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Chapter

Introduction

Infectious diseases do not spread randomly in a population nor affect people equally
upon infection. Some population groups are more likely to acquire an infection or to
experience a severe outcome in case of disease because of risk factors that may not be
randomly distributed in the population. In infectious disease epidemiology, models
are used to understand which factors influence the mechanisms by which infectious
diseases spread and afflict a population in order to predict future outbreaks and to

evaluate prevention and control strategies.

Some of the factors influencing the spread and burden of infectious diseases are related
to demography and demographic events (e.g. age, births, migration), which typically
are included in epidemiological models, though often in a highly simplified manner.
Demographic structures and events in a population, however, result from complex
demographic processes that tend to change over time. In the context of infectious
disease epidemiology, it is not well understood how these underlying processes shape
current and future population structures with relevance for the transmission and

burden of infectious diseases.

For that reason, the aim of this dissertation is to explore and improve infectious disease
models with dynamic host populations with the purpose of investigating the impact
of demographic structures and changes on the transmission and burden of infectious
diseases transmitted through close contact. Next, we provide some background infor-
mation, including a brief overview of infectious diseases and the associated burden in
a historical context, a short introduction to infectious disease modelling and the most

commonly used methods, as well as the demographic methods applied in infectious



disease modelling. Finally, we briefly describe past and ongoing demographic changes

and how these influence the transmission and burden of infectious diseases.

1.1 Infectious diseases

From ancient plagues to the current coronavirus (COVID-19) pandemic, infectious
diseases have indisputably had a major impact on humanity. The emergence and
spread of infectious diseases increased as civilisation evolved. Intensified animal keep-
ing, more connected communities, extended trading and travelling, rising population
density and urbanisation led to a higher risk of outbreaks, epidemics and pandemics
[1, 2]. An outbreak constitutes a sudden rise in the number of infections in a rela-
tively small area. It becomes an epidemic when spreading to a larger geographical
area and is finally considered a pandemic when the spread is global [3]. While some
infections become endemic, meaning they are present in a population at a more or less
stable and predictable rate, outbreaks of other infectious diseases have been recurring

throughout history.

The Black Death (1346-1353) was a plague pandemic that was immensely destructive
and heavily reduced the populations in some regions of Europe and other parts of the
World [4, 5]. Until the mid-17*" century, areas of Europe faced several successive
plague epidemics, limiting the population growth [1]. In addition to the plague,
outbreaks of leprosy, syphilis, smallpox, yellow fever, typhoid fever, cholera and other
infectious diseases were the norm [6]. The first cholera pandemic emerged in 1817 as
it spread from India to multiple regions of the world and several cholera pandemics

followed in the 19" and 20*® centuries.

The high mortality caused by infectious diseases, particularly in infants and young
children, is reflected in estimates of life expectancy (see Figure 1.1). In Belgium in
1841, life expectancy at birth was about 40 years for both sexes combined [7]. In the
19t century, life expectancy in Belgium and many other countries improved slowly,
but was interrupted by different outbreaks. However, quarantine measures, sanitary
cordons and hygiene practices led to faster improvements in mortality at the end of
the 19" century and begininng of the 20*" century until an abrupt interruption was
caused by the First World War (1914-1918) and the Spanish flu pandemic (1918-
1919) [8]. The Spanish flu caused as many as 50 million deaths globally, although

such estimates are associated with substantial uncertainty [9].



After the Spanish flu pandemic, mortality from infectious diseases declined substan-
tially in most European and Western countries, partly due to rising living standards
and public health interventions in the first half of the 20*" century and particularly
due to advances in medicine (e.g. antibiotics, mass vaccination) in the second half [8].
Improvements in life expectancy followed accordingly as non-communicable diseases
replaced communicable diseases as the main causes of death in many countries. The
long-term improvement in life expectancy is one of the most spectacular developments
in the past two centuries. In Belgium in 2021, life expectancy at birth was approach-

ing 82 years, a tremendous improvement from the aforementioned 40 years in 1841

[7].

Cholera
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Figure 1.1. Crude death rate per 1,000 people (CDR, left y-axis, blue) and life
expectancy at birth for both sexes combined (LE, right y-axis, red) for Belgium, 1841-
2021. Missing data 1914-1918. Source: Human Mortality Database and Eggerickx
et al. [10].

Nevertheless, infectious diseases remain a public health threat, particularly in low-
income countries [11]. Viral descendants of the Spanish flu have caused seasonal
influenza epidemics and pandemics in 1957-1958, 1968-1969 and 2009 [12]. Moreover,
in recent decades, new threats have arisen from emerging infectious diseases, including
human immunodeficiency virus (HIV), Ebola and severe acute respiratory syndrome
coronavirus (SARS-CoV). COVID-19 being the most recent example of a devastating
pandemic disease [13].



1.2 Modelling of infectious diseases

Mathematical and computational models have become important tools for analysing
the spread of infectious diseases and to evaluate control measures, for which controlled
trials typically are practically or ethically infeasible [14, 15]. Predictive models can
guide policymakers in the assessment of different mitigation strategies, as seen during
the COVID-19 pandemic [16]. Infectious disease modelling also provides a framework
for investigating transmission dynamics and the role different factors play in the
spread of an infection by examining them in isolation. Such models can give an
understanding of which elements are important to consider and improve the accuracy
of predictive models, hopefully leading to better strategies for prevention and control

of infectious diseases [15, 17].

8" century, when Daniel

Mathematical modelling in epidemiology goes back to the 1
Bernoulli presented a paper on smallpox [18], demonstrating how inoculation in the
long term could increase life expectancy and the population size. The method, how-
ever, was criticised in the scientific community and had little impact at that time
[19, 20]. It was not until the beginning of the 20" century that theories explaining
the mechanisms by which infectious diseases spread were formulated. Hamer (1906)
[21] presented the mass action principle defining the incidence (number of new cases
per time unit) of directly transmitted infections as a function of the product of the
number of susceptible and infectious individuals. Kermack and McKendrick (1927)
[22] formulated additional theories, including the threshold theorem stating that for
a given set of rates of transmission and recovery/death, a critical threshold density
of susceptibles exists, which, if exceeded, gives rise to an epidemic. Moreover, they
introduced the compartmental SIR model, a framework still used today. Since then,

the field of mathematical epidemiology has grown substantially [17, 23-25].

1.2.1 Compartmental models

The spread of infectious diseases is often modelled at the population level using the
compartmental modelling approach introduced by Kermack and McKendrick (1927)
[22, 26]. The population is divided into compartments according to disease state (e.g.
susceptible, infectious and recovered) and assumptions define the transitions between
compartments. The model structure should reflect the natural history of the given
infection. The model structure Susceptible-Infectious (SI), for example, is used when
a once infected individual remains infected and infectious for life (e.g. HIV). Mean-

while, Susceptible-Infectious-Recovered (SIR) model structures would be appropriate



for infections for which individuals develop immunity after having been infected [25].
For other infections, it could be important to include temporary immunity of infants
resulting from maternally-derived antibodies (M), or an exposed state (E) for infected

but not yet infectious individuals (i.e. latent period) [27].

After the compartments (i.e. disease states) have been defined, the transitions from
one compartment to another are described. Considering a simple SIR model (see ex-
ample in Figure 1.2), the transition from Susceptible to Infectious results from disease
transmission. Depending on the infection, different routes can lead to transmission be-
tween human or animal hosts, including direct contact (e.g. leprosy), respiratory route
(e.g. influenza, tuberculoses, SARS-CoV-2), faecal-oral route (e.g. typhoid, dysen-
tery), sexual contact (e.g. HIV) or through insect vectors (e.g. malaria, dengue). The
interaction between hosts allowing transmission of an infection if one host is infectious

and the other is susceptible will be referred to as contact [25].

uN Susceptible AeSy Infectious ~vI; Recovered
St It Rt
WSt jae PRy

Figure 1.2. Example of SIR model. \; = BI;, v = recovery rate, u = crude
death/birth rate, N = S; + I; + R;.

Contact patterns are typically expressed in rates and are modified by a transmission
probability to take into account that some contacts between susceptible and infectious
individuals do not lead to transmission [17]. The product of the contact rates and the
transmission probability is denoted by [, the rate at which two specific individuals
come into effective contact per unit time [25, 28]. The progression from Susceptible

to Infectious can be formulated as A\+S; (mass action principle), where

A = Bl (1-1)

Hence, \; represents the risk of a susceptible individual becoming infected [25]. The
size of each compartment can be defined in absolute numbers or as a proportion of the
population, often depending on whether density-dependent or frequency-dependent
transmission is assumed (see chapter 2 in Keeling and Rohani [17] for further details).

The progression from Infectious to Recovered depends on the length of the infec-



tious period, which typically is estimated from clinical data. Finally, in the example
presented in Figure 1.2, newborns enter the population (uN) and dead individuals
are removed (uSy, uly, uRy) using the simplifying assumption of equal crude death
and birth rates, meaning the population size is constant. The whole system can be

represented by difference equations [25].

Besides disease state, the host population is often stratified by additional character-
istics, describing differential behaviour influencing the risk of contracting and trans-
mitting infection (e.g. age, sex, sexual behaviour) [17]. However, the complexity of
the system of compartments and the corresponding number of equations increases
inevitably as additional population heterogeneity is incorporated. Moreover, some
heterogeneities are difficult to implement in compartmental models and population-
level models in general, for example spatial structures, life trajectories, local interac-
tions, network structures and adaptive behaviour. If such elements are important to
take into account considering the given infection and the purpose of the model, other
modelling approaches are typically applied, such as individual-based models (IBMs).
We use the abbreviation IBM to refer to all infectious disease models at the individual

level, including agent-based models [26].

1.2.2 Individual-based models

While population-level models, including compartmental models, can be described as
top-down models due to the imposed aggregate parameters, IBMs follow a bottom-up
approach. In an IBM, each individual in the population is explicitly represented and
can be assigned an extensive set of relevant attributes and behaviours, for example
disease state, age, sex, health trajectory, membership of subgroups, spatial location,
sexual and social behaviour. Moreover, individuals can interact with each other and
their environment based on a set of defined rules [29]. All events are tied to the
individual, meaning that the life-course and health trajectory of each person is tracked
[14]. Consequently, outbreaks at the population level emerge from the interactions

between the individuals and their environment.

In the compartmental SIR model in Figure 1.2, the risk of infection was assumed to be
proportional to the number of infectious individuals in the population (Equation 1.1).
This equation, however, tends to overestimate the actual risk of infection in small
populations, as a susceptible individual may have contact with multiple infectious
individuals, but only one of those contacts will lead to disease transmission. Thus, in
IBMs, Equation 1.1 is often replaced with the Reed-Frost formula [28]:



AM=1-(1-p)h (1.2)

where p is the probability of an effective contact between two specific individuals
in each time step. If each individual’s membership of subgroups (e.g. household,
school, workplace) is considered in the model, Equation 1.2 is typically extended
to distinguish between infection resulting from contact within the subgroup and in
the community, since contact patterns, and by that the risk of infection, often vary
considerably by setting [25, 30, 31].

IBMs provide a framework for exploring how subgroups, networks and individual
variation influence disease transmission at the population level, with importance for
intervention strategies. For example, non-pharmaceutical interventions targeted at
specific population groups, such as diagnostic testing in schools, school closure, control
of within- and between-household mixing and limitation of spatial mobility, have been
investigated using IBMs [32-34]. This is rather complex to carry out in a population-
level model, but can still be achieved [35]. Moreover, IBMs have proven particularly
useful when an individual’s history of exposure influences the risk of infection or
another outcome of interest (e.g. [36, 37]). Nevertheless, IBMs can be difficult to set
up and are computationally intensive. Detailed models require many input parameters
and it can be difficult to disentangle the contribution of each input parameter on the
overall outcome [25]. Moreover, detailed data may be limited, making it necessary
to make strong assumptions. However, improvements in hardware performance have

reduced these disadvantages [38].

1.3 Demographic modelling of host population

Demographic structures often help to explain heterogeneity in the spread of infec-
tious diseases. Age in particular is an important factor in the epidemiology of many
infectious diseases. The proportion susceptible to an immunising infection (in the
absence of vaccination) is likely to decrease with age, since it indicates the years of
exposure [25]. Moreover, the number of social contacts vary considerably by age and
people generally have a high proportion of their contacts with people of similar age
(i.e. assortative mixing) [30]. Thus, social contact patterns are likely to affect the
age-specific exposure to directly transmitted and airborne pathogens. The risks as-
sociated with an infection may also vary across ages or increase if coinciding with

age-related events. For example, the morbidity and mortality of respiratory virus



infections is pronounced in the elderly population [39], adults with mumps or measles
face an increased risk of encephalitis and rubella infection during pregnancy is as-
sociated with increased health risks for the child. Interventions such as vaccination
programmes are typically also designed to target specific age groups [25]. Finally,

epidemiological data is often collected by age groups.

Other demographic characteristics that may be relevant to include in the host popu-
lation include sex, spatial structures, household membership, social structures, school
enrolment, workplace, sexual orientation or health status (noncommuncable diseases).
The relevance of each component depends on the infection and the purpose of the
model. For sexually transmitted diseases, sex and characteristics describing sexual
behaviour are typically taken into account [40]. Meanwhile, households have been
given particular attention when modelling infectious diseases spread through close
contact, such as influenza and COVID-19 [35, 41-47]|, because household members
tend to have more frequent and intimate contacts of a longer duration [31, 48, 49].
Moreover, household members often belong to different age groups (e.g. parents, chil-
dren, grandparents) with distinct health trajectories and are part of different formal
and informal groups outside the household (e.g. schools, workplaces, sports clubs,
social groups). Households may thus facilitate the spread of an infection between

population groups that are not directly connected (i.e. bridging function) [50].

The demographic method used to construct the host population, however, limits
the feasibility of incorporating demographic characteristics beyond age and sex. The
population heterogeneity required considering the infection, setting and research ques-
tion should thus be taken into account when choosing the type of method, as well as
the necessary degree of resemblance between the host population and a real popula-

tion.

1.3.1 Static, stationary and stable populations

Many demographic characteristics change throughout an individual’s life. People are
ageing, moving between households, forming new relationships, developing chronic
illnesses etc. Moreover, newborn children and immigrants enter the population, while
others leave the population due to death or emigration. Thus, populations evolve over
time. The demographic structures of the host population in infectious disease models,
however, has traditionally been assumed to be static, stationary or stable [27]. In a
static population, births, deaths, migration and ageing are disregarded completely.

If population dynamics are incorporated in the form of a stationary population, the



number of people entering and leaving each age group in the population are assumed
to be equal, implying no population growth and a constant age distribution [17].
Stationary populations are a special case of a stable population. Both have a constant
relative age distribution, but the latter may be growing or shrinking as the assumption
of equal flows in and out of the population is relaxed. An actual population, however,
is rarely perfectly stable, but if subjected to constant vital rates for an extended
period of time, it will gradually converge to stability. The resulting age structure of
the stable population is entirely determined by the vital rates and may differ markedly

from that of the initial population [51].
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Figure 1.3. The relative age distribution of Belgium in 2021 (dashed line) and that
of the corresponding stable population (solid line) assuming vital rates of 2021 and
no migration. Source: Statbel and own construction of stable population.

Stable and static populations may be justified when considering epidemics occurring
over a time frame that is sufficiently short to limit the effect of demographic processes
(e.g. weeks, months). However, as the time frame extends or when modelling endemic
diseases, the outcome may be very sensitive to assumptions about fertility, mortality
and migration [25]. Population-level predictions of epidemiological outcomes may also
be affected by differences between the composition of a stable host population and
that of the actual population. The age distribution observed for Belgium in 2021, for
example, deviates markedly from that of the stable population implied by the fertility
and mortality schedules for Belgium in 2021, assuming no migration (see Figure 1.3).
Finally, the epidemiology of an infectious disease may be influenced by demographic

change in the host population.



1.3.2 Representative population structures

Host populations with a representative demographic composition, in the sense that
they resemble an observed population, are increasingly being incorporated in models
of disease transmission. Generally, two different demographic methods are used to
model host populations with realistic structures, the cohort component method and
microsimulation [52]. The cohort component method is used to create population-level
models, which have many similarities with compartmental models. The population is
divided into subgroups with differential risks of demographic events, typically limited
to fertility, mortality and migration, and the changes in each subgroup is computed
separately over time. In most cohort component models, the population is only seg-
regated by age and sex [25]. The cohort component population model is combined
with a compartmental disease model by breaking each disease compartment down by

the demographic subgroups.

Microsimulation is a commonly used term to describe IBMs in demographic research.
Similar to IBMs for disease modelling, microsimulation constitutes a useful tool for
incorporating a higher degree of heterogeneity in the host population and the processes
underlying its demographic structures. The set of demographic attributes can expand
in a flexible manner, individuals can interact (e.g. form a union), social structures and
networks can be implemented (e.g. households, kinship networks) and the life history
of an individual can be taken into account when assessing the probability of future
events [53, 54]. A demographic microsimulation can easily be combined with an IBM
for disease transmission by adding the disease state to each individual’s attributes
and other components relevant for disease transmission. In practice, the demographic

model and the infectious disease model are typically developed jointly.

Regardless of the method, demographic processes need to be taken into account to
obtain a somewhat realistic evolution in the composition of the host population. If the
vital rates remain constant, demographic changes will be observed at first as the effect
of past changes in fertility, mortality and migration emerge. However, the population
will eventually converge to the implied stable age composition. Consequently, some
studies advance to nonstable host populations with dynamic demographic processes,
especially if the period under consideration is long [36, 44, 47, 55-60]. We refer to

these as dynamic populations.
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1.3.3 Demographic change and disease transmission

A population’s history of mortality, fertility and migration is reflected in its age
distribution [25]. This is seen in Figure 1.3, where the age distribution of the observed
population is rather uneven (dashed line) as a result of past changes in the vital
rates, while the stable age distribution is smooth (solid line). The historical declines
in mortality described earlier (see Figure 1.1) were in most high-income countries
of today followed by substantial fertility declines starting in the late 19th century
or early 20th century. Over decades, the populations transitioned to a regime of
low mortality and fertility, a process also referred to as the demographic transition
[61]. During the transition, the population grows rapidly, but the stages prior to and
after the completion of the transition are associated with low population growth or
even declines [62]. By now, the demographic transition has reached all world regions,

although some populations are still in the early stages [63].

The changing mortality and fertility levels induce changes in the population age com-
position. Populations at the early stages of the demographic transition have a younger
age structure than those at the later stages, while populations that have completed
the demographic transition will be characterised by an increasingly older age struc-
ture, if fertility and mortality remain low [62]. In the course of the demographic
transition, the median age of the population will start increasing, a phenomenon re-
ferred to as population ageing. All countries in the world are currently experiencing
population ageing, and some low- and middle-income countries are ageing at an un-
precedented speed [64]. However, the proportion of the population aged 65 years and
older is still substantially higher in upper-middle income and high-income countries,
including Belgium (19.4% in 2021) [65].

Like many other high-income countries of today, Belgium faced an increase in fertility
in the mid-20th century, also labelled the baby boom. This was followed by a decline to
below-replacement fertility in the 1970s, corresponding to a total fertility rate (TFR)!
below 2.1. Since then, the TFR in Belgium has remained well below the replacement
level, with consequences for the population age composition [65]. The large size of
the generations born in Belgium in the mid-20th century is seen from the wide base
of the population pyramid for 1970 (grey bars) in Figure 1.4. Considerably smaller
generations followed (blue line), and currently the generation of the baby boom is
moving into the older age groups, causing a temporary acceleration of population

ageing, which is expected to continue in the next few decades (red line) [66].

I"The average number of children a woman would bear if she survived through the end of the
reproductive age span and experienced at each age a particular set of age-specific fertility rates" [25].
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Figure 1.4. Age-sex groups as proportions of the Belgian population in 1970, 2000
and projected in 2030. Males on the left side, females on the right side. Source:
World Population Prospects 2019, United Nations Population Division.

These historical declines in fertility and mortality and the induced changes in the
population age composition are associated with a decreasing incidence of infections
traditionally considered to be childhood diseases, such as measles [42, 67-71]. Con-
sidering measles prior to vaccination, a reduction in births imply that the proportion
of susceptible individuals (young children) relative to immune individuals (older chil-
dren and adults) is decreasing, hence measles circulation drops and the mean age
at infection increases [72]. Moreover, the shifting age composition in ageing popula-
tions imply that the burden of infections with a higher incidence and severity in older
adults is expected to increase [73-75]. Older adults face an increased susceptibility
to many infections and a higher risk of a severe outcome in case of disease due to the
progressive deterioration of immune functions with age (immunosenescene) [76]. The
COVID-19 pandemic, for example, had a disproportionate impact on the older adult
population [77, 78].

1.4 Motivation and aim

The impact of demographic change on the epidemiology of infectious diseases has
mainly been investigated by considering changes in the population age composition.
This has undoubtedly improved the understanding of long-term transmission dynam-

ics at the population level, with importance for the evaluation of immunisation pro-
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grammes. However, demographic changes with relevance for disease transmission go
beyond changes in the age structure and are not always noticeable at the population
level. As mentioned earlier, age- and household-structured host populations have
proven valuable for modelling infections transmitted through close contact [43, 45],
which are the focus of this dissertation. However, only few studies consider a dy-
namic evolution in the population age structure as well as the household structure
(e.g. [41, 42, 47, 58, 79-81]), although both are affected by changing patterns of

fertility, mortality and migration.

The household size and composition of nuclear families, for example, are highly influ-
enced by the level and timing of fertility. The postponement of parenthood implies
that parents gradually will be older when the last child leaves the household. Chang-
ing trends in divorce rates, re-partnering and custody arrangements mean that an
increasing share of children are members of more than one household and reconsti-
tuted families. These phenomena have been observed for decades in many high-income
countries and are described in demographic research as the second demographic tran-
sition [82, 83]. Changing patterns in fertility and family formation may alter the
transmission dynamics within the affected families and households. This could have
potential spillover effects in the rest of the population due to the high number of

contacts of children and the special bridging function of their households.

Additionally, population ageing implies that the population household structure will
be increasingly influenced by the living arrangements of older adults, which tend to
differ from those of younger age groups. In Belgium, for example, the large majority
of older adults live alone, with a partner or in a long-term care facility (LTCF), which
typically has a large number of residents [84]. While small households are associated
with a smaller risk of acquiring an infection that spreads through close contact, large
households are associated with an increased risk [43, 85]. Consequently residents in
LTCFs accounted for a substantial share of the morbidity and mortality associated
with COVID-19 [86-88], since it is a high-risk population in a high-transmission envi-
ronment. Thus, relatively small population groups may be disproportionately affected
by some infectious diseases due to differential demographics, particularly if the demo-
graphics of the group is associated with an unfavourable health trajectory, as in the
case of LTCF residents.

The aim of the dissertation is to explore and improve infectious disease models with
dynamic host populations with the purpose of investigating the impact of demographic

structures and changes on the transmission and burden of infectious diseases transmit-
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ted through close contact. To achieve this goal, we need an understanding of several
relationships, which leads to the research questions: (i) what is the relationship be-
tween age and household structures at the individual and population level and how are
these shaped by demographic processes and changes therein? (ii) to what degree are
transmission dynamics at the individual, household and population level shaped by
age and household structures? (iii) how are population age and household structures
expected to evolve over time and how are the demographic changes expected to affect
the transmission dynamics and disease burden? Addressing these research questions
requires interdisciplinary research combining demographic modelling and infectious

disease modelling, which will be presented in this doctoral dissertation.

1.5 Overview of the dissertation

This dissertation consists of five scientific investigations in which we explore and fur-
ther develop existing methods used to incorporate demographic change in infectious
disease modelling and present multiple applications in an attempt to unravel the rela-
tionship between population structures and the transmission and burden of infectious

diseases.

In Chapter 2, we present a systematic review of the demographic methods and data
used to incorporate dynamic host populations in models of infectious disease trans-
mission. We provide an overview of the demographic methods and techniques used to
model the initial population structure and the demographic processes (fertility, mor-
tality, migration and household transitions) and discuss their advantages and limita-
tions. Finally, we discuss the potential implications certain demographic methods and
assumptions have for the population composition and potentially for epidemiological

outcomes.

With the advantages and limitations of the existing infectious disease models incorpo-
rating demographic change in mind, we develop a demographic microsimulation which
is presented in Chapter 3. The age- and household-structured model is informed with
Belgian census data and population register data, making it possible to obtain a high
level of detail in the initial population as well as the demographic processes. We
specifically simulate the Belgian population from 2011 to 2050 and consider fertility,
mortality, migration and household transitions. The microsimulation is developed to
be easily combined with a disease transmission model and we present two applications
in Chapter 4 and 5. In the first study, we explore the relationship between age and

household structures at the individual and population level with the purpose of in-
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vestigating how these shape the disease transmission dynamics of an epidemic. In the
second study, we model outbreaks of diseases resembling COVID-19 and pandemics
influenza and explore how the transmission dynamics and disease burden are affected
by population ageing. We specifically consider the changing living arrangements in

the older adult population.

In Chapter 6, we present ongoing work investigating the impact of demographic change
on the epidemiology of varicella-zoster virus (VZV) and herpes zoster (HZ) in the US
population from 1960 to 2020. This involves an individual-level modelling frame-
work similar to the microsimulation developed for Belgium. Finally, in Chapter 7 we
highlight the main findings of the research presented in this dissertation and discuss
limitations. We also discuss how the presented studies can provide a foundation for

further research.
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Chapter

Incorporating human dynamic populations in models
of infectious disease transmission: a systematic
review

This chapter is based on published work: "Mggelmose, S., Neels, K. & Hens, N. In-
corporating human dynamic populations in models of infectious disease transmission:
a systematic review. BMC' Infect Dis 22, 862 (2022).”

2.1 Background

In response to infectious disease threats, mathematical and computational models
have proven to be invaluable tools in understanding the spread of infectious diseases
in human populations and in quantifying possible disease control strategies as well as
evaluating public health interventions, particularly in situations where a controlled

trial is ethically or practically unfeasible [14].

The host population studied in an infectious disease model is typically assigned de-
mographic characteristics to account for heterogeneity that may influence the spread
of an infection. Population age structure, for example, is commonly included as
epidemiological parameters often vary by age, such as the proportion susceptible to
immunising infections, which typically decreases with age. Furthermore, contact pat-
terns relevant for the spread of close-contact infections are highly assortative with

age, which may affect the exposure to infection. Susceptibility to infection may also
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vary across ages, as well as the risks associated with an infection [15, 25, 30]. Other
demographic characteristics and subgroups (e.g. sex, households, schools and spatial
structures) may also play an important role in the transmission process of an infec-
tious disease [48, 50, 89]. This often implies that the burden of an infectious disease in
a population may also be influenced by the relative size of those demographic groups,

also referred to as the population composition.

The composition of a population tends to change over time as a result of changes
in the underlying demographic processes, which include ageing, births, deaths and
population movements. Nevertheless, demographic change is a slow process and is
often not incorporated in models of infectious disease transmission, since the time
period under consideration tends to be short. Moreover, it is often useful to disregard
demographic change when focusing on how epidemiological factors alone influence

different outcomes [67].

For some infections, settings and research questions, however, the realism of the pop-
ulation composition and how it evolves play an important role. This often applies
to analyses of disease transmission dynamics and public health interventions over a
longer time frame, where demographic changes are to be expected. Fertility declines,
for example, have in some cases been linked to increases in the average age at infec-
tion of diseases traditionally considered to be childhood diseases [42, 6769, 71]. This
may affect the disease burden of infections associated with increased morbidity and
mortality in certain age groups or during age-related events such as pregnancy [25].
The burden of infections with a higher incidence and severity among the elderly is
also expected to increase as a population undergoes ageing, as has been seen with
herpes zoster [74, 75]. Such relationships can only be investigated by allowing for

demographic change in the host population.

Demographic change can be introduced in models of infectious disease transmission
in various ways. The population can be subjected to constant fertility and mortal-
ity rates for an extended period of time, where demographic change will result from
the gradual convergence of the population to the implied stable population with a
constant relative age distribution and a fixed growth rate [51]. In many cases, this
provides a useful approach for investigating disease transmission dynamics in a popu-
lation with a changing composition induced by preceding trends in fertility, mortality
and migration. However, as the time period expands, the assumption of constant de-
mographic rates becomes implausible. Thus, for the evaluation of long-term effects, it

may be important to consider demographic change in the host population by explic-
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itly considering and including dynamic demographic processes. We will refer to this
as a dynamic population which is the main focus of this paper. Dynamic populations
are incorporated in an increasing number of mathematical and computational models
for infectious disease transmission. These models have shown an important impact of
demographic change on the long-term dynamics of infectious diseases, as well as for
the effectiveness of immunization programmes. For example, long-term demographic
changes have been found to have a considerable effect on the epidemiology of varicella
and herpes zoster, implying that the demographic assumptions have an impact on the
predicted burden of disease [75, 90].

The demographic methods used to incorporate a dynamic host population in models
of infectious disease transmission vary considerably. The methods range from adjust-
ing the age distribution over time according to population projections to complex
models with dynamic demographic processes and subgroups such as households (e.g.
[42, 75]). This includes population-level models and individual-based models (IBMs).
We use the term IBM to refer to all models at the individual level, including microsim-
ulations and agent-based models [26]. IBMs are increasingly used to model disease
transmission, however, it is unclear whether their flexibility also enhances the level
of detail incorporated in the demographic modelling. Finally, various demographic
assumptions are applied in models of disease transmission, such as no migration, but

the implications thereof are not always explained.

With this systematic review, we provide an overview of the methods and techniques
used to model dynamic population structures in the context of infectious disease
modelling, which to our knowledge has not previously been attempted. We discuss
the advantages and limitations of various modelling techniques in order to improve
the understanding needed to evaluate their suitability in a given study. Moreover, we
discuss the potential implications certain demographic methods and assumptions have
for the population composition and potentially for the epidemiological outcomes. As
previously mentioned, dynamic host populations are in many cases not incorporated in
models of infectious disease transmission and typically for good reasons. Thus, the aim
is to identify the smaller group of infectious disease models where dynamic population
structures have been a major point of attention. To obtain this, while taking the
feasibility of the search into account, we limit our review to infectious disease models
with a focus on demographic change. We differentiate in terms of the method that
is used to model the host population, the different demographic processes, as well as

the data and techniques used to model each demographic process.
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2.2 Methods

We carried out a systematic review in accordance with the guidelines of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses [91]. The methods and

procedures are described in a protocol (see Appendix A section A.1).

2.21 Search

We searched PubMed and Web of Science Core Collection for articles published up
to August 25th 2020 without language or time restrictions using the following search

string in titles and abstracts:

(demography OR “demographic transition” OR “demographic change*” OR
“population change*” OR “household structure*” OR “household composi-
tion*” OR “population ageing” OR “population aging” OR “aging popula-
tion” OR “ageing population”) AND (infect* OR vaccin® OR epidemic* OR
communicable) AND (model* OR simulat*) NOT (animal* OR plant*).

The asterisk in some search terms represents any group of characters, including no
character (e.g. infect*: infected, infection, infectious etc.). The search string includes
terms related to demography since we mainly expect dynamic host populations to be
incorporated in papers with a focus on demographic change. Broader search terms
(e.g. demograph*) and the search of full-text and supplementary material would
provide a more thorough search but would result in an unfeasible amount of hits. A
detailed overview of the result of each search term and the overall search strategy is
shown in Table A.1 in Appendix A. The results of the search strategy were managed
in Endnote X9.

2.2.2 Eligibility criteria

The eligibility criteria were defined by two researchers (SM and NH) prior to screen-
ing. We included research papers on mathematical and computational models for
infectious disease transmission in a human population. The host population should
at least be divided into five age groups. Moreover, the population should result from
a model including at least fertility and (all-cause) mortality as dynamic processes. No
requirements are made for disease-specific mortality, if included in the model. The
demographic model can be included explicitly or population structures from another
source can be used as input to the disease transmission model, as long as this popu-

lation is the result of a demographic model explicitly considering dynamic trends for
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fertility and mortality. This implies that models assuming constant fertility or mor-
tality rates throughout the entire study period are excluded. However, models with
constant rates in a limited part of the study period are still included. Articles only
describing the technicalities behind a method or a software tool without applying it to
any population are also excluded. Finally, models limited to high-risk groups (MSM
community, injecting drug users etc.) are excluded. The screening and selection pro-
cesses are presented in Figure 2.1. Titles, abstracts and full-texts were screened by a
single reviewer (SM) and discussed with the last author (NH) in case of doubt. We

also identified articles by screening reference lists of the included articles.

2.2.3 Data extraction and analysis

For all eligible articles, we retrieved and classified information as follows: (1) Setting
and population characteristics: country/region, population, demographic character-
istics and time horizon; (2) Model specifications and data: model type, demographic
processes considered and source of demographic data; (3) Modelling of demographic
processes: starting population, fertility, mortality, migration, household networks and
sensitivity analysis of demographic assumptions; (4) Specifications of disease trans-
mission model and analyses: disease, vaccination, social mixing and cost-effectiveness
analyses. Models from the same article were included if they were eligible and differed
from each other in setting, model specifications or demographic processes. To make
it clear that models originated from the same article, letters were added to the article

number in figures and tables.

2.3 Results

We identified 881 articles (after removing duplicates) by searching the databases
PubMed and Web of Science Core Collection with the search string mentioned under
Methods. Based on the defined eligibility criteria, we screened titles and abstracts
and excluded 724 articles. For the remaining articles, a full-text analysis was carried
out in case fulfilment of the eligibility criteria was uncertain. Most articles excluded
at this stage were assuming constant fertility and /or mortality rates. We identified 13
articles through snowball sampling. Finally, 46 articles, containing 53 different mod-
els, were included in the qualitative analysis. The data retrieved from each article
can be found in Appendix A in tables A.2 to A.9. In this section, the term study is

used to refer to all models within one article.

21



)

Identification

[

)

Screening

Eligibility

[

Included

-/

Records identified
through Web of
Science (n=783)

accessed on 25/08/2020

Records iden-
tified through
PubMed (n=468)
accessed on 25/08/2020

Records after duplicates
are removed (n==881)

Title/abstract
screened (n==881)

Full-text articles
assessed for eli-
gibility (n=157)

-

J—(
:

Ve

Records excluded (n=724)

Reasons for exclu-
sion (non-exclusive):
Fixed mortality/fertility
(n=73); mortality/fer-
tility missing (n=32);
age-structure missing
(n=28); software tools

Included articles (n=33)

(n=2); other (n=9).

=

J

(Articles included through

Articles included
in qualitative
synthesis (n=46)

Lsnowball sampling (n=13)

Figure 2.1. PRISMA flow diagram of the article selection process.

22



2.3.1 Setting and time period

In the included studies, populations were modelled for countries, regions and cities
in Europe (20), Asia (16), Africa (14), North America (12), Oceania (9) and South
America (6). Twelve studies covered multiple populations. In most of the studies,
past as well as future time periods were modelled, six studies only covered a historical
period while five studies only looked at projections of the future. The length of the

modelling period varied between 10 and 250 years as seen in Figure 2.2.

2.3.2 Model type

We divide the demographic models in the included studies into three types: (i) dis-
ease models that use demographic population prospects as an external input (EPMs:
external population models), (ii) cohort-component-based models that use cohort-
component projections to model demographic change (CCBMs) and (iii) individual-
based models that model demographic events at the level of individual life courses
(IBMs). First, EPMs draw the annual population composition from an external source
and use it as an input for the disease transmission model instead of modelling the
demographic processes explicitly. Given assumptions for the different components
of demographic change, statistical agencies often generate projection sets that pro-
vide annual information on population composition, typically by age and sex. In this
approach, the population composition is allowed to vary over time, but population dy-
namics cannot be attributed to changes in fertility, mortality or migration separately,

because only the resulting population composition is used.

Second, in CCBMs, the population is divided into subgroups to which group-specific
rates for fertility and mortality are applied in each projection step to work out popu-
lation change over time. In most cases, CCBMs do not consider household or family
dynamics. Depending on the assumptions made, emigrants and immigrants are sub-
tracted and added, respectively, by age and sex [51]. As is the case for the EPMs
discussed earlier, CCBMs are typically integrated into a compartmental disease trans-
mission model by adding the demographic sub-groups (e.g. age groups) to each com-
partment. As a result, both disease transmission and population dynamics are mod-

elled at the population level.

Third, in IBMs, the unit of analysis is the individual. In IBMs, all individuals are
assigned a set of attributes (e.g. age, sex, marital status) and are in every time interval
subject to covariate-specific risks of demographic events, such as union formation or

dissolution, fertility, mortality and migration [54]. However, the number of covariates
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included in each demographic process varies substantially between the included IBM
studies. Given the predicted probabilities, a random number generator is used to
determine whether an individual experiences the event and the individual’s attributes
are updated accordingly [120]. This makes it possible to track the life course of each
individual. In order to simulate disease spread in a demographic IBM, a disease state
is added to the individual attributes. Moreover, interactions between individuals as
well as subgroups (e.g. households, schools) and network structures (e.g. mobility
networks) can be included when relevant for disease transmission [14], which was done

in several studies.

In 14 studies, existing population prospects were used as external input in the disease
model (see Figure 2.3 and Figure 2.4). CCBMs and IBMs were applied in 24 and 7
studies, respectively, while one study applied both approaches. This implies that the
majority of the included studies use population-level models, but fertility, mortality,

and in some cases also migration, were in most cases modelled explicitly.

2.3.3 Starting population

Most studies based the starting population on the observed population composition
in the first year of the modelling period or on a population sample. In 18 studies,
however, the starting population was generated by simulating demographic events
and disease transmission in an initial population using a set of demographic rates for
a defined period of time (see Appendix A tables A.2 and A.3 for more detail). In
this way, an epidemiological equilibrium can be obtained in the starting population,
while respecting any specified demographic constraints (e.g. demographic generation
intervals, birth intervals). In most of these studies, the fertility and mortality rates
remained constant in the initialisation period, which eventually leads to a stable

population.

The relative age distribution of a stable population is not influenced by the initial
age distribution, but is entirely determined by the fertility and mortality rates as-
sumed [51]. Consequently, the age composition in the initial non-stable population
and the resulting stable starting population may differ considerably. Some studies
compensated for this by adjusting the demographic rates used to generate the start-
ing population. Household membership was included in the starting populations of
the eight models incorporating households. Individual-level data on household po-
sition and composition were lacking in most studies and marginal distributions of

household size and age compositions were applied instead. Different algorithms and
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constraints were applied to obtain somewhat realistic age differences between house-
hold members in the starting population. In several studies, household members were
assigned different positions (e.g. adult in a union, single adult, child) based on data

or defined rules.

2.3.4 Demographic processes

The 32 studies using IBMs and CCBMs included at least dynamic trends for fertility
and mortality. In most of these studies, covariates were included in the fertility and
mortality processes (e.g. age and sex), as seen in Figure 2.3 and Figure 2.4 and
further described below. Migration was included in 22 studies and households were
only incorporated in eight models. Finally, demographic sensitivity analyses were
performed in nine models. In some EPMs [37, 103, 104, 106], it was assumed that
the number of births in a given year equals the size of the youngest age group, while
a decrease or increase over time in all other age groups was ascribed to mortality
and immigration, respectively. These details are not included in Figure 2.4 because
the changing size of an age group cannot be ascribed to one demographic process
alone. The external population prospects typically result from a set of assumptions
for fertility, mortality and migration, but since these are not modelled explicitly in
the infectious disease model, EPMs are not considered in the further discussion of
the demographic processes. The subgroups by which the population in an EPM is

decomposed are described in Figure 2.4 instead.

No _— Households 58b
migration
_ Fertility: ~ Mortality:
No covariates Age-specific
Migration — SA o 90abc,
36
IBM
Mortality: No _— Households — 8labc
Age-specific migration
- Households — 79
Fertility:
- Age-, sex- or . NO_
parity-specific migration No 111
Mortality: households

Age-sex-specific
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Figure 2.3. Branching diagram of IBMs, demographic processes and covariates with
article numbers (SA: Sensitivity analysis).
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Figure 2.4. Branching diagram of population-level models, demographic processes
and covariates with article numbers (SA: Sensitivity analysis).

Fertility

In order to model past fertility patterns, the large majority of models used observed
fertility rates, probabilities or birth numbers, as shown in Figure A.1 and Table A.4
in Appendix A, which in most cases were obtained from official statistical agencies.
In case annual estimates of vital statistics were not available, interpolation, averages
over multiple years or step-wise functions were used. Only three models applied
a scenario-based approach with an assumed trend. A larger variety was seen in
the methods for projecting future fertility trends. Official fertility projections were

applied in 15 models, which were mainly taken from national statistical agencies
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or the United Nations World Population Prospects. Eight models carried the last
observation forward, meaning that future fertility trends were assumed to remain at
the last observed level. One study combined the previous two approaches by applying
official projections for the years available, and for the remaining projection period, the
last projected value was carried forward. Authors developed their own scenarios for
future fertility trends in five models, either expressed as a yearly percentage change
or as policy scenarios, while extrapolation was applied in one model. Finally, the
applied approach was unclear in one model (the author was contacted but does no

longer have access to the information).

About the same proportion of IBMs and CCBMs, which amounted to 15 models in
total, included no covariates when modelling fertility. In most of these cases, crude
birth rates (CBR) were used. Age was included in the fertility process in one model
and 16 models included sex as well as age, meaning that age-specific fertility rates
(ASFR) were applied to females in their fecund age range (typically 15-49 years
of age). Five models, which were all IBMs, took birth parity (number of children
ever born to a female) into account, in addition to age and sex, and two of these also
considered birth interval by assuming a minimum amount of time between subsequent

births for a given female.

Mortality

Past (all-cause) mortality patterns were modelled using observed mortality rates or
numbers of deaths in most models as shown in Figure A.2 and Table A.5 in Appendix
A. Interpolation, averages over multiple years or step-wise functions were applied
in cases where yearly estimates were not available. Future mortality patterns were
modelled using official projections in 16 models and 10 models used the most recent
observation for the whole projection period. Other methods, including extrapola-
tion and the scenario-based approach, were applied in a smaller number of models.
Mortality was age-dependent in 21 models and age-sex-dependent in 16 models. Fur-
thermore, several models included disease-related mortality or certain risk factors (not
included in Figure A.2).

Migration

Migration was included in 24 models in the form of net migration and mainly obtained
from official estimates and projections (see Table A.6 in Appendix A). Three of these
models assumed that the composition of the migrant population was similar to that

of the native population, but it was acknowledged in the studies, that in reality these
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tend to differ markedly [42, 113, 115]. The age and age-sex distributions of the net-
migrant population were considered in 9 and 10 models, respectively. In most of
these cases, a lack of data made it necessary to assume that the composition of the
net-migrant population remains constant over time. Internal migration was modelled
in a broad sense in three models, namely as migration between rural and urban areas

and without considering any covariates. Migration was incorporated in the majority
of CCBMs and in about half of the IBMs.

Households

Households were incorporated in eight models, of which seven were IBMs and one was
an EPM [47] (see Table A.7 in Appendix A). The households evolved dynamically over
time in all models. In the IBMs, individuals move between households or create new
households (e.g. child leaving parental household). In most cases, the probabilities
for household transitions were fixed over time and equal across all ages eligible for a
given transition. Households were also dynamic in the EPM, however, a new pop-
ulation of individuals was generated and assigned to households at the beginning of
each simulation year according to an algorithm using the observed or projected age
composition and the last observed age distribution by household size. This implies
that changing household structures could not be traced back to individual household

transitions.

Sensitivity analyses

Sensitivity analyses of population projections were included in a small number of
models (see Table A.8 in Appendix A). Alternative scenarios for the overall age dis-
tribution or for fertility, mortality and/or migration separately were applied in seven
models, two models quantified the uncertainty of the demographic parameters with
confidence and prediction intervals, respectively, while one model compared step-wise

functions with interpolation between five-year estimates.

2.4 Discussion

We identified 46 studies, which contained 53 models for infectious disease transmission
in populations with dynamic demographic processes. The dynamic population models
in the included studies varied in the methodology, the demographic characteristics and
processes included in the model and overall complexity. Population- level models,

EPMs and CCMBs, were most common, while individual-based models were least
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common. This was to be expected, as the use of IBMs in infectious disease modelling
is relatively new, but has been expanding in recent decades [26]. Moreover, fertility,
mortality and migration were modelled explicitly in most models (CCBMs and IBMs),
while EPMs using population prospects from a statistical agency as external input
made up a smaller share of the models. One demographic model cannot generally be
considered superior to another because its suitability must be evaluated jointly with
the infectious disease model and the aim of the given study. However, the demographic
methods and assumptions serve different purposes and are associated with different

limitations and possibilities for extensions.

In EPMs, the population composition changes over time as individuals enter and
leave the population, but the demographic change cannot be traced back to fertility,
mortality and migration separately, since these processes are not modelled explicitly
in the infectious disease model. The underlying demographic assumptions are often
available from the statistical agencies developing the population prospects. The pop-
ulation heterogeneity in EPMs is determined by the level of detail provided in the
population prospects, which often is limited to the age or age-sex composition. In
infectious disease modelling, however, demographic variables additional to age and
sex are often not required. Thus, EMPs provide a straightforward and relatively sim-
ple implementation of a dynamic host population in cases where it is not of interest
to consider fertility, mortality and migration separately. However, it is worthwhile
to explicitly state and discuss the demographic methods and assumptions underlying
the population projection, even when they are not modelled explicitly, as different de-
mographic assumptions may give rise to quite different population dynamics, which

in turn may affect the epidemiological outcomes.

In CCBMs, the processes that generate changes in the population composition are
explicitly incorporated as assumptions or sub-models. Thus, a strength of CCBM is
the possibility to assess variation in epidemiological outcomes given alternative sce-
narios for each of the demographic components. This is particularly relevant when
considering time periods far into the future. Moreover, characteristics beyond age
and sex can be included in a CCBM, but the system of demographic subgroups and
disease state compartments becomes quickly very complex. Consequently, none of the
included CCBMs incorporated demographic subgroups beyond age and sex. The high-
est degree of flexibility is provided by IBMs, which make it possible to include more
heterogeneity in both the population and the disease transmission process. The ma-
jority of the IBMs (60%) included households as well as other demographic subgroups

(e.g. schools, workplaces). Demographic subgroups and networks are important for
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the transmission process of many infectious diseases. Households especially play a
central role due to the higher frequency and intimacy of social contacts among people
living together [43, 48]. Individual-based modelling may also make it easier to track
the life course and /or health trajectory of individuals. Thus, past events can be taken
into account, when determining the probability of future events. Five IBMs, for ex-
ample, included birth intervals and/or parity in the fertility process, which would be

more difficult to accomplish in a population-level model.

Nevertheless, similar methods were used to model fertility, mortality and migration
in the majority of models explicitly incorporating demographic processes (CCBMs
and IBMs). In about 40% of these models, the number of births was modelled pro-
portionally to the size of the total population (crude birth rate), disregarding the
age structure, and changes therein, of the female population [121]. As a result, the
number of births in the dynamic population will only be correct as long as the age-sex
composition remains similar to that of the population on which the crude rate was
based. Age-specific fertility rates (ASFRs), which are directly standardized for age-
sex composition, are preferable in that respect and were used in most of the remaining
studies. To the extent that characteristics of household members, parents or siblings
(e.g. age, vaccination status) or other kinship-related factors play a role in the disease
transmission process, it is necessary to incorporate these characteristics in the fertil-
ity process as well. This was seen in the aforementioned IBMs, which included birth
interval and parity in the fertility process in order to obtain appropriate generation

intervals and household compositions.

The relationship between (all-cause) mortality and age was acknowledged in all IBMs
and CCBMs and about half also considered the impact of sex. In most settings, how-
ever, mortality in the middle and older ages has been shown to vary by a considerably
larger set of factors, including household composition, living arrangement and marital
status, especially among males [122]. This could be particularly relevant to take into
account when modelling ageing populations, where household structures are increas-
ingly influenced by the developments in the elderly population. However, this would
require very detailed data which often is not accessible. Thus, characteristics beyond
age and sex were unsurprisingly not considered in the mortality process of any of the

included studies.
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In addition to fertility and mortality, about two-thirds of the CCBMs and IBMs
modelled migration. A typical age pattern is often observed in migration, with a
peak in young adulthood and in childhood, because of children joining their parents
in migration. In high-income countries, a smaller peak is also observed around the
retirement ages [51]. This was incorporated in the majority of the studies modelling
migration. Migration patterns are highly complex and typically associated with a
high degree of uncertainty [123, 124], which could partly explain why migration was
not taken into account in about a third of the models. However, in most countries,
migration flows cannot be considered negligible and changes in population size and
composition may be biased if migration is ignored [125]. Statistical agencies typically

provide estimates of past as well as projected net migration.

Households and other subgroups were incorporated in eight models, which all were
IBMs. Such structures are more cumbersome to implement in population-level models,
thus individual-level modelling seems to be preferred if demographic subgroups are
considered important for the disease transmission process, setting or research question
at hand. Despite the flexibility of IBMs, it remains complex to model household
structures. Detailed data on household characteristics, in particular historical data,
is very limited, which can make it necessary to make strong assumptions regarding
household structures. For example, several studies assigned individuals to households
according to marginal distributions of household size and composition rather than

individual or household-level data, which often is unavailable.

However, households did evolve dynamically over time in all models, which is impor-
tant for assessing the impact of demographic change on disease transmission dynamics.
Declining household sizes and changing compositions are resulting from population
ageing due to decreasing fertility rates and rising life expectancy [126]. Consequently,
the number of household contacts decline and the age structure in the household
contacts changes [42]. This implies that boosting of immunity through household
transmission becomes less likely [127]. Most studies, however, focused on the most
common household types and/or positions and left out the rest completely, or gath-
ered them in one category. In many cases this approach may be warranted given
that the required level of demographic precision is, in this context, determined by its
relevance for disease transmission, the setting and research question. Nevertheless,
some household types may be important for the disease spread and burden, even if
they represent a relatively small proportion of the population. For example, nursing
homes and other special care facilities for the elderly make up a small share of the

households in most countries but provide an optimal environment for the spread of
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many infections [128]. Moreover, the enhanced age and underlying chronic illnesses
place this population group at increased risk of many infections [129, 130]. Thus, in
some contexts, less common household types can be important to consider if the data

is available.

Future demographic trends are associated with a large degree of uncertainty, which
is an important aspect in projecting populations [123]. Thus, an assessment of this
uncertainty and its impact on epidemiological outcomes by the means of sensitivity
analyses is highly relevant. Statistical agencies often provide different scenarios or
prediction intervals for future fertility, mortality and migration levels, which can be
used for this purpose. A smaller number of included models (10) performed sensitivity
analyses by assessing the impact of variation in demographic trends on epidemiological

outcomes.

The findings of this systematic review should be considered in light of several limi-
tations. More studies may have been relevant to include but were not captured in
the search due to the requirement of a reference to certain demographic terms in the
title or abstract. However, the number of hits would be unfeasible to handle if the
demographic search terms were omitted and if searching full-text and supplementary
materials. Moreover, static and stable host populations are most common in infectious
disease modelling and the incorporation of dynamic demographic processes involves a
degree of complexity that we would expect most researchers to omit unless the study
has a specific focus on the impact of demography or demographic change. Note that,

to minimise any potential bias, we also conducted snowball sampling.

2.5 Conclusions

We systematically reviewed the literature on infectious disease modelling with a
dynamic host population. We found that population-level modelling (EPMs and
CCBMs) was more common than individual-based modelling. EMPs provide a straight-
forward and relatively simple implementation of a dynamic host population, while
CCBMs are a bit more complex but make it possible to consider each demographic
process separately and to test different demographic assumptions. Demographic char-
acteristics beyond age and sex were only included in IBMs, including birth interval and
parity, as well as households and other demographic subgroups. However, we found
that the majority of IBMs modelled fertility, mortality and migration in a similar
manner to the CCBMs, namely by the use of crude rates or age- (sex)-specific rates.

We recommend avoiding the use of crude rates, if possible, as they disregard the pop-
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ulation age structure and changes therein. In addition to fertility and mortality, we
recommend including migration in the demographic model, since most countries face
substantial migration flows and changes in population size and composition may be
biased if migration is ignored. The approach used to model each demographic process
implies certain assumptions, and the implications these may have for the population
composition should be given careful consideration, and above all be stated clearly.
Finally, the inherent uncertainty in demographic trends and their potential impact

on epidemiological outcomes is ideally addressed using sensitivity analyses.
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Chapter

Demographic microsimulation

3.1 Introduction

In a demographic microsimulation, each individual in the population is represented
explicitly and assigned a set of characteristics of interest (e.g. age, sex, marital status,
household membership). The initial population structure typically resembles that of
a real population [54, 131]. The population evolves over time as a result of individual
demographic events (e.g. death, migration, marriage). The occurrence, timing and
sequence of events that an individual experiences are determined stochastically using
probability models (e.g. hazard models, competing risk models), which relate the
likelihood of an event at a given time to certain demographic characteristics and /or the
duration since a reference event (e.g. duration since previous birth) [132]. The initial
population and the estimated parameters in the demographic probability models are
typically based on empirical data, such as vital statistics, surveys, census data or

population registers [132].

The events that are determined to occur are executed according to algorithms of
varying complexity (e.g. union formation, removal of deceased individuals) and may
include some constraints to avoid highly unlikely or illegal events (e.g. incestuous
relationships) [54]. The scheduling of demographic events depends on whether time
is treated as a continuous or discrete variable. In the first case, the timing and se-
quence of events are determined, while in the latter case, it is not determined when
an event takes place, but whether it takes place in a defined time interval [133, 134].

As the time interval shortens, the result of a discrete-time model resembles that of
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a continuous-time model more and more [54]. Microsimulation is not to replace the
traditional population-level models in demographic research, but constitutes a valu-
able and more appropriate tool in certain settings. If population heterogeneity is
of importance, microsimulation is often to prefer, since the state space (the number
of demographic variables and their possible values) can expand more easily. More-
over, life histories can be tracked in a microsimulation, making it possible to consider
processes where events that have occurred in the past are determining for future
outcomes. Finally, interactions between variables as well as individuals can be incor-
porated in a microsimulation in a flexible manner, while this remains highly complex
in population-level models. Interactions between individuals is often of particular
importance as many demographic events involve several individuals (e.g. marriage,
divorce, leaving household) [53, 54, 133].

These features of individual-level modelling have also proven to be valuable in the field
of infectious disease modelling. Like in demographic research, population heterogene-
ity beyond age and sex is often of importance, which can be cumbersome to implement
in the traditional population-level compartmental models. Moreover, individual-level
modelling allows for an explicit representation of network structures (e.g. mobility,
households, sex partners) and interactions between individuals potentially leading to
disease transmission. Finally, past infections or other events can be tracked in the
life history of each individual if considered relevant for future susceptibility to an
infection [14, 26].

Several individual-level models and software packages have been developed in the fields
of demography and infectious disease modelling. We do not indent to provide an ex-
haustive list, but mention SOCSIM [135, 136], MIC-CORE [137] and MicSim [138]
as examples of demographic microsimulation models. SOCSIM is often used in the
field of family demography and kinship networks [139-143]. Microsimulation models
have also been developed to generate population projections and facilitate govern-
ment planning, including LifePaths from Statistics Canada [144] and MOSART from
Statistics Norway [145]. Individual-based software tools have also been developed for
simulating the spread of infectious diseases, including STDSIM for sexually transmit-
ted diseases [146], the Spectrum and Epidemic Projection Package of UNAIDS [147]
and 4Flu for seasonal influenza [37]. Moreover, some researchers make the source code
of their IBMs publicly available, allowing others to adapt them to different infectious
diseases and settings, for example [42, 60, 79, 148].
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Infectious disease modelling typically involves some degree of demographic mod-
elling to define the host population and changes therein. However, the flexibility
of individual-level modelling is typically mainly exploited in the disease transmission
process and less often used to advance the demographic modelling [52]. Our aim is
to adopt methods and techniques from demographic microsimulation to construct an
age- and household-structured population with dynamic demographic processes, that

can be combined with an IBM of disease transmission in a flexible manner.

Many existing individual-level models, particularly within infectious disease mod-
elling, are limited by the availability of detailed demographic data. However, access
to individual-level longitudinal data from Belgian census and populations registers re-
solves this issue. The Belgian population observed on January 1st 2011 serves as the
initial population in our microsimulation. The individual characteristics include age,
sex, household membership, household position and/or the household type (e.g. single
parent, resident in LTCF). Moreover, kinship networks and fertility trajectories are

re-created in the initial population using procedures described in section 3.3.

The population is updated in discrete time steps of one year by simulating demo-
graphic events in the form of births, deaths, migration and household transitions.
Models for each demographic process relate the probability of an event in a given
time step to individual characteristics, including age, sex and household position.
Next, we provide further detail about the model structure, the creation of the initial
population, the methods used to model each demographic process and the set of as-

sumptions and rules used to execute the demographic events in the simulation.

3.2 Model structure

The model consist of two parts, the model initialisation and the simulation (see Fig-
ure 3.1). During model initialisation, the census data and additional demographic
data from the Belgian statistical office (Statbel) and the Belgian Federal Planning
Bureau (FPB) are cleaned, re-structured and organised to make them suitable for
creating the input files: the initial population, demographic rates and probability
models. While the initial population is the starting point of the simulation, the de-
mographic rates and probability models serve as input in the demographic processes
in the simulation. Since the simulation is in discrete time steps (i.e. years), we need
to predetermine the order in which the demographic events take place. We assume
that births take place first and are followed by household transitions, migration and
finally deaths.
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Each event is assigned a date within the time step and we allow individuals to ex-
perience multiple events in the same year as long as the order is preserved. If an
event involves multiple individuals (e.g. union formation), the individuals involved
are assigned the same event date. The characteristics of the individuals experiencing
an event are updated immediately. For example, the household position of an indi-
vidual is updated before it is determined whether the same individual emigrates or
dies within the same time step. Since the processes of emigration and mortality are
conditional on household position, the given individual’s probabilities of those events
taking place may have changed after the household transition. After all events have
been executed, kinship indicators and time-dependent variables are updated to pre-
pare the population for the following time step. All demographic events are recorded
in an event log file, including information on coded ID, event type, event date, coded
household ID and household position before and after the event. This makes it pos-
sible to recreate the population in smaller time steps (i.e. days), which typically is
necessary in infectious disease modelling. Finally, we use the event log file for model
validation, as we compare the simulation results to aggregate measures, such as past
and projected vital rates, and adjust the demographic input rates and probability
models if necessary. More detailed measures for model validation are currently not

available for the time period considered in the simulation.

3.3 Initial population

3.3.1 Data

The initial population is based on Belgian census and population registers on Jan-
uary 1st 2011. Additionally, time-dependent variables are also collected for Jan-
uary 1st 2012. For each individual in the population, the following variables are

extracted:

- Coded ID

- Date of birth

- Sex

Coded ID of household of residence (2011 and 2012)
LIPRO household position (2011 and 2012)

- Coded ID of parents

We generate additional variables (household position, partner matching, kinship and

birth trajectory) based on the original data and a set of assumptions.
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3.3.2 Household position

All individuals in the population have a LIPRO household position for 2011 and 2012,
which describes the relation an individual has to other household members and/or
the type of household [149]. The LIPRO household positions only allow one family
nucleus per household and all other household members are assigned LIPRO positions
in relation to that family nucleus. Consequently, in a multigenerational household
consisting of three related generations, the grandparents would typically have the
LIPRO position married/cohabitating union, their child would be child in family with

cohabiting /married parents and the partner of their child and their grandchildren

would be non-family related.

Table 3.1. Categories of the variable household position.

Position Description
Child Individual (regardless of age) living in their parental
! household without own children or partner
Union Individual living together with their partner but
without child(ren)
. Individual living together with their partner and
Union+ .
child(ren)
Single Individual living in a one-person household
NFRA Individual living without own family nucleus but
living in same household as unrelated family
Individual living together with other unrelated
Other Lo
individuals
. Individual living in collective household (prison,
Collective . . .
special care facility, nursing homes,. .. )
Singles Individual living together with their child but
g without a partner in the household
Single+* Single+ living in their own parental household (only

Union in multigene-
rational household
(multi_ U)

Single in multigene-
rational household
(multi_S)

used in cases where the distinction is necessary)

Individual living together with their partner, child and
family of child (i.e. grandchild and/or partner of child)

Individual without partner living with their child and
family of child (i.e. grandchild and/or partner of child)
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In order to allow for more than one family nucleus and at the same time disregard
the distinction between marriage and cohabitation, the LIPRO household positions
are modified in the new variable household position. The categories of this variable
are described in Table 3.1, while subsection B.1.1 in Appendix B contains the list of
the original LIPRO household position and the specific procedures and assumptions

used to create each new category.

3.3.3 Partner matching

Individuals with household position union(+) are matched if they live in the same
household, since the original LIPRO household positions only contain one union per
household. A smaller number of errors are detected (e.g. union between parent and
child), which are changed to more appropriate categories in the variable household
position (see Appendix B subsection B.1.2 for further details). Unions are also de-
tected through the parental IDs. Individuals who are parents to the same child and
live in the same household are assumed to be a couple and assigned the household
position union(+). Additionally, individuals living together in 2011 and 2012, but
only with household position union(+) in 2012 are assumed to already be in a union
in 2011. For reasons of simplicity, same-sex unions are change to opposite-sex unions
with the female being the youngest. This implies that we assume demographic events
for individuals in a same-sex union to be similar to those of opposite-sex unions. It
should be noted that unions formed by individuals living in different households are
not detected.

3.3.4 Parent-child matching

The parental IDs are used to create the variables ID mother and ID father by looking
up the sex of the respective individuals. For individuals with household position child,
a parent ID is considered to be incorrect and set to NA if there are less than 12 years
between parent and child. Moreover, the parent IDs are modified if both parents to
a child younger than 16 years do not live in the same household as their child (e.g.
foster care) or both IDs are missing. In those cases, the parental role is assigned to
a household member who is at least 14 years older than the child (see Appendix B
subsection B.1.3 for further details).
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3.3.5 Birth trajectory

We use the parent IDs to re-create birth trajectories of the female population. A
frequency table containing the IDs of mothers is used to compute the number of
births, which is then added to the information of the given mother. Moreover, the
birth date of each child is added to the information of the mother and the date of
the most recent birth is used to create the variable index birth. There will be some
discrepancies between the computed and the actual birth trajectories because some
females have given birth to individuals that are no longer in the population (stillbirths,

emigrants). Moreover, some parent IDs are missing.

3.3.6 Population sample

We create a representative sample of the census population to reduce computation
time in the microsimulation. A sample of 500,000 households was drawn from the cen-
sus conditional on the household size distribution. Collective households with more
than 230 residents were excluded, as this is a technical limitation in the household
network model of Krivitsky et al. [150], which is implemented in the disease modelling
application. Nevertheless, households of that size are very rare. All members of the
sampled households, about 10% of the census population, make up the sample popu-
lation. The household size distribution and age distribution for the sample population
and full census are compared in Figure 3.2. Moreover, age distributions by household

size are shown in Figure B.1 in Appendix B.

0.015 /[\
(¥ fad 1
0.010 1
u\ B census
. ‘£ 0.005 \‘ Sample
\
I \
J N e — ‘\u
1 2 3 4 5 6

o o
N w

Proportion of households
o
e

Proportion of populaition

o
o

0.000
7 8+ 0 10 20 30 40 50 60 70 80 90 100
Household size Age

Figure 3.2. Household size distribution (left) and age distribution (right) in Belgian
census 2011 and sample population.

The parent(s) of sampled individuals may not be included in the sample population

if an (adult) child and its parent(s) live in different households. In those cases, the
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(adult) child is assigned ‘replacement’ parents. Females in the sample population of
the same age and household position as the actual mother in the full census make up
a pool of candidate ‘replacement’ mothers and one is randomly drawn and assigned
to the individual. The partner of the assigned mother is assigned as ‘replacement’
father. For individuals with only a father in the full census, the same procedure is
carried out but based on the characteristics of the father. The birth trajectories of

the ‘replacement’ parents remain unchanged.

The sample population constitutes the initial population in the microsimulation. An
overview of the original and generated demographic variables in the initial popula-
tion are provided in Table 3.2. These variables will be updated, if applicable, as an

individual experiences demographic events in the microsimulation.

Table 3.2. Demographic variables in initial population

Variable Description Possible values
Individual 1D 1,2,3,...
Sex Male, female
Birth date Date
Household ID 1,2,3,...

Household position

ID of partner

In union

ID of mother
ID of father

Parent indicator

Child-family indicator

Birth parity

Index birth

Time since index birth

Generated from
LIPRO

ID of partner living
in same household

ID of partner is
applicable

Parent(s) present in pop-
ulation and not living in
collective household

Child with own family
present in population

Number of previous
births

Most recent birth
Days

Child, single, single+,
union, union+, NFRA,
collective, multi U,
multi S, other

1,2,3,...,NA

0=No, 1=Yes

1,2,3,...,NA
1,2,3,...,NA

0=No, 1=Yes

0=No, 1=Yes, NA

0,1,2...

Date, NA
0,1,2,3,...,NA
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3.4 Fertility

3.4.1 Modelling

We use the birth trajectories of the 14- to 50-year-old female population up to Decem-
ber 31st 2011 (described in subsection 3.3.5) to model fertility in 2011. We calculate
the age at the index birth (most recent birth before January 1st 2011) and the dura-
tion since the index birth, if applicable. For females giving birth in 2011, the duration
between that birth and the index birth is used. In case a female had two births in
2011 resulting from subsequent pregnancies, the first birth in 2011 is considered the
index birth. The household positions of the females on January 1st 2011 are also
included in the fertility data.

Generalised additive models (GAMs) [151, 152], are fitted to the fertility data. In
a GAM, like in a generalised linear model, a link function describes the relationship
between the linear predictor and the expected value of the response, but in a GAM,
the linear predictor involves a sum of smooth functions of covariates. The model
structure is generally described by Wood (2017, eq. 4.1) [153] as

(i) = Aib + fi(z1:) + fa(x2:) + fa(@si, i) + - - (3.1)

where g¢(.) is the link function, p; = E(Y;) and the response variable Y; follows
an exponential family distribution with mean pu; and scale parameter ¢. A; and 6
represent a row of the model matrix for strictly parametric model components and
the corresponding parameter vector, respectively. Finally, f; are smooth functions
of the covariates x;. A smooth function is the sum of a number of basis functions,
b;(z), weighted by the corresponding regression coefficient, 8; (Wood, 2017, eq. 4.3)
[153]:

flx) =2 bi(2)B; (3.2)

We use penalised cubic regression splines with shrinkage (specified as bs="cs” in R
package mgcv) and vary the number and location of knots, which defines the number
and interval of the basis functions, in order to obtain an optimal fit. The GAMs
are fitted separately for first, second, third and higher order births. The dependent

variable is binary (1=birth, 0=no birth) and we use a logit link function. For females
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at risk of a first birth in 2011, the following model was fitted:

) ( P (1st birth),

1—P(1st birth)i) = a+ fui(age;) + € (3.3)

The term f represents the smooth function, the variable age; is the age in the middle
of the year of individual ¢ and h(i) denotes its household position on January Ist.
Thus, separate smooth functions are fitted for each household position. In Figure 3.3,
the predicted and estimated probabilities of a first birth are shown by household
position. Overall, the predicted and estimated probabilities are very similar except

at the very young ages where births are uncommon.
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Figure 3.3. Estimated and predicted probability of 1st birth in 2011 by household
position. Data source: Belgian census 2011 and population registers.

For second and higher order births, the following model was fitted separately for each

combination of parity and household position group (union vs. non-union):

; P (ji, birth),
“9\1=P(j birth),

) = a1 + g - parity; - z; + flg(agef"dez, dumtionﬁ"del) +e (3.4)
where j = parity; + 1 with parity; denoting the birth parity of individual 7 and z; is a

dummy variable which is 1 for parity three and higher and zero for all other parities.

index
7

index

The covariate age; is the age of the female at the index birth and duration

is the duration since index birth. These two variables are fitted with a tensor product
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smooth, fi2, which can be formulated as follows [153]:

I J

fra(my,ma) = D Y Gijbui(z)bo(x2) (3.5)
(i=1) (5=1)

where b; and by are basis functions, I and J are the corresponding basis dimensions
and & is a vector of coefficients. The predicted and estimated birth probabilities
are shown in Figure 3.4 and Figure B.2 in Appendix B for different ages at index
birth.
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Figure 3.4. Estimated and predicted probability of 2nd birth in 2011 for females in
a union and by age at index birth (columns) and time since index birth (years). Data
source: Belgian census 2011 and population registers.

3.4.2 Simulation

In the microsimulation, females of age 14-50 years with the household positions union,
union+, single, single+, child, NFRA or other are considered eligible for giving birth.
This means that females in collective households and the oldest generation in multi-
generational households are excluded. Furthermore, females with a duration since
index birth of less than 12 months (pregnancy of nine months and period of lactational
amenorrhoea of three months) are also excluded from giving birth in the given time

step.

The eligible females are assigned a probability of giving birth in the given time step by
applying the fertility model corresponding to their parity and household position and
converting the log odds to probabilities. The fertility models are independent of time,
however, we have incorporated the option to adjust the resulting birth probabilities

by a time-specific factor. Specifically, we chose a vector of time-specific factors which
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result in a TFR that resembles the observed and projected rates by Statbel and FPB.
If a female’s probability of giving birth is higher than or equal to a randomly drawn
number between zero and one, she is assigned a newborn child and her birth trajectory
is updated accordingly. A number of females are assumed to give birth to twins
corresponding to the estimated proportion in 2011. The birth events are assigned a
random date within the time step. The newborns are added to the population and
the household of the mother. If the mother has a partner, the partner is assigned as
the father of the child.

3.5 Household transitions

3.5.1 Transition probabilities

The household transition probabilities are, in contrast to the other demographic pro-
cesses, assumed to remain constant over time. This is a rather unlikely assumption,
but detailed data covering a longer time period is lacking. We thus calculate house-
hold transition probabilities based on the individual household positions observed on
January 1st 2011 and January 1st 2012. Some individuals are not present in the
population in 2012 and the household position is for that reason missing (NA). We
also set indirect transitions resulting from other demographic events to NA because
those transitions are incorporated in the other demographic processes. This includes
changes in the household position child due to the death or emigration of the parents,
given that the child is 16 years or older. Union dissolutions resulting from the death
of the partner are also considered to be indirect transitions, as well as transitions from
single+ and union+ resulting from the last child leaving the parental household. The
individuals with missing household positions are assumed to have left the population
and/or risk-set in the middle of 2011.

We calculate the transition probabilities conditional on a set of demographic charac-
teristics: age group, sex, birth event in 2011 (yes/no), parent indicator, child-family
indicator (described in Table 3.2). Z denotes the combination of characteristics, for
example, females in age group 20-21 with no birth in 2011, with a parent indicator of
1 and child-family indicator of 0. The parent and child-family indicators are included
because some transitions are conditional on kinship networks between households.
For example, an individual cannot move back to the parental household if the parents
are no longer in the population. We compute two types of transition probabilities;

the probability that an individual with demographic characteristics Z and household
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position j experience any household transition (overall probability), and the proba-
bility that the individual moves from household position j to k given that a transition
takes place (directed probability). The overall transition probabilities for household

position j are calculated as follows:

NK(2)
s - (VD)

where subscripts and superscripts indicate the household position in 2011 and 2012,

T®(2) = (3.6)

respectively. j ¢ K, thus the set K contains all household positions different from j,
which are considered eligible transitions (described in detail in subsection 3.5.2). The
risk-set, i.e. the number of individuals with household position j in 2011, is denoted by
N;, while N jK is the number of individuals from the risk set with household positions
different from j in 2012. Finally, N;™ is the number of individuals from the risk set
with a missing household position in 2012 (left the population or indirect transition).
The directed household transition probabilities are calculated by limiting the risk-set

to those with a transition, NjK , and specifying the household position in 2012 as
k € K, hence k # j:

THZ) = - (3.7)

Examples of estimated household transitions probabilities are shown in Figure B.3
and Figure B.4 in Appendix B.

3.5.2 Transitions

In the microsimulation, the occurrence of household transitions are determined in a
step-wise procedure. First, each individual is assigned the overall probability of a
transition conditional on their set of demographic characteristics, TjK (Z). Second, a
subset is created of individuals determined to experience a transition. Third, each
individual in the subset draws a new household position from a vector containing
the directed transition probabilities, Tf(Z), for all eligible values of k given j and
Z. Some transitions are not considered eligible because they are rare or for the
sake of simplicity. Individuals younger than 16 years of age are not eligible for any
transitions, but may move to a new household as a result of household transitions of

their parents. Moreover, only a smaller set of transitions are eligible for parents to
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a child born within the given year. The white and grey cells in Table 3.3 indicate
eligible transitions for individuals with and without a birth event in the given year,
respectively. Black cells are non-applicable transitions for everyone. Cells with [
represent indirect transitions resulting from other demographic events (e.g. child
leaving parental household, oldest generation in multi-generational household moves
out). For the individuals with an event, the transition from one household position,
and typically also household, to another is executed using different procedures. Each
procedure involves a set of assumptions and rules, which are described next, and may
involve individuals that were not assigned a transition in the step-wise procedure (i.e.

indirect transitions).

Union formation

Household transitions to wnion(+) are disregarded if the individual is male. In-
stead, the process of union formation starts when a female experiences a transition to
union(+) and the males are indirectly assigned as partners. For each female entering
a union, we search for a match in a pool of male candidates. A male is only consid-
ered a candidate if he is not already in a union and is 16 years of age or older. The
age of the future partner of a given female is drawn from an age distribution based
on the union formations observed in 2011. The age distribution of the male part-
ners was computed by the age group of the female partners in 2011 (see Figure B.5
in Appendix B). The pool of male candidates is then narrowed down to those with
an age within the drawn age group. Each remaining candidate is assigned a match
probability corresponding to their probability of a household transition to a union,
Tf (Z) where k is union(+), given their demographic characteristics. A partner is
then assigned to the female by drawing from the pool of male candidates conditional
on the match probabilities. The newly formed union is assigned to a new household

as well as children previously living with any of the partners.

Union dissolution

Union dissolution takes place if a female with household position union(+) is assigned
a transition to child, single(+ ), other, NFRA or collective and if a female with house-
hold position multi U is assigned a transition to single or collective. Union disso-
lution initiated by a household transition of the male partner is disregarded, like for
union formation. However, when a female leaves the union and thereby the household
according to our assumptions, a new household position is also drawn for the male

partner based on the corresponding household transition rates. In case of a dissolu-
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tion of union+, the children are assigned a main parent, which they follow to their
new household. The probability of becoming the main parent is assumed to be 0.25
and 0.75 for the father and mother, respectively. The eligible household transitions
from the position union+ are conditional on whether the individual is assigned the
role of main parent. If the main parent is moving to their own parental household, the
new household position is single+* and not child. Moreover, a transition to single,
other, NFRA or collective is changed to single+ if the individual is assigned the role
of main parent. Finally, for reasons of simplicity it is not possible to move directly
from one union to another. A union dissolution is also triggered by a transition from
union to collective, because we only consider unions between individuals living in the

same household. However, in most cases the relation probably continues.

Transition to parental household

Individuals can move back to the household of their parent(s) if one or both are
present in the population and the parent is not living in a collective household (parent
indicator of 1, see Table 3.2). The household position changes to child, when moving
back to the parental household, also for adult individuals. This transition is not
eligible for the oldest generation in multi-generational households for whom a parental
household rarely is present in the population. Single parents and individuals in a union
cannot move into their parental household, unless it is in combination with a union
dissolution. However, the parents of an individual with household position union(+)

or single+ can move into their child’s household.

Transition to multi-generational household

Multi-generational households can be created by two different types of transitions.
As already mentioned, individuals can move from a union and back to their parental
household together with the children, for whom they are the main parent, but with-
out the former partner. In that case the individual’s household position changes to
single+*. Moreover, the household position of the oldest generation in the household
(the grandparents) indirectly changes to multi U or multi S, depending on whether

they are in a union or single.

Individuals can also experience a direct transition to the position multi  U/multi S,
if they have a child with household position union(+) or single+ (i.e. child-family
indicator of 1, see Table 3.2). In that case, the older generation moves into the
household of their child’s family. This type of transition does not affect the household

position of the younger generation, except for single parents, which transition from
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single+ to single+* The oldest generation in multi-generational households follow
their child in case of future household transitions (e.g. union formation or dissolution),
but can also leave the household and change household position to union or single

depending on whether it involves a union dissolution.

Transition to household positions NFRA and other

Transitions to other and NFRA are only eligible if the individual is not a single parent
or assigned the role of main parent after union dissolution. Moreover, the oldest
generation in multi-generational households are also not eligible for such household
transitions. For individuals with a transition to NFRA, a target household size is
drawn from the household size distribution of non-family related adults observed
in 2011. Candidate households are found by identifying individuals with household
position single+ and union(+), which are considered to be in a family nucleus. A
household ID is drawn from the pool of candidate households with the corresponding
target size. The individual is assigned the household position NFRA and the new
household ID. The household positions of the new household members are not affected

by the transition.

In a similar manner, a target household size is drawn for each individual with a tran-
sition to other conditional on the observed household size distribution of other house-
holds in 2011. The group of individuals assigned to a target size of two are matched
in pairs based on their age and assigned a new household ID. For an individual with
a target household size larger than two, an existing other household matching the
target size of the individual is drawn at random. The household ID of the individual
is updated accordingly and the household position changes to other. The household

positions of the new household members are not affected by the transition.

Transition to collective household

All collective households are assigned a maximum capacity. For households with less
than 10 residents, the maximum capacity is set to the initial household size, while
households with 10 or more residents are assigned an extra capacity corresponding to
15% of the initial size. The median age of the household members in each collective
household is computed in each time step. Transitions to a collective household are
only eligible if the individual is not a single parent or assigned the role of main parent
after union dissolution. For individuals with an eligible transition to collective house-
hold, a target household size is drawn from the age-specific household size distribution

for collective households observed in 2011. The individuals are assigned to existing
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collective households with a median age of +15 years of their own age and with a size
corresponding to their target household size. When the household capacity is met,
no more individuals are assigned. In case some individuals have not been assigned
a household, new collective households are created with a maximum capacity corre-
sponding to their target household size. Age is taken into account in the allocation
of people in collective households in an attempt to distinguish LTCFs mainly occu-
pied by elderly people from prisons and other institutions mainly containing younger

people.

Transition to single(+)

All individuals aged 16 years are eligible for a transition to single (parent). The final
household position depends on whether the individual has the role as main parent.

In both cases, a new household is created.

Birth-related household transitions

The individuals with a newborn are eligible for a birth-related household transition
in the same year conditional on their household position before the birth (see grey
cells in Table 3.3). Some transitions are not considered eligible in the year of the
birth because they are rare or for simplicity (e.g. adoption immediately after birth,
union dissolution). Females with household position child can stay in their parental
household after giving birth, but the household position changes to single+* and
the household becomes a multi-generational household. However, birth events among
females with household position child can also involve a move to a new household

either as single+ or union+.

The transition to union+ involves a partner search based on the matching process
described earlier. Females with position single(+) either stay in their household and
keep the household position after giving birth or move to union+ with a matched
partner. Births to females with household position NFRA or other always involve
a move to a new household and a change to household position single+ or union-+.
Females in a union and with a birth event stay in the union and change to household
position union+. The household transitions are assigned the same event date as
the birth. Moreover, household IDs and household positions are also updated for
the individuals indirectly affected by birth-related household transitions (e.g. new

partner, children, grandparents in multi-generational households).
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Indirect transitions

Some of the described procedures explicitly consider the individuals indirectly affected
by a specific household transition (e.g. males in the union formation procedure,
children moving with their main parent after union dissolution), and their household
IDs and positions are updated accordingly. Other indirect transitions are captured
in a check-up procedure. For example, household positions union+ and single+ are
changed if the last child has left the parental household.

3.6 Migration

Observed (2011-2020) and projected (2021-2050) immigration and emigration rates
are retrieved from Statbel [154]. Distributions of age, sex and household positions of
immigrants as well as emigrants are computed based on the observed migration in
2011 (see Figure 3.5).
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Figure 3.5. Age-sex distribution of emigrants (left) leaving Belgium in 2011 and

immigrants (right) entering Belgium in 2011.

3.6.1 Immigration

The number of immigrants in a given time step is computed according to the observed
or projected immigration rate for the given simulation year. Age, sex and household
position of the immigrants are drawn from the distribution observed in 2011. Females
assigned household position union(+) are matched with male immigrants using the
same union formation procedure as for the native population described earlier. Family
reunification between natives and immigrants is thus not modelled explicitly. Female

immigrants with household position union(+) and single+ are assigned as mothers to

54



children based on an allocation procedure. For a given child, candidate mothers are
identified by computing the age difference between the female and the child. Females
remain in the pool of candidates if the age difference is between 14 and 45 years. The
female candidates are assigned a probability of being the mother of the given child,
which is based on the observed distribution in the age difference between mothers and
children immigrating in 2011 by the age of the child (age group 0-9, 10-19, 20+). A
female is then drawn from the pool of candidates conditional on her age and that of

the given child and assigned as the mother.

In case the pool of candidates is empty, females who already have been assigned as
mothers to other children are added to the pool again and can in that way be mothers
to multiple children. In case the pool of candidates remains empty, the upper limit for
the age difference between mother and child is removed. The children are added to
the household of the mother and her partner, if any, which is assigned as the father of
the child. Some immigrants with household position child are assigned native parents
according to the age-specific proportions observed in the immigrant population in

2011 using the same allocation procedure as described above.

The remaining immigrants without a household position, are assigned the positions
single, NFRA and other according to the distribution of household positions observed
for immigrants in 2011. Immigrants with household position NFRA are assigned
to a household in the native population using the same procedure as for the native
population. All immigrants are assigned a date of entering the population which is the
same for all members of a given household. Immigrants are not at risk of a household
transition in the time step of entry into the population, but females of fertile age are
at risk of a birth.

3.6.2 Emigration

The number of emigrants in a given time step is computed according to the observed
or projected emigration rate for the given simulation year. Emigrants are split into
two groups, individuals emigrating alone and whole households emigrating. Indi-
viduals are eligible for emigrating alone if they are 16 years or older and have the
household position child, single, other or NFRA. Eligible individuals are chosen for
emigration conditional on the household position and age-sex distribution observed
for emigrants in 2011 (see Figure 3.5). Whole households are eligible for emigration
with the exception of collective households. Eligible households are assigned an age-

composition-specific probability of emigrating, which is based on the observed com-
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position of households that emigrated in 2011. Conditional on the household-specific
probabilities, households are sampled until the estimated number of emigrants in the
given time step has been met. Emigrants are assigned an event date within the time
step for leaving the population, which can only take place after any other demographic
events of the given individual. Household members emigrating together are assigned
the same event date. Emigrants are removed from the population and cannot re-enter

the population.

3.7 Mortality

By breaking the central rate of mortality (m,) calculated for 2011 further down by the
household positions union(+), non-union (single/child/NFRA /other) and collective,
rate ratios can be computed by dividing the age-, sex- and household-specific mortality
rates by the overall mortality rate for the given age and sex. The rate ratios are
computed for the age groups 0-49, 50-59, 60-69, 70-74, 75-79, 80-84, 85-90 and 91+
(see Figure 3.6).
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Figure 3.6. Mortality rate ratios by sex, household position and age group. Data
source: Belgian census 2011 and population registers.

In each time step, all individuals have a probability of dying based on age, sex- and
household-position-specific mortality probabilities (qx). These probabilities are com-
puted by first converting the observed or projected age-sex-specific mortality proba-
bilities from Statbel for the given simulation year to mortality rates, which are then
multiplied by the household-specific rate ratios. Finally, the mortality rates are con-
verted back to mortality probabilities and assigned to the individuals according to age,
sex and household position. The mortality probability of each individual is compared

to a random number between one and zero to determine whether they die within the
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time step. In the case of death, a date is assigned, which will always be after any other
demographic events of the given individual. The dead individuals are removed from
the population. The partner of a dead individual is at risk of a household transition.
Moreover, children of a dead individual and with household position child follow the
other parent, if applicable. In case both parents are dead and the child is younger

than 16 years, it is adopted by another family.

3.8 Eventlog file

All demographic events in the microsimulation are recorded in an event log file (see
example in Table 3.4). This includes the following variables: 1D, household ID (initial
and target), household position (initial and target), type of event and date of event.
In this way, the evolution of the population can easily be re-created and used for other
applications, e.g. as input in models for infectious disease transmission. Moreover,
the population can be re-created in smaller time steps, for example days or weeks,

which often is required when modelling the spread of an infectious disease.

Table 3.4. Example of recordings in event log file. HH: Household.

Birth Event Event HH 1D HH position
ID Sex dat ¢ dat
ate ype ate Initial | New | Initial | New
May 1st | Household | Aug 15th . .
1234 F 1989 transition 2013 13 972 Child Union
Nov 20th | Household | Aug 15th . .
7856 M 1987 transition 2013 667 972 Single | Union
Apr 10th . Apr 10th .
8764 F 2016 Birth 2016 NA 972 NA Child

Event logs for fictive individuals are shown in Table 3.4, where a female with ID 1234
leaves the parental household on August 15th 2013 to form a union with a male with
ID 7856 who was living in a single-person household prior to the union formation.
On April 10th 2016, the female gives birth to a child that is assigned ID 8764. This
part of the life history of the female with ID 1234 is also visualised in Figure 3.7. The
changes in the characteristics of the female are highlighted and the arrows indicate

time in the form of the date (black) and her age (grey).
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1D: 1234 ID: 1234 1D: 1234
Born: May Born: May Born: May
1st, 1989 1st, 1989 1st, 1989

Female Female Female
HH ID: 13 HH ID: 972 HH ID: 972
Child Union Union
Birth parity: 0 Birth parity: 0 Birth parity: 1

Jan 1st, 2011 Aug 15th, 2013 Apr 10th, 2016

Age: 21.6 Age:I 24.3 Age:I 26.9
Figure 3.7. Example of individual life history along time (black arrow) and age (grey
arrow). Individual characteristics in text box with events in bold. HH ID: Household
1D.

3.9 Limitations

The microsimulation model faces several limitations with regard to event scheduling,
modelling of the demographic processes and the execution of demographic events. We
simulate the population in discrete time steps and assumptions regarding the ordering
and timing of events are imposed exogenously. In reality, however, the events in the
life course of an individual occur in continuous time and may be interdependent [132].
Nevertheless, we assign a date to each event and thereby make it possible to allow for
multiple events within one time step. Moreover, some of the demographic processes
are conditional on past events and the duration since reference events. A female’s
probability of a birth, for example, is conditional on the duration since her previous
birth (if applicable), and her probability of a household transition in the same time
step is conditional on whether the birth takes place or not. Nonetheless, we are not
taking interdependence in event sequences into account. A continuous-time framework
would resolve some of these limitations, but requires highly detailed data. Moreover,
it remains problematic to estimate interdependent processes and the implementation
of interdependence of transitions for several individuals (e.g. household members) is

still complex in continuous-time models [155].

Additional limitations of the microsimulation pertain to household positions and tran-
sitions. We do not distinguish between married and cohabitating couples, although
their demographic processes (i.e. births, union dissolution) tend to differ [156, 157].

Another simplification pertains to same-sex unions, which we assume to have the
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same demographic processes as opposite-sex unions, although it is unlikely to hold
[158]. Moreover, unions between non-household members are not considered. Neither
is the possibility of being a member of several households (e.g. children of divorced
parents). However, we do distinguish between unions with and without children in

the household, as their probabilities of union dissolution vary considerably.

We made these assumptions while keeping in mind that the simulated population will
serve as an input in transmission models of close-contact infectious diseases, where
household transmission is substantial. Consequently, we considered it more impor-
tant to specify transitions for families with children than to distinguish marriage from
cohabitation. However, the model framework and structure provide opportunities to
incorporate more detail. A higher level of detail may be worthwhile to consider in the
household transition process, if permitted by the data. While the household transi-
tions are conditional on a range of characteristics, the time spent in the household
position is not taken into account. Consequently, the timing and number of transi-
tions in an individual’s life course may not reflect reality. Moreover, the transition
probabilities remain constant over time. These aspects could be incorporated using
longitudinal data on household position and/or household membership covering an

extended period of time.

In microsimulation, different types of matching procedures can be used for union for-
mations. We have developed a so-called closed mating model with a female-dominant
matching algorithm [131]. This matching procedure ensures that every (female) indi-
vidual finds a partner, while avoiding too many matches with unlikely age differences.
Since we apply a procedure where the female’s as well as the male’s probability of
entering a union is conditional on the female’s age, among other variables, the age
pattern of union formation for males deviates to some degree from the estimated
transition probabilities. This issue could be resolved by determining which males ex-
perience a transition to union in the same manner as for females, i.e. using household
transition probabilities only. A sequential matching procedure based on a compat-
ibility measure (e.g. age difference) would then follow. However, this procedure
would be more computationally intensive (see chapter 10 in Zinn [131] for further
details).

Other possible improvements of the union formation and dissolution procedures re-
late to migration. We assume that immigrants only form unions among each other
in the year of arrival. A substantial share of immigration into Belgium and other

European countries, however, is related to family formation and reunification [159].

59



Moreover, we do not consider union dissolution as a result of emigration nor do we
take into account that emigration tends to be more likely among recently arrived
immigrants [160]. We are thus not explicitly incorporating the mechanisms driving
migration, which are highly complex. Migration background and migration history,
however, could be incorporated in the microsimulation using the current data and

model structure.

Since the process of fertility incorporates the females’ birth trajectories, the timing of
births in the simulation reflects the observed pattern in 2011 (the year of the fertility
data) rather well. In the fertility simulation, we allow for a specification of a time-
dependent factor by which all birth probabilities are adjusted in the corresponding
simulation year. This implies equal relative changes in birth probabilities over time
regardless of age, household position and birth trajectory, which does not reflect
reality. In Belgium, for example, the postponement of childbearing to older ages
has continued since 2011 [161], which is not captured when applying an aggregate
time-dependent factor. Official projections, however, are typically only made for the
total fertility rate or age-specific fertility rates, limiting the possible granularity of a
time-dependent factor in the fertility model. A preferable alternative is to expand
the fertility process by incorporating the factors driving the changes in fertility. This
includes education level and migration background, by which fertility patterns vary
considerably [162-164]. Fertility postponement observed in Belgium, for example, has

to a large degree been explained by rising educational enrolment [162].

Similarly, the mortality process in the microsimulation could be improved by includ-
ing a variable describing the health of each individual (e.g. chronic conditions, frailty)
instead of the current use of household position as a proxy. This would also make it
possible to model household transitions conditionally on health state, with particular
relevance for transitions to collective households (i.e. LTCFs). Moreover, an indi-
cation of health state or presence of non-communicable diseases would be valuable
in the context of infectious disease modelling, as these factors typically influence the

morbidity and mortality associated with an infection. [165, 166].

In conclusion, the microsimulation model provides a flexibility that allows us to in-
corporate more detail in the demographic processes and to explicitly model the mech-
anisms driving demographic change. In many cases, however, this would require
access to additional data with high granularity and/or additional, potentially time-
consuming, computations. The decision to expand the model thus depends on the

feasibility and gain thereof considering the study at hand.
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Chapter

Population age and household structures shape
transmission dynamics of emerging infectious
diseases: a longitudinal microsimulation
approach

This chapter is based on submitted work: “Mggelmose, S., Vijnck, L., Neven, F.,
Neels, K., Beutels, P. & Hens, N. Population age and household structures shape
transmission dynamics of emerging infectious diseases: a longitudinal microsimulation
approach. medRziv 2023.06.05.23290874 [Preprint].”

41 Background

Host population demographics and patterns of host-to-host interactions are important
drivers of heterogeneity in infectious disease transmission. To describe the dynam-
ics of infections transmitted via close contact interactions, particular attention has
been given to social mixing patterns, which can be captured by demographic struc-
tures. The frequency and pattern of social mixing with relevance for the spread of
close-contact infectious diseases are highly dependent on age. Children, teenagers and
young adults have more contacts and are disproportionately more likely to mix with
people of their own age than with adults older than 25 years. Adults also display
age-assortative mixing, but their average contact frequency is lower and their con-

tacts are less concentrated in their own age group than those of youngsters [30, 167].
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Consequently, age patterns are seen in susceptibility and exposure to many pathogens
[20]. Additionally, changes in the immune system throughout the life course can add
to these age-specific differences. Children tend to be more susceptible to infections
given that their immune system is still maturing, while in older adults, the ageing of
the immune system (immunosenescence) may increase their susceptibility to infection
and to more severe disease upon infection [76]. Likewise, the infectiousness of infected

individuals may also vary by age [168, 169].

Population structures beyond age further add to the heterogeneity in social mixing
patterns and in disease transmission dynamics. Due to the high frequency, long dura-
tion and intimacy of within-household contacts, household transmission constitutes a
substantial risk factor in infectious disease dynamics [31, 48]. Moreover, households
often contain people from different generations (e.g. parents and children) belonging
to different subpopulations outside the household, which, for example, can facili-
tate the spread of an infection from schools to workplaces [50]. Consequently, age-
and household-structured models of infectious disease transmission with social mixing
have proven highly valuable for modelling the transmission of close-contact infectious
diseases [32, 41, 42, 45, 170].

Still, it remains challenging to model an age- and household-structured population,
and in particular the changes therein, in a well-founded and feasible manner. De-
tailed household data is usually unavailable, which often makes it necessary to re-
create households by relying on probability matching and/or to make simplifying
assumptions, like limiting to specific household sizes or types (e.g. nuclear families).
Less common living arrangements such as long-term care facilities (LTCFs) or multi-
generational households are often disregarded, although they may be important for
disease transmission [52]. Moreover, only few studies incorporate evolving age and
household structures in the host population or consider multiple populations with

different compositions, for example [41, 47, 79, 81, 171].

While demographic change can be reasonable to disregard when the period under con-
sideration is short, it may be necessary to allow for changing population structures
when investigating disease transmission dynamics and control strategies in different
populations or over a longer time frame (i.e. years or decades depending on the pop-
ulation, infection and research question), where demographic changes become more
apparent. Moreover, a thorough understanding of the relationship between disease
transmission dynamics and host population structures, as well as the demographic

processes underlying these structures, may be important for assessing how future
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demographic changes potentially could affect transmission dynamics.

Demographic change has in many countries led to an increasing median age of the
population (population ageing), which has become a global phenomenon [172]. Many
of the most developed countries have been ageing for decades as a result of declining
fertility rates and increasing life expectancy, and the ageing of the large generations
born in the mid-twentieth century is currently causing a temporary acceleration of

population ageing [64].

We investigate how emerging infections are spreading in a relatively old (i.e. high
median age), and still ageing, host population. We use longitudinal microdata drawn
from Belgian census and population registers, including individual-level information
on age, sex, household membership and kinship links. The data feeds into a demo-
graphic microsimulation, which includes dynamic demographic processes for fertility,
mortality, migration and household transitions, making it possible to model the Bel-

gian population over time with evolving age and household structures.

We subsequently combine the demographic microsimulation with a two-level mixing
model, which distinguishes between exposure to infection in the household and ex-
posure in the community at large. We base contact networks within households on
empirical data, rather than making the common assumption of random mixing. We
simulate the spread of an emerging close-contact infectious disease in 2020, 2030, 2040
and 2050, which allows sufficient time for noticeable changes in age and household
structures to emerge. Furthermore, we vary the age profiles of infectiousness and sus-

ceptibility to reflect specific infections, including influenza and SARS-CoV-2.

We aim to explore how the relationship between age and household structures affects
disease transmission dynamics of an epidemic at the individual and the population
level. Moreover, we show how demographic processes alter the population structures
in an ageing population and investigate how this affects the transmission dynamics
across population groups. The paper is organised as follows: In section 4.2, we give
specific details on the demographic microsimulation, including the demographic data
and processes considered. Similarly, we describe the disease transmission model with
two levels of mixing along with the model parameters. Section 4.3 presents the popu-
lation structures and changes therein and documents the disease incidence by age and
household composition. Furthermore, the impact of epidemiological heterogeneities
within the population is visualized in a scenario analysis. Finally, in section 4.4, we

discuss the results as well as the strengths and limitations of the study.
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4.2 Methods

We model the host population and the spread of an infection at the individual level
using microsimulation, also referred to as individual-based modelling or agent-based
modelling [26]. Each individual in the population is represented explicitly and as-
signed a set of relevant attributes (e.g. age, sex, marital status, household member-
ship, disease state). The population evolves over time as a result of individual events
and events emerging from interactions between individuals (e.g. marriage, death,
social contact, disease transmission). All events are tied to the individual, meaning
that the life course and health trajectory of each person is tracked [14]. Consequently,
outbreaks at the population level emerge from the interactions between the individu-
als. Next, we describe the initial population and the processes used to determine the

occurrence of demographic events and disease transmission events.

4.21 Demographic microsimulation

We developed a demographic microsimulation to simulate the Belgian population
from 2011 to 2051. The initial population in the microsimulation is based on the
Belgian census from January 1st 2011, from which we drew a household-based sample
corresponding to about 10% of the total population. For each individual, we have
information on their date of birth, sex, coded ID of parents, birth trajectory (parity
and date of most recent birth if applicable), household ID and household position
(e.g. in union, child, single parent). Thus, individuals can be linked to each other

through household membership and kinship.

In each time step (i.e. day), individuals can enter and leave the population as a
result of births, deaths and migration. Moreover, the household position of an in-
dividual may change and transitions between households or the creation of a new
household can take place. Household transitions include children leaving the parental
household, union formation or dissolution and older adults moving to LTCFs. The
household transition and other demographic events of one individual may thus also af-
fect the household position of other individuals. A single parent, for example, changes
household position to single after the last child moves out and an individual in a union

becomes single (parent) after their partner dies.

The demographic events take place by comparing an individual’s probability of a
given event to a random number between zero and one. The event is executed if
the probability is larger than or equal to the random number. The probability of a

demographic event taking place varies by individual characteristics, including age, sex
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and household position, and changes over time except for the household transition
rates. Finally, ageing takes place at the end of the time step and the population is
updated accordingly.

We assume that mortality, fertility and migration levels in the microsimulation resem-
ble the observed and projected rates by the Belgian Statistical Office (Statbel) and
the Belgian Federal Planning Bureau (FPB). This implies below-replacement level
fertility (i.e. a total fertility rate (TFR) below 2.1 [51]), as the TFR in the simulation
is decreasing from approximately 1.8 in 2011 to 1.5 in 2020 followed by a slow increase
to about 1.62 by 2050. Moreover, we assume continuous improvements in longevity,
especially for males, for which the life expectancy at birth is increasing from 77.7 years
in 2011 to 85.4 years in 2050 [173, 174]|. Consequently, the population will continue
ageing, with implications for the household structures.

We keep track of all demographic events in an event log file, which makes it possible to
re-create the population and the changes therein. The host population in the disease
transmission model thus evolves in a deterministic manner, making it possible to solely
ascribe differential outcomes in a given simulation year to the disease transmission
parameters. The demographic data, model and source code are described in detail in
Chapter 3 and Appendix C.1.

4.2.2 Disease transmission model

Although we allow demographic events to take place on a daily basis, substantial ef-
fects of population ageing will only emerge after several years, as demographic change
is a slow process. We have therefore chosen to simulate disease outbreaks every ten
years. In 2020, 2030, 2040 and 2050, ten randomly chosen individuals become in-
fected, in an otherwise fully susceptible population, on January 1st of each respective
year. We consider an infectious disease transmitted via close contact, which can be
represented by a Susceptible-Infectious- Recovered (SIR) model and consider several
scenarios for age-specific susceptibility and infectiousness. The probability of becom-
ing infected, and thus moving from the susceptible to infectious state, is calculated
using a two-level mixing model, where an individual can acquire infection as a re-
sult of interactions with an infected household member (local contact) or an infected
individual in the general population (global contact) [175]. For each combination of
parameter settings in the two-level mixing model, we run 30 simulations, but in the
analysis, we disregard those where an outbreak never takes place (i.e. total attack
rate of less than 0.5%).
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Within- and between-household interactions

We use a contact matrix to estimate social interactions (i.e. a proxy for an at-risk
event at which infection can be transmitted) between non-household members in the
general population. The contact matrix is based on social contact data collected in
a survey in Belgium in 2010-2011 [167] and made available through the SOCRATES
data tool [176] (see Figure C.1). Contacts between household members were excluded,
as these are captured by the household level of the model, but contacts taking place
in the household with non-household members were included. Additionally, supple-

mentary professional contacts (SPC) were excluded.

To model interactions among household members, we construct a household contact
network for each household in the population. Specifically, each household member is
represented by a vertex, and a link between two vertices indicates a contact between
those two household members. The links are constructed using an exponential random
graph model developed by Krivitsky et al. [150], which was fitted to data from two
contact surveys conducted in Belgium in 2010-2011 [50, 167]. The household contacts
are limited to those involving skin-to-skin touching. The model accounts, amongst
other things, for the type of household and the age-sex composition. The probability
of a contact between two household members, however, is independent of past contacts
between them. In each time step (i.e. day), we apply the fitted model from Krivitsky
et al. [150] to the households in the simulated population and simulate who comes into
contact with whom within each household. The mean network density (the number
of links in a household relative to the number of possible links [177]) by household
size and type are shown in Figure C.2. Contacts between household members are
often repetitive because of the high contact density in the households. In the general
population, repetitive contacts are less likely because of the large population size.
Nevertheless, they may still be important, but data on the share of repetitive contacts

is lacking.

Risk of infection

Each susceptible individual i acquires infection at time ¢ with probability p;(¢):

pit) =1 [T (0 = Busizjai;(OL;(0) - TT (1= Bpsizjeis () ;1)) (4.1)

J#i J¢hi
Jj€Eh;

where h; denotes the household of individual ¢ and the parameters 3, and 3, rep-
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resent the probabilities of disease transmission given contact between a susceptible
and infectious individual within the household and in the general population, respec-
tively. We vary the transmission parameters to reflect different settings (e.g. high
vs. low household transmission) and are thus not calibrating the parameters to data
for specific infections. The relative susceptibility and infectiousness given the ages
of individual ¢ and j are represented by s; and z;, respectively, while I;(t) takes the
value one if individual j is infected at time ¢ and zero otherwise. The contact net-
work in household h; is represented by an adjacency matrix A of which the element
a;;(t) equals one if household members ¢ and j come into contact with each other at
time t, and zero otherwise. A new adjacency matrix is generated in each time step

conditional on the household composition.

The social contact matrix from Figure C.1 contains the mean number of contacts per
day in the general population between each age group, m;;, thus we compute the
probability by which individual ¢ and j come into contact with each other on a given
day (time t is discretised in days) based on the age groups to which ¢ and j belong,

cij(t), as follows:

mij

W= N

(4.2)

We assume disease transmission in the general population to be frequency-dependent,
meaning that the number of effective contacts made by each person remains unchanged
as the population grows. Thus, to keep the age-specific contacts constant over time,
the element m;; is divided by N;(t), the size of the age group of j at time ¢. In each
time step, the probability of infection based on Equation 4.1 is computed for all sus-
ceptible individuals in the population and their disease state is updated accordingly.
We are not taking factors like seasonality, weekends and school holidays into account,
as we are focussing on the role of population heterogeneity in the spread of an infec-

tion. The interplay between these factors remain a topic for further research.

Infectious period

We assume that the infectious period follows a gamma distribution with a mean
of 3.8 days and a standard deviation of 2 days, reflecting the infectious period for
influenza [31, 178, 179]. For each newly infected individual, a value is drawn from the
distribution and rounded to the nearest integer. An infected individual recovers and

obtains immunity when the infectious period has passed.
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Age-specific susceptibility and infectiousness

We consider different scenarios for age-specific susceptibility and infectiousness. Whereas
this is primarily an explorative set of scenarios, some of these age-specific suscepti-
bility and infectiousness profiles were motivated by specific infections, including in-
fluenza and Respiratory Syncytial Virus (RSV) (e.g. scenario S4 [180]), SARS-CoV-2
(e.g. scenario S1 or S3 [181-183]). Other considered elements includes the general
phenomenon of immunosenescence depicting higher susceptibility at older age (e.g.
scenario S2). Moreover, we use the scenarios to assess the role different population
groups play in the spread of an infection. The age-specific susceptibility and infec-
tiousness scenarios are shown in Figure 4.1 in relative terms, meaning that a value
below one corresponds to reduced susceptibility or infectiousness and a value larger
than one implies increased susceptibility or infectiousness for individuals in the given
age group. Susceptibility is age-dependent (different from one) in scenario S1-S4,
while infectiousness is age-dependent in scenario I1-14. We compare the different sce-
narios to a baseline case where infectiousness and susceptibility are equal across all

ages.
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Figure 4.1. Age-specific susceptibility and infectiousness scenarios.
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4.3 Results

4.3.1 Population dynamics

Age and household size are closely connected as seen in Figure 4.2. Children and
adolescents most often live with their parent(s) and siblings, meaning that households
of size three and larger are most common at young ages, which implies a similar
pattern in the parental age groups (e.g. ages 30-55). The average household size starts
to decrease in late adolescence, as children leave the parental household, and increases
again from the late twenties with the entry into parenthood. Again, a similar pattern
is seen in the parental generation (e.g. age 50+), but with a continuous decrease
in mean household size until the mid-seventies, when widowhood and the need for
LTCFs become more prevalent. Consequently, single-person households and very

large households (i.e. LTCFs) become more frequent in the oldest age groups.
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Figure 4.2. Household size distribution by age group of simulated population in
2020.

The population structures do not change dramatically over time, as the Belgian pop-
ulation in 2020 already has an old age structure and we are not assuming extreme
changes in the vital rates in the simulation period of 30 years. Nevertheless, the sim-
ulated population continues ageing between 2020 and 2050 as seen in Figure 4.3 (left
panel). The share of the population older than 60 years increases by 22% between
2020 and 2050, while the share in the oldest age group alone (i.e. 81+) increases
by more than 75%. This is the result of past long-term trends of declining fertility

and increasing longevity, which continue to a certain degree in the simulation pe-
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riod. Moreover, the ageing of the large generations born in the mid-twentieth century

causes a temporary acceleration of the population ageing.

The changes in the age distribution are also reflected in the household size distribution
as seen in Figure 4.3 (right panel). The proportion of the population living in a single-
person household increases as the population ages, since the proportion of people
living alone is higher in the older age groups. The proportion living in households
of size two is increasing from 2020 to 2040, which is mainly due to the increased
survival of elderly males in a union. While an increasing share of the population lives
in small households of size one to three, the proportion of larger households of size
four to six is decreasing. Households of those sizes are to a large extent occupied by
nuclear families in the age range of 0-50 years (see Figure C.3 and C.4 in Appendix
C), which makes up a decreasing proportion of the simulated population from 2020 to
2050. The proportion of the population living in households of size seven and larger
remains quite stable during the simulation period, but it is the result of two opposite
trends. The proportion of parents with a large number of children, and therefore with
a large household, is decreasing, while people living in LTCFs (i.e. elderly population),

make up an increasing proportion of the population.
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Figure 4.3. Age distribution (left) and household size distribution (right) of the
simulated population in 2020, 2030, 2040 and 2050.

The age-specific household size distributions slightly change over time (see Figure C.3
and C.4 in Appendix C). The average household size for children and their parents
(i.e. younger than 50 years) is decreasing. This is a consequence of single parent fam-

ilies becoming more prevalent and a decreasing TFR prior to 2020, followed by a slow,
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but not full, recovery (see Figure C.5). Meanwhile, the average household size in age
group 50-70 is increasing as the likelihood that their household accommodates (adult)
children increases, due to past changes in the timing of childbearing. A change in the
household size distribution is also seen in the elderly population as a result of improve-
ments in longevity. Consequently, single-person households and collective households

(i.e. LTCFs) are increasingly being replaced by two-person households.

4.3.2 Disease transmission dynamics
Attack rate

The proportion of the population that contracts the infection during an outbreak
(the attack rate) responds to changes in the transmission parameters (), and S,
in Equation 4.1) in a non-linear pattern (see Figure C.6 in Appendix C). The rela-
tive increase in the attack rate diminishes as the transmission probabilities increase,
especially when the transmission probability given contact within the household in-
creases. Potential household infections are limited by the size of the household and
more than 15% of the simulated population live in single-person households. Thus,
as the household transmission probability keeps increasing, everyone with an infected
household member will eventually become infected as well. The attack rates in each
susceptibility and infectiousness scenario deviate from the baseline scenario since some
population groups face an increased or decreased risk of acquiring or transmitting the
infection given the specific scenario. However, the differences between the scenarios

diminish as the transmission probabilities increase.

Age- and household-specific transmission dynamics: Baseline scenario

The age-specific attack rates in the baseline scenario are shown in Figure 4.4 for
varying probabilities of household (closed vs. open circle) and community transmis-
sion (upper vs. lower panel) and at the different time points. We see that some
population groups are more likely to get infected than others, also when discarding
age-specific differences in susceptibility and infectiousness. The proportion of chil-
dren and adolescents getting infected is larger than that of any other age group. The
adult population also faces relatively large attack rates, which decrease from age 50
onwards. This reflects the age pattern in social contacts outside the household (see
Figure C.1 in Appendix C). Nevertheless, social mixing in the general population
alone cannot explain the age distribution in the attack rates. The age group 20-29,

for example, has more contacts in the general population than the age group 30-49,
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yet lower attack rates. This is due to the difference in household composition of
these age groups. Individuals in their 20s are much more likely to live in households
of size one or two, and thereby have a lower number of possible household contacts
than people of age 40-49, who often live in larger households as seen in Figure 4.2.
Moreover, the household members of the two groups tend to differ in case of a larger
household. People aged 30-49 living in a household of size three or larger often have
young children living with them, while the 20- to 29-year-olds are more likely to live
together with their parents or unrelated adults in a house-sharing arrangement (see
Figure C.4 in Appendix C). The mean density of the contact network is higher in
the first household constellation than in the latter because of the presence of young
children (see Figure C.2 in Appendix C). Finally, children and teenagers are more
likely to bring an infection into the household given their high number of contacts in
the general community, including schools, thus putting the parents at an increased

risk (assuming that susceptibility and infectiousness are independent of age).
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Figure 4.4. Mean age-specific attack rate with 95% confidence interval for varying
transmission parameters (8,: filled vs. open circle, 3,: upper vs. lower panel) in the
baseline scenario (susceptibility and infectiousness are equal across age).

The attack rates in the oldest age groups can also only be explained by considering
household structure. The attack rate is higher in age group 90+ than in 80-89, despite
both age groups having identical social contact rates outside the household. From the
age of 80 onwards, small households of size one and two are increasingly replaced by

very large households (see Figure 4.2), such as LTCFs.
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Household-specific attack rates (i.e. the proportion of household members acquiring
infection) are shown in Figure 4.5 by household size (x-axis) and household trans-
mission probability (open vs. closed circle). Moreover, we distinguish between a risk
set containing all households (upper panel) and a risk set only containing households
with at least one infected household member during the outbreak (lower panel). Gen-
erally, the household-specific attack rate increases by household size (Figure 4.5 upper
panel). This result is a combination of how likely an infection is to enter the house-
hold and how easily it spreads within that household. The number of individuals that
can bring an infection into the household increases with the household size, however,
the likelihood of it happening also depends on the social contact patterns of each
household member. The infection is more likely to spread to households with at least
one child younger than 13 years than to households of the same size without children,
because children have a relatively large number of contacts in the community (see
Figure C.7 in Appendix C).
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Figure 4.5. Mean proportion of household members getting infected by household
size in baseline scenario. Upper panel: Estimate based on all households. Lower panel:
Estimate based on households with minimum one infected individual. 3, = 0.01.

After the infection has entered a household, the further spread is affected by the
household size and composition. The within-household transmission is visualised in
the lower panel of Figure 4.5, as the estimates are limited to households with at
least one infected individual. In that case, the differences across household sizes
are substantially smaller and the mean proportion of household members getting
infected even decreases from household size two to three. The decrease, however,

is only observed for households without a young child. The presence of a child in
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the household affects the within-household transmission across all household sizes of
less than eight, as young children tend to have more contacts with their household
members (i.e. parents, siblings) than teenagers and young adults do with theirs (see
Figure C.8 in Appendix C).

Effect of demographic change on transmission dynamics: Baseline scenario

The proportion of the population acquiring the infection during an outbreak is de-
creasing from 2020 to 2040 in all scenarios but the trend stabilises or reverses between
2040 and 2050 (see Figure C.6 in Appendix C). This is the result of changing house-
hold structures and population ageing. The elderly population, which over time makes
up an increasing proportion of the population, has relatively few contacts on aver-
age since the majority lives in small households and has few contacts in the general
population. Consequently, the elderly population has a lower risk of acquiring and

transmitting an infection than younger age groups.

Additionally, the changing household compositions in the population younger than 50
years of age resulting from low fertility levels and an increasing proportion of single
parent families, decreases their risk of infection over time, with implications for the
overall incidence. Meanwhile, the proportion infected of age group 50-70 remains
more or less stable, despite an increasing proportion living in households larger than
size two. Finally, improved longevity implies that the elderly population (especially
females) becomes more likely to live with their partner than alone or in LTCFs,
which affects the incidence in the oldest age group (90+). The relationship between
risk of infection and household size persists as the population is ageing, but the
proportion of infected household members is decreasing over time across all household
sizes (Figure 4.5 upper panel). Meanwhile, the within-household transmission remains

stable over time (Figure 4.5 lower panel).

Effect of age-specific infectiousness and susceptibility

We further investigate the role different age groups play in the spread of an infec-
tious disease. In Figure 4.6, we compare the age-specific attack rates in 2020 across
the susceptibility and infectiousness scenarios to those of the baseline scenario (i.e.
corresponding to Figure 4.4). This is visualised for varying population transmission
probabilities (upper vs. lower panel). Differences from the baseline attack rate are
not only seen in the age groups with modified susceptibility or infectiousness, but also
in the rest of the population to varying degrees. The susceptibility and infectiousness

of children affect all population groups, and the parental generation in particular (e.g.
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age group 30-39), to a markedly larger degree than changes in the susceptibility and
infectiousness of the elderly population. In scenario S1 (I1), children have a relatively
low susceptibility (infectiousness) which affects all other age groups substantially,
while the relatively high susceptibility (infectiousness) from age 65 onwards in sce-
nario S2 (I2) has a much smaller effect on the incidence in other age groups. This
is also seen by comparing scenarios S1 and S3 (I1 and I3), where the attack rates
below the age of 60 do not differ substantially, despite the increased susceptibility
(infectiousness) of the elderly population in the latter scenario. Even the elderly pop-
ulation itself is only somewhat affected by changes in their infectiousness. However,
it applies to children as well as the elderly, that a change in their infectiousness only
has a slightly larger impact on the incidence in the rest of the population compared

to the same change in susceptibility.
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Figure 4.6. Mean and 95% bootstrap confidence interval for the mean age-specific
attack rate in baseline scenario (grey) and each susceptibility /infectiousness scenario
across varying population transmission probabilities (upper vs. lower panel) and
household transmission probability of 0.2. Simulation year 2020

As the population transmission probability (upper vs. lower panel in Figure 4.6) in-
creases, the absolute difference between each scenario and the baseline attack rate
diminishes, except for the age group 70 and older when subject to increased suscep-

tibility as in scenario S2, S3 and S4. This is particularly pronounced in scenario
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S3, where children have relatively low susceptibility while the old age groups have
high susceptibility. As the transmission probabilities increase, the attack rates in age
groups 70-79 and 80+ in S3 shift from being below to being above those of the baseline
scenario. The attack rates change slightly over time in all scenarios, but the position
of each scenario relative to the other scenarios and the baseline remains unchanged
(see Figure C.9 and Figure C.10 in Appendix C).

4.4 Discussion

An understanding of demographic structures in the host population and how these
influence disease transmission can be important for determining which population sub-
groups are most at risk and most effective to target in an intervention [17]. Moreover,
an understanding of the demographic processes underlying the population structures
may be important for assessing how future demographic changes potentially could

affect transmission dynamics.

Using longitudinal microdata drawn from Belgian census and population registers, we
model a host population with evolving age and household structures using microsim-
ulation and illustrate how population ageing and changing household dynamics may
further unfold in the next decades. We combine the demographic microsimulation
with an epidemic model with two levels of mixing and illustrate a strong link between
age and household structures and the implications thereof for the risk of infection
for different population subgroups during an epidemic. Additionally, we quantify
the potential impact of changing age and household structures on disease transmis-

sion.

The age structures in the social contact patterns are mirrored in the age-specific attack
rates as the youngest age groups, with the most community contacts, have the highest
risk of infection. The attack rates in the adult population, however, are to a larger
degree explained by the differences in household compositions between young adults,
middle-aged adults and older adults, which are related to the timing of demographic
events. Young adults in their 20s face a relatively low risk of infection on average,
but it increases with the entry into parenthood, when assuming that susceptibility
and infectiousness are independent of age. The child will eventually have a relatively
high number of contacts outside the household (e.g. in day-care, school) as well as
frequent contact with the parent(s) within the household, making the risk of infection
high compared to other population groups. These relationships change to some degree

in the different scenarios for age-specific infectiousness and susceptibility.
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The incidence in families with children and/or adolescents decreased during the sim-
ulation period as a consequence of changing household compositions. In the decade
prior to the first outbreak simulations, 2010-2019, the total fertility rate decreased
followed by a slow, but not full, recovery during the remaining simulation period, sim-
ilarly to observed and projected rates by Statbel and FPB [174]. Changing fertility
levels combined with an increase in single parent families affected the household com-
positions and indirectly disease transmission. This also affects disease transmission
in other population groups since families with (school-age) children are important

drivers in an epidemic.

As the children grow up and, in most cases, eventually leave the parental household,
the number of household contacts of the now middle-aged parental generation is de-
creasing again, often in combination with decreasing community contacts, leading to
lower attack rates. However, we found that the proportion of middle-aged people with
(adult) children living in their household is increasing during the simulation. This
change is related to the postponement of parenthood since the probability of leaving
the parental household is assumed to be constant over time. Parents are increasingly
older when the last child leaves the parental household because the average age at
childbirth was increasing prior to 2011 when our simulation begins [161]. Several years
later, these past fertility trends affect the household composition of the middle-aged
population and indirectly their risk of infection. The increasing household size was
expected to increase the risk of infection in the middle-aged population, but the effect
is more or less counterbalanced by the decrease in the overall incidence induced by

the changing household compositions in the younger age groups.

It should be noted that the relative distribution of births by the age of the mother is
only slightly changing in the first decades of the simulation and eventually stabilises.
However, the average age at childbirth in Belgium has increased since 2011 and this
is expected to continue in the future, to some degree [174]. Hence, the average age at
childbirth, and indirectly the age at which children leave the parental household, is

likely to increase more than in our microsimulation.

The risk of infection in the elderly population was also found to be highly dependent
on their living arrangement. Community contacts are decreasing with age and a large
proportion of old people live alone or only with their partner, which minimises the
number of occasions where transmission of a close-contact infection can take place.
However, from the age of 80 onwards, the proportion of the population living in

LTCFs, which tend to be very large households, increases considerably and so does
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the risk of infection. Consequently, the age pattern in the attack rates in the elderly

population is shaped by the proportion living in collective households.

During the simulation period, collective households and single-person households in
the population older than 80 years of age are increasingly being replaced by two-person
households, as a result of improved longevity, particularly of males. We assume that
the sex differential in mortality decreases during the simulation period as a result of
larger improvements in men’s mortality than in that of women. This implies that
an increasing proportion of elderly women are living with a partner instead of alone,
which intuitively should increase their risk of infection. However, the probability of
moving to LTCFs, which are very large households associated with a high risk of
infection, is substantially higher for elderly people living alone than for those living
with a partner. Consequently, gradually fewer elderly people move to LTCFs and

therefore incur a substantially lower risk of infection.

The future living arrangements and mortality of the elderly population are, like all
other demographic processes, associated with uncertainty [184]. However, the sex
differential in mortality has been decreasing and this is considered likely to continue,
to some extent, in the future. The resulting changes in the household structures of
the elderly population seen in our microsimulation are in agreement with existing
studies of past and future trends in the living arrangements and mortality of older
adults [185, 186].

In addition to social contact patterns, age and household structures, we also explored
how epidemiological heterogeneities within the population may influence the spread of
an infection. We incorporated different scenarios for susceptibility to infection when
exposed and infectiousness when infected according to age. As anticipated given the
social contact patterns and household structures, the susceptibility and infectiousness
of children and adolescents were highly influential for the disease transmission in the
whole population and in the parental generation in particular. Changes to these
epidemiological parameters in the elderly population clearly affected that age group,

but exerted much less influence on other age groups.

The elderly population, however, is affected differently by changes in the transmission
parameters than the rest of the population, when subject to elevated susceptibility.
As the probability of transmission given an effective contact increases, the underes-
timation of the attack rate in the elderly population when omitting age-dependent
susceptibility (baseline scenario) increases, while it decreases in the rest of the pop-

ulation, and in all other scenarios. Generally, many older adults escape infection
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due to their limited number of contacts within and outside the household. However,
as the transmission probabilities increase, a proportionately larger share of house-
holds with elderly people are reached by the infection and more individuals within
the households become infected if their susceptibility is elevated. Thus, the impact of
epidemiological heterogeneities (e.g. age-specific susceptibility) is not only dependent
on the transmission parameters but also on other heterogeneities in the population,

including social contact patterns and household structures.

Overall, we find that the strong relationship between age and household structures
at the individual and population level, in combination with social mixing patterns
and epidemiological parameters, shape the spread of an emerging infection. Disease
transmission in the adult population in particular is influenced by differential house-
hold compositions. Moreover, we highlight how demographic processes alter popula-
tion structures with differential impact on the disease transmission dynamics across
population groups. Nevertheless, our study faces several limitations with regard to

demographic modelling as well as infectious disease modelling.

We recognise that the demographic processes in the microsimulation are simplifica-
tions of highly complex processes and that the inherent uncertainty in population
projections preferably is described in the form of probability distributions [123, 187].
Moreover, the sensitivity in the association between demographic and epidemiolog-
ical outcomes could have been explored. However, expanding our demographic mi-
crosimulation is not considered necessary to fulfil the aim of this paper, which is to
document the impact of population structures and the changes therein on the spread
of an emerging infection. For future research, however, it would be relevant to com-
pare the microsimulation and two-level mixing model to other epidemic models with

household-structured host population (e.g. [188]).

In our model of infectious disease transmission, we assume a fully susceptible pop-
ulation, restricting our study to emerging infections. Expanding the study to en-
demic infectious diseases requires not only information on age-specific patterns of
prior immunity but also information on how immunity is distributed in households.
Alternatively, a population at an endemic disease equilibrium can be generated, for
example by simulating disease transmission over a long period of time before the ac-
tual analysis [41, 42]. However, this would require a rather complex technique and/or
detailed (historical) demographic data. Moreover, if the fertility and mortality sched-
ules remain constant while generating an endemic disease equilibrium, the population

eventually acquires the age distribution of the stable population associated with those
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underlying schedules of vital rates, which may not resemble the population of interest
[51].

Another limitation in our model of disease transmission concerns the social contact
patterns. If SPCs had been included in the social contact matrix, the incidence in the
population of working age would have been slightly higher, however, the relationships
found between population groups would remain. Additionally, we assume that the
contact patterns in a household of a given composition are constant over time and that
community transmission is frequency-dependent with constant age-specific contacts.
Methods for adjusting social contact matrices to evolving demographic structures
have been proposed, but these are not based on empirical evidence for how contact
patterns behave over longer time frames as population structures evolve [189, 190].
A comparison of two social contact surveys in Belgium five years apart suggests that
the contact rates can be assumed stable, but the demographic change in this period

is of course limited [167].
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Chapter

Exploring the impact of population ageing on the
spread of emerging respiratory infections and the
associated burden of mortality

This chapter is based on submitted work: “Mggelmose, S., Neels, K., Beutels, P.
& Hens, N. Exploring the impact of population ageing on the spread of emerging

respiratory infections and the associated burden of mortality.”

5.1 Background

The population age structures in most high-income countries have for decades been
shifting towards older ages (i.e. population ageing) as a result of increasing life ex-
pectancy and persistent below-replacement fertility levels. Currently, a temporary
acceleration of population ageing is seen in many countries due to the ageing of
the large generations born in the mid-twentieth century [191]. Moreover, popula-
tion ageing has become a global phenomenon and the proportion of older adults
in many low- and middle-income countries is increasing at an unprecedented speed

[64, 172, 192, 193].

The rising burden of non-communicable diseases induced by population ageing has
rightfully been given a lot of attention [194-196]. However, morbidity and mortality
due to infectious diseases, respiratory infections in particular, remain substantial in

the elderly population [39]. The progressive deterioration of immune functions with
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age (immunosenescene) increases older adults’ susceptibility to infection and their risk
of a severe outcome in case of disease [76]. The COVID-19 pandemic, for example,
has had a disproportionate impact on the older adult population and on those living
in long-term care facilities in particular (LTCFs) [77, 78, 86-88|. Several aspects of
LTCFs (e.g. communal meals, group activities, staff rotation) make them an optimal
environment for rapid spread of many infectious diseases [85, 128]. Additionally, many
LTCEF residents have underlying chronic illnesses, which, in addition to their old age,
may increase the severity of an infection [129, 130]. Nevertheless, LTCF residents
only make up a minority of the older adult population in most high-income countries.
The majority of old people typically live alone or with a partner. Moreover, social
contact surveys from several European countries have shown that people aged 65 and
older have the lowest mean number of contacts [167], and thus fewer interactions
that potentially could lead to disease transmission. Consequently, the incidence of
infections transmitted via close contact may be relatively low in the oldest age groups,
yet the disease burden is typically substantial [197-201].

This implies that high-income countries with ageing populations may face a decreas-
ing overall incidence of an infectious disease (e.g. influenza), but it could coincide
with an increasing burden. However, the future burden of infectious diseases in older
adults may, among other things, be influenced by the future health and living ar-
rangements at old age. It remains unclear whether the increases in life expectancy
are accompanied by a proportionate increase in healthy life expectancy [202-205].
Health at old age and living arrangements are naturally connected, with relevance
for infections transmitted via close contact. The proportion of elderly people living
with a partner is expected to increase due to improved longevity, particularly of males
[186]. Nevertheless, the proportion living in LTCFs is also likely to increase as the
proportion of the oldest people (i.e. 85+) increases [185, 206].

Several studies have investigated the impact of population ageing on the spread and
burden of different infectious diseases, including measles, influenza, pneumonia and
herpes zoster (e.g. [36, 37, 42, 73, 75, 97, 118, 207, 208]). Nevertheless, only few
studies consider a household-structured population and to our knowledge none of
them incorporate LTCFs. We aim to improve the understanding of how changing
age and household structures affect the future transmission dynamics and mortality
burden of respiratory infections in an ageing population, and explicitly explore the
role of living arrangements in the older adult population. Specifically, we consider the
Belgian population, which, like most other high-income countries, has a relatively old

age structure and is still ageing. We use the demographic microsimulation presented in

82



Chapter 3, which is based on longitudinal microdata drawn from Belgian census and
population registers. The microsimulation includes dynamic demographic processes
for fertility, mortality, migration and household transitions, making it possible to
model the Belgian population over time with evolving age and household structures.
In addition to private households, collective households (e.g. LTCFs) are represented
in the microsimulation. Due to the uncertainty surrounding the future health and
living arrangements of older adults, we consider three demographic scenarios with
respect to the proportion of LTCF residents. We refer to the scenarios as low, medium
and high to describe the proportion of older adults living in LTCFs relatively to the

other scenarios.

We subsequently combine the demographic microsimulation with a disease transmis-
sion model representing the spread of SARS-CoV-2 and a novel influenza A virus.
The model is a modification of the two-level mixing model presented in Chapter 4,
which distinguishes between exposure to infection in the household and exposure
in the community at large. Additionally, the model implements contact networks
within households which are based on empirical data, rather than making the com-
mon assumption of random mixing [150]. We simulate outbreaks of SARS-CoV-2 and
influenza in a fully susceptible population in 2020, 2030, 2040 and 2050, which allows

sufficient time for demographic change to emerge.

We first illustrate how the age and household structures are altered in an ageing
population. Secondly, we explore how the changing population structures affect the
spread of the two respiratory infections (i.e. incidence) and the burden of mortality
in the form of disease-related deaths and quality-adjusted life-years (QALYs) lost. In
health economics, QALY expectations (gains or losses) represent a commonly used
summary measure of longevity adjusted for the combined impact of death and mor-
bidity [209]. Finally, we investigate to what extent our findings at the individual and
population level are affected by changes in the living arrangements in the older adult

population.

5.2 Methods

5.2.1 Demographic microsimulation

We simulate the Belgian population using the microsimulation presented in Chapter 3.
The initial population is based on a sample from the Belgian census in 2011. For

each individual, we have information on their date of birth, sex, ID of parents, birth
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trajectory (parity and date of most recent birth if applicable), household ID and
household position (e.g. in union, child, single parent). Thus, individuals can be
linked to each other through household membership and kinship. The population
evolves over time as individuals can enter and leave the population as a result of
births, deaths and migration. Moreover, individuals can move between or create
new households, for example as a part of union formation or dissolution. Finally, all

individuals are ageing over time and the population is updated accordingly.

The probability of a demographic event taking place varies by individual characteris-
tics, including age, sex and household position, and changes over time except for the
household transition rates. We assume that mortality, fertility and migration levels in
the microsimulation resemble the observed and projected rates by the Belgian Statis-
tical Office (Statbel) and the Belgian Federal Planning Bureau (FPB). This implies
below-replacement fertility (a total fertility rate below 2.1 [44]) and continuous im-
provements in longevity, especially for males [45,46] (see Figure D.1 and Figure D.2
in Appendix D). Consequently, the population will continue ageing, with implica-
tions for the household structures. Fertility trajectory and/or household position
are included as covariates in the sub-models for fertility and mortality, as they have
been shown to affect the probability of having a(nother) child and dying, respectively
[210, 211]

We consider three demographic scenarios pertaining to the household structures in
the older adult population (i.e. people aged 75 and older). The large majority of
LTCEF residents live in a single-person household prior to moving to the LTCF, thus we
created three scenarios by varying the probability of leaving a single-person household
for people aged 75 and older. The cut-off is made at the age of 75 years since only a
small proportion of the population reside in LTCFs at younger ages (see Figure D.13
in Appendix D). We refer to the scenarios as low, medium and high, as an indication
of the proportion of the older adults living in LTCFs. The demographic data, model
and source code are described in detail in Chapter 3 and Appendix D.1.

5.2.2 Disease transmission model

In addition to the demographic attributes, all individuals are assigned a disease state.
Disease outbreaks take place in the simulated population in 2020, 2030, 2040 and
2050 as ten randomly chosen individuals become infected, in an otherwise fully sus-
ceptible population, on January 1st of each respective year. The outbreaks are ten

years apart to give sufficient time for demographic changes to emerge. We use an
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SEIR-like (Susceptible- Exposed-Infectious-Recovered) model to describe the spread of
respiratory diseases transmitted via close-contact interactions with the examples of
COVID-19 and influenza. The probability of becoming infected, and thus moving
from the susceptible to exposed state, is calculated using a two-level mixing model,
where an individual can become infected as a result of disease transmission within

the household or in the general population [175].

Within- and between-household interactions

We use the same techniques as described in Chapter 4 to model social interactions,
which serve as a proxy for an at-risk event at which infection can be transmitted.
Contacts between non-household members in the general population are estimated
using social contact data collected in a survey in Belgium in 2010-2011 [167] and
made available as a contact matrix through the SOCRATES data tool [176] (see
Figure D.3 in Appendix D). Contacts between household members were excluded, as
these are captured by the household level of the model, but contacts taking place in the
household with non-household members were included. Additionally, supplementary
professional contacts (SPC) were excluded. SPC is a category for individuals with
more than 20 professional contacts per day (e.g. bus drivers). These are likely to
be less important than other types of contacts when it comes to the transmission of

close-contact infectious diseases [212].

For each household, we construct a contact network to model interactions among
household members. Contacts are determined to take place using an exponential-
family random graph model developed by Krivitsky et al. [150], which was fitted to
data from the social contact survey mentioned above [167] and a household contact
survey [50], both conducted in Belgium in 2010-2011. Household contacts are limited
to those involving skin-to-skin touching. The household contact network is, amongst
other things, conditional on the type of household and the age-sex composition. In
each time step (i.e. day), we apply the fitted model from Krivitsky et al. [150] to
generate a contact network for each household in the simulated population. The
household contact networks may thus change every day. The mean network density
(i.e. the number of links in a household relative to the number of possible links [177])

by household size and type are shown in Figure D.4 in Appendix D.
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Influenza

We formulate an SEIR model to describe the spread of a novel influenza virus such
as the influenza A (HIN1)pdm09 virus that emerged in 2009. When acquiring the
infection, the individual is not infectious at first (i.e. exposed or latent period), but
becomes infectious as the latent period ends and eventually recovers as the infectious
period comes to an end. Disease-related mortality is not considered explicitly in the
model, but estimated after the simulation. Each susceptible individual i acquires the
infection at time t with the probability:

pi(t) =1— [T O = Brai;(1;0) - [T O = Bpeis (O 1;(0)) (5.1)
jjgé]fi J¢hi

where h; denotes the household of individual ¢ and the parameters 3, and 3, represent
the probability of disease transmission given contact between a susceptible and in-
fectious individual within the household and in the general population, respectively.
We select transmission parameters, 35 and f3,, that result in a group-to-group re-
production number (R, [175]) of about 1.5, which resembles the basic reproduction
number estimated for influenza A(HIN1)pdm09 [213-215|. This is further described
in section D.5 and section D.6 in Appendix D. I;(t) takes the value one if individual
Jj is infectious at time ¢t and is otherwise zero. The contact network in household h; is
represented by an adjacency matrix A and the element a;;(t) equals one if household
members ¢ and j come into contact with each other at time ¢ and is otherwise zero.

A new adjacency matrix is generated in each time step.

The social contact matrix from Figure C.1 contains the mean number of contacts per
day in the general population between each age group, m;;, thus we compute the rate
at which individual ¢ and j come into contact with each other at time ¢ given their

age groups, c¢;;(t), as follows:

Cij (t) = (52)
The element m;; is divided by N;(t), the size of the age group of j at time ¢, to keep
the age-specific contacts constant over time. This implies that we assume disease
transmission in the general population to be frequency-dependent, meaning that the
number of effective contacts made by each person remains unchanged as the popula-

tion grows. In each time step, the probability of infection is computed for all suscep-
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tible individuals in the population and their disease state is updated accordingly. The
latent period is drawn from a uniform distribution with 1 day as minimum and 5 days
as maximum. We assume that the infectious period follows a gamma distribution with
a mean of 3.8 days and standard deviation of 2 days [31, 178, 179]. For each newly
infected individual, a value is drawn from the distribution. An infected individual

recovers and obtains immunity when the infectious period has passed.

COVID-19

In order to model the spread of SARS-CoV-2, we use a model similar to that of
Willem et al. [32], which involves an extension of the SEIR model. Infectious individ-

uals are initially pre-symptomatic and some develop symptoms while others remain
Infectious
——>
asymp.
. Infecti
pre-symp.
Infectious
S —
sSymp.

Infectious period

asymptomatic (see Figure 5.1).

Incubation period

Figure 5.1. Disease transmission process for COVID-19. Symp.: Symptomatic.

Each susceptible individual i acquires infection at time ¢ with probability:

pi(t) =1- H (1 = Bh,a@ij(t)1,a(t)si) - H (1= Bh,saij(t)1}s(t)si)

i i

JjEh; jEh; (53)
T (= BraciiOIja(t)si) - T (1= Bp.scis (.o (t)si) -

J¢hi J¢hi
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The same notation is used as for the influenza model, but the subscripts indicate
whether the infectious individual is symptomatic (s) or asymptomatic (a). Infected
individuals without symptoms are assumed to be half as infectious compared to those
with symptoms, however, we acknowledge that this parameter is associated with
uncertainty [216, 217]. We select transmission parameters, 5, and f(p, that result
in a group-to-group reproduction number of about 3, to reflect the estimated basic
reproduction number in Belgium prior to lockdown [32, 218, 219]. This if further
described in section D.5 and section D.6 in Appendix D

I; o(t) (I s(t)) takes the value one if individual j is infectious and asymptomatic
(symptomatic) at time ¢ and is otherwise zero. The parameter s; represents age-
specific susceptibility and is 0.5 if individual ¢ is younger than 18 years of age and
is otherwise one, as we assume that children and teenagers are half as susceptible as
adults [183]. The incubation period contains a latent period and a pre-symptomatic
period. In the latent period, the individual is infected but not yet infectious, whereas
the individual is infectious in the pre-symptomatic period, but shows no symptoms
(yet). The incubation period is based on findings of Li et al. [216] and He et al. [220]
and is assumed to follow a log-normal distribution with mean and standard deviation
on the log scale of 1.43 and 0.66, respectively (see Figure D.7). The incubation period
spans over at least two days since we assume that infectiousness starts one day prior

to symptom onset at the latest and one day after infection at the earliest.

Based on infectiousness profiles from He et al. [220], a discrete distribution for the pre-
symptomatic infectious period was estimated by Willem et al. [32] (see Figure D.8).
For each newly infected individual, we draw from the distributions for the incuba-
tion period and the pre-symptomatic period. The length of the latent period for a
given individual is obtained by subtracting the sampled value for the pre-symptomatic
period from that of the incubation period (after rounding to a discrete number of

days).

The distribution of the infectious period (including pre-symptomatic period) is as-
sumed to follow a normal distribution with a mean of six days and a standard devia-
tion of one (see Figure D.9). For each infected individual, the length of the infectious
period is drawn from the distribution and the pre-symptomatic period is subtracted
in order to obtain the remaining days of infectiousness. It is determined whether the
individual shows symptoms during this period according to age-specific probabilities
estimated by Willem et al. [32] (see Figure D.10). The probability of being symp-

tomatic is based on the age-specific relative susceptibility to symptomatic infection
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reported by Wu et al. [221] assuming 50% of the overall cases in the population to be
symptomatic. An infected individual recovers and obtains immunity when the infec-
tious period has passed. We run 50 simulations using the COVID-19 and influenza
models, respectively, but limit our analysis to those simulations where an outbreak

takes place (i.e. total attack rate of 0.5% or more).

Disease-related mortality

We estimate influenza-related deaths by applying the infection fatality rates (IFRs)
for the influenza A(HIN1)pdm09 pandemic estimated by Riley et al. [222] based on
a serological survey of a cohort of households in Hong Kong (see Figure D.11). The
rates are by age group, but no estimates are available for children younger than three
years. Consequently, we apply the IFR of the age group 3-19 to all ages younger than
19, although this is likely to underestimate the fatalities in the youngest children.
For COVID-19, we use IFRs estimated by Molenberghs et al. [77] for Belgium in the
period March 8th to May 9th 2020. The IFRs are broken down by age and household
type (see Figure D.12). The considered household types are LTCFs and non-LTCFs.
For ages younger than 60 years, there is no distinction between the household types,
likely due to the small number of LTCF residents of that age. LTCF residents are
not directly identifiable in the demographic microsimulation. Therefore, we use the
household position collective as a proxy. This household position covers residents
in different types of institutions, including prisons and LTCFs, but we expect the
large majority of older adults with that household position to actually be living in
LTCFs.

Quality-adjusted life years

To provide an estimate of the potential years of life lost due to premature death and
the health-related quality of those years of life lost, we estimate the QALY losses
attributable to COVID-19 and influenza fatalities using the method presented by
Briggs et al. [223]. Pre-existing comorbidities are associated with an increased risk of
a fatal outcome upon infection with SARS-CoV-2 or influenza [182, 224, 225, which is
taken into account when estimating the QALY losses (see further details in section D.9
in Appendix D). However, we do not consider QALY losses from morbidity due to

non-fatal infections.
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5.3 Results

5.3.1 Population ageing

The population is ageing during the whole simulation period. Between 2020 and 2030,
it is primarily due to an increasing proportion aged 65-79 years, while the age group 80
years and older increases fastest in the remaining decades (see Figure 5.2 left panel).
This reflects the ageing of the large generations born in the mid-twentieth century.
Population ageing induces changes in the household size distribution (see Figure 5.2
right panel). The elderly population primarily lives in small households (size 1-2)
or very large households in the form of LTCFs (see Figure D.13). Consequently, an
increasing proportion of the population lives in households of these sizes (1, 2 and 8+)
as the population is ageing. Additionally, households of nuclear families are decreasing
in size due to low fertility and an increase in single-parent families. It should be noted
that the group size 8+ primarily is made up by LTCFs, which tend to have 25-100
residents in the simulated population.
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Figure 5.2. Age and household-size distribution by simulation year and scenario
(medium: bar, low: square, high: circle).

The differences in the demographic scenarios only slightly affect the age distribu-
tion. The proportion aged 80 years and older is marginally larger in the scenario low
(square) than in medium (bar) and high (dot), because of the smaller proportion of
LTCF residents, which have a higher all-cause mortality (further information on all-
cause mortality in the microsimulation is available in Chapter 3). The demographic

scenarios have a more profound impact on the household size distribution. The pro-
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portion in household size 1 and 8+ in scenario low (square) and high (dot) gradually
diverge from the medium scenario (bar), but in opposite directions. Consequently,
the proportion living in LTCFs (i.e. size 8+) relative to the proportion living alone
is highest in the scenario high and lowest in scenario low, while the medium scenario
is in between. The other household sizes are more or less unaffected. Household size
distributions by age groups, scenario and simulation year can be seen in Figure D.14
and Figure D.15 in Appendix D.

5.3.2 Transmission dynamics

As expected, the proportion of the population that becomes infected during an out-
break (attack rate) in the COVID-19 model is substantially larger than for influenza,
due to the differences in the transmission parameters. The attack rate is decreas-
ing over time in both models, but after 2040, a slight increase is seen for influenza
(see Figure D.17 in Appendix D). Older adults, which are increasingly replacing the
younger population, have relatively fewer contacts on average since the majority live
in small households (see Figure D.13) and have fewer contacts in the general popu-
lation (see Figure D.3). Consequently, the older adult population has a lower risk of

acquiring and transmitting an infection than younger age groups.
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Figure 5.3. Mean age-specific attack rates by simulation year, model and demo-
graphic scenario. Note the different scales on y-axes.

The age-specific attack rates in the COVID-19 and influenza models naturally differ
in magnitude, but other patterns are also seen (see Figure 5.3, note different scales

on y-axes). For COVID-19 (Figure 5.3, upper panel), the attack rate is largest in the
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adult population, which reflects the lower susceptibility of children and the increasing
probability of being symptomatic and thereby more contagious with age. Meanwhile,
influenza (Figure 5.3, lower panel) is more prevalent in children and adolescents com-
pared to adults, which is resulting from the age-specific differences in contact patterns
within and outside the household. This indirectly affects the parental generation (i.e.
ages 30-49), which has the highest incidence in the adult population. In both models,
the attack rate in the elderly population is shaped by the proportion of the age groups
living in LTCFs, as the risk of infection increases with household size (see Figure D.19

in Appendix D).

These age patterns in the transmission processes imply that the impact of population
ageing on the spread of COVID-19 and influenza differ. Since children and adolescents
are the main drivers in influenza transmission, the attack rate declines substantially
as the nuclear families decrease in size (i.e. low fertility and increase in single-parent
families) and are increasingly being replaced by elderly people with a relatively low risk
of infection (see Figure D.17). Meanwhile, the decrease in the attack rate of COVID-19
is less pronounced, and barely observed for the 20- to 79-year-olds (see Figure D.18).
The risk of community transmission in the young and middle-aged adult population
remains substantial (i.e. at work-places) due to the increased probability of being
symptomatic and the assumption of frequency-dependent transmission. Moreover,
old people (i.e. 70+) account for a larger share of infections with COVID-19 than
with influenza, thus the decrease in the overall attack rate of COVID-19 induced by

population ageing is less pronounced.

Since the population is ageing, the age composition of the infected people in the
population is also shifting, but not necessarily to the same degree. In Figure 5.4, we
compare the relative change in the age distribution (black bars) to the relative change
in the age distribution of infected people (blue bars), both as a proportion of the total
population size in simulation year 2030, 2040 and 2050 and using the corresponding
values for 2020 as the reference. Infected people younger than 65 years of age make
up a decreasing proportion of the population, while the proportion of infected people
aged 65 and older is increasing, as to be expected considering the changes in the age
distribution. The proportion of infected children and adolescents (i.e. younger than
18 years) in the population is decreasing more than the overall proportion of the age
group across all demographic scenarios and models. This results from the decreasing
household size of nuclear families (see Figure D.14), which is associated with a lower
risk of infection for children and their parents as described earlier. Nevertheless, in

the COVID-19 model, young and middle-aged adults experience a more or less equal
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relative change in the proportions since community transmission is more pronounced.
This is also the case for age group 50-64 in the influenza model, but due to an
increasing mean household size as the share living together with their adult children
is increasing. The growth in the proportion of infected 65 to 79-year-olds in the
population is slower than the overall growth in the age group, as the share living in

single-person households is increasing, especially for people in their seventies.

The relationship between the growth in the proportion of infected people aged 80 and
older in the population and the general growth in the age group vary by demographic
scenario. In the medium scenario, the growth rates are very similar, meaning that the
age group is barely benefitting from the lower transmission in the young population.
First of all, older adults have few contacts with children and adolescents. Second of
all, the share of the age group 80+ living with a partner instead of alone is increasing.
Finally, the age group is increasingly made up by people aged 90 and older, which

have a higher attack rate.
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Figure 5.4. Mean relative change in size of age group (black bars) and number of
infected people in age group (blue bars) as proportion of total population compared
to 2020. Demographic scenarios by row and models by column.

In the scenario with a relatively low and decreasing share of the population living
in LTCFs (first row in Figure 5.4), the proportion of infected people aged 80 years

and older in the population is growing at a slower rate than the age group overall,
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while this relationship is reversed in the scenario with a high and slightly increasing
share living in LTCFs (third row in Figure 5.4). The differences between the scenarios
low and high for age group 80+ are generally larger in the influenza model than in
the COVID-19 model. The risk of infection for an elderly person living in a small
household compared to someone living in an LTCF differs substantially more in the
influenza model than in the COVID-19 model, thus the response to the scenarios is
more pronounced in the first case (see Figure D.20). This is again related to the

age-specific susceptibility and infectiousness in the COVID-19 model.

5.3.3 Burden of disease-related mortality

Although the overall attack rate is decreasing over time, the number of deaths per
1,000 people in the population is increasing, due to the shift in the age distribution
of the infected population (see Figure D.21). Since the applied fatality rates are
associated with substantial uncertainty, we limit the analysis of disease-related deaths
to a comparison across time, age and demographic scenarios. Deaths attributable to
COVID-19 are highly concentrated in the older adult population (see Figure 5.5,
upper panel). Influenza-related deaths are also more pronounced in the older adult
population, however, differences within the older age groups only reflect differential

attack rates since the same IFR is applied to everyone aged 60 and older.
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Figure 5.5. Mean age-specific disease-related death rate by year, model and demo-
graphic scenario. Note the different scales on y-axes.
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The differences in fatalities between the demographic scenarios are induced by the
aforementioned relationship between the proportion of infected older adults and the
proportion of those living in LTCFs. Moreover, the applied IFRs for COVID-19 from
Molenberghs et al. [77] are broken down by household type (i.e. LTCF vs. non-
LTCF), hence the number of COVID-19 deaths in our simulation is more sensitive to

changes in the population living in LTCFs.
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Figure 5.6. Mean age-specific QALY losses in total and per 1,000 people by year
and demographic scenario.

Clearly, the average number and quality of years of life lost due to a premature death
decrease with age. The middle-aged adults thus account for a larger share of the total
QALY losses than of the fatalities (Figure 5.6 row one and three, note different Y-axis
scales). However, the largest QALY losses in absolute values are seen in the 60-79 year
olds for both COVID-19 and influenza. When taking the age distribution into account,
the QALY losses become more pronounced in the oldest age groups (see Figure 5.6,
row two and four). In both models, the total QALY losses are increasing over time

and at a rate slightly higher than that of the increase in deaths (see Figure D.21).
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Moreover, the age-specific QALY losses per 1,000 people are increasing in several age
groups despite a stable or even decreasing disease-related death rate (see Figure 5.6),
because life expectancy is increasing. In 2020, for example, the average life expectancy
of a 75 year old is about 12 years, while it is expected to increase to 15 years by 2050
(see Figure D.22). However, the COVID-19 related QALY losses per 1,000 people in
age group 90+ is decreasing between 2030 and 2050 for the demographic scenarios
with a low or medium proportion of older adults living in LTCFs. The increasing life
expectancy in this age group cannot compensate for the decrease in deaths associated

with the changing living arrangements.

5.4 Discussion

Increasing life expectancy and persistently low fertility levels have led to old popula-
tion age structures in most high-income countries, and population ageing is ongoing
as the large generations born in the mid-twentieth century move into the older age
categories [191]. Population ageing has potential implications for the burden of in-
fectious diseases as the morbidity and mortality of many infections are concentrated
in the older adult population [76, 226], as seen in the COVID-19 pandemic. The de-
mographic microsimulation and two-level mixing model applied in our study allow to
investigate the potential impact of population ageing on the transmission dynamics
and burden of COVID-19 and influenza, while explicitly considering changes in the
household structures, particularly among the older adults. Our focus on the future
living arrangements in the older adult population is motivated by the disproportionate
burden of the COVID-19 pandemic among LTCF residents [77, 86-88].

Our results suggest that population ageing on the one hand is associated with smaller
total attack rates in COVID-19 and influenza epidemics, but on the other hand is
causing a substantially larger disease burden of mortality, even if the proportion of
older adults living in LTCFs were to decrease. Moreover, we find that not only the
shift in the age distribution, but also the induced changes in the household structures
are important to consider when assessing the potential impact of population ageing

on the transmission and burden of respiratory infections.

Respiratory infections are predominantly caught by close contact with an infectious
individual and transmission often takes place between household members [17, 43].
Since older adults in Belgium have few contacts and the majority live alone or with
their partner, the number of occasions where they could acquire a respiratory disease

is relatively low. A decrease in the overall attack rate of COVID-19 and influenza
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is thus a logical consequence of population ageing. This relationship, however, is
modified by the age pattern in the attack rates, which in turn is influenced by the

susceptibility to and infectiousness upon infection as well as contact patterns.

In our simulation, COVID-19 attack rates were highest in the young and middle-aged
adult population, while influenza incidence was highest in children and adolescents,
which is in line with serological studies [227, 228]. Moreover, older adults made up a
larger share of the infected population in the COVID-19 model than in the influenza
model. Consequently, the increasing proportion of older people in the population led
to a greater relative decline in the overall number of influenza infections, which was
amplified by the decreasing size of nuclear families, as they play an important role in
influenza transmission. The changing composition of nuclear families resulted from
a decreasing fertility rate prior to 2020, which recovered slowly, but not fully, in the
remaining simulation period, similar to observed and projected rates by Statbel and
FPB [174]. Additionally, single-parent families became more prevalent. As a result of
this, the average influenza incidence in children and the parental generation declined.
This was less pronounced in the COVID-19 model, where the attack rate in the young
and middle-aged adults were more or less unchanged due to substantial community

transmission (i.e. at work-places).

Since older adults have the lowest number of community contacts [30], their risk of
infection is highly dependent on their living arrangements. Older people in Belgium
tend to either live in very small households (alone or with a partner) or in very
large LTCFs. Several typical aspects of LTCFs, such as the size, shared meals, group
activities, staff rotation, visitors, makes it easy for an infection to enter and spread
rapidly [85, 128]. The variability in older adults’ risks of infection is thus considerably
larger than in any other age group. This implies that the future incidence in the older

adult population is closely connected to changes in their household structures.

In the microsimulation, single-person households (e.g. a widow) in the age group 80+
are increasingly being replaced by two-person households (e.g. a couple), as the sex
differential in mortality diminishes due to larger improvements in the life expectancy
of males than in that of females. On the one hand, living with a partner instead of
living alone increases the risk of infection as household transmission becomes a possi-
bility. On the other hand, the probability of moving to a LTCF, which is associated
with a substantially higher risk of infection, is markedly lower for elderly people living
with a partner than for those living alone. However, the future mortality, health and

living arrangements in the older adult population are associated with a large degree of

97



uncertainty [184, 186, 202-205|. Therefore, we presented three demographic scenarios
pertaining to the proportion of older adults living in LTCFs relative to the proportion

living alone.

The attack rates in the old age groups follow the proportion living in LTCFs and
therefore differ substantially between the demographic scenarios. However, the sen-
sitivity of the attack rates to household structures among older adults was larger for
influenza than for COVID-19. This is again related to the different age patterns in
disease transmission. The risk of acquiring COVID-19 remains relatively high for
older non-LTCF residents because their susceptibility is high and the few contacts
they do have will typically be with other old people, which are most likely to be
symptomatic in case of infection and thereby more contagious. The influenza attack
rate in older non-LTCF residents is markedly lower than other population groups, as
children and adolescents are the main drivers of the spread and rarely live together
with old people and generally have few contacts with them. Meanwhile, the attack
rate for LTCF residents of COVID-19 as well as influenza are the highest in the pop-
ulation. Thus, the larger differential in the influenza attack rates between LTCF and
non-LTCF residents imply that the overall attack rate of the older adults responds

stronger, in relative terms, to changes in the living arrangements.

Although population ageing is associated with a decreasing proportion of infected
people in the total population, disease-related deaths and QALY losses are increasing
substantially. The lost QALYs increase faster than the deaths because a projected
increase in life expectancy is accounted for in the QALY estimations. The speed
at which the burden increases is influenced by the living arrangements among older
adults, which can be considered a proxy for the health at old age. However, even in
a scenario with a diminishing proportion of LTCF residents, the burden of disease-

related mortality increases considerably in the whole simulation period.

We emphasise that our study is an investigation of the effects of population ageing
on transmission dynamics and burden of disease-related mortality, and the results
should not be interpreted as predictions. Moreover, our findings should be seen in
the light of several limitations. First, we restricted our study to emerging infections
by assuming that the initial population is fully susceptible and do not consider be-
havioural changes (e.g. changing contact patterns) during the outbreak, which would
reduce the size of the simulated outbreaks. Additionally, age patterns of prior immu-
nity or mitigation strategies in certain population groups (e.g. LTCFs, schools) may

shift the age distribution of the infected population and thereby modify the impact of
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population ageing. For example, some degree of pre-existing immunity to influenza A
(HIN1)pdm09 was found in older adults, which may have resulted from exposure to
HINT1 viruses earlier in life [227]. Nevertheless, we disregard these elements in order

to obtain a clear understanding of the effects of population ageing alone.

Second, we assume that social contact patterns in the general population remain
constant over time, since little is known about how contact patterns are affected by
changing population structures. Nevertheless, the household contact patterns change
along with the household composition as we generate new household networks in each
time-step (i.e. day). The extrapolation of household contact networks for private
households to LTCFs may be questionable due to the different structures, composi-
tions and relations within the households. However, the large outbreaks among LTCF
residents in our simulation reflect estimations of COVID-19 cases and the spread in

LTCFs in Belgium prior to the implementation of mitigation measures [77, 229].

Finally, our estimates of disease burden are based on adjusting the QALYs lost due
to deaths attributable to COVID-19 and influenza, but do not include QALY losses
from morbidity due to non-fatal COVID-19 or influenza. Furthermore, our QALY
estimates are associated with a considerable degree of uncertainty pertaining to the
applied IFRs and the parameter settings in the QALY estimations. Moreover, we
applied constant IFRs and parameters in the QALY estimations. The alternative
parameter settings suggested in Briggs et al. [223] for the estimation of QALYs did
not change the relationships we obtained. Nevertheless, the age-specific morbidity
and mortality associated with respiratory diseases may change over time because of
medical innovations and/or improved health at old age. Developments in healthy life
expectancy, however, remain unclear [202-205]. We partially addressed this uncer-

tainty with the demographic scenarios in our analysis.

5.5 Conclusions

Population ageing is associated with smaller outbreaks of emerging respiratory infec-
tions such as SARS-CoV-2 and novel influenza A virus. Nevertheless, the burden of
mortality increases substantially, even if the population living in LTCFs, which face a
high risk of infection and a fatal outcome, were to decrease. The variability in older
adults’ risks of infection is considerably larger than in any other age group, which is
related to their living arrangements. Not only the shift in the age distribution, but
also the induced changes in the household structures are important to consider when

assessing the potential impact of population ageing on the transmission and burden
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of emerging respiratory infections. Age patterns in epidemiological parameters may

exacerbate or alleviate these relationships.
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Chapter

The impact of demographic change on the
epidemiology of varicella and herpes zoster:
US population 1960-2020

This chapter is based on ongoing work: "Magelmose, S., Hens, N. & Lewnard, J. The
impact of demographic change on the epidemiology of varicella and herpes zoster: US
population 1960-2020. [Working paper].”

6.1 Background

Infection with varicella zoster virus (VZV) can lead to varicella or chickenpox, a highly
contagious and widespread childhood disease. Based on national seroprevalence stud-
ies, it has been estimated that prior to the introduction of a varicella vaccine in 1995,
more than 95% of the US population acquired varicella before the age of 20 years
[230]. VZV may reactivate later in life, typically in older adults or immunosuppressed
individuals, and can cause herpes zoster (HZ), also known as shingles [74]. Hope-
Simpson presented the hypothesis that the reactivation of VZV could be inhibited
by re-exposure to VZV [231], also referred to as the ezogenous boosting hypothesis.
Consequently, the introduction of a varicella vaccine is expected to induce an in-
crease in HZ cases due to reduced VZV circulation. The magnitude of exogenous
boosting, however, is associated with a great deal of uncertainty [232, 233]. Further-
more, an increasing incidence of HZ has been observed in several countries prior to

the introduction of vaccination against varicella [234, 235]. Modelling studies suggest
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that reduced varicella circulation resulting from decreasing birth rates and population
ageing has contributed to this [36, 57, 75]. However, little is known about the role
population structures beyond age, such as households, played in this. In this study,
we aim to explore the impact of demographic change on VZV transmission dynamics
and the incidence of HZ. Specifically, we develop an age- and household-structured
population reflecting that of the US population between 1960 and 2020. The model
includes a disease process for the spread and reactivation of VZV similar to that of
Melegaro et al. [36], which is informed with historical epidemiological data. We intend
to investigate the past dynamics of varicella and HZ in the US, prior to and after the

introduction of vaccination, at the individual, household and population level.

6.2 Methods

We apply a framework similar to that of the microsimulation presented in Chapter 3
to model the US population between 1960 and 2020. We base the initial population
on a population sample from 1960. Over time, demographic events (fertility, mortal-
ity, migration and household transitions) and ageing take place and the population
changes accordingly. The events take place in discrete time steps of one year, but
each event is assigned a date within the given year. We thus allow an individual to
experience multiple events within one year, but assume that birth events (own birth
or giving birth) take place before household transitions, followed by migration events
and finally death. Since we are modelling an observed time period, we calibrate the
applied demographic rates by comparing the simulated population to sample popula-
tions from IPUMS. We specifically evaluate deviations in the age-specific household
size distributions and positions and adjust the household transition probabilities ac-
cordingly. We extend the demographic model with a disease transmission process for
VZV similar to that of Melegaro et al. [36].

6.2.1 Demographic data

We access cross-sectional samples of the US population between 1960 and 2020 in
IPUMS USA and IPUMS CPS [236], which are databases containing harmonized mi-
crodata from the U.S. census and the U.S. labor force survey, respectively. Households
are sampled in the surveys and individuals are sampled as parts of the households.
TPUMS samples are stratified to some degree (e.g. geography, socio-economic fac-
tors) and sample weights are provided to ensure a representative sample population.
The sample for 1960, which is used as the initial population, is from IPUMS USA
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and contains 1% of the total population. Samples for 1970 to 2020, which are used
for model calibration, are from ITPUMS CPS, a monthly survey of about 100,000-
150,000 individuals. We adjust the TPUMS CPS samples by a household-specific
weight (HWTFINL) to obtain a representative sample population at the household
level. We exclude institutional group quarters from all samples (e.g. correctional
facilities and nursing homes). The age and household size distributions of the sample
populations are compared to the observed distributions in Figure E.1 and Figure E.2

in Appendix E.

For each individual in a sample, we include the variables age, sex, household ID, ID of
mother (MOMLOC), ID of father (POPLOC) and ID of partner (SPLOC). A birth
date is assigned to each individual within the boundaries given by their age indicated
on the census date. Unions are detected using the partner IDs, but unions between
individuals living in different households are not detected. Parent-child links are
based on the parental IDs and checked for compatibility (i.e. age difference between
parent and child of at least 12 years). In case of incompatibility or missing parental
IDs of individuals younger than 16 years of age, another adult household member
is assigned as the parent. If one parental ID is missing but the known parent is
in a union, the partner is assigned as the other parent of the child. Parent-child
links between individuals in different households are not detected. Households only
containing children younger than 16 years are removed. We use the partner and
parent-child links to create a new variable; household position. This describes the
position of an individual in a household in relation to the other household members.

We define the household positions as follows:

Table 6.1. Categories of the variable household position.

Position Description

Individual living together with their partner

Union (and potentially others, e.g. children)

Single Living alone

Individual (regardless of age) living in their
parental household
Oldest generation (union or single) in a multi-
Multigeneration generational household, defined as households
containing three or more generations
Individual living together with their child(ren)
(regardless of age), but without a partner

Child

Single parent

Other Individual living in other household constellations
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We also use the parent-child links to re-create the fertility trajectory of the female
population of fertile age (i.e. 14-50). The frequency of the mother IDs is added to
the corresponding female as the number of previous births (i.e. parity) and the birth
dates of the children are used to estimate the birth intervals. The fertility trajectories
will be biased to some degree as information on children that are not present in the

household at the time of the census is missing.

6.2.2 Demographic modelling

As mentioned earlier, the initial population is based on the population sample for 1960.
The population changes over time as individuals enter and leave the population as a
result of fertility, mortality and migration. Additionally, individuals move between
households or create new households. Each event is assigned a date within the time
step (i.e. year) at random. In case an individual experiences multiple events within
one time step, the dates are adjusted so that the order is respected (e.g. household
transition before death). All demographic events are tracked in an event-log making

it possible to re-create the population in smaller time steps.

Fertility

We create a fertility data set using the re-created birth trajectories of females of fertile
age from each sample (parity and birth interval). Females are considered to have a
birth event if they gave birth in the year prior to the census, as the birth trajectories
are obtained retrospectively. Thus, the variable year in the fertility data is the year
prior to the census. The household positions on the census date are also included
in the data. Using the fertility data, we compute the probability of a birth by age,
household position (simplified to union vs. non-union) and fertility trajectory (parity
and length of birth interval). We apply linear interpolation for the years without a

population sample.

The number of births in a time step is based on the observed age-specific fertility
rates for the corresponding year [65]. For a given age group, the number of births
is calculated by multiplying the age-specific fertility rate by the size of the female
population of the given age in the middle of the time step. Each female in the risk
set is assigned the birth probability corresponding to her age, household position and
fertility trajectory. Conditional on the birth probabilities, we draw from the pool of
females until the age-specific number of births has been reached. The newborns are

added to the population and specifically to the household of the mother.
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Migration

Due to the lack of historical as well as recent data on age and household profiles of
emigrants and immigrants, we use the R package DemoTools to estimate the age-sex
profile of the net-migrant population based on the Rogers-Castro migration model
[237]. Observed net-migration rates are obtained from the UN Statistics Division
[65]. The number of migrants thus changes over time, but the age-sex distribution

remains constant as shown in Figure 6.1.
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Figure 6.1. Age-sex distribution of net-migrant population.

The net-migration rates between 1960 and 2020 are positive, meaning that the num-
ber of immigrants is higher than the number of emigrants. Consequently, migrants are
created according to the assumed age-sex distribution and added to the existing pop-
ulation. The migrant population is divided into households. Individuals younger than
18 years are considered to be children and are assigned a mother. The mother-child
matching is based on the age-specific fertility rates observed in the US in the year
the child was born. Consequently, we assume the fertility trajectories in the migrant
population to be similar to that of the native population, despite being unlikely, since
detailed data is lacking. The mother is matched with a male individual in the migrant
population according to the age difference observed for couples marrying in the US
in the given year. Two-thirds of female migrants without a child are also assigned a
partner. This implies that the households in the native population are not affected
by migration. However, this is a simplification as migration often is associated with

family reunification and union formation.
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Mortality

We apply the observed age- and sex-specific mortality rates for 1960-2020 obtained
from the United Nations Statistics Division [65] and convert these to death proba-
bilities. Individuals with a death probability higher than a random number drawn

between zero and one are assumed to die within the time step and are removed.

Household transitions

Fertility, mortality and migration affect the composition of households in the popula-
tion. Additionally, individuals can move between households or create new households
independently of other demographic events. The applicable household transitions
depend on the household position. Some transitions are considered non-applicable
because they are uncommon (e.g. union to other) or to limit model complexity (e.g.
transitions between unions is not applicable). Moreover, some transitions are mod-
elled as a population-level process (i.e. union formation). The household transitions
are shown in Table 6.2, where white cells are applicable transitions, black cells are
non-applicable and grey cells indicate processes carried out at the population level.
Finally, cells with I indicate indirect transitions resulting from other demographic

events (e.g. single to single parent).

Table 6.2. Household transitions. Black=not applicable, white=applicable,
I=indirect transitions, grey= population-level transition

From To Union | Child | Single | Single parent | Multigen. | Other
Union
Child 1
Single I
Single parent 1
Multigen.
Other 1

Union dissolution between 1960 and 1979 is based on estimated age-specific divorce
rates of females [238, 239]. For 1983 to 2020, we estimate the age-specific dissolution
rates for females in the Survey of Income and Program Participation (SIPP) [240].
SIPP is a nationally representative longitudinal household-based survey providing
comprehensive information at the individual- and household-level, including informa-
tion on relations between household members. Before 1996, only married couples are
detected as unions in the SIPP data, while cohabiting couples are included from 1996
onwards. The rise in cohabitation in the US since the mid-20"" Century [241] implies

106



that we are increasingly underestimating union dissolution up to 1996. In case of no
available data for a given year, data from the closest time period is applied. In case
of union dissolution in a household with children present, the children stay with the

mother, and the father moves to a single-person household.

After the procedure of union dissolution has been carried out, we calculate the age-
sex specific proportion living in a union and compare it to the observed proportions
according to the census data from IPUMS USA and IPUMS CPS for the given year.
In case the age-sex-specific proportion of unions in the simulation is higher than the
one observed in the sample population of the given year, union dissolutions take
place and the proportion living in a union is re-calculated. This re-calculation is
necessary because some union dissolution may imply too few unions in the age group
of the opposite sex. Finally, the number of males and females entering a union is
calculated and individuals with the corresponding age and with household position
single, child, single parent or other are drawn at random. The candidates are matched
based on the age differences observed in the census in the given year. In case of
an unequal number of females and males, no union formation takes place for the

remaining individuals.

A transition to child does not mean that the individual moves into the actual parental
household. Instead, we draw an age group (five-year age groups) from the age-specific
fertility rates observed in the birth year of the given individual and assign a female
with the appropriate age difference the role as mother and her partner, if applicable,
as the father. In this way, we do not have to keep track of kinship links between house-
holds, which is computationally time-consuming and complicates sampling procedures

in the disease transmission model.

Multi-generational households are created by moving individuals (union, single or
single parent) to a household containing one or more children (i.e. household posi-
tion not age). The individuals moving in to the new household should be the oldest
generation. We therefore use the same matching procedure as for individuals moving
to a parental household to secure an appropriate age difference between the gener-
ations. The transition to the oldest generation in a multi-generational household is

only applicable for individuals in households of size one or two.

New households are created for the individuals moving to a single-person household
and for a proportion of the individuals moving to the household position other. The
rest move to existing other households according to the household size distribution

observed in the samples.
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6.2.3 Disease transmission model

We model VZV similarly to Melegaro et al. [36]. Maternal immunity (M) is assumed
to last for six months after which individuals become susceptible to varicella (S).
A proportion of individuals vaccinated against varicella undergo vaccine failure and
remain susceptible to breakthrough varicella (5*). Susceptible individuals (S and S*)
are exposed to a force of infection with two levels of mixing; in the household and in

the community:

Mat) = Be Y Coaar (D) (Yo (8) + @yl o () + Bulyn(t) +agi(t))  (6.1)

The subscripts reflect community (¢) and household (h). The transmission parame-
ters, B, and S, differ for contacts between household members and contacts in the
general community between non-household members. We assume that all household
members come into contact with each other daily, while contacts in the community
(i.e. all contacts outside the household, including at work, school and leisure activi-
ties) are based on a contact matrix (C¢ qq), estimated for the US population [189].
The contact matrix contains the average number of daily contacts an individual of age
a has with individuals of age a’. It is adjusted to changes in the demographic com-
position in accordance with method two in Arregui et al. [190]. The contact matrices
for 1960 and 2010 are shown in Figure 6.2. The number of contacts is multiplied by
the proportion of people in the given age group with natural (y. . ) and breakthrough
varicella (y; /). Individuals with breakthrough varicella are assumed to be half as

contagious as those with natural varicella, hence a = 0.5.
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Figure 6.2. Social contact matrices adjusted to US population composition in 1960
(left) and 2010 (right) [189, 190].
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Individuals infected with varicella (I and I*) recover and gain immunity after three
weeks and are then susceptible to HZ (SZ and SZ*). We apply the model PI from
Melegaro et al. [36] which assumes progressive immunity, thus susceptible individuals
are assumed to develop HZ at a rate p, which depends on their age, the number of
VZV boosting events (i) and the time elapsed since the last VZV exposure (7). The

VZV reactivation rate is calculated as follows [36]:

pila, ) = poq(i—1)2eea(a—ao)ee,7 (6.2)
where pg is the risk of developing HZ immediately after recovering from the varicella
infection, the parameter ¢ shapes the reduction in the risk of HZ due to re-exposure to
VZV, while 6, and 6, shape the increasing risk of HZ with age (a, ag=45 years) and
time since last exposure to VZV (7), respectively. Individuals successfully immunised
against varicella as well as individuals becoming susceptible to HZ after experiencing
breakthrough varicella are assumed to develop HZ at the reduced rate xp;(a, 7). The
boosting events (i.e. re-exposure to VZV of individuals susceptible to HZ) take place
at the rate zA(a,t), where z € [0,1]. We assume a HZ vaccination coverage of cpz,
and a HZ vaccine efficacy of pyz. After an individual has developed HZ or has
been successfully immunised against HZ, life-long immunity to VZV reactivation is

assumed.

6.2.4 Endemicity and re-sampling

Since we are lacking epidemiological data for VZV in the 1960s, we apply a simula-
tion technique to obtain a population in which varicella is endemic. We first obtain
a stable population by running the demographic model for 100 years with fixed de-
mographic rates corresponding to those of 1960. In the stable population, we initiate
VZV transmission by changing the disease state of ten randomly chosen individuals
to infected. The demographic rates remain constant and the disease transmission
continues until varicella is endemic in the population. At this stage, the population
composition no longer reflects the initial population of 1960 because the demographic
rates have been fixed for a long period of time (see Figure E.3 in Appendix E). For
that reason, we return to the nonstable sample population of 1960 and assign each
individual a disease state and history of exposure by sampling from the stable pop-
ulation with endemic varicella conditionally on the individual’s age and household
composition. The resulting population is used as a starting point in the simulation of

VZV transmission in the dynamic population resembling that of the US from 1960 to
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2020. In the dynamic simulation, we explore different transmission parameters and
compare the simulation results to epidemiological data from the 1970s, 1980s and
1990s [242, 243]

6.3 Preliminary results

6.3.1 Population dynamics

The age distribution changes dramatically in the simulation period. In 1960, the
population contains a large proportion of children as seen in Figure 6.3, but as fertility
declines in the following decades (see Figure E.4 in Appendix E), the subsequent
generations are substantially smaller, and by 2020, an old population age structure

has emerged.
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The household size distribution also changes substantially as a result of declining fertil-
ity and mortality rates (see Figure 6.4). As fewer children are born and life expectancy
increases, large households are increasingly being replaced by small households. The
age and household structures in the simulated population (dark bars) only deviate
slightly from those reported by the US Census Bureau (light bars). The deviations
remain reasonable when disaggregating the household size distributions by age groups
(see Figure E.5-E.8 in Appendix E).
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Figure 6.4. Household size distribution in 1960, 1990 and 2020 in the simulated
population (dark bars) and according to the US Census Bureau (light bars).

6.4 Next steps

At this moment, we are exploring a range of transmission parameters shaping the
disease transmission within and between households in the dynamic population, with
the purpose of obtaining simulation results reflecting observed measures, including
age-specific incidence and seroprevalence [242, 243]. After the calibration of the sim-
ulation model, epidemiological outcomes will be computed and analysed, including
attack rates by age and household composition. The contribution of the changing

population structures will be considered explicitly in the analysis.
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Chapter

Discussion

In recent decades, severe outbreaks of emerging and re-emerging infectious diseases
(e.g. HIV, MERS, SARS, COVID-19, monkeypox), aided by increasing global connec-
tivity, have demonstrated that infectious diseases remain a public health threat, also
to populations in high-income countries. Moreover, outbreaks of vaccine-preventable
diseases such as measles and mumps are re-emerging due to suboptimal vaccine up-
take, waning vaccine-induced immunity and unvaccinated clusters in populations with

otherwise high vaccine coverage [244-248|.

Infectious disease modelling provides an important tool for analysing and predicting
the spread of infectious diseases and to evaluate prevention and control measures.
Population structures contribute to the heterogeneity in the spread and burden of
many infectious diseases. Age and household structures have been given particular
attention when modelling infectious diseases spread through close contact [35, 41-47].
Social contact patterns influencing the exposure to an infection vary considerable
by age, as well as many epidemiological parameters [25, 30]. Moreover, household
members have distinct contact patterns and often belong to different generations and
subgroups outside the household, making it a unique entity for disease transmission
[31, 48-50].

A population’s age and household structures evolve over time as they are influenced
by past trends in fertility, mortality and migration. Populations in many high-income
countries have an old age structure with a low mean household size, resulting from
sustained below-replacement fertility and rising life expectancy. Moreover, population

ageing is currently accelerating in several countries as the large generations born in the
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mid-20*" century become older [66]. Nevertheless, the relationship between population
structures, the changes therein and the transmission and burden of infectious diseases

has not yet been fully unravelled.

The overarching aim of this dissertation was to explore and further improve infec-
tious disease models incorporating a dynamic host population with the purpose of
investigating the impact of demographic structures and changes on the transmission
and burden of infectious diseases transmitted through close contact. Specifically, we
aimed to address the following research questions: (i) what is the relationship be-
tween age and household structures at the individual and population level and how
are these shaped by demographic processes and changes therein? (ii) to what degree
are transmission dynamics at the individual, household and population level shaped
by age and household structures? (iii) how are population age and household struc-
tures expected to evolve over time and how are the demographic changes expected to

affect the transmission dynamics and disease burden?

We carried out interdisciplinary research combining demographic modelling with in-
fectious diseases modelling, which was presented in Chapters 2 to 6. Next, we provide
an overview of the main findings and consider them in a broader perspective. This
is followed by a discussion of the limitations of the dissertation, prospects for future

research and finally a conclusion.

7.1 Main findings

Efforts have already been made to assess the impact of demographic change on the
epidemiology and burden of infectious diseases (e.g. [36, 44, 47, 55-60]). Various
demographic methods and assumptions were applied in the existing literature, but
often with an insufficient discussion of the choice of method and the implications
thereof for the realism of the population structures. Consequently, we systemati-
cally reviewed the demographic methods, assumptions and data used to incorporate
a dynamic host population in models of disease transmission, which was presented in
Chapter 2.

Population-level modelling was more common than individual-level modelling, as to
be expected since the general use of computer simulations like IBMs only have become
feasible in recent decades with improvements in hardware performance. Moreover, a
host population with a realistic and evolving age-sex composition is typically less

cumbersome to model at the population level than with an IBM. The advantages
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of individual-level modelling emerge when additional heterogeneity is required in the
population or transmission process, for example household structures, schools, local
interactions or health trajectories [26]. Consequently, several IBMs incorporated ad-
ditional population structures, including households. However, the flexibility of IBMs
was rarely exploited to improve the level of detail in the demographic processes, with
potential implications for the population structures, the composition of households in

particular.

Households are not only a unique entity from a disease transmission perspective,
but also from a demographic perspective. Many demographic, social and economic
processes involve decisions that are often made at the household level, such as child-
bearing, living arrangements, labour force participation and migration [249]. Con-
sequently, household compositions are affected by changes in these processes, which

may affect the disease transmission dynamics.

With the objective of enhancing the demographic modelling of age- and household-
structured host populations, we presented a demographic microsimulation in Chap-
ter 3, developed for applications in infectious disease modelling. Access to individual-
level longitudinal data from Belgian census and population registers made it possible
to define relationships between household members and to re-create kinship networks
and fertility trajectories. Moreover, less common household types and constellations
were represented, including LTCFs. Finally, past individual events, household posi-
tions and/or household types were incorporated in the demographic processes. The

model was used to simulate the Belgian population from 2011 to 2050.

The microsimulation was developed in a flexible manner to allow for sensitivity or
scenario analyses, as future developments in demographic processes are associated
with substantial uncertainty [123]. Nevertheless, the changing population structures
in the simulation are partly a result of fertility, mortality and migration schedules
observed in Belgium prior to the census in 2011. For example, past trends in fertility
postponement implied that parents in the simulation were increasingly older when
the last child left the parental household.

The demographic events in the simulated population were tracked, making it easy
to re-create the population in disease modelling applications. The first application
was presented in Chapter 4, where we investigated how the spread of an emerging
infectious disease was affected by age and household structures in the host population
and how these relationships were influenced by demographic change. We illustrated

a strong relationship between age and household structures at the individual and
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population level explained through an investigation of the underlying demographic
processes. The thorough understanding of these relationships and processes provided
the basis for explaining the demographic changes in the simulated population. The
age and household structures had an impact on the disease transmission dynamics,
but the magnitude of the relationship depended on epidemiological heterogeneity in
the population. Moreover, not only the size of households but also their compositions,
which are influenced by the timing of demographic events, were crucial for explaining

how the infection spread at the individual, household and population level.

Drawing on our understanding of how population structures and changes therein
shape the spread of an emerging infectious disease, we presented a second application
in Chapter 5, with the objective of investigating how population ageing affects the
burden of respiratory infections. Older adults face an increased susceptibility to many
infections and a higher risk of a severe outcome in case of disease due to the progressive
deterioration of immune functions with age [76]. This was seen in the COVID-19
pandemic, which had a disproportionate impact on the older adult population and
those living in LTCFs in particular [77, 78§].

We developed a model for disease transmission resembling the spread of SARS-CoV-2
and pandemic influenza, which was combined with the demographic microsimulation.
We focused on the living arrangements in the elderly population and how they evolve
in an ageing population, as well as the implications thereof for the spread and burden
of infectious diseases. Specifically, we considered different scenarios for the proportion
of older adults living in LTCFs. Unique features of LTCFs make them an optimal
environment for rapid spread of infectious diseases, and the health trajectory of the
residents often make them more vulnerable to infection [85, 128-130]. Consequently,
this relatively small population group, which is often disregarded in disease modelling,
faced a markedly higher risk of infection in our simulations and accounted for a
substantial share of the disease burden, reflecting observations made in the COVID-
19 pandemic [86-88]. The burden of future epidemics in our simulation increased
with the ageing of the population, even in case of a decreasing proportion of LTCF

residents reflecting a scenario of improving health at older ages.

In Chapter 4 and 5, we only considered epidemic settings, as the emergence of SARS-
CoV-2 and the related COVID-19 pandemic emphasised the need for an improved un-
derstanding of the role of population structures in the spread and burden of emerging
infectious diseases. However, a dynamic microsimulation of an age- and household-

structured host population is also useful for evaluating the long-term dynamics of
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endemic infectious diseases and the effectiveness of immunisation programmes. In
Chapter 6, we presented ongoing work involving a demographic microsimulation for
the US population from 1960 to 2020, which will feed into an IBM for VZV and HZ.
The demographic methods were similar to those used to develop the microsimulation
in Chapter 3, but with several modifications as the data and its granularity differed.
Moreover, we considered the US population in a time period in the past for which
observed demographic data was available. This facilitated the use of re-sampling tech-

niques to secure resemblance between the simulated and observed populations.

Existing studies have looked into the impact of demographic change on the epidemi-
ology of VZV and HZ [36, 57, 75, 90, 250|, however, population structures beyond
age, such as households, are rarely considered [171]. Declining fertility rates since
the 1960s has led to a changing age composition of the US population, as well as a
declining mean household size. These trends are reproduced in the microsimulation,
allowing for an investigating of the implications of the demographic changes for the

epidemiology of VZV and HZ at the individual, household and population level.

7.2 Limitations and future work

With the research presented in this dissertation, we attempted to improve the un-
derstanding of highly complex demographic and epidemiological phenomena by sim-
plifying them using statistical and computational modelling. The formulation of a
model involves the trade-off between accuracy, transparency and flexibility, for which
the appropriate balance is determined by the research question and purpose of the
model, as well as the feasibility (e.g. data availability) [17]. With this in mind, we
take a critical look at our choices of modelling, discuss the limitations they impose and
consider directions for future interdisciplinary research in demography and infectious

disease epidemiology.

Based on the systematic review, we found individual-level modelling to be the best
framework for a dynamic host population with age and household structures. The
accuracy of our demographic microsimulation for Belgium, however, is still limited by
the amount of heterogeneity incorporated in the population and in the demographic
processes. Fertility, mortality and migration schedules are influenced by a wide range
of demographic, social, cultural and environmental factors that are disregarded in
the microsimulation. The flexibility of individual-level modelling makes it possible
to include such factors, if the granularity of the demographic data allows it. The

mechanisms driving demographic change can thus be modelled explicitly. The model
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transparency, however, decreases with the complexity. Moreover, the developed mi-
crosimulation is already rather advanced considering the context of infectious disease
modelling, and several demographic and epidemiological relationships are still to be
explored before further model expansions would be relevant. This includes investiga-
tions of the role of kinship networks in the spread of an infection, as these may add to
the clustering of contacts. Moreover, more detailed analyses of disease transmission

in LTCFs remain to be carried out using the current microsimulation model.

Nonetheless, a description of general health (e.g. chronic conditions, frailty) in the
population, particularly at old age, would be a significant improvement of the mi-
crosimulation. So far, we considered living arrangements (i.e. LTCF, union, non-
union) to be a proxy for the health of older adults, but it obviously does not provide
us with the complete picture. Chronic health conditions have been found to be as-
sociated with increased risks of morbidity and mortality due to COVID-19 and other
infectious diseases [165, 166, 251-253]. Moreover, population ageing is accompanied
by increased rates of chronic diseases, emphasising the need for further research of
the interface between demographic change, chronic diseases and infectious disease
transmission [254-256].

Another potential improvement of the microsimulation pertains to the uncertainty of
projections. Since future population structures are associated with uncertainty, it is
relevant to consider how sensitive epidemiological outcomes are to variability in the
demographic processes. We partly addressed this in the microsimulation by the use
of demographic scenarios. Nevertheless, it would be worthwhile to consider a wider
range of scenarios involving all the included processes. The scenarios are preferably
theoretically founded or motivated by official population forecast (scenario-based or
probabilistic) to ensure realistic parameter ranges. Alternatively, fully probabilistic
projections for fertility, mortality and migration could be incorporated [257, 258],
which have the advantage over scenario-based forecasts of attaching a probability to

the range of possible outcomes [259].

Official population forecasts, however, are typically modelled at the population level,
providing no information on how aggregate trends emerge from changes in individual-
level characteristics, behaviours and interactions. By incorporating the factors and
mechanisms driving the changes in mortality, fertility and migration (e.g. health,
education level, family reunification patterns), assumptions about future aggregate
trends in the demographic processes (e.g. TFR) become obsolete. Instead, theo-

retically and/or empirically founded relationships can be used to describe individual
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behaviour (e.g. educational participation and childbearing). Assumptions will still
be needed to describe how these relationships are expected to evolve over time, but
the uncertainty can now be ascribed to the mechanisms underlying the demographic
process. Nevertheless, it would require a substantial expansion of our microsimulation
to achieve this, and the gains thereof would for many applications in infectious disease

modelling probably not be considered sufficient.

Not only the demographic microsimulation, but also the presented disease transmis-
sion models face several limitations and possible improvements. In the transmission
process, we make a distinction between household mixing and community mixing.
While the first is rather detailed as we draw on work by Krivitsky et al. [150], al-
lowing us to base the household contact networks on empirical data, the latter has
potential for more nuance since we consider the community as a whole. Moreover, it
is not evident whether the generated household contact networks should be extrapo-
lated to unique living arrangements like LT'CFs, which also vary considerably in size,
demographics of residents, level of care etc. [84, 260]. Further research is needed to
explore social contact patterns in less common settings like LTCFs. Additionally, we
are lacking an understanding of how social contact patterns are influenced by demo-
graphic change. For ageing populations, for example, it remains unknown whether
contact with older adults becomes more likely. In the presented studies, we assume
that contact patterns within households as well as in the community remain constant
over time. Methods for adjusting social contact matrices to changing demographics
have been proposed, but these are not based on empirical evidence [189, 190]. A
comparison of two social contact surveys carried out in Belgium suggests stable age-
specific contact rates, but the surveys were only five years apart, implying limited

demographic change [167]. Future contact surveys would therefore be valuable.

In the epidemic settings, we did not consider any behavioural changes (e.g. reduced
social contact) during the outbreaks, which is an unlikely assumption. Nevertheless,
we deemed it a necessary and useful assumption as it allowed us to investigate the
role of demographic change in isolation. Moreover, our aims did not involve the ac-
curacy of epidemic predictions or evaluations of intervention strategies that require
implementation of behavioural change. Nevertheless, the disease transmission pro-
cess in the epidemic settings were constructed to allow for temporal changes in the

community contacts. Hence, this can be explored if deemed necessary.
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In future work, we will make use of demographic microsimulation to investigate the
impact of demographic change on the long-term transmission dynamics of endemic
infectious diseases. Specifically, we presented ongoing work on VZV and HZ in the
US population from 1960 to 2020. The main limitations of the study pertains to
the availability of historical epidemiological and demographic data. Moreover, the
procedure for obtaining an endemic equilibrium involves re-sampling of households,
which may cause a lack of resemblance between the observed and modelled popula-
tions. The microsimulation developed for the Belgian population has not yet been
combined with transmission models for endemic infections. However, this could be
obtained using the methods from the ongoing VZV study for the US. In that way, the
relationship between demography and infectious disease epidemiology can be studied

for a wider range of pathogens.

7.3 Conclusion

Population age and household structures are closely connected. The composition of a
household evolves as one or more of the household members experience a demographic
event (e.g. death, union dissolution), which often has an age-related likelihood of
occurrence. Thus, past fertility, mortality and migration schedules not only determine
the population age structure, but are also some of the factors influencing the size and
composition of households in the population. Individual-level modelling provides a
flexible and useful framework to consider the relationship between population age
and household structures, as well as how changes therein emerge from demographic

processes.

Households comprise a unique entity in demography but also in infectious disease
transmission. We investigated how the relationship between age and household struc-
tures shape the spread of an emerging infectious disease in a population with an
old age structure. In addition to household size, differential household compositions
helped explaining the disease transmission dynamics at the individual and household

level, in the adult population in particular.

The Belgian population is ageing, which is expected to continue in the coming decades,
as a result of persistently low fertility levels and rising life expectancy. On the one
hand, population ageing is associated with smaller outbreaks of emerging infectious
diseases like COVID-19 and pandemic influenza, but on the other hand, it is causing
a substantially larger disease burden. Future developments in the health, living ar-

rangements and social contact patterns in the older adult population may exacerbate
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or mitigate this relationship.
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Summary

Some population groups are more likely to acquire an infection or to experience a
severe outcome in case of disease due to risk factors that may not be randomly dis-
tributed in the population. Some of these factors are related to demographic char-
acteristics and structures (e.g. age, sex, household composition), which typically
are incorporated in the host population in models of infectious disease transmission,
though often in a highly simplified manner. Demographic structures, however, result
from complex demographic processes that tend to change over time. In the con-
text of infectious disease epidemiology, it is not well understood how these underlying
processes shape current and future population structures with relevance for the trans-
mission and burden of infectious diseases. For that reason, the aim of this dissertation
was to explore and improve infectious disease models with dynamic host populations
with the purpose of investigating the impact of demographic structures and changes
on the transmission and burden of infectious diseases transmitted through close con-

tact.

To create an overview of the existing literature, we first carried out a systematic review
of the demographic methods and data used to incorporate dynamic host populations
in models of infectious disease transmission. We found that population-level mod-
elling was more common than individual-based modelling. The advantages of IBMs
emerge when heterogeneity beyond age and sex, for example household structure, is
required in the population or transmission process. The flexibility of IBMs, however,
was rarely used to advance the demographic modelling of the host population. With
the advantages and limitations of the existing literature in mind, we developed a de-
mographic microsimulation for an age- and household-structured population, tailored

for applications in infectious disease modelling. We specifically simulated the Belgian
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population from 2011 to 2050 and considered the demographic processes of fertility,
mortality, migration and household transitions. The microsimulation was extended
by a disease transmission model to investigate how the spread of an emerging infec-
tious disease was affected by age and household structures in the host population
and how these relationships were influenced by demographic change. The age and
household structures had an impact on the disease transmission dynamics, but the
magnitude of the relationship depended on epidemiological heterogeneity in the pop-
ulation. Moreover, the size and composition of households were crucial for explaining

how the infection spread at the individual, household and population level.

In a second application of the microsimulation, we investigated how population ageing
affects the mortality burden of respiratory infections. The disease transmission model
was modified to resemble the spread of SARS-CoV-2 and novel influenza A virus. We
focused on the living arrangements in the older adult population, as the COVID-19
pandemic, for example, has had a disproportionate impact on those living in LTCFs.
Similarly, we found that this relatively small population group, which is often dis-
regarded in infectious disease modelling, faced a markedly higher risk of infection
in our simulations and accounted for a substantial share of the burden of mortality
associated with the respiratory infections. The burden of future epidemics increased
with the ageing of the population, but the magnitude of this relationship depended

on the living arrangements and general health in the older adult population.

Dynamic microsimulation of an age- and household-structured host population is also
useful for evaluating the long-term dynamics of endemic infectious diseases and the
effectiveness of immunisation programmes. We therefore presented ongoing work in-
volving a demographic microsimulation for the US population from 1960 to 2020,
which was extended by a disease transmission model for VZV and HZ. The demo-
graphic methods were similar to those used to develop the microsimulation for Bel-
gium, but with several modifications, as the data and its granularity differed. The host
population, however, was modelled with age and household structures, as household
transmission rarely has been explored explicitly in the existing literature. Declining
fertility rates since the 1960s has led to a changing age composition of the US pop-
ulation, as well as a declining mean household size. These trends are reproduced in
the microsimulation, allowing for an investigating of the implications of the demo-
graphic changes for the epidemiology of VZV and HZ at the individual, household

and population level.
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Samenvatting

Sommige bevolkingsgroepen hebben een grotere kans om een infectie op te lopen of
om een ernstige afloop te ervaren in geval van ziekte als gevolg van risicofactoren die
mogelijk niet willekeurig over de bevolking verdeeld zijn. Sommige van deze factoren
houden verband met demografische kenmerken en structuren (bv. leeftijd, geslacht,
samenstelling van het huishouden), die typisch worden opgenomen in modellen van
infectieziekten, zij het vaak op een sterk vereenvoudigde manier. Demografische struc-
turen zijn echter het resultaat van complexe demografische processen die in de loop van
de tijd veranderen. Er is onvoldoende begrip over de manier warop deze onderliggende
processen vorm geven aan huidige en toekomstige bevolkingsstructuren die relevant
zijn voor de transmissie en de last van infectieziekten. Het doel van dit proefschrift is
daarom tweeledig. De eerste doelstelling is het verkennen en verbeteren van modellen
van infectieziekten met dynamische gastheerpopulaties. Daarnaast wordt onderzocht
wat de invloed van demografische structuren en veranderingen is op de transmissie en

last van infectieziekten die via nauw contact worden overgedragen.

Om een overzicht te krijgen van de bestaande literatuur, hebben we eerst een systema-
tische review uitgevoerd van de demografische methoden en gegevens die gebruikt wor-
den om dynamische gastheerpopulaties op te nemen in modellen van infectieziekten.
We ontdekten dat modellering op populatieniveau gebruikelijker was dan modellering
op individueel niveau. De voordelen van IBM’s komen naar voren wanneer heterogen-
iteit naast leeftijd en geslacht vereist is in de populatie of het transmissieproces. Dit is
bijvoorbeeld het geval bij huishoudens. Deze flexibiliteit van IBM’s werd echter zelden
gebruikt om de demografische modellering van de gastpopulatie te bevorderen. Met de
voordelen en beperkingen van de bestaande literatuur in gedachten, ontwikkelden we

een demografische microsimulatie voor een leeftijds- en huishoudensgestructureerde
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populatie, op maat gemaakt voor toepassingen in de modellering van infectieziekten.
We simuleren specifiek de Belgische bevolking van 2011 tot 2050 en beschouwen de de-
mografische processen van vruchtbaarheid, sterfte, migratie en huishoudenstransities.
De microsimulatie werd uitgebreid met een transmissiemodel om te onderzoeken hoe
de verspreiding van een opkomende infectieziekte werd beinvloed door leeftijds- en
huishoudenstructuren in de gastpopulatie en hoe deze relaties werden beinvloed door
demografische veranderingen. De leeftijds- en huishoudenstructuren hebben een im-
pact op de transmissiedynamiek, maar de grootte van de relatie hangt af van epidemi-
ologische heterogeniteit in de populatie. Bovendien waren de grootte en samenstelling
van huishoudens van cruciaal belang om te verklaren hoe de infectie zich verspreidde

op individueel, huishoud- en populatieniveau.

In een tweede toepassing van de microsimulatie onderzochten we hoe de vergrijzing
van de bevolking de mortaliteitslast van respiratoire infecties beinvloedt. Het trans-
missiemodel werd aangepast om verspreiding van SARS-CoV-2 en een nieuwe variant
van het influenza A-virus te simuleren. We richtten ons op de samenstelling van
huishoudens in de populatie van oudere volwassenen, omdat de COVID-19 pandemie
bijvoorbeeld een onevenredig grote impact had op degenen die in zorginstellingen
wonen. Ook ontdekten we dat deze relatief kleine bevolkingsgroep, die vaak buiten
beschouwing wordt gelaten in modellen voor infectieziekten, een duidelijk hoger in-
fectierisico liep in onze simulaties en verantwoordelijk was voor een aanzienlijk deel
van de mortaliteitslast gerelateerd aan respiratoire infecties. De last van toekom-
stige epidemieén nam toe met de vergrijzing van de bevolking, maar de omvang van
deze samenhang hing af van de samenstelling van huishoudens in de oudere volwassen

bevolking.

Dynamische microsimulatie van een gastpopulatie met leeftijds- en huishoudensstruc-
tuur is ook nuttig voor het evalueren van de langetermijndynamiek van endemische
infectieziekten en de effectiviteit van immunisatieprogramma’s. Daarom presenteer-
den we een demografische microsimulatie voor de Amerikaanse bevolking van 1960
tot 2020, die werd uitgebreid met een transmissiemodel voor VZV en HZ. De de-
mografische methoden waren vergelijkbaar met degenen die gebruikt werden om de
microsimulatie voor Belgié te ontwikkelen, maar met verschillende aanpassingen om-
dat de gegevens en de granulariteit verschilden. Aangezien huishoudenstransmissie
zelden expliciet is onderzocht in de bestaande literatuur, werd de gastpopulatie even-
wel gemodelleerd met leeftijds- en huishoudenstructuren. Dalende vruchtbaarheid-
scijfers sinds de jaren 1960 hebben geleid tot een veranderende leeftijdsopbouw van

de Amerikaanse bevolking en een afnemende gemiddelde grootte van huishoudens.
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Deze trends werden gereproduceerd in de microsimulatie. Hierdoor zullen de impli-
caties van de demografische veranderingen voor de epidemiologie van VZV en HZ op

individueel, huishoud- en populatieniveau kunnen worden onderzocht.
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Appendix

Incorporating human dynamic populations in models
of infectious disease transmission: a systematic
review - Appendix

A.1 Protocol for the systematic review of incorporating human
dynamic populations in models of infectious disease trans-
mission

A.1.1 Background

The host population in models of infectious disease transmission is typically based on
rather strong assumptions regarding the demographic composition and how it changes
over time. Stable populations, meaning that the relative age composition remains con-
stant over time, are often used [15, 67]. Such assumptions have proven to be useful to
gain epidemiological insights and may be justified for disease outbreaks taking place
over shorter time frames during which no considerable demographic change is expected
[27]. In reality, however, populations never reach stability as fertility and mortality
levels are subject to continuous change. Furthermore, the demographic processes and
their changes over time may influence social contact patterns with importance for
disease transmission. This is acknowledged in an increasing number of mathematical
and computational models for infectious diseases, which incorporate changes in the

population structures over time. These models have shown an important impact of
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demographic change on the dynamics of infectious diseases, as well as for the effec-
tiveness of immunization programmes (e.g. [42, 47, 75]). Nevertheless, the included
population dynamics and demographic modelling approach vary highly from model to
model. The methods used to incorporate dynamic population structures in infectious

disease models has to our knowledge never been systematically summarised.

A.1.2 Objectives

The objective of this systematic review is to summarise and discuss the methods
that have been used to incorporate dynamic population structures into models for
infectious disease transmission. This includes the methods used to model the host
population, the different demographic processes considered, as well as the data and
techniques used to model each demographic process. The questions to be answered

in the systematic review are:
e Which methods are used to model a dynamic host population?

e Which demographic processes are explicitly incorporated in infectious disease

models with a dynamic population?

e How are the demographic processes modelled and which data is used?

A1.3 Methods
Eligibility criteria

We will search for publications of mathematical and computational models for infec-
tious disease transmission in a human population that results from a model including
at least fertility and mortality as dynamic processes. The demographic model can
be included explicitly or a population from another source can be used as input to
the disease transmission model as long as this population is the result of a demo-
graphic model explicitly considering dynamic trends for fertility and mortality. This
implies that models assuming constant fertility or mortality rates throughout the en-
tire study period are excluded. However, models with constant rates in a limited part
of the study period are still included. The inclusion and exclusion criteria are listed

below.
Inclusion criteria:

e Mathematical and computational models for infectious disease transmission

among humans
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e A dynamic population (observed or synthetic)
e Fertility and mortality are modelled as dynamic processes

e A population modelled with dynamic fertility and mortality trends by another

source
Exclusion criteria:

e Less than five age groups

e Use of stable populations

e Fixed mortality or fertility rates throughout the entire study period

e Population modelled with intervals in time of 10 or more years (e.g. 2020, 2030)

e Models limited to high-risk groups (MSM community, injecting drug users)

e Non-communicable disease

e Technical papers or software tools without any application

e Reviews (unless it is a review of incorporation of demography in infectious

disease models)

Information sources

We will search the electronic databases Web of Science and PubMed from the earliest
date of the database to 25.08.2020. Additionally, we will carry out a manual search

by screening reference lists of included papers.

Search strategy
The following search string is used to search in titles and abstracts:

e demography OR “demographic transition” OR “demographic change*” OR “pop-
ulation change*” OR "household structure*" OR. "household composition*" OR
"population ageing" OR "population aging" OR "aging population" OR "ageing

population"
e AND (infect* OR vaccin®* OR epidemic* OR communicable)
e AND (model* OR simulat*)

e NOT (animal* OR plant*)
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A.1.4 Study records

Data management

We will make use of the reference software EndNote X9 to manage the identified
publications.

Selection process

Titles and abstracts will be screened by using the inclusion and exclusion criteria

stated above. Articles will be reviewed in full-text in case of doubt.

Data collection process

The reviewer will extract the data using a standardised form. Papers might be ex-
cluded at the data collection stage if it becomes apparent that inclusion criteria are
not met or if there is not enough information in the paper to extract the required
data.

Data items
The extracted data will include the following:

e Setting and population characteristics

Country /region/city

Population
— Demographic characteristics (age, sex, etc.)
— Time horizon
e Model specifications and data
— Model type
— Demographic processes considered
— Source of demographic data
e Modelling of demographic processes
— Starting population

— Fertility
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Mortality
— Migration
— Households and networks
— Demographic sensitivity analyses
e Specifications of disease transmission model and analyses
— Disease(s)
— Vaccination
— Social mixing

— Cost-effectiveness analyses

A.1.5 Data analysis
The qualitative data analysis will include:
e A flowchart describing included and excluded articles

e Tables presenting the characteristics of the included articles with information

regarding

Setting and population characteristics

Model specifications and data

Modelling of demographic processes included in study

Components of disease transmission model
e Figures visualising

— Model types

— Demographic processes included in model

— Demographic data
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A.2

Table A.1. Search strategy and hits

Figures and tables

” Search Web of science: PubMed:
Abstract/title | Abstract/title
1 "demographic transition" 2.353 1.237
2 demography 27.772 10.98
3 "demographic change*" 6.641 3.117
4 "population change*" 5.31 2.137
5 "household structure*" 915 344
6 "household composition*" 1.037 519
7 ("population ageing | OR 4.561 2.663
population aging")
8 ("aging population” OR 11.861 10.28
ageing population")
9 infect™* 1.899.379 1.784.209
10 vaccin® 349.222 318.058
11 epidemic* 117.329 108.101
12 communicable 12.809 18.047
13 model* 9.303.490 2.931.098
14 simulat™® 3.292.060 535.675
1 OR 2 OR 3 OR 4 OR
15 5 OR 6 OR 7 OR 8 57.934 30.033
16 9 OR 10 OR 11 OR 12 2.175.981 2.055.072
17 13 OR 14 10.933.783 3.228.393
18 15 AND 16 AND 17 869 652
19 | 18 NOT (animal* OR plant*) 783 468
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Figure A.1l. Branching diagram of fertility modelling with article numbers.
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Figure A.2. Branching diagram of mortality modelling with article number.
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TLT

Table A.2. IBMs and CCBMs included in systematic review (NA: Not applicable, obs.: Observed)

- ) Time Demographic Demographic Model Demographic Initialisation
Article Setting
horizon characteristics data source type processes period: rates
Central Statistical Fertilit Calit
Mekonnen et al. [93] Addis Ababa 1984-2004 Age, sex Authority(Ethiopia), CCBM ertiiity, mortatity, NA
migration
UN WPP
National Bureau of
Statistics (China),
Gao and Hethcote [112] China 1965-2051 Age, sex Population Information | CCBM Fertility, mortality NA
and Research Center
(China)
USA (urb Fertility, tality, Ob tion of
Aparicio and Castillo-Chavez [116] (urban 1850-2009 Age US Census Bureau CCBM erviiity, mortality, servation o
population) migration 1850 (fixed)
US Bureau of Census,
US Bureau of Labor
Statistics, US National
Guzzetta et al. [58]a Arkansas 2000-2030 Age atistics ationa CCOBM Fertility, mortality NA
Center for Education
Statistics, CDC Nation-
al Vital Statistics
L Fertility, mortality,
McDonald et al. [97] Netherlands 2000-2030 Age, sex Statistics Netherlands CCBM Y, me NA
migration
US C B Adjusted to obtai
Van Effelterre et al. [114] Mexico 1970-2120 Age ensus Bureau CCBM Fertility, mortality Justed to obtain
WHO a stable population
Fertility, tality,
McDonald et al. [98] Netherlands 2000-2030 Age, sex Statistics Netherlands CCBM erviiity, mortatity, NA
migration
Fertility, mortality, Ob tion of
Merler and Ajelli [68] Italy 1901-2009 Age ISTAT CCOBM ertiiity, mortality, servation o
migration 1901 (fixed)
Age, sex, state, Fertility, tality,
Mahy et al. [108] Nigeria 1970-2013 ge, sex, state UN WPP COBM ertiiity, mortality. NA
rural/urban migration
Ob tion of
Knight et al. [107] 91 LMIC 2009-2050 Age UN WPP COBM Fertility, mortality servation o
2009 (fixed)
21 Afri Fertility, tality,
Penazzato et al. [92] riean 2010-2020 Age, sex UN WPP CCBM erviiity, mortality. NA
countries migration
Fertility, tality, Adjusted to obtai
Van Effelterre et al. [55] Thailand 1950-2100 Age UN WPP, WHO CCBM Tertility, mortality: Justed to obtain
internal migration a stable population
Australian B Observation of
Costantino et al. [57] Australia 1901-2000 Age ustratian Bureau CCBM Fertility, mortality servation o
of Statistics 1901 (fixed)
Australia, Ethio-
pia, Kenya, Ire- Fertilit talit; Observati £
Trentini et al. [72] land, Italy, South 1950-2030 Age UN WPP CCBM ertitity, mortalty, servation o
‘ migration 1950 (fixed)
Korea, Singapore,
UK, USA
Fertility, tality, Adjusted to obtai
Van Effelterre et al. [113] Brazil, Mexico 1950-2050 Age UN WPP, WHO CCBM ertiiity, mortality, Justed to obtain
internal migration a stable population
Fertility, tality,
Mahy et al. [109] 160 countries 1970-2015 Age, sex UN WPP CCBM ertility, mortality, NA

migration




CLT

Table A.2 IBMs and CCBMs included in systematic review (NA: Not applicable, obs.: Observed) continued

R ] Time Demographic Demographic Model Demographic Initialisation
Article Setting
horizon characteristics data source type processes period: Rates
Fertility obs.
Senegal and 1950/55, female
Williams et al. [118] Gambia as one 1950-2150 Age, sex UN WPP CCBM Fertility, mortality life table with
population net reproduc-
tive rate of 1
Australian B Fertility, tality, Ob ti £
Jayasundara et al. [117] Australia 1901-2061 Age ustratian Bureau CCBM erviiity, mortality. servations o
of Statistics migration 1901 (fixed)
Are. sox. internal Population and Housing Fertilic it
Mahikul et al. [44] Thailand 1980-2035 8¢, sex, interna Census, Ministry of CCBM erviiity, mortality, NA
migration group ) migration
Public Health
Fertility, tality,
Haacker et al. [56] Botswana 2015-2050 Age, sex UN WPP CCBM erviitty, mortality. NA
migration
Fertility, tality, Ob t £
Heffernan et al. [115] 190 countries 1950-2100 Age, sex UN WPP CCBM erviitty, mortality. servation o
migration 1950 (fixed)
UN WPP, National Fertility, tality,
Khalifa et al. [105] 148 countries 2010-2050 Age, sex ationa CCBM erviiity, mortality. NA
census data migration
Department of Fertilit talit
Ku and Dodd [102] Taiwan 2000-2035 Age, sex cpartment o CCBM ervility, mortality, NA
Statistics (Taiwan) migration
USA, South
Korea, Singapore,
Trentini et al. [100] orea, SIgapore, 2018-2050 Age UN WPP CCBM Fertility, mortality NA
Australia, ITtaly,
UK, Ireland
) Fertility, mortality,
Yerushalmi et al. [99] Ghana 2015-2045 Age, sex UN WPP, DHS CCBM ‘ | NA
migration
US Bureau of Census,
Age, household S;J?B;.urealljsofNL:.bor 1 hFert:it];; :nortelz':l?ty,
Guazzetta et al. [58]b Arkansas 2000-2030 | membership, school, aristies, ationa IBM ousehold transitions, NA
Center for Education school/workplace
workplace e ) o
Statistics, CDC Nation- transitions
al Vital Statistics
Age, sex, house- . .
hold bershi o det Fertility, mortality,
o. € ers ensus ata
Liu et al. [81]a China 1975-2024 membersiip, nsu ' IBM household transitions, NA
school membership, Yearbooks for China =
. school transitions
mother link
Age, sex, house- . .
hold borshi c dat Fertility, mortality,
Liu et al. [81]b China 1975-2024 ©c membersib, ensus data, IBM household transitions, NA
school membership, Yearbooks for China =
. school transitions
mother link
Age, sex, house- — ]
hold b hi c data, Y Fertility, mortality,
Liu et al. [81]c China 1975-2024 ©lc membersib, ensus cata, vear- IBM household transitions, NA

school membership,
mother link

books for China

school transitions
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Table A.2 IBMs and CCBMs included in systematic review (NA:

Not applicable, obs.: Observed) continued

i | Time Demographic Demographic Model Demographic Initialisation
Article Setting
horizon characteristics data source type processes period: Rates
UN WPP, FMD Fertilit talit Ob. ti f
Marziano et al. [90]a Spain 1900-2050 Age INEbase, Eurostat, IBM ertiiity, mortatity, servation o
migration 1900 (fixed)
‘World Bank
UN WPP, HMD Fertilit, talit, Observati f
Marziano et al. [90]b Spain 1900-2050 Age INEbase, Eurostat, IBM ertiiity, mortality, servation o
migration 1900 (fixed)
World Bank
b Fertilit, talit; Ob: ti f
Marziano et al. [90]c Spain 1900-2050 Age INEbase, Eurostat, IBM ertiiity, mortality, servation o
migration 1900 (fixed)
World Bank
Fertility, mortality, |
A S house- Australian B f Obs t s of
Geard et al. [42] Australia 1910-2010 8¢, sex, fouse ustralfian Bureau o IBM migration, household servations o
hold membership Statistics, Survey data o 1910 (fixed)
transitions
Age, . house-
) e, sex, fiouse US Census Bureau Fertility, mortality,
American hold membership, . . . .
Xu et al. [80] 2010-2050 : American Samoa Statis- IBM migration, household NA
Samoa residence, house- R L.
" tical Yearbook 2015 transitions
hold position
Campbell et al. [79] Australia 1010-2020 Age, sex, house- Australian Bureau of IBM Fertility, mortality, Observations of
hold membership Statistics, Survey data household transitions 1910 (fixed)
HMD, MPIRDR, Fertility, tality, Obs ti f
Melegaro et al. [36] Italy 1900-2100 Age IBM ertiiity, mortality, servation o
ISTAT migration 1900 (fixed)
Smit et al. [111] Zimbabwe 1950-2035 Age, sex UN WPP IBM Fertility, mortality NA
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Table A.3. EPMs included in systematic review (NA: Not applicable, obs.: Observed)

] R Time Demographic Demographic Initialisation Population
Article Setting
horizon characteristics data source period: Rates composition
Adjusted to keep
Eichner et al. [37] Germany 1993-2043 Age DESTATIS age distribution Obs., official projection
constant
Obs., official projection,
van Lier et al. [119] The Netherlands 1950-2200 Age Statistics Netherlands official projection
carried forward
15 tries UN WPP, Obs. and official
Sibley et al. [110] o countries 1950-2030 Age, sex . NA S. and officia
(Europe, Asia) National databases projection
Belgium, Finland, ]
G G ¢ Britai Adjusted to keep ob fcial
Schmidt-Ott et al. [103] ermany, frreat BITAm, | 4994 2033 Age DESTATIS, Eurostat age distribution s, otiela
Italy, Luxembourg, projection
constant
Netherlands, Poland
Obs., official
Dolk et al. [106] Germany 1994-2034 Age DESTATIS NA S, officla
projection
a0 i ] Obs. (1982, 1990,
(o) ces
Li et al. [95] > p;}:’_"‘ sm 1982-2011 Age National census NA 2000, 2010) with
ma linear interpolation
Obs., official projecti
Eichner et al. [94] Germany 2000-2026 Age DESTATIS NA s, officlal projection
(main scenario)
Age, sox, . .
Hood et al. [101] USA 2013-2045 D) US Census Bureau NA Official projection
ethnicity /race
Obs., official projecti
Horn et al. [75]a Germany 1990-2060 Age, sex DESTATIS NA s O. ca prOJe.C on
(medium scenario)
Obs., official projecti
Horn et al. [75]b Germany 1990-2060 Age, sex DESTATIS NA s, official projection
(high migration 2016-2025)
12 tries
Arregui et al. [59]a countries 2000-2050 Age UN WPP NA Obs., official projection
(Africa, Asia)
12 tries Obs., syntheti ;
Arregui et al. [59]b countries 2015-2050 Age UN WPP NA s, synthetic (young,
(Africa, Asia) static, ageing)
P . 4 itori Obs., official
Turgeon et al. [96] rovinces/territories 1999-2028 Age Statistics Canada NA projection (medium
in Canada R
growth scenario)
Adjusted to keep
Schmidt-Ott et al. [104] Germany 1997-2036 Age DESTATIS age distribution Obs., official projection
constant
Official projection of
Age, houschold distribution, household
Marziano et al. [47] Italy 2017-2045 ge, iouseno ISTAT NA ase distribution, househo
membership size and age composition
of 2017
Talbird ot al. [73] USA (age 50+) 2017-2046 Age US Census Bureau NA Official projection
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Table A.4. Modelling of fertility (TFR: total fertility rate, ASFR: age-specific fertility rate, CBR:
observation, NA: not applicable)

crude birth rate, obs.:

Article

Measure

Past time period

Future time period

Covariates

Mekonnen et al. [93]

TFR, age distribution
(model schedule),
disease state

Obs. (5-year average)

Last obs. carried forward

Age, sex, disease state

Gao and Hethcote [112] ASFR Obs. with interpolation Last obs. carried forward Age, sex
Aparicio and Castillo-Chavez [116] Age-specific per Obs. and linear interpolation NA Age
capita birth rate

Guzzetta ot al. [58]a CBR Obs. Official projection None

Obs. for 2000 with Obs. for 2000 with
McDonald et al. [97] ASFR a fixed annual in- a fixed annual in- Age, sex

crease for ages >27 crease for ages >27

Uncertain. Author no
Van Effelterre et al. [114] Number of births Obs. longer has access to None
information.

Obs. for 2000 with Obs. for 2000 with
McDonald et al. [98] ASFR a fixed annual in- a fixed annual in- Age, sex

crease for ages >27 crease for ages >27
Merler and Ajelli [68] CBR Obs. and linear interpolation NA None
Mahy et al. [108] TFR, age distribution, state Obs. NA Age, sex, state
Knight et al. [107] Number of births NA Official projection None

TFR, age distribution
Penazzato et al. [92] (model schedule), disease Obs. Official projection Age, sex, disease state
state
Van Effelterre ot al. [55] Number of births Obs. (b-year average) Official projection (b-year average) None
Costantino et al. [57] CBR Obs. NA None
Trentini et al. [72] CBR Obs. Official projection None
Van Effelterre et al. [113] Number of births Obs. with smoothing Official projection with smoothing None
Mahy et al. [109] TFR, age distribution Obs. NA Age, sex
(model schedule)
Official projections averaged
Williams et al. [118] ASFR Obs. averaged over countries over countries, last Age, sex
projected value carried
forward
Jayasundara et al. [117] CBR Obs. Official projection None
Mahikul et al. [44] ASFR Obs. Last obs. carried forward Age, sex
Haacker et al. [56] TFR, age distribution NA Official projection (5-year average) Age, sex
Heffernan et al. [115] ASFR Obs. (5-year average) Official projection (5-year average) Age, sex
Khalifa et al. [105] TFR, age distribution Obs. (5-year average) Official projection (5-year average) Age, sex
Ku and Dodd [102] ASFR Obs. Projection with Age, sex
Lee-Carter model

Trentini et al. [100] CBR NA Official projection None
Yerushalmi et al. [99] TFR, age distribution NA Official projection Age, sex
Guzzetta et al. [58]b CBR Obs. Official projection None
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Table A.4 Modelling of fertility (TFR: total fertility rate, ASFR: age-specific fertility rate, CBR: crude birth rate, obs.:
observation, NA: not applicable) continued

Article

Measure

Past time period

Future time period

Covariates

Liu et al. [81]a

Age-, parity- and policy
-specific fertility rate

Obs.

Last obs. carried forward

Age, sex, parity

Liu et al. [81]b

Age-, parity- and policy
-specific fertility rate

Obs. excl. 2nd order births

Last obs. carried forward

Age, sex, parity

Age-, parity- and policy

Last obs. for 1st order

births carried forward,

Liu et al. [81]c . . Obs. K ! Age, sex, parity

-specific fertility rate 2nd order birth rate increas-
es to 1st order birth rate

Marziano et al. [90]a CBR Obs. Last obs. carried forward None

Marziano et al. [90]b CBR Obs Linear decrease to 0 None

Marziano et al. [90]c CBR Obs. Linear increase to doubling of last obs. None
Number of births, age

Geard et al. [42] distribution, birth interval Obs. NA Age, sex, parity, birth interval
of minimum 270 days

Xu et al. [80] ASFR NA Official projection Age, sex
Number of births, age

Campbell et al. [79] distribution, birth interval Obs. Last obs. carried forward Age, sex, parity, birth interval
of minimum 270 days

Melegaro ot al. [36] CBR Obs. Official projection None

Smit ot al. [111] ASFR Obs. (5.year average) Last obs. carried forward Age, sex




LLT

Table A.5. Modelling of mortality (ASMR: age-specific mortality rate, ASSMR: age-sex-specific mortality rate, obs.:
observation, NA: not applicable)

Article Measure Past time period Future time period Covariates
Life expectancy at birth,
Mekonnen et al. [40] model life table, Obs. Official projection Age, sex, disease state
disease-related mortality
Gao et al. [41] ASMR Obs. with interpolation Last obs. carried forward Age
Crude mortality rate, First obs. carried back-
Aparicio et al. [42] life table, disease- wards (1850-1899), func- NA Age, disease state
related mortality tion fitted to obs.
Guzzetta et al. [43]a ASMR, disca%(}rdatc{j Obs. Official projection Age, disease state
mortality
McDonald et al. [44] ASSMR Obs. 2000 wifh a fixed Obs. 2000 wifh a fixed Age, sex
annual age-specific decrease annual age-specific decrease
Van Effelterre et al. [45] ASMR O?)s. with li'near Last ob% with. annual Age
interpolation age-specific adjustment
McDonald ct al. [46] ASSMR Obs. 2000 wifh a fixed Obs. 2000 wifh a fixed Age, sex
annual age-specific decrease annual age-specific decrease
Merler et al. [10] ASMR Obs. and lincar NA Age
interpolation
Life expectancy at birth
by sex, model life .
Mahy et al. [47] K Obs. NA Age, sex, state, disease state
table, disease-related
mortality, state
Knight et al. [48] ASMR NA Official projection Age, disease state
Life expectancy at birth,
Penazzato et al. [49] model life table, Obs. Official projection Age, sex, disease state
disease-related mortality
Exponentially decreasing
Van Effelterre et al. [50] ASMR Obs. function fitted to Age
official projections
Costantino et al. [51] ASMR Obs. NA Age
Trentini et al. [52] ASMR O?)s, with li-near Oﬁj‘lcial ;?rojection-with Age
interpolation linear interpolation
Van Effelterre et al. [25] ASMR Obs. Official projection Age
Life expectancy at birth,
Mahy et al. [53] model life table, Obs. NA Age, sex, disease state
disease-related mortality
Official projections averaged
Williams et al. [54] ASSMR, diseése-related Obs. averag.ed over oxfer countries, lasf: Age, sex, disease state
mortality countries projected value carried
forward
Obs. (averages over
Jayasundara et al. [55] ASMR multiple years) with Official projection Age
interpolation
Mahikul et al. [56] ASMR, diseas'e-related Obs. Last obs. carried Age, discase state
mortality forward
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Table A.5 Modelling of mortality (ASMR:

NA: not applicable) continued

age-specific mortality rate, ASSMR: age-sex-specific mortality rate, obs.: observation,

Article

Measure

Past time period

Future time period

Covariates

Haacker et al. [57]

Life expectancy at birth
by sex, model life
table, disease-related
mortality

NA

Official projection
(5-year average)

Age, sex, disease state

Heffernan et al. [26]

ASSMR, disease-related
mortality, risk group
mortality

Obs. (5-year average)

Official projection

(5-year average)

Age, sex, disease

state, risk group

Khalifa et al. [58]

Life expectancy at birth
by sex, model life table,
disease-related mortality

Obs. (5-year average)

Official projection (5-year average)

Age, sex, disease state

Projection with Lee-

Ku et al. [59] ASMR Obs. Carter and Coale- Age, sex
Kisker method
Trentini et al. [60] ASMR NA Official projection Age
Yerushalmi et al. [61] ASSI.VIR’ dis(ease-rela(ted. NA Official projection Age, sex, diéease
mortality, regional variation state, region
Guzzetta et al. [43]b ASMR, disea%e-related Obs. Official projection Age, disease state
mortality

Liu et al. [62]a ASMR Obs. Last obs. carried forward Age

Liu ot al. [62]b ASMR Obs. Last obs. carried forward Age

Liu et al. [62]c ASMR Obs. Last obs. carried forward Age
Marziano et al. [16]a ASMR Obs. Last obs. carried forward Age
Marziano et al. [16]b ASMR Obs. Last obs. carried forward Age
Marziano et al. [16]c ASMR Obs. Last obs. carried forward Age
Geard et al. [9] ASSMR Obs. NA Age, sox

Xu et al. [63] _ Number of deaths, NA Official projection Age, sox

life table by sex (fixed)

Campbell et al. [64] ASSMR Obs. Last obs. carried forward Age, sex
Melegaro et al. [65] ASMR Obs. Official projection Age

Smit et al. [66]

ASSMR, disease-related
mortality

Obs. (5-year average)

Last obs. carried forward

Age, sex, disease state
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Table A.6. Modelling of migration (obs.: observation, , NA:

not applicable)

Article Measure Past time period Future time period Covariates
Net-mi ti t
Mekonnen et al. [93] ct-migration rate, Obs. of 1984 (fixed) Last obs. carried forward Age, sex
model age-sex schedule
. ] Net-migration rates K
Aparicio and Castillo-Chavez [116] . Function fitted to obs. NA None
(urban population)
Age-sex-specifi
McDonald et al. [97] ge-sex-speciiic Average obs. 2000-2009 Average obs. carried forward Age, sex
net-migration rate
Age-sex-specific
McDonald et al. [98] ESSSex=Spact Average obs. 2000-2009 Average obs. carried forward Age, sex
net-migration rate
Immigration and emigration
Merler and Ajelli [68] rates, age distribution Obs. NA Age
(fixed)
Net-mi ti at
Mahy et al. [108] st-migration rate, Obs. NA Age, sex
model age-sex schedule
Net-mi ti t
Penazzato et al. [92] ct-migration rate, Obs. Official projection Age, sex
model age-sex schedule
Int 1 i ti t
Van Effelterre et al. [55] pternal migration rate Obs. (5-year average) Official projection (5-year average) None
(urban/rural)
L. Net-migration rate, age ~ . . .
Trentini et al. [72] e ‘ ; Obs. (5-year averages) Official projection (5-year averages) Age
distribution (3 time points only)
Internal migration rate
Van Effelterre et al. [113] (urban/rural), net international Obs. with smoothing Official projection with smoothing None
migration rate (Mexico)
Net-migrati te,
Mahy et al. [109] ct-migration rate Obs NA Age, sex
model age-sex schedule
Net-migration rate, age L. . )
Jayasundara et al. [117] oo Obs Official projection Age
distribution (average 1976-2015)
Net int ti 1 i ti
Mahikul et al. [44] et international migration Obs Last obs. carried forward Age
rate, internal migration rate
Net-migrati te, . o
Haacker et al. [56] ct-migration rate NA Official projection (5-year average) Age, sex
model age-sex schedule
Heffernan et al. [115] Net-migration rate Obs. (5-year average) Official projection (5-year average) None
Net-mi ti t
Khalifa et al. [105] ct-migration rate, Obs. (5-year average) Official projection (5-year average) Age, sex
model age-sex schedule
Age-sex- ifi
Ku and Dodd [102] g .Scx S.pCC] © Obs. with residual method Mean of obs. carried forward Age, sex
net-migration rate
Net-mi ti at
Yerushalmi et al. [99] ctmigration rate, NA Official projection Age, sex
Model age-sex schedule
K Net-migration rate, K
Marziano et al. [90]a ~misratl Obs. Last obs. carried forward Age
age distribution (fixed)
. Net-migration rate, .
Marziano et al. [90]b . N . Obs. Last obs. carried forward Age
age distribution (fixed)
. Net-migration rate, .
Marziano et al. [90]c cmisrat] Obs. Last obs. carried forward Age
age distribution (fixed)
Geard et al. [42] Net-migration rate Fixed rate from 1950 NA None
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Table A.6 Modelling of migration (obs.: observation, , NA: not applicable) continued

Article Measure Past time period Future time period Covariates
Net-mi ti t
Xu et al. [80] © 4rru.gra 41011 raf © NA Official projection Age
age distribution (fixed)
Melegaro et al. [36] Net-migration rate Obs. Official projection Age
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Table A.7. Households and networks (NA: not applicable)

Article

Household types

Transitions

Transition rates

Other networks

Guzzetta et al. [58]b

Single person household, married couple

with/without child(ren), single(s) with/without

child(ren), other households

Marriage,divorce, leaving
current household to

create a new

Dynamic

Schools, workplaces membership,
spatial location of households,

schools and workplaces

Liu et al. [81]a

Union with/without child(ren),
single adult with/without child(ren),
non-family related individuals

with/without nuclear family

Union formation,

leaving parental household

Fixed over time and

equal across eligible ages

School links

Liu et al. [81]b

Union with/without child(ren),
single adult with/without child(ren),
non-family related individuals

with/without nuclear family

Union formation,

leaving parental household

Fixed over time and

equal across eligible ages

School links

Liu et al. [81]c

Union with/without child(ren),
single adult with/without child(ren),
non-family related individuals
with/without nuclear family

Union formation,

leaving parental household

Fixed over time and
equal across eligible ages

School links

Geard et al. [42]

Union with/without child(ren),
single parent with child(ren), single

Union formation and dissolution,
child leaving parental household

Fixed and equal across
eligible ages

NA

Xu et al. [80]

Couple with/without child(ren),
single with/without child(ren),
non-related adult(s), non-related
adult(s) living with nuclear family,
multi-generational household,

institutions

Union formation and dissolution,
senior individuals moving to
household of adult child,
single person household to institution

Fixed and equal across ages

Houschold are assigned a
location while ensuring plausible

living space per capita

Union with/without child(ren),

Union formation and dissolution,

Time-dependent but equal

household size 1-7

houschold size and age composition
of 2017.

Campbell et al. [79] single parent with child(ren), . . L. NA
. child leaving parental household across eligible ages
single
. . . New households are generated
Couple with/without child(ren), h di 4o th
each year according to the
Marziano et al. [47] single adult with child(ren), Y € NA NA
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Table A.8. Sensitivity analysis

Article

Demographic processes

Time period

Method

Mekonnen et al. [93] Fertility 2000-2024 Scenario-based (low/high)

Van Effelterre et al. [55] Fertility and internal migration 1950-2100 Interpolation between 5-year averages
Williams et al. [118] Fertility 2015-2100 Scenario-based

Ku and Dodd [102] Fertility, mortality, migration 2018-2035 Prediction intervals
Marziano et al. [90]a Fertility, mortality, migration 2010-2050 Scenario-based (UN medium variant)
Marziano et al. [90]b Fertility, mortality, migration 2010-2050 Scenario-based (UN medium variant)
Marziano et al. [90]c Fertility, mortality, migration 2010-2050 Scenario-based (UN medium variant)
Melegaro et al. [36] Fertility 2016-2100 Scenario-based

Arregui et al. [59]a Age distribution 2015-2050 Confidence interval, alternative age

distributions (young/old population)
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Table A.9. Infectious disease modelling (CEA: cost-effectiveness analysis, NA: not applicable)

Article Disease Vaccination Social mixing CEA
Mekonnen et al. [93] HIV /AIDS No No No
Gao and Hethcote [112] Rubella Yes Proportionate NA
mixing
Aparicio and Castillo-Chavez [116] Tuberculosis NA NA NA
Guzzetta ot al. [58]a Tuberculosis NA Homogeneous mixing NA
McDonald et al. [97] Hepatitis B, Yes NA NA
influenza
Van Effelterre et al. [114] Hepatitis A Yes WAIFW matrix NA
McDonald et al. [98] Hepatitis A Yes NA NA
Homogeneous mixing and
Merler and Ajelli [68] Measles Yes sensitivity analysis NA
(POLYMOD)
Mahy et al. [108] HIV /AIDS No No No
Knight et al. [107] Tuberculosis Yes No Yes
Penazzato et al. [92] HIV /AIDS No No No
Van Effelterre et al. [55] Hepatitis A NA Homogeneous mixing NA
Costantino et al. [57] varicella zoster virus NA POLYMOD NA
Trentini et al. [72] Measles Yes Homogeneous mixing NA
Van Effelterre et al. [113] Hepatitis A NA Homogeneous mixing NA
Mahy et al. [109] HIV/AIDS No No No
Williams et al. [118] Hepatitis B Yes WAIFW matrix NA
Jayasundara et al. [117] Hepatitis A Yes POLYMOD NA
Mahikul et al. [44] Melioidosis NA NA NA
Haacker et al. [56] HIV and non- NA NA NA
communicable diseases
Heffernan et al. [115] Hepatitis C NA NA NA
Khalifa et al. [105] HIV NA NA NA
Ku and Dodd [102] Tuberculosis NA NA NA
Trentini et al. [100] Measles Yes Homogeneous mixing NA
Yerushalmi et al. [99] Malaria Yes NA Yes
Guzzetta et al. [58]b Tuberculosis No Heterogeneous mixing NA
Household contacts,
Liu et al. [81]a Influenza No school contacts NA
and social contacts.
Household contacts,
Liu et al. [81]b Influenza No school contacts NA
and social contacts.
Household contacts,
Liu et al. [81]c Influenza No school contacts NA
and social contacts.
Marziano et al. [90]a varicella zoster virus Yes Synthetic social No

contact matrices
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Table A.9 Infectious disease modelling (CEA: cost-effectiveness analysis, NA: not applicable) continued

Article Disease Vaccination Social mixing CEA
Syntheti ial
Marziano et al. [90]b varicella zoster virus Yes ynthetic SO?]a No
contact matrices
Synthetic social
Marziano et al. [90]]c varicella zoster virus Yes ynthetic So?la No
contact matrices
Geard ot al. [42] "measles-like" Yes Dynamic contact matrix NA
illness based on POLYMOD
L hatic filariasis
Xu et al. [80] ymphatic flariasis No NA NA
(not modelled)
D i tact tri
Campbell et al. [79] Pertussis Yes ynamic contact matrix NA
based on POLYMOD
. Synthetic social
Melegaro et al. [36] Varicella and herpes zoster Yes ° Yes
contact matrices
HIV, - icabl
Smit et al. [111] pon-communicable No NA NA
diseases
D i tact tri
Eichner et al. [37] Influenza Yes ynamic contact matrix NA
based on POLYMOD
van Lier et al. [119] Varicella and herpes zoster Yes Yes (POLYMOD) Yes
Sibley et al. [110] Hepatitis C No NA No
D i tact tri
Schmidt-Ott et al. [103] Influenza Yes ynamic contact matbrix NA
based on POLYMOD
Dynamic contact matrix
Dolk et al. [106] Influenza Yes Yes
based on POLYMOD
Li et al. [95] Measles Yes No No
Eichner et al. [94] Influenza Yes Yes (POLYMOD) No
Hood et al. [101] HIV No No No
Horn et al. [75]a Varicella zoster virus Yes POLYMOD NA
Horn et al. [75]b Varicella zoster virus Yes POLYMOD NA
Arregui et al. [59]a Tuberculosis No Heterogeneous mixing No
Arregui et al. [59]b Tuberculosis No Heterogeneous mixing No
Turgeon ot al. [96] Salmonella No No No
D ic contact tri
Schmidt-Ott et al. [104] Influenza Yes ynamic contact matrix NA
based on POLYMOD
Marziano et al. [47] Measles Yes POLYMOD NA
Influenza, pertussis,
Talbird et al. [73] herpes zoster, and Yes No Yes

pneumococcal disease




Appendix

Demographic microsimulation - Appendix

B.1

B.1.1

Initial population

Household position

All individuals in the population have a LIPRO household position for 2011 and 2012,

which describes the relation an individual has to other household members and/or the

type of household [149]. The LIPRO typology contains the following categories:

CMAR: Child in family with married parents

CUMR: Child in family with cohabiting parents

C1PA: Child in one-parent family

SING: Single (one-person household)

MARO: Married, living with spouse but without children
MAR+: Married, living with spouse and one or more children
UNMO: Cohabiting, no children present

UNM-+: Cohabiting with one or more children

H1PA: Head of one-parent family

NFRA: Non-family related adult (adult living with MARO/MAR+/UNMO/
UNM+/H1PA)

185



e OTHR: Other (e.g. multiple single adults living together) Collective: Member

of collective household

The original LIPRO household positions are modified in the new variable household
position. Each category of this variable is described below as well as the included
LIPRO positions. For some categories, LIPRO positions are only included in a given

household position if certain conditions involving other variables are fulfilled.

e Child (child)
— Individual living in parental household without own children or partner
— LIPRO positions: CMAR, CUNM, C1PA
— LIPRO positions with conditions:

* NFRA/OTHR if individuals is younger than 16

e Union without child (union)
— Individual living together with partner and without children
— LIPRO positions: MARO, UNMO
— LIPRO positions with conditions:

* CMAR/CUNM/C1PA/NFRA if individual is in a union in 2012 (2011)
with a partner that also was a household member in 2011 (2012)

* CMAR/CUNM/C1PA/NFRA/OTHR/HI1PA if two individuals living
in the same household are parents to the same child (no longer in
household)

e Union with child (union+)
— Individual living together with partner and child
— LIPRO positions: MAR+, UNM+
— LIPRO positions with conditions:

* CMAR/CUNM/C1PA/NFRA if individual is in union in 2012 (2011)
with a partner that also was a household member in 2011 (2012) and
a (step-)child is present in the household (further description in sub-
section 3.3.3 in Chapter 3)
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* CMAR/CUNM/C1PA/NFRA/OTHR/H1PA if two individuals living
in the same household are parents to the same child and a (step-)child
is present in the household (further description in subsection 3.3.3 in
Chapter 3)

e Single-person household (single)
— Individual living in a one-person household
— LIPRO position: SING
— LIPRO positions with conditions:
x All LIPRO positions if household of size 1
e Non-family related adult (NFRA)

— Individual living without own family nucleus but living in same household

as unrelated family nucleus
— LIPRO position: NFRA
e Other (Other)
— Individual living together with other unrelated individuals
— LIPRO position: OTHR
e Collective household (collective)

— Individual living in collective household (prison, special care facility, nurs-

ing homes, student accommodation,. .. )
— LIPRO position: Collective
— LIPRO positions with conditions:
x All LIPRO positions if household members have category ‘collective’
e Single parent (single+)

— Individual living together with their child but without a partner in the
household

— LIPRO position: HIPA

— LIPRO positions with conditions:
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* NFRA/OTHR/CMAR/CUNM/C1PA/MAR+ /UNM-+ if individual with-
out a partner or with a missing partner match (further description in

subsection B.1.2) lives in the same household as their child

— Single parents living in their own parental household are referred to as

single+* in cases where the distinction is necessary
e Union in multigenerational household (multi U)

— Individual living together with partner, child and family nucleus of child

(e.g. grandchild and/or partner of child)
e Single in multigenerational household (multi S)

— Individual without partner living with child and family nucleus of child

(e.g. grandchild and/or partner of child)

In Table B.1, the categories in the new variable household position are broken down
by LIPRO household position for the census population. Differences between the two
variables are especially seen for the LIPRO positions NFRA and OTHR.
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B.1.2 Partner matching

Errors cause a smaller number of unions between parent and child (521), which are
changed to more appropriate categories in the variable household position. Moreover,
no partner is initially found for 1,700 individuals because no one else in the household
has position union(+), but 1,396 of these individuals are matched with a household
member with a missing value as LIPRO household position, if they are of opposite
sex and the age difference is less than 15 years. In case of multiple matches, the union
with the smallest age difference is chosen. The remaining individuals were changed
to single+ (157) and other (147).

B.1.3 Parent-child matching

In cases where both parents do not live in the same household as their child (e.g.
foster care) or both IDs are missing, the parental role is assigned to a household
member who is at least 14 years older than the child. In case multiple household
members fulfil that requirement, the one with an age difference to the child closest to
29 years (mean age of Belgian females at first birth in 2016') is chosen. The parent
IDs were adjusted for 63,075 individuals. For a small number of children (1,438), no
suitable parent was found in the household and the individuals were instead assigned

to randomly chosen households of females in a union of at least 30 years of age.

Lhttps://ec.europa.eu/eurostat /documents /2995521 /8774296 /3-28032018- AP-EN.pdf/fdfSebdf-
a6a4-4153-9ee9-2{05652d8eel
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Figure B.1. Age distribution by household size in Belgian census 2011 and sample
population.
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B.2 Fertility
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Figure B.2. Predicted and estimated probability of 2nd birth in 2011 based on
Belgian census by time since index birth (x-axis), household position (columns) and
index age (rows).
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B.3 Household transitions
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Figure B.3. Overall household transition probabilities by age and sex (male=black,
female=grey) for household positions single, union and child in case of no birth event
in the same year and parent indicator of 1.
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C
Appendix

Population age and household structures shape
transmission dynamics of emerging infectious
diseases: a longitudinal microsimulation approach -
Appendix
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C.1 Demographic microsimulation

A detailed description of the demographic data and model implementation as well as
source code are available from the GitHub repository:
https://github.com/signemoegelmose/demographic_microsimulation_EXTERNAL

We do not have permission to share the demographic input data from the Belgian population

registers. New input files thus need to be created to run the code.

C.2 Social contact matrix

The social contact matrix applied in the disease transmission model is visualised in Fig-
ure C.1, where the colour indicates the average daily number of contacts between age
groups.
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o
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13-18

0-12 13-18 19-30 30-39 40-49 50-59 60-69 70-79 80+
Age individual

Figure C.1. Age-specific social contacts in Belgium excluding contacts with house-
hold members and excluding supplementary professional contacts [167, 176].
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C.3 Household network density

The distribution of the household network densities (i.e. the number of links in a household

relative to the number of possible links) by household size and type are shown in Figure C.2,

where the blue line indicates the overall mean, while the red and green dashed lines indicate

the mean density for households with and without at least one child younger than 13 years,

respectively.
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C.4 Household size by age groups
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Figure C.3. Household size distribution by age group and year (7=7+).
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C.5 Household position by age groups
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Figure C.4. Household position distribution by age group and year. NFRA: non-
family related adult, MG: oldest generation in multi-generational household, single+:
single parent, union+: union with child(ren) in household.
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C.6 Total fertility rate

Figure C.5 displays the total fertility rate observed in Belgium from 1960 to 2020 (grey) and
the total fertility rate in the microsimulation (black) from 2011 to 2050.
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Figure C.5. Total fertility rate. Observed (Statistics Belgium): 1960-2020. Simula-
tion: 2011-2050.
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C.7 Incidence by transmission parameters and scenarios

Figure C.6 contains the overall attack rate (i.e. the proportion infected of the total pop-

ulation) by transmission probabilities (panels and colours), year (shape) and scenario (x-

axis).
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Figure C.6. Mean attack rate in total population with 95% confidence interval for
varying transmission parameters (S5, 5p), susceptibility and infectiousness scenarios
and simulation year.
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C.8 Incidence by household size and type

Figure C.7 and Figure C.8 contain the average proportion of households with at least one
infected household member and the average proportion of infected household members in
households with at least one infected household member, respectively, in the baseline scenario

and by household size (x-axis), type (shape), year (colour) and transmission probability

(panels).
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C.9 Age-specific attack rate by scenario and over time

Figure C.9 and Figure C.10 contain the age-specific attack rates by scenario (colour), year

(panel) and transmission probability.
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Figure C.9. Mean and 95% bootstrap confidence interval for the mean age-specific
attack rate in baseline scenario (grey) and each susceptibility /infectiousness scenario
across simulation years. Household transmission probability: 0.2, population trans-
mission probability: 0.01
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Figure C.10. Mean and 95% bootstrap confidence interval for the mean age-specific
attack rate in baseline scenario (grey) and each susceptibility /infectiousness scenario
across simulation years. Household transmission probability: 0.2, population trans-
mission probability: 0.015.
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D.1 Demographic microsimulation

A detailed description of the demographic data and model implementation as well as source
code are available from the GitHub repository:

https://github.com/signemoegelmose/demographic_microsimulation_EXTERNAL

We do not have permission to share the demographic input data from the Belgian population

registers. New input files thus need to be created to run the code.

D.2 Trends in fertility and life expectancy (Statbel)
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Figure D.1. Estimated and projected total fertility rate for Belgium, 1992-2050.
Source: Statbel.
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Figure D.2. Estimated and projected life expectancy at birth for Belgium, 1992-
2050. Source: Statbel.
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D.3 Social contact matrix
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Figure D.3. Age-specific social contacts in Belgium excluding contacts with house-
hold members and excluding supplementary professional contacts [167, 176].
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D.4 Household network density
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Figure D.4. Histograms of household network densities by household size (HH:
household, child: age < 13).
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D.5 Threshold parameter Iz,

We compute the threshold parameter R, (group-to-group reproduction number) based on
Ball et al. [175]. The basic reproduction number Rq is not used because it requires large
group sizes, which is not the case for the households in our two-level mixing model. The

computation of R, is based on equation (3.31) in Ball et al. [175]:

Re = XcE[Trlpy ' > (14 pin—1,1) nh (D.1)
n=1
R. = pRg (D.2)

where n corresponds to household size, h,, is the proportion of households of size n and pp,
is the mean household size. We compute the average final size in households of size n, (1 +
Un—1,1), by starting with one randomly chosen infected individual in each household, which
then can pass on the infection to household members, which also can transmit the infection
within the household. Meanwhile transmission in the general population is disregarded.
Finally, the average final size by household size is calculated and used to compute pu =
w300 (1 + ftn—1,1) nhy (ie. the average number of household infections). The basic
reproduction number in the general population when disregarding household transmission,
Rc = AgEI[T1], is computed by initially infecting one randomly chosen individual in the
population. The individual can transmit the infection to others in the population, but the
newly infected individuals cannot pass on the infection. The average number of secondary

cases is then calculated.
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Figure D.5. R, for medium demographic scenario in 2020.
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D.6 Transmission parameters: /3, and j3,

We select the transmission parameters, 8, and (p, based on the R. in Figure D.5 and
the household secondary attack rates in Figure D.6. In the model for COVID-19, we as-
sume an R, of approximately 3 to reflect SARS-CoV-2 transmission in Belgium prior to
the implementation of mitigation measures [32, 218, 219]. In the ILI model, we assume an
R.. of approximately 1.5, which resembles the basic reproduction number estimated for the
2009 influenza A/HIN1 pandemic [213-215]. We choose the parameters S, s = 0.125 and
Bp,s = 0.0325 for COVID-19 and 8}, = 0.075 and 3, = 0.02 for ILI. With these parameters we
obtain household secondary attack rates of approximately 0.34 and 0.19 for COVID-19 and
ILI. This reflects estimated household secondary attack rates from several studies [261-263],

however, these are associated with substantial variability.
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Figure D.6. Household secondary attack rate (household transmission only) for
medium demographic scenario in 2020.
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D.7 Transmission parameters: COVID-19
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Figure D.7. Incubation period from He et al. [220]
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Figure D.8. Distribution for pre-symptomatic period in days [32].
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Figure D.9. Distribution for infectious period [32].
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Figure D.10. Probability to be symptomatic by age group (Willem at al., 2020) [32]
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D.8 Disease-related mortality
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Figure D.11. Infection fatality rates for 2009 (HIN1) pandemic influenza in Hong
Kong by age group [222].
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Figure D.12. Infection fatality rates for COVID-19 in Belgium by age group and
household type (LTCF or non-LTCF) [77].
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D.9 Estimation of QALY losses

We estimate the QALYs lost due to premature death at age z, 1 < = < w, as follows
[223]:

S, Lo(u) - Qu) - gCM - (1+7)~ =)

- Io(2)

AQALY (z) = , (D.3)

where

ls(x) = 100,000 - [ ] e~ 5M~ (D.4)

a=1

with L(z) being the average of Is(z) and ls(x 4+ 1) and Q(z) denotes the population average
quality of life tariff at age = for Belgium in 2018 [264]. The parameter gqCM adjust the
quality of life for the impact of pre-existing comorbidity, while the impact of comorbidity
on the risk of dying is summarised in the standardised mortality ratio (SM R). Finally, the
instantaneous death rate is denoted d(x) and r is the discount rate applied to incorporate
the assumption that current health benefits are valued higher than future health benefits.
As in Briggs et al. [223], we assume that SM R = 1.5 and ¢CM = 90%.
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Figure D.13. Household size distribution by age group of simulated population in
2020. Medium scenario.
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D.11 Additional results
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Figure D.16. Mean attack rate in total population by simulation year, model and
demographic scenario.
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Figure D.17. Change in overall attack rates relative to 2020.
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Figure D.18. Change in age-specific attack rates relative to 2020.
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E.1 IPUMS samples
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Figure E.1. Age distribution 1960-2020. Sample (1960: IPUMS USA; 1970-2020:
IPUMS CPS) vs. observed population (US Census Bureau).
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E.2 Initial and stable age distribution
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Figure E.3. Age distribution of US population 1960 from IPUMS (solid line) and
the corresponding stable population (dashed line) assuming vital rates of 1960 and
no migration.
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Figure E.4. Age-specific fertility rate estimated for the US in 1960 (solid line), 1980
(dashed line), 2000 (dotted line) and 2020 (dashed-dotted line). Source: UN Statistics
Division.
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E.4 Age-specific household size distribution

Figure E.5-E.8 show the household size distributions disaggrgated by age group in the sim-
ulated population (dark bars) and population samples from IPUMS (light bars). It should
be noted that the marginal distributions (i.e. age and household size distribution) in the
samples from IPUMS also deviate to some degree from the marginal distributions provided

by the US Census Bureau as shown in Figure E.1-E.2.
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Figure E.7. Proportion of age group (x-axis) living in household size 5 and 6
(columns) by year (row) based on IPUMS (light bars) and simulation (dark bars).
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