 and 𝑛 = 3 plaquettes, respectively. The skyrmion motion 

remains entirely within the interstitial region between obstacles for 𝐴 = 0.5, but when 𝐴 =
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0.934, the skyrmion encircles the obstacles. At 𝐴 = 1.05 in Fig. 8.4 (c), there is a translating 

orbit in which the skyrmion moves one lattice constant in +𝑦 direction per ac drive cycle. For 

𝐴 = 1.136, shown in Fig. 8.4 (d), the orbit is localized again but exhibits a more complex shape, 

encircling four obstacles that do not fall along a one-dimensional line. For 𝐴 = 1.29 in Fig. 8.4 

(e), there is a translating orbit where the skyrmion moves in the −𝑦 and +𝑥 directions at an 

angle of −45°, translating one lattice constant during every ac drive cycle. In Fig. 8.4 (f) at 𝐴 =

1.656, there is a 𝑛 = 7 localized orbit state that do not encircle any obstacle. 

Figure 8.4 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝛼𝑚/𝛼𝑑 =

1.732 and 𝑎0 = 0.65 for linear ac driving along the 𝑥 direction. (a) 𝐴 = 0.5 the skyrmion is oscillating between 

obstacles, spanning 𝑛 = 1 plaquette. (b) 𝐴 = 0.934 the skyrmion motion is localized in state 𝑛 = 3 plaquettes. (c) 

𝐴 = 1.05 the skyrmion has direct motion in +𝑦 direction. (d) Localized motion at 𝐴 = 1.136. (e) At 𝐴 = 1.29, the 

skyrmion translates along −45° angle. (f) A 𝑛 = 7 localized state at 𝐴 = 1.656. (From Vizarim et. al.  [189], pg. 

6). 

 

In Fig. 8.5 (a) it is plotted the velocity components as a function of the ac drive 

amplitude in the 𝑥 direction for the system in Fig. 8.4 showing the different regions of localized 

and translating orbits. In Fig. 8.5 (b) is a blowup of Fig. 8.5 (a) over the range 0.9 < 𝐴 < 1.35. 

Localized orbits appear when 𝐴 < 0.96, followed by a window of delocalized orbits for 0.96 ≤

𝐴 < 1.03. The translating orbit illustrated in Fig. 8.4 (c) corresponds to a plateau of positive 
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〈𝑉⊥〉 extending from 𝐴 = 1.03 to 𝐴 = 1.07. As the amplitude increases, the system enters in 

another regime of chaotic motion. When 𝐴 = 1.26, a translating state appears with motion along 

−45°. Here, the velocities plateau with −〈𝑉∥〉 = 〈𝑉⊥〉. This is followed by a small localized 

region, and then at 𝐴 = 1.28  by a second regime of −45°  translation, where the skyrmion 

moves one lattice constant in +𝑦 and −𝑥 during every ac drive cycle. Note that this regime is 

distinct than the previous one, because in the previous one the motion occurred every two ac 

drive cycles. At 𝐴 = 1.29 the −45° state changes directionand the skyrmion moves one lattice 

constant in +𝑥 and −𝑦 direction for every ac drive cycle, as illustrated in Fig. 8.4 (e). The 

motion becomes localized again above 𝐴 = 1.3 as shown in Fig. 8.4 (f). In general, as the 

Magnus term in increased, a greater and richer variety of distinct localized and translating orbits 

appear. The translating orbits are generally along the 𝑥 or 𝑦 directions or at a 45° angle, since 

these are the most prominent symmetry directions of the square obstacle lattice. 

Figure 8.5 – (a) The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitude 𝐴 for a single skyrmion 

in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 1.732, 𝑎𝑜 = 0.65 and 𝐵 = 0. (b) A blowup of (a) for the range 0.9 <

𝐴 < 1.35. (From Vizarim et. al.  [189], pg. 6). 

 

For higher values of 𝛼𝑚/𝛼𝑑, it was found delocalized or chaotic motion that exhibit an 

average displacement. In Fig. 8.6 it is plotted some representative skyrmion trajectories for a 

system using 𝛼𝑚/𝛼𝑑 = 9.962 . At 𝐴 = 0.5  in Fig. 8.6 (a), there is a localized 1D orbited 

oriented at nearly 90° to the driving direction. For 𝐴 = 0.576, the orbit is delocalized or chaotic 

but has a net drift in the −𝑦 direction and a smaller net drift along −𝑥 direction, as shown in 

Fig. 8.6 (b). When 𝐴 = 0.885, as shown in Fig. 10.6 (c), the skyrmion performs a translating 

orbit with gradual motion by one lattice constant in +𝑦 direction, where it can spend many ac 

drive cycles at each location before stepping to the next location. In Fig. 8.6 (d), at 𝐴 = 0.936, a 
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localized orbit appears that encircles two obstacles at the top and bottom of the orbit. In Fig. 8.7 

it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐴 to illustrate the transitions between the different states. The 

motion is localized for 𝐴 < 0.55  and 𝐴 > 1.7 , while in intermediate value of 𝐴 , various 

fluctuating and localized regions occur. 

Figure 8.6 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝛼𝑚/𝛼𝑑 =

9.962 and 𝑎0 = 0.65 for linear ac driving along the 𝑥 direction. (a) 𝐴 = 0.5 the skyrmion is oscillating between 

obstacles, nearly along 90° . (b) 𝐴 = 0.576  a delocalized motion. (c) Translating along +𝑦  at 𝐴 = 0.885  (d) 

Localized motion at 𝐴 = 0.936. (From Vizarim et. al.  [189], pg. 7). 

 

Figure 8.7 – The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitude 𝐴 for a single skyrmion in 

the square obstacle array using 𝛼𝑚/𝛼𝑑 = 9.962, 𝑎𝑜 = 0.65 and 𝐵 = 0. (From Vizarim et. al.  [189], pg. 8). 
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8.3.2  Circular ac drive with 𝑨 = 𝑩 

In this section it is considered the case of circular ac driving by applying two ac drives 

simultaneously that are perpendicular to each other and 90° out of phase. In the overdamped 

limit, a symmetric substrate does not produce any directed motion when the frequencies and 

amplitudes of the two ac drives are identical. However, if the amplitudes or frequencies are 

distinct, spatial symmetry can be broken, leading to a directed motion [184,185,190,191]. For 

𝐴 = 𝐵 and 𝜔1 = 𝜔2, if we set 𝛼𝑚/𝛼𝑑 = 0, no ratchet effect can be found and the dynamics are 

the same as those found in vortex pinball systems, with transitions between localized and 

delocalized orbits as the ac drive amplitude is increased [188]. 

 In Fig. 8.8 it is shown the skyrmion trajectories in a system with circular ac driving at 

𝛼𝑚/𝛼𝑑 = 0.577  for 𝐴 = 𝐵  and 𝜔1 = 𝜔2 = 2 × 10
−5 . At 𝐴 = 0.25 , in Fig. 8.8 (a), the 

skyrmion forms a localized orbit that encircles one obstacle. In Fig. 8.8 (b) at 𝐴 = 0.375, the 

skyrmion exhibits a translating orbit in which it spirals around two obstacles per ac drive cycle 

and moves in −𝑦 direction. Fig. 8.8 (c) shows a localized orbit at 𝐴 = 0.5 where the skyrmion 

encircles four obstacles, while the localized orbit at 𝐴 = 0.672in Fig. 8.8 (d) has no net drift but 

exhibits diffusive motion over long-time scales. At 𝐴 = 0.978  in Fig. 8.8 (e), there is a 

translating orbit in which the skyrmion moves one lattice constant in the +𝑥 direction during 

every ac drive cycle, while at 𝐴 = 1.082 in Fig. 8.8 (f), the skyrmion has a localized orbit 

encircling 21 obstacles. Similar orbit appears at higher ac drive amplitudes. The localized orbit 

of Fig. 8.8 (f) persists over the range1.014 ≤ 𝐴 ≤ 1.122, while an orbit encircling 26 obstacles 

appears for 1.172 ≤ 𝐴 ≤ 1.214. At higher values of 𝐴 additional localized orbits can be found, 

in which the skyrmion encircles 32, 45 or 69 obstacles. In general, stable localized orbits appear 

close to drives where the skyrmion can perfectly encircle 𝑛2 obstacles. However, due to the 

square symmetry of the obstacle array, the orbits can deviate from purely circular states so that, 

for example, the stable orbit that encircles 26 obstacles rather than 25 obstacles. 

 In Fig. 8.9 it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐴 for the system in Fig. 8.8, highlighting the 

locations of some of the localized phases where 𝑛 = 0,1,4,9,21,32,58  and 69  obstacles are 

encircled. Several delocalized regions, inclusing translating or chaotic regimes appear between 

the localized states. 
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Figure 8.8 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝛼𝑚/𝛼𝑑 =

0.577 and 𝑎0 = 0.65 for circular ac driving with 𝐴 = 𝐵 and 𝜔1 = 𝜔2 = 2 × 10
−5. (a) 𝐴 = 0.25 the skyrmion is 

orbiting one obstacle. (b) 𝐴 = 0.375 the skyrmion has direct motion in +𝑦 direction. (c) 𝐴 = 0.5 the skyrmion is 

encircling four obstacles. (d) A diffusive motion at 𝐴 = 0.672. (e) At 𝐴 = 0.978, a translating orbit. (f) A localized 

state where the skyrmion encircles 21 obstacles at 𝐴 = 1.082. (From Vizarim et. al.  [189], pg. 6). 

 

Figure 8.9 - The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitudes 𝐴 and 𝐵, where 𝐴 = 𝐵 for 

a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 0.577, 𝑎𝑜 = 0.65. (From Vizarim et. al.  [189], pg. 

9). 
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In Fig. 8.10 (a) – (d) it is plotted some skyrmion trajectories for a system with 𝛼𝑚/𝛼𝑑 =

1.732 and circular driving 𝐴 = 𝐵 and 𝜔1 = 𝜔2. For 𝐴 = 0.215 in Fig. 8.10 (a), the skyrmion 

forms a localized orbit encircling one obstacle, while at 𝐴 = 0.29 in Fig. 8.10 (b), the motion is 

chaotic or diffusive. At 𝐴 = 0.712, Fig. 8.10 (c) shows that there is a translating orbit that jumps 

between motion along +45° and −45°. This orbit produces no net directed motion, but at short 

times the behavior is diffusive. In Fig. 8.10 (d) at 𝐴 = 0.836, the skyrmion locks into an orbit 

that translates along the +𝑦 direction. In Fig. 8.11 (a) it is plotted the velocity components 

versus the ac drive amplitudes for the system in Figs. 8.10 (a) – (d), where the vertical dashed 

lines indicate the regions where localized orbits encircles 𝑛 = 0,1,4,9,21,32,52,  and 69 

obstacles. In between 𝑛 = 9 and 𝑛 = 21 regimes, there are two regions of directed motion. Just 

above 𝑛 = 9 regime, the skyrmion translates in +𝑥 and −𝑦 directions along −45°, while just 

below the 𝑛 = 21 regime the skyrmion translates in +𝑦 direction. There is also a smaller region 

between these two translating phases where the system forms a localized state encircling 16 

obstacles. 

Figure 8.10 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝑎0 = 0.65 

and circular ac driving with 𝐴 = 𝐵  and 𝜔1 = 𝜔2 = 2 × 10
−5 . (a) – (d) Sample with 𝛼𝑚/𝛼𝑑 = 1.732. (a) 𝐴 =

0.215 the skyrmion is orbiting one obstacle. (b) 𝐴 = 0.29 has diffusive motion. (c) 𝐴 = 0.712 the skyrmion has 

translating orbit jumping from +45° and −45° states. (d) A translating orbit in +𝑦 direction at 𝐴 = 0.836. (e) – (h) 

Sample with 𝛼𝑚/𝛼𝑑 = 9.962. (e) 𝐴 = 0.188 the skyrmion is orbiting one obstacle. (f) 𝐴 = 0.25 the skyrmion is 

encircling four obstacles. (g) 𝐴 = 0.596 the skyrmion has diffusive motion. (h) A localized orbit encircling 16 

obstacles at 𝐴 = 0.75. (From Vizarim et. al.  [189], pg. 9). 

 

As the Magnus force is increased, there are fewer translating orbits and wider regions of 

delocalized orbits. In Figs. 8.10 (e) – (h) there are some skyrmion trajectories illustrated for a 
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system with 𝛼𝑚/𝛼𝑑 = 9.962. At 𝐴 = 0.188, shown in Fig. 8.10 (e), the skyrmion is encircling a 

single obstacle, while in Fig. 8.10 (f) the skyrmion encircles four obstacles at 𝐴 = 0.25. A 

delocalized and chaotic regime is shown in Fig. 8.10 (g) for 𝐴 = 0.596, while in Fig. 8.10 (h) 

the skyrmion stabilizes in a localized orbit encircling 16 obstacles. In Fig. 8.11 (b) it is plotted 

〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐴 for the system in Figs. 8.10 (e) – (h), where the vertical dashed lines 

indicate the windows of localized phases in which the skyrmion encircles 0, 1, 4, 9, 16, 32, 52, 

or 69 obstacles. There are also several regions of chaotic flow in between the localized phases, 

and no direct motion. 

Figure 8.11 - The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitudes 𝐴 and 𝐵, where 𝐴 = 𝐵 

for a single skyrmion in the square obstacle array using (a) 𝛼𝑚/𝛼𝑑 = 1.732 and (b) 𝛼𝑚/𝛼𝑑 = 9.962, 𝑎𝑜 = 0.65. 

(From Vizarim et. al.  [189], pg. 10). 

 

8.3.3 Ac drive with fixed B amplitude and varying A 

 In this section we also made calculations for the case where we have a fixed ac drive in 

one direction, while varying the ac drive in the other direction. That is, 𝐵 = 1.0 is fixed and the 

values of 𝐴  are varied. In Fig. 8.12 (a) it is plotted 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of 𝐴  using 

𝛼𝑚/𝛼𝑑 = 0.577 , 𝜔1 = 𝜔2  and 𝑎0 = 0.65 . In this case there are six regimes of skyrmion 

directed motion. Two of these regimes are illustrated in Fig. 8.12 (b), which is a zoomed version 

of Fig. 8.12 (a) for the range of 0 < 𝐴 < 0.5. The minima in 〈𝑉∥〉 correspond to a skyrmion 

motion in the −𝑥 direction by one lattice constant for every ac drive cycle. Near 𝐴 = 0.8, a 

fractional translation motion can be found, where the skyrmion moves one lattice constant in the 

−𝑥  direction for every ac drive cycles, closely followed by a second fractional translation 

regime where the skyrmion moves one lattice constant in +𝑥 every three ac drive cycles. For 

𝐴 = 0.95 there is also two regimes where the skyrmion moves one lattice constant in +𝑥 and 
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−𝑦 for every ac drive cycle. There are also several translation orbits for values close to 𝐴 =

1.25. 

Figure 8.12 – (a) The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitude 𝐴 and fixed 𝐵 = 1.0, 

for a single skyrmion in the square obstacle array using 𝛼𝑚/𝛼𝑑 = 0.577 and 𝑎𝑜 = 0.65. (b) A blowup of (a) for the 

interval 0 < 𝐴 < 0.5 (From Vizarim et. al.  [189], pg. 10). 

 

 In Fig. 8.13 it is illustrated some representative skyrmion trajectories for the system of 

Fig. 8.12. In Fig. 8.13 (a) it is shown a localized skyrmion orbit, where it moves between four 

obstacles. At 𝐴 = 0.15, in Fig. 8.13 (b), there is a translating orbit in which the skyrmion moves 

one lattice constant in −𝑥 direction for every ac drive cycle. This phase corresponds to the first 

negative 〈𝑉∥〉 plateau illustrated in Fig. 8.12 (b). In Fig. 8.13 (c) it is shown another localized 

skyrmion orbit, which is asymmetric due to the ac drives profile and encircles six obstacles. In 

Fig. 8.13 (d) shows the second moving orbit from Fig. 8.12 (b) for 𝐴 = 0.384, where it moves 

in −𝑥 direction. At 𝐴 = 0.96 in Fig. 8.13 (e), there is a translating orbit in which the skyrmion 

moves in −𝑦  direction. In Fig. 8.13 (f) there is another localized orbit, but in this case it 

encircles 23 obstacles. 

 For increases values of 𝛼𝑚/𝛼𝑑 in this asymmetric system where 𝐵 = 1.0 and 𝐴 is varied, 

the number of translating phases increases. In Fig. 8.14 it is plotted the velocity components as a 

function of 𝐴 for a system with 𝛼𝑚/𝛼𝑑 = 1.732 and 𝑎0 = 0.65, where it is possible to see 

several translating phases where the skyrmion may move in 𝑥 or 𝑦 directions. 
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Figure 8.13 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝑎0 = 0.65, 

ac drive with 𝐵 = 1.0 and varied 𝐴  and 𝜔1 = 𝜔2 = 2 × 10
−5 . (a) 𝐴 = 0.03 the skyrmion performs a localized 

orbit. (b) 𝐴 = 0.15 the skyrmion translates in −𝑥 direction. (c) 𝐴 = 0.25 a localized orbit. (d) A second translating 

orbit in −𝑥 direction at 𝐴 = 0.384. (e) 𝐴 = 0.96 the skyrmion is translating along −𝑦 direction. (f) 𝐴 = 0.25 the 

skyrmion is encircling four obstacles. (g) 𝐴 = 0.596 the skyrmion has diffusive motion. (h) A localized orbit 

encircling 23 obstacles at 𝐴 = 1.5. (From Vizarim et. al.  [189], pg. 11). 

 

Figure 8.14 – The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitude 𝐴 and fixed 𝐵 = 1.0, 

using 𝛼𝑚/𝛼𝑑 = 1.732 and 𝑎𝑜 = 0.65. (From Vizarim et. al.  [189], pg. 12). 
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8.3.4  Obstacle size influence 

In this section we investigate how the obstacle size influences on the skyrmion 

dynamics. As the obstacle size, 𝑎0, is increased, the gaps between the obstacles are reduced, 

therefore restricting the skyrmion motion between obstacles. Initially, we look into the case of 

linear ac drive, that is, ac drive applied only in the 𝑥 direction. In Fig. 8.15 (a) is plotted the 

velocity curves, 〈𝑉∥〉 and 〈𝑉⊥〉, as a function of the ac drive amplitude, 𝐴 using 𝛼𝑚/𝛼𝑑 = 0.577 

and 𝑎0 = 0.85. Over the range 0 < 𝐴 < 1.0 all the skyrmion orbits are localized. For increased 

values of 𝐴 there are two smaller regions where delocalized motion can occur. In Fig. 8.16 (a) it 

is illustrated the skyrmion trajectory for the system in Fig. 8.15 (a) for 𝐴 = 0.282, where the 

skyrmion forms a localized orbit moving between two obstacles. As the amplitude is increased, 

the skyrmion passes through a series of localized elliptical orbits oriented along the 𝑥 direction, 

as shown in Fig. 8.16 (b) for 𝐴 = 0.5. In Fig. 8.16 (c) at 𝐴 = 1.048, there is a translating orbit 

where the skyrmion moves one lattice constant in the +𝑦  direction for every five ac drive 

cycles. In Fig. 8.16 (d) shows a localized orbit at 𝐴 = 1.5 where the skyrmion moves between 

three plaquettes at an angle to the 𝑥 axis. As the amplitude is further increased the localized 

orbits exhibit a structure similar to what is shown in Fig. 8.16 (d) but pass between an increasing 

number of obstacles. 

Figure 8.15 – The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitude 𝐴 for linear ac drive 

using 𝑎𝑜 = 0.85.(a) A sample with 𝛼𝑚/𝛼𝑑 = 0.577. (b) A sample with 𝛼𝑚/𝛼𝑑 = 1.732. (c) A blowup of (b) for 

the interval 1.3 < 𝐴 < 1.6 (From Vizarim et. al.  [189], pg. 10). 

 

As the Magnus term in increased in samples with larger obstacles, there is an increased 

number of regions where delocalized and moving orbits appear. In Fig. 8.15 (b) it is plotted 〈𝑉∥〉 

and 〈𝑉⊥〉 versus 𝐴 for a sample with 𝑎0 = 0.85, 𝛼𝑚/𝛼𝑑 = 1.732 and 𝐵 = 0. As can be seen, 

there are several regions of chaotic or dissipative flow, several regions of moving orbits that are 

most likely to be found along the 𝑦 direction and several reversals of moving orbit direction. In 

Fig. 8.16 (e) it is illustrated the skyrmion trajectories for 𝐴 = 0.5, where the skyrmion moves 
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between two obstacles in a localized orbit. In Fig. 8.16 (f), at 𝐴 = 0.75, the skyrmion encircles 

two obstacles and performs another type localized orbit. In Fig. 8.15 (c) there is a blowup of Fig. 

8.15 (b) for the range of 1.3 < 𝐴 < 1.6. There is a small region near 𝐴 = 1.376 where the 

skyrmion translates in the −𝑥 direction by one lattice constant for every two ac drive cycles, as 

shown in Fig. 8.16 (g). This regime is followed by a delocalized chaotic motion. For the range 

of 1.415 < 𝐴 < 1.42, there is a translating orbit motion where the skyrmion moves one lattice 

constant in 𝑦 direction for every ac drive cycle, as shown in Fig. 8.16 (h). After further increase 

in 𝐴, there is a reversal in the translation orbit direction of motion at the range of 1.425 < 𝐴 <

1.48. 

Figure 8.16 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝑎0 = 0.85 

and linear ac driving where 𝐵 = 0 and 𝜔1 = 𝜔2 = 2 × 10−5 . (a) – (d) Sample with 𝛼𝑚/𝛼𝑑 = 0.577 . (a) 𝐴 =

0.272  a localized orbit. (b) 𝐴 = 0.5  a more extended localized orbit. (c) 𝐴 = 1.047  a moving orbit along +𝑦 

direction. (d) A localized orbit at 𝐴 = 1.5. (e) – (h) Sample with 𝛼𝑚/𝛼𝑑 = 1.732. (e) 𝐴 = 0.5 a localized orbit. (f) 

𝐴 = 0.75 another localized orbit. (g) 𝐴 = 1.376 a translating orbit. (h) A translating orbit at 𝐴 = 0.75. (From 

Vizarim et. al.  [189], pg. 13). 

 

 Now we look into the case of circular ac driving, where 𝐴 = 𝐵. In Fig. 8.17 it is plotted 

〈𝑉∥〉  and 〈𝑉⊥〉  versus 𝐴  for a sample with 𝛼𝑚/𝛼𝑑 = 0.577  at 𝑎0 = 0.45 , 0.65  and 0.95 . For 

small values of obstacle size, most orbits remain localized as 𝐴  increases, while for larger 

obstacles more delocalized and direct motion phases can be observed. However, if the obstacles 

are too large, the number of delocalized orbits also reduces due to the reduced gap between 

obstacles that confines the skyrmion motion and restricts possible types of motion. After several 

simulations it was possible to plot a dynamical phase diagram as a function of 𝐴 versus 𝑎0, as 
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shown in Fig. 8.18. The locations of the delocalized, localized and moving orbits are indicated. 

The localized orbits are labelled according to the number of obstacles each phase encircles, that 

is, 0, 1, 4, 9 or 16 obstacles. Some localized orbits may also have different shapes although the 

number of obstacles encircled is the same, and therefore it is another phase. 

Figure 8.17 – The average velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitude 𝐴 where 𝐴 = 𝐵, using 

𝛼𝑚/𝛼𝑑 = 0.577 and 𝜔1 = 𝜔2 for 𝑎0 = 0.45, 0.65 and 0.95. (From Vizarim et. al.  [189], pg. 13). 

 

Figure 8.18 – Dynamic phase diagrams as a function of 𝐴 versus 𝑎0 with 𝐴 = 𝐵, 𝜔1 = 𝜔2 and 𝛼𝑚/𝛼𝑑 = 0.577. 

Blue indicates the localized phases; red regions are delocalized orbits and green regions are direct motion phases. 

Phase 16𝐸  is the skyrmion encircling 16 obstacles with elliptical shape, while 16𝑆  has circular shape. (From 

Vizarim et. al.  [189], pg. 14). 
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From Fig. 8.17 it is possible to see that for reduced obstacle sizes, the skyrmion motion is 

less influenced by the obstacles. This means that the skyrmion performs mainly orbits that 

increase in its radius. Note that there are few peaks in the velocity curves, indicating that the 

skyrmions does not disperse much through the sample, even when changing its orbit size. In Fig. 

8.19 (a) we illustrate the skyrmion orbit for 𝐴 = 0.5, where the orbit is very close to a perfect 

circle, due to the reduced effect of the obstacles. In Fig. 8.19 (b) it is shown the skyrmion 

dispersing when increasing its orbit. As can be seen, the dispersion is not throughout the sample, 

it is concentrated in a certain region, performing circular motions. For intermediate values of 

obstacle size, the skyrmion exhibits the most pronounced velocity peaks. This means that for 

this size of obstacle the skyrmion performs ordered motion. However, if the obstacle size is too 

large, the skyrmion orbit becomes more squared due to the reduced gaps between obstacles [See 

Fig. 8.19 (c)], and the transition between orbits may be chaotic [See Fig. 8.19 (d)].  The phase 

diagram of Fig. 8.18 also demonstrates that for larger values of 𝑎0 the localized orbits become 

elliptical, such as the 16𝐸  state which encircles 16 obstacles, while at smaller values of 𝑎0 the 

orbits are more circular due to the reduced influence of obstacles, as can be seen for the case of 

16𝑆 case. 

Figure 8.19 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝛼𝑚/𝛼𝑑 =

0.577 and circular ac driving where 𝐴 = 𝐵 and 𝜔1 = 𝜔2 = 2 × 10
−5. (a) and (b) Sample with 𝑎0 = 0.45. (a) 𝐴 =

0.5 a localized orbit. (b) 𝐴 = 0.652 a chaotic regime. (c) and (d) Sample with 𝑎0 = 0.95. (c) 𝐴 = 0.5 a localized 

squared orbit. (d) 𝐴 = 0.608 a delocalized orbit. (From Vizarim et. al.  [189], pg. 14). 
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8.3.5  Frequency rate 𝝎𝟐/𝝎𝟏 influence 

In this section we investigate the influence of the oscillating frequency of the ac drives. If 

the frequencies are not equal, that is 𝜔1/𝜔2 ≠ 1, it is expected an asymmetry in the ac drives, 

which can enhance the ratchet effects in skyrmions. In Fig. 8.20 it is illustrated the skyrmion 

orbits in the absence of a substrate for a system with 𝐴 = 𝐵 = 1.0  and 𝛼𝑚/𝛼𝑑 = 0.45  at 

𝜔2/𝜔1 = 0.5, 1.0, 1.5, 2.0 and 3.0. As can be seen for 𝜔2/𝜔1 = 1.0 the orbit is circular, but for 

the other values the orbit is asymmetric. 

Figure 8.20 – The skyrmion trajectories for varied values of 𝜔2/𝜔1 for a system without substrate, 𝐴 = 𝐵 = 1.0 

and 𝛼𝑚/𝛼𝑑 = 0.45 (From Vizarim et. al.  [189], pg. 15). 

 

 In Fig. 8.21 (a) it is plotted plotted 〈𝑉∥〉 and 〈𝑉⊥〉 versus 𝐴 for a system with circular 

driving 𝐴 = 𝐵  using 𝛼𝑚/𝛼𝑑 = 0.577 , 𝑎0 = 0.65  at 𝜔2/𝜔1 = 0.5  and 1.0 . For 𝜔2/𝜔1 = 0.5 

there are larger regions of moving orbits with several reversals in the direction of the moving 

orbit. In Fig. 8.21 (b) shows the same kind of plot but for 𝜔2/𝜔1 = 1.5 and 2.0. When 𝜔2/

𝜔1 = 1.5 most of the translating orbit regions exhibit 〈𝑉∥〉 = 0.5 or 〈𝑉⊥〉 = 0.5, which means 

that the moving orbits translate one lattice constant for every two ac drives cycles. On the other 

hand, for 𝜔2/𝜔1 = 2.0 most of the translating orbit has 〈𝑉∥〉 = 1.0 or 〈𝑉⊥〉 = 1.0, which means 

that the skyrmion moves one lattice constant for every ac drive cycle. That is, the direct motion 

is more efficient for 𝜔2/𝜔1 = 2.0. In Fig. 8.22 it is illustrated some representative skyrmion 

trajectories for the system of Fig. 8.21. In Fig. 8.22 (a) at 𝐴 = 0.4  and 𝜔2/𝜔1 = 0.5  the 

skyrmion is translating in the +𝑥 direction, while in (b) for 𝐴 = 0.58 the skyrmion translates 

along 45°. In Fig. 8.22 (c) for 𝜔2/𝜔1 = 2.0 at 𝐴 = 0.2 the orbit translates in −𝑥 direction, but it 
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is also disordered. In Fig. 8.22 (d) using the same ratio as (c) but for 𝐴 = 1.0, the skyrmion 

translates in the +𝑦 direction. 

Figure 8.21 The velocities 〈𝑉∥〉 and 〈𝑉⊥〉 as a function of the ac drive amplitude, 𝐴 = 𝐵, for a single skyrmion in the 

square obstacle array using 𝛼𝑚/𝛼𝑑 = 0.577 and obstacle sizes of 𝑎0 = 0.65. In (a) curves for 𝜔2/𝜔1 = 0.5 and 

1.0, in (b) for 𝜔2/𝜔1 = 1.5 and 2.0 (From Vizarim et. al.  [189], pg. 16). 

 

Figure 8.22 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝛼𝑚/𝛼𝑑 =

0.577 and circular ac driving where 𝐴 = 𝐵 and 𝑎0 = 0.65. (a) and (b) Sample with 𝜔2/𝜔1 = 0.5. (a) 𝐴 = 0.4 a 

translating orbit along +𝑥 direction. (b) 𝐴 = 0.58 a translating orbit along 45°. (c) and (d) Sample with 𝜔2/𝜔1 =

2.0 . (c) 𝐴 = 0.2  a disordered translating orbit along −𝑥  direction. (d) 𝐴 = 1.0  a translating orbit along +𝑦 

direction. (From Vizarim et. al.  [189], pg. 16). 
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8.3.6 Discussion and Summary 

Our results could be tested experimentally in a system containing a periodic array of 

antidots with one or two applied ac drives. The different orbits could be measured using direct 

imaging or through electrical detection. Another method for observing the orbits is to analyze 

the noise fluctuations, since the localized states or ordered translating orbits should produce low 

noise along with a narrow band signal at a specific frequency. In contrast, the delocalized phases 

would exhibit broadband noise signals or multiple frequencies due to the jumping of the 

skyrmion between different orbit shapes. It would also be interesting to consider a finite number 

of skyrmions instead of an individual skyrmion. At low densities where the skyrmions do not 

interact, we expect that the results would be similar to what is described above. However, for 

multiple interacting skyrmions, there could be an enhancement of the disordered regime or even 

new types of ordered phases. In our model, the skyrmions are treated as rigid particles; however, 

actual skyrmions can exhibit internal modes or shape distortions which could induce additional 

phases. This also suggests that another method for driving skyrmions in circular orbits would be 

to use oscillating fields, since continuum studies have shown that this technique can generate 

skyrmion motion even without a substrate [131]. In a sample where a dc drive is superimposed 

on an ac drive, various types of phase locking phenomena should appear in the velocity force 

curves as has been studied in previous work of section 7.  

Our model neglects thermal effects, but we expect such effects would become important 

near the transition between two different localized orbits, and could induce a creep motion for 

certain translating orbits. Our results also suggest that by controlling the obstacle geometry and 

the ac driving, it should be possible to cause the skyrmion to translate at a designated skyrmion 

Hall angle over a specific number of lattice constants per ac drive cycle. The behavior should 

also depend on the type of skyrmion considered. For antiferromagnetic skyrmions [193,194] and 

liquid crystal skyrmions [195], where the Hall angle is absent, the dynamics would be similar to 

those found in the vortex pinball systems. In other skyrmion systems where internal modes are 

important, there could be complex trochoidal motion of the skyrmions [196]. 
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9  Interface Guided Motion 

9.1 Guiding skyrmions through interface between periodic obstacle 

arrays 

 The main idea of this work is to use designed asymmetric obstacle landscape to guide the 

skyrmion motion through the sample, following a designed path. The asymmetry in our case is 

an interface between different regions of obstacle landscape: one region where obstacles have 

reduced size, and another region where obstacles have a larger size. This difference in obstacle 

sizes create an asymmetric potential in the interface, which the idea is to lead the skyrmion 

motion. In order to induce their motion, it is applied a circular ac drive, and as the skyrmion 

increases its orbit with increasing ac drive amplitude, it may eventually reach the interface 

between the obstacle regions and finally be guided. Experimentally biharmonic ac drives could 

be achieved using a cross-shaped bridge of the type developed for superconducting vortex 

samples [12,197]. Our results show that the skyrmion flows through the interface, even turning 

sharp corners to follow the interface. This work has been recently published in Journal of 

Magnetism and Magnetic Materials [198]. 

9.2  Model and Simulation details 

 The simulation method is exactly the same as the skyrmion pinball work, in 

previous section 8. Only an ac drive is applied to a single skyrmion in a 2D periodic landscape. 

The main difference is the obstacle landscape that exhibits regions with different obstacles sizes. 

The region with smaller obstacles has the obstacle size 𝑅𝑜
𝑆 = 0.45, and the region with larger 

obstacles has 𝑅𝑜
𝐿 = 0.85 radii. The dynamical properties of the skyrmion system interacting with 

the obstacle array were simulated using the particle model for skyrmions, shown in Eq. (9.1), 

using Molecular Dynamics technique. 

 

                                                     𝛼𝑑𝐯𝒊 + 𝛼𝑚�̂� × 𝐯𝒊 = 𝐅𝑖
𝑜 + 𝐅𝑎𝑐                                             (9.1) 

 

The system has a size of 72𝜉 × 72𝜉. In the center of the simulation box, we inserted a 

region where the obstacles are larger, and outside this central region the obstacles size are 

reduced (See Fig. 9.1). The obstacle density is the same in both regions, 0.093/𝜉2. The last term 

is the ac drive, 𝐅𝑥
𝑎𝑐 = 𝐴 sin(2𝜋𝜔1𝑡) �̂� for longitudinal driving and 𝐅𝑦

𝑎𝑐 = 𝐵 cos(2𝜋𝜔2𝑡) �̂� for 

transversal driving. We measure the skyrmion velocity in the 〈𝑉𝑥〉 = 〈𝐯 ∙ �̂�〉/(2𝜋𝜔1𝑎), and the 𝑦 
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component, 〈𝑉𝑦〉 = 〈𝐯 ∙ �̂�〉/(2𝜋𝜔1𝑎), where 𝑎 is the substrate lattice constant. The velocities are 

averaged over 100 ac drive cycles. Under the normalization used here, when 〈𝑉∥〉 = 1.0  or 

〈𝑉⊥〉 = 1.0 indicates that the skyrmion is translating by one substrate lattice constant per ac 

drive cycle in the 𝑥 or 𝑦 direction, respectively.  The external ac drive amplitude is increased in 

small steps of 𝐴 (𝐵) = 0.002 and wait 106 simulation time steps between increments to ensure 

steady state. We normalize the damping and Magnus coefficients as 𝛼𝑑
2 + 𝛼𝑚

2 = 1. 

Figure 9.1 - A schematic of the system, which consists of regions of a square array of obstacles (red circles) with 

different sizes. The larger obstacles have 𝑅0
𝐿 = 0.85 and the small ones 𝑅0

𝑠 = 0.45. The black lines correspond to 

the skyrmion trajectories under the influence of both damping, Magnus term, and circular ac drive (From Vizarim 

et. al. [198], pg. 2) 

 
  

9.3 Results 

9.3.1 Transport along central interface between superior and inferior obstacle arrays 

As the main focus of this work is to understand how the skyrmion behave under the 

presence of an interface between two different pinning landscapes, first we consider the case of 

one-dimensional interface, where the upper part of the sample is composed of smaller obstacles, 

while the bottom part of larges obstacles. The skyrmion is initially placed between the two 

regions as it is used a system with 𝛼𝑚/𝛼𝑑 = 0.45 and 𝜔 = 1 × 10−5. If the skyrmion interacts 

with homogeneous obstacles, that is, without any size differences, the skyrmion may exhibit 

localized orbits, chaotic or directed motion, as shown in details in section 10. However, for the 

case here where the obstacle lattice is not homogeneous, the interface between the obstacle 

produce an asymmetric potential for the skyrmion, which induces a ratchet motion. In Fig. 9.2 

(a), for 𝐴 = 0.1, the skyrmion is performing a localized orbit, encircling one obstacle. The result 

would be analogous if the skyrmion were placed on the other half of the sample with larger 

obstacles. When the drive amplitude is increased to 𝐴 = 0.4, as in Fig. 9.2 (b), the skyrmion 

remains trapped in a localized orbit encircling four obstacles. Depending on the initial skyrmion 

position, there can be an initial transient of diffusive motion before settling into a stable and 
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localized orbit as demonstrated in this figure. It is also possible that due to the obstacle size 

difference, on one parte of the sample the skyrmion has a localized orbit and on the other side 

the motion can be chaotic, as demonstrated in section 8 on how the obstacle size affects the 

skyrmion dynamics under ac drive. In Fig. 9.2 (c) it is illustrated the formation of a translating 

orbit at 𝐴 = 0.5, where the skyrmion moves a distance 2𝑎 in the +𝑥 direction during every ac 

drive cycle, where 𝑎 is the lattice constant. Note that the direction of motion can be better seen 

in Fig. 9.3, where the velocity curves are demonstrated. For 𝐴 = 0.5, the skyrmion velocity is 

〈𝑉𝑥〉 = 2.0 and 〈𝑉𝑦〉 = 0. In Fig. 9.2 (d) it is illustrated another type of moving orbit at 𝐴 = 0.77, 

but now the skyrmion moves 𝑎 in the +𝑥 direction for every ac drive cycle. 

Figure 9.3 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system with 𝛼𝑚/𝛼𝑑 =

0.45 and circular ac driving where 𝐴 = 𝐵 and 𝜔 = 1 × 10−5. (a) 𝐴 = 0.1 a localized orbit encircling one obstacle. 

(b) 𝐴 = 0.4 a localized orbit encircling four obstacles. (c) 𝐴 = 0.5 a translating orbit moving 2𝑎 for every ac drive 

cycle in the +𝑥 direction. (d) 𝐴 = 0.77 a translating orbit along +𝑥 direction, moving 𝑎 for every ac drive cycle. 

(From Vizarim et. al.  [198], pg. 3). 

 

In Fig. 9.3 it is plotted the velocity components 〈𝑉𝑥〉 and 〈𝑉𝑥〉 as a function of 𝐴 for the 

system in Fig. 9.2. Note that in this system the perpendicular velocity 〈𝑉𝑦〉 ≅ 0 for all values of 

𝐴  since the transport motion can only occur along the 𝑥  direction, which is parallel to the 

interface. The skyrmion can translate in both +𝑥 or −𝑥 since there is no preferable direction. 

For the interval 0.425 < 𝐴 < 0.475, the skyrmion moves along the interface a distance 𝑎 in the 

−𝑥 direction during each ac drive cycle, while for 0.475 < 𝐴 < 0.51, the skyrmion translates in 

the +𝑥  direction by 2𝑎  for every ac drive cycle. As can be seen there is also several other 
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windows of motion along the interface where the skyrmion may move 𝑎 or 2𝑎 during each ac 

drive cycle in both +𝑥 or −𝑥 direction, including sharp reversals of skyrmion motion. If the ac 

drive polarity is reversed, the same curves are obtained but with flipped 𝑦 axis. The motion 

following the interface occurs due to a combination of broken time symmetry from the ac drive 

and the broken spatial symmetry from the interface, which produces a ratchet effect. Here, the ac 

drive cycle is spatially symmetric, but when a portion of the skyrmion orbit is on the other side 

of the interface, the orbit becomes asymmetric and the ratchet effect is more likely.  

Figure 9.3 – The average velocities 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the ac drive amplitude 𝐴 for the system in Fig. 9.2 

using 𝛼𝑚/𝛼𝑑 = 0.45. (From Vizarim et. al.  [198], pg. 3). 

 

In Fig. 9.4 it is plotted 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of 𝐴 for the same system as Fig. 9.3 but with 

stronger Magnus components of 𝛼𝑚/𝛼𝑑 = 1.732 [See Fig. 9.4 (a)] and 𝛼𝑚/𝛼𝑑 = 9.962 [See 

Fig. 9.4 (b)]. For the case of 𝛼𝑚/𝛼𝑑 = 1.732, there are small regions of directed motion, while 

for 𝛼𝑚/𝛼𝑑 = 9.962 the regions of directed motion are more extended. In Fig. 9.5 (a) it is shown 

the skyrmion trajectories for the system of Fig. 9.4 (a) at 𝐴 = 0.22, where the skyrmion exhibits 

a short time transient motion in the small obstacle region before entering a diffusive motion in 

the larger obstacles region. In Fig. 9.5 (b) it is shown the trajectory at 𝐴 = 0.534, where the 

skyrmion performs a moving orbit in the +𝑥 direction, moving a distance 𝑎 for every ac drive 

cycle. In Fig. 9.5 (c), for the system with 𝛼𝑚/𝛼𝑑 = 9.962 , at 𝐴 = 0.382  the skyrmion is 

performing a delocalized and chaotic orbit. In Fig. 9.5 (d) at 𝐴 = 0.6 the skyrmion is performing 

a complex moving orbit at the edge of the interface that translates 𝑎 during every ac drive cycle 

in the +𝑥 direction. In general, as the Magnus force is increased, the delocalized orbits are more 

prominent than the localized ones. 
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Figure 9.4 – The average velocities 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the ac drive amplitude 𝐴 for the same system as 

Fig.9.2 but using (a) 𝛼𝑚/𝛼𝑑 = 1.732 and (b) 𝛼𝑚/𝛼𝑑 = 9.962. (From Vizarim et. al.  [198], pg. 3). 

 

Figure 9.5 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system using circular ac 

driving where 𝐴 = 𝐵  and 𝜔 = 1 × 10−5 . (a) and (b) samples with 𝛼𝑚/𝛼𝑑 = 1.732. (a) 𝐴 = 0.22 a delocalized 

diffusive orbit. (b) 𝐴 = 0.534 a translating orbit in the +𝑥 direction. (c) and (d) samples with 𝛼𝑚/𝛼𝑑 = 9.962. (c) 

𝐴 = 0.372 a chaotic delocalized orbit. (d) 𝐴 = 0.6 a complex translating orbit along +𝑥 direction, moving 𝑎 for 

every ac drive cycle. (From Vizarim et. al.  [198], pg. 4). 
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9.3.2 Guided transport along corners 

Since skyrmions can be guided through an interface between different obstacle 

landscapes, now we consider the case where the interface is not straight, but may exhibit sharp 

corners. If the skyrmion can follow an interface with sharp corners, it would allow the creation 

of designed interfaces that could guide the skyrmion motion through the sample in order to 

achieve different types of devices. So, for a better understanding of this phenomena we 

considered the case illustrated in Fig. 9.1, where there is a central region with larger obstacles 

surrounded by a region with smaller obstacles. In Fig. 9.6 it is shown some representative 

skyrmion trajectories for the system illustrated in Fig. 9.1 using 𝛼𝑚/𝛼𝑑 = 0.45  and 𝜔 =

1 × 10−5. In Figs. 9.6 (a) and (b) it is possible to see localized orbits at 𝐴 = 0.1 and 𝐴 = 0.2, 

respectively. For 𝐴 = 0.1  the skyrmion is orbiting between obstacles and for 𝐴 = 0.2  the 

skyrmion encircles one obstacle. In Fig. 9.6 (c), at 𝐴 = 0.4 , the skyrmion is performing a 

localized orbit encircling 12 obstacles in the small obstacle region. At 𝐴 = 0.47, for the 1D 

interface case, the skyrmion was following the interface in a directed motion, similar to shown 

in Fig. 9.3. Here, the skyrmion also exhibits directed motion, even for a 2D interface, the 

skyrmion follows the interface turning all four corners in clockwise direction [See Fig. 9.6 (d)], 

where the skyrmion moves 2𝑎 for every ac drive cycle. Fig. 9.6 (e) shows a localized orbit 

where the skyrmion encircles 23 obstacles at 𝐴 = 0.66. In Fig. 9.6 (f) at 𝐴 = 0.86, the skyrmion 

performs another type of direct motion following the interface, which is wider than shown in 

Fig. 9.6 (d). 

In Fig. 9.7 it is plotted 〈𝑉𝑥〉  and 〈𝑉𝑦〉  as a function of 𝐴  for the system in Fig. 9.6. 

Differently from the 1D interface case, here there are finite velocity component values for both 

𝑥 and 𝑦 directions. As the skyrmion changes direction following the interface, finite values of 

the velocity components may appear and they do not exhibit smooth steps as the 1D case. 

However, the regions where the translation occur is characterized by large fluctuations in 〈𝑉𝑥〉 

and 〈𝑉𝑦〉. Note that there are several intervals in which the skyrmion moves along the interface. 

There are also some regions where the skyrmion follows the interface partially, then cannot turn 

corners and performs chaotic motion. This situation will be demonstrated later. 
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Figure 9.6 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system using 𝛼𝑚/𝛼𝑑 =

0.45, circular ac driving where 𝐴 = 𝐵 and 𝜔 = 1 × 10−5. (a) 𝐴 = 0.1 a localized orbit between obstacles. (b) 𝐴 =

0.2 a localized orbit encircling one obstacle. (c) 𝐴 = 0.4 a localized orbit encircling 12 obstacles. (d) 𝐴 = 0.47 a 

translating orbit that can turn all four corners of the interface in the clockwise direction. (e) 𝐴 = 0.66 a localized 

orbit encircling 23 obstacles. (f) 𝐴 = 0.86 another type of moving orbit following the interface, but wider than in 

(d). (Adapted from Vizarim et. al.  [198], pg. 5). 

 

Figure 9.7 – The average velocities 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the ac drive amplitude 𝐴 for the system in Fig. 9.6 

using 𝛼𝑚/𝛼𝑑 = 0.45. The regions with strong oscillations correspond to directed motion following the interface. 

(From Vizarim et. al.  [198], pg. 6). 

 

In general, the values of 𝛼𝑚/𝛼𝑑 and 𝐴 that directed motion can occur is the same for 1D 

and 2D interfaces turning corners, however the intervals of 𝐴 where direct motion occurs with 
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the skyrmion being able to turn corners to follow the interface is reduced when compared to the 

directed motion in 1D interface. In Fig. 9.8 (a) at 𝐴 = 0.886 it is illustrated an example of a 

skyrmion following partially the interface. In this case, the skyrmion has chaotic motion before 

reaching the interface, when it reaches it follows the interface with directed motion. However, 

when it reaches the corner, it cannot turn and the skyrmion detaches from the interface and 

diffuses through the sample. This system is similar to the system of Fig. 9.6, but here the ac 

drive frequency is higher, 𝜔 = 2 × 10−5. In Fig. 9.8 (b) it is illustrated the skyrmion trajectory 

for the same system but with 𝐴 = 0.894 where the skyrmion can turn all four corners. 

Figure 9.8 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system using 𝛼𝑚/𝛼𝑑 =

0.45, circular ac driving where 𝐴 = 𝐵 and 𝜔 = 2 × 10−5. (a) 𝐴 = 0.886 a partially motion along the interface, 

where the skyrmion cannot turn corners. (b) 𝐴 = 0.894 a translating orbit where the skyrmion follows the interface 

turning all four corners. (From Vizarim et. al.  [198], pg. 6). 

 

For fixed ac drive frequency, 𝜔 , and as 𝛼𝑚/𝛼𝑑  increases it is possible to observe a 

regime in which the skyrmion follows the interface turning all four corners but the motion has a 

partially stochastic component to its motion. In Fig. 9.9 it is illustrated some representative 

skyrmion trajectories for a system similar to 9.6, but using 𝛼𝑚/𝛼𝑑 = 1.732. In Fig. 9.9 (a) at 

𝐴 = 0.06 it is illustrated a skyrmion orbit oscillating between obstacles, while in Fig. 9.9 (b) at 

𝐴 = 0.074 shows the skyrmion undergoing diffusive motion through the large obstacle region. 

In Fig. 9.9 (c) at 𝐴 = 0.246, the skyrmion performs directed motion along the interface, but 

there are intermittent windows of stochastic motion, reducing the efficiency of the motion to a 

distance much smaller than one lattice constant per ac drive cycle. In Fig. 9.9 (d) there is a 

localized orbit at 𝐴 = 0.33  encircling 9 obstacles. Fig. 9.9 (e) at 𝐴 = 0.38  shows another 

example of directed motion with reduced stochastic component than Fig. 9.9 (c). At 𝐴 = 0.532 

a translating orbit with no stochastic component. In Fig. 9.9 (g) a localized orbit encircling 52 

obstacles at 𝐴 = 0.74, while in Fig. 9.9 (h) a big translating orbit at 𝐴 = 0.838. 
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Figure 9.9 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system using 𝛼𝑚/𝛼𝑑 =

1.732, circular ac driving where 𝐴 = 𝐵 and 𝜔 = 1 × 10−5. (a) 𝐴 = 0.06 a localized orbit between obstacles. (b) 

𝐴 = 0.074 a diffusive motion in the bulk region. (c) 𝐴 = 0.246 an interface motion with stochastic component. (d) 

𝐴 = 0.33  a localized orbit encircling nine obstacles. (e) 𝐴 = 0.38  a clockwise edge transport. (f) 𝐴 = 0.532 

another type of moving orbit following the interface. (g) 𝐴 = 0.74 a localized orbit encircling 52 obstacles. (h) 𝐴 =

0.838 a big translating orbit through the interface. (Adapted from Vizarim et. al.  [198], pg. 7). 

 

 For even higher values of Magnus term, the skyrmion motion becomes more chaotic or 

localized, that is, regions of direct transport though the interface is significantly reduced. In Fig. 

9.10 we show some skyrmion trajectories for a system similar to 9.9, but using 𝛼𝑚/𝛼𝑑 = 9.962. 

In Figs. 9.10 (a) and (b) the skyrmion is performing a localized orbits encircling four obstacles 

(𝐴 = 0.03 ) and nine obstacles (𝐴 = 0.1 ), respectively. In Fig. 9.10 (c) at 𝐴 = 0.324  the 

skyrmion performs a very odd type of trajectory. It partially follows the interface turning two 

corners and then enters in the bulk, returning to a stochastic trajectory. For long times this 

pattern repeats itself. In Fig. 9.10 (d) at 𝐴 = 0.34 the skyrmion performs a chaotic motion with 

no edge transport. In Fig. 9.11 it is plotted 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of 𝐴 for the system in Fig. 

9.10 showing some regions where strong oscillations in the velocity curves appear, 

corresponding to intermittent transport along the interface or ordered motion in the bulk. There 

are several regions where the velocity components are null, indicating several localized orbit 

regions. 
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Figure 9.10 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system using 𝛼𝑚/𝛼𝑑 =

9.962, circular ac driving where 𝐴 = 𝐵 and 𝜔 = 1 × 10−5. (a) 𝐴 = 0.03 a localized orbit encircling four obstacles. 

(b) 𝐴 = 0.1 a localized orbit encircling nine obstacles. (c) 𝐴 = 0.324, the skyrmion jumps between clockwise 

motion trhough the interface and chaotic motion in the bulk. (d) 𝐴 = 0.34 a chaotic motion. (From Vizarim et. 

al.  [198], pg. 8). 

 

Figure 9.11 – The average velocities 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the ac drive amplitude 𝐴 for the system in Fig. 

9.10 using 𝛼𝑚/𝛼𝑑 = 9.962. (From Vizarim et. al.  [198], pg. 8). 

 

9.3.3 The influence of the bulk size 

Now we consider the influence on changing the size of the central area where the larger 

obstacles are present. It is considered a smaller central area of 2 × 2 larger obstacles and another 

sample with 14 × 14  larger obstacles in the central area using 𝛼𝑚/𝛼𝑑 = 0.45  and 𝜔 =

1 × 10−5. In Fig. 9.12 (a,b) it is plotted 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of 𝐴 for these two systems. 
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For the 2 × 2 system, the results is very similar to what has been previously found in systems 

with homogeneous obstacle landscapes (see section 8). In this case the interface is too short for 

the skyrmion to follow, but as the ac drive amplitude increases, the skyrmion orbits tends to 

stabilize near the region with larger obstacles, as illustrated in Fig. 9.13 (a) with 𝐴 = 0.446, and 

Fig. 9.13 (b) with 𝐴 = 0.578. 

Figure 9.12 – The average velocities 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the ac drive amplitude 𝐴 for a system using 

𝛼𝑚/𝛼𝑑 = 0.45 and 𝜔 = 1 × 10−5. (a) A system with 2 × 2 larger obstacles in the central area, (b) a system with 

14 × 14 larger obstacles in the bulk. (From Vizarim et. al.  [198], pg. 8). 

 

In the system with 14 × 14 larger obstacles in the central area, shown in Fig. 9.12 (b), it 

is possible to observe multiple regions with oscillations in 〈𝑉𝑥〉 and 〈𝑉𝑦〉, as highlighted in the 

blowup of the interval 0.44 ≤ 𝐴 ≤ 0.51  found in the inset of Fig. 9.12 (a). The skyrmion 

trajectory within this oscillatory region at 𝐴 = 0.47 is illustrated in Fig. 9.13 (c). In this case, the 

skyrmion flows orderly following the interface in clockwise direction. For 𝐴 = 0.86 it is also 

possible to observe another region where velocities are oscillating and the skyrmion is 

performing an edge transport, as shown in Fig. 9.13 (d). These results show that if the central 

area is further expanded, the window of 𝐴 over which ordered edge transport occurs can be 

expanded, since there would be a greater amount of interface and also depth to accommodate the 

skyrmion orbits. 
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Figure 9.13 - The obstacles (open circles) and the skyrmion trajectory (black lines) for the system using 𝛼𝑚/𝛼𝑑 =

0.45, circular ac driving where 𝐴 = 𝐵 and 𝜔 = 1 × 10−5. (a) and (b) samples with 2 × 2 larger obstacles in central 

area. (a) and (b) the skyrmion encircling the central area with (a) 𝐴 = 0.446 and (b) 𝐴 = 0.578. (c) and (d) samples 

with 14 × 14 larger obstacles in central area (c) 𝐴 = 0.47, the skyrmion flowing through the interface. (d) 𝐴 =

0.86 edge transport with wider orbits. (From Vizarim et. al.  [198], pg. 9). 

 

 

9.3.4  Discussion and Summary  

Recently, it was published a study where particles exhibited directed motion while 

interacting with a periodic lattice substrate in what are called colloidal topological 

insulators [199]. In this work, a colloid driven in a circular or closed orbit can exhibit direct 

motion when interacting with an interface between two types of substrate lattices. Similarly, our 

results show that if a collective of skyrmions is interacting with an interface in a substrate, 

various types of edge transport modes can occur that would create a version of a skyrmion 

topological insulator in which skyrmion motion would not occur in the bulk but could appear in 

the edge. Concerning the collective effects, if the density of skyrmion is low enough, it is 

expected that the skyrmions behavior to be very similar to what has been presented in this 

section 9. On the other hand, if skyrmions are too close, it is possible that they could form a 

more complex orbit and move as a group through the edge. 
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In this work we only considered the regions with different obstacle sizes, but it would 

also be interesting to see how the system would behave if the obstacles array were different, 

such as a region with triangular lattice and another with square. Additionally, continuum-based 

simulation could also be interesting to see how the internal structure of the skyrmion would 

behave in a system like this. It is well-known that skyrmion internal modes can be excited and 

produce ratchet effects [131,132]. 

The closest experimental geometry to the system we studied here is skyrmion interacting 

with antidot lattices such as those fabricated by Saha et. al. [64]. Using this technique, it would 

be possible to create a sample with a fixed substrate lattice constant but different antidot sizes in 

different regions. 

The most interesting feature of the guided interface motion is that a single applied ac 

drive can produce an arbitrary path of skyrmion trajectory following the interface in a desired 

design. If the obstacles were absent, it would be necessary to keep changing the driving 

direction in order to achieve the same designed path. Although both procedures produce the 

same result for a single skyrmion case, if multiple skyrmion were introduced, the interface 

guided motion could guide part of the skyrmion and keep the others in localized orbits. 

Moreover, skyrmion could be driven along diverse pathways, while external driving in absence 

of interface or obstacle would move all skyrmion in the same direction at the same time. Thus, 

guided motion can provide a form of parallel processing that is not possible using only dc drive 

and no interface. 

10 The Influence of Obstacle Density on Skyrmion 

Dynamics 

10.1 Directional Locking and Obstacle Density effects 

 In this work it is analyzed the effects of the obstacle density on the skyrmion dynamics. 

It is known from section 5 that the obstacle size can influence significantly the skyrmion 

dynamical behavior, and even can be used as a topological selector. Here, we investigate how 

the obstacle density affects the dynamics. The obstacle array has different symmetry, it is used 

triangular and honeycomb obstacle lattices. So, it is expected that the preferred angles for the 

skyrmion motion are 𝜙 = arctan(√3𝑝/(2𝑞 + 1)), which are mainly 30° and 60°. The results 

show that the obstacle density can increase or reduce the number of possible dynamical regimes, 
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hence controlling the skyrmion motion. This work was published in Journal of Physics: 

Condensed Matter [200]. 

10.2  Model and Simulation details 

The simulation method is exactly the same as the obstacle size analysis, in previous 

section 5. There is only a dc drive applied to a single skyrmion in a 2D periodic landscape. In 

this case it is analyzed samples using triangular and honeycomb lattices with varied obstacle 

densities, as illustrated in Fig. 10.1. The dynamical properties of the skyrmion system 

interacting with the obstacle array were simulated using the particle model for skyrmions, shown 

in Eq. (12.1), using Molecular Dynamics technique. 

 

                                                               𝛼𝑑𝐯𝒊 + 𝛼𝑚�̂� × 𝐯𝒊 = 𝐅𝑖
𝑜 + 𝐅𝐷                                                (10.1) 

 

The system has a size of 𝐿 × 𝐿  with periodic boundary conditions in both 𝑥  and 𝑦 

directions. Throughout this work we fixed 𝑎0 = 0.65 and 𝐹0 = 1.0. All distances are normalized 

by 𝜉 and the obstacle densities by 1/𝜉². The velocities parallel, 〈𝑉∥〉, and perpendicular, 〈𝑉⊥〉, to 

the external dc drive are measured. The external dc drive is increased in small steps of 𝛿𝐹𝐷 =

0.001  and wait 105  simulation time steps between increments to ensure steady state. We 

normalize the damping and Magnus coefficients as 𝛼𝑑
2 + 𝛼𝑚

2 = 1. 

Figure 10.1 – An illustration of the obstacle lattices used in this work. (a) Triangular obstacle array and (b) the 

honeycomb lattice. (From Vizarim et. al. [200], pg. 2) 

 

 
  

10.3 Results 

10.3.1 Directional locking on honeycomb and triangular obstacle arrays 

  In Figs. 10.2 (a) and (b) it is plotted the 〈𝑉∥〉, 〈𝑉⊥〉 and 𝜃𝑠𝑘 versus the external dc drive, 

𝐹𝐷  for a sample with triangular obstacle array where the obstacle density is 𝜌𝑡 = 0.128 and 
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𝛼𝑚/𝛼𝑑 = 1.0. In the case where the obstacles were absent, the skyrmion would flow in the 

direction of the intrinsic skyrmion Hall angle, 𝜃𝑠𝑘
𝑖𝑛𝑡 = −45°. As shown in Fig. 10.2 (b), in the 

presend of obstacles the skyrmion motions exhibit a series of quantized locking steps up to 

𝐹𝐷 = 1.7, followed at higher drives by a continuous saturation of 𝜃𝑠𝑘 to the intrinsic angle. For 

𝐹𝐷 ≤ 0.307 the skyrmion is locked to 𝜃𝑠𝑘 = 0°, as shown in Fig. 10.3 (a). From Fig. 10.2 (a) it 

is also possible to see that 〈𝑉⊥〉 ≅ 0 and 〈𝑉∥〉 is increasing as a function of 𝐹𝐷 for this range of 

forces, indicating the motion only in the 𝑥 direction. For 0.307 < 𝐹𝐷 ≤ 1.041 the skyrmion is 

strongly locked at 𝜃𝑠𝑘 = −30°, which is a preferable direction of motion due to the triangular 

obstacle array symmetry. In this case the skyrmion moves one lattice constant in 𝑥 for every 

lattice constant in 𝑦 , giving 𝜃𝑠𝑘 = arctan(√3𝑝/(2𝑞 + 1)) = arctan(√3/3) = 30° . This 

motion locked in 𝜃𝑠𝑘 = −30° can be seen in Fig. 10.3 (b). In Fig. 10.3 (c) shows the skyrmion 

trajectory at 𝐹𝐷 = 1.1 , when 𝜃𝑠𝑘 = −36.56° . For 𝐹𝐷 = 1.5 , the skyrmion Hall angle is 

approaching the intrinsic value, and the skyrmion is locked to 𝜃𝑠𝑘 = −40.8°. For even higher 

values of appled external drive, the skyrmion continuously approaches the intrinsic value. 

Figure 10.2 – (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 for a 

sample with triangular obstacle array with density 𝜌𝑡 = 0.128 and 𝛼𝑚/𝛼𝑑 = 1.0. (b) The corresponding 𝜃𝑠𝑘 curve. 

(From Vizarim et. al.  [200], pg. 3). 
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Figure 10.3 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 10.2 (a) 

with 𝛼𝑚/𝛼𝑑 = 1.0 and 𝜌𝑡 = 0.128. (a) The 𝜃𝑠𝑘 = 0° state at 𝐹𝐷 = 0.25, (b) the 𝜃𝑠𝑘 = −30° state at 𝐹𝐷 = 0.5, (c) 

the 𝜃𝑠𝑘 = −36.56° state at 𝐹𝐷 = 1.1 and (d) 𝜃𝑠𝑘 = −40.8° state at 𝐹𝐷 = 1.5. (From Vizarim et. al.  [200], pg. 4). 

 

 Another possible way to visualize the locking steps is locking into the time series of the 

skyrmion velocities. In Fig. 10.4 (a) it is shown the parallel and perpendicular skyrmion 

velocities at 𝐹𝐷 = 0.5 when the system is directionally locked in 𝜃𝑠𝑘 = −30°, while in Fig. 10.4 

(b) shows the skyrmion component velocities at 𝐹𝐷 = 2.5, where the system is in a non-step 

region, as can be seen in Fig. 10.2. In the locked phase, the velocities are exactly periodic with 

the same signal appearing every cycle. However, in the non-step region, the patterns are no 

exactly the same, although there is still periodicity in the signal due to the periodic triangular 

obstacle array. The difference can be clearer when analyzing the Fourier transform 𝑆(𝜔) of the 

velocity signals for the 𝑥 direction velocity component 𝑉∥, as shown in Fig. 10.5. The peaks in 

𝑆(𝜔) are more pronounced in the locking regime than in the non-step region. This suggests that 

if an ac driving is introduced, the regions with locking steps should exhibit strong Shapiro steps 

while in the non-step regions the Shapiro would be absent or very weak. 
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Figure 10.4 – Time series of the velocities 𝑉∥ (black) and 𝑉⊥ (red) for a sample with triangular obstacle array with 

density 𝜌𝑡 = 0.128 and 𝛼𝑚/𝛼𝑑 = 1.0. (a) A locking regime at 𝐹𝐷 = 0.5 and stable 𝜃𝑠𝑘 = −30°. (b) A nonlocking 

step regime at 𝐹𝐷 = 2.5. In the locking regime the signals are exactly the same for every cycle, while in the non-

locking regime the signals are not the same. (From Vizarim et. al.  [200], pg. 4). 

 

Figure 10.5 – The Fourier transform 𝑆(𝜔) of the 𝑉∥ data exhibited in Fig. 12.4. for the triangular array with 𝜌𝑡 =

0.128 and 𝛼𝑚/𝛼𝑑 = 1.0 in the locking regime (black) and the non-locking regime (red). The peaks are much 

stronger in the locking regime. (From Vizarim et. al.  [200], pg. 4). 

 

 Now for the case of a honeycomb lattice, the system exhibits a strong difference. In Fig. 

10.6 it is plotted 〈𝑉∥〉 , 〈𝑉⊥〉  and 𝜃𝑠𝑘  versus the external dc drive, 𝐹𝐷  for a sample with 

honeycomb obstacle array where the obstacle density is 𝜌ℎ = 0.123 and 𝛼𝑚/𝛼𝑑 = 1.0. As can 

be seen, there is a pinned phase for 𝐹𝐷 ≤ 0.076  when the skyrmion is trapped between 
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obstacles. Differently from the triangular array, for the honeycomb there is no phase with 

motion 𝜃𝑠𝑘 = 0°. After the depinning, the skyrmion moves along 𝜃𝑠𝑘 = −30° [See Fig. 10.7 

(a)]. This happens due to the obstacle vacancy of the honeycomb lattice that pins the skyrmion 

for very low drives, and after the depinning enables the skyrmion to flow with a higher angle. 

For 𝐹𝐷 > 1.294, there is a series of transitions in the skyrmion motion, which approaches the 

instrinsic angle value. As an example of such closely spaced short steps, in Fig. 10.7 (b) it is 

shown the trajectory at 𝐹𝐷 = 1.7, where 𝜃𝑠𝑘 = −40.8°. 

Figure 10.6 – (a) The average velocities 〈𝑉∥〉 (black) and 〈𝑉⊥〉 (red) as a function of the applied dc force 𝐹𝐷 for a 

sample with honeycomb obstacle array with density 𝜌ℎ = 0.123 and 𝛼𝑚/𝛼𝑑 = 1.0. (b) The corresponding 𝜃𝑠𝑘 

curve. (From Vizarim et. al.  [200], pg. 5). 

 

Figure 10.7 – The obstacles (open circles) and the skyrmion trajectory (black lines) for the system in Fig. 10.6 (a) 

with 𝛼𝑚/𝛼𝑑 = 1.0 and 𝜌ℎ = 0.123. (a) The 𝜃𝑠𝑘 = −30° state at 𝐹𝐷 = 0.5 and (b) the 𝜃𝑠𝑘 = −40.8° state at 𝐹𝐷 =

1.7. (From Vizarim et. al.  [200], pg. 4). 
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10.3.2 Varying the obstacle density and Magnus force 

For the study of the effects of obstacle density we fix the Magnus force as 𝛼𝑚/𝛼𝑑 = 1.0 

and consider five samples with varied obstacle densities for both triangular and honeycomb 

obstacle arrays. For each sample separately we then vary 𝛼𝑚/𝛼𝑑 in order to see how the Magnus 

force affect each sample. In Fig. 10.8 it is plotted the Hall angle, 𝜃𝑠𝑘, versus the external dc 

drive, 𝐹𝐷, for varied obstacle densities for the triangular and honeycomb arrays, showing a clear 

influence of the obstacle density on the dynamics. In Fig. 10.8 (a), at very low values of obstacle 

density, such as 𝜌𝑡 = 0.032, the skyrmion motion is very close to the intrinsic Hall angle, which 

for 𝛼𝑚/𝛼𝑑 = 1.0 is 𝜃𝑠𝑘 = −45°. That is, the skyrmion is flowing with very reduced obstacle 

effects, since they are widely spaced in the sample. As more obstacles are added to the sample, 

the skyrmion dynamics becomes richer with more diversity of possible dynamic phases. For the 

triangular array there are three main locking steps: 0°, −30° and −40.8°. The phase where 

𝜃𝑠𝑘 = 0° occurs only when the obstacle density is higher, with 𝜌𝑡 > 0.128, while the −30° 

phase is present for all obstacle densities studied here, although its extent is very limited for 

𝜌𝑡 = 0.032, just between the interval 0 ≤ 𝐹𝐷 ≤ 0.05. The locking step with 𝜃𝑠𝑘 = −40.8° is 

also present fr all obstacle densities studied here, but it is more robust for low values of obstacle 

density. In the honeycomb array there are only two main locking directions, 𝜃𝑠𝑘 = −30° and 

−40.8°. The phase with 𝜃𝑠𝑘 = −30° is very prominent for all obstacle densities, on the other 

hand the phase 𝜃𝑠𝑘 = −40.8° is not very robust and becomes weak for high obstacle density 

values. 

Using the results of Fig. 10.8 it is possible to construct a dynamic phase diagram of the 

main locking directions as a function of the obstacle density 𝜌𝑡 or 𝜌ℎ versus 𝐹𝐷, as shown in Fig 

10.9. In both cases, the pinned phase extends with increasing obstacle density. The pinned phase 

is even higher in the honeycomb lattice due to the pinning of skyrmions inside the lattice 

vacancy sites. For the triangular array in Fig. 10.9 (a), the phase where 𝜃𝑠𝑘 = 0° is absent only 

occurs for very low values of obstacle density, and increases in width up to a maximum at 𝜌𝑡 =

0.288. In contrast, the 𝜃𝑠𝑘 = −40.8° phase is largest for low values of 𝜌𝑡. For the honeycomb 

lattice case, the 𝜃𝑠𝑘 = −30° phase retains a nearly uniform width over all obstacle densities 

values studied in this work. However, note that the location of the step shifts to higher values of 

𝐹𝐷 with increasing 𝜌ℎ. The phase with 𝜃𝑠𝑘 = −40.8° is considerably reduced when compared to 

triangular array case. 
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Figure 10.8 – The Hall angle, 𝜃𝑠𝑘, as a function of the applied dc force 𝐹𝐷  for samples with varied values of 

obstacle density using 𝛼𝑚/𝛼𝑑 = 1.0. In (a) using triangular array and (b) honeycomb. (From Vizarim et. al.  [200], 

pg. 6). 

 

Figure 10.9 – Dynamic phase diagram as a function of obstacle density versus 𝐹𝐷 for samples with 𝛼𝑚/𝛼𝑑 = 1.0. 

(a) The triangular obstacle array with obstacle density 𝜌𝑡. (b) The honeycomb array with density 𝜌ℎ. Colors indicate 

the selected main dynamic phases: pinned (yellow), 𝜃𝑠𝑘 = 0° (dark grey), 𝜃𝑠𝑘 = −30° (red),  𝜃𝑠𝑘 = −40.8° (blue) 

and unlocked or minor phases in blank areas. (From Vizarim et. al.  [200], pg. 6). 

 

In Fig. 10.10 it is plotted the skyrmion Hall angle, 𝜃𝑠𝑘, as a function of 𝐹𝐷 for different 

values of 𝛼𝑚/𝛼𝑑 at varied obstacle densities for both triangular and honeycomb arrays. Note 

that the case of 𝛼𝑚/𝛼𝑑 = 1.0 is already shown in Fig. 10.8. 



162 
 

 
 

From Fig. 10.10 it is possible to see that as 𝛼𝑚/𝛼𝑑  is modified, the locking angles 

changes strongly. For higher values of Magnus force, the intrinsic Hall angle is higher and 

enables more possibilities for the skyrmion to lock its motion. When 𝛼𝑚/𝛼𝑑 = 0.5, the intrinsic 

angle is 𝜃𝑠𝑘
𝑖𝑛𝑡 = −26.57°. As a result, the skyrmion can strongly lock to the substrate symmetry 

direction of 𝜃𝑠𝑘 = −30° , even though |𝜃𝑠𝑘| > |𝜃𝑠𝑘
𝑖𝑛𝑡|  for this particular case. The obstacle 

induced motion at an angle that is higher than the intrinsic Hall angle was observed in previous 

works [39], and also illustrated in this thesis in previous section 5 in detail, but here we show 

that it also depends on the obstacle density. As illustrated in Fig. 10.10 (a), the locking step 

𝜃𝑠𝑘 = −30° only exists for very low obstacle densities, such as 𝜌𝑡 < 0.072, and disappears 

completely for higher obstacle densities. In Fig. 10.11 (a) it is illustrated the skyrmion 

trajectories for the 𝜃𝑠𝑘 = −30° step at 𝐹𝐷 = 1.5, 𝜌𝑡 = 0.072 and 𝛼𝑚/𝛼𝑑 = 0.5. Also, from Fig. 

10.10 (a), the number of dynamic phases seems to be related to the obstacle density. At 𝜌𝑡 =

0.128, the system has a very rich set of dynamic phases, while for other densities the number of 

dynamic phases is reduced. For very low 𝜌𝑡 the skyrmion motion is very close to the intrinsic 

Hall angle, so the number of dynamic phases is reduced. On the other hand, as 𝜌𝑡 increases, 

there is a reduction in the gaps between the obstacles, which pinches off many possible 

skyrmion trajectories, therefore reducing the number of dynamic phases.  

Interestingly, our results show that for a given value of 𝐹𝐷, varying the obstacle density 

may cause the skyrmion to move with different directions. For example, at 𝐹𝐷 = 0.75, the 

skyrmion can move along 𝜃𝑠𝑘 = 0° or 𝜃𝑠𝑘 = −30° depending on the obstacle density. For 𝜌𝑡 ≤

0.072, the skyrmion locks to 𝜃𝑠𝑘 = −30°, while for 𝜌𝑡 > 0.072, it locks to 𝜃𝑠𝑘 = 0°. This 

feature opens the possibility of designing devices in which regions with distinct obstacle 

densities may coexist in order to force the skyrmion to follow a designed trajectory. The pinning 

geometry is very important, however some combinations of pinning landscape and 𝛼𝑚/𝛼𝑑 may 

produce strong symmetry locking directions that even for varied obstacle densities the skyrmion 

motion is always locked to a single direction of motion, regardless the obstacle density used, as 

can be seen from Fig. 12.10 (b), where the motion is always along 𝜃𝑠𝑘 = −30°. 
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Figure 10.10 – Plots of skyrmion Hall angle, 𝜃𝑠𝑘, as a function of the applied dc force 𝐹𝐷 for samples with varied 

values of obstacle density using and varied values of 𝛼𝑚/𝛼𝑑. In the left column results using a triangular array, in 

the right column results using a honeycomb array. In (a) triangular with 𝛼𝑚/𝛼𝑑 = 0.5,  (b) honeycomb with 

𝛼𝑚/𝛼𝑑 = 0.5, (c) triangular with 𝛼𝑚/𝛼𝑑 = 2.0, (d) honeycomb with 𝛼𝑚/𝛼𝑑 = 2.0, (e) triangular with 𝛼𝑚/𝛼𝑑 =

3.0 and (f) honeycomb with 𝛼𝑚/𝛼𝑑 = 3.0 (From Vizarim et. al.  [200], pg. 7). 

 

At 𝛼𝑚/𝛼𝑑 = 2.0, shown in Figs. 10.10 (c) and (d), the intrinsic Hall angle is 𝜃𝑠𝑘
𝑖𝑛𝑡 =

−63.44° . For the triangular array in Fig. 10.10 (c), for obstacle densities 𝜌𝑡 ≤ 0.072  the 

skyrmion depins and move along 𝜃𝑠𝑘 = −60° , as illustrated in Fig. 10.11 (b). Due to the 

symmetry of the triangular array, this is a very strong locking step angle. For higher values of 

obstacle density, such as, 𝜌𝑡 ≥ 0.128, additional locking steps emerge, such as 𝜃𝑠𝑘 = 0° and 

−30°. For the honeycomb lattice, shown in Fig. 10.10 (d), when 𝜌ℎ ≤ 0.266 the skyrmion 

depins into the 𝜃𝑠𝑘 = −30° locking step. This is also a very strong locking direction due to the 

symmetry of the honeycomb lattice. However, at 𝜌ℎ = 0.342 the skyrmion depins and flow with 

a higher angle of 𝜃𝑠𝑘 = −40.8°, as shown in Fig. 10.11 (c). For the honeycomb case, the 

number of dynamic phases increases as the obstacle density increases. For example, the 𝜃𝑠𝑘 =

−49° step illustrated in Fig. 10.11 (d) is absent for 𝜌ℎ ≤ 0.123. In Figs. 10.10 (e) and (f) it is 

illustrated the results for samples with 𝛼𝑚/𝛼𝑑 = 3.0, where the intrinsic Hall angle is 𝜃𝑠𝑘
𝑖𝑛𝑡 =

−71.57° . For each array, the locking steps in both 𝜃𝑠𝑘 = −30°  and −60°  are significantly 

reduced in size. For higher values of Magnus force, the intrinsic Hall angle forces the skyrmion 
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to move at higher angles, therefore reducing the robustness of the strong locking direction, due 

to the symmetry of the pinning landscape. 

Figure 10.11 – The obstacles (open circles) and the skyrmion trajectory (black lines) for systems shwon in Fig. 

10.10. (a) and (b) samples with triangular obstacle array with 𝜌𝑡 = 0.072. (a) At 𝐹𝐷 = 1.5 and 𝛼𝑚/𝛼𝑑 = 0.5 the 

skyrmion motion is locked at 𝜃𝑠𝑘 = −30°. (b) At 𝐹𝐷 = 1.0 and 𝛼𝑚/𝛼𝑑 = 2.0 the skyrmion motion is locked at 

𝜃𝑠𝑘 = −60°. (c) and (d) sample with honeycomb obstacle array with 𝜌ℎ = 0.324. (c) At 𝐹𝐷 = 0.95 and 𝛼𝑚/𝛼𝑑 =

2.0 the motion is locked at 𝜃𝑠𝑘 = −40.8°. (d) At 𝐹𝐷 = 1.125 and 𝛼𝑚/𝛼𝑑 = 2.0 the motion is locked at 𝜃𝑠𝑘 =

−49°. (From Vizarim et. al.  [200], pg. 7). 

 

10.3.3 Stability of the directional locking as a function of 𝜶𝒎/𝜶𝒅 

As discussed previously, both triangular and honeycomb obstacle arrays should have 

preferred directions of motion along 𝜃𝑠𝑘 = −30° and −60° due to the symmetry of the pinning 

landscape. In this section we aim to quantify the robustness of these dynamics phases as a 

function of 𝛼𝑚/𝛼𝑑 for arbitrary obstacle densities. Also, the possibility of topological selection 

is discussed, since different species of skyrmion, with different Magnus terms, may coexist in a 

given sample [154,201,202]. Note that the results found here are considering the single 

skyrmion case, however, we expect that the result would remain reliable for a system with low 

density of skyrmions. 

The obstacle densities are chosen arbitrarily and remain fixed for triangular (𝜌𝑡 = 0.072) 

and honeycomb (𝜌ℎ = 0.123) obstacle arrays and vary the rate 𝛼𝑚/𝛼𝑑 to investigate how the 

locking steps 𝜃𝑠𝑘 = −30° and −60° behave. In Fig. 10.12 it is plotted a dynamic phase diagram 
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as a function of 𝛼𝑚/𝛼𝑑 versus 𝐹𝐷 highlighting these selected locking steps. For the triangular 

array, shown in Fig. 10.12 (a), both steps have a range of 𝛼𝑚/𝛼𝑑 for which the step extends over 

nearly the entire window of 𝐹𝐷 . This range is wider for the 𝜃𝑠𝑘 = −60° step than for 𝜃𝑠𝑘 =

−30° step. This feature could be of interest for technological applications since the direction of 

motion remains unchanged on each step. Besides that, when 𝛼𝑚/𝛼𝑑 ≤ 1.2, the skyrmion can 

only lock along 𝜃𝑠𝑘 = −30°, while for 𝛼𝑚/𝛼𝑑 ≥ 1.3 it can only lock along 𝜃𝑠𝑘 = −60°. That 

is, the phases where 𝜃𝑠𝑘 = −30° and −60° can never coexist for a given value of 𝛼𝑚/𝛼𝑑. This 

enables the possibility to create devices for topological selection, since skyrmions with stronger 

Magnus components would lock in a different direction than skyrmions with weaker Magnus 

components. In the honeycomb array, shown in Fig. 10.12 (b), the steps 𝜃𝑠𝑘 = −30° and −60° 

can coexist together over the range 1.5 ≤ 𝛼𝑚/𝛼𝑑 ≤ 5.0. In this case, the skyrmions could be 

switched from 𝜃𝑠𝑘 = −30° to −60° by a fine adjustment in the external dc drive, 𝐹𝐷. For values 

of 𝛼𝑚/𝛼𝑑 < 1.5 the skyrmion can only lock to 𝜃𝑠𝑘 = −30°, and for 𝛼𝑚/𝛼𝑑 > 5.0 it can only 

lock to 𝜃𝑠𝑘 = −60°. As mentioned before, the obstacle density plays an important role on 

skyrmion dynamics, so it is expected that changing the obstacle density may result in different 

phase diagram than illustrated in Fig. 10.12. 

Figure 10.12 – Dynamic phase diagram as a function of 𝛼𝑚/𝛼𝑑 versus 𝐹𝐷. (a) The triangular obstacle array with 

obstacle density 𝜌𝑡 = 0.072. (b) The honeycomb array with density 𝜌ℎ = 0.123. Colors indicate the selected main 

dynamic phases: pinned (yellow), 𝜃𝑠𝑘 = −30° (dark grey), 𝜃𝑠𝑘 = −60° (red) and unlocked or minor phases in 

blank areas. (From Vizarim et. al.  [200], pg. 8). 
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10.3.4 Discussion and Summary 

The behavior of a single skyrmion interacting with triangular and honeycomb obstacle 

arrays with different obstacle densities has been investigated in this work. It is shown that the 

skyrmion exhibit a series of directional locking effects that can be quantized or continuous as a 

function of the dc external drive. For low obstacle densities, the depinning forces are weak and 

the skyrmion tends to move at an angle very close to the intrinsic one, reducing the number of 

possible dynamic phases. On the other hand, at higher densities, the depinning forces are larger 

and a richer variety of dynamic phases can be seen. The main difference between the 

honeycomb and the triangular lattice is that the locking step 𝜃𝑠𝑘 = 0° is absent for the system 

with honeycomb lattice. The vacancies in the honeycomb lattice trap the skyrmions more 

effectively and prevent them from moving until the drive is too large to permit a motion along 

𝜃𝑠𝑘 = 0°. For the triangular lattice, the step 𝜃𝑠𝑘 = 0°  is more prominent at higher obstacle 

densities and lower values of 𝛼𝑚/𝛼𝑑. Both arrays show prominent locking steps at 𝜃𝑠𝑘 = −30° 

and −60° due to the obstacle array symmetry. These locking steps appear over a wide range of 

obstacle densities and values of 𝛼𝑚/𝛼𝑑. It is also shown the robustness of these phases as a 

function of 𝛼𝑚/𝛼𝑑  and discussed the possibilities for topological sorting or switching the 

skyrmion motion between these two main locking steps. 

For a given value of external dc drive, different obstacle densities can produce different 

directions of skyrmion motion. This interesting property can be used to build devices containing 

regions with distinct obstacle densities which can steer the skyrmion along a desired trajectory. 

We expect that similar behavior can occur for other periodic array geometries but that the angles 

of motion would be different, depending on the substrate symmetry. Our model is based on 

point-like skyrmions, however, actual skyrmions may be distorted in shape by the driving force 

or through interactions with the obstacles in the sample [29], especially in high-density obstacle 

samples. Such effects could be further explored in continuum-based simulations. 
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11 Soliton Motion in Skyrmion Chains 

11.1 Stabilization and Guidance using nanoengineered pinning 

In this work we search for alternatives to avoid the skyrmion Hall angle using a soliton 

of skyrmions. The soliton is formed when in a chain of skyrmions pinned to pinning centers 

there is an extra interstitial skyrmion or a vacancy (pinning center without a pinned skyrmion). 

We considered two types of samples: a quasi-one-dimensional (q1D) sample; where rigid walls 

confine a single chain of skyrmions, and a 2D sample; with no walls and multiple chains of 

skyrmions. We find that when an external current is applied, just above the depinning threshold, 

the soliton moves with a Hall angle equal to zero. For higher drives, the whole chain of 

skyrmions depin, and in the 2D sample, both the soliton and the chain of skyrmions flow with 

Hall angle of zero for low values of applied drive. Moreover, in a 2D system with a 1D interface 

that is placed at an angle respective to the applied drive, we found that can be a reversal in the 

skyrmion Hall angle signal, going from positive to negative. Our results suggest that skyrmion 

solitons could be used as information carriers in nanotracks that can avoid the drawbacks of the 

skyrmion Hall angle. Moreover, the soliton motion occurs for very low drives, prior to the 

skyrmion depinning as a chain, suggesting low energy cost devices using soliton motion in 

skyrmion chains. This work was published in Physical Review B [209]. 

11.2 Model and simulation details 

The simulation considers the dynamical behavior of 𝑁𝑠𝑘 skyrmions interacting with 𝑁𝑝 

attractive pinning centers in a two-dimensional box with 𝐿𝑥 × 𝐿𝑦  dimensions using periodic 

boundary conditions in both 𝑥  and 𝑦  directions, as illustrated in Fig. 11.1. We define the 

skyrmion density as 𝑛𝑠𝑘 = 𝑁𝑠𝑘/𝐿𝑥𝐿𝑦  and the pinning density as 𝑛𝑝 = 𝑁𝑝/𝐿𝑥𝐿𝑦 . The 

simulations are conducted just outside the commensuration ratio 𝑁𝑠𝑘/𝑁𝑝 = 1. We say that the 

system is commensurate when the number of skyrmions is an integer or a rational fraction of the 

number of pinning sites. We start our simulations considering a simplest case of a q1D sample, 

where skyrmions are confined in a line of pinning sites and by repulsive barrier walls located at 

𝑦 = 0 and 𝑦 = 𝐿𝑦 , as shown in Fig. 11.1 (a). Then, we next consider a 2D sample with no 

barrier walls, but a weak line of pinning potentials embedded in a square lattice of stronge 

pinning potentials, as shown in Fig. 11.1 (b). The weak line of pinning centers is usually aligned 

with the external drive, along the 𝑥 direction. However, we also consider a case where the weak 
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line is 45° respective to the drive. The skyrmion dynamics is governed by the equation of 

motion shown in Eq. (11.1). 

 

                                                   𝛼𝑑𝐯𝒊 + 𝛼𝑚�̂� × 𝐯𝒊 = 𝐅𝑖
𝑆𝑆 + 𝐅𝑖

𝑊 + 𝐅𝑖
𝑃 + 𝐅𝐷                                   (11.1) 

 

Figure 11.1 – Illustration of the samples used in this work. (a) The quasi-one-dimensional system, where skyrmions 

are confined in a line of weak pinning sites (red circles) and by repulsive barrier walls located at the edges of the 

sample in the 𝑦 direction. (b) The 2D sample with a square array of pinning centers and no repulsive barriers. All 

pinning sitres are modelled using Gaussian pinning potentials. Red circles indicate stronger pinning potentials and 

blue circles indicate weak pinning. (From Vizarim et. al.  [203], pg. 224409-3). 

 

 The first term on the right side is the skyrmion-skyrmion repulsion, the second term, 𝐅𝑖
𝑊, 

is the skyrmion-wall interaction. In the presence of wall barrier, the skyrmion behavior is similar 

to what is observed in quasi-1D potential well. We model the wall potential as 𝑈𝑊 =

𝑈𝑊0 cos(𝜔𝑦), where 𝑈𝑊0 = 12.0 and 𝜔 = 2𝜋/𝐿𝑦. The strength of the barrier wall was adjusted 

so that skyrmions cannot surpass the barrier even for high applied currents. The force exerted by 

the wall is then 𝐅𝑖
𝑊 = −∇𝑈𝑊 = −𝐹𝑊 sin(𝜔𝑦), where 𝐹𝑊 = 2𝜋𝑈𝑊0/𝐿𝑦 . The applied drive is 

𝐅𝐷 = 𝐹𝐷�̂�, where 𝐹𝐷  is the drive strength. 𝐹𝐷  is increased in small steps of 𝛿𝐹𝐷 = 0.01 and 

spend 2 × 105  time steps at each drive increment to ensure steady state. We measure the 

skyrmion average velocities 〈𝑉𝑥〉 = 〈𝐯 ∙ �̂�〉 and 〈𝑉𝑦〉 = 〈𝐯 ∙ �̂�〉 and all distances are normalized by 

the screening length, 𝜉. 
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11.3 Results 

11.3.1 The Quasi-one-dimensional system 

We first consider the case of a quasi-one-dimensional (q1D) system as illustrated in Fig. 

11.1 (a), where skyrmions interact with a line of attractive pinning centers and repulsive barrier 

walls. We add 23 skyrmions to interact with the present 22 pinning sites, resulting in a filling 

factor of 𝑁𝑠𝑘/𝑁𝑝 = 1.044, which is just above the commensuration ratio. Fort this system we 

consider 𝐿𝑥 = 36𝜉 and 𝐿𝑦 = 6.546𝜉. The pinning density is set as 𝑛𝑝 = 0.093/𝜉². In Fig. 11.2 

it is plotted the velocity curves, 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the applied drive, 𝐹𝐷, for a system 

with 𝛼𝑚/𝛼𝑑 = 0.5. Just above the depinning at 𝐹𝐷 = 0.02, there is a low velocity regime in 

which 〈𝑉𝑦〉 is noisy and 〈𝑉𝑥〉 increases slowly and monotonically with the applied drive. The 

behavior of 〈𝑉𝑥〉 is highlighted in the inset of Fig. 11.2 (a). The motion is confined in the 𝑥 

direction due to the repulsive barrier walls placed in 𝑦 = 0  and 𝑦 = 𝐿𝑦  constricting the 

skyrmion motion. Over the range 0.02 < 𝐹𝐷 < 0.43, a soliton pulse is translating along the 

skyrmion chain. As the applied drive push skyrmions to move, the initial interstitial skyrmion 

shown in 11.3 (a), displaces its neighboring skyrmion from the pinning site. The previous 

neighboring skyrmion becomes the new interstitial skyrmion and the previous interstitial 

skyrmion is now pinned. The result is a propagation of the location of the interstial skyrmion 

along the chain in the +𝑥 direction, as illustrated in Fig. 11.3 (b). 

Figure 11.1 – The skyrmion average velocities (a) 〈𝑉𝑥〉 and (b) 〈𝑉𝑦〉 as a function of the applied drive, 𝐹𝐷, for the 

samnple illustrated in Fig. 11.1 (a) with 𝑁𝑠𝑘/𝑁𝑝 = 1.044, 𝛼𝑚/𝛼𝑑 = 0.5 and 𝑛𝑝 = 0.093/𝜉². The inset shows a 

blowup of panel (a) over the range 0 < 𝐹𝐷 < 0.5. (From Vizarim et. al.  [207], pg. 224409-3). 
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Figure 11.3 – In [(a), (b), (c)] the representation of the pinning site positions (red circles) and the skyrmion 

trajectories (black lines) for a sample with 𝑁𝑠𝑘/𝑁𝑝 = 1.044, 𝛼𝑚/𝛼𝑑 = 0.5, 𝐶𝑝 = 0.15 and 𝑛𝑝 = 0.093/𝜉². (a) At 

𝐹𝐷 = 0.01 , the skyrmions are static in the pinned phase. The interstitial skyrmion is present due to the 

incommensuration between the skyrmion and the pinning site number. (b) For 𝐹𝐷 = 0.3, the interstitial skyrmion 

moves as a soliton by hopping from site to sitewith slow average velocity. (c) At 𝐹𝐷 = 1.0 all skyrmions flow 

simultaneously at higher velocities. [(d) and (e)] Skyrmion positions as a function of time. (d) For 𝐹𝐷 = 0.3, as 

shown in panel (b), the soliton pulse propagates through the sample. (e) For 𝐹𝐷 = 1.0, all skyrmions flow through 

the sample, as shown in panel (c). (From Vizarim et. al.  [207], pg. 224409-4). 

 

For 𝐹𝐷 > 0.43, as skyrmions depin from their pinning sites and flow through the sample 

in unison, producing a spike in the velocity-force curve as shown in Fig. 11.2 (a). Due to the 

orderliness of the skyrmion motion, the 𝑦 componente of the velocity vanishes. As the soliton is 

not associated with a single continuously moving particle, it does not have the same equation of 

motion as skyrmions, and in particular it does not exhibit the skyrmion Hall angle effect 

associated with a continuously moving skyrmion. Since the soliton can be pinned or put into 

motion, the soliton itself could be employed as an information carrier, but with the absence of a 

skyrmion Hall effect. Moreover, it would be interesting technologically, since the soliton motion 
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occurs for even lower applied transport currents, resulting in a very low energy cost type of 

information transport. 

The differences in Fig. 11.3 (b) and (c) may be difficult to see just looking at the 

trajectories. Thus, in Fig. 11.3 (d) and (e) it is plotted the position of each skyrmion in 𝑥 as a 

function of time. In Fig. 11.3 (d), the system from Fig. 11.3 (b), contains a clearly propagating 

soliton pulse in the +𝑥 direction. In contrast, Fig. 11.3 (e) shows the system from Fig. 11.3 (c) at 

𝐹𝐷 = 1.0, where all skyrmion are moving coherently as a crystal and the soliton motion is 

absent. 

Figure 11.4 – The skyrmion average velocities (a) 〈𝑉𝑥〉 and (b) 〈𝑉𝑦〉 as a function of the applied drive, 𝐹𝐷, for the 

sample illustrated in Fig. 11.1 (a) with 𝑁𝑠𝑘/𝑁𝑝 = 0.96 , 𝛼𝑚/𝛼𝑑 = 0.5  and 𝑛𝑝 = 0.093/𝜉² . The inset shows a 

blowup of panel (a) over the range 0.35 < 𝐹𝐷 < 0.6. (From Vizarim et. al.  [207], pg. 224409-4). 

 

 

In Fig. 11.4 it is plotted the skyrmion average velocities, 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of 

the applied drive, 𝐹𝐷 , for a system with 𝑁𝑠𝑘/𝑁𝑝 = 0.96 and 𝛼𝑚/𝛼𝑑 = 0.5. Note that in this 

case, we have less skyrmions than pinning sites. The depinning threshold is 𝐹𝐷 = 0.39 [See Fig. 

11.4 (a)], which is higher than in the previous case since less skyrmions are stabilized in the 

sample. Just above the depinning, shown in Fig. 11.4 (a), it is also possible to observe a low 

velocity regime, very similar to the previous case. However, the dynamics here is very different. 

As shown in Fig. 11.5 (a), there is a vacancy due to the incommensurate ration between the 

skyrmion and the pinning site number. Here, the vacancy forms a soliton that can be viewed as a 

suppression of the local skyrmion density. The vacancy moves through the sample in the −𝑥 

direction as the neighboring pinned skyrmion depins and move to the previously vacant pinning 
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center, leaving its previous spot vacant. A repetition of this process occurs for the interval 

0.39 < 𝐹𝐷 < 0.58, where 〈𝑉𝑦〉 is noisy and 〈𝑉𝑥〉 increases smoothly and monotonically with the 

increasing drive. This can be clearly seen in the inset of Fig. 11.4 (a). Experimentally, the soliton 

can be detected in the same way as skyrmions, by looking for variations in the skyrmion 

spacing. For 𝐹𝐷 > 0.58, all skyrmions depin and flow coherently, where 〈𝑉𝑥〉 increases and 

〈𝑉𝑦〉 = 0. The plot of the skyrmion positions as a function of time can be seen in Fig. 11.5 (b) 

and (c), with 𝐹𝐷 = 0.45 and 𝐹𝐷 = 1.0, respectively. In Fig. 11.5 (b) it is clear the soliton pulse 

in the positions as a function of time, but note that in this case, the motion is along the −𝑥 

direction. 

Figure 11.5 – In (a) the representation of the pinning site positions (red circles) and the skyrmion trajectories (black 

lines) for a sample with 𝑁𝑠𝑘/𝑁𝑝 = 0.96 , 𝛼𝑚/𝛼𝑑 = 0.5 , 𝐶𝑝 = 0.15  and 𝑛𝑝 = 0.093/𝜉² . (a) At 𝐹𝐷 = 0.3 , the 

skyrmions are static in the pinned phase. The vacant pinning site is present due to the incommensuration between 

the skyrmion and the pinning site number. [(b) and (c)] Skyrmion positions as a function of time. (b) For 𝐹𝐷 = 0.45 

the soliton pulse propagates through the sample along −𝑥 direction. (c) For 𝐹𝐷 = 1.0, all skyrmions are flowing as 

a moving crystal. (From Vizarim et. al.  [207], pg. 224409-5). 

 

11.3.2 The 2D system 

 Now we consider a 2D system without the constraint of repulsive barrier walls, 𝐹𝑊 = 0, 

and adding multiple rows of strong pinning sites next to the central row of pinning sites, forming 

a square array of pinning sites as shown in Fig. 11.1 (b). In this system we use 110 pinning sites, 

most of them interacting strongly with skyrmions with 𝐶𝑝 = 1.0. The central line of pinning 

centers, that serves as a guide for the skyrmion motion, is weaker with 𝐶𝑝 = 0.15. The pinning 

density we use is 𝑛𝑝 = 0.373/𝜉² and we set 𝐿𝑥 = 36𝜉 and 𝐿𝑦 = 8.2𝜉. 
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Figure 11.6 – The skyrmion average velocities (a) 〈𝑉𝑥〉 and (b) 〈𝑉𝑦〉 as a function of the applied drive, 𝐹𝐷, for the 

2D sample illustrated in Fig. 14.1 (b) with 𝑁𝑠𝑘/𝑁𝑝 = 1.01, 𝛼𝑚/𝛼𝑑 = 1.0 and 𝑛𝑝 = 0.373/𝜉². The inset shows a 

blowup of panel (a) over the range 0.1 < 𝐹𝐷 < 0.45. (From Vizarim et. al.  [207], pg. 224409-5). 

 

Figure 11.7 – In (a) the representation of the pinning site positions (red circles) and the skyrmion trajectories (black 

lines) for a sample with 𝑁𝑠𝑘/𝑁𝑝 = 1.01 , 𝛼𝑚/𝛼𝑑 = 1.0 , weak pins 𝐶𝑝 = 0.15 , strong pins 𝐶𝑝 = 1.0  and 𝑛𝑝 =

0.373/𝜉² . (a) At 𝐹𝐷 = 0.0 , the ground state, where most skyrmions are pinned and there is one interstitial 

skyrmion. (b) The soliton phase at 𝐹𝐷 = 0.25. (c) For 𝐹𝐷 = 0.5 all skyrmions in the weak line of pinning sites 

depin and flow along the +𝑥 direction due to the confinement of the pinned skyrmions in the strong pins. (d) For 

𝐹𝐷 = 1.8, all skyrmions are depinned and the resulting skyrmion Hall angle is 𝜃𝑠𝑘 ≈ −40°. [(e) and (f)] The 𝑥 

position of skyrmions as a function of time. (e) For 𝐹𝐷 = 0.25, as shown in panel (b), the soliton pulse propagates 

through the sample. (e) For 𝐹𝐷 = 0.5, skyrmions flowing in a chain, as shown in panel (c). (From Vizarim et. 

al.  [207], pg. 224409-6). 
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 In Fig. 11.6 (a) it is plotted 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the drive 𝐹𝐷  for a system 

containing 𝑁𝑠𝑘 = 111 and 𝑁𝑝 = 110, so that 𝑁𝑠𝑘/𝑁𝑝 = 1.01, and 𝛼𝑚/𝛼𝑑 = 1.0, while in Fig. 

11.6 (b) we show the skyrmion Hall angle, 𝜃𝑠𝑘, as a function of 𝐹𝐷. As can be seen in Fig. 11.6 

(b), the dynamics is no longer locked in the 𝑥 direction since there are no repulsive barrier walls 

in this case. For 𝐹𝐷 ≤ 0.11 the system is in the pinned phase, as can be seen in Fig. 11.7 (a). 

There is an interstitial skyrmion stabilized between four pinning centers, two of shich are strong 

and two are weak. The skyrmions pinned in the weak pinning sites exhibits greater displacement 

that skyrmion trapped in the stronger pinning sites due to the presence of the neighboring 

interstitial skyrmion. For 0.11 < 𝐹𝐷 < 0.41, there is a soliton phase very similar to the soliton 

phase saw in the q1D system. The interstitial skyrmion displaces a skyrmion form the weak 

pinning site, taking its place. Meanwhile, the previous pinned skyrmions becomes the new 

interstitial skyrmion. This process propagates through the chain as a soliton pulse along the +𝑥 

direction. The trajectories for the skyrmion motion can be seen in Fig. 11.7 (b), where 

oscillations in the 𝑦 direction are present due to a combination of the skyrmion Hall angle effect 

and the swapping of interstitial and pinned skyrmions. For the interval 0.41 < 𝐹𝐷 < 1.0, all 

skyrmions previously trapped in the weak line of pinning sites depin and flow along the +𝑥 

direction, as can be seen in Fig. 11.7 (c). Note from Fig. 11.6 (b) that the skyrmion Hall angle is 

still zero due to the trapped skyrmions in the strong pinning sites serving as a barrier for the 

motion along 𝑦. For 𝐹𝐷 > 1.0, skyrmions in the strong pinning sites also depin, destroying the 

quasi-1D motion and creating a 2D motion. This motion occurs in two steps as can be seen in 

Fig. 11.6. In the chaotic phase, from 1.0 < 𝐹𝐷 < 1.53 , the skyrmion Hall angle increases 

irregularly in magnitude with increasing drive, while for 𝐹𝐷 > 1.53, the skyrmion Hall angle 

stabilizes around 𝜃𝑠𝑘 ≈ −40° . If the applied drive was increased further, we expect the 

skyrmion Hall angle to reach its intrinsic value of 𝜃𝑠𝑘
𝑖𝑛𝑡 = arctan(𝛼𝑚/𝛼𝑑) = −45° . The 

transition from q1D to 2D motion is also characterized by an increase in 〈𝑉𝑦〉 and a decrease in 

〈𝑉𝑥〉. The average skyrmion motion is slower in the 2D motion since the skyrmions must travel 

through the region of strong pinning sites, which hinders the motion and reduces the velocity. In 

Fig. 11.7 (d) it is plotted the skyrmion trajectories for 𝐹𝐷 = 1.8, where the skyrmion Hall angle 

is stabilized. As in the q1D system, the soliton pulse can be clearly seen in a plot of the 

skyrmion trajectories as a function of time. In Fig. 11.7 (e) it is shown the 𝑥  position of 

skyrmions as a function of time for 𝐹𝐷 = 0.25, where a soliton pulse propagates along the +𝑥 

direction. On the other hand, as shown in Fig. 11.7 (f) for 𝐹𝐷 = 0.5, all skyrmions in the weak 

pinning sites depin and flow through the sample, destroying the soliton pulse. 



175 
 

 
 

Figure 11.8 – The skyrmion average velocities (a) 〈𝑉𝑥〉 and (b) 〈𝑉𝑦〉 as a function of the applied drive, 𝐹𝐷, for the 

2D sample illustrated in Fig. 11.1 (b) with 𝑁𝑠𝑘/𝑁𝑝 = 0.99, 𝛼𝑚/𝛼𝑑 = 1.0 and 𝑛𝑝 = 0.373/𝜉². The inset shows a 

blowup of panel (a) over the range 0.2 < 𝐹𝐷 < 0.45. (From Vizarim et. al.  [207], pg. 224409-6). 

 

Figure 11.9 – In (a) the representation of the pinning site positions (red circles) and the skyrmion trajectories (black 

lines) for a sample with 𝑁𝑠𝑘/𝑁𝑝 = 0.99 , 𝛼𝑚/𝛼𝑑 = 1.0 , weak pins 𝐶𝑝 = 0.15 , strong pins 𝐶𝑝 = 1.0  and 𝑛𝑝 =

0.373/𝜉². (a) At 𝐹𝐷 = 0.0, the ground state, where most skyrmions are pinned and a single vacancy is present. (b) 

The soliton phase at 𝐹𝐷 = 0.3. (c) For 𝐹𝐷 = 0.5 all skyrmions in the weak line of pinning sites depin and flow 

along the +𝑥 direction. (d) For 𝐹𝐷 = 1.6, all skyrmions are depinned and the resulting skyrmion Hall angle is 

𝜃𝑠𝑘 ≈ −40°. [(e) and (f)] The 𝑥 position of skyrmions as a function of time. (e) For 𝐹𝐷 = 0.3, as shown in panel 

(b), the soliton pulse propagates through the sample. (e) For 𝐹𝐷 = 0.5, skyrmions flowing in a chain, as shown in 

panel (c). (From Vizarim et. al.  [207], pg. 224409-7). 
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In Fig. 11.8 (a) it is plotted the skyrmion average velocities 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of 

the drive 𝐹𝐷  for a system containing 𝑁𝑠𝑘 = 109 and 𝑁𝑝 = 110, so that 𝑁𝑠𝑘/𝑁𝑝 = 0.99, and 

𝛼𝑚/𝛼𝑑 = 1.0, while in Fig. 11.8 (b) it is plotted the skyrmion Hall angle, 𝜃𝑠𝑘, as a function of 

𝐹𝐷. For 𝐹𝐷 ≤ 0.24, the skyrmions are stabilized in the static phase as shown in Fig. 11.9 (a). In 

this case, there is vacant pinning center due to the incommensuration between the skyrmion and 

the pinning number. This incommensuration leads to a distortion in the skyrmion lattice, as can 

be seen in Fig. 11.9 (a). For 0.24 < 𝐹𝐷 < 0.4, the system enters in a soliton phase similar to 

what is shown in Fig. 11.4 and Fig. 11.5 (b) for the q1D case. The vacancy translates along the 

−𝑥 direction due to the hopping of skyrmions along the +𝑥 direction. The skyrmion trajectories 

for this regime can be seen in Fig. 11.9 (b). For 0.4 < 𝐹𝐷 < 1.02, the skyrmions in the strong 

pinning centers also depin. Similar to previous case of Fig. 11.6, in Fig. 11.8 there are also two 

dynamic regimes for 𝐹𝐷 > 1.02:, one chaotic regime where the skyrmion Hall angle is varying 

continuously for 1.02 < 𝐹𝐷 < 1.53, and a regime where the skyrmion Hall angle is stabilized 

around 𝜃𝑠𝑘 ≈ −40° for 𝐹𝐷 > 1.53. It is expected that the dynamics in both systems for high 

drives are similar, since the difference in the skyrmion density is very low and this difference 

becomes unimportant in the drive-dominant regime. However, the main differences can be seen 

in the soliton phase regime. To illustrate this difference, in Fig. 11.9 (e) we plot the skyrmion 𝑥 

positions as a function of time at 𝐹𝐷 = 0.3, where the soliton pulse is clearly visible. For 𝐹𝐷 =

0.5, the soliton motion is lost as shown in Fig. 11.9 (f). 

The soliton phases for the interstitial or vacancy case are very similar in their dynamics, 

but exhibit a crucial difference in the soliton motion, since in the interstitial case the soliton 

moves along +𝑥  direction and in the vacancy case it moves along the −𝑥  direction. This 

controlled soliton motion could be exploited in devices with low energy cost and precise motion. 

 

11.3.3 Soliton stabilization as a function of 𝜶𝒎/𝜶𝒅 

In this section we investigate how stable is the soliton phase varying the 𝛼𝑚/𝛼𝑑 

parameter. When 𝛼𝑚/𝛼𝑑 increases, the skyrmion Hall angle also increases, so it is important to 

verify how stable is the soliton motion under these circunstances. Two samples are prepared 

with fixed values of 𝑁𝑠𝑘/𝑁𝑝 = 1.01 and 𝑁𝑠𝑘/𝑁𝑝 = 0.99, both using 𝑛𝑝 = 0.373/𝜉², and we 

perfom simulations for a range of values of 𝛼𝑚/𝛼𝑑. Combining the resulted data, we plotted the 

dynamic phase diagram of 𝐹𝐷 vs. 𝛼𝑚/𝛼𝑑 illustrated in Fig. 11.10, where the locations of the 

pinned phase, soliton phase, 1D motion and 2D motion are identified. The pinned phase is the 
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phase where all skyrmions are static so that 〈𝑉𝑥〉 = 〈𝑉𝑦〉 = 0. In the soliton phase, the localized 

lattice deformation propagates through the sample. The soliton can propagate along +𝑥 or −𝑥 

depending on the type of soliton. The 1D motion is represented by the motion of all skyrmions 

trapped in the weak pinning sites moving along the +𝑥 direction. The 2D motion is when all 

skyrmions in the sample are depinned and flowing through the sample with finite skyrmion Hall 

angle. 

Figure 11.10 –Dynamic phase diagrams as a function of external dc drive 𝐹𝐷 vs. 𝛼𝑚/𝛼𝑑 for the system in Fig. 11.1 

(b) at 𝑛𝑝 = 0.373/𝜉² and (a) 𝑁𝑠𝑘/𝑁𝑝 = 1.01 and (b) 𝑁𝑠𝑘/𝑁𝑝 = 0.99. Pinned phase: Gray; soliton phase: Yellow; 

1D motion: Red; 2D motion: Blue. (From Vizarim et. al.  [207], pg. 224409-7). 

 

 For the case of 𝑁𝑠𝑘/𝑁𝑝 = 1.01, Fig. 11.10 (a) indicates that the depinning threshold is 

very low, resulting in a wider range of soliton motion when compared to Fig. 11.10 (b), with 

𝑁𝑠𝑘/𝑁𝑝 = 0.99 . Interstitial skyrmions are more mobile than vacancies since the interstitial 

skyrmion is trapped only by the caged potential of the neighboring skyrmions and not directly 

by a pinning site. As a result, the depinning threshold lowers for these systems with interstitial 

skyrmions. Both systems exhibit the transition from the soliton phase to the 1D motion at 

roughly the same values of 𝐹𝐷, since these values of force are controlled by the strength of the 

weak pinning potentials. Analogously, the transition from 1D to 2D motion occurs for roughly 

the same values of 𝐹𝐷, but in this case the force values are controlled by the strength of the 

strong pinning potentials. 

 

11.3.4 The pinning density effect 

We next vary the pinning density, 𝑛𝑝, for samples with 𝑁𝑠𝑘/𝑁𝑝 = 1.01 and 𝑁𝑠𝑘/𝑁𝑝 =

0.99 while fixing 𝛼𝑚/𝛼𝑑 = 0.5. The pinning density is an important parameter since we expect 

that for low pinning density values the spacing between pinning sites increases, allowing 

skyrmions to flow between the pinning sites, destroying the soliton phase. In Fig. 11.11 (a) and 



178 
 

 
 

Fig. 11.11 (b) it is plotted the dynamic phase diagrams of 𝐹𝐷 versus 𝑛𝑝 for both systems. Here 

we observe the pinned phase, the soliton phase, 1D motion, 2D motion and an additional state 

that we term single skyrmion 1D motion (SK1D). In the SK1D phase, the interstitial skyrmion 

produced by the incommensuration between the number of skyrmions and pinning centers flows 

between the pinning centers without displacing any other pinned skyrmions. This behavior 

occurs only for low pinning densities of 𝑛𝑝 < 0.206, when the gaps between pinning sites are 

sufficiently large, as shown in Fig. 11.11 (c). The SK1D phase is very similar to what has been 

previously illustrated in sections 5 and 10, where the motion of a single skyrmion interacting 

with an array of obstacles was investigated. As the pinning density increases, the SK1D phase 

vanishes and is replaced by the soliton motion. When the gap between pinning sites reduces, for 

increased values of 𝑛𝑝, it forbidden the skyrmions to flow between pinning sites, forcing the 

interstitial skyrmion to displace a previously pinned skyrmion, in a soliton-like fashion. 

Figure 11.11 – [(a), (b)] Dynamic phase diagrams as a function of external dc drive 𝐹𝐷 vs. 𝑛𝑝 for the system in Fig. 

11.1 (b) with 𝛼𝑚/𝛼𝑑 = 0.5 and (a) 𝑁𝑠𝑘/𝑁𝑝 = 1.01 and (b) 𝑁𝑠𝑘/𝑁𝑝 = 0.99. Pinned phase: Gray; soliton phase: 

Yellow; 1D motion: Red; 2D motion: Blue; single skyrmion 1D motion (SK1D): Green. (c) Pinning site positions 

(red circles: strong pins; blue circles: weak pins) and skyrmion trajectories (black lines) for 𝑁𝑠𝑘/𝑁𝑝 = 1.01 sample 

at 𝐹𝐷 = 0.2 and 𝑛𝑝 = 0.093𝜉
2 (From Vizarim et. al.  [207], pg. 224409-8). 

 

 For the sample where the vacancy is present, 𝑁𝑠𝑘/𝑁𝑝 = 0.99 , there is a monotonic 

decrease of the depinning threshold as the pinning density increases, as shown in Fig. 11.11 (b). 

As 𝑛𝑝  increases, the relative strength of the skyrmion-skyrmion interaction increases when 

compared to the skyrmion-pinning interactions, resulting in a suppression of the depinning 

threshold. Note that the soliton motion is completely lost for 𝑛𝑝 < 0.166 due to the greater 
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distances between skyrmions and suppression of the collective behavior necessary for the soliton 

phase to exist. On the other hand, for 𝑛𝑝 > 0.166, the extent of the soliton phase increases with 

𝑛𝑝, primarily due to the decrease of the depinning threshold. 

 

11.3.5 Guidance of Soliton Motion 

In previous sections we have shown that the soliton motion through skyrmion chains can 

be enhanced depending on the choice of 𝛼𝑚/𝛼𝑑  and pinning density. The next fundamental 

question is: Can we guide the soliton motion along a specific direction? When we introduce a 

line of weak pinning potentials in the sample aligned with the applied drive, the soliton followed 

this line along +𝑥 or −𝑥 direction depending on the value of 𝑁𝑠𝑘/𝑁𝑝, even though this direction 

is not aligned with the intrinsic skyrmion Hall angle direction. That is, guiding the soliton 

motion to overcome the skyrmion Hall angle effect by using a line of weak pinning sites is 

possible. To further explore this effect, we change the pinning lattice so that the skyrmion Hall 

angle is perpendicular to the weak line of pinning potentials. As shown in Fig. 11.12, the weak 

line of pinning sites is placed along 𝜃𝑝 = +45° with respect to the driving direction along +𝑥. 

Using 𝛼𝑚/𝛼𝑑 = 1.0, the intrinsic Hall angle is 𝜃𝑠𝑘
𝑖𝑛𝑡 = −45°, so that, Δ𝜃 = 𝜃𝑝 − 𝜃𝑠𝑘

𝑖𝑛𝑡 = 90°. 

For this section we use 𝐿𝑥 = 𝐿𝑦 = 19.638𝜉. 

Figure 11.12 – Pinning site positions (red circles: strong pins; blue circles: weak pins) for a sample with a diagonal 

line of weak pinning sites oriented at +45° respective to the 𝑥 direction. The weak pins have 𝐶𝑝 = 0.15, strong pins 

𝐶𝑝 = 1.0 and we set 𝑛𝑝 = 0.373/𝜉². (From Vizarim et. al.  [207], pg. 224409-8). 

 

 For a sample of 𝑁𝑠𝑘/𝑁𝑝 = 1.01 it is plotted the skyrmion average velocities 〈𝑉𝑥〉 and 

〈𝑉𝑦〉 versus 𝐹𝐷 in Fig. 11.13 (a) and the corresponding skyrmion Hall angle, 𝜃𝑠𝑘  versus 𝐹𝐷 in 

Fig. 11.13 (b). When 𝐹𝐷 < 0.12, skyrmions are in the pinned phase, marked by letter 𝑃 in Fig. 

11.13 (a). As the applied drive increases, we observe a small and continuous increase in both 
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velocity components, so that 〈𝑉𝑥〉 = 〈𝑉𝑦〉. This means that the motion is locked at exactly 𝜃𝑠𝑘 =

+45° with respect to the driving direction, following the weak line of pinning potentials. The 

illustration of this motion can be seen in Fig. 11.14 (a). For 0.44 < 𝐹𝐷 < 0.56 the skyrmion 

velocity components remain equal and constant as the drive increases. In this regime, all 

skyrmions from the weak line of pinning potentials depin and flow following the weak line of 

pins, locked at 𝜃𝑠𝑘 = +45°, as shown in Fig. 11.14 (b). For 0.56 < 𝐹𝐷 < 1.47 there is a broad 

transient phase in which the skyrmion Hall angle is continuously changing from 𝜃𝑠𝑘 = +45° to 

𝜃𝑠𝑘 = −45°. Here, skyrmions in the strong pinning sites remain trapped, but skyrmions free 

from the weak pinning sites begin to escape from the weak pinning channel and instead start 

flowing in the region of strong pinning potentials. In Fig. 11.14 (c) there is an illustration of this 

regime, where skyrmions are flowing with 𝜃𝑠𝑘 ≈ −35° with 𝐹𝐷 = 1.0. This motion is unstable, 

and 𝜃𝑠𝑘 continue to increase as 𝐹𝐷 increases. The collective motion of skyrmions only stabilizes 

for 𝐹𝐷 > 1.46, where skyrmions flow in orderly fashion along 𝜃𝑠𝑘 = −45°, as shown in Fig. 

11.14 (d). Here, some skyrmions that were previously pinned in the strong pinning sites depin to 

stabilize the flow. The depinning of the remained skyrmions occur only for higher drives not 

considered here. We expect that other Hall angle reversal may occur for different directions of 

weak line of pinning potentials or for different values of 𝛼𝑚/𝛼𝑑. 

 

11.3.6 Discussions and Summary 

In this section, we showed that just outside commensurate states, skyrmions may exhibit 

a soliton phase for low drives that is of interstitial or vacancy type. We model the skyrmions as 

point-like rigid bodies that cannot deform or change size; however, in real materials, skyrmions 

may deform, change size, merge, or be annihilated. These features could be very interesting to 

explore further using continuum-based simulations. Thermal fluctuations were neglected here, 

but it could also modify the behavior, such as by introducing thermal creep in the low drive 

regimes. We expect that the soliton phase would remain stable for a certain range of 

temperatures. If different pinning landscapes are considered, we expect the soliton phase to 

occur, but the preferential directions of motion would be changed. For the square lattice we 

consider here, soliton motion is stabilized along 0° or 45° as shown in our results. For other 

geometries, such as a triangular pinning lattice, the soliton motion would occur along 0°, 30°, 

and 60°. 
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Figure 11.13 – (a) The skyrmion average velocities 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the applied drive, 𝐹𝐷, for the 2D 

sample illustrated in Fig. 11.12 (b). In (b) the corresponding skyrmion Hall angle curve. This system uses 𝑁𝑠𝑘/

𝑁𝑝 = 1.01, 𝛼𝑚/𝛼𝑑 = 1.0 and 𝑛𝑝 = 0.373/𝜉². 𝑃 indicates the pinned phase, Soliton is the soliton phase, +45 is the 

phase where skyrmion depinned from the weak pinning sites move with 𝜃𝑠𝑘 = +45°  respective to the drive. 

Transient is the phase where the skyrmion Hall angle is reversing. −45 is the phase where skyrmions are locked at  

𝜃𝑠𝑘 = −45°. (From Vizarim et. al.  [203], pg. 224409-9). 

 

Figure 11.14 – Pinning site positions (red circles) and the skyrmion trajectories (black lines) for the sample of Fig. 

11.13 with 𝑁𝑠𝑘/𝑁𝑝 = 1.01, 𝛼𝑚/𝛼𝑑 = 1.0, weak pins 𝐶𝑝 = 0.15, strong pins 𝐶𝑝 = 1.0 and 𝑛𝑝 = 0.373/𝜉². (a) At 

𝐹𝐷 = 0.25 where the soliton flows following the weak line of pins, at 𝜃𝑠𝑘 = +45°. (b) At 𝐹𝐷 = 0.5, the skyrmions 

trapped in the weak line of pins depin and flow along 𝜃𝑠𝑘 = +45°. (c) For 𝐹𝐷 = 1.0 the transient phase, where 𝜃𝑠𝑘 

gradually reverses. In this case, 𝜃𝑠𝑘 ≈ −35°. (d) For 𝐹𝐷 = 1.8, the skyrmion Hall angle reversal is complete, the 

flow is locked at 𝜃𝑠𝑘 = −45°. (From Vizarim et. al.  [203], pg. 224409-9). 
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Part II 

Skyrmions and Linear Defects 
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12 Skyrmion ratchet in funnel geometries 

12.1 Skyrmion in funnel geometries 

This work was developed by one of the students of our group, J. Bellezotti Souza, which 

is starting to study skyrmion dynamics under periodic and quasi-periodic substrates. Although J. 

Bellezotti is the main author, I have contributed to most part of the analysis and discussions in 

this work, and the results fit very well to the scope of this thesis. Using particle-model 

simulations, here the dynamical behavior of a single skyrmion under the influence of 

asymmetric funnel geometries and ac driving at zero temperature. Using the ratchet effect, the 

skyrmion motion can be controlled in the sample. Depending on the ac drive direction, the 

skyrmion can be moved in the easy or in the hard-axis. These results indicate that it is possible 

to achieve controlled skyrmion motion using funnel geometries, and possibly to perform data 

transfer operations. This work was published in Physical Review B [203]. 

12.2 Model and simulation details 

The simulation consists of a single skyrmion in a two-dimensional box of dimensions 

𝐻 × 𝐿 with periodic boundary conditions in the 𝑥  direction, as illustrated in Fig. 12.1. The 

skyrmion interacts with an asymmetric funnel array aligned along the 𝑥 direction, where 𝑁𝐹 is 

the number of funnels, 𝑆 is the length of each funnel, and 𝑂 is the width of the funnel opening. 

The asymmetry in the funnel permits “easy” flow along the +𝑥 direction and a “hard” flow 

along the −𝑥 direction. The dynamical properties of the skyrmion system interacting with the 

funnel were simulated using the particle model for skyrmions, shown in Eq. (12.1), using 

Molecular Dynamics technique. 

 

                                                            𝛼𝑑𝐯𝒊 + 𝛼𝑚�̂� × 𝐯𝒊 = 𝐅𝑖
𝑊 + 𝐅𝑎𝑐                                                (12.1) 

 

The system has a size of 8𝜉 × 20𝜉. The first term on the right side is the force exerted by 

the repulsive wall barrier, 𝐅𝑖
𝑊. The funnel is formed by two asymmetric sawtooth functions and 

the wall potential is given by a Gaussian form, 𝑈(𝐫𝑖𝑤) = 𝑈0𝑒
−(𝑟𝑖𝑤/𝑎0)

2
, where 𝐫𝑖𝑤 is the shortest 

distance between the skyrmion and the barrier wall. 𝑈0 is the potential strength and 𝑎0 is the 

wall thickness. The resulting force is given by 𝐅𝑖
𝑊 = −∇𝑈 = −𝐹0𝑟𝑖𝑤𝑒

−(𝑟𝑖𝑤/𝑎0)
2
𝐫�̂�, where 𝐹0 =
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2𝑈0/𝑎𝑜
2. The last term is the ac drive, 𝐅𝑥

𝑎𝑐 = 𝐴 sin(2𝜋𝜔1𝑡) �̂� for longitudinal driving and 𝐅𝑦
𝑎𝑐 =

𝐵 cos(2𝜋𝜔2𝑡) �̂�  for transversal driving. We measure the skyrmion velocity in the 〈𝑉𝑥〉 =

〈𝐯 ∙ �̂�〉/(2𝜋𝜔1𝑆), and the 𝑦  component, 〈𝑉𝑦〉 = 〈𝐯 ∙ �̂�〉/(2𝜋𝜔1𝑆). The velocities are averaged 

over 100 ac drive cycles. Under the normalization used here, when 〈𝑉∥〉 = 1.0 or 〈𝑉⊥〉 = 1.0 

indicates that the skyrmion is translating by one funnel length per ac drive cycle in the 𝑥 

direction, respectively. The external ac drive amplitude is increased in small steps of 𝐴 (𝐵) =

0.005  and wait 106  simulation time steps between increments to ensure steady state. We 

normalize the damping and Magnus coefficients as 𝛼𝑑
2 + 𝛼𝑚

2 = 1. 

 

Figure 12.1 – Illustration of the funnel geometry used, where 𝑆 is the length of each funnel and 𝑂 is the width of 

the funnel opening. In this case 𝑁𝐹 = 4 and 𝑂 = 1.0, and the easy and hard-axis are labeled. (From Bellezotti 

Souza et. al. [203], pg. 2) 

 

12.3 Results 

12.3.1 Ac drive in the 𝒙 or 𝒚 direction 

Initially we consider the case where the ac drive is applied along the 𝑥 direction only, 

that is, 𝐵 = 0 and 𝐴 ≠ 0. In Fig. 12.2 it is plotted 〈𝑉𝑥〉 and 〈𝑉𝑦〉 as a function of the ac drive 

amplitude 𝐴  for a system with 𝛼𝑚/𝛼𝑑 = 0.5 . The average velocity 〈𝑉𝑥〉  exhibits a step-like 

behavior and also a monotonic increase with increasing 𝐴. As can be seen, the combination of 

the ac drive and the broken spatial symmetry of the funnel array generates a ratchet effect that 

results in a net dc motion of the skyrmion in the +𝑥 direction. Although 〈𝑉𝑦〉 is very close to 

zero, there are spikes of transversal motion at the edge of every step in 〈𝑉𝑥〉. 
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Figure 12.2 – The average velocities (a) 〈𝑉𝑥〉 and (b) 〈𝑉𝑦〉 as a function of the ac drive amplitude 𝐴 for the funnel 

system with 𝛼𝑚/𝛼𝑑 = 0.5, 𝑁𝐹 = 4 and 𝑂 = 1.0. The ac drive is applied only along the 𝑥 direction. The inset in (a) 

shows a blowup of panel (a) for the range 0.92 < 𝐴 < 1.05 (From Bellizotti Souza et. al.  [203], pg. 2). 

 

In Fig. 12.3 it is illustrated some representative skyrmion trajectories for the system of 

Fig. 12.2. At 𝐴 = 0.25, Fig. 12.3 (a) shows that the ac drive amplitude is not large enough to 

produce a ratchet motion for the system, thus it forms a localized orbit inside one of the funnels. 

In Fig. 12.3 (b), at 𝐴 = 0.97, the skyrmion performs a net dc motion along +𝑥 direction in 

which the skyrmion translates by an average distance of 1.0𝑆 for every ac drive cycle, as can be 

seen in Fig. 12.2. The trajectory trace indicates that the skyrmion moves forward 2𝑆 during the 

positive ac drive cycle, and backwards 1𝑆 in the negative ac drive cycle. In Fig. 12.3 (c), at 𝐴 =

1.76, the skyrmion translates an average distance of 3.5𝑆 for each ac drive cycle, while at 𝐴 =

2.4 in Fig.12.3 (d), the skyrmion flows an average distance of 6𝑆, always in the +𝑥 direction. 

Now we consider the case where the ac drive is applied along the 𝑦 direction, that is, 𝐴 =

0 and 𝐵 ≠ 0. In Fig. 12.4 it is shown the results obtained from a system with 𝑁𝐹 = 4, 𝑂 = 1.0 

and 𝛼𝑚/𝛼𝑑 = 0.5 . For 𝐵 > 0.595 , a Magnus induces transverse ratchet occurs and the 

skyrmion flows along the −𝑥 direction, as indicated in Fig. 12.4 (a). Interestingly, the motion 

has a steady average velocity of 〈𝑉𝑥〉 = −1.0 over a wide range of ac drive amplitudes, 𝐵. The 

stability in this motion can be of interest for technological applications since the translation 

speed remains constant for several values of 𝐵. In Fig. 12.4 (b) it is illustrated the skyrmion 

trajectory at 𝐵 = 0.5, where the skyrmion remains trapped inside a single funnel. At 𝐵 = 1.0, 

the ac drive amplitude is strong enough to produce the Magnus-induced transverse motion, and 

the skyrmion exhibits a dc net motion along the −𝑥 direction. 
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Figure 12.3 – Funnel walls (red lines) and the skyrmion trajectory (black lines) for the system shown in Fig. 12.2. 

The blue arrows indicate the direction of the skyrmion motion. (a) 𝐴 = 0.25 the skyrmion performs a localized 

orbit inside one funnel. (b) 𝐴 = 0.97 the skyrmion translates along the +𝑥 direction at a rate of 1𝑆 pr ac drive 

cycle. (c) 𝐴 = 1.76 skyrmion translation along the +𝑥 direction at a rate of 3.5𝑆 pr ac drive cycle. (d) 𝐴 = 2.4 

skyrmion translation along the +𝑥 direction at a rate of 6𝑆 pr ac drive cycle. (From Bellizotti Souza et. al.  [203], 

pg. 3). 

 

Figure 12.4 – (a) The average velocity 〈𝑉𝑥〉 as a function of the ac drive amplitude 𝐵 for the funnel system with 

𝛼𝑚/𝛼𝑑 = 0.5, 𝑁𝐹 = 4 and 𝑂 = 1.0. The ac drive is applied only along the 𝑦 direction. (b) and (c) Funnel walls (red 

lines) and the skyrmion trajectory (black lines) for the system shown in (a). The blue arrows indicate the direction 

of the skyrmion motion. (b) 𝐴 = 0.5 the skyrmion performs a localized orbit inside one funnel. (c) 𝐴 = 1.0 the 

skyrmion translates along the −𝑥 direction at a rate of 1𝑆 per ac drive cycle. (From Bellizotti Souza et. al.  [203], 

pg. 4). 
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12.3.2 Guided motion using ac drives in funnel geometries 

In the previous section it was shown that the skyrmion can be set into motion in the 

funnel array along the +𝑥 or −𝑥 direction according to the direction of the applied ac drive. 

That is, if the ac drive is applied parallel to the funnel axis, the skyrmion flows along the +𝑥 

direction, on the other hand, if the ac drive is applied perpendicular to the funnel axis, the 

skyrmion flows along the −𝑥 direction. Now, it is considered a situation where a skyrmion must 

be guided from an initial funnel to another funnel and must return to its original position using 

only ac driving. This process is very relevant to spintronics devices in which a skyrmion acting 

as an information carrier is guided through the sample in order to transmit information. In Fig. 

12.5 (a) it is illustrated the sample in which the skyrmion will move from the left funnel, labeled 

𝐿, to the right funnel, labeled 𝑅 and back again. In Fig. 12.6 (a) it is plotted the applied ac drive 

signals 𝐹𝑥
𝐴𝐶 and 𝐹𝑦

𝐴𝐶 used to produce this motion as a function of time, and in Fig. 12.6 (b) it is 

shown the corresponding instantaneous skyrmion velocities 𝑉𝑥 and 𝑉𝑦.  

Figure 12.5 – Funnel walls (red lines) and the skyrmion trajectory (black lines) for the system where the skyrmion 

starts in funnel 𝐿 and must travel to 𝑅 and return back to 𝐿. The blue arrows indicate the direction of the skyrmion 

motion. (a) skyrmion starting position in funnel 𝐿 for 𝑡 = 0. (b) First stage of operation with 𝐴 = 2.0 and 𝐵 = 0, 

where the skyrmion moves from 𝐿 to 𝑅. (c) Second stage of operation with 𝐴 = 0 and 𝐵 = 2.0, where the skyrmion 

moves from 𝑅 to 𝐿. (d) The complete trajectory, adding operations 1 and 2 together. (From Bellizotti Souza et. 

al.  [203], pg. 8). 

 

In order to guide the skyrmion along the easy direction, it is applied an ac drive along the 

𝑥  direction with 𝐴 = 2.0  and 𝐵 = 0  for 13500  time steps. The skyrmion trajectory for this 

interval is shown in Fig. 13.5 (b). As shown in Fig. 13.6 (a), only 1/4 of ac drive cycle is 

enough to guide the skyrmion from funnel 𝐿 to 𝑅 due to the high efficiency of the motion in this 

direction. During this time interval, Fig. 13.6 (b) shows that the skyrmion velocity component 𝑉𝑥 

is always positive. Now that the skyrmion has reached the 𝑅 funnel it is necessary to bring it 

back to funnel 𝐿 using an ac drive applied perpendicular to the funnel axis, that is, 𝐴 = 0 and 
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𝐵 = 2.0. This configuration produces a Magnus-induced transverse motion of the skyrmion 

along the −𝑥 direction, as discussed in the previous section. The skyrmion trajectory for this 

time interval, which extends up to 𝑡 = 200,000 time steps, is illustrated in Fig. 12.5 (c). The 

driving in this second stage must be applied for a much longer period of time due to the low 

efficiency of motion in the hard direction. This can also be seen in Fig. 12.6 (b) where the 

skyrmion velocity 𝑉𝑥 drops to zero several times during the motion in the hard direction. Note 

that there are also some positive velocities along +𝑥 that are compensated by stronge velocities 

along −𝑥 direction. 

Figure 12.6 – The applied ac drive forces 𝐹𝑥
𝐴𝐶  (black) and 𝐹𝑦

𝐴𝐶  (red), versus time 𝑡 for the guided motion shown in 

Fig. 12.5. Note that the time axis is truncated at 𝑡 = 100,000, but the same ac driving is applied at later times to 

achieve the results shown in Fig. 12.5. (b) The instantaneous skyrmion velocities 𝑉𝑥 (black) and 𝑉𝑦 (red) versus 𝑡 

under the driving shown in (a). The dashed vertical line indicates the transition at which the ac drive direction is 

switched. (From Bellizotti Souza et. al.  [203], pg. 8). 

 

12.3.3 Discussion and Summary 

The behavior of a single skyrmion under the influence of a funnel geometry with ac 

driving and zero temperature has been explored in this work. For ac driving applied either 

parallel or perpendicular to the funnel axis, the skyrmion can undergo net dc motion along either 

the easy or hard direction of the funnel. When the ac driving is applied parallel to the funnel 

axis, the skyrmion moves in the easy direction with quantized steps in the velocity that increases 

monotonically with increasing ac drive amplitude. On the other hand, when the ac drive is 

applied perpendicular to the funnel axis, the skyrmion flows in the hard direction at a constant 

average velocity due to the Magnus-induced transverse ratchet effect. Using a combination of ac 

drives, we showed that it is possible to guide the skyrmion inside the funnel array, where the 
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skyrmion can go from a starting funnel to another funnel and then return back, simulating a kind 

of data transfer process. 

The ratchet motion in the easy direction of the funnel has been observed in a wide variety 

of systems with overdamped particles [24,129,204,205]. However, ratcheting motion along the 

hard axis is not very common. Previous works investigating ratchet reversals showed that type II 

superconducting vortices may exhibit a net dc motion along the hard axis when submitted to 

thermal noise and external drives [206,207]. However, the hard axis motion depends on the 

number of vortices per ratchet period. Here, in the skyrmion case, we show that even with a 

single skyrmion in the sample a ratchet motion along the hard axis can occur due to the Magnus 

effect. This feature could be exploited to build devices in which the skyrmion motion must be 

controlled precisely. Another important aspect to explore in the future is the temperature effects. 

It is well known that the temperature can change transition points and even vanish some 

dynamical effects [172]. Hence, it is possible that the motion in the hard direction may vanish by 

strong thermal fluctuations, since the motion is not very efficient. We expect that our results 

would not only be important to skyrmions, but also other magnetic textures exhibiting 

significant Magnus effects, such as merons [208].  
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Part III 

Interaction Among Skyrmions: Micromagnetic approach 
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13 Interaction among skyrmions in conical backgrounds 

13.1 Skyrmion in conical backgrounds  

In addition to studying skyrmions interacting with a periodic substrate in ultrathin films 

to achieve control over their motion, we are also interested in understanding their behavior in a 

broader context, such as in thick films. In this preliminary work, we focus on analyzing the 

interaction between skyrmions, and in future studies, we plan to investigate their interaction 

with a substrate. Our analysis will be conducted from a microscopic perspective. 

It is well-known that skyrmions are usually repulsive to each other in the ferromagnetic 

phase of chiral magnets. In fact, most of the work done in this thesis considers interacting 

skyrmions and defects in ultrathin ferromagnetic films. However, in thick films, the spins 

configurations may exhibit more phases. In Fig. 13.1 (a) it is shown an experimental observation 

of the phase diagram form a thin Co8Zn10Mn2  plate. For low magnetic fields the system is 

stabilized in the helical phase, as illustrated in Fig. 13.1 (b). However, as the applied magnetic 

field in the 𝑧  direction is applied, the helical phase transforms into the conical phase, with 

propagation direction along the applied field. An illustration of this phase can be seen in Fig. 

13.1 (c). If the applied field is increased further, the system saturates into the ferromagnetic 

phase, where all spins are aligned with the field, as shown in Fig. 13.1 (d). When skyrmions are 

stabilized in the conical phase, regions of attractive interactions between skyrmions can be 

observed  [210–212], where skyrmions are repulsive at long and short ranges, but attractive at 

intermediate ranges. This enable skyrmion lattices to form clusters in the sample, which is only 

possible in these peculiar systems. In this work we intend to investigate sample parameters that 

influences on this unusual skyrmion-skyrmion interaction in tridimensional systems. Thus, we 

perform a series of simulations investigating how the magnetic field and sample thickness affect 

the skyrmion-skyrmion interaction. This work is currently in development with collaborations 

from Rai M. Menezes under the supervision of Milorad V. Milošević. 

13.2 Model and simulation details 

 In this section, in order to simulate skyrmions from the microscopical point of view, we 

use the micromagnetic model. As our focus shifts towards studying the interaction between 

skyrmions in three-dimensional thick films, the particle model described in section 2.3 is no 

longer applicable. Therefore, a more comprehensive and detailed analysis is necessary, leading 

us to utilize micromagnetic simulations provided by the MUMAX³ package [213]. The 
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micromagnetic simulations are very similar to the atomistic model described in section 2.2. The 

main difference is that the spin direction must change only a small angle from one lattice point 

to the other. The direction angles of spins can be approximated by a continuous function of 

position [214]. Thus, the state of a ferromagnet can be described by the continuous vector 

magnetization 𝐌(𝐱). In a few words, instead of considering the dynamics of spins, as in the 

atomistic model, here it is considered the dynamics of a classical magnetization vector 

constituted by spins. 

Figure 13.1 – (a) Phase diagram of the skyrmion density in the magnetic field (𝐵) vs. temperature (𝑇) plane 

deduced from LTEM observations for a Co8Zn10Mn2 thin plate. (From Kim et. al.  [212], pg. 5548). [(b), (c), (d)] 

Simulation results for spin configurations at a transversal section of a thin plate in the 𝑥𝑧 plane for varied applied 

magnetic field values in the 𝑧 direction. (b) The spin configuration in the absence of field, the Helical phase. (c) For 

intermediate fields, the Conical phase. (d) For high fields, the saturated ferromagnetic phase, where all spins align 

with the applied field (Figs. (b), (c) and (d) are elaborated by the author). 

 

 

(a) 

(b) 

(c) 

(d) 
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Here we consider a multi-layer film of FeGe which can host Bloch-type skyrmions at 

𝑇 = 0 K. The ferromagnetic sample has fixed dimensions of 1024 nm in the 𝑥 direction and 256 

nm in the 𝑦 direction. The thickness of the film, 𝑑, is varied throughout the calculations. We add 

periodic boundary conditions along the 𝑥  and 𝑦 directions to simulate an infinite film in 𝑥𝑦 

plane, and no boundary conditions are applied in 𝑧, in order to consider the finite dimension of 

the film in the 𝑧 direction. We model the magnetic states using the energy density functional 

described in Eq. (13.1). 

                 𝐸 = 𝐸𝑒𝑥 + 𝐸𝐷𝑀 + 𝐸𝑍𝑒𝑒𝑚𝑎𝑛 =
𝐴𝑒𝑥
𝑀𝑠

(∇𝐦)2 +
𝐷

𝑀𝑠
𝐦 ∙ (∇ ×𝐦) −

𝜇0
𝑀𝑠
𝐦 ∙ 𝐇              (13.1) 

Here, 𝐸𝑒𝑥 is the exchange energy, 𝐸𝐷𝑀 is the Dzyaloshinskii-Moriya coupling energy, 𝐸𝑍𝑒𝑒𝑚𝑎𝑛 

is the Zeeman energy and 𝐦 = (𝑚𝑥, 𝑚𝑦, 𝑚𝑧) is the spin vector. We model the material using 

the FeGe parameters, where 𝑀𝑠 = 3.84 × 10
5 A/m  is the saturation magnetization, 𝐴𝑒𝑥 =

4.75 × 10−12J/m  is the exchange stiffness, 𝐷 = 0.853 × 10−3J/m²  is the Dzyaloshinskii-

Moriya coupling constant, 𝜇0 is the permeability in vacuum and 𝐇 is the applied magnetic field. 

The external field is only applied perpendicular to the film, 𝐇 = (0,0, 𝐻). A conical state is 

achieved in the film for certain values of 𝐻 where 𝐿𝐷 is the helix period, where the helical state 

repeats itself. For example, in Fig. 13.1 (b), the film thickness is 𝑑 = 2𝐿𝐷 . We use a cubic 

distribution of spin sites with distance between neighboring spins as 𝑎 = 2 nm. The helix period 

stabilized in our simulations is 𝐿𝐷 = 32𝑎. 

13.3 Results 

13.3.1 Mapping the topological spin textures 

First, we begin investigating the topological phases present in the sample as we vary the 

applied magnetic field, 𝐻 and the sample thickness, 𝑑. As a result, a phase diagram of 𝐻/𝐻𝐷 vs. 

𝑑/𝐿𝐷 is illustrated in Fig. 13.2. The magnetic field values are normalized by the saturation field, 

𝐻𝐷 ≈ 210 mT, where all spins align with the applied external magnetic field. As 𝐻𝐷 varies as a 

function of the sample thickness, we choose to calculate 𝐻𝐷 for the bulk case as a threshold, 

where the sample is also infinite in the 𝑧 direction. As can be seen in Fig. 13.2, the regions are 

separated in tons of blue, where the dark blue is the helical phase, the light blue is the conical 

phase and the white is the ferromagnetic. Moreover, we attempted to stabilize skyrmions in the 

square points in all regions of the phase diagram. Skyrmions were introduced on the sample 

arbitrarily and then the energy was minimized to verify if skyrmions could be stabilized. In 

cases where skyrmions were successfully stabilized, we used solid squares to indicate the 
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presence of skyrmions, and open squares to indicate that skyrmions were not stable. This step is 

crucial in verifying the stability of skyrmions in the conical phase. It will allow us to progress to 

the subsequent sections where we can investigate the behavior of skyrmions as we vary the 

applied magnetic field and sample thickness. 

Figure 13.2 – Phase diagram of 𝐻/𝐻𝐷  vs. 𝑑/𝐿𝐷  for the sample FeGe simulated in this work. The different 

topological states can be identified by shades of blue. Dark blue corresponds to the helical phase, light blue to the 

conical phase and white to ferromagnetic phase. The black squares correspond to attempts to stabilize skyrmions in 

the sample: squares with solid interior are values where skyrmions were stabilized and squares with blank interior 

are values were skyrmions were unable to stabilize (Elaborated by the author). 

 

13.3.2 Skyrmion-Skyrmion interaction in multilayer films 

In previous section we established the regions where skyrmions can be stabilized in the 

sample. Now, we look towards the skyrmion-skyrmion interaction shape for different 

backgrounds. As our diagram in Fig. 13.2 illustrated, skyrmions can only be stabilized with a 

conical background or a ferromagnetic one. Starting with the simplest case of skyrmion-

skyrmion interaction with ferromagnetic background, we set 𝑑/𝐿𝐷 = 1.0  and simulated the 

skyrmion-skyrmion interaction for 𝐻/𝐻𝐷 = 1.1 . The skyrmion-skyrmion interaction is 

simulated following the procedure: one skyrmion is fixed in the center of the sample, while the 

other is located at a distance 𝑟 from the fixed skyrmion. The distance 𝑟 measures the distance 

between the center of the skyrmions, as illustrated in Fig. 13.3 (c). Both skyrmions have frozen 
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spins in their center in order to maintain their stability. The frozen spins correspond to a tube of 

radius 3𝑎 and height 𝑑. Initially, skyrmions are set apart at a distance 𝑟 = 6.25𝐿𝐷 = 400 nm 

and we slowly approach them, minimize the energy and plot the total energy as a function of the 

distance.  

Figure 13.3 – The energy of the system 𝐸 normalized by the respective background 𝐸𝑓𝑒𝑟𝑟  or 𝐸𝑐𝑜𝑛𝑒 vs. the distance 

between the center of skyrmions, 𝑟/𝐿𝐷, for samples with 𝑑 = 1.0𝐿𝐷 and (a) 𝐻/𝐻𝐷 = 1.1 and (b) 𝐻/𝐻𝐷 = 0.9. In 

(a) for stronger magnetic field the background state is ferromagnetic and the skyrmion-skyrmion interaction is 

monotically repulsive. In (b) for weaker applied field the background state is conical and the skyrmion-skyrmion 

interaction is similar to a Lennard-Jones potential. The inset of (b) shows in greater detail the attractive part of the 

interaction where 𝑅𝑠𝑘 is the optimal distance and Δ𝐸 is the attractive potential well depth. (c) 3D illustration of two 

interacting skyrmions in the FeGe sample. Skyrmions are separated at a distance 𝑟 and the sample thickness is 𝑑. 

The colors indicate the spins orientation in the 𝑧 direction, where red is in +𝑧 and blue is along −𝑧. ((a) and (b) 

elaborated by the author, (c) elaborated by the collaborator Rai M. Menezes). 

 

 

In Fig. 13.3 (a,b) it is plotted the total energy, 𝐸  normalized by the corresponding 

background energy, the ferromagnetic 𝐸𝑓𝑒𝑟𝑟 in Fig. 13.3 (a) and conical 𝐸𝑐𝑜𝑛𝑒 in (b). The energy 

profile seen in Fig. 13.3 (a) is very similar to the ordinary skyrmion-skyrmion repulsion 

observed in other works, where the interaction is monotonically repulsive [73,215,216]. 

However, In Fig. 13.3 (b) the skyrmion-skyrmion interaction exhibits a non-monotonic 

(c) 
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behavior, similar to a Lennard-Jonnes potential [217]. In Fig. 13.3 (b) there is a horizontal 

dashed line that clarifies the attractive region of the potential. Moreover, it is possible to 

characterize an optimal skyrmion distance 𝑅𝑠𝑘 = 1.75𝐿𝐷 that reduces the energy, favoring the 

formation of skyrmion clusters. This attractive interaction region among skyrmions was 

previously demonstrated both theoretically [211] and observed experimentally [210]. In our 

work, we intend to investigate further how can the applied magnetic field and sample thickness 

affect the skyrmion behavior. 

13.3.3 Varying the applied magnetic field 

 Here we focus on this non-monotonic skyrmion-skyrmion interaction varying some 

conditions of the sample. First, we look into the influence of the applied magnetic field while 

keeping the sample thickness constant, 𝑑 = 1.0𝐿𝐷. In Fig. 13.4 (a), it is shown how the optimal 

distance, 𝑅𝑠𝑘/𝐿𝐷, varies as a function of the applied magnetic field, 𝐻/𝐻𝐷. The optimal distance 

exhibits two types of behaviors: (i) For low applied magnetic fields, 𝐻/𝐻𝐷 < 0.92, 𝑅𝑠𝑘/𝐿𝐷 

increases linearly with increasing 𝐻/𝐻𝐷 . (ii) For stronger fields, 𝐻/𝐻𝐷 > 0.92 , 𝑅𝑠𝑘/𝐿𝐷 

increases faster with applied magnetic field, as an exponential towards infinite. This happens 

since the magnet background is changing from conical do ferromagnetic. In the conical phase, 

the skyrmion interaction exhibits the non-monotonical behavior and the attractive region for 

skyrmions. However, as the backgrounds becomes saturated in the ferromagnetic state, the 

skyrmions become repulsive for all distances, resulting in a 𝑅𝑠𝑘 → ∞ with increasing field.  

Figure 13.4 – Results for a sample with fixed thickness, 𝑑 = 1.0𝐿𝐷. (a) The optimal distance 𝑅𝑠𝑘/𝐿𝐷 vs. 𝐻/𝐻𝐷 and 

(b) the attractive potential depth Δ𝐸/𝐸𝑐𝑜𝑛𝑒  vs. 𝐻/𝐻𝐷. The dashed regions correspond to magnetic fields where the 

background is no longer conical, but ferromagnetic. 
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 In Fig. 13.4 (b) it is shown how the attractive depth, Δ𝐸/𝐸𝑐𝑜𝑛𝑒, changes as a function of 

the applied field. There is an almost linear decrease in magnitude of Δ𝐸/𝐸𝑐𝑜𝑛𝑒  as 𝐻/𝐻𝐷 

increases, and for 𝐻/𝐻𝐷 > 1.0, where the background reaches the ferromagnetic state, Δ𝐸 = 0, 

indicating that the skyrmion-skyrmion interaction changes from non-monotonic to monotonic, 

as shown in Fig. 13.3. Note that for 0.9 < 𝐻/𝐻𝐷 < 0.96, the linear behavior of Δ𝐸/𝐸𝑐𝑜𝑛𝑒 is 

lost. This occurs exactly at the transition region between the conical and the ferromagnetic 

background. Thus, we plot the energy contributions of Δ𝐸 = Δ𝐸𝑒𝑥 + Δ𝐸𝐷𝑀𝐼 + Δ𝐸𝑍𝑒𝑒𝑚𝑎𝑛 in Fig. 

13.5. As can be seen, in the region 0.9 < 𝐻/𝐻𝐷 < 0.96  the energies change dramatically, 

resulting in the total energy variations observed in Fig. 13.4 (b). 

Figure 13.5 – Results for a sample with fixed thickness, 𝑑 = 1.0𝐿𝐷. The attractive potential depth of the energy 

contributions Δ𝐸𝑒𝑥 , Δ𝐸𝐷𝑀𝐼 , Δ𝐸𝑍𝑒𝑒𝑚𝑎𝑛  as a function of 𝐻/𝐻𝐷, where Δ𝐸 is the sum of all energy contributions. The 

dashed regions correspond to magnetic fields where the background is ferromagnetic. The horizontal dashed line 

separates the positive and negative energy contributions. 

 

13.3.4 Discussions and Summary 

 In this study, we investigated the interaction between a pair of skyrmions in 3D thick 

FeGe films by varying the applied magnetic field. Our findings revealed that skyrmions can be 

stabilized for various values of the applied magnetic field and sample thickness. While we 

observed the absence of skyrmion stabilization with a helical background, we did find the 

presence of skyrmions in conical and ferromagnetic backgrounds. Specifically, in the saturated 

ferromagnetic phase, skyrmions exhibited the expected repulsive behavior, consistent with 

previous studies. However, in the conical phase, we observed a distinct interaction pattern: 
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repulsion at both short and long distances, but attraction in intermediate regions. This interaction 

energy can be compared to the well-known Lennard-Jones potential, with an optimal distance 

between skyrmions. As we varied the applied magnetic field for a fixed film thickness, we noted 

that the optimal distance increased linearly for low fields. However, as the applied field 

approached saturation, the optimal distance increased exponentially. Regarding the attractive 

energy depth between skyrmions in conical backgrounds, we found that it weakened almost 

linearly with increasing field. Nevertheless, close to the transition between conical and 

ferromagnetic backgrounds, the linear relationship is lost. Additionally, we observed strong 

energy contribution variations near this transition point. The implications of these results are not 

yet fully understood, and further data analysis is required to ascertain if a phase transition is 

occurring within this system. We are conducting extensive simulations, which were time-

consuming due to the large size of the system (1024 × 512 × 72 nm). The energy minimization 

process for each system and skyrmion distance, 𝑟, required significant computational resources. 

We are also conducting simulations with varying sample thickness, but these cases involve even 

larger systems for thicker films. We anticipate that upon completion of these analyses, our work 

will contribute to a better understanding of interacting skyrmions in conical backgrounds. 

14 General conclusions 

It has been shown in this thesis that skyrmions under the influence of periodic substrates 

exhibit a rich variety of dynamical features that can be exploited for future technological 

devices. Concerning obstacle arrays, we showed here that the obstacle size can be used to 

control the skyrmion motion, where small obstacles allow the skyrmion to flow closer to the 

intrinsic Hall angle, with lower possible dynamic phases, while larger obstacles enrich the 

number of dynamic phases. Moreover, a periodic array of obstacles can be used as a topological 

sorting for skyrmions, where skyrmions from different species, with different Magnus force 

intensities, can be driven to locked to different angles in the sample, therefore sorting them. This 

sorting process can be very useful for applications, since skyrmions from the same species can 

be easier to control in a given sample.  

Besides the obstacle size, another way to control skyrmions is using the obstacle density. 

Here, we show that skyrmions may exhibit different dynamical behavior under samples with 

different obstacle densities. In samples with low obstacle density, the skyrmion flows closer to 

the intrinsic Hall angle, with reduced number of possible locking directions, while for higher 
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densities the skyrmion dynamics is much richer, with more possibilities for locking directions. 

Another interesting feature is that for a given value of external dc driving, the skyrmion may 

move at different angles depending on the obstacle density. This opens the possibility to create a 

sample where regions with different obstacle densities may coexist in order to steer the 

skyrmion into a predefined trajectory, which can certainly be helpful for spintronics.  

For the case of skyrmions under periodic substrates and ac driving only, we showed that 

besides the expected localized orbits, that also occurs for overdamped particles, in the skyrmion 

case it can also exhibit directed motion. As the ac drive amplitude is increased, the skyrmion 

orbit increases and can go from localized to delocalized orbits. Part of these delocalized orbits 

may exhibit directed motion due to ratchet effects that arise from the Magnus term. Using the 

ratchet effects, we also showed that in a given sample within regions with same obstacle array, 

but different obstacle sizes can be used to guide the skyrmion. The interface between these 

regions with different obstacle size create an asymmetry that under ac driving can induce a 

skyrmion transport through the edge. Our results show that the skyrmion can follow a straight 

interface, and if corners are added, the skyrmion can turn them and follow the interface, 

enabling the possibility for designed interfaces to work as a guide for the skyrmion. 

When dc and ac drive are applied together in periodic substrates, skyrmions can exhibit 

Shapiro steps and even more different locking directions. Interestingly, we observed for the first 

time a skyrmion Hall angle reversal, where due to the periodic substrate, dc and ac drives, in 

certain circumstances the skyrmion can exhibit a positive skyrmion Hall angle, and then a 

reversal to negative Hall angle.  Also, a total transverse motion can occur, where the dc drive is 

applied in one direction and the skyrmion flows perpendicularly to the applied dc drive 

direction. These results open novel possibilities to control the skyrmion motion in periodic 

substrates. 

For the case of another type of periodic substrate, such as funnel geometries, skyrmion 

can exhibit very distinct dynamic behavior due to the asymmetric shape of funnels. Using only 

ac drives, we showed here that a skyrmion can be set into motion along the easy or hard 

direction of the funnel array, depending on the direction of the ac drive. For ac drive parallel to 

the funnel axis the skyrmion flows in the easy direction, while for ac drive perpendicular to the 

funnel axis it flows in the hard direction. This opens possibility for a kind of data transfer using 

skyrmions, which we simulated here. Using only ac drive the skyrmion was able to flow from an 

initial funnel to another and then travel back to the initial funnel. 
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The results presented in this work aim to contribute in the skyrmion dynamics area and 

also in transport phenomena of similar particles that exhibit significant Magnus effects. Here we 

report several different ways to obtain a controlled skyrmion motion using only dc drives, only 

ac drives, combination of dc and ac drives and also some temperature effects. We hope these 

results may help to develop new devices using skyrmions in spintronics and serve as inspiration 

for future investigations. 
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