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1.1. Alcoholic liver disease 
The causal impact of ethanol (often referred to as ‘alcohol’ in layman’s term) on liver 
disease has been known for a long time. As early as in 1785, physician Benjamin Rush 
listed liver conditions as a disease consequence of habitual drinking of spirits in his book 
‘Inquiry into the Effects of Ardent Spirits upon the Human Body and Mind’. Rush 
compared the hepatic effects of ethanol with the punishment of Prometheus by Zeus, 
who would have chained Prometheus to a high mountain, where a vulture would prey 
on his liver (Rush, 1785).  
Excessive ethanol use is a major causality of liver disease worldwide and is the most 
common cause of acute-on-chronic liver failure (Asrani et al., 2019). About 2 billion 
people worldwide consume ethanol and upwards of 75 million are diagnosed with 
alcohol-use disorders and are at risk of developing alcoholic liver disease (ALD) (Asrani 
et al., 2019). In 2016, the harmful use of ethanol resulted in 3.3 million deaths (5.3% of 
all deaths) worldwide (World Health Organization, 2018). In the same year, the Global 
Burden of Disease project estimated the number of deaths due to cirrhosis and chronic 
liver disease to be 1,256,900, of which 334,900 deaths (27%) were attributable to 
ethanol (Naghavi et al., 2017). 
ALD is caused by chronic excessive consumption of ethanol. However, the important 
question of ‘how much ethanol is too much’, or ‘how much can I safely drink’ has been 
often addressed in the past and the answers are not straightforward (Bellentani & 
Tiribelli, 2001). First of all, thresholds can be reported in either grams of ethanol per day 
or week, or in the number of alcoholic drinks. Although the quantification in grams of 
ethanol is more precise, it is time-consuming and frequently difficult to obtain during 
questionnaires, since patients are not able to recall the different types of drinks and 
their amount. For this latter reason, it might be more useful to quantify by the number 
of drinks, although the amount of ethanol can vary significantly between alcoholic 
drinks from 8 to 16 g (European Association for the Study of the Liver, 2018). According 
to the Dietary guidelines for Americans, one standard alcoholic drink is defined to 
contain 14 g of ethanol (U.S. Department of Health and Human Services & U.S. 
Department of Agriculture, 2020), while the European association for the Study of the 
Liver (EASL) suggests standardizing the measure to 10 g.  
The threshold of daily ethanol consumption and the duration of excessive ethanol 
consumption needed to develop ALD varies considerably between individuals (Seitz et 
al., 2018). The world health organization (WHO) defined heavy episodic drinking as ≥ 60 
g ethanol on at least one occasion at least once per month (World Health Organization, 
2018). The American center for disease control and prevention (CDC) defines heavy 
drinking as ≥ 15 alcoholic drinks per week for men or ≥ 8 alcoholic drinks per week for 
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women (Bohm et al., 2021), while the American National Institute on Alcohol Abuse and 
Alcoholism (NIAAA) defines heavy drinking as > 4 drinks per day or > 14 drinks per week 
for men and > 3 drinks per day or > 7 drinks per week for women (NIAA, 2010). While 
no general European guidelines are available on low-risk drinking behavior, the 
European Commission published a list with guidelines per European country, showing 
disagreement in these local recommendations (European Commission, 2021). For 
example, the Flemish expertise center on alcohol and other drugs (VAD) of Belgium 
recommends to not consume more than 10 standard glasses of ethanol per week. When 
ethanol is being consumed, the VAD recommends to spread the consumption and to 
have a few ethanol-free days (VAD, 2016). These recommendations are in disagreement 
with for example those in Ireland, where the lower risk limits were set at 17 standard 
drinks per week for men and 11 for women (European Commission, 2021).  
Differences in thresholds are mainly due to heterogeneity in sampling population and 
lack of reliable records for ethanol consumption (Bellentani & Tiribelli, 2001).  
 
1.1.1. Stages of alcoholic liver disease 
Chronic exposure to ethanol can lead to a broad spectrum of pathological liver 
conditions (Figure 1.1). Rather than being distinct disease entities, these pathologic 
processes frequently overlap (Chacko & Reinus, 2016).   

 

 
Figure 1.1 Stages of alcoholic liver disease. Overlap between shown pathologic entities can 
occur. Adapted from Seitz et al., 2018 and European Association for the Study of the Liver, 2018. 

Ethanol is known to alter fat metabolism processes, followed by progressive 
intracellular lipid accumulation in hepatocytes, resulting in alcoholic fatty liver disease 
(AFLD) (Sakhuja, 2014; Seitz et al., 2018). The development of AFLD may occur in up to 
90-95% of heavy drinkers and it can be induced in a short time period (3-7 days) after 
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heavy ethanol consumption (Chacko & Reinus, 2016; Seitz et al., 2018). AFLD can 
progress to alcoholic steatohepatitis (ASH), which is characterized by hepatic 
inflammation, mostly accompanied by hepatocellular ballooning. Hepatocellular 
ballooning is usually defined as cellular enlargement 1.5-2 times the diameter of a 
normal hepatocyte, with rarefied cytoplasm (Brunt et al., 2004).  Chronic ASH can 
eventually lead to progressive fibrosis and cirrhosis and in some cases to hepatocellular 
cancer (HCC). (Chacko & Reinus, 2016; Liangpunsakul et al., 2016; Sakhuja, 2014; Seitz 
et al., 2018; World Health Organization, 2018). Besides the slow chronic progression of 
ASH to fibrosis and cirrhosis, a rapid progression to alcoholic hepatitis (AH) associated 
with poor prognosis can occur (Seitz et al., 2018). Acute AH represents a severe type of 
ASH, which is characterized by abdominal pain, fever, increased white blood cell count, 
impaired blood clotting and jaundice (Vonghia et al., 2014). Occurrence of AH in 
cirrhotic patients is an example of acute-on-chronic disease (Seitz et al., 2018). 
 
1.1.2. Mechanism of alcoholic liver disease 
The susceptibility to develop ethanol dependence and ALD is determined by 
constitutional, environmental and genetic factors, although the nature and level of 
interplay between them remains unclear (Stickel et al., 2017). The heritability of ethanol 
dependence is well-documented, but no strong candidate genes related to increased 
dependence risk have emerged. Concerning ethanol-related cirrhosis, three candidate 
genes are thought to have an important influence, although the mechanisms by which 
genetic variants increase pathological risks and their interplay remain to be determined. 
These latter genes are patatin-like phospholipase domain-containing protein 3 
(PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2) and membrane-bound O-
acyltransferase domain-containing protein 7 (MBOAT7) (Stickel et al., 2017).  
In addition to genetic factors, ethanol-induced epigenetic changes in the liver can lead 
to dysregulated hepatocyte and immune cell functions (Seitz et al., 2018). For example, 
ethanol can modulate acetylation of histones and lead to DNA hypomethylation through 
depletion of hepatic S-adenosylmethionine (SAM) (S. C. Lu et al., 2000; Park et al., 2005).  
  
Hepatic alcohol dehydrogenase oxidizes ethanol to form acetaldehyde, which is further 
biotransformed to acetate in mitochondria by aldehyde dehydrogenase (Figure 1.2). In 
addition, acetaldehyde is also formed through conversion catalyzed by peroxisomal 
catalase and cytochrome P450 2E1 (CYP2E1) in the endoplasmic reticulum and 
mitochondria of hepatocytes (Hyun et al., 2021; Lieber et al., 1970). Acetaldehyde can 
bind to proteins and alter their structure and/or function, induce production of reactive 
oxygen species (ROS) and neoantigens, and can interact with DNA causing point 
mutations and chromosomal damage. In addition, ethanol can generate ROS e.g., 
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through induction of CYP2E1 and by stimulating production of tumor necrosis factor 
alpha (TNF-α) (Hyun et al., 2021; Seitz et al., 2018). A small amount of ethanol is non-
oxidatively conjugated to phosphatidylcholine to form phosphatidylethanol (PEth), to 
glucuronic acid and sulfate to form ethyl glucuronide (EtG) and ethyl sulfate (EtS), 
respectively and fatty acids to form fatty acid ethyl esters (FAEE) (Hyun et al., 2021).  

 
Figure 1.2 Biotransformation of ethanol in hepatocytes. The majority of ethanol is 
biotransformed via oxidative metabolism (±95%), while a minority through non-oxidative 
metabolism (±5%) (J. Sun et al., 2018). ADH: Alcohol dehydrogenase. ALDH: Aldehyde 
dehydrogenase. CAT: Catalase. CYP2E1: Cytochrome P450 2E1. EtS: Ethyl sulfate. EtG: Ethyl 
glucuronide. FAEE: Fatty acid ethyl esters. FA: Fatty acids. NAD: Nicotinamide adenine 
dinucleotide. NADP: Nicotinamide adenine dinucleotide phosphate. PC: Phosphatidylcholine. 
PLD: Phospholipase D. PEth: Phosphatidylethanol. SULT: Sulfotransferases. TCA: Tricarboxylic 
acid. UDP-GLUT: UDP-glucuronosyl-transferase. NADH: Nicotinamide adenine dinucleotide 
(reduced). 

Acetate, the biotransformation product of acetaldehyde is believed to contribute to 
ALFD as it can be converted to acetyl-CoA which can fuel fatty acid synthesis. However, 
the contribution of acetate to fat accumulation would be minimal as acetate is rapidly 
secreted from hepatocytes (Seitz et al., 2018). More important factors in the 
development of AFLD are (i) elevation of the hepatocyte ratio of NADH/NAD+ 
interrupting mitochondrial β-oxidation of fatty acids (Baraona & Lieber, 1979), (ii) 
upregulation of sterol regulatory element-binding protein-1c (SREBP-1c) which 
stimulates lipogenic genes (You et al., 2002) and (iii) inactivation of peroxisome 
proliferator- activated receptor-α (PPARα), affecting genes involved in transport and 
oxidation of fatty acids (Galli et al., 2001). In addition, consumption of ethanol can result 
in lipolysis of adipose tissue and adipocyte death (Parker et al., 2017) and increase 
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intestinal uptake of lipids (Baraona & Lieber, 1979), both fueling hepatic fat 
accumulation.  
The development of ASH is triggered by gut-derived pathogen-associated molecular 
patterns (PAMPs; for example, lipopolysaccharides (LPS) and bacterial DNA) resulting in 
release of cytokines and chemokines from Kupffer cells and damage-associated 
molecular patterns (DAMPs) released by dying hepatocytes (Seitz et al., 2018). In 
addition, neoantigens, resulting from protein adducts formed with acetaldehyde and 
ROS, can contribute to inflammation (Seitz et al., 2018).  
Chronic liver damage results in liver fibrosis, which is induced as a wound-healing 
response. The key event in hepatic fibrogenesis is production of extracellular matrix by 
activated hepatic stellate cells (HSCs). HSCs can be activated by pro-fibrotic mediators 
secreted by immune cells. For example, Kupffer cells which are stimulated by gut-
derived endotoxins, can stimulate HSCs (Paik et al., 2003). Advanced fibrosis results in 
cirrhosis, disturbing hepatic blood flow and causing portal hypertension, which may 
occur together with other complications such as ascites and esophageal varices (Seitz 
et al., 2018). 
 
 

1.1.3. Diagnosis of alcoholic liver disease 
A major challenge exists in the clinical diagnosis of ALD (Seitz et al., 2018; Sheron et al., 
2013). Alcohol-related disorders, which put individuals at high risk of developing ALD, 
are highly prevalent, but poorly identified and characterized (Seitz et al., 2018). 
Unfortunately, most patients are diagnosed at advanced stages of ALD and data on the 
prevalence and profile of patients with early stages of disease are limited (Singal et al., 
2018). Another important issue in clinical diagnosis is that patients with ethanol use 
disorders are generally treated by psychiatrists, and hepatic evaluation is often not 
performed (Seitz et al., 2018). 
Symptoms of ALD tend to develop late in the course of disease progression and may 
only be apparent at the stage of irreversible cirrhosis (Seitz et al., 2018; Sheron et al., 
2013). At present, there are no early and specific biomarkers for the diagnosis of ALD. 
Current guidelines advice to perform laboratory tests for general markers of liver 
damage, such as serum transaminases (aspartate transaminase (AST) and alanine 
transaminase (ALT)) activity and gamma-glutamyl transferase (GGT) activity, as well as 
tests reflecting liver function (e.g., blood coagulation and bilirubin) (Seitz et al., 2018). 
In advanced ALD, prolonged prothrombin time (PT), increased bilirubin levels or 
thrombocytopenia can occur. The inexpensiveness of measurements of GGT, ALT, AST 
and the mean corpuscular volume (MCV) makes them the most frequently used markers 
for the detection of ALD. However, these markers suffer from low sensitivity and 
specificity and no single marker or combination of markers can be used to differentiate 
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between different causes of liver disease and stages of ALD (Thursz et al., 2018; Vonghia 
et al., 2014).  An example of a low specificity marker is serum GGT activity, which is 
elevated not only in cholestatic liver disease, but also in cardiac insufficiency, drug-
induced liver injury and many more diseases (Seitz et al., 2018; Sheron et al., 2013).  
In the case of acute alcoholic hepatitis, prognostic scores are useful to assess short-term 
survival and/or to guide pharmacotherapeutical initiation. The Maddrey discriminant 
function (MDF) score, which uses the patient’s PT and total bilirubin, is mostly used 
(Owens et al., 2016; Vonghia et al., 2014). An MDF score ≥ 32 is used to initiate 
corticosteroid treatment and indicates severe AH with a 1-month mortality rate up to 
30-50% (Oshea et al., 2010). Other scores, such as the Model for End-Stage Liver Disease 
(MELD), which includes bilirubin, creatinine, and the international normalized ratio 
(INR), and the Glasgow Alcoholic Hepatitis Score (GAHS), which includes age, white 
blood cell count, urea, bilirubin, and PT value, have been proposed, but need further 
validation in the context of ALD (Vonghia et al., 2014).  
The abovementioned issues with biochemical markers for diagnostic purposes leaves 
imaging as an important tool during diagnosis. Ultrasonography, magnetic resonance 
imaging (MRI) and computed tomography (CT) may allow quantification of steatosis 
(European Association for the Study of the Liver, 2018). For example, abdominal 
ultrasonography using bright echo pattern can be used to screen for AFLD, but it has 
only moderate sensitivity and specificity (65% sensitivity, 81% specificity) (Thiele et al., 
2018; Y. Zhang et al., 2018) and has little value when steatosis is below 20-30% 
(European Association for the Study of the Liver, 2018). Ultrasonography techniques 
based on attenuation of shear waves such as controlled attenuation parameter (CAP) 
are more accurate for the quantification of severe steatosis (Thiele et al., 2018). The 
diagnostic sensitivity of CT ranges from 52-62% in mild steatosis with a fat fraction of 
10-20% (Y. Zhang et al., 2018). MRI is considered superior to ultrasonography and CAP 
due to its high accuracy for detecting steatosis (sensitivity 77-90%, specificity 87-91%) 
(Q. Li et al., 2018). However, the high cost and low availability of this technique are 
major bottlenecks.  
Patients with severe ASH or advanced fibrosis and/or cirrhosis may develop AH, which 
is considered as a distinct clinical syndrome characterized by the recent onset of 
jaundice with or without other signs of liver decompensation such as ascites and/or 
encephalopathy (European Association for the Study of the Liver, 2018). Jaundice is 
often associated with fever, malaise, weight loss and malnutrition (Seitz et al., 2018). 
Typical laboratory abnormalities in AH include neutrophilia, hyperbilirubinemia and 
serum AST > two times the upper reference limit (URL). Prolonged PT, hypoalbuminemia 
and thrombocytopenia can occur in severe forms (European Association for the Study 
of the Liver, 2018).  



 

29 
 

Liver fibrosis is graded in five histological stages, with F0 representing no fibrosis and F4 
representing the most severe stage with cirrhosis. The measurement of liver stiffness 
by transient elastography, such as fibroscan, can be used to classify fibrosis stages (Seitz 
et al., 2018). Liver stiffness values <6 kPa are generally considered as normal and 
exclude even mild fibrosis (F1-F2). Usage of liver stiffness for clinical differentiation 
between F1 and F2 is not recommended as there exists a grey area between 6 to 8 kPa 
and interferences such as positioning, breathing and eating can have an influence (Seitz 
et al., 2018). It is not recommended to use liver stiffness as a stand-alone diagnostic tool 
as inflammation, hepatic perfusion and hepatocyte ballooning affect the outcome (Seitz 
et al., 2018). In addition, ethanol intake and increased transaminase levels (especially 
AST > 100 IU/L) can modify measurements of liver stiffness, independent of the fibrosis 
stage (Vonghia et al., 2014). For improved assessment of liver stiffness, patients should 
withdraw from ethanol for 1-2 weeks and liver stiffness should be redetermined after 
normalization of transaminases or inflammation-adapted cut-off values should be used 
(Seitz et al., 2018). Serum markers for fibrosis, such as Fibrotest and enhanced liver 
fibrosis (ELF) test,  are inferior to liver stiffness measurements, but can be used to 
differentiate between mild and advanced fibrosis when elastography is not available 
(Seitz et al., 2018).  
Histological evaluation of a liver biopt remains the golden standard to confirm ALD. Early 
stages can only be diagnosed properly through liver biopsy, since noninvasive tests do 
not show an increase in the liver parameters (Singal et al., 2018). The disadvantage of 
liver biopsy is the possibility to cause complications, such as hepatic bleeding (Seitz et 
al., 2018; Singal et al., 2018) and liver biopsy is generally only recommended in cases of 
aggressive forms of ALD requiring intervention (Vonghia et al., 2014). During ALFD, 
hepatocytes show accumulation of lipid droplets in the cytoplasm. This accumulation 
may start with the formation of small droplets of fat (microvesicular), which later 
enlarge to large fat droplets (macrovesicular), which push the nucleus to the periphery 
(Sakhuja, 2014). In ASH, steatosis is accompanied by hepatic injury. This latter is mostly 
visible under the form of hepatocyte ballooning, but also neutrophil rich inflammation 
in the lobular parenchyma and/or Mallory Denk bodies (i.e., intracellular deposition of 
misfolded protein aggregated into ubiquitin-rich cytoplasmic inclusions in ballooned 
hepatocytes) might be observed (Sakhuja, 2014). Unfortunately, about half of the 
patients with seemingly early ALD already have advanced fibrosis or cirrhosis on liver 
biopsy (Singal et al., 2018). There is a need for new diagnostic tools to detect ALD in an 
early stage, as is stated in the clinical guidelines for ALD of 2018 by the American College 
of Gastroenterology and by the European Association for the Study of the Liver (Singal 
et al., 2018; Thursz et al., 2018). A specific interest lies in the discovery of specific 
biomarkers that can be used for an early diagnosis of ALD in patients with risky drinking 
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behavior, in order to advise and treat patients before progression to irreversible stadia 
occurs. A similar call for specific biomarkers has been launched also for the early 
detection of non-alcoholic steatohepatitis (NASH) (Francque & Vonghia, 2017). 
 
1.1.4. Treatment of alcoholic liver disease 
The treatment options for ALD have not changed in the last four decades, and in fact 
ethanol abstinence is still the cornerstone of treatment (Singh et al., 2017). Abstinence 
is critical, even after diagnosis of cirrhosis, as it significantly improves long-term 
prognosis (Chacko & Reinus, 2016). Several pharmacotherapeutical options are 
available to assist in the cessation of ethanol consumption such as disulfiram, 
naltrexone and acamprosate (Seitz et al., 2018). However, solely acamprosate can be 
used without concerns of hepatotoxicity (Burnette et al., 2022). Only baclofen has been 
tested for ethanol cessation in the context of ALD (Addolorato et al., 2007) and its use 
remains controversial as there were studies that could not show superiority over 
placebo (Reynaud et al., 2017). After abrupt cessation of ethanol consumption, patients 
can develop an alcohol withdrawal syndrome (AWS), which occurs 6-24 h after cessation 
and can last up to 24-48 h (Vonghia et al., 2014). Clinical manifestations of AWS include 
increased blood pressure, tremors, sweating, anxiety, headache, nausea, emesis, and 
more severely delirium tremens, seizures, coma, cardiac arrest and death (Leggio et al., 
2008). Benzodiazepines can be administered to prevent seizures and decrease other 
symptoms such as anxiety, while antipsychotics might be used in patients with excess 
agitation or psychotic symptoms (Singh et al., 2017). Alcoholics are usually 
malnourished and deficient in vitamins. For example, vitamin B1 deficiency is frequently 
observed in alcoholics due to inadequate nutritional intake, impaired gastrointestinal 
absorption and impaired cellular utilization (Martin et al., 2003). In case of vitamin B1 
deficiency, parenteral thiamine can be administered to prevent Wernicke 
encephalopathy, in addition to general nutritional support (Singh et al., 2017). 
Parenteral thiamine is preferred over oral thiamine because in addition to impaired 
gastrointestinal absorption in alcoholics, oral thiamine has poor bioavailability that does 
not allow for attaining a sufficient concentration in cerebrospinal fluid (Singh et al., 
2017). The need of a multidisciplinary clinical team, including hepatologists and 
addiction therapists managing patients with ALD should be emphasized (Seitz et al., 
2018). For treatment of ALD, there are no targeted therapies available, nor European 
Medicine Agency (EMA)- or Food and Drug Administration (FDA)-approved drugs 
(Burnette et al., 2022; Singh et al., 2017; Vuittonet et al., 2014). Corticosteroids (or 
pentoxifylline in case steroids are contraindicated) can be used to reduce hepatic 
inflammation for patients with severe AH (MDF ≥ 32) (European Association for the 
Study of the Liver, 2018; Singh et al., 2017).  
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The only long-term management option for decompensated cirrhosis is liver 
transplantation, which requires to abstain from ethanol consumption for 6 months prior 
to surgery in most countries (Seitz et al., 2018). Liver transplantation should also be 
considered in severe AH non-responsive to pharmacotherapy. Liver transplantation is 
the second most common solid organ transplantation, yet less than 10% of global 
transplantation needs are met at current rates (Asrani et al., 2019). After one year, post-
transplant survival was determined to be 80-85% (European Association for the Study 
of the Liver, 2018).  
 
1.2. Models to study alcoholic liver disease 
1.2.1. Animal models 
Most animal experiments studying the effects of ALD are performed using rodents, as 
rodent models are time- and cost-efficient and facilitate easy manipulation of the study 
subjects. For example, rodents can be genetically modified (e.g., ‘knockout mice’), in 
order to directly test specific hypotheses (Arteel, 2010). One of the simplest models of 
ALD in rodents is to provide ethanol-mixed drinking water combined with a normal 
chow-diet (i.e., grain- or cereal-based diet) ad libitum. The issue with this model is that 
rodents show a natural aversion to ethanol and this model only causes low increase in 
blood ethanol levels and mild liver injury (Dilley et al., 2018; Lamas-Paz et al., 2018). The 
Lieber-DeCarli liquid diet partially overcomes aversion of ethanol by feeding rodents 
solely an ethanol-containing liquid diet formula ad libitum. This latter diet showed to 
markedly elevate aminotransferases and induce steatosis. However, inflammation is 
mild and fibrosis rarely occurs (DeCarli & Lieber, 1967; Lamas-Paz et al., 2018; Wilkin et 
al., 2016). To fully overcome the aversion of ethanol, the Tsukamoto–French model was 
developed in which intragastric infusion is used instead of ad libitum feeding 
(Tsukamoto et al., 1984). This model can be used to achieve higher levels of blood 
ethanol and more severe liver injury. However, the achievable levels of hepatic 
inflammation and fibrosis are still inadequate to mimic the human situation. In addition, 
the model suffers from technical difficulties and higher expenses (Louvet & Mathurin, 
2015). A fourth animal model of ALD which is commonly used is the Gao-binge model, 
which is also known as the NIAAA model. In this model, the Lieber–DeCarli liquid diet is 
used ad libitum for consecutive days (≥ 10), followed by a single binge or multiple binges 
(Bertola et al., 2013). The combination of chronic feeding with one or multiple binge(s) 
would synergistically mimic acute-on-chronic alcoholic liver injury with fatty liver and 
inflammation (Bertola et al., 2013). To generate late stages of ALD in rodents, such as 
advanced fibrosis, the Lieber–DeCarli liquid diet can be used while other hepatotoxins 
(e.g., carbon tetrachloride (CCl4) or lipopolysacharides (LPS)) are added during the 
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chronic feeding to create a second hit of liver damage (Karaca et al., 2015; Muñoz et al., 
2014).  
Despite the advances in animal models, there are still no rodent models that fully mimic 
the spectrum of human ALD, which slows down the progress in research and treatment 
of ALD (Hyun et al., 2021; Lamas-Paz et al., 2018). Although there are several rodent 
models, differences exist between humans and rodents, especially in mild forms and 
early stages of ALD. In human ALD, high levels of ALT and AST are observed in addition 
to steatosis, hepatocyte ballooning, neutrophil infiltration and Mallory-Denk bodies. 
Murine models of early-stage ALD do not reflect the human pathology at each stage and 
often lack one or more characteristics of human ALD (Lamas-Paz et al., 2018). Due to 
obvious species differences in physiology and pathology between rodents and humans, 
translation of results from rats or mice to humans is problematic (Lamas-Paz et al., 
2018). 
Indeed, there are fundamental differences in physiological and biological processes for 
ethanol between rodents and humans (Hyun et al., 2021). First of all, as mentioned 
above, there is the natural aversion of rodents towards ethanol (Brandon-Warner et al., 
2012). In addition, ethanol catabolism is up to 5 times faster in rodents, and they will 
stop consuming ethanol when blood acetaldehyde levels increase (Brandon-Warner et 
al., 2012). Neutrophil infiltration, which is considered a key feature during ASH, is hardly 
detected in rodents (Hyun et al., 2021; Ramaiah & Jaeschke, 2007). Human blood is 
neutrophil rich, 50–70% of leukocyte balance, compared to only 10–25% in mice, where 
lymphocytes comprise 75–90% of leukocytes (Mestas & Hughes, 2004).  
There are also marked differences between humans and rodents in inflammatory and 
innate immune responses and how they are influenced by translocation of intestinal LPS 
(Brandon-Warner et al., 2012). Rodents exhibit a tolerance to LPS that is higher in 
several degrees of magnitude compared to humans (Ramaiah & Jaeschke, 2007). In 
addition, at high LPS exposure, mice express more chemokines compared to humans, 
which is possibly a result of differences in myeloid and lymphoid-derived cell 
populations (Copeland et al., 2005). High variability between animal studies and within 
individual animals impede interpretation of research outcomes. This inter-variability is 
attributed to, for example, differences in sex, age, genetic background and animal 
facility environment (Gao et al., 2017).  
Primates are considered the ideal animal species to develop a model for human ALD. 
For example, baboons maintained on ethanol-containing drinking water for 3-4 years 
developed all stadia of ALD, closely resembling human ALD pathology (Lieber et al., 
1985). However, high cost, long study duration and ethical difficulties impede the use 
of primates as model organism.  
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In general, animals including rodents remain important to obtain models of ALD for 
research purposes. However, the abovementioned disadvantages and the recent 
advances in bioengineering techniques have increased the interest in in vitro and ex vivo 
models, which could comprise limitations of animal models (Hyun et al., 2021). Reducing 
the use of animal modes falls within the scope of the 3R principles (i.e., replacement, 
reduction and refinement), defined by Russell and Burch in 1959 in response to an 
increase in laboratory animal science (Aske & Waugh, 2017). Although the 3R principles 
was mainly introduced for social and ethical reasons, these principles improved bio-
medical scientific research e.g., by improving reproducibility and reliability using cell 
systems. Expansion of 3R to 5R principles, including ‘robustness’ and ‘reproducibility’, 
may highlight the contribution of these principles to advances in fundamental and 
applied research in general (Aske & Waugh, 2017).   
 
1.2.2. Cellular models 
In vitro hepatic metabolic research enables mechanistic elucidation at the cellular level 
and circumvents the difficult accessibility of the liver through biopsies. Zeilinger et al. 
(2016) defined four criteria for evaluation of hepatic cells in basic research. These 
criteria include: (i) metabolism of endogenous substrates and exogenous compounds; 
(ii) regulation of amino acids, carbohydrates, and fatty acids, (iii) synthesis of proteins, 
such as albumin or transferrin; and (iv) activation of inflammatory and immune 
reactions upon liver injury due to disease, drug, or toxin exposure. The more criteria are 
met, the better the cells will reflect the situation in the native organ in vivo. 
Furthermore, hepatocyte functionality has to be preserved over the time period of the 
study, which can be several hours up to days or even weeks (Zeilinger et al., 2016).  
Primary human hepatocytes (PHH) are considered to be the gold standard for hepatic 
in vitro models because they closely mimic the in vivo liver’s functionality (Guillouzo et 
al., 2007; Zeilinger et al., 2016). However, they suffer from limitations, such as difficult 
standardization due to high inter-donor metabolic variability and alterations due to the 
isolation procedure, limited in vitro stability, differences in medication history of the 
donor, scarcity and unpredictable availability (Guillouzo et al., 2007; Zeilinger et al., 
2016). When cultured over extended time periods, PHH show a progressive loss of the 
hepatocellular phenotype at the level of morphology, as well as functionality. This de-
differentiation starts already during the isolation process (Treyer & Müsch, 2013). Liver 
cell lines generated from hepatomas or by genetic manipulation are widely used due to 
their good availability, high proliferation activity and stable metabolic performance 
(Zeilinger et al., 2016).  
Oncogenic immortalization of adult hepatocytes received a lot of scientific interest, 
although the results are rather disappointing as the immortalized cells tend to be 
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genetically unstable and lose their phenotype characteristics (Guguen-Guillouzo & 
Guillouzo, 2010). Most of the used human hepatocyte cell lines (e.g., HepaRG, HepG2, 
Hep3B, Huh7, HBG) are derived from hepatoma (Guguen-Guillouzo & Guillouzo, 2010). 
Of the hepatic cell lines developed for in vitro studies of hepatic functions as alternatives 
to PHH, many have lost major liver-like functions, but not HepaRG cells (Tascher et al., 
2019). HepG2 cells are well characterized and abundant data is available on the use of 
these cells for the analysis of toxicity pathways. However, major differences in 
metabolic properties compared to PHH, for example loss of crucial CYP enzymes, make 
this cell line less interesting for metabolomics purposes and toxicity evaluations 
(Zeilinger et al., 2016).  
Compared to PHH, HepaRG cells, derived from a female suffering from liver carcinoma, 
are a promising alternative due to low variability and long-term stability while 
maintaining expression of most liver-specific functions, such as CYP activity and bile acid 
synthesis. In addition, HepaRG cells are capable of differentiating toward hepatocyte-
like cells and biliary-like cells, mimicking the in vivo situation (Guillouzo et al., 2007; 
Marion et al., 2010). This trans-differentiation from a bipotent progenitor is one of the 
advantages compared to PHH (Tascher et al., 2019). Zooming in at different hepatoma 
cell lines, the HepaRG cell line shows a phenotype most close to that of the in vivo organ 
(Guguen-Guillouzo & Guillouzo, 2010). The close resemblance to PHH was further 
evidenced by genomic microarrays showing around 85% identity in genes expressed in 
both models (Guguen-Guillouzo & Guillouzo, 2010). Tascher et al. found HepaRG cells 
to be highly differentiated, with functional mitochondria, hepatokine secretion abilities, 
and an adequate response to insulin (2019). HepaRG cells appear as a robust surrogate 
for PHH, a versatile cell system to study xenobiotic detoxification, control of hepatic 
energy metabolism, secretory function and disease-related mechanisms (Tascher et al., 
2019).  
 

1.3. Metabolomics 
Metabolomics is a systems biology discipline that has grown tremendously over the past 
20 years. It concerns the holistic investigation of endogenous metabolites, low 
molecular weight (< 1500 Da) biomolecules (e.g., lipids and amino acids) that provide 
information on the biochemical activities of cells. The metabolome is often referred to 
as the molecular phenotype of living organisms because it is the most downstream level 
of cellular organization (i.e., more downstream than DNA, RNA or proteins) (Barnes et 
al., 2016a; Su Jung et al., 2016). Subdisciplines of metabolomics include, among others, 
lipidomics, which focuses on lipids (K. Yang & Han, 2016) and fluxomics, which studies 
metabolic fluxes for example using 13C-labeled molecules (Emwas et al., 2022). 
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The analysis of metabolites can be performed using untargeted, semi-targeted/semi-
quantitative, and/or targeted/quantitative approaches. In most cases, an untargeted 
method can be used as a first screening approach (i.e., hypothesis-generating), as this 
technique is less biased towards certain metabolite classes (Ivanisevic & Want, 2019). 
Once the metabolites of interest have been annotated, a (semi-)targeted method 
(hypothesis-driven) can be used in order to detect changes in the concentration of 
specific metabolites using reference standards (Ivanisevic & Want, 2019). While 
quantification in targeted methods is performed using one calibration curve per 
metabolite, one calibration curve per class of metabolites is used during semi-targeted 
metabolomics (Malm et al., 2021).  
The metabolome consists of a heterogeneous variety of molecules, ranging from small 
polar organic acids to relatively large apolar triglycerides. The complexity of the 
metabolome is reflected in the 222,860 metabolite entries listed in the Human 
Metabolome Database (HMDB) as of May 2023 (Wishart et al., 2022). In addition, 
Alseekh et al. (Alseekh et al., 2021) estimated that up to 1,000,000 different metabolites 
occur across living organisms with approximately up to 40,000 metabolites in a single 
species. To cover this vast array of metabolites in untargeted experiments, 
comprehensive sample preparation combined with highly sensitive and specific 
analytical methods using complementary techniques are required (Patti, 2011). To 
increase metabolite coverage, samples can be fractionated during sample preparation 
in order to analyze the fractions with different analytical platforms (da Silva, Iturrospe, 
Heyrman, et al., 2021; Iturrospe et al., 2021). The typical workflow of an untargeted 
metabolomics experiment is presented in Figure 1.3 and discussed in detail below.  
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Figure 1.3 Overview of an untargeted metabolomics workflow.  

1.3.1. Experimental design 
Developing a planned approach is the most critical part of a metabolomics experiment. 
The number of samples and/or size of the groups needed for a metabolomics 
experiment depend on the biological variability associated with the system being 
studied compared with the analytical variability of the analytical system (Barnes et al., 
2016a). As a result, the needed sample size will depend primarily on the study design 
(e.g., choice to use in vitro or in vivo systems) and the expected outcome (Faber & 
Fonseca, 2014). 
As the growth of cells in culture can be carefully controlled, a sample size of three to 
five per group may give useful data (Barnes et al., 2016a). The majority of experiments 
report no more than 6 replicates per group and although 3 replicates is considered as 
the minimum, ≥ 5 replicates are generally recommended for reliable in vitro 
metabolomics applications (Martano et al., 2014; Sumner et al., 2007). Laboratory 
animals on controlled diets are more complex and require a larger sample size of at least 
6-12 (Barnes et al., 2016a). Highly controlled clinical trials may be able to be carried out 
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with as few as 10-20 patients, depending on the variance of the disease traits, drug 
response or the type of interventional procedure (Barnes et al., 2016a). For 
epidemiological studies, where the samples were collected from a general population, 
often over long periods of time, variance is a substantial issue and may require patient 
numbers in the thousands (Barnes et al., 2016a). 
For in vitro assessment of hepatotoxicity by metabolomics, experiments are usually 
conducted in short time frames (< 48 h) at sub-toxic dosages (Cuykx, Rodrigues, et al., 
2018). The majority of studies report an exposure time of 24 h and/or 48 h. 
Determination of exposure concentrations are usually performed using viability assays. 
The most popular assay applies the bioconversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT). However, this bioconversion assay is biased 
towards lower concentrations, since it is linked to mitochondrial metabolism pathways, 
which can be specifically inhibited by the tested compound, thereby providing a biased 
indication of cell viability (Cuykx, Rodrigues, et al., 2018). The neutral red uptake (NRU) 
assay, which is based on lysosomal storage of the cationic dye, is an alternative method 
often applied when the energy metabolism is suspected to be part of the toxicant’s 
mechanism of action (Ates et al., 2017; S. Z. Zhang et al., 1990). Within the NRU assay, 
cytotoxicity is expressed as a concentration-dependent reduction of the uptake of 
neutral red after exposure to the xenobiotic under investigation (Ates et al., 2017). 
Using viability assays, inhibitory concentration (ICX) values can be calculated. For 
example, exposing cells for 24 h to the IC10 value of a certain toxicant will cause a 
decrease of 10% in cell viability. Although low ICX values are considered to be sub-
cytotoxic, the toxicological insult can be considered to be significant. Toxic 
concentrations, such as IC30 and IC50 are sometimes used. However, these high 
concentrations have such a strong impact that only alterations to general toxicity can 
be observed, impeding mechanistic fingerprinting (Cuykx, Rodrigues, et al., 2018). 
Combination of two exposure concentrations (e.g., IC10 and 1/10 of IC10) is therefore 
recommended to investigate the trends of toxicity markers through the toxicological 
process (Cuykx, Rodrigues, et al., 2018).  
Avoiding unintended bias in any sort of -omics analysis is a critical issue. Each step of a 
metabolomics experiment should be well documented and include measurements to 
avoid generation of non-biological variance. For example, in metabolomics to study cell 
exposure, samples should be randomized before exposure and sample collection has to 
be performed in the same way for each sample. In addition, analytical data should be 
acquired using a randomized order of the samples (Barnes et al., 2016a).  
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1.3.2. Sample preparation 
Sample collection and preparation should be performed as quickly as possible to reduce 
the effect of additional metabolism and compound biotransformation (W. Lu et al., 
2017). Thus, quenching strategies are essential to ensure that detected metabolites 
reflect the metabolism of the organism at the time of sampling. Importantly, for highly 
metabolically active matrices, such as tissues or cells, any remaining enzymatic activity 
should be stopped by snap-freezing the sample with liquid nitrogen immediately after 
sample collection (W. Lu et al., 2017). Although some metabolites, such as adenosine 
triphosphate (ATP) and glucose-6-phosphate, can turnover in terms of seconds, which 
is almost impossible to avoid, butylated hydroxytoluene can be added to reduce 
metabolite degradation (Ulmer et al., 2021).  
Preferably, freeze–thaw cycles of collected samples should be limited, and analysis 
should be performed on fresh samples. However, analysis of fresh samples is often not 
feasible. Therefore, samples should be stored at −80 °C for as liƩle Ɵme as possible and 
thawed only once for analysis (Barnes et al., 2016a). 
Depending on the goal of the study, the extraction method can be designed for “global” 
metabolomics (Want et al., 2013), polar (primary) metabolomics (Fiehn, 2016), or 
lipidomics (Le Faouder et al., 2021), which can be further subdivided and tailored for 
less abundant lipid classes, such as polyunsaturated fatty acids (Le Faouder et al., 2013), 
steroids (Olesti et al., 2021), or the epilipidome (L. Li et al., 2019). In addition, the 
extraction method is highly dependent on the sample matrix and the platform used for 
analysis. For instance, gas chromatography–mass spectrometry (GC-MS)-based 
metabolomics often requires a derivatization step (e.g., oximation of ketone groups 
followed by silylation of hydroxy-, carboxyl-, amino- and thiol-groups for a wide range 
of small polar metabolites (Fiehn, 2016) or single silylation for sterols (Jenner & Brown, 
2017)) after metabolite extraction to increase thermal stability and volatility.  
For liquid chromatography–mass spectrometry (LC-MS) analysis, liquid extraction (LE) is 
often used to extract and concentrate metabolites (Figure 1.4). Single-phase extraction 
by adding more of the same solvent used for protein precipitation (e.g., methanol 
(MeOH) and/or acetonitrile (ACN)) is commonly applied (J. Shi et al., 2016; Vorrink et 
al., 2017; Y. Wang et al., 2015). However, to extract and dissolve non-polar lipids, a more 
apolar organic solvent, such as methyl tert-butyl ether (MTBE), dichloromethane 
(CH₂Cl₂), or chloroform (CHCl3), is usually required (Ramani Venkata & Ramesh, 2021). 
Single-phase methods are attractive because they reduce the time and complexity of 
the extraction, but they are also subject to a higher matrix effect and a smaller detection 
range due to the polarity diversity of the molecules in the metabolome (e.g., LogP for 
citric acid is −1.64, while LogP for triacylglycerol (54:6) is 22.2) (Gong et al., 2017; 
Ivanisevic & Want, 2019; Kim et al., 2021; W. Lu et al., 2017). In order to improve the 
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efficiency of the extraction methods, two-phase LE or two-step LE can be used to 
increase the range of extracted molecules. Popular two-phase extraction techniques for 
untargeted metabolomics include the classic Bligh and Dyer (CHCl3/MeOH/H2O, 2/2/1.8, 
v/v/v) and Matyash et al. (MTBE/MeOH/H2O, 10/3/2.5, v/v/v) extraction procedures 
(Bligh & Dyer, 1959; Matyash et al., 2008).  
 

 
Figure 1.4 Single-phase versus two-phase liquid extraction. Polar metabolites are shown in blue, 
lipids in orange and proteins in brown. Graphical icons in this figure were provided by BioRender, 
license n. 2641-5211. 

In addition to LE, solid-phase extraction (SPE) methods can be necessary to concentrate 
specific classes present in low concentrations, such as eicosanoids, oxylipins, and 
steroids (Olesti et al., 2021; Strassburg et al., 2012).  SPE cartridges commonly used for 
lipid removal in fat-rich samples, such as Captiva-EMR (Agilent Technologies, Santa 
Clara, USA), can also be applied in a two-step method for extraction of polar and lipid 
metabolites. This latter cartridge traps lipids based on acyl chains, allowing small 
molecules to be eluted in a cleaner extract, which would allow higher concentration 
factors due to less interference of lipids. The second step includes the elution of lipids, 
in a different fraction, with a stronger organic solvent, such as CHCl3. However, its 
application for lipidomics and metabolomics workflows still needs to be evaluated, since 
most of the non-commercial applications are used for food analysis (Han et al., 2016). 
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1.3.3. Analytical platforms  
Most analytical platforms in metabolomics are based on either mass spectrometry (MS) 
or nuclear magnetic resonance (NMR) spectroscopy. Although MS can be used without 
any prior separation (i.e., direct MS analysis), the technique is often hyphenated to 
liquid or gas chromatography (Gika et al., 2019). 
 
1H NMR is based on the principle that protons resonate between energy states in a high 
magnetic field. Every metabolite has its own unique NMR spectrum that represents the 
environment of each proton in the metabolite (Barnes et al., 2016a). The advantages of 
NMR include its non-destructive nature and a higher robustness compared to LC-MS. A 
major disadvantage is the low sensitivity, explaining the large sample volume needed. 
For example, for cell culture experiments, it is recommended to use 10 million cells per 
sample (Barnes et al., 2016a).  
 
During shotgun metabolomics, no chromatographic separation is performed prior to MS 
detection. Direct MS techniques include direct infusion MS (DIMS) and flow injection 
analysis (FIA). During DIMS, a syringe pump is used to constantly deliver sample extracts 
into the MS in order to generate a single summed or averaged mass spectrum per 
sample. During FIA, samples are injected using an LC system without chromatographic 
column. FIA generates a data profile with a maximum after a few seconds, and then tails 
off towards background levels in order to avoid carry-over between consecutive 
injections (González-Domínguez et al., 2016). The main advantage of direct MS methods 
for metabolomics is the reduced time of analysis (typically < 60 s per sample), enabling 
high-throughput screening (Bravo-Veyrat & Hopfgartner, 2022; González-Domínguez et 
al., 2016). Drawbacks include chemical isomers remaining to be unresolved and the 
need for ultrahigh resolution instruments, such as Orbitrap-MS or Fourier-transform ion 
cyclotron resonance-MS (FTICR-MS) to be able to distinguish peaks with small 
differences in mass-to-charge (m/z) value (e.g., in the mDa range for FTICR-MS, which 
can achieve a resolution up 3,000,000 at m/z 200 (Bahureksa et al., 2022)). However, 
the largest disadvantage remains ion suppression (i.e., reduced ionization efficiency for 
analytes of interest due to competition between chemical species), impeding 
meaningful data analysis (González-Domínguez et al., 2016). 
 
Coupling GC to MS has been the most suitable method for detection of volatile 
metabolites (Su Jung et al., 2016). These metabolites can have intrinsic volatile 
properties or they can be rendered volatile and/or thermally more stable by 
derivatization (Alseekh & Fernie, 2018). Advantages of GC-MS include its high 
robustness and sensitivity (Alseekh & Fernie, 2018). GC-MS is usually the preferred 
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platform for small and volatile metabolites, including steroids and fatty acids (FA) (Su 
Jung et al., 2016). As GC-MS often requires chemical derivatization to improve volatility, 
and its application has limitations in terms of the molecular size, volatility, and polarity, 
LC-MS has become the most popular choice in metabolomics. Sample derivatization is 
generally not required in LC-MS, and metabolites with more diverse chemical structures 
and increased molecular sizes can be detected (Su Jung et al., 2016).  
 
For targeted metabolomics (Figure 1.5), LC-MS-based multiple reaction monitoring 
(MRM) platforms are often used. This type of analysis is typically carried out on a triple 
quadrupole (QqQ) or Qtrap mass spectrometer. Calibration curves for each metabolite 
can be prepared and therefore the concentrations of these metabolites in the biological 
samples can be accurately determined (Barnes et al., 2016a). These latter instruments 
can also be used for semi-targeted metabolomics (Figure 1.5), in which one standard is 
used per subset of metabolites. Due to structural similarities between the standard and 
the metabolites within the subset, a semi-quantitative concentration can be 
determined (Malm et al., 2021).   
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Figure 1.5 Overview of analytical strategies within LC-MS-based metabolomics. In targeted 
analysis (A), quantification is performed using one calibration curve per metabolite. The 
calibration curves are based on the area ratio of the standards and the labelled internal 
standards. Instruments, such as triple quadrupole (QqQ)-MS are used with multiple reaction 
monitoring (MRM) methods. During semi-targeted analysis (B), calibration curves are generated 
using one standard per class of metabolites. As with targeted analysis, QqQ instruments can be 
used as well as the high-resolution QTOF. Untargeted metabolomics (C) aims to separate and 
detect as many metabolites as possible and uses high resolution MS instruments, such as QTOF 
or Orbitrap. Relative differences in signal intensity between study groups (e.g., exposure versus 
unexposed controls) can be used to perform statistics, distinguish altered metabolites and 
visualize results e.g., using heatmaps. Graphical icons in this figure were provided by BioRender, 
license n. 2641-5211. 

Liquid chromatography coupled to high-resolution mass spectrometry (HRMS, e.g. 
Orbitrap or QTOF) remains one of the most widely used hyphenated techniques in 
untargeted metabolomics (Figure 1.5) with a constantly increasing number of 
applications (da Silva, Iturrospe, Bars, et al., 2021). This latter is due to, for instance, the 
evolution of the development of chromatographic stationary phases (e.g., improved 
particle size, stability, and selectivity), the increase in resolution of mass spectrometry 
instrumentation (e.g., resolving power at full width at half maximum (FWHM) of an 
Orbitrap can reach up to 240,000 at m/z 400), and the LC-MS versatility in being able to 
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be coupled to additional techniques (e.g., ion mobility spectrometry) (da Silva, 
Iturrospe, Heyrman, et al., 2021; Ghaste et al., 2016; Iturrospe et al., 2021).  
Hyphenating LC to MS reduces co-elution and ion suppression hence improving 
metabolite coverage and the quality of detected features (i.e., an entity with assigned 
m/z and retention time (RT) associated with a response signal (peak intensity or area)). 
Next to MS/MS fragmentation spectra, the RT behavior of lipids obtained by reversed-
phase separation offers additional information for annotation of features (i.e., 
structural elucidation) (Xu et al., 2020). 
In LC-MS analysis, the combination of hydrophilic interaction liquid chromatography 
(HILIC, e.g., bare silica, amide, diol, amido, zwitterionic columns) and reversed-phase 
liquid chromatography (RPLC, e.g., C18, C8, C30 columns) methods is one the most 
comprehensive strategies for untargeted metabolomics, providing a broad metabolite 
coverage (Cuykx, Negreira, et al., 2017; da Silva, Iturrospe, Heyrman, et al., 2021; 
Iturrospe et al., 2021). Currently, C18 columns with sub-2-μm particle size are often 
used for untargeted metabolomics and lipidomics as a stand-alone technique, and 
rarely combined with HILIC (J. Shi et al., 2016; Van den Eede et al., 2015; Vorrink et al., 
2017). Furthermore, the complementarity of HILIC to RPLC methods is a highly powerful 
strategy for polar metabolites that should not be overlooked, especially when a 
multiplatform strategy is not employed (Cuykx, Negreira, et al., 2017; Tang et al., 2016).  
In addition, MS data can be acquired in positive and negative mode with electrospray 
ionization (ESI+ and ESI−, respecƟvely) which benefits both acidic and basic funcƟonal 
groups (Banerjee & Mazumdar, 2012). Consequently, with the same chromatographic 
column, two datasets can be obtained (ESI+ and ESI-). If two chromatographic columns 
are used (e.g., HILIC and RPLC), four datasets are obtained which require parallel 
processing (Cuykx, Negreira, et al., 2017).  
Furthermore, the separation of isomers and isobars, and consequently, the acquisition 
of well-resolved fragmentation spectra is a challenge especially for lipidomics 
applications (Blaženović et al., 2018; Xu et al., 2020). In order to obtain a less time-
consuming but comprehensive platform, ion mobility spectrometry (IMS, a separation 
technique based on the mobility of ions through a buffer gas under the influence of an 
electric field) has been successfully integrated into LC-MS-based lipidomics and 
metabolomics workflows (Burnum-Johnson et al., 2019; da Silva, Iturrospe, Heyrman, 
et al., 2021). One of the key advantages of the IMS technique is that it can separate ions 
in milliseconds based on their shape and size, which is highly convenient for linking LC 
separations (minutes) and time-of-flight (TOF)-MS detection (microseconds) for the 
separation of isomers, and increasing annotation confidence with the addition of 
collision cross section values (Blaženović et al., 2018; Burnum-Johnson et al., 2019). 
Disadvantages of IMS include the increased complexity of data acquisition and -analysis, 
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as well as reduced sensitivity and incompatibility with data-dependent acquisition 
(DDA) (da Silva, van de Lavoir, et al., 2022; Paglia et al., 2021).  
 
1.3.4. Data preprocessing 
Data derived from untargeted metabolomics workflows are of great complexity since 
they usually englobe thousands of features (e.g., for LC-MS, an entity with an attributed 
m/z, retention time, fragmentation spectra, and a response signal). The workflow for 
untargeted data preprocessing includes several steps to obtain a feature signal response 
matrix (e.g., features in rows versus samples in columns). These steps are dependent on 
the instrument (e.g., GC-MS, LC-MS, NMR) used to acquire the data. For MS-based 
instrumentation, if vendor-specific software is not used, data files need to be converted 
to an open file format (e.g., mzML, netCDF, ABF) to be further processed with open-
source software packages, such as MS-DIAL, XCMS, MZmine, or OpenMS (Misra, 2021; 
Spicer et al., 2017). The software can be used to perform peak picking, deconvolution, 
alignment across samples, and in some cases, the same software can perform 
metabolite annotation with experimental and/or in silico libraries (e.g., MS-DIAL 
(Tsugawa et al., 2020)). Peak picking, deconvolution, and alignment processes are 
performed to detect ions in a specific region of interest above pre-defined instrumental 
noise levels, to handle overlapping peaks, fragments and to align those signals across 
different samples. Considering peak picking of LC-MS data in more detail, 
chromatographic peaks are detected by defining peaks by a finite number of MS points 
acquired in consecutive MS scans in the time domain. Peak picking will generate a peak 
list without correspondence across samples, i.e., the samples do not necessarily have 
the same number of peaks (Karaman et al., 2018). RT alignment is necessary as the 
physical interaction of analytes with the chromatographic column stationary phase can 
create variability in the peak position for metabolites across the samples. During RT 
alignment, peaks are aligned to reference peaks from a selected reference sample, 
based on similarity in the m/z and RT window. Alignment creates a peak list where each 
sample contains the same number of peaks, although some of these have missing values 
when no peak has been detected (Karaman et al., 2018). Values in a dataset can be 
missing either at random or not at random (Wei et al., 2018). Values which are missing 
not at random can originate from low concentrated metabolites that can fall below the 
limit of detection, where the signal cannot be distinguished from noise. Random missing 
values can occur due to incomplete ionization, inaccurate peak detection or 
deconvolution of co-eluting peaks (Wei et al., 2018). Feature tables do not contain 
unique signals corresponding to a specific metabolite, but also redundant features (e.g., 
different isotopes, charges, and adducts in soft ionization techniques such as ESI), 
background signals, etc. (Treutler & Neumann, 2016). Computational techniques can 
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address the challenge of isotope and adduct annotation, including the recent web 
application MS-FLO (based on several parameters such as peak height, RT alignment and 
mass similarities to detect adducts, isotopes and duplicate features in a preprocessed 
dataset) (DeFelice et al., 2017). 
Following data preprocessing, signal drift correction, data cleaning (feature reducing) 
(e.g., removal of background ions and features with low precision and detectability), 
and imputation of missing values are commonly applied (Klåvus et al., 2020; Riquelme 
et al., 2020; Schiffman et al., 2019). Then, data pretreatment and statistical analysis 
(univariate and/or multivariate techniques) are performed to identify relevant features 
for a specific condition, followed by further structural elucidation and biological 
interpretation. Depending on the type of statistical analysis (univariate/ multivariate), 
different data pretreatment methods are necessary. Statistical analysis of 
metabolomics data is a complex workflow and requires tailored approaches. 
 
1.3.5. Data pretreatment and statistics 
Often applied pretreatment methods of metabolomics data include normalization, 
transformation and scaling. The overall goal of these methods is to improve the 
biological information content of the data (van den Berg et al., 2006). Normalization can 
be applied to correct for variation in the intensity of features that is unrelated to 
biological differences between sample groups. Sources of variations that can be 
corrected by normalization include small changes in volume applied during sample 
preparation and sample injection and in instrument performance (e.g., changes in 
ionization, ion transfer and detector efficiency) (Di Guida et al., 2016). Transformation 
of data (e.g., to a logarithmic scale) is mostly used to correct for data heteroscedasticity 
and/or skewed distributions (Di Guida et al., 2016). Scaling is performed to adjust for 
differences in fold change between metabolites which may be caused by large 
differences in the variation of the measured responses (Di Guida et al., 2016). For 
example, during Pareto scaling, the square root of the standard deviation is used as a 
scaling factor, reducing the relative importance of large fold changes in feature 
intensities between sample groups (van den Berg et al., 2006).   
 
Univariate and multivariate analysis techniques are routinely used to extract relevant 
information from metabolomics data with the aim of providing biological knowledge on 
the problem studied. However, most studies either use univariate or multivariate 
statistical methods (Saccenti et al., 2014). Where univariate methods focus on 
independent changes in metabolite levels, multivariate methods can be used to zoom 
in on the relations between metabolites and their orchestrated or complementary 
behavior in relation to biological processes. Because of their complementary nature, it 
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is recommended to use both univariate and multivariate statistics and never to seek 
validation of univariate results by means of multivariate analysis and vice versa (Saccenti 
et al., 2014).    
 
A serious problem encountered in applying univariate statistical analysis to all –omics 
data is that the number of samples is smaller than the number of observed variables 
(Barnes et al., 2016b). Taking a univariate approach such as a Student’s t-test comparing 
the amount of a single metabolite ion in a control group with the amount in an exposed 
group and selecting significant metabolites based on p-values is fraught with problems 
due to multiple testing issues (Barnes et al., 2016b). The multiple testing problem refers 
to the increasing risk of wrongly rejecting a null hypothesis, when the number of 
hypothesis tests increases (i.e., the larger the list of metabolite ions used for univariate 
statistics, the higher the chance of obtaining false positive results) (Vinaixa et al., 2012). 
Therefore, it is important to correct for multiple testing, e.g., using the Benjamini-
Hochberg procedure (Benjamini & Hochberg, 1995) in order to avoid false positive and 
false negative results. 
 
The two major multivariate methods used in metabolomics are the unsupervised 
principal components analysis (PCA) and the supervised partial least squares 
discriminant analysis (PLS-DA), both dimensionality reduction techniques (Barnes et al., 
2016b; Ruiz-Perez et al., 2020). PCA allows high dimensional datasets to be reduced to 
a few major principal components by projecting the maximal variance without any 
awareness of the class labels (Barnes et al., 2016b; Ruiz-Perez et al., 2020). As the 
technique is unsupervised, it is often used during exploration of data (Bernardo-
bermejo et al., 2021; Cuykx, Claes, et al., 2018; Iturrospe et al., 2022). On the other 
hand, PLS-DA uses a binary class group (Y) to explain the variables in the data matrix (X) 
and aims to maximize the covariance between X and Y. A variable importance in 
projection (VIP) score can be assigned to each feature, which is a measure for the 
importance of that feature in the PLS-DA class separation (Barnes et al., 2016b; Gromski 
et al., 2015). As supervised multivariate approaches are prone to overfitting (i.e., the 
discriminatory capacity of the statistical model works well for the training data, but 
subsequent samples will be very often incorrectly classified), cross-validation of PLS-DA 
models are important. Cross-validation procedures use a fraction of the data-set as an 
independent test-set to estimate the performance of discriminative capacity of the 
model (Ruiz-Perez et al., 2020). Another multivariate method that is often used in 
metabolomics is random forest (RF). During RF, data are divided in training and test sets 
using bootstrapping. The training sets are used to build a large collection of decorrelated 
decision trees. Each tree is generated from a root node, in which small subsets of input 



 

47 
 

variables (i.e., features) are selected randomly. Starting from the root node, internal 
nodes are generated, where the samples are split based on the values of different 
variables (i.e., intensities of the features). The internal nodes proceed to leaf nodes 
when the sample classes are recognized. In the last step, the classification accuracy of 
the constructed forest is estimated using the test data. The importance of each variable 
can be determined as mean decrease in accuracy (MDA), which expresses the 
magnitude of accuracy loss of the model when the variable is excluded (Gromski et al., 
2015).   
 
1.3.6. Annotation 
During annotation, structural elucidation of features is performed (i.e., instrumental 
signals are converted to metabolites). For annotation of metabolites, the most 
commonly used approach is to compare the exact mass of the precursor ion (MS1,  m/z) 
and the tandem mass spectra (MS/MS spectrum) against standard spectral libraries 
(Kind et al., 2018; Vinaixa et al., 2016). Commonly used spectral libraries include 
MassBank (Horai et al., 2010), NIST (Yan et al., 2020), METLIN (Smith et al., 2005b) and 
GNPS (Nothias et al., 2020). Metabolomics software such as MS-DIAL also provides the 
option to include personal or public MS/MS databases for annotation and enables 
manual confirmation of MS/MS matches using mirror plots (Figure 1.6) (Tsugawa et al., 
2020).  
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Figure 1.6 Example of a mirror plot to confirm MS/MS spectra matching in MS-DIAL (Tsugawa et 
al., 2020). In this example, the MS/MS spectra of creatine [M+H]+ are shown. 

When the MS/MS spectra of a feature cannot be matched to a metabolite in a spectral 
library, in silico fragmentation software can help to provide structural information. For 
example, for the prediction of ESI-MS/MS spectra, CFM-ID is widely used for compound-
to-mass-spectrum prediction and in silico mass-spectrum-to-compound annotation (F. 
Wang et al., 2021). Concerning lipidomics, specific databases and software were 
developed for annotation such as LipidMatch (Koelmel, Kroeger, Ulmer, et al., 2017), 
LipidHunter (Ni et al., 2017), and Lipostar (Goracci et al., 2017). As opposed to polar 
metabolites, fragmentation of lipids follows certain rules. This rule-based fragmentation 
facilitates the annotation process and was extensively described by Lange et al. (2021a) 
and Pi et al. (2016). 
Next to MS/MS spectra and accurate mass, the isotopic pattern and RT can help during 
the annotation process (Vinaixa et al., 2016). For example, using C18 columns for 
separation, analytes will be retained based on hydrophobic interactions that are 
dependent on their carbon chain length and the level of saturation (Lange et al., 2019). 
As a result, different classes can be mapped within RT ranges. These class-specific RT 
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windows can then be used to filter false positive lipid annotations in complex matrices 
(da Silva, Iturrospe, et al., 2022; Lange et al., 2021).  
In addition to m/z, MS/MS spectra, and RT, ion mobility provides CCS values as an 
additional molecular descriptor, to further increase annotation confidence (Celma et al., 
2020; Pičmanová et al., 2022). In addition, CCS values can also be used as a class 
annotation filter (Qian Wu et al., 2020). When plotting CCS values in function of m/z 
values, metabolites within the same class will cluster together as their similarity in the 
chemical space is reflected in their ion mobility behavior. As a result of this clustering 
behavior, metabolites that show a large deviation in CCS within their class can be 
flagged as possible false positive annotations. In addition, CCS values can help in the 
structural characterization of lipids. Lipid species within the same class show increasing 
CCS values with increasing fatty acyl chain length as their increased size will cause 
slower passage through the ion mobility spectrometer. In contrast to the direct relation 
between CCS value and fatty acyl chain length, there is an inverse relation with the 
degree of unsaturation (da Silva, Iturrospe, Heyrman, et al., 2021).  
Ideally, a reference standard is used to confirm annotations. For this latter purpose, the 
reference standard is analyzed in the same conditions as the acquired metabolomics 
data. Comparison of RT, CCS, accurate mass and MS/MS spectra for the standard and 
the annotated metabolite can be used for confirmation. However, as many reference 
standards are expensive and often unavailable, this confirmation strategy is not always 
possible (da Silva, Iturrospe, Bars, et al., 2021).  
As confidence in HRMS-based annotations varies between studies and substances, 
confidence levels for annotations have been proposed to facilitate reporting 
(Schymanski et al., 2014). An example of annotation confidence levels was published by 
Schymanski et al. (2014) and is given in Figure 1.7. The latter annotation confidence 
level system remains widely used and was updated for IMS-HRMS data by Celma et al. 
(2020). Several confidence level systems were published including those from the 
Metabolite Identification Task Group, in which confidence levels are based on the 
metabolite complete structure level. As a high level of confidence in this system includes 
information on stereochemistry and chirality, additional techniques for structural 
elucidation are needed (e.g., ozonolysis or photochemical derivatization to determine 
the position of double bonds in glycerolipids) (Sumner et al., 2007).  
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Figure 1.7 Annotation confidence levels as proposed by Schymanski et al. (2014). 

1.3.7. Quality assurance and quality control 
The implementation of a quality management system (QMS), including quality 
assurance (QA) and quality control (QC) measures,  is imperative to ensure the collection 
of high-quality data and, subsequently, reliable data interpretation (Broadhurst et al., 
2018). QA procedures include the development and continuous improvement of 
standard operating procedures for sample collection, preparation, data acquisition, and 
data processing. These procedures also include the use of a chromatographic column 
inventory and avoidance of using freeze-thaw cycles for samples. However, when 
freeze-thaw cycles cannot be avoided, samples with the same amount of cycles should 
be used for comparison purposes (Barnes et al., 2016a). QC activities are undertaken 
during and after the experiment to monitor and report quality requirements. For 
metabolomics applications, these include the acquisition of system suitability samples 
with documented performance over time, blank extraction samples, intra-study QC 
pooled samples (e.g., mixed aliquots of biological samples representative of the entire 
sample set), spiking of samples with labeled internal standards (IS) to assess precision 
during the analysis, and reference materials for inter-laboratory and long-term studies 
(Gika et al., 2016). However, there is currently no agreement on which quality metrics 
should be used and reported. 
The metabolomics quality assurance and quality control consortium (mQACC) began to 
address the lack of guidelines and nomenclature by collecting detailed information on 
QA and QC practices used by different laboratories using LC-MS-based untargeted 
analysis (Evans et al., 2020). Pooled QC samples were identified as one of the most 
commonly applied quality measurements in untargeted LC-HRMS-based metabolomics 
studies (Evans et al., 2020). The importance of QC pooled samples for instrumental 



 

51 
 

source conditioning, carry-over assessments, data filtering, signal correction, and 
determination of precision has been shown by recent software developments and 
applications (Beger et al., 2019; Broadhurst et al., 2018; Riquelme et al., 2020). 
Furthermore, the main consensus that resulted from the mQACC consortium group was 
the prospect of creating a set of minimum QA and QC practices for metabolomics. 
Meanwhile, the current guidelines for QA/QC management processes proposed by 
Broadhurst et al. can be used for metabolomics studies, since they present good 
application and reporting practices, including the use of system suitability samples, 
process blanks (extraction blanks), pooled QC samples, QC conditioning samples, and 
order of analytical batches (Broadhurst et al., 2018). The reasons for implementing 
these latter QC measures are summarized in Table 1.1.  
 
Table 1.1 Analytical quality control strategies in untargeted metabolomics. MS: Mass 
spectrometry. RT: Retention time. QC: Quality control. RSD: Relative standard deviation. 
 

Quality control measure Reason of implementation 

Solvent blanks Controlling contaminations originating from the solvent 
Assessment of carryover  
 

System suitability sample 
(i.e., mixture of standards) 

Evaluation of the system condition (e.g., mass accuracy of MS, 
chromatographic resolving power, RT stability, peak 
area/intensity) 
 

Labeled internal standards 
spiked to samples 

Assessment of extraction efficiency (if spiked before extraction) 
and/or ionization efficiency (if spiked after extraction) 
Evaluation of mass accuracy, deviation of RT, peak 
area/intensity 
Signal correction for (semi-)quantification purposes 
 

Extraction blanks Removal of contaminants originating from the sample 
preparation 
 

Pooled QC samples Conditioning of the analytical system 
Correction of signal drift 
Filtering of datasets (e.g., based on RSD cutoff) 
Normalization of data 
 

Randomization of injection 
order 

Reducing false correlations 
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In the work of Broadhurst et al., the authors did not advise the use of pooled QC serial 
dilution to filter data based on correlations, since it does not consider a non-linear 
response, but they mentioned that further work is required to extend the use of this 
approach (Broadhurst et al., 2018). Nevertheless, one of the most important aspects of 
QA/QC practices is the description of data acquisition and processing strategies, which 
includes feature-reducing strategies (Goodacre et al., 2007). 
 
1.3.8. Interpretation 
Metabolomics has two principal goals: to identify (i) a useful biomarker or panel of 
biomarkers that accurately predicts a particular phenotype, and/or (ii) the metabolic 
pathways and hence the underlying proteins and/or genes that lead to the phenotype 
(Barnes et al., 2016b). Network modelling and pathway-mapping tools can help us to 
understand the parts that metabolites play in relation to each other and in biological 
aberrations (C. H. Johnson et al., 2016). Databases of known pathways, such as the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) are publicly available and can be 
used to link metabolomics outcomes to biochemical pathways (Kanehisa & Goto, 2000). 
Annotated metabolites can be projected on known metabolic pathways such as the 
Krebs cycle. Over-representation analysis (ORA, also known as enrichment analysis) can 
be used to identify significantly impacted pathways as it identifies pathways or 
metabolite sets that have a higher overlap with a set of molecules of interest than 
expected by chance (Wieder et al., 2021). Metabolic pathway maps currently include 
~2,000 metabolites, and, similar to metabolite databases, they are incomplete, as some 
metabolites have not yet been characterized (C. H. Johnson et al., 2016).  
Next to pathway analysis, metabolic networks can be used to explore and possibly 
interpret metabolomics data. Network-based analysis is an established method that 
allows the identification of non-intuitive metabolic relationships as well as the 
identification of unknown compounds in mass spectrometry (Perez De Souza et al., 
2020).  Multiple network strategies can be applied in metabolomics, including 
correlation-based networks relying on quantitative information and mass spectra 
similarity networks to assist metabolite annotation (Perez De Souza et al., 2020). Unlike 
pathway analysis, correlation-based analysis builds metabolite networks according to 
the relationship patterns observed in the experiment data. In the resulting network, 
each metabolite is represented by a network node and the links between nodes 
represent the level of mathematical correlation between each pair of metabolites 
(Alonso et al., 2015). 
 
 



 

53 
 

1.4. Principles of liquid chromatography 
The phenomenon of chromatography was discovered by the Russian scientist Michael 
Tswett at the beginning of the 20th century (Sakodynskii, 1972). Chromatography is an 
overarching research domain consisting of techniques used to separate complex 
mixtures on the basis of different physical interactions between the individual 
molecules and the stationary phase of the system. A mobile phase carries samples 
through a column, which is packed with a stationary phase. Molecules within the sample 
can be separated based on the distribution between the stationary and the mobile 
phase (Bishop et al., 2017). During high-performance liquid chromatography (HPLC), 
high pressure (up to 400 bar) is used to enable fast separations. The size of the 
stationary phase particles in the column is an important variable. To take advantage of 
the increased peak resolution that occurs with decreases in particle size, ultra-high 
performance LC (UHPLC) uses sub-2-µm particles. However, a penalty for this is a 
substantial increase in backpressure, which can go up to 1200 bar (Barnes et al., 2016a). 
Recent advances in UHPLC engineering include the generation of LC pumps able to 
perform at pressures up to 1500 bar, which would be suitable for columns with even 
smaller particle sizes (R. Zheng et al., 2022). At the high pressures of (U)HPLC, loop 
injectors can be used to inject samples with high reproducibility. Samples are injected 
into a fixed-volume loop using a needle. When the loop is switched, the sample is placed 
in the path of the flowing mobile phase and is flushed onto the column, which contains 
the stationary phase (Bishop et al., 2017).  
When coupling LC to an MS detector, the chromatographic separation enhances 
analytical capabilities of MS, by facilitation deconvolution and reducing ion suppression, 
leading to improved detection, especially for low abundant metabolites or in case of 
metabolites that suffer from low ionization efficiency (Harrieder et al., 2022). In 
addition, LC methods can be used to separate isomers, which could not be 
differentiated by fragmentation spectra. A third advantage is that the obtained RT 
represents orthogonal information to MS and MS/MS, as RT is dependent on the 
polarity of the analyte under investigation (e.g., in RPLC, early eluting metabolites are 
more polar) (Harrieder et al., 2022).  
Since metabolites show a wide range of hydrophobicities/hydrophilicities, it is 
impossible to separate them all on a single LC column. An in-depth analysis of a 
metabolomics sample typically involves both RPLC, for separation of mid- to non-polar 
metabolites, and HILIC, for the separation of polar metabolites, which are the most used 
LC-methods in metabolomics (Barnes et al., 2016a; Harrieder et al., 2022). In RPLC, 
apolar modified stationary phases (e.g., C18) are used in combination with more polar 
mobile phases, such as water, methanol (MeOH), acetonitrile (ACN), isopropanol (IPA), 
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or a combination of these (Bishop et al., 2017; Harrieder et al., 2022). HILIC, on the other 
hand uses both a polar stationary phase and a polar mobile phase. Polar stationary 
phases are used to bind a layer of water on the stationary support and the separation is 
based on partitioning between this polar water layer and the more hydrophobic mobile 
phase, such as ACN or MeOH. In general, HILIC separations are difficult to predict, as the 
different ligands that can be used to immobilize the water, generate secondary 
interactions such as dipole-dipole interactions, electrostatic interactions and/or 
hydrogen bonding (Harrieder et al., 2022).  
 

1.5. Principles of mass spectrometry 
During MS analysis, ions are separated according to their m/z ratio and measured by an 
ion detector. To enable MS analysis, eluting analytes from the LC system, which are 
present in the liquid phase need to be converted to ions in the gas-phase. This latter 
process is commonly performed using electrospray ionization (ESI), which is a soft 
ionization technique (i.e., the molecular ions remain largely intact in the source) (Bishop 
et al., 2017). Analytes present in the LC eluents can already be ionized or ionization can 
be driven by the strong electrostatic field in the spray chamber. Ions are formed by 
deprotonation, protonation or adduct formation (Kebarle & Verkcerk, 2009). ESI can be 
used either in positive or negative ionization mode (ESI (+) and ESI (-), respectively). For 
example, in ESI (+) the nozzle will function as positive electrode and the sampling 
capillary as negative electrode (Figure 1.8). The electric field leads to an enrichment of 
positive ions near the surface of the meniscus. This polarization will cause distortion of 
the meniscus and dispersion of the sample solution into an aerosol of highly positively 
charged electrospray (ES) droplets (Banerjee & Mazumdar, 2012; Kebarle & Verkcerk, 
2009). Super-heated nitrogen gas can be used as a sheath gas to focus the beam of 
droplets and improve ion generation (e.g., in Agilent Jet Stream ESI) (Banerjee & 
Mazumdar, 2012). A drying gas, consisting of heated nitrogen, will shrink the droplets 
by desolvation. When the repulsive electrostatic forces exceed the cohesive forces of 
the droplet, Coulomb fission will occur, leading to gas phase ions that are passed to the 
mass analyzer (Banerjee & Mazumdar, 2012; Kebarle & Verkcerk, 2009). 
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Figure 1.8 Schematic representation of electrospray ionization (A) and detailed overview of the 
ionization process (B). Adapted from Banerjee & Mazumdar, 2012. ES: Electrospray. 

In untargeted metabolomics, HRMS instruments are used such as QTOF. Compared with 
traditional or ‘low resolution’ mass spectrometers that determine masses to 
approximately 0.5 Da, QTOF mass spectrometers operate at resolutions that allow the 
exact mass of an unknown molecule to be calculated to approximately 0.001 Da (Bishop 
et al., 2017). Resolution in MS is defined as the mass of a given molecule divided by the 
width of the corresponding peak and is commonly designated by the term full width at 
half maximum (FWHM). Many commercial QTOF MS instruments can achieve 
resolutions of 40,000 and more (e.g., the Agilent 6560 QTOF system can reach a 
resolution of >42,000 at m/z 2,722) (Agilent Technologies, 2016; Bishop et al., 2017; 
Fjeldsted, 2016). The basic principle of time-of-flight (TOF) instruments relies on 
velocity-dependent separation and subsequent detection of ions as they travel through 
a flight tube (García-Reyes et al., 2017). Analytical ions enter the vacuum chamber of 
the QTOF instrument through the sampling capillary (Figure 1.9) and will be guided 
towards the octopole. The octopole guide will continue to focus the ions toward the 
quadrupole and allows the removal of neutral species. 
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Figure 1.9 Schematic overview of the key elements of a quadrupole time-of-flight mass 
spectrometer with an electrospray ionization source (Klein, 2020). 

Within the quadrupole, an oscillation electric field is used to scan across a preselected 
m/z range and select ions of interest. The oscillating forward movement of ions through 
the quadrupole is guided by radio frequency and direct current voltages, which are 
applied to the four parallel rods. Depending on the set of voltages, only a certain set of 
ions (m/z values) can pass through the quadrupole to the detector. Ramping of the 
voltages allows other m/z values to pass through. Undesirable ions will have large 
oscillatory amplitudes and will hit the metal rods, get neutralized and fail to reach the 
collision cell (Fjeldsted, 2016; García-Reyes et al., 2017; Ho et al., 2003). The collision 
cell consists out of a hexapole that focuses and transmits ions while introducing nitrogen 
gas into the flight path of the ions. The energy transfer from this collision gas to the 
ionized analytes causes bond cleavages, resulting in fragmentation or collision-induced 
dissociation (CID) and rearrangements of the selected ions (Agilent Technologies, 2017; 
A. R. Johnson & Carlson, 2015). Ions that exit the collision cell are pulsed into the flight 
tube. At the top of the flight tube, a reflectron will change the course of the ions towards 
the detector. Another function of the reflectron is to minimize kinetic energy variations 
in arrival time that originated from ions with the same mass, but different kinetic 
energies or ions of the same mass that left the pulser at different positions. As the use 
of a reflectron enables doubling the flight path length, longer flight times can be 
achieved and therefore increased resolution (García-Reyes et al., 2017).  Ions arrive at 
the detector in order of increasing mass and the m/z values can be calculated as the 
flight time is proportional to the square root of the m/z value (García-Reyes et al., 2017).  
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During HRMS analysis, full-scan (MS1) mode, data-dependent acquisition (DDA, MS2), 
and data-independent acquisition (DIA, MS2) are common data acquisition modes (Guo 
& Huan, 2020). In DDA mode, the selection of precursor ions for MS2 analysis is intensity 
dependent, while in DIA mode, the MS instrument cycles through the precursor ion m/z 
range with a large precursor ion mass width to fragment more than one precursor ion 
simultaneously. DIA can theoretically generate MS2 spectra for all metabolites in a 
sample, while during DDA, metabolic features with a low abundance may never be 
selected for fragmentation. However, DDA provides higher quality of MS/MS spectra 
and deconvolution of DIA data is challenging. In DIA, the link between precursors and 
their fragment ions is dissociated due to the complexity of the resulting MS/MS spectra 
(Guo & Huan, 2020). In order to obtain high quality MS/MS spectra with increased 
metabolite coverage, DDA mode can be used with iterative exclusion. During iterative 
exclusion DDA, precursors selected based on their intensity (i.e., topN) are excluded in 
sequential injections. In each sequential injection, unique precursors are fragmented 
until HR-MS/MS spectra of all ions above a user-defined intensity threshold are acquired 
(Koelmel, Kroeger, Gill, et al., 2017).  
 

1.6. Principles of ion mobility spectrometry  
Hyphenation of IMS to LC and HRMS adds an additional dimension of gas-phase 
separation based on shape, size, charge and mass. As IMS separation takes place in the 
millisecond timescale, it is compatible with both chromatographic separation (second 
timescale) and QTOF ion detection (µs timescale) (García-Reyes et al., 2017).  Just as 
chromatographic separations add significantly to both the selectivity and specificity of 
HRMS, in the same way IMS increases selectivity and specificity beyond what LC-HRMS 
can achieve (Fjeldsted, 2016). Firstly, addition of IMS to LC-HRMS may offer a reduction 
in interferences and improves separation of isomers and close isobars, increasing 
selectivity. Secondly, IMS leads to increased confidence in annotation (specificity) by 
qualifying the measured collision cross section (CCS) (Fjeldsted, 2016). The CCS value is 
a physicochemical property of an ion in a specific gas environment, determined by its 
three-dimensional gas-phase structure. CCS values can be calculated from the drift time 
in ion mobility spectrometry using the Mason-Schamp equation (equation 1.1) 
(Fjeldsted, 2016; Stow et al., 2017).  
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Equation 1.1 Mason-Schamp equation to calculate CCS values (Å²) in ion mobility. A fundamental 
assumption of the equation is that the separation is performed under low-field conditions and 
hence do not excite the molecule to change its cross section. T: drift tube temperature in kelvin, 
kb: Boltzmann’s constant, z: ion charge state, e: charge of an electron, mi: ion mass, mB: buffer 
gas mass, E: electric field, tA: measured arrival time, L: drift tube length, P: drift tube pressure, 
and N: buffer gas number density at standard temperature and pressure (Stow et al., 2017).  
 
Several IMS instruments are commercially available, including drift tube IMS (DTIMS), 
traveling-wave IMS (TWIMS), trapped IMS (TIMS), cyclic IMS (cIMS) and field 
asymmetric IMS (FAIMS). These IMS technologies can be classified according to three 
modes of separation: (i) temporary dispersive (DTIMS, TWIMS), (ii) trapping and 
selective release (TIMS, cIMS), and (iii) spatially dispersive release (FAIMS) (Paglia et al., 
2021).  
In temporally dispersive methods, all ions drift along a similar path and an arrival time 
spectrum is generated. In DTIMS, ions migrate through a stationary buffer gas, directed 
by a constant and homogeneous electric field (Ibrahim et al., 2015). A downside is that 
DTIMS suffers from lower sensitivity as some ions never reach the MS detector due to 
a high gas diffusion coefficient, causing ions to diverge from the axial path (Paglia et al., 
2021). In TWIMS, ion movement is directed by an oscillating electric field and diffusional 
ion losses are restricted by use of RF confinement fields (K. Richardson et al., 2018).  
During ion trapping and selective release IMS, ions are trapped in pressurized regions 
and ejected based upon differences in mobility. In TIMS, ions are kept stationary against 
a moving gas before being released by selectively lowering the electrical forces 
(Michelmann et al., 2014). cIMS is based on the same principle, with the difference that 
a cyclic TWIMS chamber is used, allowing multiple ion passes to increase resolving 
power (Giles et al., 2019).  
Spatially dispersive IMS methods separate ions along different drift paths based on 
differences in their mobility (Paglia et al., 2021). FAIMS is mostly used in targeted 
experiments, as it can filter selected ions based on their specific mobility, and as the 
instrument operates at high electric fields, experimental CCS determination is not 
possible (May & McLean, 2015).  
 
During DTIMS, ion funnel sampling is combined with a uniform low-field drift tube 
(Figure 1.10). Ions move forward through the drift tube under influence of an applied 
electric field and are slowed down by a countercurrent drag force, due to collisions with 
a stationary buffer gas. Separation is achieved as the magnitude of the drag force is 
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dependent on the collision cross sections of the analytes, which is a function of size, 
shape, charge and mass (García-Reyes et al., 2017).  

 
Figure 1.10 Drift tube ion mobility spectrometry hyphenated to a quadrupole time-of-flight mass 
spectrometer. Ions generated in the ionization source are carried out into the front ion funnel 
through a sampling capillary. The trapping funnel accumulates ions and releases ions packets 
into the drift tube. Separated ions exiting the drift tube enter a rear ion funnel, which compresses 
the ion beam before transmission to the QTOF mass spectrometer (Fjeldsted, 2016). 

It should be noted that DTIMS can be coupled with DIA to acquire MS/MS 
fragmentation, but is incompatible with DDA (da Silva, van de Lavoir, et al., 2022). 
Complex deconvolution of DIA data becomes more straightforward when using DTIMS 
separation prior to DIA acquisition, as precursors and fragments can be matched based 
on drift times (Pezzatti et al., 2020).  
DTIMS can be run in different modes, such as single pulse and Hadamard transform 
multiplexing with 4-bit pseudo-random pulsing sequence (Figure 1.11) (Causon et al., 
2019). In single pulse mode, one ion packet is measured per IMS cycle. Ions are trapped 
in the trapping funnel (e.g., for 60 ms) before they get released into the drift tube for 
their separation (i.e., one time every 60 ms). No additional ion packets are introduced 
until the preceding ion populations exit the drift tube (Demelenne et al., 2022; Prost et 
al., 2014). The combination of a continuous ionization source and the pulsed nature of 
IMS causes low duty cycles and thus impairment of analytical sensitivity. IMS 
multiplexing mode allows to increase duty cycles and to decrease the risk of detector 
saturation, which would impair mass accuracy (Prost et al., 2014; Reinecke et al., 2019). 
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In the 4-bit multiplexing mode, the trapping time is reduced (e.g., 4 ms) and smaller 
packets of ions are sent into the drift tube in a particular sequence (i.e., a sequence of 
15 open-closed events; 8 open, 7 closed; ion packets are released 8 times every 60 ms). 
The pseudorandom nature of multiplexing allows elimination of systematic noise. This 
release of a sequence of ion packets implies that within one IM cycle, signals of the same 
feature reach the detector at different drift times, generating multiple signals for the 
same feature. Post-acquisition, these separately recorded signals are mathematically 
combined during the process of demultiplexing (Demelenne et al., 2022; Prost et al., 
2014).   

 
Figure 1.11 Schematic explanation of ion mobility single pulse mode (A) and 4-bit Hadamard 
multiplexing mode (B). At the right, the arrival time distribution is shown for one feature in single 
pulse mode (C), in multiplexed mode (D, up) and in demultiplexed mode (D, down). Adapted 
from Demelenne et al., 2022 and Prost et al., 2014. ESI: Electrospray ionization. TOF MS: Time-
of-flight mass spectrometry. 
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CHAPTER 2: 
OBJECTIVES 
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The overarching goal of this PhD thesis is the identification of a panel of small molecule 
biomarkers to characterize early stages of alcoholic liver disease (AFLD and ASH) in an 
in vitro setting, through an advanced metabolomics workflow (Figure 2.1). This research 
goal was set as the mechanisms of ALD pathogenesis remain unclear because of the lack 
of ALD patient samples and reliable animal models for ALD that reflect human ALD. The 
limited understanding of ALD hampers development of novel therapies and diagnostic 
improvements (Hyun et al., 2021). By using HepaRG cells as a human-based cell model, 
biochemical biomarkers can be identified to elucidate the mechanism of ethanol-
induced hepatotoxicity at a mechanistic cellular level.  
To achieve this goal, the research was based on a close collaboration between (i) the 
Toxicological Center of the University of Antwerp with its main expertise in analytical 
chemistry, bioanalysis applications and analytical method development, and (ii) the In 
Vitro Toxicology and Dermato-Cosmetology research group of the Vrije Universiteit 
Brussel, with its extensive expertise in in vitro (hepatic) modeling. This project further 
intensified the exchange of information and technology between both universities. 
 
The hypothesis of this project is based on the concept of Adverse Outcome Pathways 
(AOPs), which is well-accepted in modern toxicology (Ankley et al., 2010; Corradi et al., 
2022; Vinken et al., 2017). The adverse outcomes in ALD (e.g., steatosis and 
steatohepatitis) are established through different Modes of Action (MoA), involving a 
molecular initiating event (MIE) leading to a series of key events (KEs), which imply 
alterations in specific metabolic pathways. MIEs induce specific intracellular alterations, 
resulting in different metabolic profiles. Based on the up- or downregulation of intra- 
and extracellular metabolites, biomarkers could be identified for the characterization of 
the early stages of ALD. In addition, alterations in metabolites can be used to visualize 
changes in metabolic pathways, to offer new toxicological insights in the MoAs of 
ethanol-induced hepatotoxicity. Characterization of ALD at a mechanistic cellular level 
can provide a better understanding of pathogenesis, boost research to improve clinical 
diagnosis and pinpoint possible pharmacotherapeutic targets (Hyun et al., 2021). 
In vitro identified biomarkers can be used for future in vivo studies using samples of 
patients suffering from ALD for verification. For this latter verification, liver biopsy 
samples can be used. However, the research within this thesis is not limited to 
elucidation of intracellular metabolic alterations in hepatocytes, but also aimed to 
include extracellular metabolomics, and thus plasma and/or serum of ALD patients 
could be used for verification purposes.  
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Figure 2.1 Overview of the objectives of this PhD thesis.  

The first major objective is the development of untargeted metabolomics and 
lipidomics platforms using LC-HRMS. A high-quality and high-end metabolomics 
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platform using state-of-the-art technology and bioinformatics is crucial in order to 
obtain reliable data to be used to address the second major objective. Chapter 3 of this 
thesis was dedicated to the development of an untargeted HILIC-MS platform for polar 
metabolites in biological matrices using an exploratory approach.  
Chapter 4 is dedicated to the development of an RPLC-DTIM-HRMS lipidomics platform. 
Experiments were designed to determine the optimal LC methodology, and the value of 
DTIMS was evaluated as an extra dimension of separation. As hyphenation of DTIMS to 
LC-HRMS results in reduced sensitivity due to impaired duty cycles, strategies to 
improve sensitivity were explored. 
As feature annotation remains a major challenge in untargeted metabolomics and 
lipidomics, guidelines and considerations for building multidimensional MS-based 
metabolite libraries were described in Chapter 5. The usefulness of implementing RT 
and CCS information, in addition to accurate mass and MS/MS spectra, for feature 
annotation was explored. In addition, an easy-to-use workflow for the creation of in-
house metabolite libraries was provided.  
 
The second major objective is the application of the constructed analytical platforms to 
investigate AFLD and ASH in an in vitro model using the HepaRG liver cell line. This 
objective was subdivided in two minor aims: (i) optimization of the workflow/protocols 
of the in vitro model and (ii) the selection of biomarkers, based on the alteration of 
metabolites. HepaRG liver cells were subject to ethanol exposure in different 
experiments. The differences between the observed metabolic profiles against a 
negative control group allowed the detection and identification of biomarkers specific 
for ethanol-induced hepatotoxicity.  While Chapter 6 provides a general overview of the 
experimental exposure, sample preparation methods and analytical procedures, 
Chapters 7 and 8 were dedicated to the use of metabolomics to investigate ethanol-
induced hepatotoxicity. In Chapter 7, AFLD was simulated and metabolic alterations in 
response to ethanol exposure at different concentrations and for different exposure 
times were elucidated with extensive discussion of the results. However, as the 
extrahepatic environment was lacking in these experiments, ethanol exposure could not 
generate the inflammatory response caused by extrahepatic cytokines as seen in human 
ASH (Nagy, 2015). In Chapter 8, follow-up experiments were performed in which 
HepaRG cells were co-exposed to tumor necrosis factor alpha (TNF-α) in order to obtain 
an improved in vitro simulation of ASH. TNF-α is considered the most important 
inflammatory cytokine in the progression of ALD (Kawaratani et al., 2013; Nagy, 2015; 
Seo & Jeong, 2016; Yin et al., 1999). Metabolic alterations were elucidated comparing 
exposure to ethanol and TNF-α with negative controls and with solely ethanol exposure.
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CHAPTER 3: 
DEVELOPMENT OF UNTARGETED PLATFORMS FOR POLAR 

METABOLITES 
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3.1. Introduction 
Due to the heterogeneity of molecules in the metabolome, varying from small polar 
organic acids to apolar triglycerides, a single LC-MS method is not capable to capture 
this broad variety of metabolites (W. Lu et al., 2017). Traditionally, reversed-phase liquid 
chromatography (RPLC) is used for the separation of apolar to slightly polar metabolites, 
resulting in a wide lipid coverage, useful for lipidomics research (Cajka & Fiehn, 2014). 
Hydrophilic interaction liquid chromatography (HILIC), a technique compatible with 
electrospray ionization (ESI)-MS, has become the separation technique of choice for 
polar compounds such as organic acids and sugars (Cajka et al., 2017; Sillner et al., 
2019). In HILIC, a polar stationary phase is used in combination with an aqueous-organic 
mobile phase, which creates a water-rich layer around the stationary phase, in which 
various hydrophilic interaction mechanisms occur (Gritti et al., 2015; McCalley, 2017). 
HILIC methods have the potential to retain and separate polar metabolites that show 
no retention or co-elute in RPLC and can lead to an increased MS sensitivity for polar 
compounds. However, HILIC has some disadvantages (e.g., limited choice of mobile 
phase compositions, long equilibration times) and it cannot be used for an untargeted 
metabolomics experiment without proper method development and validation of its 
actual metabolome coverage (Buszewski & Noga, 2012). 
In this chapter, different HILIC-columns and chromatographic settings were tested for 
an untargeted approach that can be applied for the polar metabolite fraction of 
different biological matrices. By employing HILIC-QTOF-MS in ESI (-) and ESI (+) 
ionization modes to analyze standard mixtures of polar metabolites and various 
biofluids (plasma, urine) as well as HepaRG cells, the capabilities and limitations of HILIC 
chromatography were explored.  
 

3.2. Chemicals and materials 
Analytical standards were purchased from Sigma Aldrich (St. Louis, Missouri, USA), 
Merck (Darmstadt, Germany) and Janssen Chimica (Beerse, Belgium). A total number of 
72 panel standards was used during the experiments covering a wide range of metabolic 
classes including amino acids (19), amino acid metabolites (5), phosphorylated amino 
acid metabolites (2), peptides (5), sugars (4), amino sugars (1), phosphorylated sugars 
(1), organic acids (6), phosphorylated organic acids (2), tricarboxylic acid cycle (TCA) 
intermediates (6), nucleobases or analogues (4), nucleosides (3), nucleotides (3), 
cofactors or -enzymes (6) and small chain acylcarnitines (5). Using the final optimized 
methods, 13 additional analytical panel standards (3 amino acids, 3 amino acid 
metabolites, 2 sugars, 1 organic acid, 1 nucleobase or analogue, 2 cofactors or -enzymes 
and 1 amine oxide) were analyzed, bringing the total number to 85 panel standards. In 
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Figure 3.1, 65 out of 85 panel standards were used for pathway mapping to visualize the 
metabolic coverage. All chemical standards used during method optimization are listed 
in the supplementary information (Table SI-3.1). L-glutamic acid-2,3,3,4,4-D5, L-leucine-
5,5,5-D3, L-lysine-13C6-15N2, succinic acid-2,2,3,3-D4, D-tryptophan-2,4,5,6,7-D5 and 
glucose-13C6 were used as internal standards during the sample preparation of biological 
samples. All internal standards were purchased from Sigma Aldrich, except for D-
tryptophan-2,4,5,6,7-D5, which was bought from CDN isotopes (Pointe-Claire, Quebec, 
Canada). Methanol ultrapure (MeOH), acetonitrile (ACN) and formic acid (99%) 
(HCOOH), all ULC/MS-CC/CSF grade, were purchased from Biosolve (Valkenswaard, The 
Netherlands). Ammonium formate (≥ 99%, LC-MS grade) (HCOONH4), ammonium 
carbonate HPLC grade ((NH4)2CO3) and ammonium acetate LC-MS grade (CH3COONH4) 
were obtained from Sigma Aldrich. Acetic acid (100%) (CH3COOH), ammonia solution 
(25%) (NH3(aq)) and ethanol (EtOH), all LC-MS grade, isopropanol for analysis (ACS 
reagent) (IPA) and chloroform (analytical grade) (CHCl3) were purchased from Merck. 
Ultrapure water (H2O) used throughout the experiments was obtained from an Elga 
Pure Lab apparatus (Tienen, Belgium). 
For the experiments with HepaRG cells, differentiated HepaRG cells, Basal Hepatic 
Medium, HepaRG Thaw, Seed and General-Purpose Supplement and HepaRG 
Maintenance and Metabolism Supplement were acquired from Biopredic International 
(Rennes, France). HepaRG cells were seeded in Permanox 2-well Lab-Tek chamber slides 
from Nunc, Thermo Scientific (Rochester NY, USA) and incubated using a Galaxy 170 S 
incubator acquired from Eppendorf (Hamburg, Germany). Rat tail collagen for coating 
was provided by Corning (New York, USA). Eppendorf Safe-Lock tubes and 0.2 µm nylon 
centrifugal filters were acquired from respectively Eppendorf and VWR (Pennsylvania, 
USA) and used during sample preparation. Pure, dry nitrogen (AZOTE N28, N2) used for 
solvent evaporation was obtained from Air Liquide Belge (Liège, Belgium). 384 well 
plates (PS, small volume) were bought from Greiner Bio-One (Vilvoorde, Belgium). 
Human blood was collected in sterile Vacuette K3EDTA premium tubes acquired from 
Greiner Bio-One and aseptic polypropylene urine recipients from Disera (Izmir, Turkey) 
were used for urine collection. 
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Figure 3.1 Pathway coverage for 65 analytical panel standards used for method development. Standards were selected based on their polarity to 
cover the polar side of the pathway map. ATP: Adenosine triphosphate. ADP: Adenosine diphosphate. AMP: Adenosine monophosphate. β-NADPH: 
β-Nicotinamide adenine dinucleotide phosphate. SAM: S-adenosyl-L-methionine. NADH: Nicotinamide adenine dinucleotide. 
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3.3. Sample preparation 
The used sample preparation technique has an important influence on the metabolite 
coverage in biological samples (W. Lu et al., 2017). Therefore, the extraction methods 
were carefully chosen. The sample preparation for the liver cell extracts was adapted 
from a previously in-house method using two-phase liquid-liquid extraction  (Cuykx, 
Mortelé, et al., 2017). The sample preparation for plasma and urine samples were 
chosen based on literature screening of validated methods which had a good coverage 
for polar metabolites (Benito et al., 2018; Bruce et al., 2009; Chen et al., 2016; 
Fernández-Peralbo & Luque de Castro, 2012; Qiong Wu et al., 2014). 
 
3.3.1. Analytical standard solution 
Analytical standard solutions were prepared by dissolving solids or diluting liquid 
standards in H2O, MeOH, EtOH or a combination of H2O with MeOH or EtOH (50/50, 
v/v), depending on the solubilization properties of the compounds, to obtain a stock 
solution of 50 µg/mL. All panel standards were combined in a mixture, the solvent was 
evaporated to dryness using a stream of N2 at room temperature, and reconstituted in 
H2O/ACN (35/65, v/v) to obtain a final concentration of 1 µg/mL. The final mixtures were 
stored at -20 °C before injection.  
 
3.3.2. Intracellular extracts of HepaRG cells 
Ethical approval for the use of HepaRG cells was provided by the Medical Ethics 
Committee of the University Hospital Brussels (reference number 143201941214).  
Differentiated HepaRG cells were seeded (N = 6) in collagen-coated Permanox 2-well 
Lab-Tek chamber slides at a concentration of 1 x 106 cells per well (day 0). For seeding 
of the cells, Basal Hepatic Medium with HepaRG Thaw, Seed and General-Purpose 
Supplement was used. The cells were incubated for 8 days at 37 °C, 5% CO2 and 
saturated humidity using a Galaxy 170 S incubator. On day 1 of incubation, the medium 
was replaced by Basal Hepatic Medium with HepaRG Maintenance and Metabolism 
Supplement. On day 3, 6 and 7, the medium was renewed. Blanks (N = 4) did not contain 
the HepaRG cells and were treated identically to other samples.  After eight days of 
incubation of HepaRG cells, the incubation medium was collected for extraction (see 
3.3.3.) and the chamber slides were washed twice using PBS (37 °C) before snap-freezing 
with liquid N2. 300 µL of a quenching solution was added. The quenching solution 
consisted out of 80% MeOH (v/v) and 20% (v/v) of 10 mM CH3COONH4 (at -80 °C). After 
2 min, the cells were scraped and extracted in an LLE-vial, which contained 500 µL of a 
polar mixture and 420 µL of an apolar mixture (at -20 °C). The polar mixture consisted 
out of 1 mM (NH4)2EDTA and 0.5 mM ascorbic acid in 5 mM CH3COONH4 with 0.1% (v/v) 
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CH3COOH (pH 4.2). The apolar mixture consisted out of 1 mM butylated hydroxytoluene 
(BHT) in CHCl3. Another 300 µL of the quenching solution was used for rinsing and was 
collected in the same LLE-vial. 20 µL of an internal standard mixture was added. The 
mixture contained 7 µg/mL of internal standards (L-glutamic acid-2,3,3,4,4-D5, L-
leucine-5,5,5-D3, D-Tryptophan-2,4,5,6,7-D5 and Glucose 13C6) in H2O/MeOH (1/1, v/v) 
to obtain a final concentration of 1 µg/mL. The LLE-vial was subsequently vortexed for 
90 s, equilibrated for 10 min (4 °C), centrifuged at 2,200 g for 7 min at room temperature 
and again equilibrated for 10 min (4 °C).  960 µL of the polar fraction (upper phase) was 
transferred to an Eppendorf tube, without transferring solid particles from the protein 
disk. After vortexing for 20 s, 480 µL was transferred to a second Eppendorf tube after 
which the liquid of both Eppendorf tubes was evaporated using pure, dry nitrogen at 
room temperature. Each sample was divided in two fractions right before the 
evaporation step, in order to analyze each fraction using a different ionization mode 
during LC-MS acquisition. Dried extracts were stored at -80 °C and reconstituted directly 
before analysis. Each sample was reconstituted on ice, using 60 µL ACN/H2O (65/35, 
v/v). After vortexing for 90 s, samples were filtered using a 0.2 µm nylon centrifugal 
filter and centrifugated at 14,000 g for 2 min at room temperature. Ten µL of each 
filtered sample was transferred to an LC-vial to create a QC pool. Another 20 µL of each 
sample was transferred to a Greiner Bio-One 384 well plate. Surrounding wells were 
filled with solvent blanks and the well plate was sealed using aluminum adhesive. Both 
the well plate and the QC pool were transferred to the autosampler (4 °C) right before 
analysis.  
 
3.3.3. Extracellular extracts of HepaRG cells 
In order to analyze the extracellular metabolome of HepaRG cells, the used incubation 
medium was collected at the same day as the extraction of the HepaRG cells. The sample 
preparation was based on the method of Cuykx et al. (Cuykx, Mortelé, et al., 2017) and 
Dettmer et al. (Dettmer et al., 2013).  
After eight days of incubation of HepaRG cells in Permanox 2-well Lab-Tek chamber 
slides, the incubation medium (1.2 mL per well) was extracted in separate Eppendorf 
tubes (N = 6). Blank media (N = 4) were obtained after incubation without HepaRG cells 
and were treated identically to other samples. 320 µL of the collected medium was 
transferred to a second Eppendorf tube, to which 725 µL of a quenching solution was 
added (see 3.3.2. for composition). After vortexing for 60 s, 980 µL of quenched medium 
was transferred to an LLE-vial, which contained 500 µL of a polar mixture and 420 µL of 
an apolar mixture (-20 °C, see 3.3.2. for composition). 20 µL of the same internal 
standard mixture as in 3.3.2. was added. This time, the mixture contained 9 µg/mL of 
internal standards to obtain a final concentration of 1 µg/mL. The LLE-vial was 
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subsequently vortexed for 90 s, equilibrated for 10 min (4 °C), centrifuged at 2,200 g for 
7 min at room temperature and again equilibrated for 10 min (4 °C). 1000 µL of the polar 
fraction (upper phase) was transferred to an Eppendorf tube, without transferring solid 
particles from the protein disk. After vortexing for 20 s, 500 µL was transferred to a 
second Eppendorf tube. Subsequent sample preparation steps were identical to those 
for the intracellular samples. 
 
3.3.4. Human plasma 
Blood samples were collected from 6 healthy volunteers, 3 males and 3 females, aged 
24-31 years. The sampling was approved by the Ethical Committee of the University 
Hospital Antwerp (EC/PC/avl/2018.039). The sample preparation protocol was adapted 
from Benito et al. (2018), Chen et al. (2016) and Bruce et al. (2009). Extraction was 
performed using K3EDTA tubes, which were centrifuged at 1,000 g for 5 min, within 15 
min after collection. The obtained plasma samples were separated from the red blood 
cell pellet and stored at -80 °C until further sample preparation and LC-MS analysis. 
Frozen plasma samples were thawed on ice on the day of the analysis. Aliquots of 50 µL 
plasma were transferred to an Eppendorf tube and mixed with 150 µL of -80 °C 
MeOH/EtOH (1/1, v/v). Samples were vortexed for 60 s, kept on ice for 5 min, then 
centrifuged at 15,500 g for 10 min at room temperature. The supernatant was 
transferred to a new Eppendorf tube and evaporated to dryness under a stream of N2. 
Dried samples were reconstituted to 120 µL of ACN/H2O (65/35, v/v) spiked with a 1 
µg/mL internal standard mixture (L-lysine-13C6-15N2, succinic acid-2,2,3,3-D4, L-glutamic 
acid-2,3,3,4,4-D5, L-leucine-5,5,5-D3, D-tryptophan-2,4,5,6,7-D5 and glucose-13C6). 
Reconstituted samples were transferred to a 0.2 µm nylon centrifugal filter and 
centrifuged at 14,000 g for 2 min. A pooled QC sample was obtained by combining equal 
volumes of the extracts. 
 
3.3.5. Human urine 
Urine samples were collected from 6 healthy volunteers, 3 males and 3 females aged 
24-48 years. The donation was approved by the Ethical Committee of the University 
Hospital Antwerp (18/31/357). Sample preparation was based on the method of Wu et 
al. (2014) and the recommendations of Fernández-Peralbo et al. (2012). Urine samples 
were stored at -80 °C directly after collection. Frozen urine samples were thawed on ice 
and vortexed for 60 s. A volume of 133 µL of urine was diluted with 300 µL ACN and 
stored on ice for 5 min. Samples were centrifuged at 15,000 g for 10 min at room 
temperature. A volume of 67 µL of an internal standard mixture (L-lysine-13C6-15N2, 
succinic acid-2,2,3,3-D4, L-glutamic acid-2,3,3,4,4-D5, L-leucine-5,5,5-D3, D-tryptophan-
2,4,5,6,7-D5 and glucose-13C6) was added to the supernatant (final concentration 1 
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µg/mL). Before injection, samples were filtered using 0.2 µm nylon centrifugal filters 
with centrifugation at 14,000 g for 2 min at room temperature. A pooled QC sample was 
obtained by combining equal volumes of the extracts. 
 

3.4. Mass spectrometry parameters 
Mass spectrometry detection was performed on an Agilent 6530 QTOF-MS with Agilent 
Jet Stream Electrospray Ionization (Agilent Technologies, Santa Clara, USA). In ESI (+) 
mode, nitrogen was used as drying and sheath gas at 250 °C and 350 °C with flow rates 
of 8 L/min and 11 L/min, respectively. The nebulizer gas pressure was set at 45 psig, the 
MS capillary voltage at 2000 V, the nozzle voltage at 0 V and the fragmentor at 150 V. 
In ESI (-) mode, the drying and sheath gas had a temperature of 250 °C and a flow of 10 
L/min and a temperature of 350 °C and a flow of 10 L/min respectively. The nebulizer 
gas pressure was set at 45 psig, the MS capillary voltage at 2000 V, the nozzle voltage at 
0 V and the fragmentor at 100 V. For both ionization modes, data were acquired in 2 
GHz extended dynamic mode with a scan range of 60-1000 m/z and a scan rate of 2 
spectra/s. Full scan data were stored in profile mode. Calibration of the mass axis was 
performed within run using purine (m/z 121.0508 in ESI (+) mode and m/z 119.0363 in 
ESI (-) mode) and hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine (m/z 922.0097 
in ESI (+) mode and m/z 980.0163 in ESI (-) mode). The calibrant solution was constantly 
infused during the run with an additional isocratic pump (Agilent 1200 series G1310A) 
and mixed with the effluent using a T-piece connected to the ESI source. Data-
dependent MS/MS (auto-MS/MS) acquisition was obtained at collision energies of 10, 
20 and 40 eV using a separate method with a scan rate of 2 spectra/s and 6.67 spectra/s 
for MS and MS/MS spectra, respectively. The maximum precursors/scan cycle was set 
at 12. 
 

3.5. Analytical method optimization  
3.5.1. Liquid chromatography column screening 
Liquid chromatography was performed on an Agilent 1290 Infinity UPLC system. The 
injection volume was set at 3 µL and the thermostat of the autosampler at 4 °C. Firstly, 
several chromatographic columns were screened using generic HILIC methods based on 
the recommendations of the supplier and previous publications (Buszewski & Noga, 
2012; Cuykx, Negreira, et al., 2017). Details concerning these generic methods are 
specified in Table 3.1. In addition to HILIC-QTOF-MS, one RPLC-QTOF-MS method was 
tested in parallel to evaluate the coverage of a reversed-phase method with an ACQUITY 
UPLC HSS T3 column previously used for metabolomics applications (Zhi Zhou et al., 
2017).
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Table 3.1 Generic LC methods used for column screening. Void time (t0) was estimated using the elution time (min) of naphthalene (*), thiourea (**) 
or toluene (***). For Shodex columns, a theoretical estimation of t0 (****) was calculated using the formulas published by Wernisch et al. (Wernisch 
& Pennathur, 2016). U(H)PLC: Ultra (high) performance liquid chromatography. HSS: High strength silica. HILIC: Hydrophilic interaction liquid 
chromatography. RPLC: Reversed-phase liquid chromatography. PVA: Polyvinyl alcohol. PEEK: Polyether ether ketone. ACN: Acetonitrile. MeOH: 
Methanol. MS: Mass spectrometry. ESI: Electrospray ionization. 
 

Column A B C D E F G H 

Commercial name HILICON iHILIC-
Fusion UHPLC 

Waters 
ACQUITY UPLC 
HSS T3 

Waters 
ACQUITY UPLC 
HSS T3 

Phenomenex 
Luna HILIC 

HILICON iHILIC-
Fusion(+) UHPLC 

HILICON iHILIC-
Fusion(P) 

Shodex HILICpak 
VT-50 2D 

Shodex HILICpak 
VG-50 2D 

Separation mode 
 

HILIC RPLC RPLC HILIC HILIC HILIC HILIC HILIC 

Chemistry Zwitterionic, 
Charge 
modulated 
hydroxyethyl 
amide 

C18 C18 Dihydroxy-
propane 

Zwitterionic, 
Permanent 
positive charged 
modulated 
hydroxyethyl 
amide 
 

Zwitterionic, 
Charge 
modulated 
amide 

Quaternary 
ammonium 

Amino 

Solid support 
 

Silica Silica Silica Silica Silica Polymer Polymer (PVA) Polymer (PVA) 

Material 
 

Stainless steel Stainless steel Stainless steel Stainless steel Stainless steel PEEK PEEK PEEK 

Dimensions (mm) 
 

100 x 2.1 100 x 2.1 100 x 2.1 100 x 3.0 100 x 2.1 100 x 2.1 150 x 2.0 150 x 2.0 

Particle size (µm) 
 

1.8 1.8 1.8 3 1.8 5 5 5 

Pore size (Å) 
 

100 100 100 200 100 200 100 100 

Temperature (°C) 
 

30 30 30 30 30 30 30 30 
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Table 3.1 Continuation. 
 

Column A B C D E F G H 

Commercial name HILICON iHILIC-
Fusion UHPLC 

Waters 
ACQUITY UPLC 
HSS T3 

Waters 
ACQUITY UPLC 
HSS T3 

Phenomenex 
Luna HILIC 

HILICON iHILIC-
Fusion(+) UHPLC 

HILICON iHILIC-
Fusion(P) 

Shodex HILICpak 
VT-50 2D 

Shodex HILICpak 
VG-50 2D 

Flow rate (mL/min) 
 

0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Mobile phase A 
 

H2O H2O H2O H2O H2O H2O H2O H2O 

Mobile phase B ACN/MeOH 
(98/2, v/v) 
 

ACN ACN ACN/H2O (9/1, 
v/v) 

ACN/H2O (9/1, 
v/v) 

ACN/H2O (9/1, 
v/v) 

ACN/H2O (9/1, 
v/v) 

ACN/H2O (9/1, 
v/v) 

Modifier 10 mM 
HCOONH4+ 
0.1% (v/v) 
HCOOH (pH 3) 
(A) 
 

0.1% (v/v) 
HCOOH (pH 3) 
(A) + (B) 

0.003% (v/v) 
NH4OH (pH 8) 
(A) + (B) 

10 mM 
CH3COONH4 + 
NH4OH (pH 8) 
(A) 

10 mM 
CH3COONH4 + 
NH4OH (pH 9) 
(A) 

10 mM 
CH3COONH4 + 
NH4OH (pH 9) 
(A) 

10 mM 
CH3COONH4 + 
NH4OH (pH 9) 
(A) 

10 mM 
CH3COONH4 + 
NH4OH (pH 9) 
(A) 

Gradient Min - %B 
0 – 95 
2 – 95 
8 – 65 
13 – 25 
15 – 25 
17 – 95 
23 – 95 

Min - %B 
0 – 2 
1 – 2 
4 – 10 
6 – 35 
7.3 – 95 
9.3 – 95 
9.4 – 2 
12 – 2 
 

Min - %B 
0 – 2 
1 – 2 
4 – 10 
6 – 35 
7.3 – 95 
9.3 – 95 
9.4 – 2 
12 – 2 

Min - %B 
0 – 100 
2.5 – 100 
12 – 50 
17 – 50 
20 – 100 
30 - 90 

Min - %B 
0 – 90 
2 – 90 
12 – 10 
17 – 10 
20 – 90 
30 – 90 
 

Min - %B 
0 – 90 
2 – 90 
12 – 10 
17 – 10 
20 – 90 
30 - 90 

Min - %B 
0 – 90 
2 – 90 
12 – 10 
17 – 10 
20 – 90 
30 – 90 
 

Min - %B 
0 – 90 
2 – 90 
12 – 10 
17 – 10 
20 – 90 
30 – 90 
 

Void time (t0) (min) 0.7* 1.4** 
 

1.4** 2.5*** 1.1* 1.4* 1.9**** 1.9**** 

MS mode ESI+ ESI+ ESI- ESI- ESI- ESI- ESI- ESI- 
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A graphical representation of the stationary phases of the columns mentioned in Table 
3.1 is shown in Figure 3.2. 

 
Figure 3.2 Stationary phases of the columns used for screening. The text highlighted in red refers 
to polymer-based columns and the one in grey refers to silica-based columns. HILIC: Hydrophilic 
interaction liquid chromatography. PEEK: Polyether ether ketone. HSS: High strength silica. 

3.5.2. Liquid chromatography method optimization 
HILIC interactions are highly dependent on the used stationary phase, mobile phase 
composition and several other factors, such as temperature, gradient and flow rate 
(Dinh et al., 2011; McCalley, 2017; Sampsonidis et al., 2015). A decision tree 
optimization was chosen based on the influence of these factors in the following order: 
stationary phase > mobile phase pH and modifier > modifier concentration > additional 
parameters (temperature, gradient, flow) (Chirita et al., 2010; Ikegami, 2019). After the 
selection of the most suitable stationary phases, the solvent and pH effects were tested 
with ACN, MeOH or a combination of both as organic eluent and buffered H2O as 
aqueous eluent. LC-MS analysis was performed in both ESI (+) and ESI (-) modes. 
Generally, high pH values were tested to ionize compounds in ESI (-) mode and low pH 
values in ESI (+) mode. In the starting conditions in ESI (-) mode, (NH4)2CO3 was added 
to the aqueous mobile phase until the maximum tolerable pH value for each column. 
Following the recommendations of the manufacturer, a maximum pH ≈ 8 was tested for 
the Waters ACQUITY UPLC HSS T3 column and pH ≈ 9 for HILIC columns in ESI (-) mode. 
In ESI (+) mode, aqueous mobile phases were buffered with 10 mM of HCOONH4 and 
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0.1% HCOOH (pH ≈ 3.5). In addition, the effect of the pH was tested by injecting the 
mixture of panel standards at a basic pH with the above-mentioned restrictions, an 
acidic pH and neutral pH in both polarities, adjusting the pH with NH3(aq.), (NH4)2CO3 or 
HCOOH when necessary. Salt modifiers affect the eluent strength, causing a greater 
impact on columns with dominant ionic interactions (Buszewski & Noga, 2012). The 
modifier effect was tested using different modifiers, including CH3COONH4, HCOONH4 
and (NH4)2CO3 in ESI (-) mode and CH3COONH4, HCOONH4 in ESI (+) mode at different 
concentrations ranging from 1 mM to 30 mM.  
Gradient conditions in HILIC were optimized based on starting conditions of 95% organic 
phase, slowly decreasing to 20% at 10 min and keeping this condition for 4 min before 
returning to the initial conditions for a 5 min equilibration. In reversed-phase mode, 
starting conditions of 80% aqueous phase were slowly decreased to 15% at 8 min and 
kept at this condition for 5 min before returning to the initial conditions for a 5 min 
equilibration. Subsequently, the initial flow rate of 0.2 mL/min was increased to 0.25 
mL/min and 0.3 mL/min. Higher flows were avoided to not exceed the maximum 
tolerable backpressure for the used columns. The effect of the column temperature was 
tested in the range of 30 °C to 60 °C. For ESI (-) mode, the bypassing of certain metal 
parts, such as the heat exchanger, inline filter and MS diverter valve was tested to 
determine the effect on the detection of anionic compounds (Pesek et al., 2011; Soga 
et al., 2009). Due to the purpose of this work, the optimization was performed by 
changing chromatographic parameters one by one. The results of each method guided 
the next tier in the method optimization. A flow chart with the factors explored for 
method development is shown in Figure 3.3. Detailed information regarding tested LC 
conditions for each column and ionization mode is shown in Figure 3.4 to Figure 3.7. 
 

 
Figure 3.3 Method optimization flowchart. LC: Liquid chromatography. ACN: Acetonitrile. MeOH: 
Methanol. 
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Figure 3.4 Univariate factor optimization for reversed-phase liquid chromatography (RPLC) in 
positive electrospray ionization (ESI) mode. All shown percentages are based on the 
volume/volume ratio.  ACN: Acetonitrile. MeOH: Methanol. 
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Figure 3.5 Univariate factor optimization for hydrophilic interaction liquid chromatography 
(HILIC) in positive electrospray ionization (ESI) mode. All shown percentages are based on the 
volume/volume ratio. ACN: Acetonitrile. MeOH: Methanol. 
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Figure 3.6 Univariate factor optimization for reversed-phase liquid chromatography (RPLC) in 
negative electrospray ionization (ESI) mode. All shown percentages are based on the 
volume/volume ratio.  ACN: Acetonitrile. MeOH: Methanol. 
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Figure 3.7 Univariate factor optimization for hydrophilic interaction liquid chromatography 
(HILIC) in negative electrospray ionization (ESI) mode. All shown percentages are based on the 
volume/volume ratio. ACN: Acetonitrile. MeOH: Methanol. MS: Mass spectrometry. 

3.5.3. Data analysis of analytical standards 
The structure-based predictions for chemical properties and abundances of different 
ion forms at specific pH values were calculated using the online tool Chemicalize 
(ChemAxon, Hungary). The m/z values of common ESI adducts (i.e., [M+H]+, [M+NH4]+, 
[M+Na]+, [M-H2O+H]+, [M-H]−, [M-H2O-H]−, [M+HCOO]−, [M+CH3COO]−) were calculated 
for each compound using the Mass Spectrometry Adduct Calculator of Fiehn Lab (UC 
Davis) (Fiehn Lab, 2020). To obtain reliable, high-quality results and avoid peak 
misidentification, individual chromatograms originating from standard mixtures were 
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manually extracted using a 5 ppm mass tolerance in MassHunter Qualitative Software 
10.0 (Agilent Technologies). Each adduct ion of the standards was inspected in three 
instrumental replicates. To eliminate false positive results, ion chromatograms were 
compared to solvent blanks and the isotopic distribution of each adduct was 
investigated by manually comparing the experimentally obtained distribution in 
MassHunter Qualitative Software 10.0 with the theoretical distribution, calculated with 
the Isotope Distribution Calculator B7024.0 (Agilent Technologies).  
For ESI (-) mode, ions were extracted for deprotonated ions and chloride adducts. 
Depending on the mobile phase composition, carbonate, formate and/or acetate 
adducts were additionally considered. For ESI (+) mode, ions were extracted for 
protonated, sodium and potassium adducts. Likewise, depending on mobile phase 
modifiers, ammonium adducts were additionally considered. Neutral losses were 
investigated depending on the compound class, for instance, water and carbon dioxide 
losses for compounds with a carboxylic acid function or phosphate loss for compounds 
with a phosphate group (Levsen et al., 2007).  
During column screening and method optimization experiments, the best signal was 
selected out of the different detected adducts by applying a scoring system to evaluate 
the peak shape, retention time and peak intensity for each analytical panel standard, as 
explained in Table 3.2. The scores were calculated according to Equation 3.1 per 
analytical panel standard and per method. Similar strategies were previously applied to 
evaluate different LC-MS conditions by assigning individual scores to metabolites and 
combining the values (Pezzatti et al., 2019). This highlights the applicability of the 
scoring system to the analytical method development and evaluation of untargeted 
methods. Eluting compounds were confirmed by comparison of their MS/MS 
fragmentation spectra with MassHunter METLIN Metabolite PCDL (Agilent 
Technologies). 
  
Table 3.2 Scoring system to evaluate peak shape, peak intensity and retention time. The scoring 
system was used for each analytical panel standard to guide the choice of LC column and the 
method optimization. FWHM: Full width at half maximum. S/N: Signal-to-noise ratio. RT: 
Retention time. 
 

 Peak shape score  Peak intensity score  Retention time score 

0 No peak 0 S/N < 3 0 No peak 
1 Multiple peaks* 1 3 ≤ S/N < 10 1 RT = 1 to 1.1t0 
2 Single peak with FWHM ≥ 0.2 and/or  

tailing factor ≥ 2 or ≤ 0.8 
2 10 ≤ S/N ≤ 50 2 RT > 1.1t0 

3 single peak with FWHM < 0.2 and  
tailing factor < 2 and > 0.8 

3 S/N > 50   

*Multiple peaks refer to splitted peaks and/or peaks with multiple retention, which can occur when the mobile phase 
conditions are at the iso-electric point of zwitterions under investigation.  
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Equation 3.1 Quality score equation based on the quality score sum of Table 3.2. 
 
3.5.4. Data analysis of biological samples 
During data acquisition of each dataset of biological samples, the injection order was 
randomized, and the QC sample was injected six times at regular intervals. Data 
acquired in profile mode was centroided using the vendor’s algorithm and converted to 
mzML format with MSConvert (Holman et al., 2014). The converted files were exported 
to R (R Core Team, 2018). Untargeted data of biological samples was pre-processed with 
XCMS 3.11 and feature quality was inspected with the MetaboMeeSeeks package in R 
(Beirnaert, Peeters, et al., 2019; Smith et al., 2006). Internal standards were inspected 
for intensity, area, mass accuracy and peak width in order to guide the choice of XCMS 
parameters. Peak picking was performed using CentWave with a peak width ranging 
from 5 to 60 s for HILIC-MS ESI (-) mode and 5 to 30 s for HILIC-MS ESI (+) mode, 
maximum tolerated mass error of 20 ppm, minimum difference in m/z of 0.01 for peaks 
with the same retention time, S/N threshold equal to 5 and noise set to 500 based on 
the noise signal of the Agilent 6530 QTOF. Alignment was performed with the Orbiwarp 
algorithm using a pooled QC as center sample. Features were grouped with the 
PeakDensity algorithm, followed by integration of missing peaks with chromatogram 
filling. Subsequently, blank filtration (fold change of 3) was performed with the 
BlankCheckR function of the MetaboMeeSeeks package. Features showing MS/MS 
spectra were annotated by comparison of accurate mass, retention time and MS/MS 
fragmentation with in-house libraries, using MS-DIAL (v.4.24) with the All Public MS/MS 
library (v.15) for ESI (+) and (-) modes (Tsugawa et al., 2015), HMDB (Wishart et al., 
2022) and METLIN (Smith et al., 2005a). Annotated features assigned with a level 1 or 2 
confirmation according to the recommendations of Schymanski et al., were considered 
in detail (Schymanski et al., 2014). A general overview of the method performance was 
illustrated through the numbers and chromatographic distribution of detected features, 
in combination with their respective data quality represented by their peak width and 
relative standard deviation. 
 

3.6. Results and discussion 
3.6.1. Screening of LC columns 
The selection of the appropriate LC column is a critical step in the method development 
of LC-MS based metabolomics platforms. The tested columns in this study varied in 
terms of the chemistry of the stationary phase and the column dimensions. For this 
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latter reason, the columns were not compared based on their full potential, which 
would require the use of hydrodynamics equations for comparison and in-depth 
evaluation of kinetic parameters (Desmet et al., 2005), but rather on the results 
obtained during a first screening experiment (cf. infra) based on the column chemistry 
in the scope of further method optimization. The main goal of this latter optimization 
was to study the effect of different LC parameters (e.g., mobile phase composition, type 
of modifier,…) on the retention mechanisms of polar metabolites in combination with 
MS analysis. 
The stationary phase of the iHILIC-Fusion column contains negatively charged sulfate 
and phosphate groups, and a charged quaternary amine, resulting in a slightly negative 
net surface charge. For this reason, this column was only used in ESI (+) mode, since 
anionic compounds, such as organic acids, are not expected to be retained efficiently 
on this stationary phase due to repulsive effects. The opposite applies for the iHILIC-
Fusion(+) column, which was tested only in ESI (-) mode due to its permanent positive 
net surface charge which would repel protonated basic metabolites (Cuykx, Negreira, et 
al., 2017; Greco & Letzel, 2013; Vosse et al., 2018). The iHILIC-Fusion(P) column was 
tested in ESI (-) mode due to its polymeric material stable at high pH (≈ 10), which might 
improve the retention and ionization of acidic metabolites. 
Figure 3.8 summarizes the panel of analytical standards used for the column screening 
with their summed scores based on peak shape, intensity and retention time. Using the 
ACQUITY HSS T3 column, 34% of detected analytes eluted close to the void time (t0 ≤ RT 
≤ 1.1 t0) in ESI (-) mode. For the HILIC methods, there were no analytical standards 
eluting close to the void time, highlighting the applicability of HILIC for the retention 
and separation of polar compounds.  
The number of detected analytes was dependent on the used LC column and ionization 
mode. In ESI (-) mode, the percentage of detected compounds varied between 40% for 
HILICpak VT-50 2D and 84% for iHILIC-Fusion(P), while in ESI (+) mode, the percentage 
varied between 55% for ACQUITY HSS T3 and 63% for iHILIC-Fusion. The limited 
detection rate can be explained by the wide range of different properties of the analytes 
and the need of ionization before MS detection, since some metabolites are more easily 
converted to cations than anions (e.g., carnitines), while the opposite applies for other 
metabolites such as organic acids. Detailed results can be found in Table 3.3. 
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Figure 3.8 Heatmap showing the coverage of the standard mixture during column screening and 
acquisition with the final optimized methods. Scores are based on peak shape, peak intensity 
and retention time. The higher the score, the better the peak quality. Note that the Luna, VG-50 
and VT-50 column were only used during the column screening experiment. Column’s legend: 
Fusion: iHILIC-Fusion, HSST3: ACQUITY UPLC HSS T3, Luna: Luna HILIC, VG-50: HILICpak VG-50 
2D, VT-50: HILICpak VT-50 2D, Fusion(+): iHILIC-Fusion(+),Fusion(P): iHILIC-Fusion(P). HILIC: 
Hydrophilic interaction liquid chromatography. RPLC: Reversed-phase liquid chromatography. 
SAM: S-adenosyl-L-methionine. NADH: Nicotinamide adenine dinucleotide. β-NADPH: β-
Nicotinamide adenine dinucleotide phosphate. 
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Table 3.3 Percentage of analytical panel standards detected using different LC-columns during 
column screening experiments. Details on the used columns and methods can be found in Table 
3.1. HILIC: Hydrophilic interaction liquid chromatography. U(H)PLC: Ultra (high) performance 
liquid chromatography. HSS: High strength silica. RPLC: Reversed-phase liquid chromatography. 
ESI: Electrospray ionization. 
 

Column A B C D E F G H 

Commercial 
name 

HILICON 
iHILIC-
Fusion 
UHPLC 

Waters 
ACQUITY 
UPLC 
HSS T3 

Waters 
ACQUITY 
UPLC 
HSS T3 

Phenomenex 
Luna HILIC 

HILICON 
iHILIC-
Fusion 
(+) 
UHPLC 

HILICON 
iHILIC-
Fusion(P) 

Shodex 
HILICpak 
VT-50 
2D 

Shodex 
HILICpak 
VG-50 
2D 

Separation 
mode 
 

HILIC RPLC RPLC HILIC HILIC HILIC HILIC HILIC 

MS mode 
 

ESI+ ESI+ ESI- ESI- ESI- ESI- ESI- ESI- 

%detected 
standards 
 

63 55 71 60 53 84 40 60 

Summed 
quality score 

270 196 261 221 225 342 152 250 

 
The ACQUITY HSS T3 column showed a substantial degree of co-elution between 1.5-4 
minutes, both in ESI (+) and (-) modes. Broad peaks were observed, especially for basic 
compounds, due to secondary interactions with residual silanol groups of the stationary 
phase. The HILICpak VG-50 2D column showed good separation for most analytes, but 
broad peaks for amino acids e.g., L-aspartic acid and L-histidine, while some small 
organic acids, such as fumaric acid and maleic acid, could not be detected. Both the Luna 
HILIC column and the HILICpak VT-50 2D column showed a poor quality for eluting panel 
standards with substantial tailing. For example, L-arginine, L-aspartic acid, L-histidine 
and quinolinic acid had a peak tail of over four minutes using the Luna HILIC column. 
Broad peak shapes are a common issue in HILIC mode, due to the complex interactions 
such as proton donor and/or acceptor interactions. In addition, significant tailing for 
positively charged metabolites can be induced by their adsorption on the negatively 
charged silica. This effect can be anticipated through adjustment of the eluent strength 
according to the type of interaction of the stationary phase; or by using polymeric 
columns. During the column screening, the iHILIC-Fusion(+) and iHILIC-Fusion showed 
the least tailing.  
The interaction mechanisms in HILIC, especially zwitterionic columns, are extremely 
diverse. They involve physical, intermolecular and chemical interactions between 
analyte and eluent and analyte and stationary phase (Buszewski & Noga, 2012). Due to 
the complementarity of ESI (+) and (-) modes, some compounds were only detected in 
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ESI (+) mode (e.g., acylcarnitines, caffeine) and others only in ESI (-) mode (e.g., small 
organic acids, nucleotides). Based on the summed quality scores, the number of 
detected standards and the method complementarity showed in Figure 3.8, the iHILIC-
Fusion (ESI (+) mode), ACQUITY UPLC HSS T3 (ESI (+) and (-) mode), iHILIC-Fusion(+) (ESI 
(-) mode) and iHILIC-Fusion(P) (ESI (-) mode) were selected for further method 
optimization.  

3.6.2. Method optimization for selected columns 
Full factorial designs are extremely useful to investigate the main effects on the 
response, covering all possible combinations of the investigated factors at the selected 
levels. However, a decision tree-based univariate method optimization was chosen due 
to its time-saving properties and straightforward interpretation compared to a multiple-
response full factorial approach.  Furthermore, the factors that most significantly affect 
analysis were already known (i.e., solvent polarity and pH). In comparison, 
approximately 10 to 40 standard injections were needed with each LC column using the 
knowledge-based univariate method optimization, while a full-factorial design with 6 
factors at only 3 levels (36) would correspond with 729 standard injections per LC 
column resulting in approximately 292 hours of data acquisition per column (not 
including blank injections, replicates, column equilibration and cleaning). Response 
surface designs were also considered, but due to the number of factors to be considered 
(> 4), lack of information about quadratic effects, and the exploratory goal of this work, 
the decision tree was still more adequate. The decision tree procedure allowed to 
change the chromatographic settings based on metabolite-stationary phase-mobile 
phase interactions in real time. In addition, this approach assisted in the decision to stop 
the optimization for one given column at a certain moment, allowing more time to 
optimize methods for more promising columns, when results are more dependent on 
the column chemistry than on the chromatographic settings. The results of iHILIC-Fusion 
(ESI (+) mode), ACQUITY UPLC HSS T3 (ESI (+) and (-) mode), iHILIC-Fusion (+) (ESI (-) 
mode) and iHILIC-Fusion(P) (ESI (-) mode) after optimization are shown in Figure 3.8. 
Based on these results, two zwitterionic columns were selected as the best fit for polar 
metabolites, the iHILIC-Fusion(P) in ESI (-) mode and the iHILIC-Fusion in ESI (+) mode 
(Figure 3.9). The effect of different factors, such as solvent, modifiers and temperature, 
is discussed in detail for the columns selected for the final methods in the following 
paragraphs. The results of the method optimization for the iHILIC-Fusion(+) column and 
RPLC column can be consulted in the supplementary information of this chapter (3.8.2. 
and 3.8.3.). 
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Figure 3.9 Circular heatmap showing the coverage of the standard mixture with the final 
optimized methods. Positive ionization mode is shown in a blue based color pallet and negative 
mode in a green based color pallet. The darker the color, the higher the summed score quality 
based on peak shape, intensity and retention time ranging from 0 to 8. Abbreviations: SAM: S-
adenosyl-L-methionine. NADH: Nicotinamide adenine dinucleotide. β-NADPH: β-Nicotinamide 
adenine dinucleotide phosphate. 

3.6.2.1. Mobile phase solvent composition 
Using the iHILIC-Fusion column in ESI (+) mode, a buffered aqueous mobile phase A 
(0.1% (v/v) HCOOH + 10 mM HCOONH4, pH 3.5) was initially combined with ACN as 
mobile phase B. The addition of 10% (v/v) MeOH to mobile phase A slightly increased 
the summed quality score, increasing retention and slightly increasing the intensity of 
the chromatographic peaks. Longer retention times can be explained by the lower 
elutropic strength of MeOH compared to H2O, while higher intensities are observed due 
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to a higher ionization efficiency. Addition of 5% (v/v) MeOH to mobile phase B 
decreased the summed quality score by 8%. This latter decrease in quality score was 
mainly due to a deteriorated peak shape of some amino acids, such as L-arginine, L-
leucine and L-isoleucine. In addition, most analytes showed a slightly earlier retention 
time when MeOH was added to mobile phase B, due to the higher elutropic strength of 
MeOH, compared to ACN (Buszewski & Noga, 2012). By adding MeOH to the mobile 
phase A and B, the summed quality score decreased further by 14%. Next to the 
deteriorated peak shape for the previously mentioned amino acids, a similar effect was 
observed for nucleosides, such as adenosine and inosine. 
For the iHILIC-Fusion(P) in ESI (-) mode, H2O with 5 mM (NH4)2CO3 (pH 8.7) was initially 
used as mobile phase A and ACN as mobile phase B. The addition of 10% (v/v) MeOH to 
mobile phase B and addition of 20% (v/v) MeOH to mobile phase A caused a decrease 
of the summed quality score of 14% and 10% respectively. The addition of MeOH to 
both mobile phase A and B decreased the summed quality score by 19%. The addition 
of MeOH to mobile phase B mainly influenced the start of the run, due to the applied 
HILIC gradient, starting at a composition with a high organic content. MeOH caused peak 
splitting for peptides, such as leucin enkephalin and methionine enkephalin and tailing 
for amino acids (e.g., L-threonine) and small peptides (e.g., glycyl-L-tyrosine). The peak 
shape deterioration could partly be explained by the mismatch of mobile phase and 
sample solvent, which could be solved by changing the reconstitution solvent. In 
addition, alcohols such as MeOH can compete for active polar sites on the stationary 
surface and analytes, forming hydrogen bonding interactions and interfering with the 
retention mechanisms. After all, polar protic solvents can be both donors and acceptors 
of hydrogen bonds, while aprotic solvents, such as ACN, can be only hydrogen bond 
acceptors. Hydrogen-bonding interactions between MeOH and analytes may introduce 
extra resonance structures and cause broad or tailing peaks (Hao et al., 2008). A 
decrease in the intensity of several panel standards was observed when MeOH was 
added to the mobile phase. The decrease was especially significant for organic acids and 
amino acids. L-serine and phosphocreatine were not detected, since the S/N ratio of 
their corresponding signal dropped below 3. The decrease in peak intensity could be 
caused by a lower ionization efficiency, due to the higher content of MeOH. In 
comparison to MeOH, ACN has a lower viscosity, facilitating a higher ionization 
efficiency in ESI due to production of finer droplets (Yanes et al., 2011). In addition, the 
retention time of most panel standards was reduced slightly, due to the stronger 
elutropic strength of MeOH compared to ACN and to the MeOH-induced decrease of 
the polarity of the dynamically immobilized aqueous layer on the stationary phase, 
impeding the retention of polar compounds (Hao et al., 2008). Using MeOH in both 
mobile phase A and B, no improvement was observed in peak shape or intensity for a 
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single panel standard. In addition, peak shape deterioration, such as tailing and peak 
splitting, was observed for several panel standards. The decrease in intensity of organic 
acids and amino acids became more intense with an increasing content of MeOH. 
 
3.6.2.2. Mobile phase pH and modifiers 
A significant number of metabolites in important metabolic pathways are ionizable 
compounds, such as amino acids and TCA cycle intermediates. Salts present in the 
mobile phase, such as ammonium acetate, can precipitate in some organic-aqueous 
compositions, depending on their solubility and concentration, causing drastic damage 
to mass spectrometers (Schellinger & Carr, 2004). Therefore, the concentration of salts 
and its combination with organic solvents during the chromatographic run were taken 
into account during the development of the methods.  
Using the iHILIC-Fusion in ESI (+) mode, the aqueous mobile phase was firstly modified 
with 0.1% HCOOH in H2O/MeOH (9/1, v/v). The addition of 10 mM of HCOONH4 
increased the total summed quality score by 20%, reducing peak splitting for 
compounds such as 3-OH-DL-kynurenine, maltose, fructose and other panel standards 
with hydroxyl groups. This can be explained by the stationary phase of iHILIC-Fusion 
which contains hydrogen bond acceptors (S=O and P=O) and buffering with HCOONH4 
can affect hydrogen bond interactions positively. However, an increase in its 
concentration to 20 and 30 mM did not improve the total score, on the contrary, the 
peak shape score decreased by 30% and 35%, respectively. Additionally, an aqueous 
mobile phase (0.1% of CH3COOH in H2O) in ESI (+) mode was buffered with CH3COONH4 
with concentrations ranging from 10-30 mM and pH 4.6-5. The use of CH3COONH4 
decreased the quality score by approximately 19%, due to the increase of alkalinity of 
the mobile phase which can deprotonate acidic compounds. The iHILIC-Fusion column 
has a net charge varying between 0 and -1 depending on the pH of the mobile phase. A 
negative net charge can cause repulsive interaction between deprotonated compounds 
and the stationary phase, which can explain the poor peak shape at pH > 4. Therefore, 
10 mM HCOONH4 with 0.1% HCOOH (v/v) at pH 3.5 was chosen to proceed as the buffer 
solution in ESI (+) mode.  
Using the iHILIC-Fusion(P) in ESI (-) mode, the starting conditions included a mobile 
phase A at pH 8.7, pH 7.6 or pH 2.9, adjusted with NH3(aq.) and HCOOH. The acidic pH 
resulted in a 34% decrease of the total summed quality score, in contrast with the 
results for pH 7.6, where the quality score increased by 10%. The effect at low pH can 
be explained by the protons in the mobile phase that can protonate anionic compounds, 
giving them a more hydrophobic character, reducing the interactions with the iHILIC-
Fusion(P) column. At low pH, the intensity score decreased, especially for L-valine and 
L-phenylalanine that would be positively charged. They were not detected due to poor 
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ionization efficiency in ESI (-) mode at acidic pH. The addition of 2 mM of (NH4)2CO3 to 
the mobile phase (pH 8.4) increased the total score by 20%, since it keeps a more stable 
pH over injections compared to NH3, due to a lower volatility. Different modifiers 
(HCOONH4, CH3COONH4) and concentrations (2-10 mM) were tested. Higher 
concentrations of modifiers are generally used to increase the polar eluent strength and 
improve the peak shape, but it also can suppress the electrostatic interactions by 
titrating the stationary phase ions (Chirita et al., 2010; Jiang et al., 2006). Anionic 
compounds, especially organic acids could benefit from higher concentrations of buffers 
to decrease repulsive effects with the column stationary phase which has a net charge 
varying between 0 and -1. However, chromatographic runs tested with higher amounts 
of salts in the mobile phase (>20 mM) caused significant signal decrease over 
approximately ten injections. The combination of 2 mM CH3COONH4 and 2 mM 
(NH4)2CO3 as mobile phase A and ACN as mobile phase B showed the highest total 
quality score with a chromatographic signal for 85% of the analyzed panel standards. 
After optimization of the pH and the modifier concentration, additional analytical runs 
were performed using 10% (v/v) MeOH in mobile phase B. Addition of MeOH enabled 
the detection of a higher number of organic acids with a better peak shape. The summed 
quality score increased by 16%, highlighting the complexity of interactions between the 
chosen modifier and mobile phase and its influence on retention of analytes. Most 
undetected compounds, such as caffeine and acylcarnitines, could be detected in ESI (+) 
mode, pointing out the power of method complementarity. 
 
3.6.2.3. Column temperature 
Column temperature is an important parameter to optimize because of its influence on 
mobile phase viscosity, analyte diffusivity and amount of energy for the analyte 
partitioning between the mobile phase and the aqueous layer on the stationary phase 
within HILIC (Letzel, 2019).  
In ESI (+) mode, no significant differences were observed when the column temperature 
was increased from 30 °C to 40 °C. However, the summed quality score increased slightly 
at 50 °C and 60 °C with 3% and 4%, respectively. The increase in the temperature 
reduced tailing and FWHM for amino acids, sugars, and small chain acylcarnitines. This 
latter effect can be explained by the temperature induced increase of the diffusion 
coefficient, resulting in narrower peaks (Hao et al., 2008). Additionally, butyric acid was 
only detected using a high column temperature of 50 °C or above, which might be due 
to enhancement of electrostatic interactions between the anion and the charged 
stationary phase at higher temperatures (Letzel, 2019). No significant differences were 
observed regarding signal intensity.  
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Increasing temperature can decrease the retention time of neutral molecules due to the 
exothermic nature of partitioning of analytes between the organic mobile phase with a 
high ACN content and the hydrophilic aqueous layer. For charged analytes separated on 
a charged surface, a temperature increase can result in stronger retention due to strong 
electrostatic interactions. Depending on the analyte and the contribution of partitioning 
or electrostatic interactions, column temperature could change the elution order and 
selectivity (Hao et al., 2008; Letzel, 2019). For the zwitterionic iHILIC-Fusion column in 
ESI (+) mode, the retention of the panel standards was more or less independent of 
temperature, with a negligible median reduction in retention time of 0.06 min at 60 °C. 
This behavior suggests a low enthalpic contribution and a high entropic contribution to 
the retention.  
In ESI (-) mode, elevating the column temperature from 30 °C to 40 °C, 50 °C and 60 °C 
increased the summed quality score slightly by 2%, 4%, and 1%, respectively. As with 
the iHILIC-Fusion in ESI (+) mode, no significant temperature dependent differences 
were observed regarding signal intensity and the peak shape improved with increasing 
temperature. However, a column temperature of 60 °C caused peak splitting for several 
organic acids, such as pyruvic acid, L-ascorbic acid and α-ketoglutaric acid and fronting 
for kynurenic acid. These latter effects were not observed at lower temperatures and 
were reproducible. The true reason behind the peak shape deterioration of organic 
acids is unknown but might be affected by the lower thermal conductivity of the PEEK 
column material compared to stainless steel. At high temperatures, the lower thermal 
conductivity might cause a temperature gradient within the column, causing peak shape 
deterioration. Increasing the column temperature from 30 °C to 60 °C slightly shortened 
the retention time for the panel standards with a median reduction of 0.1 min. The 
decrease in retention time showed a maximum at 0.46 min. Based on the column 
temperature experiment, 50 °C was selected as optimal temperature.  
In addition, the method using a temperature of 50 °C was compared to the same 
method at room temperature (25 °C), bypassing the heat exchanger and/or the inline 
filter and MS diverter valve. Bypassing the heat exchanger decreased the summed peak 
shape score by 10% but increased the summed intensity score by 7%. Bypassing the 
heat exchanger, inline filter and MS diverter valve decreased the summed peak shape 
score further by 16% and increased the summed intensity score with 12%. For example, 
for carbamoyl phosphate and ⍺-ketoglutaric acid, the S/N value increased with 103% 
and 121%, respectively, when the heat exchanger was bypassed and with 135% and 
162% when the heat exchanger, inline filter and MS diverter valve were bypassed. 
Bypassing the heat exchanger did negatively impact the peak shape through elimination 
of the increased diffusion coefficients induced by high column temperatures. This latter 
effect was seen as e.g., tailing for some amino acids (L-tryptophan, L-serine) and L-
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carnitine. The rationale behind the bypassing of the heat exchanger, inline filter and MS 
diverter valve was based on the chelating interaction of anionic metabolites, such as 
carboxylic acids and phosphorylated anions with trace metals from the concerned 
hardware, resulting in a negative impact on the peak shape and lower peak intensities 
impairing sensitivity (Pesek et al., 2011; Soga et al., 2009). For the same reason, a 
polyether ether ketone (PEEK) iHILIC-Fusion(P) column was used instead of a stainless 
steel column. Alternatively, addition of a strong metal chelator such as EDTA as a mobile 
phase additive could enhance the detection of acidic metabolites and phosphorylated 
analytes. However, EDTA is highly ionizable and can cause substantial ion suppression 
(Pesek et al., 2011). Based on the results of the temperature experiment, bypassing the 
heat exchanger at room temperature was selected for the final method due to the 
sensitivity improvement. Despite the higher signal intensities acquired when the heat 
exchanger, inline filter and MS diverter valve were bypassed, the inline filter and MS 
diverter valve were retained in the method in order to avoid system contamination 
during analysis of complex biological samples. 
 
3.6.2.4. Gradient and flow 
Several gradients were tested to result in an evenly distribution of the analytical panel 
standards in the retention time dimension. Generic HILIC gradients started with a high 
amount of organic solvent, which was kept for 1-4 min depending on the column length, 
followed by a gradual increase in the amount of polar solvent (water) to a maximum of 
80%. The re-equilibration step is crucial for HILIC columns to allow its return to the initial 
layer conditions in the entire column. The generic and optimized gradients are described 
in Table 3.1 and Table 3.4, respectively.  
In parallel with gradient optimization, flow rates of 0.20–0.30 mL/min were tested; 
higher flow rates were not considered taking maximal tolerable backpressures into 
account. For the iHILIC-Fusion(P) and the iHILIC-Fusion column, flow rates of 0.20 
mL/min and 0.25 mL/min were selected respectively, based on the balance between 
analytical speed and chromatographic resolution, which increased and decreased 
respectively when higher flow rates were applied. The larger decrease of 
chromatographic resolution with increasing flow rate for the iHILIC-Fusion(P) column 
compared to the iHILIC-Fusion column can be explained by the smaller particle size of 
the latter.
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Table 3.4 Final liquid chromatography conditions obtained after method optimization. U(H)PLC: Ultra (high) performance liquid chromatography. 
HSS: High strength silica. HILIC: Hydrophilic interaction liquid chromatography. ACN: Acetonitrile. MeOH: Methanol. MS: Mass spectrometry. ESI: 
Electrospray ionization. 
 

Column A B C E F 

Commercial name HILICON iHILIC-Fusion 
UHPLC  
(100 x 2.1 mm; 1.8 µm) 

Waters ACQUITY UPLC HSS 
T3 
(100 x 2.1 mm; 1.8 µm) 

Waters ACQUITY UPLC HSS 
T3 
(100 x 2.1 mm; 1.8 µm) 

HILICON iHILIC-Fusion(+) 
UHPLC 
(100 x 2.1 mm; 1.8 µm) 

HILICON iHILIC-Fusion(P) 
(100 x 2.1 mm; 5 µm) 

Temperature (°C) 
 

60 30 30 30 25, bypassing heat 
exchanger 
 

Flow rate (mL/min) 
 

0.25 0.20 0.20 0.20 0.20 

Mobile phase A 
 

H2O/ MeOH (9/1, v/v) H2O H2O H2O H2O 

Mobile phase B 
 

ACN MeOH ACN ACN ACN/MeOH (9/1, v/v) 

Modifier mobile phase A 10 mM HCOONH4 + 0.1% 
(v/v) HCOOH  
(pH 3.5) 
 

10 mM CH3COONH4+ 0.1% 
(v/v) CH3COOH (v/v) 
 (pH 4.5) 

5 mM CH3COONH4 + 
0.33%(v/v) NH3(aq.) (pH 7.2) 

0.1% (v/v) HCOOH  
(pH 2.9) 

2 mM (NH4)2CO3 + 2 mM 
CH3COONH4 

(pH 8.4) 

Gradient Min - %B 
0 – 95 
4 – 95 
12.5 – 60 
20 – 60 
21 – 95 
26 – 95 
 

Min - %B 
0 – 20 
4 – 20 
8 – 85 
14 – 85 
15 – 20 
20 – 20 

Min - %B 
0 – 5 
0.5 – 5 
10 – 90 
12 – 90 
12.1 – 5 
15 – 5 

Min - %B 
0 – 95 
1 – 95 
10 – 20 
14 – 20 
15 – 95 
20 – 95 

Min - %B 
0 – 95 
1 – 95 
10 – 20 
14 – 20 
15 – 95 
20 – 95 

MS mode ESI+ ESI+ ESI- ESI- ESI- 
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3.6.3. Optimized methods 
The optimized methods, which are described in Table 3.4, increased the number of 
detected analytes and the overall quality score of chromatographic peaks compared to 
the column screening experiment (Figure 3.8). In ESI (+) mode, the optimized methods 
enabled the detection of 14 and 3 additional panel standards, using the iHILIC-Fusion 
and the ACQUITY HSS T3 column respectively. In addition, the quality score increased 
with 46% and 32% respectively. In ESI (-) mode, the optimized methods enabled the 
detection of 9, 19 and 11 additional panel standards, using the iHILIC-Fusion(P), the 
iHILIC-Fusion(+) and the ACQUITY HSS T3 column respectively, while the quality score 
increased with 20%, 58% and 21% respectively. The circular heatmap in Figure 3.9 shows 
the coverage of the standard mixture using the final two methods, which are described 
in Table 3.4 in column A and F. Using the iHILIC-Fusion(P) column in ESI (-) mode, 80 out 
of 85 panel standards could be separated and detected, while using the iHILIC-Fusion 
column in ESI (+) mode, 73 standards could be separated and detected. Combining both 
ionization modes, 84 out of 85 panel standards could be separated and detected, 
highlighting the complementarity of ESI (+) and (-) ionization modes. The method using 
ESI (-) mode clearly showed better results for organic acids, such as lactic acid, fumaric 
acid and L-ascorbic acid, which were undetected in ESI (+) mode. On the other hand, the 
method using ESI (+) mode enabled the separation and detection of acylcarnitines, such 
as trans-2-octanoyl-L-carnitine, and amine oxides, such as trimethylamine N-oxide, 
which were undetected by ESI (-) mode. Succinyl-co-enzyme A was the only standard 
which was undetected using either method. A single standard of succinyl-co-enzyme A 
was prepared in a concentration of 1 µg/mL. Subsequent analysis showed the presence 
of co-enzyme A, suggesting degradation of succinyl-co-enzyme A, which could be caused 
by compound hydrolysis (Wagner et al., 2017).  
Figure 3.10 shows chromatographic peak shapes for metabolites from various metabolic 
classes using the final two selected methods. For the optimized method applying the 
iHILIC-Fusion(P) column in ESI (-) mode, kynurenic acid has a negative charge at the 
alkaline pH of the mobile phase. Consequently, negatively charged compounds showed 
short retention time due to repulsive effects with the stationary phase. Amino acids 
such as L-isoleucine, L-leucine and L-lysine are zwitterionic at the mobile phase pH ≈ 8, 
thus their quadrupolar electrostatic interactions with the stationary phase became 
significant. An increasing number of nitrogen atoms in zwitterionic amino acids resulted 
in an increased retention. As a result, the retention time of L-lysine was approximately 
10 min longer than the retention time of L-leucine. Neutral compounds, such as 
guanine, showed retention mechanisms based on hydrogen bond interactions and 
hydrophilic partition, eluting close to the region of most amino acids.  
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Figure 3.10 Extracted ion chromatograms of panel standards from various metabolic classes. The 
standards were separated and detected using the optimized methods in negative ionization 
mode (left) and positive ionization mode (right).  

Using the optimized method with the iHILIC-Fusion column in ESI (+) mode, the acidic 
mobile phase conditions caused nicotinic acid to be neutral or partially positively 
charged, showing stronger interactions with the stationary phase and a better peak 
shape compared to the alkaline conditions using the iHILIC-Fusion(P) in ESI (-) mode. 
Trimethylamine N-oxide and isovaleryl-L-carnitine are positively charged compounds at 
low pH, thus ion exchange mechanisms will be dominant. In addition, the higher the 
carbon chain, the shorter the retention time due to hydrophobicity, for instance, 
butyryl-L-carnitine eluted approximately 1 min after isovaleryl-L-carnitine. Additional 
chromatograms for all optimized methods can be consulted in the supplementary 
information (Figure SI-3.1 and Figure SI-3.2). 

3.6.4. Untargeted analysis of biological samples 
Biological matrices containing high amounts of salts (e.g., urine and cellular extracts) 
and high amounts of lipids (e.g., plasma) were analyzed in order to test the analytical 
performance and the coverage of small polar metabolites with key biological functions. 
The precision of the dataset was defined by calculating the relative standard deviation 
(RSD) of the intensity of the features in each matrix and for each ionization mode (Figure 
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3.11). The median RSD (mRSD) is often used to evaluate the overall quality of the 
features for untargeted data analysis (Cuykx, Negreira, et al., 2017). The mRSD of the 
QC pooled samples in Figure 3.11 was used to assess the repeatability of the analytical 
method in the matrices.  
 

 
Figure 3.11 Boxplot with relative standard deviation (RSD) for QC pooled of in vitro (HepaRG EC 
and IC extracts) and in vivo (human plasma and urine) samples. mRSD: Median relative standard 
deviation. ESI: Electrospray ionization. 

The mRSD of the six analytical replicates of the pooled QC sample was 15.2% for 
extracellular extracts of HepaRG cells (HepaRG EC) in ESI (+) mode and 16.7% in ESI (-) 
mode. For intracellular extracts (HepaRG IC), the mRSD was approximately 16.0% for 
both ionization modes. For urine, the mRSDs were 23.2% in ESI (+) mode and 11.6% in 
ESI (-) mode while 12.1% and 11.3% for plasma in ESI (+) and ESI (-) modes, respectively. 
Relative standard deviations values below 30% define a high-quality dataset for 
untargeted analysis which reflects a good method stability over runs with different 
matrices (Cuykx, Negreira, et al., 2017; Naz et al., 2014). The number of features in the 
QC pooled sample after blank subtraction were always higher in ESI (+) mode compared 
to ESI (-) mode. For HepaRG IC, HepaRG EC, plasma and urine, the number of detected 
features amounted 3652, 2570, 3565 and 3178 respectively in ESI (+) mode, while 1749, 
1622, 917 and 577 features were detected in ESI (-) mode. In addition to mRSD and 
number of features, data-dependent (auto-MS/MS) acquisition was included during the 
analysis of each matrix to support annotations. 
Features with available MS/MS spectra were matched against METLIN, MS-DIAL and 
HMDB databases. Urine samples showed the highest number of matches with polar 
metabolites. As a proof of concept, in urine samples, 90 compounds were identified at 
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identification level 1 or 2, including metabolites such as adenosine, L-proline, citric acid, 
taurine, uric acid, L-glutamine, estrone and a small number of exogenous compounds, 
such as bisphenol A, caffeine and vanillin.  
In intra- and extracellular extracts of HepaRG cells, several amino acids, acylcarnitines 
and organic acids were identified, but no exogenous compounds. This was expected 
based on the origin of the samples and highlights a rigorous sample preparation and 
column cleaning, avoiding cross-contamination. 
For plasma samples, in addition to amino acids such as L-tyrosine, L-proline, L-histidine, 
some phospholipids were detected, such as lysophosphatidylcholine 18:2 and 
lysophosphatidylethanolamine 18:1. This demonstrates that the sample preparation 
method should be optimized in order to remove lipids for matrices such as plasma, since 
they can cause ion suppression for small molecules. 
The table with the annotations for each biological matrix with their HMDB identifier and 
database used for MS/MS spectra matching can be found in the supplementary 
information (Table SI-3.2-3.5). 
 

3.7. Conclusions 
This study handled the optimization of HILIC-MS methods using a decision tree-based 
univariate method optimization approach, with the objective of developing a platform 
that can be used to investigate polar metabolites during untargeted metabolomics 
experiments, applicable for different biological matrices. During method optimization, 
the mix-mode interaction mechanisms of two generations of HILIC columns were 
investigated using 85 representative analytical standards for polar metabolites from 
various metabolic pathways. Combining the final optimized HILIC-MS method in ESI (+) 
and ESI (-), almost 100% of polar standards could be separated and detected, covering 
key pathways of the polar human metabolome. The methods were successfully applied 
using different biological matrices of human origin, including urine, plasma and extracts 
of hepatic cells. 
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3.8. Supplementary information 
3.8.1. Chemical standards used during method optimization 
Information concerning chemical standards used during method optimization can be 
consulted in Table SI-3.1 of the electronic supplementary information, which is available 
on the link below. Extracted ion chromatograms of these analytical panel standards, 
analyzed using the optimized methods, are provided in Figure SI-3.1 and Figure SI-3.2 of 
the electronic supplementary information. 
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
 
3.8.2. LC method optimization for the HILICON iHILIC-Fusion(+) column 
3.8.2.1. Mobile phase solvent composition 
For the iHILIC-Fusion(+) in ESI (-), initially H2O with 5 mM (NH4)2CO3 (pH 8.7) was used 
as mobile phase A and ACN as mobile phase B. Addition of 10% (v/v) MeOH to mobile 
phase B and addition of 20% (v/v) MeOH to mobile phase A caused minor changes to 
the summed quality score. However, addition of MeOH to both mobile phase A and B, 
decreased the summed quality score by 19%. Addition of MeOH to mobile phase B 
mainly influenced the start of the run, due to the applied HILIC gradient, starting at a 
composition with a high organic content. MeOH caused peak splitting for peptides such 
as leucin enkephalin and methionine enkephalin and tailing for amino acids (e.g., L-
threonine) and small peptides (e.g., glycyl-L-tyrosine). The peak shape deterioration 
could partly be explained by the mismatch of mobile phase and sample solvent. In 
addition, alcohols such as MeOH can compete for active polar sites on the stationary 
surface and analytes, forming hydrogen bonding interactions and interfering with the 
retention mechanisms. After all, polar protic solvents can be both donors and acceptors 
of hydrogen bonds, while aprotic solvents such as ACN, can be only hydrogen bond 
acceptors. Hydrogen-bonding interactions between MeOH and analytes may introduce 
extra resonance structures and cause broad or tailing peaks (Hao et al., 2008). A 
decrease in the intensity of several standards was observed when MeOH was added to 
the mobile phase. The decrease was especially significant for organic acids such as 
pyruvic acid, α-ketoglutaric acid, lactic acid and amino acids. The lower peak intensities 
could be caused by an impaired ionization efficiency, due to the higher content of 
MeOH. In comparison to MeOH, ACN has a lower viscosity, facilitating a higher 
ionization efficiency in ESI due to production of finer droplets (Yanes et al., 2011). In 
addition, the retention time of most standards reduced slightly, which can be explained 
by the stronger elutropic strength of MeOH compared to ACN and by a MeOH induced 
decrease of the polarity of the dynamically immobilized aqueous layer on the stationary 
phase, impeding the retention of polar compounds (Hao et al., 2008). Addition of MeOH 
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to mobile phase A resolved peak splitting for nicotinic acid, kynurenine and butyric acid. 
Using MeOH both in mobile phase A and B, no improvement was observed in peak shape 
or intensity for a single standard. In contrary, there was no detection of pyruvic acid, D-
glucose-6-phosphate, phosphocreatine, adenosine monophosphate, L-ornithine and L-
alanine, which were all detected using the initial mobile phase composition. In addition, 
peak shape deterioration, such as tailing and peak splitting was observed for several 
standards. The decrease in intensity of organic acids and amino acids became more 
profound as the content of MeOH increased. 
 
3.8.2.2. Mobile phase pH and modifiers 
The starting conditions included a mobile phase A at pH 8.7, pH 7.6 or pH 2.9, adjusted 
with NH3(aq.) and HCOOH. The acidic pH resulted in a 6% increase of the total summed 
quality score, in contrast with the results for pH 7.6, where the quality score decreased 
by 11%. A pH of 8.7 showed superior intensities for organic acids such as fumaric acid, 
butyric acid, and kynurenic acid, while the acidic pH improved the peak shape and 
intensity for several sugars such as D-glucose-6-phosphate, glucosamine and fructose 
and amino acids such as L-arginine and L-lysine. The iHILIC-Fusion(+) has a stationary 
phase which is permanently positively charged, thus electrostatic interactions will play 
an important  role in increasing the retention of anionic species at alkaline pH values. 
Contrarily, at an acidic pH, the peak shape of compounds with a neutral net charge were 
improved by reducing strong ionic interactions, for instance, nicotinic and quinolinic 
acid in Figure SI-3.3. For zwitterionic amino acids, the retention mechanisms are 
especially complex and based on quadrupolar electrostatic interactions (Dinh et al., 
2011). Moreover, it was noted that π-π interactions can play a role in the retention, 
since L-tyrosine (containing aromatic double bonds) had a slightly longer retention time 
compared to L-lysine, even though L-lysine has an additional nitrogen, which usually 
increases retention. 
The addition of a salt modifier to the mobile phase did not improve the summed quality 
score. Thus, the method with aqueous mobile phase at pH 2.9 modified with HCOOH 
and ACN as organic solvent was classified as a suitable method for polar metabolites, 
especially for sugars and related polyols.
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Figure SI-3.3 Extracted ion chromatograms for analytical panel standards analyzed using the optimized method for the iHILIC-Fusion(+) column in 
negative electrospray ionization (ESI) mode (left), the ACQUITY HSS T3 column in negative electrospray ionization (ESI) mode (middle) and the 
ACQUITY HSS T3 column in positive electrospray ionization (ESI) mode (right).
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3.8.2.3. Gradient 
Several gradients were tested to result in an evenly distribution of the analytical panel 
standards in the retention time dimension. HILIC generic gradients started with a high 
amount of organic solvent, which was kept for 1-4 min depending on the column length, 
followed by a gradual increase in the amount of polar solvent to a maximum of 80%. 
The re-equilibration step is crucial for HILIC columns to allow its return to the initial layer 
conditions in the entire column. The generic and optimized gradients are described in 
Table 3.1 and Table 3.4, respectively.  
 
3.8.2.4. Column temperature and flow 
Since, the most suitable HILIC columns were selected for further method optimization, 
no flow rate or column temperature experiments were conducted for the iHILIC-
Fusion(+) column.  
 
3.8.3. LC method optimization for the Waters ACQUITY HSS T3 column 
3.8.3.1. Mobile phase solvent composition 
In ESI (+), MeOH was preferred over ACN as the organic mobile phase since ACN caused 
greater tailing factor values for most compounds under investigation. Some of the most 
extreme differences in tailing factor were observed for the protonated adducts of L-
kynurenine, trans-2-octenoyl-L-carnitine and glycyl-L-tyrosine with an average tailing 
factor of 4.2, 4.2 and 4.0 using ACN and 0.9, 0.9 and 1.5 using MeOH, respectively. This 
latter effect can be explained by the ability of methanol to form hydrogen bonds with 
residual silanol groups, a property lacked by ACN (Nawrocki, 1997). The formation of 
these hydrogen bonds can prevent tailing by impeding the interaction between residual 
silanol groups and basic moieties of analytes. A disadvantage of using MeOH as the 
organic mobile phase is the higher backpressure, compared to ACN, which puts more 
strain on the LC system components and column. During the initial gradient, a pressure 
difference of 150 bar was observed at 85% of the organic mobile phase, at a flow of 0.2 
mL/min, due to the higher viscosity of MeOH mixtures compared to ACN. 
In ESI (-) mode, the column performed slightly better when MeOH was used as organic 
mobile phase compared to ACN, when combined with a slightly alkaline aqueous mobile 
phase (NH3(aq.), pH 7.6). Using MeOH, a better separation and longer retention times 
were observed especially for peptides. For example, methionine enkephalin, leucine 
enkephalin and L-valyl-L-tyrosyl-L-valine had retention times of 8.7, 9.1 and 5.9 minutes 
respectively, using MeOH as organic solvent. In comparison, using ACN, the retention 
times were 3.5, 4.9 and 1.4 minutes respectively. However, the small difference in 
quality score was mostly due to the elution of some small polar compounds, such as 
glycine and L-carnitine, close to the void time (t0 ≤ RT ≤ 1.1 t0), when ACN was used as 
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organic solvent. The shorter retention times are a direct effect of the higher elutropic 
strength of ACN compared to MeOH. Surprisingly, when 5 mM CH3COONH4 was added 
to the aqueous mobile phase, ACN outperformed MeOH as organic solvent, with a 
summed quality score difference of 11%. This latter highlights the complexity of 
interactions between the analytes and the stationary and the mobile phase and the 
importance of the mobile phase composition. When using 5 mM CH3COONH4 in the 
aqueous mobile phase, ACN or MeOH as the organic solvent had only little influence on 
the peak intensity score or retention time score, but a rather large difference on the 
peak shape score. While MeOH provided less tailing for small organic acids such as 
fumaric acid and maleic acid, ACN improved the peak shape of several amino acids, 
nucleobases and nucleosides by resolving the problem of peak splitting. In addition, 
slightly higher intensities were observed when ACN was used. The improved quality 
score could be explained by a combination of effects. Firstly, using ACN as organic 
mobile phase, there was a higher similarity with the sample solvent, avoiding peak 
shape distortion due to mismatches. Secondly, ACN has a lower viscosity compared to 
MeOH, which can increase the ionization efficiency in ESI due to production of finer 
droplets. Thirdly, ammonium acetate promotes the formation of deprotonated analytes 
in the gas phase during ESI (Yanes et al., 2011).   
 
3.8.3.2. Mobile phase pH and modifiers 
The RPLC column did not provide enough retention for most panel standards, including 
nucleosides, nucleobases and various organic acids, indicated by their elution close to 
the void, despite the use of different mobile phase pH values and modifiers. An acidic 
pH of aqueous mobile phase (A) was achieved using 0.1% (v/v) of HCOOH in ESI (+) mode 
which was enough to provide high ionization (S/N ≥ 50) for 60% of panel standards, but 
with poor retention and peak width often higher than 1 min. An aqueous ammonia 
solution and (NH4)2CO3 were used to adjust the pH to values ranging from 7.2 to 8 in ESI 
(-) mode. For example, compounds with pKa < 3 will be neutral at pH < 3, which would 
theoretically improve the retention of acidic compounds on reversed-phase columns. 
However, a neutral pH buffered with 5 mM of HCOONH4 and aqueous ammonia solution 
(pH 6.6) showed better results for most classes, including amino acids and peptides, 
increasing the retention of several panel standards. For example, the retention time of 
L-proline increased by 0.5 min, for L-leucine the retention increased by 0.4 min and for 
leucine enkephalin, the retention time increased by 2 min in addition to the better peak 
shape score. This effect can be explained by the distribution of different ion forms of 
amino acids at different pH values. For instance, in the pH range from 5 to 7, amino acids 
such as L-glutamic acid and L-leucine have a predominant zwitterionic ion form with a 
prevalence higher than 90%.  
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Ammonium acetate and ammonium formate were tested in amounts ranging from 5 to 
10 mM and in combination with 0.1% (v/v) of HCOOH in ESI (+) mode. Ammonium 
acetate affected the ionization efficiency of several panel standards, including 
dopamine in ESI (+) mode, by decreasing the S/N ratio and increasing the tailing factor. 
The addition of 5 mM of HCOONH4 and 0.1% (v/v) of HCOOH (pH 3.2) provided the best 
summed quality score. Compounds started eluting later and showed less tailing. 
However, several panel standards still co-eluted around 2 min, which is far from ideal 
for an untargeted approach, when co-elution should be avoided as much as possible, 
since it can lead to significant ion suppression. 
 
3.8.3.3. Gradient 
In ESI (+) and (-) modes, a generic gradient was tested with a constant flow rate of 0.2 
mL/min. The gradient profile started with 20% of organic mobile phase for 4 min, 
followed by an increase to 85%, which was kept for 6 min before returning to the initial 
conditions. In order to explore the interaction of the reversed-phase column with the 
analytical panel standards, three additional gradients were tested. A lower amount of 
water (50% instead of 95%) resulted in more co-elution in the beginning of the run. 
However, a high amount of water (95%) kept for 2 min in the beginning of the run 
showed similar co-elution profiles.  
 
3.8.3.4. Column temperature and flow 
Since the most suitable HILIC columns were selected for further method optimization, 
no flow rate or column temperature experiments were conducted for the Waters 
ACQUITY HSS T3 column.  
 
3.8.4. Library matching results for biological samples 
Information concerning library matching results for untargeted analyses can be 
consulted in Table SI-3.2 (intracellular extracts of HepaRG cells), Table SI-3.3 
(extracellular extracts of HepaRG cells), Table SI-3.4 (human plasma), and Table SI-3.5 
(human urine) of the electronic supplementary information, which is available on the 
link below.    
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
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CHAPTER 4: 
DEVELOPMENT OF UNTARGETED PLATFORMS FOR LIPIDS 
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4.1. Introduction 
In recent years, lipidomics, the full characterization of the lipid molecular species of a 
biological system (i.e., the lipidome), has grown in popularity due to advances in 
instrumental detection and identification and the myriad of applications in pathogenesis 
elucidation, biomarker discovery and toxicity testing (Öztas & Bosgelmez, 2017). As of 
January 2023, the LIPID MAPS portal lists 25,756 unique curated lipid structures, divided 
into eight main categories: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, 
saccharolipids, polyketides, sterol, and prenol lipids (Figure 4.1) (O’Donnell et al., 2019). 
This list is non-exhaustive, with millions of possible lipid species, especially when 
including oxidized lipids, and other portions of the lipidome currently not fully 
characterized, as well as subtle isomeric details such as double bond positions, position 
of oxygen additions, backbone substitution, and stereochemistry (Koelmel, Aristizabal-
Henao, et al., 2021; Yetukuri et al., 2008). 
 

 
Figure 4.1 Eight main lipid categories as defined by LIPID MAPS. Representative structures for 
each of the lipid categories are shown (Fahy et al., 2011). 
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Regardless of the key role played by lipids in many physiological processes and diseases, 
it is often not known which specific lipids or lipid classes are affected by a specific 
biological condition, and the interplay of these changes across the entire lipidome 
largely remain to be elucidated. This latter shortcoming requires an untargeted 
analytical approach (e.g., fingerprinting) rather than a targeted approach of selected 
biomarkers. The main objective of an untargeted lipidomics method is the unbiased 
measurement of a wide range of lipids within a biological system. Liquid 
chromatography coupled to high resolution mass spectrometry (LC-HRMS) can provide 
near-comprehensive lipidome profiles and has therefore been widely applied in 
untargeted lipidomics analyses (Xu et al., 2020). The LC separation reduces co-elution of 
compounds and ion suppression, thus improving the compound coverage and quality of 
features (Xu et al., 2020). However, many lipids with the same fatty acyl chain length and 
level of unsaturation can have different structural isomers that might co-elute and can 
often not be distinguished by HRMS or MS/MS spectra alone. In this light, the 
hyphenation of ion mobility spectrometry (IMS) to LC-HRMS adds an additional 
dimension of separation, which improves the peak capacity. Certain isobaric and 
isomeric species not separated by LC-HRMS can be separated using ion mobility and 
identified through collision cross section (CCS) values derived from size and shape-
dependent ion mobility behavior of analytes migrating through an inert gas (Causon & 
Hann, 2015; Kyle et al., 2016).  
Although the implementation of IMS provides several advantages, it also faces 
challenges. Disadvantages of LC-IM-HRMS include reduced duty cycles and large and 
complex data compared to LC-HRMS data, resulting in lower sensitivity and demand for 
high computing power, respectively (Prost et al., 2014). Optimized instrumental 
acquisition and lipid identification remain fundamental steps of the lipidomics workflow 
to reduce the effect of interferences, expand lipid annotation coverage and accuracy and 
expand the linear range in lipidomics profiling (L. Li et al., 2019). 
The goal of the experiments documented in this chapter was to optimize an LC-IM-HRMS 
platform with high lipid coverage and annotation confidence for untargeted in vitro cell-
based experiments. An in-depth sensitivity optimization of IMS was performed by 
evaluating the drift tube and rear funnel voltages with a chemometrics approach and 
trap filling/release events with single pulse and Hadamard multiplexed modes, in the 
scope of finding a balance between sensitivity and detector saturation (for linear range 
considerations). The obtained CCS values were compared with in silico and experimental 
publicly available libraries in order to evaluate CCS error thresholds for lipid annotation. 
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4.2. Chemicals and materials 
Methanol (MeOH), acetonitrile (ACN) and formic acid (99%) (HCOOH) UPLC/MS grade 
were purchased from Biosolve (Valkenswaard, The Netherlands). Ammonium formate 
(≥ 99%, LC-MS grade) (HCOONH4), ammonium acetate LC-MS grade (CH3COONH4), 
ethylenediaminetetraacetic acid (EDTA) (99%), L-ascorbic acid (99%) and butylated 
hydroxytoluene (BHT, 99%) were obtained from Sigma Aldrich (St. Louis, Missouri, USA). 
Acetic acid (100%) (CH3COOH) and ethanol (EtOH), both LC-MS grade, isopropanol for 
analysis (IPA, ACS reagent), ammonia solution (25%, LC-MS grade) and chloroform 
(CHCl3, analytical grade) were purchased from Merck (Merck KGaA, Darmstadt, 
Germany). Ultrapure water (H2O) used throughout the experiments was obtained from 
an Elga Pure Lab apparatus (Tienen, Belgium). Fifty lipid analytical standards were 
purchased from Sigma Aldrich, Avanti Polar Lipids (Alabaster, USA), Cayman Chemical 
Company (Michigan, USA), and Honeywell Fluka (Charlotte, NC, USA) to cover a broad 
variety of human lipids originating from different categories including fatty acyls (15), 
glycerolipids (5), glycerophospholipids (11), prenol lipids (1), sphingolipids (7) and sterol 
lipids (11). A detailed list of the lipid panel standards can be found in Table SI-4.1. 
Glyceryl tri(palmitate-1-13C) and cholic acid-2,2,4,4-D4 were purchased from Sigma 
Aldrich, while lauric acid-12,12,12-D3 was bought from CDN Isotopes (Pointe-Claire, 
Quebec, Canada), 18:1-D7 lyso PE from Avanti Polar Lipids and octanoyl-L-carnitine-(N-
methyl-D3) and ceramide (d18:1/18:1(9Z)-13C18) from Cambridge Isotope Laboratories 
(Massachusetts, USA). For the in vitro experiments with liver cells, differentiated 
HepaRG cells were acquired from Biopredic International (Rennes, France). 
 

4.3. Sample preparation 
Intracellular extracts of HepaRG cells were prepared as described in 3.3.2. The same 
liquid-liquid extraction (LLE) procedure was performed. Instead of adding polar internal 
standards during LLE, apolar internal standards were added (i.e., 20 µL of 11 µg/mL of 
lauric acid-12,12,12-D3, cholic acid-2,2,4,4-D4, glyceryl tri(palmitate-1-13C), 18:1-D7 lyso 
PE, octanoyl-L-carnitine-(N-methyl-D3) and ceramide (d18:1/18:1(9Z)-13C18) in CHCl3 to 
obtain a final concentration of 1 µg/mL). After LLE, a volume of 240 µL of the apolar 
fraction (lower phase) was transferred to a thermo reacti-vial. After vortexing for 20 s, 
120 µL was transferred to a second thermo reacti-vial, after which the liquid was 
evaporated using pure, dry N2 at room temperature. Dried extracts were stored at -80 
°C and reconstituted directly before analysis. As in 3.3.2, each sample was divided in 
two fractions right before the evaporation step, in order to analyze each fraction using 
a different polarity during LC-DTIMS-HRMS acquisitions. Each sample was reconstituted 
on ice using 60 µL IPA/MeOH (35/65, v/v). After vortexing for 90 s, samples were filtered 
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using 0.2 µm nylon centrifugal filters and centrifugated at 14,000 g for 2 min at room 
temperature. Equal volumes of filtered sample were combined to create a quality 
control (QC) pool. 
 

4.4. LC-DTIMS-HRMS data acquisition 
The analytical measurements were carried out on an Agilent 1290 Infinity II LC system 
coupled to an Agilent 6560 drift tube-ion mobility-quadrupole-time-of-flight high 
resolution mass spectrometer (DTIM-QTOF-HRMS) (Agilent Technologies, Santa Clara, 
USA) using Agilent Dual Jet Stream Electrospray Ionization (ESI) in positive (+) and 
negative modes (-). Previously in-house optimized ESI source parameters for lipids in 
positive and negative mode were slightly adapted from Cuykx et al. (2017). In ESI (+) 
mode, nitrogen was used as drying and sheath gas, both at 325 °C with a flow rate of 8 
L/min. The nebulizer gas pressure was set at 30 psig, the MS capillary voltage at 3500 V, 
the nozzle voltage at 500 V and the fragmentor at 200 V. In ESI (-) mode, the drying and 
sheath gas both had a temperature of 350 °C with a flow rate of 8 L/min. The nebulizer 
gas pressure was set at 30 psig, the MS capillary voltage at 3750 V, the nozzle voltage 
at 500 V and the fragmentor voltage at 200 V. 
An LC-based lipidomics method (Cuykx, Negreira, et al., 2017) (Table 4.1) was used to 
screen 3 different columns: a) Kinetex XB-C18 (2.1 x 150 mm, 1.7 µm), b) ACQUITY UPLC 
HSS T3 C18 (2.1 x 100 mm, 1.8 µm) and c) ACQUITY UPLC BEH C18 (2.1 x 150 mm, 1.7 
µm). The standard mixture of 50 lipids was injected in ESI (+) and ESI (-) modes to 
evaluate the column performance. As in chapter 3, a quality score system was used to 
select one column for further LC method optimization (Table 4.2 and Equation 4.1). For 
this latter LC method optimization (i.e., mobile phase composition, flow, and gradient), 
the lipidomics method described in Table 4.1 was used a starting point. The evaluation 
criteria were based on signal-to-noise (S/N) ratio, peak shape (i.e., full width at half-
maximum (FWHM) and tailing factor), retention factor, and resolution (Iturrospe et al., 
2021). 
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Table 4.1 LC-parameters used for column screening.  
 

Parameter Positive ionization mode Negative ionization mode 

Mobile phase A 
 

ACN/H2O (1/1, v/v) MeOH/H2O (1/1, v/v) 

Mobile phase B 
 

H2O/ACN/IPA (2/10/88, v/v/v) H2O/MeOH/IPA (2/10/88, v/v/v) 

Modifier 
 

5 mM CH3COONH4 + 0.1% (v/v) CH3COOH 10 mM CH3COONH4 

Flow rate (mL/min) 
 

0.25 0.25 

Temperature (°C) 
 

55 55 

Gradient 0 min: 55% B 
1 min: 55% B 
5 min: 70% B 
25 min: 98% B 
29 min: 100% B 
38 min: 55% B 

0 min: 55% B 
1 min: 55% B 
5 min: 70% B 
25 min: 98% B 
29 min: 100% B 
38 min: 55% B 

 
Table 4.2 Scoring system to evaluate peak shape, peak intensity and retention time. The scoring 
system was used for each analytical panel standard to guide the choice of LC column and the 
method optimization. To calculate retention time scores, the void time (t0) of each column was 
used (Kinetex XB-C18: 0.91 min, based on elution time of uracil, ACQUITY UPLC HSS T3: 1.4 min, 
based on elution time of thiourea, ACQUITY UPLC BEH C18: 1.1 min, based on elution time of 
uracil). FWHM: Full width at half maximum. S/N: Signal-to-noise ratio. RT: Retention time. 
 

 Peak shape score  Peak intensity score  Retention time score 

0 No peak 0 S/N < 3 0 No peak 
1 Single peak with FWHM ≥ 0.2 and/or  

tailing factor ≥ 2 or ≤ 0.8 
1 3 ≤ S/N < 10 1 RT = 1 to 1.1t0 

2 Single peak with FWHM < 0.2 and  
tailing factor < 2 and > 0.8 

2 10 ≤ S/N ≤ 50 2 RT > 1.1t0 

  3 S/N > 50   

 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = ෍ 𝑃𝑒𝑎𝑘 𝑠ℎ𝑎𝑝𝑒 𝑠𝑐𝑜𝑟𝑒 + ෍ 𝑃𝑒𝑎𝑘 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 +

௡

௜ୀଵ

෍ 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑠𝑐𝑜𝑟𝑒

௡

௜ୀଵ

௡
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Equation 4.1 Quality score equation based on the quality score sum of Table 4.2 
 
In the final method, the ACQUITY UPLC BEH C18 was maintained at 60 °C at a flow rate 
of 0.2 mL/min. The injection volume was set at 2 µL and the thermostat of the 
autosampler at 4 °C. The mobile phase in ESI (-) consisted of (A) ACN/H2O (30/70, v/v) 
with 5 mM of CH3COONH4 and (B) IPA/ACN/H2O with 5 mM of CH3COONH4 (88/10/2, 
v/v/v). In ESI (+), 0.1% (v/v) of CH3COOH was added to the aqueous fraction. 15% (B) 
was kept constant for 2 min and increased to 30% at 3 min, to 60% at 5 min, which was 
kept constant for 3 min, to 100% at 20 min, which was kept constant for 10 min and 
back to 15% at 35 min for a 5 min equilibration. 
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For both ionization modes, data were acquired in 2 GHz extended dynamic mode with 
a scan range of 100-1500 m/z. Consecutive runs were used for data-independent 
acquisition (DIA) based on All-ions fragmentation with alternating frames switching 
between no collision energy and high collision energy (10, 20, or 40 eV). The calibrant 
solution was constantly infused during the run with an isocratic pump (Agilent 1260 
Infinity II Isocratic Pump (G7110B)) and introduced in the ESI source by a second 
nebulizer. The LC-IM-HRMS data was post-processed for calibration of the mass axis 
using purine (m/z 121.0508 in ESI (+) mode and m/z 119.0363 in ESI (-) mode) and 
hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine (m/z 922.0097 in ESI (+) mode and 
m/z 980.0163 in ESI (-) mode) in IM-MS Reprocessor software (Agilent). In addition to 
acquired LC-DTIMS-MS/MS data-independent spectra, LC-DTIMS-MS and LC-MS/MS 
using data-dependent acquisition (DDA) were acquired for offline alignment (Agilent 
Mass Profiler). DDA was used with an MS1 scan rate of 2 spectra/sec and an MS2 scan 
rate of 6.67 spectra/sec, a maximum set of precursors per scan cycle of 12, and collision 
energies of 10, 20, and 40 eV. Ion mobility multiplexed data files were de-multiplexed 
using the vendor-supplied software Agilent deMP. Data files were smoothed with a 
kernel size of 3 for both drift and retention time and saturation repaired for points over 
40% of the abundance limit using PNNL Preprocessor (Prost et al., 2014). The DTCCSN2 
values were calculated using single-field calibration coefficients obtained by infusing the 
Agilent Tune Mix before the sequence worklist in IM-MS Browser B.08.00 (Agilent) 
(Stow et al., 2017). 
 

4.5. LC-DTIMS-HRMS data processing 
Data files were processed per ionization mode for peak detection, alignment, and blank 
filtering in Agilent Mass Profiler to obtain a feature table. Minimum peak intensity was 
set at 200 counts (i.e., close to the noise level of the instrument). Isotopic models were 
based on common organic formula without halogens. Alignment parameters included 
retention time (RT) tolerance ± 15% + 0.2 min, drift time (DT) tolerance ± 2.0%, and mass 
tolerance ± 15 ppm + 2.0 mDa. The MS/MS files were exported as Mascot Generic 
Format (.mgf) together with the feature tables to LipidIMMS Analyzer for a broader lipid 
annotation (Zhiwei Zhou et al., 2019). Moreover, the lipidomic database of MS-DIAL (v. 
4.6) was used to narrow the LipidIMMS Analyzer results based on accurate mass and 
MS/MS fragmentation (Tsugawa et al., 2020). Converted data files (IBF format) were 
imported and processed using MS-DIAL. The following parameters were used for peak 
detection and alignment. Mass range: 100-1500 Da; retention time range: 0.5-30 min; 
accurate mass tolerance (MS1): 0.01 Da; MS2 tolerance: 0.025 Da; linear weighted 
moving average as smoothing method: 3 and 5 scans for smoothing level and minimum 
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peak weight, respectively; minimum peak height: 1000; mass slice width: 0.07 Da; sigma 
window value: 0.5; retention time tolerance for alignment: 0.05 min; MS1 tolerance for 
alignment: 0.015 Da; mobility tolerance for alignment: 0.2 ms; adduct ion setting: 
[M+H]+, [M+NH4]+, [M+Na]+, [M-H2O+H]+ in positive ion mode and [M-H]−, [M-H2O-H]−, 
[M+HCOO]−, [M+CH3COO]− in negative ion mode. 
In addition, MassHunter Lipid Annotator v.1.0 (Agilent) was used for annotation of DIA 
spectra and LipidMatch for annotation of DDA spectra (Koelmel et al., 2020; Koelmel, 
Kroeger, Ulmer, et al., 2017). Matched MS/MS spectra were manually evaluated to 
improve annotation confidence. Different data analysis pipelines were tested and 
combined in order to find results that are not biased towards a specific software (Figure 
4.2). 

 
Figure 4.2 Data analysis workflow applied in this work for LC-DTIMS-MS/MS data. 

To assess CCS error thresholds for annotation and to find the most accurate and 
accessible library for untargeted lipidomics applications, the panel lipid standard 
mixture was injected in both ESI (+) and ESI (-) modes with single pulse and 4-bit 
Hadamard multiplexing modes. The resulting DTCCSN2 values were compared to (i) 
experimental values found in public databases (LIPID MAPS (Sud et al., 2007), CCS 
compendium (Picache et al., 2019), CCSbase (Ross et al., 2020)), preferably obtained 
with DTIMS instruments or databases with in silico predicted values (CCSbase (Ross et 
al., 2020), LipidCCS (Zhiwei Zhou, Tu, et al., 2017), MetCCS (Zhiwei Zhou, Xiong, et al., 
2017), DeepCCS (Plante et al., 2019)), when experimental values were unavailable and 
(ii) CCS values predicted using AllCCS (Zhiwei Zhou et al., 2020), in order to estimate the 
prediction performance of a single in silico tool.  
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4.6. Ion mobility spectrometry optimization 
In the DTIM-QTOF-HRMS instrument, the electrodynamic ion trap funnel, located 
before the drift tube, radially accumulates ions by applying a radio frequency field on 
the stacked ring electrodes. Direct current (DC) voltages are used to axially trap and 
eject accumulated ions towards the drift tube (Clowers et al., 2008). The DTIMS analysis 
was carried out under uniform electric field conditions using high-purity nitrogen 
(99.999% N2) as a buffer gas. CCS measurements were based on a single electric field 
calibration derived from the Mason-Schamp equation (Equation 4.2). 

t୅ = tୈ + t୤୧୶ =
β

𝓏
൤

m୧

m୆ + m୧
൨

ଵ/ଶ

CCS +  t୤୧୶ 

Equation 4.2 Single field equation (Stow et al., 2017). Full arrival time (tA), drift time (tD), slope 
(β), and intercept (tfix) from the regression using tune mix calibrant ions, analyte mass (mi), buffer 
gas mass (mB), and ion charge state (z). 
 
Analyses of tune mix calibrant and samples were acquired under the same conditions. 
To find the optimal parameters for lipidomics, a multivariate design of experiments 
(DOE) was applied and combined with desirability functions. This has been proven to be 
a valuable tool for the development of analytical methods when multiple responses 
need to be optimized simultaneously for a single method (Candioti et al., 2014). Since 
the information was already available on the main parameters and the range of the 
electric field to obtain accurate and precise CCS values, a two-level full factorial design 
screening study was discarded (Stow et al., 2017). 
To optimize sensitivity for lipidomics purposes, a Box-Behnken design (BBD) was used 
with four key factors, including drift entrance voltage (DEV), drift exit voltage (DXV), rear 
funnel entrance (RFE), and rear funnel exit (RFX) voltages. BBD is a multivariate 
optimization technique for second order response surface modeling of numerical and 
categorical factors with three levels. The number of experiments (N) for BBD is 
determined by the number of factors (k) and central points (Cp) with the following 
formula 2k(k-1)+Cp (Candioti et al., 2014). For this study, a total of 27 methods including 
three central points were analyzed with electric fields varying from approximately 9.6 
to 19.2 V/cm, rear funnel voltages varying from 200-300 V for the entrance, and 30-50 
V for the exit. In addition, ion trap funnel filling and release times were investigated in 
single pulse and Hadamard 4-bit multiplexing mode. In single pulse mode, tested trap 
filling (TF) times included 10,000 µs, 20,000 µs, 30,000 µs, and 40,000 µs, while in 
multiplexing mode, 2500 µs, 3000 µs, 3500 µs, and 3900 µs were investigated. Tested 
trap release (TR) times included 150 µs, 200 µs, and 250 µs in both modes. The 
responses were evaluated based on the intensity of 50 panel lipids representing six lipid 
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classes in both ESI (+) and ESI (-) modes. A mathematical model fitting a second order 
polynomial equation was built for each detected lipid from the standard mixture and 
combined into a single composite equation called desirability in Minitab 19 (Candioti et 
al., 2014). The function was maximized to obtain the highest intensity values for all 
features in each polarity separately (Equation 4.3). 

d୧൫yనෝ(x)൯ =

⎣
⎢
⎢
⎢
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0 if yనෝ(x) < L୧

ቆ
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U୧ − L୧
ቇ

ୱ

 if L୧ ≤ yనෝ(x) ≤ U୧

1 if yనෝ(x) > U୧

 

⎦
⎥
⎥
⎥
⎤

 

Equation 4.3 Individual desirability function (di) for a maximized response (Derringer & Suich, 
1980). Ui is the upper limit (~10,000) and Li is the lower limit (instrument noise intensity of ~ 
200). The weight s was set to 1 for all individual equations (no factor was prioritized over 
another). 
 
The desirability approach converts all function results to a numerical scale ([0,1]) and 
combines the responses using the geometric mean called composite desirability 
(Equation 4.4). 

D = ൭ෑ d୧
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Equation 4.4 Composite desirability function (D) expressed as the geometric mean of the 
individual desirabilities. 
 

4.7. Results and discussion 
4.7.1. Liquid chromatography 
Reversed-phase liquid chromatography (RPLC) remains a valuable technique for 
lipidomics analysis. In addition to reduction of ion suppression, RPLC provides retention 
times for the lipids under investigation, which can improve annotation confidence. After 
lipid annotation, filtering by elution profile (within the same class, larger carbon chain 
and saturation number result in increasing and decreasing retention times, respectively) 
provides a data quality tool to reduce the number of incorrectly annotated species. This 
approach is especially valuable for saturated and monounsaturated fatty acids that 
often undergo low fragmentation in LC-ESI-QTOF-MS/MS (Ovčačíková et al., 2016). 
 
After injection of the panel lipid standard mixture, an overall chromatographic quality 
score was calculated for each tested LC column and both ionization modes separately. 
Signal-to-noise (S/N) ratio, peak shape (i.e., FWHM and tailing factor), and retention 
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factor were used for calculation of the quality score. Detailed results on the overall 
quality score can be found in Table 4.3.  
 
Table 4.3 Percentage of analytical panel standards detected and overall quality score of 
chromatographic peaks during screening of LC columns and during analysis using the optimized 
LC method. XB: Cross-butyl. UPLC: Ultra performance liquid chromatography. HSS: High strength 
silica. BEH: Ethylene bridged hybrid. ESI: Electrospray ionization. 
 

 --------------------COLUMN SCREENING-------------------- OPTIMIZED 
METHOD 

Column Kinetex XB C18 ACQUITY UPLC 
HSS T3 C18 

ACQUITY UPLC 
BEH C18 

ACQUITY UPLC 
BEH C18 

Ionization mode 
 

ESI+ ESI- ESI+ ESI- ESI+ ESI- ESI+ ESI- 

Detected standards per ESI mode (%) 
 

70 38 74 64 77 64 85 72 

Total detected standards in both ESI 
modes (%) 
 

83 91 91 100 

Overall quality score 240 116 256 199 272 208 309 264 

 
The ACQUITY HSS T3 C18 and the ACQUITY BEH C18 columns outperformed the Kinetex 
XB-C18 column. This latter column performed similarly in ESI (+) mode, except for 
substantial tailing for carnitines and phosphocholines. In addition, the Kinetex XB-C18 
column showed low retention for several polar lipids (eluting between 1-2 min), 
relatively close to the void time (t0) of 0.91 min. The ACQUITY HSS T3 C18 column 
showed good retention and peak shapes for most tested lipids in ESI (+) with exception 
of small chain acylcarnitines, which eluted close to the t0 (< 1.1 t0).  In ESI (-), eicosanoids, 
bile acids, and steroids eluted close to t0, and eicosanoids such as PGE1 and PGE2 
showed a tailing factor above 2. The ACQUITY BEH C18 column performed slightly better 
in comparison to the ACQUITY HSS T3 C18 column. In ESI (+), the retention of small chain 
acylcarnitines improved and the signal-to-noise ratio (S/N) increased for all carnitines. 
Only in ESI (-), chromatographic separation of the isomers PGA1 and LTB4 was obtained. 
None of the lipids eluted close to t0 (< 1.1 t0) in contrast to the ACQUITY HSS T3 C18 
column. In addition, eicosanoids did not show tailing and higher S/N values were 
obtained for bile acids and steroids in ESI (-).  
 
Based on the column screening experiment, the ACQUITY BEH C18 column was selected 
for method optimization. Further, a step-by-step approach was used to optimize each 
LC parameter. In comparison to the methods used during column screening (Table 4.1), 
the optimized methods used a higher temperature (60 °C instead of 55 °C) and the 
gradients were changed according to the elution profile of the panel lipid standards. To 
improve chromatographic resolution and reduce backpressure, the flow rate was 
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decreased from 0.25 to 0.2 mL/min. In both ionization modes, the aqueous fraction in 
mobile phase A was increased from 50% to 70%, to avoid elution close to t0. In ESI (-), 
MeOH was replaced by ACN in both mobile phase A and B, and the CH3COONH4 
concentration was lowered from 10 mM to 5 mM. The results of the optimized LC 
method showed an increased detection number. For example, PA (17:0/17:0) and C17 
sphingosine-1-phosphate were detected, while these lipids remained undetected 
during column screening. Higher S/N values were obtained for eicosanoids in ESI (+) and 
ESI (-) and for bile acids, glycerophosphoethanolamines, and steroids in ESI (-).  
Combining both ionization modes of the optimized method, all panel lipid standards 
could be detected with an excellent peak shape (FWHM < 0.2, tailing factor < 2 and > 
0.8, and no elution close to t0) (Figure 4.3). In addition, the BEH column was able to 
separate sn-positional isomers of e.g., MG(18:0/0:0/0:0), LPE(18:1(9Z)), and LPC(18:0). 
24 lipids could be detected in either ESI (+) or ESI (-), while some lipid species such as 
carnitines were only detected and separated in ESI (+) and others such as fatty acids 
were only detected and separated in ESI (-).  
Figure 4.3 shows the overlayed normalized extracted ion chromatogram (EIC) of each 
lipid standard, including highly polar lipids (e.g., CAR (2:0) and CAR (4:0)) and more 
apolar lipids (e.g., TG (16:0/16:0/16:0) and CE (18:1)). The abbreviations of the lipids 
mentioned in Figure 4.3 are explained in the supplementary information (Table SI-4.1).  
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Figure 4.3 Chromatographic separation of panel lipid standards in positive (A) and negative (B) 
ionization modes. Doubled peaks denote separation of sn-positional isomers. A) (1): CAR(2:0), 
(2): CAR(4:0), (3): CAR(5:0), (4): CAR(8:1), (5): ST 21:3;O5, (6): ST 21:3;O4, (7): FA 20:4;O3, (8): FA 
20:3;O3, (9): ST 19:2;O2, (10): FA 20:4;O2, (10): FA 20:4;O2, (11): Misoprostol, (12): LPE(13:0), 
(13): CAR(14:0), (14): CAR(18:2), (15): LPI(18:1), (16): SPB 18:1;O2, (17): CAR(16:0), (18): 
DG(8:0/8:0), (19): LPE(18:1), (20): LPC(17:0), (21): ST 18:3;O2, (22): LPC(18:0), (23): MG(18:1), 
(24): LacCer(18:1/8:0), (25): MG(18:0), (26): SM(d18:1/12:0), (27): PG(15:0/15:0), (28): 
PI(16:0/16:0), (29): PC(18:1/18:1), (30): Cer(d18:1/16:0), (31): PE(16:0/16:0), (32): 
Cer(d18:0/16:0), (33): Cer(d18:1/17:0), (34): DG(16:0/16:0), (35): Coenzyme Q10, (36): CE(20:4), 
(37): CE(18:2), (38): TG(16:0/16:0/16:0), (39): CE(18:1). B) (1): FA 20:4;O3, (2): FA 20:3;O3, (3): 
ST 18:3;O2, (4): ST 21:3;O5, (5): ST 24:1;O5;T, (6): ST 21:3;O4, (7): FA 20:4;O2, (8): ST 24:1;O5, 
(9): FA 20:4;O2, (10): ST 24:1;O4, (11): Misoprostol, (12): ST 24:1;O3, (13): LPE(13:0), (14): 
LPI(18:1), (15): LPE(18:1), (16): LPC(17:0), (17): FA 18:1, (18): LPC(18:0), (19): MG(18:1), (20): 
LacCer(18:1/8:0), (21): FA 18:0, (22): MG(18:0), (23): SM(d18:1/12:0), (24): PG(15:0/15:0), (25): 
PI(16:0/16:0), (26): Cer(d18:1/16:0), (27): PC(18:1/18:1), (28): PE(16:0/16:0), (29): 
Cer(d18:0/16:0), (30): Cer(d18:1/17:0), (31): DG(16:0/16:0). 
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In Figure 4.3, the lipid with the highest retention time was CE (18:1), which eluted before 
25 min. To avoid carry-over, the time spent at a high percentage of organic solvent and 
equilibration conditions were optimized for samples with a high lipid content, as 
suggested by Martínez-Sena et al. (2019). 

 
4.7.2. Drift tube ion mobility spectrometry 
The BBD design considers the interactions between factors and the non-linear relations 
with responses, avoids extreme combination of factors (keeping the values inside the 
experimental region), and requires fewer experiments than a central composite design. 
To predict optimal values for multiple responses, the algorithm in Minitab software 
searches for values between -1 and +1 at which the parameter yields the maximal result 
for the overall desirability (Equation 4.4) and the corresponding optimized voltages 
could be back-calculated (Table 4.4). 
 
Table 4.4 Optimized drift tube values obtained from response surface methodology (Box-
Behnken design) combined with a desirability approach with a maximized response. DEV: Drift 
entrance voltage. DXV: Drift exit voltage. RFE: Rear funnel entrance voltage. RFX: Rear funnel 
exit voltage. 
 

ESI DEV (V) DXV (V) RFE (V) RFX (V) 

Positive 1221 300 200 49 
Negative -1273 -300 -216 -47 

 
To validate the model, the mixture of standards was reinjected, and the responses were 
compared to all combinations of voltages used for the model. The predicted values 
showed the best results for both ESI (+) and ESI (-) experiments, highlighting the power 
of combining BBD with a desirability approach for multi-response method optimization. 
The least square (LS) methodology was chosen to describe the data because it provides 
easily interpretable results (Candioti et al., 2014). Moreover, different methods can be 
tested to assist in the choice of the best model for prediction that explains a significant 
amount of the data variation, e.g., artificial neural networks and generalized linear 
models. In addition to the regression significance and coefficient of determination (R2), 
model predictions were compared with experimental values. The experimental design 
points were randomly re-injected in the same batch in which the optimized values were 
evaluated to prevent bias. The interaction between these variables does not always 
follow well-defined rules, making model predictions challenging. Thus, this former 
strategy was found to be essential to validate the results obtained with the optimized 
parameters of Table 4.4. 
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4.7.3. Ion trap funnel 
The combination of a continuous ion source (e.g., ESI) with DTIMS, operated under 
pulsed conditions (trap, accumulation, and release events) results in reduced duty 
cycles, impairing sensitivity (Causon et al., 2019). Multiplexing techniques, such as 
Hadamard transform, have been investigated to improve the sensitivity for compounds 
with low m/z. In multiplexing mode, multiple ion packets enter the drift cell instead of 
one single packet, which requires shorter trap filling times to release ions in pulsed 
sequences (Reinecke et al., 2019). Recent findings showed a sensitivity gain factor of 2-
8 for m/z values below 250 and an apparent improvement in signal-to-noise ratio (S/N) 
(Baker et al., 2014; Causon et al., 2019; Reinecke et al., 2019). Multiplexing techniques 
have not been fully explored for lipidomics applications, as well as the comparison with 
single pulse experiments with different ion trap conditions. A 4-bit sequence with 8 
pulses was explored with different TF and TR times. Figure 4.4 shows a heatmap with 
the LC-DTIM-HRMS intensities of 67 ions, representing different detected adducts of the 
lipid panel mixture, in both ESI modes.
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Figure 4.4 Effect of the trap filling and trap release times on single pulse and 4-bit Hadamard multiplexed drift tube ion mobility modes. The heatmap 
shows combined positive and negative electrospray ionization mode analysis of a mixture of 50 panel lipid standards. The intensities were column-
scaled with a built-in function in the pheatmap R package. A scaled intensity color closer to value 3 (red) shows highly saturated signals. Scaled 
intensity color closer to value -3 (dark blue) shows low intensity values close to instrumental noise (approximately 200 counts). 
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Higher LC-DTIM-HRMS intensity signals were observed for higher TF times, e.g., 30,000 
µs and 40,000 µs in single pulse mode (Figure 4.4), due to the higher duty cycle. 
However, as the TF time increases, the detector saturation also increases, and some 
chromatographic peaks started to show a squared profile instead of a Gaussian peak 
shape. For most compounds, different TF times (2,500-3,900 µs) had no significant 
effect on sensitivity in multiplexing mode, within the tested range (p > 0.05, ANOVA). In 
single pulse mode, the mean intensities of the compounds in the different conditions 
were significantly different (p < 0.05). No significant effects were found using different 
TR times within the 150-250 µs range for both single pulse and multiplexing modes. 
Overall, higher TF times resulted in higher signal intensities in single pulse mode for the 
evaluated standard mixture, while no significant differences were detected in 
multiplexing mode. This could be due to the relatively high m/z values of lipids (m/z 
values usually ≥ 250). In addition, the effect of the tested range of TF times might be too 
small on the theoretical duty cycle in multiplexing mode to show a significant effect. 
However, there are other benefits when using multiplexing mode for lipid species, such 
as reduced detector saturation and the ability to provide a broader linear range. Figure 
4.5 shows the difference in signal intensity between single pulse and multiplexed mode 
for a mixture of lipid standards in the 200-900 m/z range.  
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Figure 4.5 Effect of 4-bit Hadamard multiplexing and single pulse drift tube ion mobility mode 
on 18 categories of lipid standards in a 200-900 m/z range. The trap filling times were 30,000 µs 
and 3,000 µs in single pulse and multiplexed mode, respectively. For both modes, a trap release 
time of 200 µs was used. The dotted line and grey area represent the smoothed function 
(y=f(m/z)) with confidence interval at 95%. CAR: Carnitine. Cer: Ceramide. DG: Diglyceride. FA: 
Fatty acyl. LPC: Lysophosphatidylcholine. LPE: Lysophosphatidylethanolamine. LPI: 
Lysophosphatidylinositol. MG: Monoglyceride. PA: Phosphatidic acid. PC: Phosphatidylcholine. 
PE: Phosphatidylethanolamine. PG: Phosphatidylglycerol. PI: Phosphatidylinositol. PR: Prenol 
lipid. SM: Sphingomyelin. Sph: Sphingosine. ST: Sterol lipid. TG: Triglyceride. 

The intensity gain of multiplexing mode was more prominent for m/z values around 300, 
more specifically for smaller fatty acids. On the other hand, carnitines showed higher 
sensitivity in single pulse mode in the same m/z range, which suggests that the lipid 
structure plays a meaningful role.  

To further evaluate the effect of single pulse and multiplexing mode on lipids, 
intracellular extracts of HepaRG cells were analyzed as a proof-of-concept. Figure 4.6 
shows the intensity comparison of annotated lipids between these two modes. 
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Figure 4.6 Effect of DTIMS 4-bit Hadamard multiplexing and single pulse mode on the intensity 
of different lipid categories measured in HepaRG extracts. A trap filling time of 20,000 µs and 
3,000 µs was used in single pulse and multiplexing mode, respectively. Trap release times were 
set to 200 µs for both modes. The dotted line represents the smoothed function (y=f(m/z)). 

Most lipids showed higher intensities in single pulse mode. No trend between intensity 
and m/z value or lipid category could be observed. DTIMS multiplexing mode can be 
beneficial for the analysis of samples with diverse lipid contents, such as plasma and 
tissues. These samples contain a substantial amount of lipid species that can saturate 
the detector and affect the dynamic linear range. In general, the multiplexed mode 
reduced the detector saturation for a wide range of m/z values. The latter can result in 
better peak deconvolution facilitating statistical evaluation and possibly improving mass 
accuracy. In addition, low abundant lipids, such as eicosanoids, could benefit from 
multiplexing mode by decreasing saturation from abundant lipids if these cannot be 
separated by LC or IMS and have a similar m/z value. However, the influence of ion 
suppression on sensitivity cannot be overlooked.  
 
Although IMS software tools (e.g., PNNL PreProcessor (Prost et al., 2014)) have major 
advantages for data handling by removing data artifacts and reducing signal saturation, 
adequate data acquisition based on the study objective and matrix can assist in 
increasing the quality of the dataset and the throughput of the analysis. Multiplexing 
mode needs high computing power for data acquisition (pulsed sequence acquisition 
mode) and data processing. The additional data demultiplexing step also increases the 
data processing time, especially for long analytical runtimes, which are necessary for 
lipidomics. The application of LC-DTIMS-HRMS based untargeted lipidomics for a large 
number of samples would benefit from a simple method, such as single pulse mode with 
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a short TF time (e.g., 20,000 µs) to reduce saturation and avoid using other post-
processing tools (e.g., demultiplexing) in large cohort studies.  
 
4.7.4. CCS database matching 
Although the CCS value is described as a physicochemical property of a compound, it 
can vary significantly among different libraries. This variation can be due to different 
instrumentation (e.g., drift tube and traveling wave IMS show CCS deviations from 1% 
up to 6% (Hinnenkamp et al., 2018)) and data source (prediction models versus 
experimental values). Currently, most of these libraries have different formats and are 
not integrated with data processing tools, which makes the manual comparison 
between obtained experimental CCS values and CCS values reported in libraries highly 
time-consuming, especially in an untargeted setting.  
The DTCCSN2 values for each lipid standard matched with freely available libraries were 
reported in the supplementary information (Table SI-4.2). In addition, the AllCCS 
prediction tool was evaluated in order to (i) obtain in silico predicted CCS values coming 
from the same source and (ii) test the accuracy of the CCS values predicted by AllCCS. 
Figure 4.7 shows the distributions of CCS errors for different LIPID MAPS (O’Donnell et 
al., 2019) categories comparing AllCCS machine-learning-based prediction with 
experimental single field DTCCSN2 values acquired in-house.  
 
 

 
Figure 4.7 CCS relative error (%) comparing in-house acquired single-field DTCCSN2 values of lipid 
standards with CCS values predicted with the AllCCS prediction tool. CCS: Collision cross section.  
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Based on the comparison of experimental DTCCSN2 values with AllCCS predictions, the 
accuracy of CCS values predicted by AllCCS is acceptable for annotation in untargeted 
lipidomics using a threshold of 3% for the five lipid categories shown in Figure 4.7. 
However, experimental values produced with the same instrumentation are preferable, 
especially if a compound can be a potential biomarker. Some lipids with different sn-
positions can be separated by chromatography and/or ion mobility. In practice, 
however, lipid standards with known sn-positions are needed to observe the effect on 
CCS-values measured with the same instrument for information that may be relevant 
for a specific study, since instrumental variation and CCS prediction errors can be larger 
than the influence of these specific structural differences on the CCS value (Cao et al., 
2020; Stow et al., 2017). For untargeted analysis, CCS class-based filtering can be applied 
to exploratory lipidomics studies applying ion mobility. For in-depth annotation, the full 
structure level is necessary for biomarker identification. In addition, depending on the 
lipid category, additional techniques are necessary (e.g., ozonolysis for elucidation of 
double bond positions) (Liebisch et al., 2020). 
 
4.7.5. Analysis of HepaRG extracts and CCS database matching 
Intracellular HepaRG extracts were analyzed with the optimized LC-DTIMS-HRMS 
platform. The precision of the dataset was defined by calculating the relative standard 
deviation (RSD) of the intensity of the features for each ionization mode (Figure 4.8). 
The median RSD (mRSD) of the QC pooled samples in Figure 4.8 was used to assess the 
24 h repeatability of the analytical method in the matrices. The mRSD of the six 
analytical replicates of the pooled QC sample was 19.6% for intracellular extracts of 
HepaRG cells (HepaRG IC) in ESI (+) mode and 13.3% in ESI (-) mode. Relative standard 
deviation values below 30% define a high-quality dataset for untargeted analysis which 
reflects a good method stability over runs with different matrices (Cuykx, Negreira, et 
al., 2017; Naz et al., 2014). The number of features in the QC pooled sample after blank 
subtraction and deisotoping were always higher in ESI (+) mode compared to ESI (-) 
mode and amounted 1982 in ESI (+) mode, while 1930 features were detected in ESI (-) 
mode. 
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Figure 4.8 Relative standard deviation (RSD) of the intensity of features during analysis of 
intracellular extracts of HepaRG samples (HepaRG IC). RSD values were calculated based on the 
intensities of 6 injections of QC pooled samples in 24 h. The total number of detected features 
per biological matrix and per ionization mode, shown below the boxplots, were derived after 
preprocessing of acquired data (i.e., peak picking, alignment, blank subtraction, gap filling, and 
deisotoping). 

A maximal CCS error of 3% compared to the AllCCS prediction was used as an annotation 
filter. All matched MS/MS spectra were manually double-checked within the MS-DIAL 
or Lipid Annotator interface considering the fragmentation rules for lipids (Lange et al., 
2021). The reversed-phase model for retention time based on the carbon chain and the 
number of double bonds was used for further filtering. When in-house standards were 
available, annotated lipids were confirmed by comparison of their empirical MS/MS 
fragmentation spectra, RT and DTCCSN2 value (Table SI-4.3 and SI-4.4).  Figure 4.9 shows 
the DTCCSN2 value and m/z value of different lipids species annotated in intracellular 
HepaRG extracts. 
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Figure 4.9 Lipid species annotated in intracellular extracts of HepaRG cells. Single-field DTCCSN2 
values were plotted against the m/z values. One adduct per polarity was kept. IC: Intracellular. 
CAR: Carnitine. Cer: Ceramide. DHCer: Dihydroceramide. DG: Diglyceride. LPC: 
Lysophosphatidylcholine. LPE: Lysophosphatidylethanolamine. NAE: N-acyl ethanolamine. O-
DG: Alkyl ether diglyceride. O-PC: Alkyl ether posphatidylcholine. O-PE: Alkyl ether 
phosphatidylethanolamine. O-TG: Alkyl ether triglyceride. P-PC: Alkenyl ether 
posphatidylcholine. P-PE: Alkenyl ether phosphatidylethanolamine. P-TG: Alkenyl ether 
triglyceride. FA: Fatty acid. PA: Phosphatidic acid. PC: Phosphatidylcholine. PE: 
Phosphatidylethanolamine. PG: Phosphoglycerol. PI: Phosphatidylinositol. PS: 
Phosphatidylserine. SM: Sphingomyelin. TG: Triglyceride.  

Supplementary tables SI-4.3 and SI-4.4 contain the unique annotated lipids structures. 
Annotations were based on m/z values (< 5 ppm), isotopic distributions, the retention 
time of homologue series (CH2), CCS values (< 3%) and the use of fragmentation spectra 
(DDA and/or DIA) when available. Overall, 169 lipid species were annotated in ESI (-) 
and 267 in ESI (+) in HepaRG extracts. In ESI (+), 46 features were annotated without 
acquiring their DTCCSN2 values. Annotation of these latter features was based on DDA 
spectra since the lower sensitivity of LC-DTIMS-MS and IM-All ions did not enable the 
calculation of their CCS value.  
Most saturated and monounsaturated fatty acids (FA) did not show significant 
fragmentation. Based on the CCS values shown in Figure 4.9, both saturated and 
unsaturated fatty acids do not assume an elongated structure when colliding with N2 

gas with the experimental conditions in this study (estimated from CCS values of 
possible gas-phase conformations of fatty acids) (Stow et al., 2017). More compact 
conformations can result in higher variability for CCS values, especially for 
polyunsaturated species. From the annotated fatty acids, the same trend as for 
retention time was followed for CCS values, the higher the unsaturation level, the lower 
the retention time and CCS value (observed for the annotated FA ranging from 10 to 32 
carbons). However, FA 20:4 (putatively eicosatetraenoic acid) showed a higher CCS 
value (186.2 Å2) than both FA 20:0 (185.3 Å2) and FA 20:1 (184.1 Å2). This latter 
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information was not sufficient to remove FA (20:4) as an annotation since the number 
of gas-phase conformations assumed by this species can result in CCS values ranging 
from 170.3 Å2 (most compact structure) to 220.7 Å2 (elongated conformation) (Stow et 
al., 2017). In addition, oxidized fatty acids showed higher CCS values compared to their 
saturated and unsaturated analogue species (i.e., FA 18:1;O and FA 18:1 had measured 
CCS values 177.7 Å2 and 176.1 Å2) (X. Zheng et al., 2017). 

 
Figure 4.10 Lipid composition of HepaRG extracts annotated by the optimized LC-DTIMS-HRMS 
lipidomics platform. IC: Intracellular. CAR: Carnitine. Cer: Ceramide. DHCer: Dihydroceramide. 
DG: Diglyceride. LPC: Lysophosphatidylcholine. LPE: Lysophosphatidylethanolamine. NAE: N-acyl 
ethanolamine. O-DG: Alkyl ether diglyceride. O-PC: Alkyl ether posphatidylcholine. O-PE: Alkyl 
ether phosphatidylethanolamine. O-TG: Alkyl ether triglyceride. P-PC: Alkenyl ether 
posphatidylcholine. P-PE: Alkenyl ether phosphatidylethanolamine. P-TG: Alkenyl ether 
triglyceride. FA: Fatty acid. PA: Phosphatidic acid. PC: Phosphatidylcholine. PE: 
Phosphatidylethanolamine. PG: Phosphoglycerol. PI: Phosphatidylinositol. PS: 
Phosphatidylserine. SM: Sphingomyelin. TG: Triglyceride. 

Figure 4.10 shows a detailed LIPID MAPS sub-class distribution of the annotated lipids. 
Glycerophospholipids, as key components in cellular membranes, were the most 
prevalent lipids in HepaRG extracts, next to glycerolipids. Overall, LC-DTIMS-HRMS can 
provide valuable information and can help in the separation of lipid classes that can co-
elute in reversed-phase liquid chromatography (e.g., some sphingolipids, PEs, and PCs 
in reversed-phase columns). Ion mobility spectrometry enables the possibility to 
separate unresolved species in different features for untargeted analysis (same m/z and 
RT, different mobilities) (Blaženović et al., 2018). However, m/z, RT, and CCS values are 
not enough to provide in-depth information for structural elucidation of lipids, which 
contain a high number of isomeric species. The rule-based fragmentation is crucial for 
confirming lipid species and in silico and experimental libraries for lipid fragmentation 
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in IM-All ions mode are still lacking (including the incorporation of in-source 
fragmentation, adducts, and multimers) (Tada et al., 2019). It is important to note that 
even with MS/MS evidence certain isomers cannot be distinguished (Koelmel, Ulmer, et 
al., 2017). 
Currently, the data analysis workflow for IM data is still highly complex and 
deconvolution algorithms to obtain clear fragmentation spectra are still advancing 
(Koelmel et al., 2020; Tsugawa et al., 2020; Zhiwei Zhou et al., 2019). Therefore, the 
confirmation of annotated compounds relies immensely on manual verification. The 
pipeline used in this study can be successfully applied for exploratory lipidomics studies 
to select statistically significant features. Furthermore, to obtain cleaner fragmentation 
spectra combined with LC-DTIMS-MS data, a validation experiment is necessary. During 
this latter experiment, the m/z values of statistically significant compounds can be used 
as a target list in the data acquisition software to enable the quadrupole to select 
features of interest for fragmentation. As a result, more conclusive information about 
the structure of the compound can be obtained for generation of hypotheses. 
 

4.8. Conclusions 
The ACQUITY UPLC BEH C18 column provided satisfactory results in terms of lipid 
coverage and its ability to separate critical pairs. A Box-Behnken design combined with 
a maximized desirability function was able to improve DTIMS sensitivity for lipidomics, 
while 4-bit Hadamard multiplexing provided variable sensitivity for different lipid 
species not following specific m/z rules. Sensitivity and saturation were not significantly 
affected by the trap release time, only by the trap filling time in single pulse mode. 4-bit 
Hadamard multiplexing ion mobility mode resulted in less saturated peaks which can 
improve mass accuracy and accuracy of quantitation for high abundant compounds. The 
optimized LC-DTIMS-QTOF-HRMS platform was successfully applied to HepaRG liver cell 
extracts to annotate 436 unique lipid species. 
 

4.9. Supplementary information 
The tables described below are available in the electronic supplementary information, 
which is accessible using the link below. 
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
 
Table SI-4.1 Composition of the lipid panel mixture. 
 
Table SI-4.2 Comparison of experimental DTCCSN2 values of the panel lipid standard 
mixture with database CCS values. 
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Table SI-4.3 Annotated lipids in intracellular extracts of HepaRG cells in ESI (-) mode 
 
Table SI-4.4 Annotated lipids in intracellular extracts of HepaRG cells in ESI (+) mode 
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CHAPTER 5: 
BUILDING MULTIDIMENSIONAL LIBRARIES FOR UNTARGETED MS-

BASED METABOLOMICS 
 
 

 
 

 
 
 
 
 
 
 
 
 
Based on the following publication 
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5.1. Introduction 
In a typical LC-HRMS-based metabolomics experiment, information required for 
structural elucidation (e.g., MS/MS spectra) is acquired using a set of pooled quality 
control (QC) samples (Rathahao-Paris et al., 2015). During data processing, MS/MS 
spectra are deconvoluted and aligned to features (i.e., RT-m/z combinations associated 
with a response abundance) in the individual samples acquired in full scan mode. The 
MS/MS spectra are tentatively matched in experimental databases and/or through in 
silico prediction tools.  
Despite advances in metabolomics, annotation remains one of the bottlenecks in the 
field due to the limited availability of high-quality MS/MS spectra (and CCS values) in 
public databases (Ivanisevic & Want, 2019). Reliable annotations are crucial for drawing 
conclusions in the biochemical interpretation of data. While dedicated databases, such 
as METLIN, have MS/MS data for over 850,000 compounds, the coverage of the 
(un)known chemical space is still very limited (Xue et al., 2020). Furthermore, 
constructing such databases is a costly and time-demanding task which resulted in the 
development of software applications that can simulate mass spectra by performing 
theoretical, so called in silico fragmentations of compounds (Krettler & Thallinger, 
2021). Community efforts, such as MassBank, are a valuable resource to share spectral 
data from different platforms and compounds since there is still an open debate on the 
(dis)similarity of spectra generated from QTOF and Orbitrap systems (Paglia et al., 2021; 
Stravs et al., 2013). However, the creation of metabolite libraries with multidimensional 
information is a time-consuming and expensive process but still necessary for 
untargeted workflows. Different software can be used to create metabolite libraries, 
some of which are described in Table 5.1. 
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Table 5.1 Software for handling LC-(IM)-MS/MS data and summary of workflows for building metabolite libraries. CID: Collision-induced dissociation. 
DDA: Data dependent acquisition. DIA: Data independent acquisition. DTIM: Drift tube ion mobility. ESI: Electrospray ionization. HCD: Higher-energy 
C-trap dissociation. HRMS: High resolution mass spectrometry. IM: Ion mobility. LC: Liquid chromatography. LRMS: Low resolution mass spectrometry. 
MRM: Multiple reaction monitoring. PRM: Parallel reaction monitoring. QTOF: Quadrupole Time-of-Flight. QqQ: Triple-quadrupole. SRM: Selected 
reaction monitoring. TIMS:  Trapped ion mobility spectrometry. TWIMS: Traveling wave ion mobility spectrometry. 
 

SOFTWARE AVAILABILITY TOOL(S)* WORKFLOW FOR CREATING IN HOUSE LIBRARY REFERENCES 

NIST 20 Commercial 

Database 
MS/MS spectra from Ion trap (MSn), CID from 
QTOF, QqQ and HCD from Orbitrap. 
6000 human metabolites with different 
ionization species [M+H]+, [M-H]-, [M-2H]2-, 
[M+Na]+, dimers, and in source fragments. 
In house library creation 
The software can be used for library building. 

1. Generate consensus spectra based on a clustering algorithm 
using dot product similarity of multiple scans. The data is 
processed for each instrument, polarity and collision energy 
separately. Merging of the above-mentioned parameters is not 
recommended. 
 
2. Create high quality spectra by using noise removal, annotation 
of fragment ions and evaluation of collision energy dependence 
trends. 
 
3. Manual inspection by an expert. 

(X. Yang et al., 2014) 
 

GNPS Freely available 

Database 
MS/MS spectra from QTOF, Orbitrap, QqQ, ToF, 
Ion Trap, Hybrid FT. 
587,122 spectra. 
In house library creation 
A GNPS workflow (MSMS-Chooser) can be used 
for building and validating in house libraries. 

1. Fill out the MSMS-Chooser Template. 
 
2. Import .mzXML/.mzML file from MassIVE using ProteoSAFe. 
 
3. Review MSMS-Chooser results. 
 
4. Inspection by an expert. 

(M. Wang et al., 2016) 
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Table 5.1 Continuation. 
 

SOFTWARE AVAILABILITY TOOL(S)* WORKFLOW FOR CREATING IN HOUSE LIBRARY REFERENCES 

MAVEN Freely available 

Database 
In silico lipidomics library. 
Software 
Multiple MS/MS libraries can be searched 
simultaneously.  

1. Import .mzML file. 
 

2. MSMS-based peak grouping. 
 
3. Inspection by an expert. 

(Seitzer et al., 2022) 

Mass Bank 
(EU) Freely available 

Database 
MassBank EU contains data from several LRMS 
and HRMS instruments: 29% LC-ESI-QTOF. Not all 
spectra were generated by RMassBank. 
15,075 unique compounds (v 2.2). 
In house library creation 
Script-based (R language). 
RMassBank workflow is indicated for high-
resolution LC-MS/MS data. 
It can also handle direct injections. 
Automated recalibration and annotation of 
fragment ions. 

1. Conversion of raw data to .mzML. 
 
2. Load .mzML, compound smiles, ID and analytical information. 
 
3. Formula assignment for fragment ions. 
 
4. Recalibration and formula reassignment. 
 
5. Noise filtering (multiplicity filtering optional). 
 
6. Generation of Mass Bank records (.txt). 

(Stravs et al., 2013) 
 

SKYLINE Freely available 

Software 
Multidimensional data processing and 
visualization with windows client application. 
MS/MS data from LRMS and HRMS using 
different types of acquisition including SRM, 
MRM, PRM, DIA/SWATH. LC-IM-HRMS data 
(DTIMS, TIMS, TWIMS). 
In house library generation 
Libraries can be created based on predefined 
transition list. 

1. Transition lists generation based on experimental data or in 
silico predictions (e.g., LipidCreator). 

(K. J. Adams et al., 
2020; Peng et al., 
2020) 
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Table 5.1 Continuation. 
 

SOFTWARE AVAILABILITY TOOL(S)* WORKFLOW FOR CREATING IN HOUSE LIBRARY REFERENCES 

MS-DIAL 5 Freely available 

Data-processing and statistics 
Program supports all untargeted data processing 
steps from raw data import to statistical analysis. 
Database 
MS/MS data from 16,481 unique standards in 
ESI+ and 15,245 in ESI−. 
In silico LipidBlast v.68 (377,313 predicted 
molecules in ESI+ and 792,757 in ESI−). 
EIEIO fragmentation for lipids. 
In house library generation 
It can handle and generate libraries for MS/MS 
data from HRMS including DDA, DIA (All-ions 
fragmentation, SWATH) and IM. 

1.The data is processed with selected filtering thresholds. 
 
2. The deconvoluted spectrum is selected and exported to MS-
FINDER. 
 
3. In silico predictions based on formula and SMILES notation of 
the neutral structure or spectral databases can be used for 
fragment annotations. 
 
3. Add metadata such as instrument and collision energy. 
 
3. Data can be exported as .msp file. 

(Lai et al., 2017; 
Tsugawa et al., 2020) 
 

MZmine Freely available 

Data-processing and statistics 
Data processing of raw data, visualization and 
interpretation of results by providing statistical 
analysis methods. Annotation of peaks can be 
performed using custom database search and 
online databases search (supported online 
database or implemented as additional plugins). 
Database 
Chemical formula prediction module to calculate 
all possible molecular formulas for every peak in 
a peaklist. 
Lipid Annotation Module to search for lipids. 
In house library generation 
The software provides a module to export 
MS/MS spectral library entries and directly 
submit them to the GNPS spectral library. 

1. Processing of the data in MZmine. 
 
2. Per compound spectra (i.e., selection of all ion adducts, in 
source fragments and multimers for one compound): select 
"export selected spectra as MS/MS library'' to add metadata (e.g., 
adduct, fragmentation method, formulas, SMILES) and apply filters 
(e.g., noise filter, minimal number of signals in MS/MS scans and 
whether the signals are sorted by maximum TIC or maximum 
number of signals).  
 
3. Export MS/MS spectra as .json file (GNPS format) or .msp file. 
Entries can be directly submitted to GNPS. 

(Pluskal et al., 2010) 
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Table 5.1 Continuation. 
 

ADDITIONAL DATABASES AND SOFTWARE FOR METABOLITE ANNOTATION 

SOFTWARE AVAILABILITY TOOL(S)* REFERENCES 

HMDB Freely 
available 

Database 
Experimental MS/MS data for over 5,700 compounds. 
In silico fragmentation available for all QTOF MS/MS spectra in both positive and negative ionization mode at three 
collision energies (10, 20 and 40 eV). 
MetCCS and DeepCCS (published CCS predictors) were used to generate CCS values for all metabolites (reported 
errors of <3-4%). 
Comprehensive metabolite information 
Chemical, clinical and molecular/biochemical data for more than 41,000 metabolites. Many data are hyperlinked to 
other databases (e.g., KEGG and GenBank) and a variety of structure tools, pathway visualization tools, and chemical 
taxonomy (ClassyFire). 

(Wishart et al., 2022) 

SIRIUS 
Freely 
available 

Software 
Molecular formula annotation. 
CSI:FingerID is used as a web service to search in databases. 
CANOPUS is used for de novo compound class prediction. 

(Dührkop et al., 2019) 

MoNA Freely 
available 

Database 
2,042,858 mass spectral records from experimental, in silico libraries and from user contributions. 
Software 
Option to submit spectral library data on MoNa. 
Community curation and feedback via bar graph. 
“Clean” or “Noisy” feedback available for each spectrum. 
Spectral entropy and normalized entropy to label spectral quality. 
Libraries cannot be generated from raw data. 
The webtool supports .msp, .mgf, mass bank records (.txt) or spectral entries in [m/z]:[intensity] format.  
The spectral data can be manually annotated and filtered. 
Metadata can also be added including mobile phase composition, collision energy, CCS value, retention time, 
instrumental characteristics, etc. 

(Y. Li et al., 2021) 
 

METLIN 
Gen2 

Commercial 

Database 
Spectra derived from 860,000 standards (4 collision energies). 
In silico fragmentation when no experimental spectra are available. 
isoMETLIN enables annotation of isotopically labelled metabolites. 
Option to expand the library with the MassHunter Personal Compound Database (PCDL) commercial software for 
Agilent instruments. 

(Smith et al., 2005a) 
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Table 5.1 Continuation. 
 

SOFTWARE AVAILABILITY TOOL(S)* REFERENCES 

mzCloud Freely 
available 

Database 
Multi-stage tandem mass spectra and annotation of some of the fragment ions. 
MSn information for 1,606 endogenous metabolites. 
CID and HCD breakdown curves. 
Library search by compound identifiers, structure or spectrum. 
Option to expand the library with the mzVault commercial software for Thermo Scientific instruments. 

https://www.mzcloud.org/ 
 

* The database's content and workflow are current as of October 2022. The workflow presented to create in house libraries is a concise summary based on the author's experience, and 
it may include additional steps as a result of updates, particular data files and processing parameters. 
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In this study, a systematic workflow was developed to create in-house MS/MS 
metabolite libraries from analytical standards, using RMassBank, including RT and CCS 
values, and QC criteria. The proposed workflow can be applied by metabolomics groups 
that would like to share their data with the scientific community and improve 
metabolite annotation workflows. The selection of the software solution was based on 
compatibility with in-house untargeted workflows, accessibility and quality of results 
obtained. 
 

5.2. Materials and methods 
5.2.1. Chemicals and materials 
Methanol ultrapure (MeOH), acetonitrile (ACN), and formic acid (99%, HCOOH) 
UPLC/MS grade were purchased from Biosolve (Valkenswaard, the Netherlands). 
Ammonium acetate LC-MS grade (CH3COONH4) and acetone (CH3COCH3, ACS reagent) 
were obtained from Sigma-Aldrich (Darmstadt, Germany). Acetic acid (100%, CH3COOH) 
and ethanol (EtOH), all LC-MS grade, isopropanol for analysis (IPA, ACS reagent), 
ammonia solution (25%, LC-MS grade), and chloroform (CHCl3, analytical grade) were 
purchased from Merck (Merck KGaA, Darmstadt, Germany). Ultrapure water (H2O) used 
throughout the experiments was obtained from an Elga Pure Lab apparatus (Tienen, 
Belgium). Reference standards for the preparation of individual solutions mixtures and 
system suitability (SS) solution were obtained from various vendors (supplementary 
information (SI) 1), including the Mass Spectrometry Metabolite Library of Standards 
(MSMLS) from IROA Technologies (New York, USA).  
 
5.2.2. Preparation of individual solutions, mixtures and system suitability solution 
A solution of 5 µg/mL was prepared for each reference standard using a suitable solvent 
(SI-1). After drying under a stream of N2 at room temperature, standards were 
reconstituted to 2 µg/mL IPA/MeOH (35/65, v/v). The SS mixture composed of 1 μg/mL 
of 2-octenoyl-L-carnitine (CAR 8:1), glycerol tripalmitate-[13C3] (TG 16:0/16:0/16:0-
[13C3]), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (PE 16:0/16:0), lithocholic 
acid, 1-stearoyl-phosphatidylethenolamine (LPE 18:1) and 1,2-dipalmitoyl-rac-glycero-
3-phosphoinositol (PI 16:0/16:0) was prepared in IPA/MeOH (35/65, v/v). 
 
5.2.3. Data acquisition 
The analytical measurements were performed on an Agilent 1290 Infinity II LC system 
coupled to an Agilent 6560 Drift Tube-IM (DTIM)-Quadrupole-Time of Flight (QTOF)-
HRMS with Dual Jet Stream electrospray ionization (ESI) in positive (+) and negative (-) 
modes. Instrumental parameters were obtained by previous in-house method 
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optimization (chapter 4). Data were acquired in 2 GHz extended dynamic mode with a 
scan range of 100-1700 m/z in MS1 (3 spectra/s) and 70-1700 m/z in MS2 (6 spectra/s). 
A maximum of 4 precursors per scan cycle was applied with a separate injection for each 
of the three used collision energies (CE 10, 20, and 40 eV). A narrow (1.3 amu) 
quadrupole isolation window was used in auto-MS/MS mode. Purine and hexakis(1H, 
1H, 3H-tetrafluoropropoxy)phosphazine were constantly infused for recalibration of the 
mass axis (m/z 121.0508 and 922.0097 in ESI+, m/z 119.0363 and 980.0163 in ESI-). 
DTIMS analysis was performed using single pulse mode with a trap filling time of 20 ms 
and a trap release time of 200 µs.  
To acquire RT information, a previously optimized LC method was used (da Silva, 
Iturrospe, Heyrman, et al., 2021). Three µL was injected onto an ACQUITY UPLC BEH C18 
column (150 × 2.1 mm, 1.7 µm) maintained at 60 °C at a 0.2 mL/min flow rate. The 
mobile phase consisted of (A) ACN/5 mM of CH3COONH4 (30/70, v/v) and (B) IPA/ACN/5 
mM CH3COONH4 (88/10/2, v/v/v). In ESI+, 0.1% (v/v) of CH3COOH was added to the 
aqueous fraction. The gradient was set as follows: 15% (B) was kept constant for 2 min 
and increased to 30% at 3 min, to 60% at 5 min, which was kept constant for 3 min, to 
100% at 20 min, and returned to 15% at 35 min for a 5 min equilibration. An isocratic 
condition at 50% B was kept for 1 min for direct injections to acquire MS/MS spectra 
and IM data. 
 
5.2.4. Data processing 
The raw MS/MS data files (Agilent .d format) were converted to an open-source format 
(.mzML) and centroided using peak picking (msLevel = 1-) with MSConvert (Holman et 
al., 2014). The converted data files were divided into folders by ESI mode and collision 
energy. The R package RMassBank (Stravs et al., 2013) v. 3.14 was used to generate 
MassBank records (.txt files). The data file names followed the same general naming 
conventions (compoundname_1001_neg.mzML) associated with the compound table, 
which contained an internal ID, name, and simplified molecular-input line-entry system 
(SMILES) for each compound. Processed acquisition files were renamed with Ant 
Renamer 2.12. The MassBank records for the same ionization mode and different CEs 
were merged and converted to a NIST format library (.msp) with the 
MassbankToMspConverter 1.04 tool. This NIST format can be used for library matching 
in open-source software such as MS-DIAL (Tsugawa et al., 2020). The NIST format 
converted library was imported into MS-LIMA 1.54, facilitating the examination of 
MS/MS spectra at different CEs. The .msp format allowed the addition of orthogonal 
data such as RT and CCS values. The detailed workflow is explained in SI-2. DTCCSN2 values 
were calculated using IM-MS Browser B.08.00 (Agilent). The calibration coefficients 
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enabling single-field CCS calculations were derived from infusion data of the Agilent 
tune mixture (G1969-85000). 
 

5.3. Results and discussion 
5.3.1. General workflow and implementation of QA/QC 
One of the most important applications of an in-house library in untargeted 
metabolomics is the facilitation of obtaining a high confidence level of metabolite 
annotation. While there are several scales to report confidence in compound 
annotation, the highest level (1 or A) relies on confirming the structural information 
with authentic standards acquired under the same conditions (da Silva, Iturrospe, Bars, 
et al., 2021). Moreover, laboratories cannot obtain individual standards for each 
biologically significant metabolite, and therefore generating records of available 
standards is essential to predict the behavior of similar compounds and to retain 
chemical information (e.g., fragmentation patterns, retention time behavior in different 
chromatographic conditions, CCS values).  
To generate a straightforward and flexible multidimensional spectral library workflow 
(Figure 5.1), a comprehensive set of 100 unique endogenous metabolites was used. The 
repertoire of metabolites included nine different super classes reflecting the large 
biological scope of the library. 
A SS mixture of standards (distributed across the m/z and RT range) was injected at the 
beginning and end of each batch, to assess the instrumental performance over a 
complete analysis window. The SS acceptance criteria were based on the variation of 
repeated injections over time (e.g., every week, three injections per day for one month) 
and included: (i) peak height above 5,000 counts and without saturation, (ii) maximal 
mass error of 10 ppm, and (iii) RT deviation of maximum ± 0.2 min. The precision of the 
SS measurements can also be included as an evaluation criterium using the coefficient 
of variation (CV) of intra-assay (e.g., two injections before and after the assay) and inter-
assay measurements (e.g., injections in the same system from different experiments 
over weeks, months, years). After establishing reference values, they can be monitored 
over time before and after each analysis. 
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Figure 5.1 General workflow to build a multidimensional metabolite library. RT: Retention time. 
CCS: Collision cross-section. SD: Standard deviation. IM: Ion mobility. LC: Liquid chromatography. 
RPLC: Reversed-phase liquid chromatography. HILIC: Hydrophilic interaction liquid 
chromatography. 

The standards for the metabolite library were prepared for direct injections (to obtain 
MS/MS and IM data) and divided into different mixtures (to obtain RT data) based on 
their molecular formula to avoid co-elution of isomers. First, MS/MS data were acquired 
in ESI+ and ESI− modes using three collision energies (10, 20, and 40 eV) to acquire 
compound-specific reference spectra. Data files were converted to an open-source 
format (.mzML) and separated into folders by ionization mode. Each compound 
identifier (filename with a 4-digit identification number, CE voltage, and polarity) and 
SMILES notation (neutral structure obtained from PubChem (Kim et al., 2021)) were 
curated. The RMassBank script, developed to generate high-quality MS/MS spectra 
using recalibration and formula annotation of product ions from Orbitrap mass 
spectrometers (Stravs et al., 2013), was applied. In order to use the script for a QTOF 
instrument, the configuration files were modified to work with the higher mass errors 
of low abundant ions in MS/MS (≤ 25 ppm). Given the lower mass accuracy of a QTOF 
instrument compared to an Orbitrap, annotation confidence can benefit from the 
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addition of orthogonal data. Therefore, the acquisition of RT and CCS values were 
included in the general workflow in order to increase the confidence in the annotation 
of metabolites. 
As coupling of DTIMS to LC-MS inherently decreases sensitivity due to impaired duty 
cycles (da Silva, Iturrospe, Heyrman, et al., 2021), it is recommended to run DTIMS-MS 
separately from MS/MS and LC-MS for library building purposes. In addition, it should 
be noted that DTIMS can be coupled with data-independent acquisition (DIA), but is 
incompatible with data-dependent acquisition (DDA) (Agilent Technologies, 2017), 
while DDA is the MS/MS method of choice for library generation as this method results 
in cleaner fragmentation spectra due to more straightforward MS/MS deconvolution 
(Guo & Huan, 2020). In the scope of this latter phenomenon, it should be mentioned 
that coupling of DTIMS to MS/MS in All-ions fragmentation mode (AIF; DIA mode) 
enables a more straightforward deconvolution due to drift time-matching of fragments 
and precursors (Pezzatti et al., 2020). In addition, acquired DTIMS-AIF spectra can be 
matched with DDA spectra using software such as MS-DIAL (Tsugawa et al., 2020). 
Ideally LC-MS/MS acquisition is performed for each standard separately. However, as 
this latter can be very time-consuming, DDA MS/MS spectra can be acquired from direct 
injections of standards, while standard mixtures can be used to acquire RT information. 
In these standard mixtures, isomers should be separated to avoid wrong interpretations 
in case of co-elution. 
A total of 539 MS/MS spectra of different ionization species and collision energies, 194 
RT values, and 177 CCS values in ESI+ and ESI− were obtained from 100 molecules and 
added to the library. The detailed information regarding which adducts were detected, 
retention time and CCS values in each ionization mode can be found in SI-1. The CCS 
values acquired in single field were calculated in IM-Browser for three injections per 
compound. The RT and CCS values were added to the NIST converted .msp file. All 
metabolites included in the library showed mass errors < 15 ppm, a relative standard 
deviation (RSD) for CCS values < 0.5% (May & McLean, 2015) (SI-1) and a maximum RT 
shift < 0.2 min (in-house SS acceptance criteria). As RMassBank is based on R language, 
the suggested workflow in Figure 5.1 generates data that can be easily shared with the 
scientific community (MassBank records or .msp files) and coupled with computational 
tools that allow efficient evaluation of the experimental library and accurate matching 
of experimental data to library LC-(IM)-HRMS data.  
 
5.3.2. Tandem mass spectrometry (MS/MS) 
The MS/MS spectra of individual molecules in metabolomics libraries are typically 
acquired using high-resolution mass spectrometers which provide accurate mass 
measurements for precursor and product ions. The QTOF analyzers have less resolving 



 

154 
 

power and accuracy than Orbitrap instruments, therefore, the latter would be more 
beneficial for MS/MS library building. However, the QTOF instruments can operate at a 
higher scan speed which is advantageous for coupling with sub-2 µm LC-columns and 
IM separation for complex samples allowing high peak capacity (da Silva, Iturrospe, 
Heyrman, et al., 2021; Hopfgartner, 2011). Using data-dependent acquisition mode, the 
quality of the MS/MS spectra can be affected by the isolation window of the precursor 
ion and the total cycle time (Hopfgartner, 2011). As a result, MS/MS spectra were 
acquired in auto-MS/MS mode using one collision energy at a time and the number of 
precursors was limited to four per cycle, with a scan rate of 6 spectra/s in order to 
increase the number of transients per spectrum.  
The optimization of these latter parameters can help to improve the MS/MS data from 
QTOF instruments, but the presence of background signals and contaminants, 
compounds with complex fragmentation mechanisms, and low abundant fragment ions 
(e.g., ions with signals close to experimental noise levels) makes assessing the quality of 
the MS/MS spectra extremely challenging. Therefore, in order to verify whether the 
chemical formula assignments performed by RMassBank retained important fragment 
ions, different strategies were used including rule-based and in-source fragmentation 
and the evaluation of multiple ionization species and radical ions.  
 
5.3.2.1. Rule-based fragmentation as a tool to evaluate experimental libraries 
Rule-based fragmentation is commonly used for lipid annotation using in silico software 
since many diagnostic lipid class fragments are well characterized by mass spectrometry 
(Koelmel, Kroeger, Ulmer, et al., 2017; R. C. Murphy, 2014). Therefore, the MS/MS 
spectra of several lipids can be used to verify whether relevant product ions were 
retained after data processing. In Figure 5.2 and Figure 5.3, the MS/MS spectra of the 
protonated and sodiated species of 1-octadecanoyl-sn-glycero-3-phosphocholine (LPC 
18:0) are shown. The loss of H2O (18 Da) can be observed at the three collision energies 
for [M+H]+, a characteristic concerted mechanism of heterocyclization of acyl-linked LPC 
(driven by protonation of sn1 ester) (R. C. Murphy, 2014). In a recent study, alkyl and 
alkenyl-linked LPC did not show this neutral loss in ESI+ (Lange et al., 2021). The 
diagnostic ions of LPC include the formation of phosphocholine (m/z 184.0734), choline 
(m/z 104.1070), and a less abundant glycerophosphocholine that generates smaller 
product ions (m/z 124.9998 and m/z 86.0963), according to the mechanisms of 
dissociation proposed Colsch et al. 2017. 
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Figure 5.2 MS/MS spectra of the [M+H]+ ion species of 1-octadecanoyl-sn-glycero-3-phosphocholine (LPC 18:0) at CID 10, 20 and 40 eV.  



 

156 
 

 
Figure 5.3 MS/MS spectra of the [M+Na]+ ion species of 1-octadecanoyl-sn-glycero-3-phosphocholine (LPC 18:0) at CID 10, 20 and 40 eV.
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The addition of different precursor ion species to the library can facilitate the structural 
elucidation of an unknown due to different dissociation mechanisms. As shown in the 
spectrum of [LPC18:0+Na]+, the neutral loss of trimethylamine (59 Da) is preferred for 
this monoacylglycerophosphocholine through a rearrangement mechanism that 
involves folding of the side chain to form the ion at m/z 487.2795.  
For carnitines, the spectra of CAR 14:0 are shown as an example in Figure 5.4. The 
characteristic oxonium ion at m/z 85.0288 is visible at the three collision energies. This 
latter ion is formed after the loss of the fatty acyl chain and subsequent loss of the 
trimethylamine moiety. The neutral loss of trimethylamine from the precursor ion 
showing an ion at m/z 313.2375 and the protonated fatty acyl chain after H2O loss 
[FA14:0+H-H2O]+ (m/z 211.2056) could be observed at 10 and 20 eV. This fragmentation 
pattern was already confirmed by several studies (Lange et al., 2021; R. C. Murphy, 
2014; Yan et al., 2020) and the implementation of these additional ions in rule-based 
predictions could increase similarity matches with experimental MS/MS spectra. 
However, as of July 2022, on the LIPID MAPS (Sud et al., 2007) spectral database (e.g., 
LMFA07070102), the prediction from LipidBlast (also used by MS-DIAL (Tsugawa et al., 
2020)) only uses m/z 85.0288 as characteristic ion for the acylcarnitines.  
 
5.3.2.2. Compounds with multiple ionization species 
In an untargeted metabolomics strategy, several compound classes are analyzed 
simultaneously and the addition of modifiers such as acids, bases, or salts to mobile 
phase solvents facilitates the ionization of neutral and polar lipids (e.g., the addition of 
CH3COONH4 facilitates ionization of triacylglycerols as [M+NH4]+). However, for 
metabolites that form multiple ions, the addition of modifiers can increase the 
complexity of data analysis and generate different MS/MS spectra for different adducts 
in the same ionization mode.  
Ceramides (Cer) can ionize in both ionization polarities forming a diverse set of adduct 
ions and can also undergo in-source fragmentation. In Figure 5.5, the MS/MS spectra of 
N-palmitoyl-D-sphingosine are shown in ESI+ and in Figure 5.6 in ESI-. In Figure 5.5, the 
[M+H]+ precursor ion can easily generate abundant ions due to one or two water losses 
and amide cleavage to generate N’ (-H2O) and N” (-H2O) ions already at 10 eV (R. C. 
Murphy, 2014). However, for [M+Na]+ adducts, this latter CE was not sufficient to 
generate N-ions and only a low abundant signal for water loss [M+Na-H2O]+ was noticed. 
Controversially, alkali ions of Cer, such as [M+Li]+ can produce a series of diagnostic 
fragments due to charge remote fragmentation mechanisms (J. Adams & Ann, 1993), 
but this was not seen for the alkali adduct ion in the library, [M+Na]+, even at a high 
collision energy (40 eV). 
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Figure 5.4 MS/MS spectra of the [M+H]+ ion of myristoyl-carnitine (CAR 14:0) at CID 10, 20 and 40 eV. 
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Figure 5.5 MS/MS spectra of N-palmitoyl-sphingosine [M+H]+ at CID 10 eV and [M+Na]+ at CID 10 eV and 40 eV. 
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Figure 5.6 MS/MS spectra of N-palmitoyl-sphingosine [M-H]- and [M+ CH3COO]- at CID 20 eV.
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In Figure 5.6, N-palmitoyl-D-sphingosine generated [M-H]- and [M+CH3COO]- ions. It is 
clear that the formation of different adduct types affects the energy state of the 
molecule as the characteristic series of ions P, T, and R (Domon & Costello, 1988) (Figure 
5.6) have lower intensities at 20 eV for the acetate adduct in comparison to the 
deprotonated compound. While this is not problematic for an individually injected 
standard, several isobaric species can be selected for fragmentation in an untargeted 
metabolomics study, even with a narrow m/z window, and thus the intensity of 
fragment ions relative to the precursor will become more important. Therefore, the 
inclusion of reference MS/MS spectra, if possible, at different ionization polarities, is 
valuable for reliable annotation. 
 
5.3.2.3. In-source fragments as precursor ions 
In-source fragmentation (ISF) is a common effect in ESI for a wide range of molecules 
and can be reduced by optimization of instrumentation settings. However, ISF cannot 
be completely avoided since it usually occurs due to the pressure difference that ions 
experience when being transferred from the atmospheric pressure region to the low-
pressure region in the first stage of the mass spectrometer (Criscuolo et al., 2020). To 
increase confidence in compound annotation, ISF MS/MS spectra were retained in the 
library since they contain important information to characterize the ionization behavior 
of different molecule classes and help to reduce false positives when combined with 
retention time information.  
For instance, the analysis of cholesterol and cholesteryl esters using ESI is usually 
performed in positive mode with the formation of sodiated and/or ammonium adducts. 
The formation of the characteristic cholestene ion at m/z 369.3515 was observed during 
the injection of cholesterol (Figure 5.7). However, the latter ion is probably formed due 
to ISF of the [M+NH4]+ adduct which plays an important role in the mechanisms of 
formation of this ion (R. C. Murphy, 2014). Interestingly, the MS/MS spectra of 
cholesterol shown in Figure 5.7 had cholestene as a precursor ion which generated a 
myriad of fragment ions at lower mass ranges (< 200 Da). 
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Figure 5.7 MS/MS spectra of the [M+H-H2O]+ ion of cholesterol at CID 10, 20 and 40 eV.
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5.3.2.4. Radical ions in ESI and CID-based tandem mass spectrometry 
A recent study showed that for different compound classes, even-electron precursor 
ions can also generate radical fragment ions representing a high percentage of their 
MS/MS spectrum (e.g., up to 30% for benzenoids (Djoumbou Feunang et al., 2016)), 
highlighting the importance of including these ions in experimental metabolite libraries 
for further implementation to in silico MS/MS spectra tools (Xing & Huan, 2022). 
Radical ions (M•+) are usually formed by electron impact (EI). However, it was shown 
that odd-electron ions can dissociate forming odd and even-electron ions using CID-
based fragmentation depending on the oxidation potential of the compound, mobile 
phase composition, and capillary voltage (Guaratini et al., 2004; Neto et al., 2016). In 
the metabolite library of this work, the prenol lipid β-carotene formed a [M]•+ under ESI 
conditions, and its MS/MS spectra are shown in Figure 5.8. As previously reported, an 
electrocyclic reaction with elimination of toluene (92 Da) can generate an ion at m/z 
444.3743 [C33H48]•+ (double bond equivalent (DBE) number = 10) observed at both 10 
and 20 eV (Guaratini et al., 2004; Neto et al., 2016). Alternatively, several ions in the 
MS/MS spectra are even-electron fragments such as m/z 119.0855 ([C9H11]+, DBE = 4.5) 
formed by rearrangement and elimination in the central part of the polyene carbon 
chain that occurs in both [M]•+ and [M+H]+ ion species (Rivera et al., 2014). As another 
example of radical ion fragment formation in ESI, the MS/MS spectra of the benzenoid 
liothyronine, a halogenated compound, are shown in Figure 5.9. The compound showed 
abundant radical fragment ions at m/z 478.8859 [C14H11I2NO2]•+ (DBE = 9) resulting from 
the loss of H2O, CO, and one I, and at m/z 507.8663 [C15H10I2O4]•+ (DBE = 10) from the 
loss of  NH3 and I (Zhao et al., 2006). Bile acids, such as cholic acid, also showed minor 
ions originating from homolytic cleavage of carbon bonds (Figure 5.10), in addition to 
the generation of typical even-electron ions. The mechanisms for the formation of these 
ions for both free and conjugated species are well-known and depend on the applied 
collision energy (Griffiths, 2003). While only neutral losses, such as [M-H-H2O]-, [M-H-
2H2O]-, [M-H-H2O-CO2]-, were observed at lower collision energies (10 and 20 eV), 
radical ions were observed at 40 eV (Figure 5.10). 
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Figure 5.8 MS/MS spectra of β-carotene [M+•] ion at CID 10, 20 and 40 eV. The formula annotated fragment ions are present in at least two collision 
energies. DBE: double bond equivalent. 
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Figure 5.9 MS/MS spectra of liothyronine [M+H]+ ion at CID 10, 20 and 40 eV.
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Figure 5.10 Example of fragment ions with integer double bond equivalents (DBE) in the MS/MS 
spectra of cholic acid at 40 eV. 

5.3.3. Liquid chromatography 
The use of RPLC can facilitate metabolite annotation by separating molecular isomers, 
reducing co-elution, and decreasing matrix effects. For example, sn-positional isomers 
of 1-octadecanoyl-glycero-3-phosphocholine and 1-octadecanoyl-glycerol could be 
resolved with the BEH C18 RPLC column used during this study (da Silva, Iturrospe, 
Heyrman, et al., 2021). Note that in biological samples, the separation of sn-positional 
isomers can become more difficult as chromatograms can be highly populated. Also, 
compounds that generate high abundant ISF ions, such as prostaglandins, can benefit 
from separation before MS/MS analysis. Prostaglandin E1 (PGE1) generates [M-H-H2O]- 

in the source, which has a very similar fragmentation pattern compared to 
prostaglandin A1 (PGA1) (R. C. Murphy et al., 2005). Thus, RT information is crucial to 
assign a correct structure since PGE1 can be resolved from PGA1 by two minutes 
difference (3.2 and 5.0 min, respectively). 
The separation mechanism in common C18-based columns is based on the hydrophobic 
interactions that can separate lipids by their carbon chain length, and the level of 
saturation (Lange et al., 2019). As a result, different classes can be mapped within RT 
ranges. These class-specific RT windows can then be used to filter false positive lipid 
annotations in complex matrices using Kendrick mass defect plotted against reversed-
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phase RT values (da Silva, Iturrospe, et al., 2022; Lange et al., 2021; Lerno et al., 2010). 
When the RT of metabolites follows class-specific RT windows during the annotation of 
a metabolomics dataset, these RTs can be used as an additional confirmation for 
putative annotations (Ovčačíková et al., 2016). In addition, RT information can also be 
used to show the structural characteristic behavior within the same class. For fatty acyls 
in negative ionization mode, a RT window was observed from 3 minutes to 17 minutes. 
Within the same class, a larger carbon chain results in increased RT. The oxidized fatty 
acyls elute first, for example, prostaglandin E2 has lower retention on RPLC due to its 
higher polarity with a retention time of 3.0 min. Unsaturated fatty acyls elute earlier 
than their saturated carbon chain equivalents. For example, eicosapentaenoic acid (FA 
20:5) elutes at 8.2 min, while eicosanoic acid (FA 20:0) has an RT of 13.5 min.  
 
5.3.4. Ion mobility spectrometry 
5.3.4.1. Additional separation and CCS for annotation 
In addition to m/z, MS/MS spectra, and RT, ion mobility provides CCS values as an 
additional molecular descriptor, to further increase annotation confidence (Celma et al., 
2020; Pičmanová et al., 2022).  In addition, CCS values can be used as a class annotation 
filter (Qian Wu et al., 2020). When plotting CCS values in function of m/z values, 
metabolites within the same class will cluster together as their similarity in the chemical 
space is reflected in their ion mobility behavior. As a result of this clustering behavior, 
metabolites that show a large deviation in CCS within their class can be flagged as 
possible false positive annotations. In addition, CCS values can help in the structural 
characterization of lipids. Lipid species within the same class show increasing CCS values 
with increasing fatty acyl chain length as their increased size will cause slower passage 
through the ion mobility spectrometer. For example, the DTCCSN2 value for [Cer 
d18:1/16:0+H]+ was determined to be 255.1 Å², while a DTCCSN2 value of 258.6 Å² was 
derived for [Cer d18:1/17:0+H]+. In contrast to the direct relation between CCS value 
and fatty acyl chain length, there is an inverse relation with the degree of unsaturation, 
as an increasing degree of unsaturation can compact the conformation, increasing the 
speed of the analytical ions traveling through the buffer gas. This latter is shown in the 
IM separation of [Cer d18:1/16:0+H]+ and [Cer d18:0/16:0+H]+ providing DTCCSN2 values 
of 255.1 Å² and 257.4 Å², respectively.  
Unlike LC where multiple ion species derived from the same compound show the same 
RT, the ion species will impact the ion mobility behavior. For example, [coenzyme 
Q10+Na]+ and [coenzyme Q10+H]+ showed a DTCCSN2 value of 307.6 Å² and 303.9 Å², 
respectively. The higher CCS value for the [M+Na]+ adduct compared to [M+H]+ could 
be explained by the larger size of the [M+Na]+ adduct and was observed for all classes 
within the library. Interestingly, ceramides were the only class where the [M+Na]+ 
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adduct showed lower CCS values compared to [M+H]+, which could be related to gas-
phase conformational changes induced by adduct formation. This latter was 
consistently observed for all ceramides, while in silico tools always predicted a higher 
CCS value for the [M+Na]+ adduct compared to [M+H]+. High repeatability of the DTCCSN2 

measurements is reflected by > 85% of DTCCSN2 showing an SD ≤ 0.1 Å² (N=3). The largest 
SD of 1.2 Å² was obtained for [PGA1+H-H2O]+. This latter SD can be explained by the 
broader peak of [PGA1+H-H2O]+ in the IM spectrum compared to for example 
[PGA1+Na]+. As PGA1 contains both a carboxyl and a hydroxyl group, water loss could 
occur at two different positions. These two different isomers of [PGA1+H-H2O]+ could 
cause one broad peak when baseline separation did not occur. This behavior would be 
in line with the IM spectrum of [aldosterone+H]+, where IM was able to provide different 
DTCCSN2 values for two protomers of aldosterone (Figure 5.11). Both CCS values were 
reported on PubChem. The DTCCSN2 value for the protomer generating the most intense 
signal was reported in the library. 
 

 
Figure 5.11 Ion mobility spectrum of [aldosterone+H]+  showing different DTCCSN2 values for two 
protomers. 

5.3.4.2. CCS predictions 
After calculating single-field DTCCSN2 values from experimentally acquired drift times of 
reference standards, they were compared to in silico generated CCS values. For the 
prediction of CCS values, three different tools were used; AllCCS (Zhiwei Zhou et al., 
2020), CCSbase (Ross et al., 2020), and DeepCCS (Plante et al., 2019). Compared to 
experimental single-field DTCCSN2 values, CCSbase predictions showed the highest 
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Pearson correlation coefficient of 0.995, followed by AllCCS with 0.987 and DeepCCS 
with 0.978 (Figure 5.12). For the generation of this figure, datapoints were only included 
when all three software were able to provide a CCS prediction. CCSbase and AllCCS 
showed similar median prediction errors (1.21% and 1.20% respectively), while the 
prediction error was larger for DeepCCS (2.09%). These results are in line with the root 
mean square error (RMSE) (Figure 5.12). Although the prediction capacity of the three 
tools was similar based on the Pearson correlation coefficients, differences were 
observed in prediction coverage. Considering all detected ionization species for all 
reference standards, 195 signals were detected. From these 195 ions, AllCCS was able 
to predict 174 CCS values, while CCSbase and DeepCCS were only able to predict 157 
and 149 CCS values, respectively. When comparing the number of CCS errors below 3% 
within the predictions per tool, CCSbase showed the highest accuracy (87% of CCS errors 
< 3%), followed by AllCCS (81%) and DeepCCS (56%).  
However, the complementarity of in silico tools needs to be highlighted as for example, 
AllCCS was not able to predict CCS values for cardiolipins, unlike CCSbase and DeepCCS. 
On the other hand, AllCCS was the only tool able to predict CCS values for [M+H-H2O]+ 
adducts. As AllCCS showed the highest prediction coverage, combined with the lowest 
median prediction error and a high Pearson correlation coefficient, the use of this 
prediction tool is suggested as primary tool for confirmation of CCS library entries. 
Multiple prediction tools may be screened for classes for which AllCCS is unable to 
predict CCS values. The primary aim of this simplified investigation was not to identify 
the most effective machine learning approach for predicting CCS values. This would 
require a thorough evaluation of prediction accuracy for a broader range of molecule 
classes. Instead, our emphasis was on investigating user-friendly and benchmarked 
tools that can offer predictions within the chemical space of a metabolomics 
experiment. Important to mention is the current absence of a tool to predict CCS values 
for [M+CH3COO]- adducts, while this adduct is frequently detected and can provide 
important information on side chain composition, for example for 
glycerophospholipids. 
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Figure 5.12 Correlation between experimental acquired DTCCSN2 values for reference standards and predicted CCS values using AllCCS, CCSbase, and 
DeepCCS. RefMet super classes were separated by color. RMSE: Root mean square error. 
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5.4. Conclusions 
A multidimensional metabolite library workflow was created with open-source software 
to confidently annotate features resulting from untargeted metabolomics experiments. 
Although manual MS/MS spectra verification is still required when using experimental 
untargeted datasets, the level of confidence is increased by internal library annotation 
with multidimensional information. A total of 539 MS/MS spectra of different ionization 
species, 194 retention time values, and 177 CCS values derived from 100 authentic 
standards, were converted to an open-source format (NIST .msp) and shared via an 
open-access platform. Building and curating a metabolite library allow to obtain in-
depth knowledge of class-specific retention time ranges, the ionization species formed 
by different compounds, in-source fragmentation, and trends in IM space. Moreover, 
sharing retention time values in public databases can aid in the development of 
prediction models to further characterize the overall retention patterns across different 
chromatographic systems. 
 

5.5. Data availability 
The NIST msp file can be accessed at Metabolomics Library Toxicology Centre (BE) [Data 
set]. Zenodo. https://doi.org/10.5281/zenodo.6979698 
 

5.6. Supplementary information 
SI-1 and SI-2 are available in the electronic supplementary information, which is 
accessible using the link below. 
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
 
SI-1 (xlsx) provides a table of reference standards used in this chapter (sheet 1). 
Retention time, CCS values, suppliers, solubilization solvents and CCS predictions were 
described. In sheet 2, the composition of the SS sample is described, together with the 
acceptance criteria.  
SI-2 provides the library creation workflow in a step-by-step manner.  
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6.1.  Introduction 
This chapter extensively describes the methodology used for HepaRG experiments, 
while the metabolic signature of HepaRG exposure to ethanol and to ethanol combined 
with tumor necrosis factor alpha (TNF-α) are discussed in the following two chapters.  
An overview is provided on dosage estimation of ethanol for cell exposure, as well as 
cell cultivation procedures and sample preparation methods. Analytical methods for 
untargeted metabolomics employing LC-(DTIMS)-QTOF-MS/MS, which were optimized 
in chapter 3 (polar metabolites) and chapter 4 (lipids), are summarized, including 
analytical QA/QC procedures. In addition, a method for ethanol quantification using 
headspace-gas chromatography-flame ionization detection is described. Employed data 
analysis, including data preprocessing, pretreatment, statistics and metabolite 
annotation methods are discussed. 
 
6.2.  Chemicals and materials 
Internal standards hippuric acid-(phenyl-13C6), L-lysine-13C6-15N2, Leucine-5,5,5-D3, 
glucose-13C6, glyceryl tri(palmitate-1-13C) and cholic acid-2,2,4,4-D4 were purchased 
from Sigma Aldrich (St. Louis, Missouri, USA). Lauric acid-12,12,12-D3 was bought from 
CDN Isotopes (Pointe-Claire, Quebec, Canada), caffeine-13C3 from Cerilliant Corporation 
(Texas, USA), 18:1-D7 lyso PE from Avanti Polar Lipids and octanoyl-L-carnitine-(N-
methyl-D3), ceramide (d18:1/18:1(9Z)-13C18) and L-phenylalanine-13C9-15N from 
Cambridge Isotope Laboratories (Massachusetts, USA). Methanol (MeOH), acetonitrile 
(ACN) and formic acid (99%, HCOOH), all ULC/MS-CC/CSF grade, were purchased from 
Biosolve (Valkenswaard, The Netherlands). Ammonium formate (≥ 99%, HCOONH4) LC-
MS grade, ammonium carbonate HPLC grade ((NH4)2CO3) and ammonium acetate LC-
MS grade (CH3COONH4) were obtained from Sigma Aldrich. Acetic acid (100%, 
CH3COOH) and ammonia solution (25%, NH3(aq)), both LC-MS grade, isopropanol for 
analysis (ACS reagent) (IPA) and chloroform (analytical grade) (CHCl3), were purchased 
from Merck (Darmstadt, Germany). Ultrapure water (H2O) used throughout the 
experiments was obtained from an Elga Pure Lab apparatus (Tienen, Belgium). L-
ascorbic acid (≥ 99%), butylated hydroxytoluene (≥ 99%, BHT), EDTA (99.995%) and 
neutral red (BioReagent) were purchased from Sigma Aldrich. Ethanol for cell exposure 
(≥ 99.8%, molecular biology, EtOH) was purchased from Sigma Aldrich, while 
recombinant human TNF-α was acquired from Prospec-Tany TechnoGene Ltd. (Rehovot, 
Israel). Eppendorf Safe-Lock tubes, reacti-vials and 0.2 µm nylon centrifugal filters were 
acquired from Eppendorf, Thermo Scientific and VWR (Pennsylvania, USA), respectively. 
Pure, dry nitrogen (AZOTE N28, N2) used for solvent evaporation was obtained from Air 
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Liquide Belge (Liège, Belgium). 384-well plates (PS, small volume) were bought from 
Greiner Bio-One (Vilvoorde, Belgium).  
 

6.3.  Dosage estimation 
The inhibitory concentration (IC)10 of ethanol in HepaRG cells (i.e., concentration of 
ethanol that causes a decrease of 10% in HepaRG cell viability) was determined after 24 
h and 48 h exposure via the neutral red uptake assay as described by Ates et al.(2017). 
Differentiated HepaRG cells (Biopredic International, Rennes, France) were seeded in 
96-well plates (Falcon, Corning, New York, USA) at a concentration of 94 x 103 cells per 
well. The cells were incubated for 7 days at 37 °C, 5% CO2, and saturated humidity. On 
day 7, cells were divided into equal groups I and II, which were subject to 24 h and 48 h 
of ethanol exposure, respectively. Cells from groups I and II were exposed to eight 
different concentrations of ethanol (range 250-950 mM, increments of 100 mM) for 24 
h. For cells of group II, ethanol-containing media were renewed after 24 h and exposure 
was continued for another 24 h. In addition, unexposed negative controls and blanks 
were obtained.  
After exposure, used media were replaced by neutral red-containing media (25 µg/mL) 
and incubation was continued for another 3 h. Media were washed away using 
phosphate-buffered saline (PBS, 37 °C), and a desorption solution was added to the cells 
(1 CH3COOH, 50 EtOH and 49 H2O, v/v/v) after which they were shaken for 30 min at 80 
rpm in a dark environment. After 5 min equilibration, absorption was measured at 540 
± 10 nm using a victor³ 1420 multilabel counter (Perkin Elmer, Massachusetts, USA). 
Experiments were conducted in triplicate. To avoid cross-contamination due to the 
volatile nature of EtOH, separate well plates were used for each concentration of EtOH 
and PBS containing the same EtOH concentration was used to fill surrounding wells. 
Absorbance versus EtOH concentration was plotted using four-parameter logistics least 
squares regression in Graphpad Prism (v. 9.0) (Figure 6.1), which enabled the calculation 
of the IC50 and the Hill slope. The latter two parameters were used to calculate the IC10 
value, according to equation 6.1. 
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Figure 6.1 Absorbance measured during neutral red uptake assay for 24 h (A) and 48 h (B) of 
ethanol exposure. Cells were incubated using eight different ethanol concentrations (n = 3).  

𝐼𝐶10 =  ൬
90

100 − 90
൰

ଵ/ு 

∗ 𝐼𝐶50 

Equation 6.1 IC10 calculation using IC50 and Hill slope.  

The IC10 value for HepaRG cells exposed for 24 h and 48 h to EtOH was determined to 
be 368 mM and 284 mM, respectively. 
 

6.4. Cell cultivation and exposure 
Ethical approval for the use of HepaRG cells was provided by the Medical Ethics 
Committee of the University Hospital Brussels (reference number 143201941214). 
Differentiated HepaRG cells were seeded in collagen-coated Permanox 2-well Lab-Tek 
chamber slides (Nunc, Thermo Scientific, Rochester NY, USA) at a concentration of 1 x 
106 cells per well (day 0). The chamber slides were coated with rat tail collagen type I 
(Corning, New York, USA). For seeding of the cells, Basal Hepatic Medium with HepaRG 
Thaw, Seed and General-Purpose Supplement (Biopredic International) was used. The 
cells were incubated at 37 °C, 5% CO2 and saturated humidity using a Galaxy 170 S 
incubator (Eppendorf, Hamburg, Germany). On day 1 of incubation, the medium was 
replaced by Basal Hepatic Medium with HepaRG Maintenance and Metabolism 
Supplement (Biopredic International) (1.2 mL per well). On days 3 and 6, the medium 
was renewed and cell exposure to ethanol (or ethanol and TNF-α) was initiated on day 
7. 
All exposure experiments were repeated to validate the experiment, using a second 
batch of HepaRG cells (batch numbers were 116310 and 116308, respectively). Since 
cell samples (i.e., intracellular (IC) fraction) and conditioned media samples (i.e., 
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extracellular (EC) fraction) were prepared separately (see 6.5), subsequent data 
acquisition and -analysis were used for metabolic fingerprinting and footprinting, 
respectively. 
Due to the volatile nature of ethanol, concentration loss during cultivation was 
expected. More importantly, ethanol evaporation from cells exposed to a high 
concentration can cause cross-contamination of cells exposed to a low concentration or 
unexposed negative controls. Therefore, cells were cultivated in chamber slides within 
Petri dishes to minimize the risk of cross-contamination. Each chamber slide comprised 
two wells. Cells were exposed to ethanol-containing medium in one well, while PBS with 
the same ethanol concentration was added to the second well. In addition, the 
concentration of ethanol in the medium was determined before and after cultivation 
using headspace gas chromatography with flame ionization detection (HS-GC-FID).  
 

6.5. Sample preparation 
6.5.1. Intracellular HepaRG extracts 
After cell exposure, media were collected (6.5.2) and the chamber slides were washed 
twice using PBS (37 °C) before snap-freezing with liquid N2. Quenching was performed 
using 300 µL of a solution, which consisted of 80% (v/v) MeOH and 20% (v/v) of 10 mM 
CH3COONH4 at -80 °C. After 2 min, the cells were scraped and transferred to a vial for 
liquid-liquid extraction (LLE), which contained 500 µL of a polar mixture and 420 µL of 
an apolar mixture (at -20 °C). The polar mixture consisted out of 1 mM (NH4)2EDTA and 
0.5 mM ascorbic acid in 5 mM CH3COONH4 with 0.1% (v/v) CH3COOH (pH 4.2). The 
apolar mixture consisted of 1 mM BHT in CHCl3. Another 300 µL of the quenching 
solution was used for rinsing and was collected in the same LLE-vial.  
Internal standard mixture 1 contained 22 µg/mL lauric acid-12,12,12-D3, cholic acid-
2,2,4,4-D4, glyceryl tri(palmitate-1-13C), 18:1-D7 lyso PE, octanoyl-L-carnitine-(N-methyl-
D3) and ceramide (d18:1/18:1(9Z)-13C18) in CHCl3. Internal standard mixture 2 contained 
14 µg/mL hippuric acid-(phenyl-13C6), L-lysine-13C6-15N2, leucine-5,5,5-D3, glucose-13C6, 
caffeine-13C3 and L-phenylalanine-13C9-15N in H2O/MeOH (1/1, v/v). Aliquots of 20 µL of 
internal standard mixtures 1 and 2 were added to each LLE-vial (final concentration after 
reconstitution 2 µg/mL). This latter concentration of internal standards is doubled 
compared to the concentrations used in chapter 3 and 4, to ensure easy evaluation and 
to minimize the risk of low S/N ratios due to poor ionization and/or ion suppression.  
The extraction mixture was subsequently vortexed for 90 s, equilibrated for 10 min on 
ice, centrifuged at 2,200 g for 7 min at room temperature and again equilibrated for 10 
min on ice. A volume of 900 µL of the polar fraction (upper phase) was transferred to 
an Eppendorf tube, without transferring solid particles from the protein disk. After 
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vortexing for 20 s, 450 µL was transferred to a second Eppendorf tube after which the 
liquid of both Eppendorf tubes was evaporated using pure, dry nitrogen at room 
temperature. 240 µL of the apolar fraction (lower phase) was transferred to a reacti-
vial. After vortexing for 20 s, 120 µL was transferred to a second reacti-vial, after which 
the liquid was evaporated using pure, dry N2 at room temperature. Dried extracts were 
stored at -80 °C and reconstituted directly before analysis. Each fraction (polar and 
apolar) was divided into two subfractions right before the evaporation step, in order to 
analyze each subfraction using a different polarity during liquid chromatography (LC) – 
(drift tube ion mobility (DTIM) –) high resolution mass spectrometry (HRMS) 
acquisitions. Extracts from the polar and apolar fractions were reconstituted on ice 
using 60 µL of ACN/H2O (65/35, v/v) and IPA/MeOH (35/65, v/v), respectively. After 
vortexing for 90 s, samples were filtered using 0.2 µm nylon centrifugal filters and 
centrifugated at 14,000 g for 2 min at room temperature. Ten µL of each extract was 
transferred to an LC-vial to create a QC pool. Another 20 µL of each sample was 
transferred to a Greiner Bio-One 384-well plate (small volume). Surrounding wells were 
filled with solvent blanks and the well plate was sealed using aluminum adhesive. Both 
the well plate and the QC pool were transferred to the autosampler (4 °C) right before 
analysis. 
 
6.5.2. Extracellular HepaRG extracts 
After exposure of HepaRG cells, the incubation medium (1.2 mL per well) was extracted 
in separate Eppendorf tubes. Blank media were obtained after incubation without 
HepaRG cells and were treated identically to other samples. From the collected 
medium, 320 µL was transferred to a second Eppendorf tube, to which 725 µL of the -
80 °C quenching solution was added (composition described in 6.5.1). After vortexing 
for 60 s, 980 µL of the quenched medium was transferred to an LLE-vial and LLE was 
performed as described in 6.5.1. The same internal standard mixtures were used to 
obtain a final concentration (i.e., after reconstitution) of 2 µg/mL. After LLE, higher 
volumes were extracted from the polar (1000 µL) and apolar fractions (290 µL), which 
were divided in two subfractions before drying. Subsequent sample preparation steps 
were identical to those for the intracellular extracts (6.5.1). Optimization of the dilution 
factor used during sample preparation was described in the supplementary information 
(6.10.1).  

6.6. Analytical methods 
6.6.1. Data acquisition using LC-(DTIMS)-QTOF-MS/MS 
Analytical measurements of the polar fraction of the samples were carried out on an 
Agilent 1290 Infinity UPLC system coupled to an Agilent 6530 quadrupole-time-of-flight 
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(QTOF) HRMS with Agilent Jet Stream Electrospray Ionization (Agilent Technologies, 
Santa Clara, USA). In ESI (+), an iHILIC-Fusion column (100 x 2.1 mm, 1.8 µm, zwitterionic, 
charge modulated amide, silica-based, HILICON AB, Sweden) was used with 10 mM 
HCOONH4 and 0.1% (v/v) HCOOH in H2O/MeOH (9/1, v/v) as mobile phase A (MPA) and 
ACN as mobile phase B (MPB). In ESI (-), an iHILIC-Fusion(P) column (100 x 2.1 mm, 5 
µm, zwitterionic, charge modulated amide, polymer-based, HILICON AB), was used with 
H2O containing 2 mM CH3COONH4 and 2 mM (NH4)2CO3 as MPA and ACN/MeOH (9/1, 
v/v) as MPB.  
The analytical measurements of the apolar fraction of the samples were carried out on 
an Agilent 1290 Infinity II LC system coupled to an Agilent 6560 DTIM-QTOF-HRMS using 
Agilent Dual Jet Stream Electrospray Ionization. In both ESI (+) and ESI (-) modes, an 
ACQUITY UPLC BEH C18 column (150 x 2.1 mm, 1.7 µm, Waters Corporation, 
Massachusetts, USA) was used with 5 mM CH3COONH4 in H2O/ACN (7/3, v/v) as MPA 
and 5 mM CH3COONH4 in H2O/ACN/IPA (2/10/88, v/v/v) as MPB. In ESI (+) mode, 0.1% 
(v/v) CH3COOH was added to the aqueous fraction of MPA and MPB.  
Data were acquired in 2 GHz extended dynamic mode for all four analytical methods. 
Details on the LC and QTOF parameters can be found in Table 6.1. 
Before each analytical run, a system suitability sample was injected which needed to 
fulfill preset criteria concerning peak height, mass error and RT deviation (6.9). All 
samples were randomized before injection, and data were acquired in full scan (MS1) 
profile mode. A QC pooled sample was injected at regular intervals (n = 6-7). Data-
dependent acquisition (auto-MS/MS) with iterative exclusion (Koelmel, Kroeger, Gill, et 
al., 2017) was obtained during conditioning of the system by at least six injections of the 
QC pooled sample. In addition, fragmentation target lists were built for interesting 
features selected by the statistical workflow of the first experiment, and applied during 
data acquisition of the validation experiment. Since lipids comprise a wide variety of 
isomers and isobars, additional ion mobility (IM) data was acquired for the QC pool of 
the apolar fraction of the HepaRG samples, both in single pulse and 4-bit multiplexed 
mode. Details on the DTIMS parameters can be found in Table 6.1.
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Table 6.1 Data acquisition parameters per sample fraction. For mobile phase compositions, modifier concentrations were calculated based on the 
volume of the aqueous fraction. For polar methods (ESI (+) and ESI (-)), additional MS2 runs were acquired using one collision energy at a time (10, 
20 or 40 eV) with a maximum of 12 precursors per scan cycle (*). During validation experiments, fragmentation target lists were used based on 
interesting features elucidated from the first exposure experiments. ESI: Electrospray ionization. LC: Liquid chromatography. QTOF: Quadrupole-time-
of-flight. DTIM: Drift tube ion mobility. BEH: Ethylene bridged hybrid. UPLC: Ultra performance liquid chromatography. MeOH: Methanol. ACN: 
Acetonitrile. IPA: Isopropanol.  
 

Sample fraction Polar Polar Apolar Apolar 

ESI mode ESI (+) ESI (-) ESI (+) ESI (-) 

LC system 
 

Agilent 1290 Infinity Agilent 1290 Infinity Agilent 1290 Infinity II Agilent 1290 Infinity II 

Detector 
 

Agilent 6530 QToF Agilent 6530 QToF Agilent 6560 (DTIM)-QToF Agilent 6560 (DTIM)-QToF 

Column 
 

iHILIC-Fusion  iHILIC-Fusion(P) ACQUITY UPLC BEH C18 ACQUITY UPLC BEH C18 

Column dimensions 
 

100 x 2.1 mm, 1.8 µm 100 x 2.1 mm, 5 µm 150 x 2.1 mm, 1.7 µm 150 x 2.1 mm, 1.7 µm 

Mobile phase A 10 mM HCOONH4 + 0.1% (v/v) 
HCOOH in H2O/MeOH (9/1, v/v)  

2 mM CH3COONH4 +  
2 mM (NH4)2CO3 in H2O 
 

5 mM CH3COONH4 + 0.1% (v/v) 
CH3COOH in H2O/ACN (7/3, v/v)  

5 mM CH3COONH4 in H2O/ACN 
(7/3, v/v) 

Mobile phase B ACN ACN/MeOH (9/1, v/v) 5 mM CH3COONH4 + 0.1% (v/v) 
CH3COOH in H2O/ACN/IPA 
(2/10/88, v/v/v)  
 

5 mM CH3COONH4 in 
H2O/ACN/IPA (2/10/88, v/v/v)  

Flow rate (mL/min) 0.25 0.20 0.20 
 

0.20 
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Table 6.1 Continuation. 
 

Sample fraction Polar Polar Apolar Apolar 

ESI mode ESI (+) ESI (-) ESI (+) ESI (-) 

Gradient Min - %B 
0 – 95 
4 – 95 
12.5 – 60 
20 – 60 
21 – 95 
26 – 95 

Min - %B 
0 – 95 
1 – 95 
10 – 20 
14 – 20 
15 – 95 
20 – 95 

Min - %B 
0 – 15 
2 – 15 
3 – 30 
5 – 60 
8 – 60 
20 – 100 
30 – 100 
35 – 15 
40 – 15 
 

Min - %B 
0 – 15 
2 – 15 
3 – 30 
5 – 60 
8 – 60 
20 – 100 
30 – 100 
35 – 15 
40 – 15 

Injection volume (µL) 
 

3 3 3 2 

Autosampler temperature (°C) 
 

4 4 4 4 

Column temperature 
 

60 25, bypassing heat exchanger 60 60 

Nozzle voltage (V) 
 

0 0 500 500 

Capillary voltage (V) 
 

2000 2000 3500 3750 

Fragmentor voltage (V) 
 

150 100 200 200 

Drying gas 
 

Nitrogen Nitrogen Nitrogen Nitrogen 

Sheath gas 
 

Nitrogen Nitrogen Nitrogen Nitrogen 

Drying gas temperature (°C) 
 

250 250 325 350 

Sheath gas temperature (°C) 
 

350 350 325 350 

Drying gas flow (L/min) 8 10 8 8 
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Table 6.1 Continuation. 
 

Sample fraction Polar Polar Apolar Apolar 

ESI mode ESI (+) ESI (-) ESI (+) ESI (-) 

Sheath gas flow (L/min) 
 

11 10 8 8 

Nebulizer gas pressure (psig) 
 

45 45 30 30 

MS1 range (m/z) 
 

60-1200 60-1200 100-1500 100-1500 

MS1 acquisition mode 
 

Profile Profile Profile Profile 

MS1 scan rate (spectra/s) 
 

2 2 4 4 

MS2 mass range (m/z) 
 

40-1000 40-1000 60-1200 60-1200 

MS2 acquisition mode Profile (auto MS/MS + target 
MS/MS) 

Profile (auto MS/MS + target 
MS/MS) 

Profile (auto MS/MS with 
iterative exclusion + target 
MS/MS) 
 

Profile (auto MS/MS with 
iterative exclusion + target 
MS/MS) 

MS2 scan rate (spectra/s) 
 

6 6 6 6 

Max precursors/scan cycle 
 

4* 4* 4 4 

Collision energy (eV) 
 

10-20-40* 10-20-40* 10-20-40 10-20-40 

Quad width 
 

Small (1.3 amu) Small (1.3 amu) Small (1.3 amu) Small (1.3 amu) 

DTIM drift entrance voltage (V) 
 

/ / 1221 1273 

DTIM drift exit voltage (V) 
 

/ / 300 300 

DTIM rear funnel entrance 
voltage (V) 

/ / 200 216 
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Table 6.1 Continuation. 
 

Sample fraction Polar Polar Apolar Apolar 

ESI mode ESI (+) ESI (-) ESI (+) ESI (-) 

DTIM rear funnel exit voltage 
(V) 
 

/ / 49 47 

DTIM single pulse trap filling 
time (µs) 
 

/ / 30,000 30,000 

DTIM single pulse trap release 
time (µs) 
 

/ / 200 200 

DTIM 4-bit multiplexing trap 
filling time (µs) 
 

/ / 3,000 3,000 
 

DTIM 4-bit multiplexing trap 
release time (µs) 

/ / 200 200 
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6.6.2 Data acquisition using HS-GC-FID 
To quantify ethanol in cell media, headspace analysis was performed on an Agilent 6890 
gas chromatograph with a flame ionization detector (GC-FID) coupled to an Agilent 
7697A headspace sampler (HS) (Agilent Technologies, Santa Clara, USA). An Agilent J&W 
DB-1 column (50 m x 0.32 mm x 1.2 µm) was used and the oven and detector 
temperatures were 175 and 250 °C, respectively. The validated method (Maudens et al., 
2014) used hydrogen as a carrier gas (67.8 mL/min total flow, 30:1 split ratio). The 
detector gas comprised of hydrogen (40 mL/min), air (300 mL/min) and nitrogen 
makeup (5 mL/min). Calibration was performed using six aqueous ethanol standards 
within a range of 0.05-5 g/L (ACQ Science GmbH, Rottenburg, Germany). For 
determination of the ethanol concentration in cultivated media, 400 µL of the medium 
was added to 1.5 mL H2O and 100 µL ACN was added as internal standard (0.786 g/L). 
Samples with ethanol concentrations higher than the highest calibrator of 5 g/L were 
diluted and re-analyzed. To ensure the analytical performance, ethanol QC solutions of 
0.3 g/L and 4.0 g/L were analyzed before and after the analysis (ACQ Science GmbH). 
The acceptance criteria for the QC solutions included a maximal bias of 15% compared 
to the nominal concentration and for precision a coefficient of variation (CV) < 15%. 
These latter criteria were based on the guidelines for bioanalytical method validation of 
the European Medicines Agency (EMA) (European Medicines Agency, 2022). 
 

6.7. Data processing and statistics 
Raw LC-HRMS data files (.d) were converted to .mzML format using MSConvert (Kessner 
et al., 2008). Subsequently, peak picking and alignment were performed in MS-DIAL (v. 
4.6/4.9) (Tsugawa et al., 2020). Details on used MS-DIAL parameters are provided in SI 
(Table SI-6.1). MS-FLO was used for additional deisotoping and removal of duplicates 
(DeFelice et al., 2017). To evaluate the data quality, the relative standard deviation 
(RSD) of the intensity of each feature was plotted for each sample group separately. 
Intensity drift was corrected using cubic spline drift correction (Klåvus et al., 2020). To 
avoid low-quality features, several filter steps were applied. Features present in at least 
80% of an exposed or control sample group were retained. In addition, only features 
with an RSD < 30% in at least one exposure group were kept. For intracellular samples, 
features with maximum intensity lower than ten times the average intensity in the blank 
were removed. For extracellular samples, a fold change (FC) > 3 or < 0.33 between the 
average intensity in an exposure group and the average intensity in the blanks were 
used to retain a feature. In addition, features with maximal intensity in the QC pooled 
samples below 3000 were removed when no MS/MS data was acquired. Missing values 
were imputed using random forest, and intensity values were log-transformed (Klåvus 
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et al., 2020). Probabilistic quotient normalization (PQN) was performed using the 
median intensity of the QC pooled samples as a reference (Jankevics et al., 2022), 
followed by Pareto scaling (K. Murphy et al., 2020). 
Principal component analysis (PCA) plots were built for visualization and removal of 
outliers. In addition, outlier samples were removed based on deviations in the detection 
of internal standards. Acceptance criteria for internal standards were the same as for 
system suitability samples (Table 6.2). Both univariate and multivariate statistics were 
applied because of their complementarity (Saccenti et al., 2014). Before log 
transformation, normalization and scaling, a Shapiro-Wilk test was performed using the 
intensity values for each feature separately as a test of normality. Depending on the 
significance (p < 0.05) of the Shapiro-Wilk test, a Mann-Whitney U-test or a Welch’s t-
test was performed (Gaude et al., 2013). The Benjamini-Hochberg procedure was used 
to correct for multiple testing (Benjamini & Hochberg, 1995). Features with p < 0.05 and 
a FC > 5 or < 0.2 compared to the control group (i.e., either negative or positive control 
group), were considered significant. 
Multivariate statistics included a binary RF classifier (Beirnaert, Cuykx, et al., 2019) and 
partial least squares-discriminant analysis (PLS-DA) (Thévenot et al., 2015) with 7-fold 
cross-validation. The PLS-DA model was evaluated by permutation of the y-variable (n 
= 1000) and by the R² and Q² value of the model, while the RF model was evaluated by 
the area under the curve (AUC). Interesting features were selected based on their 
variable importance in projection (VIP) value for the PLS-DA model and their mean 
decrease in accuracy or variable importance measure (VIM) for the RF model. 
Interesting features selected by the univariate or the multivariate model were only kept 
when they were selected both in the original experiments and the validation 
experiments. In addition, boxplots based on intensity of the features in each group were 
created for each selected feature and manually evaluated to decrease the number of 
false positives. 
For the ion mobility data of the apolar fraction, multiplexed data files were de-
multiplexed using the vendor-supplied software Agilent deMP. Data files were 
smoothed with a kernel size of 3 for drift and retention time and saturation repaired for 
points over 40% of the abundance limit using PNNL Preprocessor (Bilbao et al., 2021). 
The collision cross-section (DTCCSN2) values were calculated using single-field calibration 
coefficients obtained by infusing the Agilent Tune Mix in IM-MS Browser B.08.00 
(Agilent Technologies). 
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6.8. Metabolite annotation 
For annotation of metabolites in the polar fractions, the All Public MS/MS libraries (v. 
15) were used for MS/MS matching in MS-DIAL (Tsugawa et al., 2020), next to MS-Finder 
(v. 3.5) (Tsugawa et al., 2016), MassBank (Horai et al., 2010), NIST library (v.17) with MS 
Search (v. 2.3, National Institute of Standards and Technology, Gaithersburg, MD, USA), 
METLIN (Smith et al., 2005a), and GNPS (Nothias et al., 2020).  
For annotation of features originating from the apolar sample fractions, the modified 
LipidBlast library was used for MS/MS matching in MS-DIAL (v. 4.6/4.9) (Tsugawa et al., 
2020), next to LipidMatch (Koelmel, Kroeger, Ulmer, et al., 2017), LipidHunter (Ni et al., 
2017), and Lipostar (v. 2) (Goracci et al., 2017). Matched MS/MS spectra were manually 
evaluated to improve annotation confidence, and in-house standards were used for 
confirmation when available. Confirmation of fragments using rule-based 
fragmentation was used for manual evaluation of annotated lipids (Lange et al., 2021; 
Pi et al., 2016). Only features that could be annotated with a level 3 (L3) confidence or 
higher, according to the annotation confidence system of Schymanski et al. (2014), were 
considered. L3 refers to tentative candidates (i.e., insufficient information for one exact 
structure, e.g., annotation until lipid class level), while level 2 (L2) refers to a probable 
structure and is divided into 2a (i.e., unambiguous library spectrum match) and 2b (i.e., 
unambiguous annotation e.g., based on diagnostic MS/MS fragments, without available 
standard or literature for confirmation). Level 1 (L1) refers to a confirmed structure (i.e., 
confirmation using a reference standard with MS, MS/MS and RT matching). To further 
increase the annotation confidence for annotated lipids, CCS values were searched in 
experimental databases (CCS compendium (Picache et al., 2019), CCSbase (Ross et al., 
2020), MS-DIAL internal lipidomic library v. 4.6 or 4.9 (Tsugawa et al., 2020)) or in silico 
generated using AllCCS (Zhiwei Zhou et al., 2020), when experimental values were 
unavailable, and annotated lipids were only considered when the CCS error was below 
3% (da Silva, Iturrospe, Heyrman, et al., 2021). 
 

6.9. Analytical QA/QC procedures 
During all experiments, standard operating procedures (SOPs) were used for cell 
cultivation and exposure, sample preparation, data acquisition and processing. 
Chromatographic column inventories were used to keep track of the purchase dates, 
sample types injected and to monitor the number of injections and backpressure 
throughout analytical batches.   
During analytical runs on the Agilent 6530 and 6560 systems, reference masses 
(922.0098 m/z and 121.0508 m/z for ESI (+) and 966.0007 m/z and 119.0363 m/z for ESI 
(-)) were constantly infused with an additional isocratic pump, and used to correct the 
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mass axis during acquisition. Acquisition worklists were prepared as shown in Figure 6.2. 
The injection order of the samples was randomized to prevent bias. Chromatographic 
columns were equilibrated using the mobile phase start composition. Blank solvent 
samples (n = 3) were injected after the column pressure baseline was stable at the 
required flow rate for at least 10 min. Alignment of the pressure profiles of the blank 
samples was evaluated to ensure sufficient equilibration of the column. Before data 
acquisition of the test and QC samples, a system suitability (SS) sample was injected. 
The SS sample was applied to verify that the system would perform according to pre-
defined acceptance criteria. The composition of the SS sample is given in Table 6.2, 
together with the acceptance criteria regarding mass accuracy, peak height and RT. In 
general, for each of the four analytical platforms, the SS sample was composed of 1 
µg/mL of three standards which were selected based on their distribution across the RT 
(Figure 6.3) and m/z window (i.e., to assess the complete analysis window).  
 

 
Figure 6.2 General overview of an acquisition sequence for untargeted metabolomics analysis. 
A system suitability (SS) sample is injected at the start and end of the analysis (MS1 data 
acquisition mode). Based on set acceptation criteria, the SS sample at the start of the analysis 
will be used to determine whether the instrumental performance is sufficient to start the 
worklist. When acceptance criteria are met for the SS sample, pooled QC samples are analyzed 
at the start to condition the system and to acquire MS2 spectra. In addition, pooled QC samples 
were run periodically, every 4-6 test samples, for QC processes (MS1 data acquisition mode). The 
minimum number of periodically injected QC samples was 6 per analytical batch.  
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Figure 6.3 Chromatograms of the standards used in the system suitability sample. RPLC: 
Reversed-phase liquid chromatography. HILIC: Hydrophilic interaction liquid chromatography. 
ESI: Electrospray ionization. PI: Phosphatidylinositol. PE: Phosphatidylethanolamine. CAR: 
Carnitine. LPE: Lysophosphatidylethanolamine. TG: Triglyceride. 

When the SS sample met all acceptance criteria, a pooled QC sample was used to 
condition the LC-MS system, during which MS/MS data were acquired (ninj = 3). After 
conditioning, an extraction blank was injected to acquire MS1 data, followed by a 
second round of conditioning using the pooled QC sample with MS/MS acquisition (ninj 
≥ 5). The number of pooled QC injections necessary for conditioning the system is 
dependent on the samples under investigation. The number was optimized by iterative 
injections of the QC pooled sample. When the total ion current chromatogram, the RT 
and peak intensity/area of the internal standards become stable, acquisition of samples 
can be initiated.  
Biological samples were injected in a randomized order and a QC pooled sample was 
injected minimum six times at regular intervals across the worklist. During these latter 
injections, data were acquired in MS1 mode.  A second extraction blank was injected at 
the end of the worklist, followed by the SS sample. Injection of a SS sample both in the 
beginning and in the end of a worklist is necessary to estimate the maintenance of the 
instrumental performance during the run. During analytical runs, the column 
backpressure was monitored, as well as the signal intensities, RT and mass accuracy of 
the internal standards. Both the chromatographic column and LC-MS system were 
cleaned thoroughly after each analytical batch.  
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Table 6.2 System suitability mixture of standards for reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography 
(HILIC) methods in ESI (+) and ESI (-) modes. The acceptance criteria used for the LC-HRMS methods are listed. ESI: Electrospray ionization. PI: 
Phosphatidylinositol. PE: Phosphatidylethanolamine. CAR: Carnitine. LPE: Lysophosphatidylethanolamine. TG: Triglyceride.  
 

    Retention time (min) Acceptance criteria 
Compound name Formula Ionization 

species 
m/z RPLC 

ESI (+) 
RPLC 
ESI (-) 

HILIC 
ESI (+) 

HILIC 
ESI (-) 

Peak height Mass 
error 
(ppm) 

RT deviation 
(min) 

Lithocholic acid C24H40O3 [M-H]- 375.2904  6.95   > 5,000 
< Saturation 

 

< 10 < 0.2 

PI 16:0/16:0 
 

C41H79O13P [M-H]- 809.5185  14.22   > 5,000 
< Saturation 

 

< 10 < 0.2 

PE 16:0/16:0 
 

C37H74NO8P [M-H]- 690.5079  17.49   > 5,000 
< Saturation 

 

< 10 < 0.2 

CAR 8:1 
 

C15H27NO4 [M+H]+ 286.2013 3.12  10.44  > 5,000 
< Saturation 

 

< 10 < 0.5 HILIC 
< 0.2 RPLC 

LPE 18:1 
 

C23H46NO7P [M+H]+ 480.3085 9.40    > 5,000 
< Saturation 

 

< 10 < 0.2 

TG 16:0/16:0/16:0-[13C3] 
 

C48[13C]3H98O6 [M+NH4]+ 827.7802 21.87    > 5,000 
< Saturation 

 

< 10 < 0.2 

Thymine C5H6N2O2 [M-H]- 125.0355    2.59 > 5,000 
< Saturation 

 

< 10 < 0.5 

L-tryptophan  
C11H12N2O2 [M-H]- 203.0826    6.09 > 5,000 

< Saturation 
 

< 10 < 0.5 

L-lysine 
C6H14N2O2 [M-H]- 145.0990    14.44 > 5,000 

< Saturation 
 

< 10 < 0.5 

Nicotinic acid 
C6H5NO2 [M+H]+ 124.0393   5.71  > 5,000 

< Saturation 
 

< 10 < 0.5 

L-arginine C6H14N4O2 [M+H]+ 175.1190   17.50  > 5,000 
< Saturation 

< 10 < 0.5 



 

193 
 

6.10. Supplementary information 
6.10.1.  Optimization of dilution factor for extracellular HepaRG extracts 
The sample preparation of the extracellular fraction of HepaRG samples was based on 
the method of Cuykx et al. (2017) and Dettmer et al. (2013). Because of the high 
dynamic range of metabolites, some metabolites are highly abundant and cause signal 
saturation during LC-MS analyses, which impairs mass accuracy and disables 
calculations of reliable fold changes between controls and exposed groups. Other 
metabolites are less abundant and cause low signal intensities or might be 
undetectable. In order to find a balance between the high and low abundant 
metabolites, the dilution factor used during sample preparation was optimized (Z. E. Wu 
et al., 2019). 
During experiments for optimization of the dilution factor, the same sample preparation 
method was used as described in 6.5.2. The volume of cell medium, quenching solution 
and solutions used for LLE were multiplied by a factor of 3. After eight days of incubation 
of HepaRG cells, 960 µL of the medium was collected and 2175 µL of -80 °C quenching 
solution was added (80% (v/v) MeOH and 20% (v/v) of 10 mM CH3COONH4). After 
vortexing for 60 s, 2940 µL of the quenched medium was transferred to an LLE-vial, 
which contained 1560 µL of a polar mixture and 1320 µL of an apolar mixture (-20 °C). 
The polar mixture consisted out of 1 mM (NH4)2EDTA and 0.5 mM ascorbic acid in 5 mM 
CH3COONH4 with 0.1% (v/v) CH3COOH (pH 4.2). The apolar mixture consisted of 1 mM 
BHT in CHCl3. The LLE vial was subsequently vortexed for 90 s, equilibrated for 10 min 
on ice, centrifuged at 2,200 g for 7 min at room temperature and again equilibrated for 
10 min on ice. 3000 µL of the polar fraction (upper phase) was transferred to an 
Eppendorf tube, without transferring solid particles from the protein disk. After 
vortexing for 20 s, 1500 µL was transferred to a second Eppendorf tube after which the 
liquid of both Eppendorf tubes was evaporated using pure, dry nitrogen at room 
temperature. 870 µL of the apolar fraction (lower phase) was transferred to a reacti-
vial. After vortexing for 20 s, 435 µL was transferred to a second reacti-vial, after which 
the liquid was evaporated using pure, dry N2 at room temperature. Dried extracts were 
stored at -80 °C and reconstituted directly before analysis. Polar and apolar samples 
were reconstituted on ice using 60 µL of ACN/H2O (65/35, v/v) and IPA/MeOH (35/65, 
v/v), respectively. The polar reconstitution solvent contained 1 µg/mL of hippuric acid-
(phenyl-13C6), L-lysine-13C6-15N2, leucine-5,5,5-D3, glucose-13C6, caffeine-13C3 and L-
phenylalanine-13C9-15N. The apolar reconstitution solvent contained 1 µg/mL of lauric 
acid-12,12,12-D3, cholic acid-2,2,4,4-D4, glyceryl tri(palmitate-1-13C), 18:1-D7 lyso PE, 
octanoyl-L-carnitine-(N-methyl-D3) and ceramide (d18:1/18:1(9Z)-13C18). After vortexing 
for 90 s, serial dilutions were made from the original sample (Figure SI-6.1) using the 
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abovementioned polar and apolar reconstitution solvents as dilution solvents. All 
samples were filtered using 0.2 µm nylon centrifugal filters and centrifugated at 14,000 
g for 2 min at room temperature. 20 µL of each sample from the dilution experiment 
was transferred to a Greiner Bio-One 384-well plate. Surrounding wells were filled with 
solvent blanks and the well plate was sealed using aluminum adhesive. The 384-well 
plate was transferred to the autosampler (4 °C) right before analysis. Samples were 
ordered from low to high concentration for instrumental injection and data acquisition. 
Each sample was injected in duplo. 

 

Figure SI-6.1 Dilution series used during optimization of the dilution factor for the extracellular 
fraction of HepaRG sample extracts. 

After data-acquisition, data-preprocessing consisted of peak picking, alignment, missing 
value imputation and solvent blank subtraction (6.7). The mean of replicate intensity 
values was calculated and log10 transformed. For each feature, the Pearson correlation 
coefficients (r) were calculated based on the intensity for each combination of four or 
more consecutive dilution factors. Features with r > 0.9 for at least one of the 
combinations of ≥ 4 consecutive dilution factors were kept. After excluding the features 
with Pearson correlation coefficients ≤ 0.9, the mean intensity of features was plotted 
per dilution factor (Figure SI-6.2). For the apolar fraction (Figure SI-6.2-A) in ESI (-), there 
is only a small increase in mean intensity going from the highest dilution to dilution 3, 
indicating a high number of features at low intensity. In ESI (+), dilution 0 (i.e., the most 
concentrated sample) showed only a small increase in mean intensity compared to the 
other dilutions. This could indicate a larger number of features close to the detector 
saturation level in comparison to dilution 1. For the polar fraction (Figure SI-6.2-B), no 
indications for detector saturation could be observed in ESI (+). However, in ESI (-), 
dilution 0 showed a lower mean intensity in comparison to dilution 1. Based on these 
results, dilution 2 or dilution 1 would be suitable concentrations for the apolar fraction, 
while dilution 2 is preferred for the polar fraction. The sample preparation was adapted 
accordingly as explained in 6.5.2. 
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Figure SI-6.2 Mean intensity of features in relation to the dilution factor of the extracellular 
apolar (A) and polar (B) fractions of HepaRG cells.  
 
6.10.2.  MS-DIAL parameters used for data processing 
Converted data files (.mzML format) were imported and processed using MS-DIAL. The 
following parameters were used for peak detection and alignment (Table SI-6.1).  
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Table SI-6.1 MS-DIAL parameters used for peak detection and alignment. ESI: Electrospray 
ionization. RT: Retention time.  
 

Sample fraction Polar Polar Apolar Apolar 

ESI mode 
 

ESI (+) ESI (-) ESI (+) ESI (-) 

Mass range (Da) 
 

60-1200 60-1200 100-1500 100-1500 

RT range (min) 
 

0.5-22 0.5-19.5 0.5-30 0.5-30 

Accurate mass tolerance (MS1) (Da) 
 

0.01 0.01 0.01 0.01 

Accurate mass tolerance (MS2) (Da) 
 

0.05 0.05 0.05 0.05 

Maximum charged number 
 

1 1 1 1 

Smoothing method linear weighted 
moving average 
 

linear weighted 
moving average 

linear weighted 
moving average 

linear weighted 
moving average 

Scans smoothing level 
 

3 3 3 3 

Scans minimum peak width 
 

5 5 5 5 

Mass slice width (Da) 
 

0.1 0.1 0.1 0.1 

Sigma window value 
 

0.5 0.5 0.5 0.5 

RT tolerance alignment (min) 
 

0.2 0.2 0.15 0.15 

MS1 tolerance alignment (Da) 
 

0.015 0.015 0.01 0.01 

Gap filling 
 

Yes Yes Yes Yes  

Adduct ion setting [M+H]+, 
[M+NH4]+, 
[M+Na]+,  
[M-H2O+H]+ 

[M-H]−,  
[M-H2O-H]−, 
[M+HCOO]−, 
[M+CH3COO]− 

[M+H]+, 
[M+NH4]+, 
[M+Na]+,  
[M-H2O+H]+ 

[M-H]−,  
[M-H2O-H]−, 
[M+HCOO]−, 
[M+CH3COO]− 
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CHAPTER 7: 
METABOLIC SIGNATURE OF ETHANOL-INDUCED HEPATOTOXICITY 

IN HEPARG CELLS 
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7.1. Introduction 
Alcohol-related disorders, which put individuals at high risk of developing ALD, are highly 
prevalent but poorly identified and characterized (Seitz et al., 2018). Symptoms tend to 
develop late in the course of disease progression and may only be apparent at the stage 
of irreversible cirrhosis (Seitz et al., 2018; Sheron et al., 2013). There are no early and 
specific biomarkers for the diagnosis of ALD, and currently, no single marker or 
combination of markers can be used to differentiate between different causes and 
stages of liver disease (European Association for the Study of the Liver, 2018; Vonghia et 
al., 2014). Because changes in the metabolome often are reflected in changes in the 
phenotype and vice-versa, metabolomics and its subdiscipline lipidomics offer the 
opportunity to identify diagnostic biomarkers, showcase potential pharmacotherapeutic 
targets and clarify the mechanism of action of ethanol-induced hepatotoxicity, with the 
overall objective to facilitate intervention in early stages of ALD. Based on relative 
differences in signal abundance between biological control samples and biological 
samples exposed to ethanol, the metabolic signature of ethanol exposure can be 
elucidated. Although animal models to study ethanol-induced hepatotoxicity are useful, 
they suffer from several drawbacks such as lower susceptibility of rodents to develop 
ALD and differences in the pathophysiological stages of  ALD development compared to 
humans (Brandon-Warner et al., 2012; Lamas-Paz et al., 2018). In vitro hepatic metabolic 
research on the other hand enables mechanistic elucidation at the cellular level and 
circumvents the difficult accessibility of the liver through biopsies.  
In this study, HepaRG cells, derived from a human hepatocellular carcinoma, were used 
to investigate the effects of ethanol exposure on cell metabolism using liquid 
chromatography (LC)-mass spectrometry (MS)-based untargeted metabolomics 
platforms. Extraction and analysis of intracellular metabolites were able to provide a 
metabolic fingerprint for ethanol-induced hepatotoxicity in HepaRG cells. In addition, 
conditioned cell media were analyzed to yield the metabolic footprint (i.e., provide 
information on metabolic secretion and consumption) (Kell et al., 2005). Dynamic 
changes of metabolites were elucidated in order to get a better understanding of early-
stage indicators of AFLD. Due to the high diversity of lipid isomeric structures, these 
latter were further investigated using ion mobility spectrometry (IMS) to improve the 
level of confidence in annotation at species-level.   
 

7.2. Materials and methods 
The used materials and methods were extensively described in chapter 6, including 
chemicals and materials (6.2), dosage estimation (6.3), HepaRG cell cultivation regimen 
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(6.4), sample preparation (6.5), analytical methods (6.6), data processing and statistics 
(6.7), metabolite annotation (6.8) and analytical QA/QC procedures (6.9).  
 
7.2.1. Cell exposure 
After 7 days of incubation (i.e., needed for obtaining polarized hepatocyte colonies and 
biliary-like cells, see 6.4) HepaRG cell exposure was initiated (Figure 7.1). Differentiated 
HepaRG cells were exposed for 24 h to 368 mM of ethanol (i.e., IC10, n = 6), 36.8 mM 
(i.e., 1/10 IC10, n = 6) or no ethanol (i.e., negative control, n = 6). For the 48 h exposure 
group, cells were exposed to 284 mM of ethanol (i.e., IC10, n = 6), 28.4 mM (i.e., 1/10 
IC10, n = 6) or no ethanol (i.e., negative control, n = 6) and ethanol containing media 
were renewed after 24 h. Negative control groups, sample groups exposed to the IC10 
of ethanol and to 1/10 of the IC10 of ethanol will be further referred to as sample groups 
C (Control), H (High dose) and L (Low dose), respectively. In addition, two extraction 
blanks, not containing cells, were obtained for each exposure group using the same 
conditions. 
 

 
Figure 7.1 A) Graphical representation of the exposure experiment. HepaRG cells were exposed 
to ethanol for 24 h or for 48 h (with renewal of ethanol-containing media after 24 h). The same 
set-up was used for the validation experiment. B) Graphical representation of the used sample 
groups. Graphical icons in this figure were provided by BioRender, license n. 2641-5211. 
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7.3. Results 
7.3.1. Influence of incubation conditions on ethanol concentration  
During the exposure experiments, different sample groups were exposed to five 
different concentrations of ethanol (i.e., 368 mM – IC10-24h, 284 mM – IC10-48h, 36.8 mM 
– 1/10 IC10-24h, 28.4 mM – 1/10 IC10-48h, and 0 mM – control). The ethanol content of the 
media was determined pre- and post-incubation using HS-GC-FID. Results are presented 
in Figure 7.2. Incubation for 24 h caused an average decrease in ethanol concentration 
of 50% for the IC10 and 39% for 1/10 of the IC10. Incubation for 48 h with renewal of 
ethanol containing media after 24 h showed a decrease of 49% for the IC10 and 35% for 
1/10 of the IC10. After 24 h and 48 h, control samples showed an ethanol content of 1.1% 
and 1.4% compared to the IC10, respectively. Pre- and post-run ethanol QC solutions met 
the acceptance criteria (6.6.2) and were quantified both as 0.3 g/L for the 0.3 g/L 
solution (bias = 0%, CV = 0%) and 3.9 g/L and 4.0 g/L for the 4.0 g/L solution (max bias = 
2.5%, CV = 1.8%), respectively. The monitoring of cross-contamination due to ethanol 
evaporation is important as complete avoidance of cross-contamination would only be 
possible when using closed systems to incubate cells, which would not allow necessary 
gas exchange, or when using separate incubators for each concentration. This latter 
would require a lab environment equipped with a dedicated incubator for each ethanol 
concentration and can increase non-biological inter-group variation due to variance in 
temperature, %CO2 and humidity between incubators. 

 
Figure 7.2 Decrease in ethanol concentration during incubation. Headspace gas chromatography 
with flame ionization detection (HS-GC-FID) was used to determine the ethanol concentration 
pre-incubation (n = 2) and post-incubation (n = 12). 
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7.3.2. Data quality 
Post-run quality control included manual evaluation of extracted ion chromatograms of 
internal standards. Pre-set requirements for data quality of internal standards needed 
to be fulfilled for retaining a sample were the same as for the system suitability sample 
(Table 6.2). 
For the intracellular samples, mRSDs were < 15% for all QC samples of the apolar 
fraction and < 20% for all QC samples of the polar fractions, with one exception (21% 
for ESI (+) after 24 h exposure – batch 1) (Table SI-7.1). Concordant with the intracellular 
fraction, mRSDs of the QC samples of the apolar fraction of the extracellular samples 
(Table SI-7.2) were all < 15%. While the mRSDs of the QC samples of the polar fraction 
in positive ionization modes were < 15%, higher mRSDs were seen for the polar fraction 
in negative ionization mode, with an average mRSD of 22%. All calculated mRSD values 
indicate a reliable analytical method as RSD values ≤ 30% are generally accepted in 
untargeted metabolomics (Naz et al., 2014). Biological and sample preparation variance 
is indicated by the increase in mRSD between QC samples and biological samples (i.e., 
sample groups C, H and L). For the intracellular samples, the average mRSD increased 
from 12% to 23% and from 16% to 23% for the apolar and polar fractions, respectively. 
The increase in average mRSD was slightly lower for the extracellular samples, with 11% 
to 20% for the apolar fractions and 17% to 20% for the polar fractions. The low increase 
in mRSD indicates little sample preparation and biological variance. 
Principal component analysis (PCA) plots (Figure SI-7.1-SI-7.8) showed a clear separation 
in PC1 and/or PC2 between sample group H and the other sample groups indicating a 
high inter-group variability due to a strong metabolic impact of ethanol exposure. For 
example, the PCA plot of the apolar fraction of the intracellular samples of HepaRG cells 
exposed to ethanol for 24 h, in ESI (+) mode, is shown in Figure 7.3. 
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Figure 7.3 Example of a principal component analysis plot of the apolar fraction of intracellular 
samples of HepaRG cells analyzed in ESI (+) mode, after 24 h exposure to ethanol. There is a clear 
distinction between the control group (C, blue) and the sample group exposed to the IC10 of 
ethanol (H, green), while there is a slight overlap between the control group and the sample 
group exposed to 1/10 of the IC10 of ethanol (L, orange). This latter indicates a larger metabolic 
difference between control – IC10 compared to control – 1/10 IC10. The clustering of pooled QC 
samples is shown in red. 

For 24 h and 48 h exposure, inter-group variability between group C and group L was 
often insufficient to obtain a clear separation in PC1 and PC2. The higher similarity in 
metabolic profile can explain the overlap between these two groups. The degree of 
overlap between group C and L depended on the analyzed fraction, reflected by a higher 
overlap for the apolar fractions and a better separation for the polar fractions. There is 
a clear distinction between group C and L in PC1 and/or PC2 in ESI (+) mode, while more 
overlap is seen in ESI (-) mode. 
In line with the trends observed during the PCA analysis, the evaluation parameters of 
the multivariate statistical models (i.e.,  R², Q², R²PERM, Q²PERM (n permutations = 1000) 
for the PLS-DA models and AUC for the RF models, Table SI-7.3-SI-7.6), showed high 
values for R² (xĪC = 0.95, x̄EC = 0.95), Q² (x̄IC = 0.83, x̄EC = 0.86), and AUC (x̄IC = 0.99, x̄EC = 
0.99) and low values for R²PERM (x̄IC = 0.01, x̄EC = 0.02) and Q²PERM (x̄IC = 0.01, x̄EC = 0.00) for 
the models comparing the group C with H. PLS-DA and RF models comparing the group 
C with L showed lower values for R² (xĪC = 0.92, x̄EC = 0.85), Q² (xĪC = 0.55, x̄EC = 0.52), and 
AUC (x̄IC = 0.76, x̄EC = 0.82) and higher values for R²PERM (x̄IC = 0.31, x̄EC = 0.20) and Q²PERM 

(x̄IC = 0.18, x̄EC = 0.09). 
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Post-exposure phase-contrast microscopic evaluation of the different sample groups 
(i.e., C, H and L for either 24 h or 48 h of exposure) was performed (Figure 7.4). No clear 
morphological differences could be observed between cells of group C and cells of  
group L. However, when comparing group C to group H, for both time points, the 
polarized hepatocyte colonies show faded lining and impaired organization of hepatic 
clusters in addition to accumulated debris. 

 
Figure 7.4 Phase-contrast microscopic pictures of HepaRG cells (10x10). C24h-L24h-H24h: control, 
1/10 IC10 and IC10 after 24 h of exposure. C48h-L48h-H48h: control, 1/10 IC10 and IC10 after 48 h of 
exposure. Roman numbers refer to polarized hepatocyte colonies (I) and biliary canaliculi and 
biliary-like epithelial cells (II). 
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7.3.3. Metabolic fingerprint of ethanol-induced hepatotoxicity in HepaRG cells 
Features selected by univariate (Mann-Whitney U-test or a Welch’s t-test combined 
with FC cut-off) and/or multivariate statistical approaches (PLS-DA and RF) were only 
kept for annotation when selected in both the exposure experiment and the validation 
experiment. Annotated metabolites with their observed RT, m/z value, DTCCSN2 value 
and additional information are listed in Table SI-7.7. The effect of ethanol exposure on 
the intracellular metabolome of HepaRG cells is shown in Figure 7.5.  
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Figure 7.5 Sankey diagram combined with heatmaps to show the effect of ethanol exposure on 
the intracellular metabolome of HepaRG cells. Altered metabolites in the polar fraction of the 
samples are indicated by a blue-purple Sankey diagram, while a green Sankey diagram represents 
metabolites originating from the apolar fraction. Grey color in the heatmap was used when a 
metabolite was not selected during the statistical selection. H/C 24 h: IC10 vs control after 24 h 
of ethanol exposure. H/C 48 h: IC10 vs control after 48 h of ethanol exposure. L/C 24 h: 1/10 IC10 
vs control after 24 h of ethanol exposure. L/C 48 h: 1/10 IC10 vs control after 48 h of ethanol 
exposure. FC: fold change. 
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In total, 94 altered metabolites selected during the statistical workflow could be 
annotated. Of the 82 lipids, 40 were annotated as L2 and 42 as L3, while of the 12 polar 
metabolites, 9 were annotated as L1 and three as L2. Annotation levels and libraries 
used for MS/MS matching per metabolite can be consulted in the supplementary 
spreadsheet (7.7.3). Usage of multiple libraries is recommended as their combination 
increases coverage. For example, 77% of annotated lipids were elucidated using the 
modified LipidBlast library of MS-DIAL (v. 4.6), while 49% and 25% of lipids were 
annotated using LipidMatch and LipidHunter respectively. The lower coverage of 
LipidHunter can be explained by the limited number of selectable ionization species. For 
polar metabolites, NIST (v. 17) and MassBank yielded the highest coverage (both 92%), 
followed by METLIN (69%), GNPS (61%), the All Public MS/MS library (v. 15) of MS-DIAL 
(54%) and MS-Finder (38%).  
As expected, based on the results of the PCA analysis and the evaluation parameters of 
the PLS-DA and RF models, a more distinct metabolic pattern is observed after ethanol 
exposure at the IC10 than at 1/10 of the IC10. In group H, upregulation was observed 
during 24 h and 48 h exposure for diacylglycerols (DG) and triacylglycerols (TG), with 
more TGs upregulated after 48 h exposure. At both time points, a downregulation was 
observed for ceramides with a d18:2 backbone (Cer d18:2), lysophosphatidylcholines 
(LPC), phosphatidylcholines (PC), phosphatidylethanolamines (PE) and sphingomyelins 
(SM). Interestingly, polyunsaturated PCs (≥ 5 double bonds) were slightly upregulated 
after 48 h exposure, while they were downregulated after 24 h exposure. In addition, 
two glycerophosphoglycerols (LBPA 18:1/18:1 and PG 18:1_20:2) were downregulated. 
PEth 16:0_18:1, as a marker of ethanol exposure, was detected at high intensity in all 
exposed samples.  
Concerning polar metabolites, there was a downregulation of acetylcholine, creatine, 
glycerophosphocholine, pantothenic acid, phenylacetylglutamine, S-
adenosylmethionine (SAM) and taurine. Upregulation was observed for O-
phosphoethanolamine. While short-chain acylcarnitines (< C5) were downregulated, O-
adipoylcarnitine, a medium-chain acylcarnitine (C6-C13), was strongly upregulated. 
Similar up- and downregulations were observed for group L during 24 h and 48 h 
exposure (Figure 7.5); although fewer metabolic classes were affected, fold changes 
were lower and affected classes were represented by a lower number of species. 
Ethylated phosphorylcholine was found highly upregulated in each exposure group. The 
high fold change was caused by its absence in the group C. Since no MS/MS library could 
be found for this latter metabolite, its fragmentation was matched using NIST (v.17) 
without accurate m/z matching, enabling fragmentation spectral matching with 
fragments of other metabolites with a higher m/z value. In addition, the fragmentation 
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spectra of ethylated phosphorylcholine were confirmed with in silico generated 
fragments using CFM-ID (v. 4.0) (F. Wang et al., 2021) (Figure SI-7.9-SI-7.12).  
 
7.3.4. Metabolic footprint of ethanol-induced hepatotoxicity in HepaRG cells 
As for elucidation of the metabolic fingerprint, features were selected by univariate 
and/or multivariate statistics and were only kept for annotation when selected in both 
the exposure and validation experiments. Annotated metabolites with their observed 
RT, m/z value, DTCCSN2 value and additional information are listed in supplementary 
Table SI-7.8. The effect of ethanol exposure on the extracellular metabolome of HepaRG 
cells is shown in Figure 7.6. The lower number of selected features in the extracellular 
fraction (Figure 7.6 shows 23 altered metabolites) compared to the intracellular fraction 
(Figure 7.5 shows 94 altered metabolites) can be explained by the complex extracellular 
matrix as incubation media contained calf serum among various other components. Of 
the 11 lipids, 1 was annotated as L1 and 10 as L2, while of the 12 polar metabolites, 5 
were annotated as L1 and 7 as L2. Annotation levels and libraries used for MS/MS 
matching per metabolite can be consulted in the supplementary spreadsheet (7.7.3). 
From the annotated lipids, 71% could be elucidated using LipidMatch, 50% using the 
modified LipidBlast library of MS-DIAL (v. 4.6) and 21% using LipidHunter. For polar 
metabolites, the highest coverage was yielded by NIST (v. 17) (83%), followed by 
MassBank (67%), GNPS (58%), MS-Finder (50%), METLIN (42%) and the All Public MS/MS 
library (v. 15) of MS-DIAL (33%).  
When comparing exposure vs control samples for metabolic footprinting, it is 
challenging to assign up- or downregulation to either changes in hepatic metabolite 
secretion or to changes in consumption of media components. In order to be able to 
distinguish altered secretion from altered consumption, Figure 7.6 shows the fold 
change differences between (I) exposure vs control, (II) exposure vs blank media and 
(III) control vs blank media, with blank media referring to extraction blanks (i.e., 
incubated media without cells). A negative fold change for all three groups indicates 
metabolites that show an increased consumption during ethanol exposure, while a 
positive fold change for all groups indicates an increased secretion. Metabolites 
downregulated in group (II) and (III) and upregulated in group (I), indicate metabolites 
that are less consumed by HepaRG cells. A fourth scenario is upregulation in group (II) 
and (III) and downregulation in group (I), indicating reduced secretion. As metabolomic 
studies provide a snapshot of metabolic patterns, the four described scenarios should 
be interpreted carefully since changes can be highly dynamic.  
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Figure 7.6 Sankey diagram combined with heatmaps to show the effect of ethanol exposure on the extracellular metabolome of HepaRG cells. Only 
annotated metabolites selected by univariate and/or multivariate statistics are shown. Altered metabolites in the polar fraction of the samples are 
indicated by a blue-purple Sankey diagram, while a green Sankey diagram represents metabolites originating from the apolar fraction. Grey color in 
the heatmap was used when a metabolite was not selected during the statistical selection. H/C 24 h: IC10 vs. control after 24 h of ethanol exposure. 
H/C 48 h: IC10 vs control after 48 h of ethanol exposure. L/C 24 h: 1/10 IC10 vs control after 24 h of ethanol exposure. L/C 48 h: 1/10 IC10 vs control 
after 48 h of ethanol exposure. H/B 24 h: IC10 vs blank media after 24 h of ethanol exposure. H/B 48 h: IC10 vs blank media after 48 h of ethanol 
exposure. L/B 24 h: 1/10 IC10 vs blank media after 24 h of ethanol exposure. L/B 48 h: 1/10 IC10 vs blank media after 48 h of ethanol exposure. C/B 24 
h: Control vs blank media after 24 h of incubation. C/B 48 h: Control vs blank media after 48 h of incubation. FC: fold change. 



 

212 
 

For group H after 24 h and 48 h exposure, increased secretion was observed for PEs and 
Cer 18:1;O2/16:0, while LPCs were downregulated because of higher consumption. 
Concerning polar metabolites, there was a downregulation of N-acetyl-lactosamine, 
phenylacetylglutamine and 4-pyridoxic acid (only after 48 h exposure), due to a 
decreased secretion. Alanylglutamine and histidylleucine were downregulated due to 
higher consumption. Glycerophosphocholine, hypoxanthine and inosine were 
upregulated because of lower consumption, while phosphorylcholine was upregulated 
due to increased secretion. Metabolic changes in sample group L were less profound 
compared to group H, with only upregulation of PEs in the apolar sample fraction. Beta-
alanine was downregulated due to less secretion only in group L. 20-dihydrocortisol was 
less secreted in all exposure groups. Interestingly, high secretion of ethylated 
phosphorylcholine was found in each exposure group. 
 

7.4. Discussion 
An overview of the most important metabolic changes due to ethanol exposure in 
HepaRG cells is presented in Figure 7.7.  
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Figure 7.7 Metabolic changes in HepaRG cells after ethanol exposure. Intracellular green and red 
arrows were used to indicate increased and decreased biosynthesis/availability, respectively. 
Green arrows connecting the intracellular and extracellular compartment indicate increased 
secretion or uptake, depending on their direction. Graphical icons in this figure were provided 
by BioRender, license n. 2641-5211. Ach: Acetylcholine. CAR: Carnitine. CDP-E: CDP-
ethanolamine. Cer: Ceramide. CHAT: Choline O-acetyltransferase. ChoP: Phosphorylcholine. 
CoA: Coenzyme A. COT: Carnitine octanoyltransferase. CPT-1: Carnitine palmitoyltransferase 1. 
Cr: Creatine. DG: Diglyceride. DGAT2: Diglyceride acyltransferase 2. EPT1: 
Ethanolaminephosphotransferase 1. EtOChoP: Ethylated phosphorylcholine. EtoP: O-
phosphoethanolamine. G3P: Glycerol 3-phosphate. GAA: Guanidinoacetate. GAMT: 
Guanidinoacetate methyltransferase. GDE1: Glycerophosphodiester phosphodiesterase 1. GPC: 
Glycerophosphocholine. GPCPD1: Glycerophosphocholine phosphodiesterase 1. LPC: 
Lysophosphatidylcholine. LPCAT: Lysophosphatidylcholine acyltransferase. LYPLA1: 
Lysophospholipase 1. MAT: Methionine adenosyltransferase. mc-CAR: medium chain-CAR. mc-
COA: medium chain-CoA. Met: Methionine. PAP: Phosphatidate phosphatase. PC: 
Phosphatidylcholine. PCYT2: Phosphoethanolamine cytidylyltransferase. PE: 
Phosphatidylethanolamine. PEMT: Phosphatidylethanolamine-N-methyltransferase. PE-P: 
Alkenyl ether phosphatidylethanolamine. PEth: Phosphatidylethanol. PLA2: Phospholipase A2. 
PLD: Phospholipase D. PLD1_2: Phospholipase D1/2. ROS: Reactive oxygen species. SAM: S-
adenosyl methionine. SM: Sphingomyelin. SMA: Sphingomyelinase. Tau: Taurine. TG: 
Triglyceride. 
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7.4.1. Phosphatidylcholines and their relation to phosphatidylethanolamines, 
diglycerides, triglycerides, phosphatidylethanol and S-adenosyl methionine 
It is known that ethanol exposure inhibits phosphatidylethanolamine-N-
methyltransferase (PEMT), causing a lower production rate of PCs from PEs (Lieber et 
al., 1994). In addition, the accumulation of PEth reduces the PC content since PEth is 
formed by the exchange of ethanol for choline in PCs. PEth is a phospholipid only formed 
in the presence of ethanol in a reaction catalyzed by phospholipase D (PLD). Previously, 
hepatic PEth accumulation has been shown in vivo and in vitro (Aroor et al., 2002; 
Jaremek et al., 2013). A third effect that can explain the downregulation of hepatic PCs 
is the ethanol-induced reduction of SAM formation by the inhibition of methionine 
synthase and methionine adenosyltransferase, which disturbs hepatic methyl transfer 
necessary for the generation of PCs (Lieber et al., 1994; Stickel & Seitz, 2003). In 
addition, SAM reduction could explain the downregulation of intracellular creatine, as 
its hepatic synthesis is catalyzed by guanidinoacetate methyltransferase (GAMT), which 
uses SAM as a methyl donor (Ganesan et al., 2016). A fourth mechanism explaining 
decreased hepatic PC content is the shift towards TG synthesis through initial 
conversion of PCs to DGs, supported by the finding of upregulation of DG 
acyltransferase 2 (DGAT2) after ethanol consumption by mice (Z. Wang et al., 2010). 
The increase in DGs and TGs can additionally be explained by the ethanol-induced 
upregulation of lipin-1, which is considered a key enzyme in the pathogenesis of ALD 
and shows a dual function as phosphatidic acid phosphohydrolase enzyme and 
transcriptional coregulator (Hu et al., 2012, 2013). The general image showed a 
decrease of PCs in the intracellular fraction of HepaRGs after 24 h and 48 h of ethanol 
exposure. However, after 48 h, a slight increase of highly unsaturated PCs (≥ 5 double 
bonds) was observed. This might relate to the shift of saturated to unsaturated fatty 
acids as observed in ethanol-fed rodents (Jeon & Carr, 2020).  Polyunsaturated fatty 
acids can be incorporated in DGs and subsequently in PCs through the CDP-choline 
pathway (Jeon & Carr, 2020).  
 
7.4.2. Lysophosphatidylcholines and glycerophosphocholine 
In addition to decreased hepatic PCs, a similar trend was observed for hepatic LPCs. 
Israelsen et al. observed a decrease of LPCs in human hepatic venous blood after 
ethanol intoxication in healthy volunteers and ALD patients, with only minor effects in 
patients suffering from non-alcoholic fatty liver disease (NAFLD) (Israelsen et al., 2021). 
These results are concordant with the reduction of LPCs caused by increased 
consumption in the extracellular fraction of HepaRG cells exposed to ethanol. The 
authors hypothesized that the reduction of circulating LPCs could be caused by an 
increased hepatic uptake, which was confirmed in this study. However, our results show 
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a decreased level of LPCs, both in the intracellular and extracellular fractions. The 
decrease of intracellular LPCs is in agreement with the findings of Puri et al. and Koelmel 
et al., who reported a decreased hepatic LPC content in mice which were fed a diet rich 
in ethanol (Koelmel, Tan, et al., 2021; Puri et al., 2016). Puri et al. found that the 
decrease in hepatic LPCs was more pronounced in obese than lean mice. Additionally, 
Puri et al. saw a trend towards decrease in hepatic LPCs in human patients suffering 
from NAFLD, while they were significantly increased in non-alcoholic steatohepatitis 
(NASH), suggesting an important inflammatory component for LPC upregulation, which 
could contribute to lipoapoptosis of hepatocytes (Myoung et al., 2008; Puri et al., 2007). 
Stefanescu et al. suggested prognostic importance of LPC decrease in the serum of 
patients with ALD (Stefanescu et al., 2016). The downregulation of PCs due to a shift 
towards TG synthesis amongst others, could explain the reduced catabolism of PCs by 
deacylation to LPCs catalyzed by phospholipase A2 (PLA2). This hypothesis is supported 
by the intracellular decrease of glycerophosphocholine (GPC), the deacylation product 
of LPCs, formed in the second step of PC catabolism, catalyzed by lysophospholipase I 
(LYPLA1). Increased uptake of LPCs from the extracellular environment might be used 
to fuel the formation of GPC by LYPLA1 and/or to fuel the PC pool by 
lysophosphatidylcholine acyltransferase (LPCAT). Downregulation of GPC facilitates the 
observed intracellular reduction of acetylcholine, as GPC, formed during PC catabolism, 
can be converted into glycerol-3-phosphate and free choline, available for the 
biosynthesis of acetylcholine (Zhaoyu Li et al., 2005). 
 
7.4.3. Phosphatidylethanolamines and their relation to diglycerides, triglycerides and 

O-phosphoethanolamine 
Despite ethanol-induced inhibition of PEMT, a decrease in hepatic PEs was seen in 
intracellular HepaRG extracts. This is consistent with the significant decrease of hepatic 
PEs observed in human patients suffering from NAFLD and the decrease of PEs in 
HepaRG cells after steatosis induction using sodium valproate (Cuykx, Claes, et al., 2018; 
Puri et al., 2007). An impaired activity of phosphoethanolamine cytidylyltransferase 
(PCYT2) in the CDP-ethanolamine pathway might explain the decreased content of PEs. 
Impaired activity of the latter enzyme would also contribute to the accumulation of 
hepatic O-phosphoethanolamine (EtoP) and DGs, which are normally used for the 
synthesis of CDP-ethanolamine. In addition, accumulated DGs can be used for the 
synthesis of TGs, increasing the steatotic image (Calzada et al., 2016). In PCYT2 knockout 
mice, deletion of the PCYT2 allele caused the development of liver steatosis (Pavlovic & 
Bakovic, 2013). However, the hypothesis of impaired activity of phosphoethanolamine 
cytidylyltransferase does not explain the increase in extracellular PEs and could not be 
confirmed since the effect of ethanol exposure on this enzyme has not been studied. 
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Another possibility is that the decrease in intracellular PEs and the increase in 
extracellular PEs are related to the altered secretion of PEs in VLDL-type chylomicrons 
(Cuykx, Claes, et al., 2018). Dysregulation of phospholipid synthesis in hepatocytes, 
observed as deviations of PC and PE abundances and the molar ratio of PC/PE can affect 
cell membrane integrity, assembly and secretion of VLDL and mitochondrial 
bioenergetics (Ma et al., 2021; van der Veen et al., 2017).  
 
7.4.4. Ether lipids and taurine 
In addition to decreased hepatic PCs and PEs, ether lipids (e.g., ether-PC and ether-PE) 
were decreased in the intracellular fraction. This latter relates to both alkyl and alkenyl 
ether glycerophospholipids. Alkenyl ether lipids are important antioxidants, and the 
decrease could be explained by their involvement during the clearance of reactive 
oxygen species (ROS) generated during ethanol metabolism (Skaff et al., 2008). 
Although the understanding of the function of ether lipids is growing, there are still large 
knowledge gaps, especially in relation to pathophysiology (Dean & Lodhi, 2018). In 
addition to ether lipids, the intracellular decrease of taurine could also be related to the 
clearance of ROS, as Wu et al. demonstrated that taurine administration increased 
hepatic antioxidant capacity and reduced lipid peroxidation in ethanol-fed rats (G. Wu 
et al., 2018). 
 
7.4.5. Sphingomyelins and their relation to ceramides and phosphorylcholine 
The decrease of hepatic SMs is in accordance with the previously observed 
downregulation of SMs in human serum of heavy drinkers, which could be due to 
increased hydrolysis of SMs into Cers and phosphorylcholine (ChoP) by 
sphingomyelinase (SMA) (Jaremek et al., 2013). This decrease of SMs and increased 
activity of sphingomyelinase was also observed in ethanol-exposed HepG2 cells (Liu et 
al., 2000). In studies describing upregulation of hepatic Cers after ethanol exposure, 
Cers with a sphing-4-enine-backbone (d18:1) are listed, which could contribute to 
blocking fatty acid oxidation and promote its synthesis by inhibition of the 
phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) 
(Liangpunsakul et al., 2010; L. Yang et al., 2016). During the present study, no increased 
hepatic Cer d18:1 species could be annotated after statistical selection, possibly 
because the FC differences were not large enough. However, three selected Cers with a 
sphingadienine-backbone (d18:2) were downregulated (FC between 0.4 and 0.7). Since 
data on Cer d18:2 species and their biological relevance is limited, an example MS/MS 
spectrum for Cer 18:2;O2/22:0 was included (Figure SI-7.13). Both Cer d18:1 species and 
phosphorylcholine were upregulated in the extracellular fraction due to increased 
secretion.  
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7.4.6. Carnitines and vitamins 
As steatosis can impair hepatic biosynthesis of L-carnitine, which is necessary for the 
transfer of long-chain fatty acids to mitochondria, subsequent β-oxidation is reduced, 
leading to toxic cytoplasmatic accumulation of fatty acids (N. Li & Zhao, 2021; Savic et 
al., 2020). In addition, ethanol inhibits carnitine palmitoyltransferase 1 (CPT-1) activity, 
a rate-limiting step in fatty acid translocation for mitochondrial β-oxidation (Gao & 
Bataller, 2011). Under physiological conditions, carnitine can buffer excess acetyl-CoA 
in the mitochondria via the formation of acetyl-carnitine for mitochondrial export by 
carnitine acylcarnitine translocase (N. Li & Zhao, 2021). The reduction of acetyl-carnitine 
in the intracellular extracts after ethanol exposure of HepaRG cells can be explained by 
the impaired β-oxidation, reducing the biosynthesis of acetyl-CoA in mitochondria. 
Another possible contributing factor is the intracellular reduction of pantothenic acid, 
one of the precursors of CoA, which was also observed in the liver of ethanol-fed rats 
(Iannucci et al., 1982; Machado et al., 2016; Miyazaki et al., 2012). Next to a decrease 
of hepatic pantothenic acid in ethanol-fed rats, Miyazaki et al. targeted different B-
group vitamins and observed a decreased excretion of 4-pyridoxic acid, a catabolite of 
vitamin B6. This result is concordant with the decreased hepatic secretion of 4-pyridoxic 
acid in HepaRG cells after 48 h of ethanol exposure. The authors hypothesized increased 
hepatic storage of vitamin B6 during ethanol exposure (Miyazaki et al., 2012). 
Since acetyl-carnitine can provide acetyl groups for the production of acetylcholine 
catalyzed by choline acetyltransferase, the reduction of acetyl-carnitine facilitated 
downregulation of hepatic acetylcholine, which is also in line with the reduced uptake 
of extracellular GPC. However, as cytosolic acetyl-CoA can also be used as acetyl source, 
there is a strong likelihood for additional mechanisms of acetylcholine reduction (Onofrj 
et al., 2014). The strong intracellular upregulation of octanoyl-carnitine could also be 
explained by impaired β-oxidation. Very long-chain and branched-chain fatty acids are 
mainly oxidized in peroxisomes, while long-chain fatty acid are β-oxidized both in 
peroxisomes and mitochondria. As peroxisomal oxidation of fatty acids is incomplete, 
shortened medium-chain acyl-CoAs are generated that need to be transported to 
mitochondria for further oxidation. As the generated medium-chain acyl-CoAs are 
membrane-impermeable, they are converted to their respective carnitine esters by 
peroxisomal carnitine octanoyltransferase (COT) for transportation out of peroxisomes 
(Steiber et al., 2004). 
 
7.4.7. 20-dihydrocortisol 
Decreased hepatic secretion of 20-dihydrocortisol could be explained by decreased 
expression of AKR1D1. This latter gene encodes 3-oxo-5-beta-steroid 4-dehydrogenase, 
which is responsible for catalyzing the conversion of cortisol to 20-dihydrocortisol. In 
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human liver biopsies from NAFLD patients, a decrease of AKR1D1 expression was 
observed with advancing steatosis, fibrosis and inflammation and a relation with 
triglyceride accumulation and reduced beta-oxidation amongst others, was observed 
using human liver cell lines with AKR1D1 knockdown by Nikolaos et al. (2019). 
 
7.4.8. Ethylated phosphorylcholine 
Ethylated phosphorylcholine (EtOChoP, Figure 7.8 and Figure SI-7.9-SI-7.12), a 
previously unreported metabolite, might be a new marker of ethanol exposure. Due to 
its absence in the control samples, the metabolite showed similar large fold changes to 
PEth 16:0_18:1. Interestingly, unlike PEth 16:0_18:1, ethylated phosphorylcholine was 
found both in intracellular and extracellular samples due to a high level of hepatic 
secretion. Based on the structure of EtOChoP (Figure 7.8), it could be biosynthesized in 
a reaction using both phosphorylcholine and ethanol as precursors. As no commercial 
standard was available, both EtOChoP and EtOChoP-D5 were synthesized by Dr. Vladimir 
N. Belov (Max Planck Institute, Göttingen, Germany). Analysis of the EtOChoP standard 
confirmed the HepaRG annotation, increasing the level of confirmation from L2b to L1 
according to the annotation level system of Schymanski et al. (2014). In order to confirm 
whether EtOChoP can be considered as a marker of ethanol consumption in humans, a 
targeted LC-MS/MS method was developed and applied on human whole blood samples 
as a proof-of-concept (SI-7.7.5). 
 

 
Figure 7.8 Structure of 2-[ethoxy(hydroxy)phosphoryl]oxyethyl-trimethylazanium or ethylated 
phosphorylcholine. The structure was drawn using ACD/ChemSketch (v. 2022.1.1). 

7.5. Conclusions 
HepaRG cells are considered as an appropriate surrogate for primary human 
hepatocytes when investigating liver metabolism and detoxification (Tascher et al., 
2019), while untargeted metabolomics can be used to generate pathophysiological 
hypotheses and could pinpoint etiology-dependent metabolic differences in liver 
disease. Combining the elucidation of the metabolic fingerprint and footprint of 
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ethanol-induced hepatotoxicity in HepaRG cells facilitated the biological interpretation 
of results. Metabolic alterations showed only minor differences between 24 h and 48 h 
of exposure, with more upregulated TGs with a high level of confirmation and more 
upregulated polyunsaturated PCs after 48 h of exposure. However, metabolic 
alterations were strongly affected by the concentration of ethanol. Many altered 
metabolites were consistent with a steatotic image as seen in previous research, such 
as increased intracellular DGs and TGs, phosphorylcholine and Cers (d18:1), decreased 
PEs, PCs, LPCs, SMs, SAM and small chain CARs. Additional markers of toxicity have been 
observed such as downregulation of Cers (d18:2), creatine, O-phosphoethanolamine 
and acetylcholine and upregulation of octanoylcarnitine. Decreased catabolism of PCs 
to LPCs was supported by the decrease in GPC. In addition to detection of high levels of 
intracellular PEth 16:0_18:1, ethylated phosphorylcholine could be identified, both 
intra- and extracellular. Based on its absence in control samples, ethylated 
phosphorylcholine was considered as a potential new marker of ethanol exposure. 
Targeted analysis of ethylated phosphorylcholine showed the presence of ethylated 
phosphorylcholine in the blood of heavy drinkers, while it remained absent in negative 
controls. Although further validation is required, the proof-of-concept of ethylated 
phosphorylcholine as a marker of ethanol consumption was delivered. 
 

7.6. Data availability 
Raw datafiles are available through the MassIVE repository 
(https://massive.ucsd.edu/ProteoSAFe/) with the data set identifier MSV000088638. 
 

7.7. Supplementary information 
7.7.1. Data processing 
Median relative standard deviation (mRSD) of the intensity of LC-MS features for each 
analytical platform and sample group of the intracellular and extracellular HepaRG 
fractions are given in Table SI-7.1 and SI-7.2. mRSD values were calculated after 
deisotoping and blank subtraction. 
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Table SI-7.1 Median relative standard deviation (mRSD) of the intensity of LC-MS features of the 
intracellular HepaRG fraction for each sample group and analytical platform. B1: Batch 1. B2: 
Batch 2. LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 QC Control IC10 1/10 IC10 

B1-24h-LIP+ 12.8 17.8 26.0 20.1 
B2-24h-LIP+ 12.8 22.1 22.1 24.1 
B1-48h-LIP+ 9.3 17.8 22.7 25.6 
B2-48h-LIP+ 14.6 23.8 21.7 23.1 
B1-24h-LIP- 11.2 22.9 32.4 25.7 
B2-24h-LIP- 10.4 13.8 17.0 18.5 
B1-48h-LIP- 10.8 25.9 21.4 28.3 
B2-48h-LIP- 10.7 25.2 20.5 27.4 
B1-24h-MET+ 21.1 27.5 28.3 28.3 
B2-24h-MET+ 11.8 19.9 16.9 17.8 
B1-48h-MET+ 13.0 21.0 21.6 19.6 
B2-48h-MET+ 13.4 22.5 23.4 20.2 
B1-24h-MET- 19.4 22.7 25.9 21.0 
B2-24h-MET- 19.3 27.1 24.8 25.8 
B1-48h-MET- 16.0 21.6 22.7 19.1 
B2-48h-MET- 17.2 24.5 18.5 25.8 

 
Table SI-7.2 Median relative standard deviation (mRSD) of the intensity of LC-MS features of the 
extracellular HepaRG fraction for each sample group and analytical platform. B1: Batch 1. B2: 
Batch 2. LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 QC Control IC10 1/10 IC10 

B1-24h-LIP+ 11.0 20.5 25.4 20.3 
B2-24h-LIP+ 13.6 22.4 19.6 20.1 
B1-48h-LIP+ 10.7 19.6 23.2 17.7 
B2-48h-LIP+ 12.9 23.3 29.0 19.3 
B1-24h-LIP- 10.1 21.6 16.1 22.0 
B2-24h-LIP- 11.2 23.6 16.7 22.6 
B1-48h-LIP- 10.3 14.8 19.7 18.0 
B2-48h-LIP- 10.0 15.8 20.7 18.4 
B1-24h-MET+ 12.4 16.2 15.9 17.7 
B2-24h-MET+ 13.5 15.1 15.5 16.3 
B1-48h-MET+ 12.2 14.4 15.6 15.7 
B2-48h-MET+ 13.7 18.1 17.9 18.9 
B1-24h-MET- 20.6 23.4 22.9 20.9 
B2-24h-MET- 20.0 22.9 20.2 21.2 
B1-48h-MET- 20.5 20.1 24.4 20.8 
B2-48h-MET- 26.2 26.1 27.7 26.3 
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Figure SI-7.1 Principal component analysis plots of the intracellular fraction of HepaRG cells of 
batch 1 after 24 h exposure to ethanol. ESI+ and ESI- refer to electrospray ionization in positive 
and negative modes, respectively. 

 
Figure SI-7.2 Principal component analysis plots of the intracellular fraction of HepaRG cells of 
batch 2 after 24 h exposure to ethanol. ESI+ and ESI- refer to electrospray ionization in positive 
and negative modes, respectively. 
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Figure SI-7.3 Principal component analysis plots of the intracellular fraction of HepaRG cells of 
batch 1 after 48 h exposure to ethanol. ESI+ and ESI- refer to electrospray ionization in positive 
and negative modes, respectively.  

 
Figure SI-7.4 Principal component analysis plots of the intracellular fraction of HepaRG cells of 
batch 2 after 48 h exposure to ethanol. ESI+ and ESI- refer to electrospray ionization in positive 
and negative modes, respectively.  
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Figure SI-7.5 Principal component analysis plots of the extracellular fraction of HepaRG cells of 
batch 1 after 24 h exposure to ethanol. ESI+ and ESI- refer to electrospray ionization in positive 
and negative modes, respectively.  

 
Figure SI-7.6 Principal component analysis plots of the extracellular fraction of HepaRG cells of 
batch 2 after 24 h exposure to ethanol. ESI+ and ESI- refer to electrospray ionization in positive 
and negative modes, respectively.  
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Figure SI-7.7 Principal component analysis plots of the extracellular fraction of HepaRG cells of 
batch 1 after 48 h exposure to ethanol. ESI+ and ESI- refer to electrospray ionization in positive 
and negative modes, respectively.  

 
Figure SI-7.8 Principal component analysis plots of the extracellular fraction of HepaRG cells of 
batch 2 after 48 h exposure to ethanol. ESI+ and ESI- refer to electrospray ionization in positive 
and negative modes, respectively.  
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Table SI-7.3-SI-7.6 show the evaluation parameters of the multivariate statistical models 
for intracellular and extracellular fractions after exposure to ethanol (24 h and 48 h) at 
either IC10 concentration or 1/10 IC10 concentration. R², Q², R²PERM and Q²PERM 
(calculated after 1000 random permutations) were selected for evaluation of the PLS-
DA model, while the area under the curve (AUC) was selected for evaluation of the 
random forest classification model. 

Table SI-7.3 Evaluation parameters of multivariate statistical models for the intracellular fraction 
after exposure to the IC10 concentration of ethanol for 24 h and 48 h. B1: Batch 1. B2: Batch 2. 
LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 R² Q² R²PERM Q²PERM AUC 

B1-24h-LIP+ 0.97 0.85 0.00 0.00 1.00 
B2-24h-LIP+ 1.00 0.96 0.01 0.00 1.00 
B1-48h-LIP+ 0.89 0.50 0.01 0.04 0.93 
B2-48h-LIP+ 0.96 0.85 0.00 0.00 1.00 
B1-24h-LIP- 0.98 0.82 0.01 0.00 1.00 
B2-24h-LIP- 0.99 0.90 0.03 0.00 1.00 
B1-48h-LIP- 1.00 0.95 0.01 0.00 1.00 
B2-48h-LIP- 0.91 0.86 0.02 0.00 1.00 
B1-24h-MET+ 1.00 0.86 0.01 0.01 1.00 
B2-24h-MET+ 0.99 0.95 0.00 0.00 1.00 
B1-48h-MET+ 0.93 0.86 0.01 0.01 1.00 
B2-48h-MET+ 0.95 0.92 0.00 0.00 1.00 
B1-24h-MET- 0.87 0.78 0.04 0.00 1.00 
B2-24h-MET- 0.95 0.87 0.00 0.00 1.00 
B1-48h-MET- 0.89 0.75 0.02 0.01 1.00 
B2-48h-MET- 0.96 0.88 0.00 0.00 1.00 
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Table SI-7.4 Evaluation parameters of multivariate statistical models for the intracellular fraction 
after exposure to 1/10 of the IC10 concentration of ethanol for 24 h and 48 h. B1: Batch 1. B2: 
Batch 2. LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 R² Q² R²PERM Q²PERM AUC 

B1-24h-LIP+ 0.83 0.37 0.05 0.03 0.75 
B2-24h-LIP+ 0.99 0.73 0.13 0.02 0.97 
B1-48h-LIP+ 0.99 0.70 0.12 0.08 0.97 
B2-48h-LIP+ 1.00 0.15 0.94 0.75 0.62 
B1-24h-LIP- 0.54 0.20 0.27 0.05 0.83 
B2-24h-LIP- 1.00 0.83 0.03 0.00 0.88 
B1-48h-LIP- 0.99 0.71 0.17 0.07 0.77 
B2-48h-LIP- 0.95 0.76 1.00 0.86 0.56 
B1-24h-MET+ 1.00 0.74 0.68 0.12 0.91 
B2-24h-MET+ 0.63 0.49 0.16 0.01 0.92 
B1-48h-MET+ 0.99 0.50 0.32 0.06 0.61 
B2-48h-MET+ 0.96 0.66 0.09 0.01 0.65 
B1-24h-MET- 1.00 0.89 0.01 0.00 0.80 
B2-24h-MET- 1.00 0.57 0.06 0.03 0.86 
B1-48h-MET- 0.84 0.30 0.18 0.07 0.79 
B2-48h-MET- 1.00 0.27 0.71 0.79 0.31 

 
Table SI-7.5 Evaluation parameters of multivariate statistical models for the extracellular fraction 
after exposure to the IC10 concentration of ethanol for 24 h and 48 h. B1: Batch 1. B2: Batch 2. 
LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 R² Q² R²PERM Q²PERM AUC 

B1-24h-LIP+ 0.94 0.89 0.00 0.00 1.00 
B2-24h-LIP+ 0.94 0.89 0.00 0.00 1.00 
B1-48h-LIP+ 0.90 0.78 0.00 0.00 1.00 
B2-48h-LIP+ 0.90 0.78 0.00 0.00 0.99 
B1-24h-LIP- 0.95 0.93 0.00 0.00 1.00 
B2-24h-LIP- 0.95 0.93 0.00 0.00 1.00 
B1-48h-LIP- 0.91 0.79 0.00 0.00 1.00 
B2-48h-LIP- 0.91 0.79 0.00 0.00 1.00 
B1-24h-MET+ 0.97 0.95 0.00 0.00 1.00 
B2-24h-MET+ 0.97 0.95 0.00 0.00 1.00 
B1-48h-MET+ 0.96 0.91 0.00 0.00 1.00 
B2-48h-MET+ 0.96 0.91 0.00 0.00 1.00 
B1-24h-MET- 0.94 0.70 0.14 0.00 1.00 
B2-24h-MET- 0.94 0.70 0.14 0.00 0.99 
B1-48h-MET- 0.99 0.92 0.01 0.00 0.94 
B2-48h-MET- 0.99 0.92 0.01 0.00 0.95 
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Table SI-7.6 Evaluation parameters of multivariate statistical models for the extracellular fraction 
after exposure to 1/10 of the IC10 concentration of ethanol for 24 h and 48 h. B1: Batch 1. B2: 
Batch 2. LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 R² Q² R²PERM Q²PERM AUC 

B1-24h-LIP+ 0.70 0.19 0.27 0.08 0.60 
B2-24h-LIP+ 0.62 0.40 0.17 0.01 0.87 
B1-48h-LIP+ 0.99 0.77 0.03 0.01 0.87 
B2-48h-LIP+ 0.86 0.70 0.04 0.01 0.86 
B1-24h-LIP- 0.96 0.28 0.13 0.09 0.66 
B2-24h-LIP- 0.25 0.10 0.29 0.03 0.69 
B1-48h-LIP- 0.69 0.25 0.02 0.04 0.96 
B2-48h-LIP- 0.70 0.22 0.03 0.03 0.84 
B1-24h-MET+ 0.99 0.71 0.15 0.01 0.93 
B2-24h-MET+ 1.00 0.83 0.16 0.00 0.99 
B1-48h-MET+ 0.98 0.88 0.04 0.00 1.00 
B2-48h-MET+ 1.00 0.79 0.34 0.03 0.88 
B1-24h-MET- 0.89 0.15 0.31 0.13 0.55 
B2-24h-MET- 0.99 0.46 0.02 0.04 0.85 
B1-48h-MET- 1.00 0.92 0.15 0.00 0.75 
B2-48h-MET- 1.00 0.59 1.00 0.88 0.75 

 
7.7.2. Annotated metabolites 
Information concerning annotated metabolites that were altered after ethanol 
exposure to HepaRG cells can be found in Table SI-7.7 and Table SI-7.8 of the electronic 
supplementary information 1 (SI-1) of chapter 7, which is available on the link below. In 
these SI tables, annotated metabolites are listed together with their metabolic class, 
formula, ionization species, m/z, RT, DTCCSN2, annotation level, mass error, CCS error and 
fold change direction per exposure timepoint and ethanol concentration.  
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
 
7.7.3. Software and libraries used to annotate metabolites 
A supplementary spreadsheet containing information on the software and libraries used 
per annotated metabolite can be consulted in electronic supplementary information 2 
(SI-2) of chapter 7, which is available on the link below. 
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
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7.7.4. Examples of MS/MS spectra 

 
Figure SI-7.9 MS/MS spectrum of ethylated phosphorylcholine at 10 eV after maximum intensity 
normalization. The spectrum was measured in the extracellular polar fraction of HepaRG cells 
(ESI (+)). Fragment structures were derived from CFM-ID.  

 
Figure SI-7.10 MS/MS spectrum of ethylated phosphorylcholine at 20 eV after maximum 
intensity normalization. The spectrum was measured in the extracellular polar fraction of 
HepaRG cells (ESI (+)). Fragment structures were derived from CFM-ID. 
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Figure SI-7.11 MS/MS spectrum of ethylated phosphorylcholine at 40 eV after maximum 
intensity normalization. The spectrum was measured in the extracellular polar fraction of 
HepaRG cells (ESI (+)). Fragment structures were derived from CFM-ID. 

 
Figure SI-7.12 Isotopic pattern of ethylated phosphorylcholine. The spectrum was measured in 
the extracellular polar fraction of HepaRG cells (ESI (+)). 
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Figure SI-7.13 MS/MS spectrum of Cer 18:2;O2/22:0 at 10 eV after maximum intensity 
normalization. The spectrum was measured in the intracellular apolar fraction of HepaRG cells 
(ESI (+)). Fragment structures are not shown due to their size. FAA: fatty acid ammonia (i.e., FA-
OH+NH3). Sph: Sphingoid base. 

7.7.5. Ethylated phosphorylcholine in human whole blood 
To determine whether EtOChoP can be considered a biomarker of ethanol 
consumption, the compound was targeted for quantification in human whole blood 
samples of teetotalers and ethanol consumers. 
 
7.7.5.1. Human samples 
Three post-mortem whole blood samples with high blood ethanol concentrations 
(range: 1.87 - 3.56 g/L) and 7 whole blood samples with high PEth 16:0/18:1 
concentrations (range: 207 – (>)2000 ng/mL) were selected in addition to 4 control 
samples (no detectable ethanol or PEth 16:0/18:1). All whole blood samples were 
collected in EDTA tubes. A summary of the samples can be found in Table SI-7.9. 
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Table SI-7.9 Whole blood samples used for determination of EtOChoP. PEth: 
Phosphatidylethanol. NC: Negative control (i.e., teetotaler). HD: Heavy drinker (i.e., PEth 
16:0_18:1 >200 ng/mL (Luginbühl et al., 2022)). PM: Post mortem. ND: Not detected. NA: Not 
available. 
 

Sample ID Ethanol (g/L) PEth 16:0_18:1 
(ng/mL) 

NC-1 ND ND 
NC-2 ND ND 
NC-3 ND ND 
NC-4 ND ND 
HD-1 1.34 1400 
HD-2 0.38 902 
HD-3 0.20 >2000 
HD-4 1.00 >1000 
HD-5 0.86 >1000 
HD-6 0.97 474 
HD-7 0.32 207 
PM-1 3.56 NA 
PM-2 2.67 NA 
PM-3 1.87 NA 

 
7.7.5.2. Sample preparation 
Sample preparation was based on the method of Gowda et al. (2017). A volume of 200 
µL whole blood was quenched using 550 µL of MeOH (-80 °C), after which 50 µL of a 4 
ppm solution of EtOChoP-D5 in MeOH was added (to obtain a final concentration of 0.5 
ppm). After vortexing for 30 s, samples were sonicated on ice for 2 min, followed by 20 
min equilibration on ice and centrifugation at 16,000 g for 30 min at room temperature. 
From the supernatant, 400 µL was aliquoted and dried under a stream of pure, dry N2 
at room temperature. Dried extracts were stored at -80 °C and reconstituted directly 
before analysis. Dried extracts were reconstituted on ice using 200 µL of ACN/H2O 
(65/35, v/v). After vortexing for 90 s, samples were filtered using 0.2 µm nylon 
centrifugal filters and centrifugated at 14,000 g for 2 min at room temperature. Sample 
extracts were transferred to LC vials and passed on to the autosampler (4 °C) right 
before analysis. 
For each calibration point, the same sample preparation procedure was used with 
whole blood of a teetotaler. Eight calibration samples were used with a concentration 
of EtOChoP of 10, 20, 50, 100, 200, 500, 1000 and 2000 ng/mL. EtOChoP standard was 
added to the 50 µL of the EtOChoP-D5 solution to spike each calibration point at a 
different concentration. 
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7.7.5.3. Analytical method 
LC–MS/MS analyses were performed on a 1290 Infinity LC system connected to a 6460 
triple quadrupole mass spectrometer from Agilent Technologies with an ESI interface 
operated in positive ionisation mode. An iHILIC-Fusion(+) column (100 x 2.1 mm, 1.8 
µm; zwitterionic) was used at 60 °C. The mobile phase consisted of 10 mM HCOONH4 + 
0.1% (v/v) HCOOH in H2O/MeOH (9/1, v/v) (A) and ACN (B). The gradient profile was 0–
4 min, 95% B; 4–12.5 min, 95-60% B; 12.5–20 min, 60% B; 20-21 min, 60-95% B; 21-26 
min, 95% B. The mobile phase flow rate was set at 0.25 mL/min, and the injection 
volume was optimised at 1 μL. 
The most abundant MRM transitions of EtOCHoP and EtOCHoP-D5 were used for 
quantification (quantifier), while other transitions (qualifiers) were used for identity 
confirmation. Three transitions were selected for EtOCHoP (212.1 → 124.9 (quantifier), 
212.1 → 86.1 (qualifier 1), and 212.1 → 98.9 (qualifier 2)), while two transitions were 
used for EtOChoP-D5 (217.1 → 126.0 (quantifier) and 217.1 → 86.1 (qualifier)). For 
confirmation of the detected compound, both retention times and quantifier/qualifier 
ratios were used. The maximum allowed retention deviation from the internal standard 
was set at 2.5% and qualifier/quantifier ratios were not allowed to differ more than 
±30%. 
 
7.7.5.4. Results and discussion 
An overview of the determined EtOChoP concentrations can be found in Table SI-7.10.  
 
Table SI-7.10 Concentrations of ethylated phosphorylcholine (EtOChoP) determined in whole 
blood samples. PEth: Phosphatidylethanol. NC: Negative control (i.e., teetotaler). HD: Heavy 
drinker (i.e., PEth 16:0_18:1 >200 ng/mL (Luginbühl et al., 2022)). PM: Post mortem. ND: Not 
detected. NA: Not available. 
 

Sample ID Ethanol (g/L) PEth 16:0_18:1 
(ng/mL) 

EtOChoP 
(ng/mL) 

NC-1 ND ND ND 
NC-2 ND ND ND 
NC-3 ND ND ND 
NC-4 ND ND ND 
HD-1 1.34 1400 <10 
HD-2 0.38 902 <10 
HD-3 0.20 >2000 <10 
HD-4 1.00 >1000 <10 
HD-5 0.86 >1000 <10 
HD-6 0.97 474 <10 
HD-7 0.32 207 <10 
PM-1 3.56 NA 153 
PM-2 2.67 NA 91 
PM-3 1.87 NA <10 
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EtOChoP was absent in the whole blood samples of negative controls, while it could be 
detected in all whole blood samples of heavy drinkers. Unfortunately, the used 
calibration range (10 – 2000 ng/mL) was too high to quantify most samples. Only two 
post-mortem samples could be quantified using the calibration curve (R² = 0.98). Their 
concentrations were 153 ng/mL (3.56 g/L blood ethanol) and 91 ng/mL (2.67 g/L blood 
ethanol). Comparing the area ratio (EtOChoP/EtOChoP-D5) in the samples to that of the 
lowest calibration standard of the calibration curve, the concentration in the other 
samples could be estimated in a range of 0.2 to 1.5 ng/mL. Although the targeted 
method requires further optimization, the analyses were able to show the presence of 
EtOChoP in the blood of heavy drinkers, while it remained absent in negative controls. 
Thus, the proof-of-concept of EtOChoP as a marker of ethanol consumption was 
delivered. 
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CHAPTER 8: 
METABOLIC SIGNATURE OF HEPARG CELLS EXPOSED TO ETHANOL 

AND TUMOR NECROSIS FACTOR ALPHA 
 
 

 
 
 
 
 
 
Based on the following publication 
 
Iturrospe E, Robeyns R, Da Silva KM, Van de Lavoir M, Boeckmans J, Vanhaecke T, van Nuijs A, 
Covaci A. Metabolic signature of HepaRG cells exposed to ethanol and tumor necrosis factor 
alpha to study alcoholic steatohepatitis by LC-MS-based untargeted metabolomics. Archives of 
Toxicology. 2023; 97, 1335-1353. (DOI: 10.1007/s00204-023-03470-y).
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8.1. Introduction 
Alcoholic liver disease (ALD) can progress from alcoholic fatty liver disease (AFLD) to 
alcoholic steatohepatitis (ASH), while advanced stages include liver fibrosis, 
(de)compensated cirrhosis and hepatocellular cancer (HCC) (Sakhuja, 2014; Seitz et al., 
2018; Shim & Jeong, 2020). The early stages of ALD are characterized by progressive 
intracellular lipid accumulation in the hepatocytes, while hepatic inflammation becomes 
apparent in the stage of ASH (Sakhuja, 2014; Seitz et al., 2018).  
HepaRG cells were used in chapter 7 to simulate ALFD in vitro, by exposing the cells to 
ethanol at different concentrations for 24 h and 48 h. These experiments showed, 
among other, downregulation of hepatic phosphatidylcholines and -ethanolamines and 
alterations of carnitines depending on the size of their carbon chain. Ethylated 
phosphorylcholine was identified as a marker of ethanol exposure. Intracellular di- and 
triglycerides were upregulated, although the number of species selected by the 
statistical workflow were low. As the extrahepatic environment was absent in these in 
vitro experiments, ethanol exposure could not generate the inflammatory response 
caused by extrahepatic cytokines as seen in human ASH (Nagy, 2015). In this chapter, 
follow-up experiments were performed in which HepaRG cells were co-exposed to 
ethanol and tumor necrosis factor alpha (TNF-α) in order to obtain an improved in vitro 
simulation of ASH. TNF-α is considered the most important inflammatory cytokine in the 
progression of ALD (Kawaratani et al., 2013; Nagy, 2015; Seo & Jeong, 2016; Yin et al., 
1999). Excessive consumption of ethanol alters the characteristics and composition of 
the microbiome in the gastrointestinal tract and augments permeability of the intestinal 
membrane, which increases the portal concentration of blood endotoxins 
(lipopolysaccharides; LPS) (Kawaratani et al., 2013; Nagy, 2015). LPS can activate Kupffer 
cells via the toll-like receptor 4 (TLR4) signaling pathway, resulting in secretion of TNF-α, 
which reacts with TNF-α receptors (TNF-R) on hepatocytes (Nagy, 2015; Seo & Jeong, 
2016). In addition, ethanol consumption stimulates expression of TNF-α in immune cells 
of adipose tissue. TNF-α originating from adipose tissue can reach the liver through the 
portal circulation (Shim & Jeong, 2020). Ethanol also increases the susceptibility to TNF-
α by increasing the levels of TNF-R1 on hepatocytes in a dose-dependent manner 
(Rodriguez et al., 2004). The activity of TNF-α significantly contributes to alcohol-
induced liver damage by inducing apoptosis and necrosis, and increasing expression of 
intracellular adhesion molecules, which promote inflammation (Nagy, 2015; Rodriguez 
et al., 2004). Next to ALD, TNF-α is also associated with liver injury in non-alcoholic 
steatohepatitis (NASH) (Kawaratani et al., 2013). 
After exposure of HepaRG cells to ethanol and TNF-α, metabolic alterations were 
elucidated using the LC-MS-based untargeted metabolomic platforms described in 
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chapter 6. In addition to untargeted screening, suspect screening was performed to 
compare fold change differences (i.e., based on differences in peak abundancies in 
different exposure groups) of previously elucidated metabolites after solely ethanol 
exposure (chapter 7) versus combined exposure to ethanol and TNF-α.  
Extraction and analyses of intracellular metabolites were able to provide a metabolic 
fingerprint for hepatotoxicity induced by ethanol and TNF-α in HepaRG cells. In addition, 
conditioned cell media were analyzed to yield the metabolic footprint (i.e., provide 
information on metabolic secretion and consumption). Dynamic changes in metabolites 
were elucidated in order to get a better understanding of early-stage indicators of ASH.  
 

8.2. Materials and methods 
The used materials and methods were described earlier in chapter 6, including 
chemicals and materials (6.2), dosage estimation (6.3), HepaRG cell cultivation regimen 
(6.4), sample preparation (6.5), analytical methods (6.6), data processing and statistics 
(6.7), metabolite annotation (6.8) and analytical QA/QC procedures (6.9).  
For suspect screening, annotated metabolites selected after ethanol exposure of 
HepaRG cells (chapter 7) were used to build a target list (m/z values to undergo 
fragmentation in a specific retention time window) for data acquisition. 
 
8.2.1. Cell exposure 
After 7 days of incubation (i.e., needed for obtaining polarized hepatocyte colonies and 
biliary-like cells, see 6.4) HepaRG cell exposure was initiated (Figure 8.1). Differentiated 
HepaRG cells were exposed for 24 h to 368 mM of ethanol (i.e., IC10, positive control, n 
= 7), 368 mM of ethanol combined with 50 ng/mL TNF-α (1.2 mL/well, n = 7) or no 
ethanol or TNF-α (i.e., negative control, n = 7). Negative control groups, sample groups 
exposed to solely ethanol and to the combination of ethanol and TNF-α will be further 
referred to as sample groups C (Control), E (Ethanol) and T (TNF-α & ethanol), 
respectively. While ethanol was directly mixed with the incubation medium, TNF-α was 
firstly dissolved in double-filtered PBS to obtain a solution of 20 µg/mL. Twenty-five µL 
of this latter solution was added to 10 mL of incubation medium to obtain a final 
concentration of 50 ng/mL. The concentration of TNF-α was based on the protocol of 
Boeckmans et al. for in vitro simulation of non-alcoholic steatohepatitis (NASH) (2019, 
2020). In addition, three extraction blanks, not containing cells, were obtained using the 
same incubation conditions. 
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Figure 8.1 A) Graphical representation of the exposure experiment. HepaRG cells were exposed 
for 24 h to ethanol or to both ethanol and tumor necrosis factor alpha (TNF-α). The same set-up 
was used for the validation experiment. B) Graphical representation of the used sample groups. 
Graphical icons in this figure were provided by BioRender, license n. 2641-5211. 
 

8.3. Results 
8.3.1. Influence of incubation conditions on ethanol concentration 
During exposure experiments, sample groups were exposed to either 368 mM of 
ethanol (with or without TNF-α) or no ethanol. The ethanol content of the media was 
determined pre- and post-incubation using headspace gas chromatography with flame 
ionization detection (HS-GC-FID). Results are presented in Figure 8.2. Incubation for 24 
h caused an average decrease in ethanol concentration of 48% for the ethanol group 
and 47% for the group exposed to ethanol and TNF-α (for both n = 14, i.e., original and 
validation experiment combined). As the IC10 was determined over a time period of 24 
h, this decrease in concentration did not influence the outcome. After 24 h, negative 
control samples (n = 14) showed an ethanol content of 2.4% compared to the IC10. Pre- 
and post-run ethanol QC solutions met the acceptance criteria (6.6.2) and were 
quantified both as 0.3 g/L for the 0.3 g/L solution (bias = 0%, CV = 0%) and 4.1 g/L and 
4.2 g/L for the 4.0 g/L solution (max bias = 5%, CV = 1.7%), respectively. 
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Figure 8.2  Decrease of ethanol concentration during incubation. Headspace gas 
chromatography with flame ionization detection (HS-GC-FID) was used to determine the ethanol 
concentration pre- (n = 2) and post-incubation (n = 14). The figure was made using Graphpad 
Prism (v. 9.0). 

8.3.2. Data quality 
Post-run quality control included manual evaluation of extracted ion chromatograms of 
internal standards. Pre-set requirements for data quality of internal standards needed 
to be fulfilled for retaining a sample were the same as for the system suitability sample 
(Table 6.2). For the intracellular samples, mRSDs were < 15% for all QC samples of the 
apolar fractions and < 20% for all QC samples of the polar fractions, with one exception 
(24% for ESI (-) – batch 2) (Table SI-8.1). For the extracellular samples, mRSDs of the QC 
samples of both the polar and apolar fractions were all < 20% (Table SI-8.2). All 
calculated mRSD values indicate a reliable analytical method as RSD values ≤ 30% are 
generally accepted in untargeted metabolomics (Naz et al., 2014). Biological and sample 
preparation variance is indicated by the increase in mRSD between QC samples and 
biological samples (i.e., sample groups C, E and T). For the intracellular samples, the 
average mRSD increased from 12% to 18% and from 18% to 25% for the apolar and polar 
fractions, respectively. The increase in average mRSD was slightly higher for the apolar 
fractions of the extracellular samples, with 15% to 25% and lower for the polar fractions 
from 15 to 18%. The low increase in mRSD indicates little sample preparation and 
biological variance. 
Principal component analysis (PCA) plots (Figure SI-8.1-SI-8.4) showed a clear separation 
in PC1 and/or PC2 between the negative control group and the other sample groups, 
indicating a high inter-group variability due to a strong metabolic impact of ethanol or 
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combined ethanol and TNF-α exposure. For example, the PCA plots of the intracellular 
samples of HepaRG cells batch 1 are shown in Figure 8.3. 
 

 
Figure 8.3 Example of a principal component analysis plots of intracellular samples of HepaRG 
cells analyzed in different ionization modes (ESI+ and ESI-), after 24 h exposure to ethanol and 
combined exposure to ethanol and TNF-α. The two PCA plots above were built using apolar 
sample fractions, while the two PCA plots below were generated using polar sample fractions. 
For all PCA plots, there is a clear distinction between the negative control group (C, blue), the 
sample group exposed to the IC10 of ethanol (E, green), and the sample group exposed to ethanol 
(IC10) and TNF-α (T, orange). Only for the polar sample fraction is ESI+, overlap can be observed 
for sample groups E and T. The clustering of pooled QC samples is shown in red. 

For the intracellular fractions, the inter-group variability between group E and T was 
sufficient to obtain a clear separation for all sample polarities, sample batches and 
ionization modes, except for ESI (+) for the polar samples (batch 1) and ESI (-) for the 
polar samples (batch 2). However, this overlap was directed by the QC samples as 
generation of PCA plots without QC samples rearranged the spatial orientation to a clear 
separation between E and T (data not shown). A similar effect was observed for 
extracellular samples. All sample groups (C, E, T) were clearly separated in all polarities 
(polar and apolar), ionization modes (ESI (+) and ESI (-)) and batches (1 and 2), with the 
exception of the polar fractions in ESI (-). In these latter PCA plots, both E and T were 
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clearly separated from C, but overlap between E and T was observed. This latter overlap 
resolved when QC samples were excluded from the PCA (data not shown).   
In all PCA plots, sample group C and T showed the strongest separation, while sample 
group E was positioned in between sample group C and T. This latter is in line with the 
expected distinctiveness of the metabolic profile as combined exposure to ethanol and 
TNF-α was expected to generate a more distinctive metabolic profile compared to that 
of solely ethanol exposure. The evaluation parameters of the multivariate statistical 
models (i.e., R², Q², R²PERM, Q²PERM (n permutations = 1000) for the PLS-DA models and 
AUC for the RF models, Table SI-8.3-SI-8.6), were concordant with the trends observed 
during PCA analyses. High values were found for R² (x̄IC = 1.00, x̄EC = 0.98), Q² (x̄IC = 0.95, 
x̄EC = 0.95), and AUC (xĪC = 1.00, x̄EC = 1.00) and low values for R²PERM (x̄IC = 0.00, x̄EC = 0.00) 
and Q²PERM (x̄IC = 0.00, x̄EC = 0.00) for the models comparing group C with T. PLS-DA and 
RF models comparing group E with T showed lower values for R² (xĪC = 0.94, x̄EC = 0.99), 
Q² (x̄IC = 0.79, x̄EC = 0.85), and AUC (x̄IC = 1.00, x̄EC = 0.98) and higher values for R²PERM (x̄IC 
= 0.01, x̄EC = 0.04) and Q²PERM (x̄IC = 0.00, x̄EC = 0.00). Overall, the lowest predictive values 
were observed for polar fractions in ESI (-) mode comparing E versus T.   
Post-exposure phase-contrast microscopic evaluation of the different HepaRG cultures 
was performed (Figure 8.4). Unexposed control cells showed clear clustering of 
hepatocytes and distinctive biliary cells. Going from sample group C to E and T, 
increased stress was observed as distortion of cytological morphology, faded lining of 
polarized hepatocyte colonies, accumulation of debris and impaired organization of 
hepatic clusters. 
 

 
Figure 8.4 Phase-contrast microscopic pictures of HepaRG cells (10x10). Cells were not exposed 
to ethanol (Control), 368 mM of ethanol for 24 h (EtOH) or 368 mM of ethanol combined with 
50 ng/mL TNF-α (1.2 mL/sample) for 24 h (TNF-α + EtOH). Roman numbers refer to polarized 
hepatocyte colonies (I) and biliary canaliculi and biliary-like epithelial cells (II). 
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8.3.3. Suspect screening of HepaRG cells exposed to ethanol with and without co-
exposure to TNF-α 

In chapter 7, a list was reported of 64 intracellular and 20 extracellular metabolites that 
were able to distinguish between HepaRG cells exposed to ethanol (IC10) for 24 h and 
non-exposed control cells. This list was used to confirm the effects of ethanol in the 
positive control group (i.e., HepaRG cells exposed to ethanol (IC10) for 24 h) (Figure 8.5 
and Figure 8.6). In addition, the same metabolites were targeted in all other 
experimental groups in order to follow the effect of co-exposure to ethanol and TNF-α 
(Figure 8.5 and Figure 8.6).  A detailed list of metabolites with their observed RT, m/z 
value, DTCCSN2 value, level of annotation confidence and additional information can be 
found in the supplementary Table SI-8.7 for intracellular metabolites and Table SI-8.8 
for extracellular metabolites. 
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Figure 8.5 Intracellular suspect screening of HepaRG cells exposed to ethanol with and without 
co-exposure to TNF-α. A Sankey diagram combined with heatmaps was used to show the effect 
of ethanol exposure and TNF-α co-exposure on the intracellular metabolome of HepaRG cells. 
Metabolites in the polar fraction of the samples are indicated by a blue-purple Sankey diagram, 
while a green Sankey diagram represents metabolites originating from the apolar fraction. 
E/C_1: Ethanol (IC10) vs. negative control after 24 h of exposure as previously reported in chapter 
7. E/C_2: Ethanol (IC10) vs. negative control after 24 h. T/C: Ethanol (IC10) + TNF-α vs. negative 
control after 24 h. T/E: Ethanol (IC10) + TNF-α vs. ethanol (IC10) after 24 h. FC: Fold change.
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Figure 8.6 Extracellular suspect screening of HepaRG cells exposed to ethanol with and without co-exposure to TNF-α. A Sankey diagram combined 
with heatmaps was used to show the effect of ethanol exposure and TNF-α co-exposure on the extracellular metabolome of HepaRG cells. Metabolites 
in the polar fraction of the samples are indicated by a blue-purple Sankey diagram, while a green Sankey diagram represents metabolites originating 
from the apolar fraction. E/C_1: Ethanol (IC10) vs. negative control after 24 h of exposure as previously reported in chapter 7. E/C_2: Ethanol (IC10) vs. 
negative control after 24 h. T/C: Ethanol (IC10) + TNF-α vs. negative control after 24 h. T/E: Ethanol (IC10) + TNF-α vs. ethanol (IC10) after 24 h. E/B_1: 
Ethanol (IC10) vs. blank media after 24 h as previously reported in chapter 7. E/B_2: Ethanol (IC10) vs. blank media after 24 h of exposure. T/B: Ethanol 
(IC10) + TNF-α vs. blank media after 24 h. C/B_1: Negative control vs. blank media after 24 h as previously reported in chapter 7. C/B_2: Negative 
control vs. blank media after 24 h. FC: Fold change.  
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8.3.3.1. Metabolic fingerprint of HepaRG cells exposed to ethanol and effect of co-
exposure to TNF-α 
When comparing ethanol exposed versus non-exposed control cells, upregulation was 
observed for diglycerides (DG) and triglycerides (TG), while sphingomyelins (SM), 
phosphatidylethanolamines (PE) and phosphatidylcholines (PC) were downregulated, 
concordant with our previous findings (chapter 7). Also, other observations were 
consistent such as downregulation of ceramides (Cer) with a sphingadienine-backbone 
(d18:2), small-chain acylcarnitines, phenylacetylglutamine (PAG), creatine, 
acetylcholine, glycerophosphocholine (GPC), pantothenic acid, S-adenosylmethionine 
(SAM) and taurine. PEth 16:0_18:1, O-adipoylcarnitine, ethylated phosphorylcholine 
(EtOChoP) and O-phosphoethanolamine (EtoP) were upregulated. When comparing 
HepaRG cells exposed to solely ethanol versus cells exposed to both ethanol and TNF-
α, the same fold change directions could be observed for nearly all metabolites. Only 
for polyunsaturated PCs, some species (e.g., PC 38:4, PC 18:2_20:4, PC 40:8) showed 
upregulation as was previously seen during HepaRG exposure to ethanol for 48 h 
(chapter 7). TNF-α co-exposure did influence the magnitude of up- or downregulation. 
The strongest shift in upregulation was observed for di- and triglycerides and EtoP. The 
strongest shift in downregulation was observed for saturated and low-level unsaturated 
PCs (< 4 double bonds), PEs, SAM and PAG. 
 
8.3.3.2. Metabolic footprint of HepaRG cells exposed to ethanol and effect of co-
exposure to TNF-α 
In order to be able to distinguish between altered secretion and altered consumption, 
both incubation media from exposed cells, control cells and blank media (i.e., incubated 
media without cells) were analyzed (Figure 8.6). A negative metabolite fold change (FC) 
difference between (I) exposure versus control, (II) exposure versus blank media and 
(III) control versus blank media indicates increased consumption due to exposure. A 
positive FC for all three groups indicates increased secretion. Metabolites 
downregulated in groups II and III and upregulated in group I indicate metabolites that 
are less consumed by HepaRG cells. A fourth scenario is upregulation in groups II and III 
and downregulation in group I, indicating reduced secretion. As metabolomic studies 
provide a snapshot of metabolic patterns, the four described scenarios should be 
interpreted carefully because changes can be highly dynamic. 
For the positive control, up- and downregulation of metabolites in the extracellular 
fraction was consistent with previous findings (chapter 7). Ethanol exposure did for 
example increase cellular consumption of lysoPCs (LPC) and secretion of PEs, Cers, 
phosphorylcholine (ChoP) and EtOChoP. Decreased consumption was observed for GPC, 
inosine and hypoxanthine, while extracellular PAG decreased due to decreased 
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secretion. When the metabolites of Figure 8.6 were targeted in extracellular media of 
HepaRG cells exposed to both ethanol and TNF-α, the same FC directions were observed 
as seen with solely ethanol exposure when comparing exposure to unexposed controls. 
The magnitude of the FC difference was comparable for many metabolites including 
ChoP and EtOChoP. However, addition of TNF-α resulted in a stronger increase in LPC 
consumption (+38% relative abundance) and PE secretion (+65% relative abundance). A 
nearly four times stronger decrease was observed in PAG secretion. In addition, TNF-α 
co-exposure resulted in increased consumption of inosine and hypoxanthine compared 
to solely ethanol exposure. 
 
8.3.4. Untargeted metabolomics to elucidate the metabolic signature of HepaRG 

exposure to ethanol and TNF-α 
Features distinctive for exposure to ethanol and TNF-α compared to negative controls 
were selected by univariate (Mann−Whitney U test or Welch’s t-test combined with FC 
cut-off) and/or multivariate statistical approaches (PLS-DA and RF) (Figure 8.7 and 
Figure 8.8). They were kept for annotation only when they were selected in both the 
exposure experiment and the validation experiment. Annotated metabolites with their 
observed RT, m/z value, DTCCSN2 value, and additional information are listed in 
supplementary Table SI-8.9 for intracellular metabolites and Table SI-8.10 for 
extracellular metabolites. 
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Figure 8.7 Intracellular untargeted metabolomics to elucidate the metabolic signature of 
HepaRG exposure to ethanol and TNF-α. A Sankey diagram combined with heatmaps was used 
to show the effect of combined ethanol and TNF-α exposure on the intracellular metabolome of 
HepaRG cells. Metabolites in the polar fraction of the samples are indicated by a blue-purple 
Sankey diagram, while a green Sankey diagram represents metabolites originating from the 
apolar fraction. T/C: Ethanol (IC10) + TNF-α vs. negative control after 24 h of exposure. FC: Fold 
change. 
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Figure 8.8 Extracellular untargeted metabolomics to elucidate the metabolic signature of 
HepaRG exposure to ethanol and TNF-α. A Sankey diagram combined with heatmaps was used 
to show the effect of combined ethanol and TNF-α exposure on the extracellular metabolome of 
HepaRG cells. Metabolites in the polar fraction of the samples are indicated by a blue-purple 
Sankey diagram, while a green Sankey diagram represents metabolites originating from the 
apolar fraction. T/C: Ethanol (IC10) + TNF-α vs. negative control after 24 h of exposure. T/B: 
Ethanol (IC10) + TNF-α vs. blank media after 24 h. C/B: Negative control vs. blank media after 24 
h. FC: Fold change.  

8.3.4.1. Metabolic fingerprint of HepaRG cells exposed to ethanol and TNF-α 
In total, 110 altered metabolites selected during the statistical workflow could be 
annotated. Of the 95 lipids, one was annotated as L1, 70 were annotated as L2 and 24 
as L3, while of the 15 polar metabolites, 12 were annotated as L1 and three as L2. When 
comparing annotation software for lipids (supplementary spreadsheet, 8.7.3), 81% 
could be annotated using Lipostar, 72% using LipidMatch, 59% using the modified 
LipidBlast library of MS-DIAL (v. 4.9) and 39% using LipidHunter. For polar metabolites, 
NIST (v. 17) yielded the highest coverage (100%), followed by MassBank (93%), the All 
Public MS/MS library (v. 15) of MS-DIAL (53%) and MS-Finder (20%).  
When comparing HepaRG cells exposed to ethanol and TNF-α with unexposed control 
cells, LPEs, PEs, LPCs and PCs were downregulated. However, for PCs a trend of 
upregulation was observed when the number of double bonds increased (i.e., > 4 
double bonds). Both DGs and TGs were upregulated. In comparison to solely ethanol 
exposure (chapter 7), the statistical workflow drastically increased the number of 
selected upregulated TGs after TNF-α co-exposure. PEth 16:0_18:1, a marker of ethanol 
exposure, was detected at high intensity in exposed samples. The three selected SMs 
were upregulated. However, as seen in the suspect screening experiment, SMs can be 
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down- or upregulated due to exposure to ethanol and TNF-α, depending on the specific 
species. Two diacylglycerophosphoglycerols were downregulated (i.e., PG 16:1_18:1 
and PG 18:1/18:1), while one species was upregulated (i.e., PG 18:2/18:2). Concerning 
polar metabolites, there was a downregulation of SAM, methylthioadenosine (MTA), 
creatine, acetylcholine, taurine, GPC, carnitine, acetylcarnitine and uridine 5'-
diphosphoglucuronic acid (UDPGA). In addition, glutathione, both in its reduced as 
oxidized form (GSH and GSSG, respectively), was downregulated. Upregulation was 
observed for ChoP, EtOChoP, EtoP and O-adipoylcarnitine. 
 
8.3.4.2. Metabolic footprint of HepaRG cells exposed to ethanol and TNF-α 
In total, 29 altered metabolites were annotated in the extracellular fraction of HepaRG 
cells. Of the 17 lipids, one was annotated as L1, 13 as L2 and three as L3, while 9 of the 
polar metabolites were annotated as L1 and three as L2. Annotation software used for 
MS/MS matching for each metabolite can be consulted in the supplementary 
spreadsheet (8.7.3). For the annotated lipids, LipidMatch and Lipostar yielded the 
highest coverage (both 86%), followed the modified LipidBlast library of MS-DIAL (v. 4.9) 
(68%) and LipidHunter (11%). For polar metabolites, 83% could be elucidated using 
MassBank, 75% using NIST (v. 17), 42% using MS-DIAL (v. 4.9) and 8% using MS-Finder.  
Exposure to ethanol and TNF-α caused downregulation of LPCs due to increased 
consumption. PEs, Cer 18:1;O2/24:1, DG 18:0_18:2 and two alkyl ether PC species were 
upregulated due to increased secretion. Carnosine and histidylleucine were 
downregulated due to increased consumption, while PAG and 4-pyridoxic acid were 
downregulated due to decreased secretion. The consumption of nicotinamide, 
pyridoxal and GPC decreased, causing a positive fold change. Exposure to ethanol and 
TNF-α stimulated secretion of both ChoP and EtOChoP, ornithine and the acids malic 
acid and isethionic acid. 
 
8.3.5. Untargeted metabolomics to elucidate the effect of co-exposure to TNF-α in 

ethanol exposed HepaRG cells 
Features distinctive for combined exposure to ethanol and TNF-α compared to exposure 
to solely ethanol were selected by univariate (Mann−Whitney U test or Welch’s t test 
combined with FC cut-off) and/or multivariate statistical approaches (PLS-DA and RF). 
They were kept for annotation only when they were selected in both the exposure 
experiment and the validation experiment. Annotated metabolites with their observed 
RT, m/z value, DTCCSN2 value, and additional information are listed in supplementary 
Table SI-8.11 for intracellular metabolites and Table SI-8.12 for extracellular 
metabolites. The magnitude of up- or downregulation is shown per metabolite in the 
form of heatmaps in the supplementary information (Figure SI-8.5-SI-8.6). 
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When using the statistical workflow described in chapter 6 (6.7) to compare HepaRG 
cells exposed to ethanol and TNF-α versus solely ethanol, 102 distinctive metabolites 
could be annotated in the intracellular fraction (Figure SI-8.5). TNF-α co-exposure 
resulted in a further decrease of LPEs, PEs, LPCs and PCs. As reported during the suspect 
screening, highly unsaturated PCs showed upregulation during TNF-α co-exposure. This 
latter was reflected in this untargeted experiment by upregulation of two PC 38:5 
species. SM 36:1;2O, two Cers and PG 18:2/18:2 were upregulated, while PG 16:1_18:1 
and PG 18:1/18:1 were downregulated. Both DGs and TGs showed stronger 
upregulation when TNF-α was used as inflammatory trigger. This latter is also reflected 
in the number of distinctive TGs elucidated when comparing (i) HepaRG cells exposed 
to ethanol versus negative control cells and (ii) HepaRG cells exposed to ethanol and 
TNF-α versus solely ethanol. In chapter 7, three upregulated TG species were elucidated 
when HepaRG cells were exposed to ethanol (IC10) for 24 h, while TNF-α co-exposure 
resulted in upregulation of 28 distinctive TG species. Interestingly, TG estolides showed 
a negative fold change during TNF-α co-exposure compared to solely ethanol exposure. 
Concerning polar metabolites, carnitine, acetylcarnitine, O-octanoylcarnitine, taurine, 
UDPGA and GSSG were downregulated as well as the nucleosides SAM and MTA. ChoP, 
GPC, EtoP and pantothenic acid were upregulated. 
In the extracellular fraction (Figure SI-8.6), TNF-α co-exposure increased consumption 
of LPCs and secretion of PEs, Cers and alkyl ether PCs. In addition, carnosine and 
histidylleucine were more consumed, and pyridoxal less. Secretion of ornithine and 
malic acid increased, while secretion decreased for isethionic acid, PAG and 4-pyridoxic 
acid. 
 

8.4. Discussion 
Findings, hypotheses and interpretation on the distinctive metabolic profile between 24 
h of ethanol exposure and unexposed control cells originating from the suspect 
screening were discussed in chapter 7. The discussion in this chapter is limited to 
findings of new metabolites altered due to HepaRG co-exposure to ethanol and TNF-α, 
and to metabolites that were either stronger up- or downregulated or showed a fold 
change in opposite direction compared to solely ethanol exposure. An overview of the 
most important metabolic changes due to ethanol and TNF-α co-exposure in HepaRG 
cells is presented in Figure 8.9. 
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Figure 8.9 Metabolic changes in HepaRG cells after combined ethanol and TNF-α exposure for 
24 h. New insights originating from TNF-α co-exposure were added to the figure of chapter 7 on 
metabolic changes in HepaRG cells after ethanol exposure (Figure 7.7). Intracellular green and 
red arrows were used to indicate increased and decreased biosynthesis/availability, respectively. 
Green arrows connecting the intracellular and extracellular compartment indicate increased 
secretion or uptake, depending on their direction, while red arrows connecting both 
compartments indicate decreased secretion. Graphical icons in this figure were provided by 
BioRender, license n. 2641-5211.  
Ach: Acetylcholine. CAR: Carnitine. Carn: Carnosine. CDP-E: CDP-ethanolamine. Cer: Ceramide. 
CH3CHO: Acetaldehyde. CHAT: Choline O-acetyltransferase. ChoP: Posphorylcholine. CoA: 
Coenzyme A. COT: Carnitine octanoyltransferase. CPT-1: Carnitine palmitoyltransferase 1. Cr: 
Creatine. DG: Diglyceride. DGAT2: Diglyceride acyltransferase 2. EPT1: 
Ethanolaminephosphotransferase 1. EtOChoP: Ethylated phosphorylcholine. EtoP: O-
phosphoethanolamine. FA: Fatty acid. FAHFA: Fatty acyl esters of hydroxy fatty acid. G3P: 
Glycerol 3-phosphate. GAA: Guanidinoacetate. GAMT: Guanidinoacetate methyltransferase. 
GDE1: Glycerophosphodiester phosphodiesterase 1. GNMT: Glycine N-methyltransferase. GPC: 
Glycerophosphocholine. GPCPD1: Glycerophosphocholine phosphodiesterase 1. GSH: 
Glutathione (reduced). GSR: Glutathione reductase. GSSG: Glutathione (oxidized). LPC: 
Lysophosphatidylcholine. LPCAT: Lysophosphatidylcholine acyltransferase. LPE: 
Lysophosphatidylethanolamine. LYPLA1: Lysophospholipase 1. MAT: Methionine 
adenosyltransferase. mc-CAR: medium chain-CAR. mc-CoA: medium chain-CoA. Met: 
Methionine. MFN2: Mitochondrial protein mitofusin 2. MTA: Methylthioadenosine. Orn: 
Ornithine. PAG: Phenylacetylglutamine. PAP: Phosphatidate phosphatase. PC: 
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Phosphatidylcholine. PC-O: Alkyl ether PC. PCYT2: Phosphoethanolamine cytidylyltransferase. 
PE: Phosphatidylethanolamine. PEMT: Phosphatidylethanolamine-N-methyltransferase. PE-P: 
Alkenyl ether PE. PEth: Phosphatidylethanol. pFA: Polyunsaturated FA. PLA2: Phospholipase A2. 
PLD: Phospholipase D. PLD1_2: Phospholipase D1/2. pPC: Polyunsaturated PC. pPC-O: 
Polyunsaturated PC-O. pPG: Polyunsaturated phosphatidylglycerol. PS: Phosphatidylserine. ROS: 
Reactive oxygen species. SAH: S-adenosyl-homocysteine. SAM: S-adenosylmethionine. SM: 
Sphingomyelin. SMA: Sphingomyelinase. SPDS: Spermidine synthase. Tau: Taurine. TG: 
Triglyceride. UDPGA: Uridine 5'-diphosphoglucuronic acid. UDPGDH: UDP-glucose 
dehydrogenase. UDP-Glu: Uridine diphosphate glucose. 

8.4.1. Diglycerides and triglycerides 
As seen during both suspect screening and untargeted analyses, the magnitude of 
intracellular upregulation of DG and TG species increased during TNF-α co-exposure. In 
addition, the number of distinctive TG species increased significantly between solely 
ethanol exposure and combined exposure to ethanol and TNF-α, suggesting an 
important role of inflammation during steatosis progression. These findings are 
concordant with a significant increase of TG species in TNF-α-infused mice and rats 
(Raina et al., 1995; Tacer et al., 2007). In addition, ethanol can increase the susceptibility 
to TNF-α by increasing the levels of tumor necrosis factor-alpha receptor-1 (TNF-R1) 
(Rodriguez et al., 2004). TNF-α stimulated hepatic lipogenesis has been observed in both 
human and murine studies (Popa et al., 2007). It is believed that TNF-α induces de novo 
fatty acid synthesis in the liver, resulting in increased DG and TG synthesis, without 
increasing the enzymes involved in esterification with glycerol (Popa et al., 2007). 
Several mechanisms would feed de novo fatty acid synthesis, such as elevation of fatty 
acid synthetase (FAS) (Grunfeld et al., 1988) and increased expression and maturation 
of sterol regulatory element-binding protein-1c (SREBP-1c), a transcription factor 
regulating gene expression related to fatty acid metabolism (Endo et al., 2007; Lawler 
et al., 1998). TNF-α can induce insulin resistance through serine phosphorylation of 
insulin receptor substrate-1 (IRS-1) (Kanety et al., 1995; Popa et al., 2007) and insulin 
can activate the promotor of SREBP-1c (Dif et al., 2006). In addition, as seen in mice 
models and in vitro experiments, exposure to ethanol can induce lipin-1 (Hu et al., 
2012), an important enzyme in TG biosynthesis, and DG acyltransferase 2 (DGAT2), 
which can result in shift towards TG synthesis through initial conversion of PCs to DGs 
(Z. Wang et al., 2010). Among the upregulated TG species, TG estolides, categorized as 
fatty acyl esters of hydroxy fatty acid (FAHFA)-containing triacylglycerols (FAHFA-TGs) 
were found. Interestingly, these TG estolides were the only TG species which were 
downregulated during exposure to ethanol and TNF-α compared to solely ethanol 
exposure. TG estolides are rather less investigated species of TG and to the authors 
knowledge, its presence in human hepatocytes is unreported. Their presence in mice 
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livers was previously reported (Saponara et al., 2022). Example MS/MS spectra of the 
FAHFA-TGs found in the HepaRG samples were added to the SI (Figure SI-8.7-SI-8.8). In 
2015, TG estolides were reported for the first time in mammals, after GC-MS analyses 
of paracloacal glands of possums (McLean et al., 2015). Branched-chain FAHFAs have 
shown anti-diabetic and anti-inflammatory properties (Yore et al., 2014) and their 
biosynthesis can be augmented by oxidative stress (Kuda et al., 2018). These FAHFAs 
can acylate the free hydroxyl group of DGs to form a storage pool of FAHFAs under the 
form of FAHFA-TGs (Tan et al., 2019). The decrease of TG estolides during co-exposure 
of ethanol and TNF-α could be explained by a release of FAHFAs by lipolytic enzymes in 
order for the FAHFAs to exert their anti-inflammatory properties. 
 
8.4.2. Phosphatidylcholines, lysophosphatidylcholines, phosphatidylglycerols, S-

adenosylmethionine, and methylthioadenosine 
TNF-α co-exposure decreased intracellular PCs stronger than solely ethanol exposure, 
concordant with the findings of Männistö et al. who saw a decrease of hepatic PCs in 
simple steatosis, which decreased further during non-alcoholic steatohepatitis (NASH) 
in humans (Männistö et al., 2019). The authors suggested a mechanism of altered 
expression of glycine N-methyltransferase (GNMT) for the hepatic decrease of PCs in 
NASH. GNMT catalyzes the conversion of SAM to S-adenosyl-homocysteine (SAH), 
which is an inhibitor of phosphatidylethanolamine-N-methyltransferase (PEMT) 
(Männistö et al., 2019). PEMT, which can also be inhibited by ethanol (Lieber et al., 
1994), converts PEs to PCs. PEMT inhibition by ethanol and increased conversion of SAM 
to SAH, could reduce hepatic PC levels. Decrease of hepatic SAM can be explained by 
ethanol-induced inhibition of methionine synthase and methionine 
adenosyltransferase (Stickel & Seitz, 2003). Further decrease induced by TNF-α co-
exposure could support the hypothesis of altered GNMT expression. In addition, 
downregulation of SAM can explain the intracellular decrease of methylthioadenosine 
(MTA), as it acts as a precursor during the polyamine biosynthetic pathway (Avila et al., 
2004). It is believed that MTA has hepatoprotective effects and a role during the 
regeneration after partial hepatectomy, a process triggered by cytokines, such as TNF-
α (Avila et al., 2004). 
Next to downregulation of hepatic PCs, a decrease in intracellular LPCs was observed, 
as well as an increased consumption of extracellular LPCs during TNF-α co-exposure. In 
line with these results, Israelsen et al. observed a decrease in LPCs in human hepatic 
venous blood after ethanol intoxication in healthy volunteers and ALD patients 
(Israelsen et al., 2021). The authors hypothesized that the reduction of circulating LPCs 
could be caused by an increased hepatic uptake, which was confirmed both in the 
present study and during HepaRG exposure to solely ethanol (chapter 7). In addition, 



 

255 
 

Koelmel et al. observed a decrease of both hepatic and plasma PC and LPC levels in 
ethanol-fed mice, with a stronger decrease after prolonged consumption of ethanol 
(Koelmel, Tan, et al., 2021). Interestingly, Puri et al. observed a decrease of hepatic LPCs 
in NAFLD, while they were increased in NASH (Puri et al., 2007). This latter indicates a 
potential distinctive hepatic LPC metabolism in NASH versus ASH. As hypothesized in 
chapter 7, intracellular LPCs could be downregulated due to reduced PC catabolism 
through phospholipase A2, while increased hepatic uptake of LPCs could be used to fuel 
formation of the PC pool (LPCAT) and/or GPC (LYPLA1). The stronger decrease of hepatic 
PCs that was observed during TNF-α co-exposure, might explain the increased hepatic 
uptake of LPCs as a compensating mechanism.  
The decrease of intracellular alkyl ether PCs is consistent with the finding of increased 
extracellular secretion. Meikle et al. reported an increased content of alkyl ether PCs in 
serum of patients suffering from alcoholic cirrhosis (Meikle et al., 2015). As the 
understanding of the function of ether lipids and their role in pathophysiology is still 
largely unknown (Dean & Lodhi, 2018), the mechanism or function of intracellular 
decrease and extracellular increase still remains unclear.  
Upregulation of polyunsaturated PCs was only seen during TNF-α co-exposure or during 
prolonged ethanol exposure (chapter 7). Ethanol exposure can induce a shift of 
saturated to unsaturated fatty acids as observed in several studies (Clugston et al., 
2017), e.g. in ethanol-fed rodents (Jeon & Carr, 2020). On the other hand, TNF-α infusion 
in rats increased production of hepatic polyunsaturated fatty acids (PUFAs) (Raina et al., 
1995). These PUFAs can be incorporated in DGs and subsequently in PCs through the 
cytidine diphosphocholine (CDP-choline) pathway (Jeon & Carr, 2020). Although the 
number of elucidated distinctive PGs was rather low (Figure 8.7), there seemed to be a 
trend for downregulation of species with a lower level of unsaturation (i.e., PG 
16:1_18:1 and PG 18:1/18:1) and upregulation of species with a higher level of 
unsaturation (i.e., PG 18:2/18:2). Puri et al. saw an overall increase of PGs after ethanol 
consumption in mice. However, when looking at the species level, some PGs were 
upregulated, while others were downregulated (Puri et al., 2016). Although no 
correlation between the degree of unsaturation and upregulation could be observed, 
tendency towards upregulation of more unsaturated species was noticeable, especially 
in lean mice.  In analogy to the results in this study, Puri et al. reported PG 18:2/18:2 as 
the species which was strongest upregulated (Puri et al., 2016). While the exact 
mechanism remains unclear, an increased biosynthesis of PUFAs could be a contributing 
factor. 
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8.4.3. Phosphatidylethanolamines, lysophosphatidylethanolamines, and O-
phosphoethanolamine 

Although PEMT inhibition reduces consumption of hepatic PEs, an intracellular decrease 
was observed, which was stronger during TNF-α co-exposure. This finding is concordant 
with the extracellular metabolome, where PEs were upregulated due to increased 
secretion. In addition, impaired activity of phosphoethanolamine cytidylyltransferase 
(PCYT2) in the CDP-ethanolamine pathway might explain the decreased content of PEs, 
as impairment would contribute to accumulation of hepatic DGs and O-
phosphoethanolamine (EtoP) (Calzada et al., 2016), which were more upregulated after 
TNF-α co-exposure. Increase in EtoP suggests either activation of PE metabolism or 
impairment of PE incorporation in membranes (Beatriz et al., 2011). In addition, 
development of a NAFLD/NASH phenotype was observed in mice after knocking out the 
mitochondrial protein mitofusin 2 (mfn2) (Hernández-Alvarez et al., 2019). Mfn2 is a 
mitochondrial membrane protein, connecting membranes of the endoplasmatic 
reticulum (ER) to mitochondria. The close apposition between the ER and the 
mitochondria allows transport of phosphatidylserines (PSs) from the ER to 
mitochondria, where they can be converted into PEs. These PEs can be transported back 
to the ER for conversion into PCs. Mfn2 facilitates the PS transport (Ventura et al., 2022). 
Compared to simple steatosis, significant downregulation of mfn2, leading to decrease 
of hepatic PEs and PCs, has been observed in patients with NASH (Hernández-Alvarez et 
al., 2019). Downregulation of intracellular LPE levels can be a direct effect of PE 
depletion, as LPEs are formed by deacylation of PEs in a reaction catalyzed by 
phospholipase A2 (PLA2). The decrease of hepatic LPEs is consistent with the findings of 
Koelmel et al. in the livers of ethanol-fed mice (Koelmel, Tan, et al., 2021). 
 
8.4.4. Sphingomyelins, ceramides, and phosphorylcholine 
Although some SM species were upregulated in exposed HepaRG cells, the overall effect 
of downregulation of SM species was clearly observed during the suspect screening. 
This latter downregulation affects both cells exposed to ethanol and combined 
exposure to ethanol and TNF-α. As reported by Koelmel et al., the fold change direction 
can be dependent on the length and degree of saturation of the fatty acyl constituents 
(Koelmel, Tan, et al., 2021). Although these latter findings could explain the observed 
discrepancies in up- and downregulation of SM species, they could neither be confirmed 
nor denied during this study as confident annotation of SM species was limited to their 
bulk structures.  
As seen during the suspect screening, co-exposure to TNF-α had only small effects on 
SM species with overall a slightly stronger downregulation. As previously reported in 
chapter 7, decrease of hepatic SMs is in accordance with downregulation of SMs in 
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human serum of heavy drinkers, which could be due to increased hydrolysis of SMs into 
Cers and phosphorylcholine (ChoP) by sphingomyelinase (SMA) (Jaremek et al., 2013). 
Increased SM hydrolysis was supported by elevated extracellular levels of Cers (d18:1) 
and ChoP due to increased secretion. The levels of Cer species (both d18:1 and d18:2) 
and ChoP were slightly higher during TNF-α co-exposure compared to solely ethanol 
exposure, both intra- and extracellular. Ethylated phosphorylcholine (EtOChoP), which 
was previously identified as a new biomarker of ethanol exposure (Iturrospe et al., 
2022), was found both intra- and extracellular. This compound was present after 
exposure to ethanol and ethanol combined with TNF-α, and remained absent in 
unexposed control samples. EtOChoP could be formed in a reaction using both ChoP 
and ethanol.  
 
8.4.5. Ornithine and phenylacetylglutamine 
Concerning the extracellular metabolome, an increased secretion of ornithine was 
observed after exposure to ethanol and TNF-α. This increase is consistent with the 
finding of Shi et al. who observed increased plasma levels of ornithine in ethanol-fed 
rats (C. Shi et al., 2020). As the hepatic content of ornithine in these rats decreased, the 
authors hypothesized that the changes in ornithine were due to an impaired urea cycle 
(C. Shi et al., 2020). During this cycle, which primarily occurs in the liver, toxic ammonia 
is converted to urea. This latter impairment was confirmed during in vitro studies and 
in human patients suffering from alcoholic liver disease (Aagaard et al., 2004; Glavind 
et al., 2016; Holmuhamedov et al., 2012). In addition to urea, phenylacetylglutamine 
(PAG) has been proposed as a vehicle for waste nitrogen excretion (Brusilow, 1991). The 
hypothesis of an impaired urea cycle, in addition to downregulated intracellular PAG 
and decreased hepatic PAG secretion, indicate an impaired processing of nitrogen waste 
by the liver cells. 
 
8.4.6. Reduced and oxidized glutathione 
During HepaRG exposure to ethanol and TNF-α, an intracellular decrease was observed 
of both reduced and oxidized glutathione (GSH and GSSG, respectively). Viña et al. found 
that hepatic GSH depletion is not a direct effect of ethanol, but of its oxidized 
biotransformation product acetaldehyde, which could form adducts with GSH (Vina et 
al., 1980). In addition, reduced hepatic synthesis of SAM results in decreased GSH levels 
(Cederbaum, 2010). Next to decreased GSH levels, mitochondrial uptake of GSH, is 
reduced in response to ethanol exposure, increasing susceptibility to oxidative stress 
produced by reactive oxygen species (ROS) (Fernández-Checa et al., 1997). This reduced 
uptake was determined as an important sensitizing factor to TNF-α toxicity (Fernández-
Checa et al., 1997). As GSH is oxidized to GSSG during the neutralization of ROS 
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(Fernández-Checa et al., 1997), a decrease of GSSG can be expected since its precursor 
GSH was depleted. However, ROS are generated during ethanol exposure (Cahill et al., 
2002), which would lead to a hypothesis of increased hepatic GSSG. Unlike the apparent 
consensus on downregulation of GSH in literature, there seem to be differences in 
reported GSSG levels as they were reported to be increased (X. Sun et al., 2021), 
decreased (Robin et al., 2005) or unchanged (Callans et al., 1987; Jewell et al., 1986). 
Important to mention is that ethanol exposure can have a different effect on cytosolic 
and mitochondrial GSSG concentrations (Robin et al., 2005). Based on rodent studies, it 
is suggested that during ethanol exposure the rate of conversion of GSSG to GSH would 
be increased due to higher activity of glutathione reductase (GSR) (Bailey et al., 2001; 
Callans et al., 1987). This latter highlights the dynamic character of the metabolome and 
therefore it would be possible that the rate of oxidation of GSH to GSSG may be greater 
than reflected by snapshot GSSG levels. 
 
8.4.7. Taurine and carnosine 
The stronger decrease of intracellular taurine after TNF-α co-exposure could be 
explained by an increased production of ROS as was seen in mitochondria of murine 
hepatocytes and the human cell line Huh-7 (Kastl et al., 2014). Taurine administration 
can increase hepatic antioxidant capacity and reduce lipid peroxidation in ethanol-fed 
rats and primary rat hepatocytes cultured with ethanol (G. Wu et al., 2018). In addition, 
an increased consumption of carnosine from the extracellular environment was 
observed. Carnosine can act as an antioxidant through the mechanism of chelating 
divalent metal ions, possessing superoxide dismutase (SOD)-like activity and scavenging 
of ROS and free radicals (Guney et al., 2006). Carnosine has shown hepatoprotective 
effects in ethanol-fed rats by ameliorating toxic effects of ethanol such as decrease of 
GSH levels, increase of alanine aminotransferase (ALT) and aspartate aminotransferase 
(AST) (Baykara et al., 2012). 
 
8.4.8. Uridine 5'-diphosphoglucuronic acid 
The intracellular decrease of uridine 5'-diphosphoglucuronic acid (UDPGA) could reflect 
a decreased biotransformation capacity after ethanol and TNF-α exposure. UDPGA is 
used during phase II biotransformation reactions for glucuronidation of endogenous 
compounds, xenobiotics and toxic substances in order to turn them into harmless or 
easily excreted metabolites (Sanchez-Dominguez et al., 2018). As seen in rat liver and 
primary rat hepatocytes, ethanol exposure can increase UDP-glucuronosyltransferases 
(UGTs), which could explain reduced levels of UDPGA (Y. Q. Li et al., 2000). However, 
during ethanol and TNF-α co-exposure, a stronger decrease of UDPGA was observed 
and TNF-α would rather downregulate hepatic UGTs (T. A. Richardson et al., 2006). This 
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latter would suggest a decreased production of UDPGA. UDP-glucose dehydrogenase 
(UDPGDH) is the enzyme responsible for catalyzing the conversion of UDP-glucose to 
UDPGA. During ethanol exposure, an intracellular inhibition of UDPGDH has been 
observed in rat hepatocytes (Aw & Jones, 1983). The stronger decrease of UDPGA after 
TNF-α co-exposure could indicate an additive or synergistic effect on UDPGDH 
inhibition. 
 

8.5. Conclusions 
Compared to solely ethanol-exposed HepaRG cells, additional exposure to TNF-α 
resulted in a stronger downregulation of PCs and PEs and a stronger upregulation of 
DGs and TGs, indicating increased hepatotoxicity. The most upregulated intracellular 
metabolites included TG 12:0_18:2_18:2, TG 16:1_16:1_18:3 and TG 18:1_18:2_22:6, 
while the most downregulated metabolites included PC 34:4, PC 16:1/16:1 and uridine 
5'-diphosphoglucuronic acid. Extracellular metabolites which were most impacted 
included the upregulated PE 34:1 and downregulated LPC 18:2. Comparing non-exposed 
control cells to combined exposure of ethanol and TNF-α, the strongest impact on 
intracellular metabolites was observed for PEth 16:0_18:1, TG 12:0_18:2_18:2 and O-
adipoylcarnitine, which were among the most upregulated. Taurine and glutathione 
were among the most downregulated. Extracellularly, a strong upregulation was 
observed for ethylated phosphorylcholine. 
FAHFA-TGs were reported for the first time in human hepatocytes. The decrease of 
FAHFA-TGs during TNF-α co-exposure could be explained by a release of FAHFAs by 
lipolytic enzymes to exert their anti-inflammatory properties. Polyunsaturated PCs, for 
which upregulation was observed after prolonged ethanol exposure, were upregulated 
twice as fast due to co-exposure to TNF-α. Downregulation of SAM showed to play an 
important role in ethanol-induced hepatotoxicity as its downregulation had multiple 
effects on for example biosynthesis of PC, MTA and GSH. Metabolic finger- and 
footprinting of LPCs highlighted a potential distinctive hepatic LPC metabolism in NASH 
versus ASH. As observed during our previous study exposing HepaRG cells to ethanol, 
ethylated phosphorylcholine was found both intra- and extracellularly. This latter 
metabolite was considered as a new biomarker of ethanol exposure based on its 
absence in control samples and its structure, which could be generated from a 
combination of ethanol and phosphorylcholine, the hydrolysis product of 
sphingomyelins. 
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8.6. Data availability  
Raw datafiles are available through the MassIVE repository 
(https://massive.ucsd.edu/ProteoSAFe/) with the data set identifier MSV000090773. 
 

8.7. Supplementary information  
8.7.1. Data processing 
Median relative standard deviation (mRSD) of the intensity of LC-MS features for each 
analytical platform and sample group of the intracellular and extracellular HepaRG 
fractions are given in Table SI-8.1 and SI-8.2. mRSD values were calculated after 
deisotoping and blank subtraction. 
 
Table SI-8.1 Median relative standard deviation (mRSD) of the intensity of LC-MS features of the 
intracellular HepaRG fraction for each sample group and analytical platform. B1: Batch 1. B2: 
Batch 2. LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 QC Control Ethanol Ethanol + TNF-α 

B1-LIP+ 9.8 14.0 12.8 18.8 
B2-LIP+ 11.6 13.4 14.7 17.2 
B1-LIP- 11.3 19.5 14.4 25.6 
B2-LIP- 14.3 19.2 17.5 22.9 
B1-MET+ 17.1 25.2 26.6 30.2 
B2-MET+ 12.2 18.8 17.7 26.6 
B1-MET- 16.5 18.5 19.2 23.8 
B2-MET- 24.3 32.7 27.1 31.6 

 
Table SI-8.2 Median relative standard deviation (mRSD) of the intensity of LC-MS features of the 
extracellular HepaRG fraction for each sample group and analytical platform. B1: Batch 1. B2: 
Batch 2. LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 QC Control Ethanol Ethanol + TNF-α 

B1-LIP+ 11.7 18.3 20.1 22.6 
B2-LIP+ 19.2 26.8 28.1 28.6 
B1-LIP- 13.9 23.4 24.9 26.4 
B2-LIP- 16.7 26.2 24.7 28.7 
B1-MET+ 12.9 16.1 18.8 17.2 
B2-MET+ 10.8 14.7 14.9 15.2 
B1-MET- 15.6 17.8 17.2 17.2 
B2-MET- 19.9 23.2 22.5 22.6 
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Figure SI-8.1 Principal component analysis plots of the intracellular fraction of HepaRG cells of 
batch 1 after 24 h exposure to ethanol and TNF-α. ESI+ and ESI- refer to electrospray ionization 
in positive and negative modes, respectively. 

 
Figure SI-8.2 Principal component analysis plots of the intracellular fraction of HepaRG cells of 
batch 2 after 24 h exposure to ethanol and TNF-α. ESI+ and ESI- refer to electrospray ionization 
in positive and negative modes, respectively. 
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Figure SI-8.3 Principal component analysis plots of the extracellular fraction of HepaRG cells of 
batch 1 after 24 h exposure to ethanol and TNF-α. ESI+ and ESI- refer to electrospray ionization 
in positive and negative modes, respectively. 

 
Figure SI-8.4 Principal component analysis plots of the extracellular fraction of HepaRG cells of 
batch 2 after 24 h exposure to ethanol and TNF-α. ESI+ and ESI- refer to electrospray ionization 
in positive and negative modes, respectively. 
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Table SI-8.3-SI-8.6 show the evaluation parameters of the multivariate statistical models 
for intracellular and extracellular fractions after exposure to ethanol and/or TNF-α. R², 
Q², R²PERM and Q²PERM (calculated after 1000 random permutations) were selected 
for evaluation of the PLS-DA model, while the area under the curve (AUC) was selected 
for evaluation of the random forest classification model. 

Table SI-8.3 Evaluation parameters of multivariate statistical models for the intracellular fraction 
comparing exposure to ethanol (IC10) and TNF-α to unexposed controls. B1: Batch 1. B2: Batch 2. 
LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 R² Q² R²PERM Q²PERM AUC 

B1-LIP+ 1.00 0.98 0.00 0.00 1.00 
B2-LIP+ 1.00 0.98 0.00 0.00 1.00 
B1-LIP- 0.99 0.94 0.00 0.00 1.00 
B2-LIP- 1.00 0.97 0.00 0.00 1.00 
B1-MET+ 0.99 0.93 0.00 0.00 1.00 
B2-MET+ 0.99 0.94 0.00 0.00 1.00 
B1-MET- 0.99 0.95 0.00 0.00 1.00 
B2-MET- 1.00 0.92 0.00 0.00 1.00 

 
Table SI-8.4 Evaluation parameters of multivariate statistical models for the extracellular fraction 
comparing exposure to ethanol (IC10) and TNF-α to unexposed controls. B1: Batch 1. B2: Batch 2. 
LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 R² Q² R²PERM Q²PERM AUC 

B1-LIP+ 0.98 0.96 0.00 0.00 1.00 
B2-LIP+ 0.99 0.97 0.00 0.00 1.00 
B1-LIP- 1.00 0.97 0.00 0.00 1.00 
B2-LIP- 0.98 0.97 0.00 0.00 1.00 
B1-MET+ 0.99 0.98 0.00 0.00 1.00 
B2-MET+ 1.00 0.99 0.00 0.00 1.00 
B1-MET- 0.98 0.84 0.00 0.00 1.00 
B2-MET- 0.95 0.90 0.00 0.00 1.00 
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Table SI-8.5 Evaluation parameters of multivariate statistical models for the intracellular fraction 
comparing exposure to ethanol (IC10) and TNF-α to exposure to solely ethanol (IC10). B1: Batch 1. 
B2: Batch 2. LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 R² Q² R²PERM Q²PERM AUC 

B1-LIP+ 0.99 0.78 0.00 0.00 1.00 
B2-LIP+ 0.99 0.78 0.00 0.00 1.00 
B1-LIP- 0.97 0.89 0.02 0.00 1.00 
B2-LIP- 0.99 0.86 0.00 0.00 1.00 
B1-MET+ 0.99 0.86 0.01 0.00 1.00 
B2-MET+ 0.97 0.82 0.00 0.00 1.00 
B1-MET- 0.99 0.88 0.00 0.00 1.00 
B2-MET- 0.71 0.49 0.03 0.01 0.98 

 
Table SI-8.6 Evaluation parameters of multivariate statistical models for the extracellular fraction 
comparing exposure to ethanol (IC10) and TNF-α to exposure to solely ethanol (IC10). B1: Batch 1. 
B2: Batch 2. LIP+: Lipidomics in positive electrospray ionization mode. LIP-: Lipidomics in negative 
electrospray ionization mode. MET+: Metabolomics in positive electrospray ionization mode. 
MET-: Metabolomics in negative electrospray ionization mode. 
 

 R² Q² R²PERM Q²PERM AUC 

B1-LIP+ 1.00 0.93 0.00 0.00 1.00 
B2-LIP+ 0.97 0.84 0.00 0.00 1.00 
B1-LIP- 0.97 0.84 0.01 0.00 1.00 
B2-LIP- 1.00 0.95 0.01 0.00 1.00 
B1-MET+ 1.00 0.94 0.00 0.00 0.99 
B2-MET+ 1.00 0.97 0.00 0.00 1.00 
B1-MET- 0.99 0.78 0.16 0.01 0.89 
B2-MET- 0.99 0.65 0.13 0.01 0.99 

 
8.7.2. Annotated metabolites 
8.7.2.1. Suspect screening of HepaRG cells exposed to ethanol with and without co-
exposure to TNF-α 
Information concerning annotated metabolites originating from the suspect screening 
of HepaRG cells exposed to ethanol with and without co-exposure to TNF-α can be 
found in Table SI-8.7 and Table SI-8.8 of the electronic supplementary information 1 (SI-
1) of chapter 8, which is available on the link below.  
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
In these SI tables, annotated metabolites are listed together with their metabolic class, 
formula, ionization species, m/z, RT, DTCCSN2, annotation level, mass error, CCS error and 
fold change direction comparing (i) ethanol exposure versus negative controls, (ii) 
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ethanol + TNF-α exposure versus negative controls, and (iii) ethanol + TNF-α exposure 
versus solely ethanol exposure.  
 
8.7.2.2. Metabolic alterations resolved by untargeted analyses in HepaRG cells 
exposed to ethanol and TNF-α compared to unexposed controls 
Information concerning annotated metabolites originating from the untargeted 
analyses comparing HepaRG cells exposed to ethanol and TNF-α with unexposed 
controls can be found in Table SI-8.9 and Table SI-8.10 of the electronic supplementary 
information 1 (SI-1) of chapter 8, which is available on the link below. 
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
 
8.7.2.3. Metabolic alterations resolved by untargeted analyses in HepaRG cells 
exposed to ethanol and TNF-α compared to solely ethanol 
Information concerning annotated metabolites originating from the untargeted 
analyses comparing HepaRG cells exposed to ethanol and TNF-α with cells exposed to 
solely ethanol can be found in Table SI-8.11 and Table SI-8.12 of the electronic 
supplementary information 1 (SI-1) of chapter 8, which is available on the link below. 
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1 
In addition, in Figure SI-8.5 and Figure SI-8.6, heatmaps were used to represent the 
metabolic alterations in the intracellular and extracellular fractions, respectively. 
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Figure SI-8.5 Intracellular untargeted metabolomics to elucidate the effect of co-exposure to 
TNF-α in ethanol exposed HepaRG cells. A Sankey diagram combined with heatmaps was used 
to show the effect of combined ethanol and TNF-α exposure vs solely ethanol exposure on the 
intracellular metabolome of HepaRG cells. Metabolites in the polar fraction of the samples are 
indicated by a blue-purple Sankey diagram, while a green Sankey diagram represents 
metabolites originating from the apolar fraction. T/E: Ethanol (IC10) + TNF-α vs ethanol (IC10) after 
24 h of exposure. FC: Fold change. 
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Figure SI-8.6 Extracellular untargeted metabolomics to elucidate the effect of co-exposure to 
TNF-α in ethanol exposed HepaRG cells. A Sankey diagram combined with heatmaps was used 
to show the effect of combined ethanol and TNF-α exposure vs solely ethanol exposure on the 
extracellular metabolome of HepaRG cells. Metabolites in the polar fraction of the samples are 
indicated by a blue-purple Sankey diagram, while a green Sankey diagram represents 
metabolites originating from the apolar fraction. T/E: Ethanol (IC10) + TNF-α vs ethanol (IC10) after 
24 h of exposure. T/B: Ethanol (IC10) + TNF-α vs blank media after 24 h. E/B: Ethanol (IC10) vs 
blank media after 24 h. FC: Fold change.  
 
8.7.3. Software and libraries used to annotate metabolites 
A supplementary spreadsheet containing information on the software and libraries used 
per annotated metabolite can be consulted in electronic supplementary information 2 
(SI-2) of chapter 8, which is available on the link below. 
https://www.dropbox.com/sh/bvxln6vaf00q3hk/AABt5gt5XbDgsROqKY4w7ZnIa?dl=1
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8.7.4. MS/MS spectra of triglyceride estolides  

 
Figure SI-8.7 MS/MS spectrum of TG 16:0_18:1_18:1_O_(FA 18:1) at 20eV after maximum intensity normalization. The spectrum was measured in 
the intracellular apolar fraction of HepaRG cells (ESI(+)). The spectrum was derived from two different species, namely TG 16:0_18:1_18:1;O(FA 18:1) 
and TG 18:1_18:1_16:0;O(FA 18:1). 
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Figure SI-8.8 MS/MS spectrum of TG 18:1/18:1/18:1;O(FA 18:1) at 20eV after maximum intensity normalization. The spectrum was measured in the 
intracellular apolar fraction of HepaRG cells (ESI(+)).
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CHAPTER 9: 
GENERAL DISCUSSION 
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9.1. Analytical method development 
In this PhD thesis, four untargeted analytical LC-QTOF-MS/MS platforms were 
developed. For polar metabolites, HILIC-based methods were used in ESI (+) and ESI (-), 
while RPLC was used in both ionization modes for lipids. As discussed in chapter 3, HILIC 
columns have the potential to retain and separate polar metabolites that show no 
retention or co-elute in RPLC. The combination of both HILIC and RPLC is a 
comprehensive strategy for untargeted metabolomics, providing a broad metabolite 
coverage. Unlike available method validation guidelines for targeted metabolomics, 
such guidelines are not fully developed for the untargeted approach, which aims at 
generation of hypotheses through a global unbiased analysis of all small-molecule 
metabolites present within a biological system, under a given set of conditions (Naz et 
al., 2014). For this latter reason, a predefined set of analytical standards of metabolites 
was selected for method optimization (80 polar metabolites and 50 lipids), which 
showed high coverage of metabolic pathways in addition to diversity in polarity, m/z 
and structure. After method optimization using standards, biological samples were 
analyzed to determine the precision of the methods, in addition to the number of 
detectable features and annotated metabolites. 
For polar metabolites, six HILIC columns and one RPLC column were selected for a 
screening experiment using generic methods. Based on metabolite coverage, peak 
shape, S/N ratio and retention factor, generic methods were optimized in terms of 
mobile phase composition (solvents, pH, modifiers), temperature, gradient and flow 
rate. Separate analytical methods were optimized in ESI (+) and ESI (-) mode, as 
combination of these ionization modes benefits analysis of acidic and basic functional 
groups (Banerjee & Mazumdar, 2012). During column screening, the advantage of HILIC 
over RPLC to retain polar metabolites became clear. In RPLC, short retention times were 
observed with a substantial degree of co-elution between 1.5-4 minutes and elution 
close to the void time (34% showed t0 ≤ RT ≤ 1.1 t0 in ESI (-) mode).  
For the HILIC methods, no analytical standards eluted close to the void time. The better 
separation capacity for polar metabolites of HILIC compared to RPLC outweigh 
drawbacks such as longer equilibration times and lower precision of retention times. 
However, these latter disadvantages highlight the importance of implementing 
appropriate QA/QC procedures to ensure reliable data when using HILIC-MS methods. 
The final selected columns in ESI (+) and ESI (-) were both zwitterionic HILIC columns. 
Their stationary phases carry both positive and negative charges, making these columns 
highly versatile for retention of a wide range of polar metabolites. Using the two final 
optimized methods, biological samples were analyzed and the precision of the datasets 
was defined by the mRSD of the feature intensity in QC pooled samples. For each 
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dataset, the mRSD value was below 30%, which is a threshold often used to define a 
high-quality dataset for untargeted analysis and which reflects a good method stability 
over runs with different matrices (Cuykx, Negreira, et al., 2017; Naz et al., 2014). 
To analyze lipids, three RPLC columns were subjected to a screening experiment 
(chapter 4). Although HILIC-based methods can be useful for lipidomics applications, 
separation of lipids is mostly limited to differences in polarity of the lipid head groups 
leading to co-elution of all lipids of a specific class (A. Li et al., 2020). This co-elution can 
cause ion suppression, favoring detection of high abundant lipid species over low 
abundant ones (Lange & Fedorova, 2020). In addition, MS/MS deconvolution to 
facilitate annotation at a species level is impaired. In RPLC, lipids are separated based 
on chain length and degree of unsaturation of fatty acyl chains (Lange & Fedorova, 2020; 
A. Li et al., 2020). The advantage of RPLC-based analysis is that lipids can be annotated 
more easily at a species level, enabling to showcase trends of up- or downregulation of 
lipids based on the size of their side chain and/or level of unsaturation. In addition, it 
provides a higher resolution separation than HILIC, with narrower peaks and a greater 
mass loading capacity (Plumb et al., 2022). For lipidomics analysis, the LC method 
optimization strategy was the same as for polar metabolites in chapter 3. The ACQUITY 
BEH C18 column was selected in both ESI (+) and ESI (-) modes. The optimized mobile 
phase was the same for both modes, with exception of the addition of 0.1% (v/v) 
CH3COOH to the aqueous fraction for ESI (+) mode. Combining both ionization polarities, 
all lipid standards could be detected with an excellent peak shape (FWHM < 0.2, tailing 
factor < 2 and > 0.8, and no elution close to t0) in addition to separation of sn-positional 
isomers. However, as RPLC-HRMS and MS/MS cannot separate all lipid isomers, DTIM 
was added as an additional dimension of separation to increase peak capacity (Causon 
& Hann, 2015; Kyle et al., 2016). In addition, DTIM provides CCS values as an additional 
molecular descriptor, to further increase annotation confidence (Figure 9.1) (Celma et 
al., 2020; Pičmanová et al., 2022).  
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Figure 9.1 Integration of multi-dimensional information to support metabolite annotation in IM-
HRMS-based lipidomics (Zhiwei Zhou et al., 2019). 

CCS values can also be used as a class annotation filter (Qian Wu et al., 2020). When 
plotting CCS values in function of m/z values, metabolites within the same class will 
follow a trendline as their similarity in the chemical space is reflected in their ion 
mobility behavior. A major challenge of DTIM is an impairment of sensitivity as a result 
of reduced duty cycles (a continuous ionization source is coupled with the pulsed nature 
of IMS). In chapter 4, an in-depth sensitivity optimization of IMS was performed by 
evaluating the drift tube and rear funnel voltages with a chemometrics approach and 
by increasing duty cycles through usage of Hadamard multiplexing and manipulation of 
trap filling/release events, in the scope of finding a balance between sensitivity and 
detector saturation. Higher trap filling times resulted in higher signal intensities in single 
pulse mode, while no significant differences were detected in multiplexing mode. The 
tested range of trap filling times might be too small on the theoretical duty cycle in 
multiplexing mode to show a significant effect. When comparing the S/N ratio between 
single pulse and multiplexed mode, most lipids showed higher S/N in single pulse mode. 
This finding is inconsistent with a sensitivity gain factor of 2-8 for metabolites in 
multiplexing mode (Baker et al., 2014; Causon et al., 2019; Reinecke et al., 2019). 
Important to mention is that this sensitivity gain was observed for small polar 
metabolites with a m/z value below 250 and multiplexing techniques have not been 
fully explored for lipidomics applications. In this study, no trend between S/N and m/z 
value of lipids or lipid category could be observed. However, multiplexed mode reduced 
detector saturation which improves the dynamic linear range and mass accuracy.  
 

9.2. Building metabolite libraries 
Metabolite annotation remains a bottleneck in metabolomics, due to limited availability 
of high-quality MS/MS spectra in public databases and limited accuracy of in silico 
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fragmentation as metabolites show high structural diversity and complex fragmentation 
patterns (Ivanisevic & Want, 2019; Scheubert et al., 2013). 
In chapter 5, a multidimensional library was built using RMassBank. MS/MS 
fragmentation spectra, RT and CCS values of 100 metabolites were acquired and used 
to build a metabolite library. In addition to the construction of this in-house library, 
MS/MS spectra and RT values were acquired for 653 polar metabolite standards. Raw 
analytical data and metadata of these acquisitions were shared with the mFam 
Consortium (Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany, 
https://github.com/ipb-halle/mFam-Classifier).  This consortium is a collaboration of 40 
international research groups and the final goal is the building and sharing of a large 
high-resolution MS/MS library for metabolites as well as using these spectra as training 
data to improve the prediction quality of MS/MS spectra. For processing of the data, 
IPB uses MS-DIAL and in-house scripts to generate MassBank and msp files. An example 
of one of the MS/MS spectra can be seen in Figure 9.2. All mass spectral data processed 
by the mFam Consortium were shared with its contributors.  
 

 
Figure 9.2 MS/MS spectrum of carnosine [M+H]+ at 10 eV. The MS/MS spectrum was acquired 
by the Toxicological Centre of the University of Antwerp and processed by the mFam Consortium 
(IPB & UA, 2023).  
 
During data acquisition of metabolite standards, MS/MS and DTIM data were acquired 
for each standard separately using FIA. DTIM-MS and MS/MS runs were performed 
separately as DTIM decreases sensitivity and is incompatible with DDA, which generally 
results in cleaner MS/MS spectra (da Silva, Iturrospe, Heyrman, et al., 2021). FIA was 
preferred over LC-MS/MS and LC-DTIM-MS acquisitions as these latter two would 
drastically increase the acquisition time. In addition to FIA, standard mixtures were 
injected using LC-MS to acquire RT information. Isomers were injected in separate 
mixtures to avoid misinterpretations. Other QA/QC strategies included usage of system 
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suitability samples, triplicate injections for RT and CCS measurements to enable 
calculation of the average and SD, usage of multiple collision energies for MS/MS mode, 
extensive reporting of metadata, manual control of pressure profiles, isotopic pattern, 
S/N, peak shape, MS/MS spectra, RT values, CCS values, and presence of multiple gas-
phase conformations during DTIM. 
Generation of in-house mass spectral libraries facilitates high confidence during 
metabolite annotation (Schymanski et al., 2014). Manual evaluation of MS/MS spectra 
and observing trends in RT and DTIM behavior helped in improving personal skills useful 
in future metabolite annotations.  
During RMassBank processing, large batches of MS/MS data were used to improve 
recalibration. During MS/MS recalibration, MS1 datapoints of all spectra are used to 
calculate mass errors and to generate an MS/MS calibration curve to correct mass errors 
of all spectra (Stravs et al., 2013). Recalibration can correct for systematic deviations in 
MS/MS spectra, which otherwise would impede the performance of database searches 
and comparability with other HRMS instruments. Following recalibration, denoising was 
performed by removing MS/MS fragments when no subformulas could be generated. 
Meringer et al. showed that MS/MS fragments without the possibility to assign a 
subformula are an indication of instrument noise or interfering peaks (2011). A 
limitation of the library built in chapter 4 is that only single MS/MS spectra were 
acquired per collision energy. Multiple acquisitions per collision energy would increase 
acquisition time, but also facilitate multiplicity filtering as a second denoising step. 
During this process, peaks are only retained when they have at least one possible 
formula and occur in at least two spectra from the same metabolite (Stravs et al., 2013). 
Denoising using fragment subformulas and the possibility to perform subsequent 
multiplicity filtering are alternatives to denoising using absolute or relative intensity cut-
offs, which are commonly used for removal of random noise. However, usage of such 
cut-offs is at risk of removing fragment peaks originating from the actual precursor. 
In order to evaluate MS/MS spectra processing, special attention was given to rule-
based fragmentation, multiple ionization species, in-source fragmentation (ISF), and 
radical ions. Multiple ionization species for one metabolite can provide different MS/MS 
fragmentation and the resulting spectra can be complementary for structure 
elucidation. ISF is important to recognize as e.g., PGE1 can generate [M-H-H2O]- in the 
source, which has a very similar fragmentation pattern compared to PGA1 (R. C. Murphy 
et al., 2005). 
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9.3. Experimental design to study ethanol-induced hepatotoxicity 
To study ethanol-induced hepatotoxicity in vitro using untargeted metabolomics, 
HepaRG cells were used. These cells were chosen over primary human hepatocytes as 
the latter are difficult to standardize, have limited in vitro stability and unpredictable 
availability (Guillouzo et al., 2007; Zeilinger et al., 2016). Liver cell lines on the other 
hand, show good availability, high proliferation activity and stable metabolic 
performance (Zeilinger et al., 2016), however, mostly at a lower level than in vivo as 
many have lost major liver-like functions (Tascher et al., 2019). For example, HepG2 cells 
show loss of crucial CYP enzymes (Zeilinger et al., 2016). On the other hand, HepaRG 
cells maintain expression of most liver-specific functions, including CYP activity and bile 
acid synthesis, and are capable of differentiating towards hepatocyte-like cells and 
biliary-like cells, mimicking the in vivo situation (Guillouzo et al., 2007; Marion et al., 
2010). Within hepatoma cell lines, the HepaRG cell line shows a phenotype most close 
to that of the in vivo organ and is well accepted to study disease-related mechanisms 
(Guguen-Guillouzo & Guillouzo, 2010; McGill et al., 2011; Tascher et al., 2019).  
In addition, HepaRG cells are suitable to explore ethanol biotransformation as they 
express enzymes involved in the oxidative biotransformation of ethanol, such as 
CYP2E1, ADH and ALDH (Hugbart et al., 2020). Hugbart et al. exposed HepaRG cells to 
25 and 50 mM of ethanol for 8-72 h and studied the non-oxidative biotransformation of 
ethanol. Exposure led to a significant induction of CYP2E1 mRNA and a dose- and time-
dependent production of ethylglucuronide (EtG) and ethylsulfate (EtS) (2020). 
For cellular exposure, ethanol was used at its sub-cytotoxic IC10 concentration, as higher 
concentrations such as IC50 have such a strong impact that only alterations to general 
toxicity can be observed, impeding mechanistic fingerprinting (Cuykx, Rodrigues, et al., 
2018). As combination of different exposure concentrations can be useful to investigate 
trends of toxicity markers, HepaRG cells were exposed to ethanol both at IC10 and 1/10 
of the IC10 concentrations. A second and lower concentration is often applied to 
investigate metabolic alterations before any (substantial) cell death occurs (Cuykx, 
Rodrigues, et al., 2018). To be able to calculate the IC10 concentration of ethanol, a NRU 
assay was used, which is based on lysosomal storage of a cationic dye (Ates et al., 2017; 
S. Z. Zhang et al., 1990). This cell viability assay was chosen over the more commonly 
used MTT assay or assays using water soluble tetrazolium salts (e.g., WST-1) as these 
assays are dependent on the mitochondrial function of the cells under investigation 
(Kamiloglu et al., 2020) and previous research showed that hepatic mitochondria are an 
important target for ethanol-induced tissue injury (Das et al., 2012). Indeed, several 
studies in both animal and human models have demonstrated that ethanol intake or 
exposure alters mitochondrial morphology and function by causing, among others, 
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impairment of mitochondrial biogenesis, mitochondrial DNA damage, and oxidative 
stress (Abdallah & Singal, 2020; Das et al., 2012; Mansouri et al., 1999; Singal et al., 
2011). 
In chapter 7, HepaRG cells were exposed to ethanol during a time period of 24 h and 48 
h. Usage of different exposure times enables investigation of time-related differences 
in metabolite levels. Within in vitro hepatotoxicity analyses, multiple timepoint 
investigations with a final endpoint of 24 h or 48 h are often used (Balcke et al., 2011; 
Kalkhof et al., 2015; Knockaert et al., 2012; X. Li et al., 2017; Zhonghuang Li et al., 2015; 
Meissen et al., 2015; Minsart et al., 2020). As longer exposure times could result in more 
pronounced differences and as differentiated HepaRG cells show long-term stability 
(i.e., many liver-specific functions such as CYP activity and membrane transporters 
remain relatively stable for up to four weeks), the NRU assay was conducted for 168 h 
of ethanol exposure (in addition to 24 h and 48 h). Despite several NRU assays with 
different concentration ranges and renewal of ethanol-containing media every 24 h, the 
results of these NRU assays were rejected as too much variability in cell viability made 
ICx calculations unreliable. The failing of these latter experiments could be due to loss 
of long-term stability due to ethanol-induced cellular changes and/or difficulties related 
to the volatile nature of ethanol. As a result, only two exposure times (i.e., 24 h and 48 
h) were retained. In chapter 8, cells were exposed to both ethanol and TNF-α in order 
to investigate the effect of this inflammation inducer, which is considered to be the 
most important inflammatory cytokine in the progression of ALD (Kawaratani et al., 
2013; Nagy, 2015; Seo & Jeong, 2016; Yin et al., 1999). During these experiments, only 
an exposure time of 24 h was used as the differences in metabolic alteration between 
24 h and 48 h of ethanol exposure (chapter 7) were rather small.  
Per sample group (i.e., exposure and control), 6 to 7 replicates were used. As the growth 
of cells in culture can be carefully controlled, a sample size of three to five per group 
may already give useful data (Barnes et al., 2016a). The majority of experiments report 
no more than 6 replicates per group and although 3 replicates is considered as the 
minimum, ≥ 5 replicates are recommended for reliable in vitro metabolomics 
applications by the metabolomics standards initiative (MSI) (Martano et al., 2014; 
Sumner et al., 2007). These guidelines were proposed as sample size calculation remains 
a difficult topic in untargeted metabolomics (Ivanisevic & Want, 2019). When solely 
univariate statistics are used to select relevant features, sample size can be calculated 
using power analysis, which requires the estimation of population means, standard 
deviations and effect sizes. As metabolomics generally provides high-dimensional data, 
average power is used, the significance level needs to take multiple testing into account 
and both effect sizes and variances take multiple values. Unfortunately, this power 
calculation can only be used post-hoc and for univariate statistical analysis (Vinaixa et 
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al., 2012). Power calculation was not used in this thesis as omics data are multivariate 
in nature (Ivanisevic & Want, 2019) and multivariate statistical analysis was needed in 
order to provide mechanistic information on ethanol-induced hepatotoxicity. 
Univariate statistical analysis was solely used as an additional tool to select relevant 
features that could escape the multivariate selection of relevant features. The ideal 
sample size will depend on the intrinsic variation in the biological samples as well as the 
magnitude of the observed metabolic perturbations (Gertsman & Barshop, 2018). One 
of the advantages of using cell lines is the low biological variation compared to animal 
models and human subjects, which are prone to inter-individual variation and 
confounding factors, such as age, sex, overall health status, and varying environmental 
exposures (Hounoum et al., 2016). The low biological variation of cell lines decreases 
the number of replicates needed to observe important changes in the cellular profile 
(Hounoum et al., 2016).  
As metabolite changes are typically unknown and may be numerous, data usually shows 
high dimensionality and a large degree of correlation between variables, a pilot study 
can be used to evaluate sample size requirements (Ivanisevic & Want, 2019). For 
example, differences in RSD calculated for feature intensities in pooled QC samples 
compared to those in biological samples can be evaluated to ensure the essential 
separation between technical and biological variance (Kuhring et al., 2020). The degree 
of sample group separation in PCA plots can give an indication on within-group and 
between-group variability. 
Another important aspect in the experimental design was randomization. Cell samples 
were randomized prior to exposure and sample collection, during sample preparation 
and instrumental injection. These randomization steps were applied to minimize 
generation of non-biological variance (Barnes et al., 2016a). 
As mentioned in chapter 6, sample preparation of HepaRG extracts was based on the 
optimized in-house method of Cuykx et al. (Cuykx, Mortelé, et al., 2017). Chamber slides 
were used for cell cultivation instead of well plates, as these slides facilitate washing 
after cultivation and enable a higher extraction efficiency (Cuykx, Mortelé, et al., 2017). 
In order to increase metabolite coverage, sample extracts were fractionated in a polar 
and apolar fraction, which were analyzed with separate analytical platforms. As these 
analytical platforms used different instrumentation, data for polar and apolar fractions 
could be acquired simultaneously, decreasing acquisition time.  
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9.4. Statistical interpretation 
As metabolomics analysis usually generates thousands of features for a single sample, 
data processing is of vital importance to extract useful information from this big data. 
Feature reduction was performed using:  
(i) a frequency filter; features needed to be present in ≥ 80% of an exposed or control 
sample group. A frequency filter makes sure that only features which are present in a 
minimum percentage of samples are selected for downstream analysis. This type of 
filtering is used to generate a consensus peak table and excludes features with a large 
number of missing values, which can be due to e.g., sample contaminants (Alonso et al., 
2015; X. Zhang et al., 2020). 
(ii) a filter based on intensity variation; feature intensity needed to have a RSD < 30% in 
at least one exposure group. RSD filters can be applied using QC pooled samples to 
exclude features with large intensity fluctuations due to analytical variation introduced 
during data acquisition (Godzien et al., 2015). However, RSD filters can also be applied 
based on the intensity fluctuations within biological sample groups, to remove the most 
variable (i.e., irreproducible) signals between replicates (i.e., due to either technical or 
biological variability or a combination). This latter reduces the risk of false positives 
when comparing intensity differences between exposed and control samples (Jankevics, 
2013; Schiffman et al., 2019). 
(iii) a filter to remove background noise; maximal feature intensity of a biological 
sample/average intensity of the extraction blanks needed to be > 10 (for intracellular 
samples) or average intensity in an exposure group/ average intensity in the extraction 
blanks needed to show a fold change > 3 or < 0.33 (for extracellular samples).  Different 
blank subtraction thresholds were used for intracellular and extracellular samples, as 
extraction blanks for extracellular samples contained incubated cell medium.  
 
Prior to applying multivariate statistical methods to metabolomics data, pretreatment 
steps are needed. For instance, 5000-fold differences in concentration for different 
metabolites can be present in a metabolomics data set, while these differences are not 
proportional to the biological relevance of these metabolites. Data analysis methods are 
not able to make this distinction and pretreatment of data can correct for aspects that 
hinder the biological interpretation (van den Berg et al., 2006).  
Both univariate and multivariate statistics were applied because of their 
complementarity (Saccenti et al., 2014). Univariate approaches can rather easily be 
interpretated. Significance indicates a difference in average metabolite intensities 
between sample groups. However, when relevant information is available in a set of 
metabolites, this does not necessarily mean that each of the individual metabolites 
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isolated from the others also contains this relevant information (Saccenti et al., 2014). 
In contrary to univariate methods, multivariate methods make use of all variables 
simultaneously and take into account the relationship among variables (Dillon & 
Goldstein, 1984). In this thesis, PLS-DA was used as a statistical tool to select features 
based on their importance in sample class separation. However, as supervised 
multivariate approaches are prone to overfitting, cross-validation of the built PLS-DA 
models was performed, and the models were subjected to permutation tests (Ruiz-
Perez et al., 2020). In addition, to decrease the risk of false positively selecting a feature 
as relevant, a random forest binary classifier was used (Beirnaert, Cuykx, et al., 2019). 
Only features relevant according to both the PLS-DA and RF models were considered. 
Features selected by univariate and/or multivariate workflows were used to construct 
boxplots based on their intensities per sample group. Manual evaluation of these 
boxplots was used to further reduce potential false positives by exclusion (e.g., when 
variation in the exposed group was substantially large compared to the control group 
or when discrimination was due to outliers).  
 

9.5. Metabolomics to investigate early ALD in vitro 
Alcoholic liver disease (ALD) is a major problem with over 2 billion people consuming 
ethanol, 75 million diagnoses of ethanol-use disorders, and many people that remain 
undiagnosed  (Asrani et al., 2019; de Wit et al., 2010). A major issue of ALD is that 
symptoms tend to develop late in the course of disease progression and most patients 
are only diagnosed in advanced and irreversible stages (Seitz et al., 2018; Sheron et al., 
2013; Singal et al., 2018). Despite their high prevalence, ethanol-related disorders 
remain poorly identified and characterized (Seitz et al., 2018). At present, there are no 
early and specific biomarkers for the diagnosis of ALD and therapeutical options are 
lacking, especially in early stages. Corticosteroids can be used in severe alcoholic 
hepatitis, although data from clinical trials and meta-analyses of corticosteroids have 
been conflicting (Saberi et al., 2016). 
The importance of ethanol consumption in liver disease was recently highlighted by 
Staufer et al. (2022). In their publication, Staufer et al. included 184 patients suffering 
from either NALFD, AFLD or metabolic dysfunction-associated fatty liver disease 
(MAFLD) and questioned the possibility to distinguish NAFLD and AFLD by diagnostic 
means. By determining EtG in hair and urine, they classified 29% of presumed NAFLD 
patients and 25% of presumed MAFLD patients as moderate to excessive ethanol 
consumers (Staufer et al., 2022).  
In this thesis, the research goal of identifying small-molecule biomarkers to characterize 
early stages of alcoholic liver disease (AFLD and ASH) was set as the limited 
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understanding of ALD pathogenesis hampers development of novel therapies and 
diagnostic improvements (Hyun et al., 2021). By exposing HepaRG cells to ethanol and 
TNF-α, biochemical biomarkers could be identified at a mechanistic cellular level. Other 
arguments for using an in vitro set up are the difficult accessibility of ALD patient 
samples and the lack of reliable animal models for ALD that reflect human ALD. Using 
ethanol-exposed HepaRG cells, metabolic fingerprinting was performed to pinpoint 
intracellular alterations. In addition, metabolic footprinting was used to observe 
changes in secretion and consumption of metabolites. As untargeted metabolomics 
only provides a snapshot of the current composition of a cell, it does not show active 
metabolite fluxes. Nevertheless, this static image can provide hypothesis-generating 
data, help in expanding adverse outcome pathways (AOPs) and support or reject current 
mechanistic explanations.  
 
9.5.1. Simulation of AFLD in HepaRG cells 
In chapter 7, metabolomics and lipidomics analyses were performed on the intra- and 
extracellular fractions of ethanol-exposed HepaRG cells. These cells were exposed to 
ethanol at their IC10 and 1/10 of the IC10 concentration for 24 h and 48 h (i.e., with 
renewal of ethanol-containing media after 24 h). Based on relative differences in signal 
abundance between biological control samples and ethanol-exposed biological 
samples, the metabolic signature of ethanol exposure was elucidated. Although a list of 
metabolites can be sufficient for the distinguishment between control and exposed 
cells, this list was used for the mechanistic interpretation to offer additional value and 
to improve the confidence of the results. Dynamic changes of metabolites were 
unravelled in order to get a better understanding of early-stage indicators of AFLD. 
To the best of our knowledge, no AOPs are defined for ALD. However, 10 AOPs on 
hepatic steatosis as adverse outcome are under development in the AOP knowledge 
database (AOP-KB) (Gijbels & Vinken, 2017; Society for Advancement of AOPs, 2023). In 
addition, an AOP network on hepatic steatosis was proposed by Mellor et al. (2016) and 
Escher et al. (2022). AOPs provide a conceptual framework that links the molecular 
initiating event (MIE) to an adverse outcome through key events (KEs), based on 
organized toxicological knowledge, bridging the gap from chemistry to toxicological 
effect (Mellor et al., 2016). The AOP-KB database was introduced by the Organization 
for Economic Cooperation and Development together with the U.S. Environmental 
Protection Agency, the U.S. Army Engineer Research and Development Center, and the 
European Joint Research Center, in response to the increasing use of AOPs (Gijbels & 
Vinken, 2017). Each of the steatosis AOPs considers a different MIE, including 
modulation of nuclear receptors (e.g., constitutive androstane receptor, liver X 
receptor), suppression of transcription factors (e.g., nuclear erythroid 2-related factor), 
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and activation or inhibition of specific enzymes. All these MIEs trigger an array of effects, 
such as enhanced transcription of genes encoding mediators of lipid metabolism. As a 
result, de novo lipid synthesis is enhanced, lipid fluxes are changed,… Consequently, 
normal processes of triglyceride synthesis and elimination are impaired leading to their 
accumulation in hepatocytes. This hepatocellular lipid accumulation and its ability to 
provoke cytoplasm displacement, nucleus distortion, mitochondrial toxicity, and 
endoplasmic reticulum stress are characteristic for the fatty liver cell phenotype (Gijbels 
& Vinken, 2017).  
Eight out of ten publicly available AOPs in construction (Society for Advancement of 
AOPs, 2023) contain one or more KEs that were confirmed during HepaRG experiments, 
either by direct results or as part of hypothesis generation to discuss the observed 
results. These KEs included inhibition of mitochondrial β-oxidation (AOP 36, 57, 58, 60, 
61, 232, 318), fatty acid accumulation (AOP 36, 57, 58, 60), de novo fatty acid synthesis 
(AOP 34, 61, 58), triglyceride accumulation (AOP 34, 57, 58, 60, 61, 318), activation of 
SREBP-1c (AOP 34), and elevation of FAS (AOP 34, 58).  
As shown by these examples, metabolomics can provide important information 
concerning key events in AOPs, highlight affected pathways and provide further 
evidence for existing AOPs. As an untargeted approach was used, it can (i) reveal effects 
that were previously undetected (e.g., the alterations in peroxisomal β-oxidation as a 
result of inhibited mitochondrial β-oxidation), and (ii) confirm and/or clarify effects that 
were previously (in full or in part) published (e.g., increased catabolism of 
sphingomyelins, downregulation of phosphatidylcholines as a result of PEMT inhibition 
and impaired formation of S-adenosylmethionine, and increased consumption of 
lysophosphatidylcholines), which can, after further in-depth investigation, be used to 
expand existing AOPs.  
In summary, exposing HepaRG cells to ethanol increased di- and triglycerides, 
concordant with a steatotic image. Phosphatidylcholines decreased and could be used 
for di- and subsequent triglyceride synthesis, facilitating fat accumulation (Z. Wang et 
al., 2010). Intracellular phosphatidylethanolamines decreased, possibly due to reduced 
synthesis as its precursors (diglycerides and O-phosphoethanolamine) increased and 
diglycerides can fuel triglyceride synthesis. In addition, intracellular decrease could be 
explained by increased secretion into the extracellular environment.  
 
Several intracellular metabolic patterns could be related to changes in the extracellular 
environment, such as increased intracellular hydrolysis of sphingomyelins, leading to 
increased phosphorylcholine secretion. Carnitines showed alterations depending on the 
size of their carbon chain, which highlighted the interplay between β-oxidation in 
mitochondria and peroxisomes. The capacity of HepaRG cells to non-oxidatively 
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biotransform ethanol was previously explored by Hugbart et al, who measured EtG and 
EtS in ethanol-exposed HepaRG cells (Hugbart et al., 2020). During this thesis, it was 
observed that HepaRG cells are also capable of synthesizing PEth 16:0_18:1, which is 
formed in a reaction utilizing phosphatidylcholine 16:0_18:1 and ethanol.  
When comparing HepaRG exposure to ethanol at the IC10 concentration and at 1/10 of 
the IC10 concentration, a similar image was observed although less metabolic classes 
could be selected by the statistical workflow at the low concentration. In addition to 
fewer affected classes, fold changes were lower and affected classes were represented 
by a lower number of species. These results were concordant with the exploratory PCA 
plots that showed a higher resemblance in the metabolome of ethanol exposure at 1/10 
IC10 versus negative controls in comparison to exposure at IC10 versus negative controls. 
Ethanol exposure to either 24 h or 48 h showed a similar metabolic effect for most 
metabolic classes. However, for phosphatidylcholines time-related differences were 
observed. The general image showed a decrease of phosphatidylcholines in the 
intracellular fraction of HepaRGs after 24 h and 48 h of ethanol exposure. However, 
after 48 h, a slight increase of highly unsaturated phosphatidylcholines (≥ 5 double 
bonds) was observed. This might relate to the shift of saturated to polyunsaturated fatty 
acids (PUFAs) as observed in ethanol-fed rodents (Jeon & Carr, 2020).   
 
9.5.2. Simulation of ASH in HepaRG cells 
In chapter 8, follow-up experiments were performed exposing HepaRG cells to both 
ethanol and TNF-α in order to obtain an improved in vitro simulation of ASH. TNF-α is 
considered the most important inflammatory cytokine in the progression of ALD 
(Kawaratani et al., 2013; Nagy, 2015; Seo & Jeong, 2016; Yin et al., 1999) and 
significantly contributes to ethanol-induced liver damage by inducing inflammation, 
apoptosis and necrosis (Nagy, 2015; Rodriguez et al., 2004). Excessive consumption of 
ethanol increases gut-derived LPS in the portal circulation (Kawaratani et al., 2013; 
Nagy, 2015), which can activate Kupffer cells to secrete TNF-α for interaction with 
hepatocytes (Nagy, 2015; Seo & Jeong, 2016). In addition, ethanol consumption 
increases the susceptibility to TNF-α by increasing the levels of its receptors on 
hepatocytes (Rodriguez et al., 2004), and stimulates TNF-α expression in adipose tissue 
(Shim & Jeong, 2020). 
Untargeted metabolomics was used to compare the metabolic profile of HepaRG cells 
exposed to ethanol and TNF-α with (i) negative controls, and (ii) HepaRG cells exposed 
to solely ethanol. In addition, suspect screening was performed to compare fold change 
differences of previously elucidated metabolites after solely ethanol exposure (chapter 
7) versus combined exposure to ethanol and TNF-α.  
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There is only one AOP publicly available for steatohepatitis (AOP 213) (Society for 
Advancement of AOPs, 2023). This latter AOP was defined for NASH and is currently in 
construction. The MIE of this AOP is inhibition of β-oxidation. In chronological order, KEs 
include an increase in cytosolic fatty acids, increased steatosis, increased production of 
ROS, and increased oncotic necrosis.  
As seen during both suspect screening and untargeted analyses, the magnitude of 
intracellular upregulation of di- and triglyceride species increased during TNF-α co-
exposure, with an average factor of 1.7 and 2.0 compared to solely ethanol exposure, 
respectively. In addition, the number of distinctive triglyceride species increased 
significantly between solely ethanol exposure and combined exposure to ethanol and 
TNF-α, suggesting an important role of inflammation during steatosis progression. A 
possible explanation is the capability of TNF-α to induce de novo fatty acid synthesis 
(Popa et al., 2007). Of all triglyceride species, only FAHFA triglycerides were 
downregulated during exposure to ethanol and TNF-α compared to solely ethanol 
exposure. FAHFA triglycerides, which were previously unreported in human 
hepatocytes, can form a storage pool of FAHFAs (Tan et al., 2019). The decrease of 
FAHFA triglycerides during co-exposure of TNF-α could be explained by a release of 
FAHFAs by lipolytic enzymes in order for the FAHFAs to exert their anti-inflammatory 
properties. 
For (lyso)phosphatidylcholines, a further intracellular decrease was observed during 
TNF-α co-exposure, which could be explained by altered GNMT expression (Männistö 
et al., 2019). In the HepaRG model of AFLD and ASH, an intracellular decrease was 
observed for lysophosphatidylcholines, concordant with findings in NAFLD (Puri et al., 
2007). However, hepatic lysophosphatidylcholines in NASH are upregulated (Puri et al., 
2007), indicating a potential distinctive hepatic lysophosphatidylcholine metabolism in 
NASH versus ASH. In chapter 7, polyunsaturated phosphatidylcholines were 
upregulated after 48 h of ethanol exposure. The same effect was observed after 24 h 
when ethanol exposure was combined with TNF-α. These findings could be explained 
by increased production of PUFAs as seen after TNF-α infusion in rats (Raina et al., 
1995). These PUFAs can be incorporated in phosphatidylcholines through the CDP-
choline pathway (Jeon & Carr, 2020). Increased levels of PUFAs could also explain the 
trend of up- and downregulation of phosphatidylglycerols, which was dependent on the 
level of unsaturation. Next to phosphatidylcholines, phosphatidylethanolamines 
decreased further due to TNF-α co-exposure, concordant with increased secretion and 
intracellular increase of its precursors (diglycerides and O-phosphoethanolamine). 
Increased secretion of ornithine and phenylacetylglutamine, and downregulation of 
intracellular phenylacetylglutamine could indicate an impaired processing of nitrogen 
waste. Other findings indicated a decreased biotransformation capacity (intracellular 
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decrease of 5'-diphosphoglucuronic acid) and increased susceptibility for oxidative 
stress (intracellular decrease of glutathione).  
 
9.5.3. Ethylated phosphorylcholine: a potential new marker of ethanol consumption 
Ethylated phosphorylcholine (EtOChoP), a previously unreported metabolite, was 
suggested to be a new marker of ethanol exposure. EtOChoP was elucidated in chapter 
7 in HepaRG samples exposed to ethanol. Since no MS/MS library entry could be found 
for this latter metabolite, its fragmentation was matched using NIST (v.17) without 
accurate m/z matching, enabling fragmentation spectral matching with fragments of 
other metabolites with a higher m/z value (e.g., 1,2-dipalmitoyl-sn-glycero-O-ethyl-3-
phosphatidylcholine). In addition, the fragmentation spectra of EtOChoP were 
confirmed with in silico generated fragments using CFM-ID (v. 4.0) (F. Wang et al., 2021). 
Due to its absence in the negative control samples, the metabolite showed similar large 
fold changes to PEth 16:0_18:1. Interestingly, unlike PEth 16:0_18:1, ethylated 
phosphorylcholine was found both in intracellular and extracellular samples due to a 
high level of hepatic secretion. To increase confidence in the annotation of EtOChoP, 
the standard was synthesized by Dr. Vladimir N. Belov (Max Planck Institute, Göttingen, 
Germany). After analysis of this latter standard, an L1 level of confirmation could be 
assigned to the annotation (Schymanski et al., 2014). Targeted analyses (SI-7.7.5) were 
able to show the presence of EtOChoP in whole blood of heavy drinkers, while it 
remained absent in negative controls. Although (i) the used method needs further 
optimization (e.g., decrease of the lower limit of quantification) and validation, and (ii) 
additional samples should be analyzed (e.g., comparing social and heavy drinkers), the 
proof-of-concept of EtOChoP as a marker of ethanol consumption was delivered.  
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CHAPTER 10: 
CONCLUSIONS AND FUTURE PERSPECTIVES 
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10.1. Conclusions 
The first part of this thesis (i.e., major objective 1) focused on developing untargeted 
metabolomics and lipidomics platforms using LC-HRMS, and creating a 
multidimensional metabolite library workflow to confidently annotate features 
resulting from untargeted experiments. The developed platforms consisted of four 
complementary methods, two HILIC-based methods for polar metabolites, and two 
RPLC-based methods for lipids. For method optimization, a variety of analytical 
standards was used, which showed high coverage of metabolic pathways in addition to 
diversity in polarity, m/z and structure. Although untargeted metabolomics should be 
as unbiased as possible, the usage of analytical standards benefits the optimization of 
platforms. In addition, biological samples were used to evaluate the performance of the 
optimized methods. HILIC columns showed superiority over RPLC to retain polar 
metabolites. The mix-mode interaction mechanisms of two generations of HILIC 
columns were investigated and enabled successful retainment and separation of nearly 
100% of polar standards, covering key pathways of the polar human metabolome. For 
lipids, the ACQUITY UPLC BEH C18 column provided satisfactory results in terms of lipid 
coverage and its ability to separate critical pairs. DTIMS was hyphenated to LC-HRMS 
for lipid analysis as it can improve separation capacity and annotation confidence. 
Sensitivity of the LC-DTIMS-HRMS platform could be increased for lipidomics purposes 
by optimizing several parameters. The multidimensional metabolite library workflow 
helped to obtain in-depth knowledge of class-specific retention time ranges, ionization 
species, fragmentation mechanisms, and trends in IM space. Overall, the first part of 
this thesis provides valuable insights and tools for untargeted metabolomics and 
lipidomics research. 
The optimized analytical platforms allowed to cater to the second major objective: the 
investigation of AFLD and ASH in an in vitro model using the HepaRG liver cell line. 
Firstly, ethanol-induced hepatotoxicity in HepaRG cells was studied to generate 
pathophysiological hypotheses for AFLD. Combining the elucidation of the metabolic 
fingerprint and footprint of ethanol exposure facilitated the biological interpretation of 
results. Metabolic alterations showed only minor differences between 24 h and 48 h of 
ethanol exposure, with more upregulated triglycerides and higher fold changes of 
polyunsaturated phosphatidylcholines after 48 h of exposure. However, metabolic 
alterations were strongly affected by the concentration of ethanol. Many altered 
metabolites were consistent with a steatotic image as seen in previous research, such 
as lipid accumulation and depletion of S-adenosylmethionine. Further metabolic 
alterations included depletion of ceramides (d18:2), O-phosphoethanolamine and 
upregulation of octanoylcarnitine. In addition to the detection of high levels of 
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intracellular PEth 16:0_18:1, ethylated phosphorylcholine could be identified as a new 
marker of ethanol exposure. 
Follow-up experiments were performed whereby HepaRG cells were exposed to both 
ethanol and TNF-α in order to obtain an improved in vitro simulation of ASH. Compared 
to solely ethanol-exposed HepaRG cells, additional co-exposure to TNF-α resulted in a 
stronger lipid accumulation, indicating increased hepatotoxicity. The downregulation of 
FAHFA triglycerides seen during TNF-α co-exposure could be a compensating 
mechanism to counteract liver inflammation. Downregulation of S-adenosylmethionine 
showed to play an important role in ethanol-induced hepatotoxicity as its 
downregulation had multiple effects on for example biosynthesis of 
phosphatidylcholines, methylthioadenosine and glutathione. Metabolic finger- and 
footprinting of lysophosphatidylcholines highlighted a potential distinctive hepatic 
metabolism in NASH versus ASH. Overall, subjecting the HepaRG liver cell line to 
metabolomics analyses proved to be a valuable tool to obtain mechanistic insight in 
ethanol-induced hepatotoxicity. Usage of this tool facilitates future in vivo research by 
pinpointing interesting metabolites and pathways. 
 

10.2. Future perspectives 
10.2.1. Analytical perspectives 
As untargeted metabolomics aims to separate and detect as many metabolites as 
possible, additional analytical platforms could be considered to analyze samples. For 
example, GC-MS is a useful platform for untargeted metabolomics as it generates robust 
retention times and highly reproducible mass spectra (within and between 
instruments). For untargeted purposes, GC-HRMS shows a higher metabolic coverage 
and potential to elucidate unknowns compared to commonly used unit-mass resolution 
single-quadrupole GC-MS instruments (Stettin et al., 2020). Electron impact (EI) 
ionization, used in GC-MS, is a hard ionization technique that generates complex and 
rich fragmentation patterns which can be exploited to increase the specificity in mass 
spectral matching. Large transferable EI-mass spectral libraries are available for 
metabolite annotation (Fiehn, 2016; Lynch, 2017). A downside of GC-MS is that many 
metabolites require derivatization in order to increase volatility and thermal stability. 
The most common derivatization methods, such as trimethylsilylation, remove acidic 
protons from hydroxyl-, carboxyl-, amino- or thiol-groups, are performed under mild 
conditions and obtain high yields (Fiehn, 2016). However, during untargeted 
metabolomics there are important considerations such as different derivatization 
kinetics between metabolites (i.e., depending on the sample, different derivatization 
times can be necessary) and the absence of a derivatization method that leads to one 
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derivative type per metabolite for all compound classes (Papadimitropoulos et al., 
2018). The most widely used derivatization method in untargeted GC-MS metabolomics 
is a two-step procedure, to improve the range of metabolite classes. This latter method 
includes (i) methoximation of the ketone group-containing metabolites, and (ii) 
silylation of all metabolites, including the methoximes formed in the previous step, into 
their trimethylsilyl (TMS) derivatives (Papadimitropoulos et al., 2018). Although 
silylation would be sufficient for many metabolites, prior methoximation can be needed 
for specific classes such as sugars.  
GC-MS analysis is useful for robust analysis of, among others, organic acids, sugars, fatty 
acids, and sterols (Fiehn, 2016). GC-MS is considered the gold standard methodology 
for neutral cholesterol metabolites as neutral sterols are relatively resistant to 
electrospray ionization, causing low sensitivity during LC-MS (Griffiths et al., 2017; 
Honda et al., 2010). GC-MS is preferred over LC-MS for analysis of fatty acids as low-
energy (< 100 eV) CID conditions are typical to most commercial LC-MS instruments, 
which result in little to no fragmentation for many fatty acids. Unsaturated fatty acids 
can undergo fragmentation to some extent, but the abundances of these fragments are 
generally low and highly sensitive instruments and methods are needed to enable 
reliable detection (Bollinger et al., 2013; Koch et al., 2021; Thomas et al., 2014). A 
possible solution to improve diagnostic fragmentation of fatty acids in LC-MS is post-
column infusion of barium ions (Zehethofer et al., 2008) or derivatization (e.g., using 
pyrolidides or dimethyloxazolines). However, the harsh conditions used for many 
derivatization methods can result in unwanted oxidation, isomerization or degradation 
of some fatty acids (Bollinger et al., 2013).  
 
Two dimensional LC could be another analytical improvement. Ideally, the 2D column is 
able to separate all the unresolved analytes present in each fraction of the 1D effluent 
based on the differences in the selectivity of the two dimensions (Stoll & Carr, 2017). As 
shown in Figure 10.1, 2D-LC instrumentation can be used for (i) single heartcutting 2D-
LC (i.e., LC-LC; a single fraction of the 1D effluent is injected into the 2D column for 
further separation), (ii)  multiple heartcutting 2D-LC (i.e., mLC-LC; single fractions from 
several 1D peaks are transferred one at a time into the 2D column for further separation), 
and (iii) comprehensive 2D-LC (i.e., LCxLC; the complete effluent of the 1D column is 
transferred to the 2D column) (Sandra et al., 2017; Stoll & Carr, 2017). 
While (m)LC-LC is useful when analyzing a small number of target compounds in a 
complex matrix, LCxLC has potential to increase peak capacity in untargeted analysis 
(Navarro-Reig et al., 2017; Stoll & Carr, 2017). As LCxLC usually is achieved by collecting 
the 1D effluent in two loops which are alternatively transferred to the 2D column, fast 
2D separations (typically < 1 min) are needed to facilitate a high sampling frequency and 
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maintain the 1D separation (Sandra et al., 2017). To obtain orthogonal 2D-LC 
separations, different separation mechanisms should be used in the separate 
dimensions. For example, usage of HILICxRPLC, but also RPLCxRPLC with mobile phases 
at different pH values can be used to obtain complementarity of the two separation 
dimensions (Foster et al., 2022; Gilar et al., 2005).  
 

 
Figure 10.1 A) Different modes of two-dimensional liquid chromatography separation. Adapted 
from Pirok et al. (2019). B) Example of an LCxLC chromatogram (Zhu et al., 2020). 

A downside of LCxLC is that analytes separated in the 1D column get remixed prior to 
being sent to the 2D column, resulting in a loss of resolution of the 1D separation (Stoll 
& Carr, 2017). In addition, detection sensitivity is challenging in 2D-LC as the analyte 
zone eluted from the 1D columns gets further diluted during the 2D separation and the 
volume of 1D effluent that will be injected into the 2D column requires optimization (Stoll 
& Carr, 2017).  Two dimensional LC comes with many analytical and bioinformatical 
challenges, especially when coupled to MS and/or when combined with additional 
separation techniques such as DTIM. While algorithms for treating 1D chromatograms 
are well established after many years of developed and refinement, such algorithms for 
processing 2D chromatograms are much younger and will benefit from further 
development and refinement in e.g., peak-tracking algorithms and automated feature 
mining (Molenaar et al., 2021, 2022; Pirok et al., 2019; Stoll & Carr, 2017).  
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10.2.2. Biological perspectives 
10.2.2.1. Usage of multiomics 
In addition to metabolomics, other -omics techniques are needed to understand the 
flow of information that underlies ethanol-induced hepatotoxicity and to confirm or 
reject generated hypotheses. Hence, next to metabolomics, genomics, transcriptomics 
and proteomics can be used to build a multiomics platform to enable a comprehensive 
understanding of molecular changes contributing to cellular response and to connect 
genotype to phenotype (Hasin et al., 2017). In chapter 7 and 8, several hypotheses for 
metabolite alterations were based on alterations in enzymatic activity after exposure to 
ethanol and/or TNF-α. While the effect of ethanol and/or TNF-α on enzymatic activity 
is well studied for several enzymes (e.g., ethanol-induced inhibition of PEMT (Lieber et 
al., 1994) or DGAT2 (Z. Wang et al., 2010)), the influence on many others still needs to 
be evaluated. Interesting enzymes for this latter evaluation include, for example, PLA2, 
LYPLA1 and LPCAT involved in phosphatidylcholine metabolism, PCYT2 in the CDP-
ethanolamine pathway, GNMT involved in SAM metabolism, and mfn2 involved in 
metabolism of phosphatidylethanolamines and -cholines. 
 
10.2.2.2. Comparison of AFLD/ASH to NAFLD/NASH 
In addition to simulation of AFLD and ASH in HepaRG cells and elucidation of the 
metabolic fingerprint, similar experiments can be conducted simulating NALFD and 
NASH in order to elucidate potential discriminating biomarkers. For these latter 
experiments, either suspect screening can be performed on the NAFLD/NASH model to 
search for biomarkers elucidated in chapter 7 and 8 or an untargeted approach can be 
used to select discriminating markers between an AFLD/ASH and a NALFD/NASH model. 
Thomas Addison was the first to describe fatty liver in 1836 (Addison, 1836). His 
discovery was followed by several pathologists pinpointing similarities of liver histology 
seen in diabetic and morbidly obese individuals with those of alcoholics (Lonardo et al., 
2020). In 1980, Ludwig et al. introduced the “term non-alcoholic steatohepatitis” to 
describe the progressive form of fatty liver disease histologically resembling ASH though 
observed in patients who denied any ethanol abuse (Lonardo et al., 2020; Ludwig et al., 
1980). Schaffner and Thaler (1986) were the first to use the name “non-alcoholic fatty 
liver disease” in 1986 (Lonardo et al., 2020). The similarities in NALFD and AFLD were 
recently highlighted by Staufer et al. (2022), who classified nearly 30% of presumed 
NAFLD patients as moderate to excessive ethanol consumers by determination of EtG 
in hair and urine. However, histological differences between NAFLD/NASH and 
AFLD/NAFLD have been observed (Sakhuja, 2014). For example, fat infiltration of liver 
cells occurs generally at a greater degree in NAFLD/NASH compared to ALD, while 
inflammatory cell infiltration is more pronounced during ALD (Toshikuni et al., 2014). In 
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addition, there are several lesions of ALD that are not observed in NAFLD/NASH, 
including sclerosing hyaline necrosis (i.e., pericentral fibrosis), phlebosclerosis (i.e., 
fibrotic degeneration of the venous wall) and alcoholic foamy degeneration (i.e.,  
significant microvesicular, foamy-appearing steatosis) (Brunt, 2007; Sakhuja, 2014). On 
the other hand, there are several biopsies of fatty liver disease for which the pathologist 
cannot be sure of the true etiology of liver disease, and cases in which obesity, diabetes 
and ethanol are all likely contributing factors (Brunt, 2007). 
Despite the similar profile of NAFLD/NASH compared to AFLD/ASH, metabolomics offers 
the potential to elucidate discriminating biomarkers as the metabolic phenotype is a 
product of many interactions among a variety of factors. For example, NALFD could be 
induced in HepaRG cells by exposure to insulin and glucose, while NASH could be 
induced by additional exposure to oleic acid and palmitic acid in combination with pro-
inflammatory triggers such as TNF-α (Boeckmans, 2020). Although using only TNF-α as 
an inflammatory trigger is interesting from a fundamental perspective, additional 
inflammatory triggers can be used when relevant for the pathology of interest. For 
example, in ASH (and NASH), additional exposure to IL-1β could be explored. In ASH, 
LPS-induced TLR4 activation stimulates the production of IL-1β, in addition to TNF-α 
(Nagy, 2015; Tilg et al., 2016). IL-1β has pleiotropic effects including induction of 
steatosis, involvement in hepatocyte death, and increasing the activity of pro-
inflammatory monocyte chemoattractant protein-1 (MCP-1) in hepatocytes 
(Kawaratani et al., 2013; Nagy, 2015; Tilg et al., 2016).  
 
10.2.2.3. In vitro – in vivo correlation 
An important question is whether in vitro generated results using HepaRG cells are 
representative for the in vivo situation in humans. Kanebratt and Andersson (2008) 
showed that HepaRG cells are a valuable model for prediction of induction of drug-
metabolizing P450 enzymes in vivo in humans. While the HepaRG cell line is well 
accepted to study disease-related mechanisms (Guguen-Guillouzo & Guillouzo, 2010; 
McGill et al., 2011; Tascher et al., 2019), the in vitro – in vivo correlation for 
metabolomics applications remains unexplored. The number of publicly available 
studies investigating metabolomics in human (N)ALFD or (N)ASH is limited.  
For example, using “alcoholic fatty liver” and “metabolomics” or “lipidomics” as Mesh 
terms in PubMed generated 4 hits in human species. Changing “alcoholic fatty liver” to 
“non-alcoholic fatty liver disease” resulted in 164 hits. However, within the limited 
studies, consistency was observed with several HepaRG results listed in this thesis. A 
summary can be found in Table 10.1. For example, several studies report the 
accumulation of triglyceride species in liver biopsies from NAFLD and NASH patients 
(Gorden et al., 2015; Puri et al., 2007). Additionally, Puri et al. (2007) observed a 
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decrease of phosphatidylcholines, and an increase of diglyceride levels in the same liver 
biopsy samples. Concordant with the reduction of lysophosphatidylcholines in the 
extracellular fraction of ethanol-exposed HepaRG cells (i.e., due to increased 
consumption), Israelsen et al. (2021) observed a decrease of lysophosphatidylcholines 
in human hepatic venous blood after ethanol intoxication in healthy volunteers and ALD 
patients. Additionally, intracellular decreases of lysophosphatidylcholines, 
sphingomyelins and phosphatidylethanolamines were observed in NAFLD (Puri et al., 
2007). Sphingomyelins were found to be downregulated in the serum of heavy drinkers 
(Jaremek et al., 2013). Combined HepaRG exposure to ethanol and TNF-α resulted in a 
stronger upregulation of triglyceride species and the number of distinctive triglyceride 
species increased significantly between solely ethanol exposure and combined 
exposure to ethanol and TNF-α. These findings are consistent with increased hepatic 
triglyceride production in humans after TNF-α administration (Popa et al., 2007; 
Sherman et al., 1988). TNF-α co-exposure also decreased intracellular 
phosphatidylcholines stronger than solely ethanol exposure in HepaRG cells, in line with 
the findings of Männistö et al. (2019) who saw a decrease of hepatic 
phosphatidylcholines in simple steatosis, which decreased further during NASH in 
humans. Puri et al. (2007) also observed a decrease of hepatic phosphatidylcholines in 
NASH. However, the authors observed a slightly stronger decrease in NALFD biopsies 
compared to NASH biopsies. These latter inconsistencies could be due to small sample 
sizes and/or lack of proper experimental design for human metabolomics studies. 
Hernández-Alvarez et al. (2019) discovered downregulation of mfn2 in human liver 
during progression from steatosis to NASH. As mfn2 is a mitochondrial membrane 
protein involved in transport of phosphatidylserines necessary for mitochondrial 
production of phosphatidylethanolamines and subsequent conversion to -cholines, its 
downregulation could explain decrease of hepatic phosphatidylcholines and -
ethanolamines (Hernández-Alvarez et al., 2019; Ventura et al., 2022).  
As mentioned earlier, EtOChoP was identified in ethanol-exposed HepaRG cells as a 
marker of ethanol exposure. Confirmation of the presence of EtOChoP in whole blood 
samples of heavy drinkers showed additional proof for the relevance of HepaRG cells as 
a human model organism. Recently Thiele et al. (2023) compared the lipid profile of liver 
tissue and plasma samples of 315 ALD patients in different stadia. The authors 
confirmed increased di- and triglycerides in liver samples of AFLD and ASH, in addition 
to decreased phosphatidylcholines and -ethanolamines. Sphingomyelins showed a 
progressive depletion in hepatic inflammation, consistent with the stronger overall 
downregulation of sphingomyelins in HepaRG cells when TNF-α was added, additional 
to ethanol. In contrast with the HepaRG results, the authors reported a progressive 
decrease of hepatic ceramides during inflammation. In addition, this finding was not 
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supported by previous literature describing upregulation of hepatic ceramides (d18:1) 
(Apostolopoulou et al., 2018; Jaremek et al., 2013; Longato et al., 2012; Luukkonen et 
al., 2016; Mühle et al., 2018; Reichel et al., 2010; L. Yang et al., 2016). However, Thiele 
et al. did not distinguish between ceramides (d18:1) and (d18:2), which were 
respectively up- and downregulated in HepaRG cells. 
 
Table 10.1 Alterations in HepaRG cells exposed to ethanol or ethanol and TNF-α confirmed in 
literature by usage of patient samples. ALD: Alcoholic liver disease. Cer: Ceramides. DG: 
Diglycerides. EtOChoP: Ethylated phosphorylcholine. LPC: Lysophosphatidylcholines. (N)AFLD: 
(Non-)alcoholic fatty liver disease. (N)ASH: (Non-)alcoholic steatohepatitis. PC: 
Phosphatidylcholines. PC-O: Alkyl ether posphatidylcholines. PE: Phosphatidylethanolamines. 
SM: Sphingomyelins. TG: Triglycerides. TNF-α: Tumor necrosis factor alpha. 
 

Observation Sample type Reference 

↑TG Liver, NAFLD, NASH 
 

Gorden et al., 2015; Puri et al., 2007 

↑DG, ↓PC 
 
↓LPC 
 
 
 
↓LPC, ↓SM, 
↓PE 
 
↓SM 
 
↑TG 
 
↓PC 

Liver, NAFLD, NASH 
 
Hepatic venous blood after ethanol 
intoxication in healthy volunteers 
and ALD 
 
Liver, NAFLD 
 
 
Serum, heavy drinkers 
 
Liver, post-TNF-α administration 
 
Liver, NAFLD (↓), NASH (↓↓) 

Puri et al., 2007 
 
Israelsen et al., 2021 
 
 
 
Puri et al., 2007 
 
 
Jaremek et al., 2013 
 
Popa et al., 2007; Sherman et al., 1988 
 
Männistö et al., 2019 

 
↑EtOChoP 
 

 
Whole blood heavy drinkers 

 
In-house, not published 

↑TG, ↑DG, 
↓PC, ↓PE 
 
↓SM 
 
↑PE 
 
↑Cer, ↑PC-O, 
↓LPC 

Liver, AFLD, ASH 
 
 
Liver, ASH 
 
Plasma, AFLD 
 
Plasma, ASH 

Thiele et al., 2023 
 
Thiele et al., 2023 
 
Thiele et al., 2023 
 
Thiele et al., 2023 
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Concerning the plasma lipidome, Thiele et al. reported upregulation of 
phosphatidylethanolamines in AFLD, consistent with elevated secretion in ethanol-
exposed HepaRG cells. However, their reported increase of lysophosphatidylcholines 
was in contrast to our finding of decreased lysophosphatidylcholines due to increased 
hepatic consumption. For ASH, increased ceramides and alkyl ether 
phosphatidylcholines, and decreased lysophosphatidylcholines were consistent with 
the findings of the extracellular metabolome of HepaRG cells after exposure to ethanol 
and TNF-α (i.e., increased secretion of ceramides (d18:1) and alkyl ether 
phosphatidylcholines, and increased consumption of lysophosphatidylcholines). 
However, the reliability of the data of Thiele et al. is questionable from an analytical 
perspective. Their annotations did not include confidence levels and they did not report 
mass errors or retention times. The authors did not mention the use of MS/MS data and 
as their annotations were limited to bulk names, usage of MS/MS data is rather unlikely, 
as fragmentation spectra generally provide information for annotation at a species 
level. While putative identities can be based on accurate mass searching, usage of this 
tool alone provides poor evidence for metabolite annotation (Domingo-Almenara et al., 
2018). 
Although a literature search is very useful to compare results, a full exploration of the 
in vitro – in vivo correlation of the HepaRG results requires a suspect screening using 
samples of patients suffering from AFLD and ASH. A collaboration with the department 
of gastro-enterology and hepatology of the Antwerp University Hospital was initiated to 
obtain liver biopsies, blood and hair samples of AFLD and ASH patients. Liver and blood 
samples could be used for future suspect screening. In addition, the Toxicological Centre 
of the University of Antwerp initiated a project to elucidate biomarkers of AFLD and ASH 
in hair. Ethical approval was granted by the Antwerp University Hospital (Project ID 1975  
- EDGE 2067). Moreover, contracts were finalized with the biobank of the Antwerp 
University Hospital, a clinical study site agreement was completed and informed 
consent forms (ICF) and questionnaires were developed. A suspect screening of these 
samples can estimate the vitro – in vivo correlation of the HepaRG results and pinpoint 
metabolites that are interesting to use as biomarkers in the clinic. After selection of 
these biomarkers, a targeted method can be developed for quantification. The most 
promising biomarkers for screening or diagnosis can be elucidated using classification 
models to predict class membership. For example, univariate regression can be used to 
select the most promising biomarker according to its predictive power, while 
multivariate regression is useful to select a panel of discriminating biomarkers 
(McDermott et al., 2013). Other approaches that have led to successful biomarker 
identification include machine learning algorithms such as random forest (McDermott 
et al., 2013). As models to select biomarkers are prone to overestimation of 
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performance results, independent test data should be used for evaluation. While a 
limited number of patients samples can be sufficient to demonstrate clinical validity 
(i.e., to establish an association between biomarkers and the endpoint of interest), large 
multiple studies are needed to demonstrate clinical utility (i.e., to establish the clinical 
usefulness of markers; whether the use of the markers in clinical care result in improved 
patient outcomes) (Ou et al., 2021). Biomarker validation includes estimation of the 
sensitivity, specificity, positive and negative predictive value and receiver operating 
characteristic (ROC) curve, in an internal and external setting (Ou et al., 2021). Finding 
an early, sensitive and specific biomarker would allow detection before the occurrence 
of irreversible liver damage, allowing a correction in ethanol abuse and preventing 
further disease progression. 
 
10.2.2.4. Ethylated phosphorylcholine  
While EtOCHoP most probably does not translate into active liver disease, but rather 
can be used as a marker of exposure or consumption, follow-up experiments can be 
conducted. As the currently used targeted method is not ideal with its runtime of 26 
min, method optimization should be used to obtain a faster method enabling a high 
throughput. Ideally RPLC methods should be explored as HILIC generally leads to 
broader peaks and less stable retention times, which are not ideal for a targeted 
method. Furthermore, the calibration range should be lowered and a full method 
validation should be performed. Different matrices can be explored for EtOChoP 
detection such as plasma/serum, urine and hair. In addition, whole blood should not be 
neglected. As the proof-of-concept experiment only included a limited number of 
samples, more samples with a wide range in blood ethanol concentration and PEth 
16:0/18:1 concentration should be explored. In addition, studies can be performed to 
determine pharmacokinetics of EtOChoP, including the rate of formation and 
elimination using experiments where volunteers drink standard doses of ethanol, as 
self-reported ethanol use may not be accurate (Hahn et al., 2016). 
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SUMMARY 
Despite the high prevalence of alcoholic liver disease, its identification and 
characterization remain poor, especially in early stages such as alcoholic fatty liver 
disease and alcoholic steatohepatitis. This latter implies diagnostic difficulties, few 
therapeutic options and unclear mechanisms of action. In this thesis, LC-MS-based 
metabolomics was used in an in vitro set-up to identify biochemical biomarkers able to 
elucidate the mechanism of ethanol-induced hepatotoxicity at a mechanistic cellular 
level. HepaRG, a human hepatocyte cell line was used to elucidate metabolic alterations 
and pinpoint affected metabolic pathways after exposure to ethanol in order to 
simulate alcoholic fatty liver disease. Combined exposure to ethanol and tumor necrosis 
factor alpha was used to simulate alcoholic steatohepatitis in vitro.   
 
Part A of this thesis (i.e., chapter 3-5) was dedicated to development of analytical 
methods using liquid chromatography-quadrupole-time-of-flight high-resolution mass 
spectrometry (LC-QTOF-HRMS) and the hyphenation to drift tube ion mobility 
spectrometry (DTIMS) was explored. In addition, a multidimensional library for 
untargeted MS-based metabolomics was constructed and guidelines and consideration 
were formulated. Part B of this thesis (i.e., chapter 6-8) describes the application of the 
optimized metabolomics methods to study ethanol-induced hepatotoxicity in an in vitro 
set-up.  
 
In chapter 3, a metabolomics platform was optimized to be able to analyze polar 
metabolites in HepaRG extracts. The analysis of polar metabolites based on LC-MS 
methods should take into consideration the complexity of interactions in LC columns to 
be able to cover a broad range of metabolites of key biological pathways. Therefore, in 
chapter 3, different chromatographic columns were tested for polar metabolites 
including reversed-phase and hydrophilic interaction liquid chromatography (HILIC) 
columns. Based on a column screening, two new generations of zwitterionic HILIC 
columns were selected for further evaluation. A tree-based method optimization was 
applied to investigate the chromatographic factors affecting the retention mechanisms 
of polar metabolites with zwitterionic stationary phases. The results were evaluated 
based on a scoring system which was applied for more than 80 polar metabolites with 
a high coverage of key human metabolic pathways. The final optimized methods 
showed high complementarity to analyze a wide range of metabolic classes including 
amino acids, small peptides, sugars, amino sugars, phosphorylated sugars, organic acids, 
nucleobases, nucleosides, nucleotides and acylcarnitines. Optimized methods were 
applied to analyze different biological matrices, including HepaRG extracts, human urine 
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and plasma using an untargeted approach. The number of high-quality features (< 30% 
median relative standard deviation) ranged from 3,755 for urine to 5,402 for the 
intracellular metabolome of HepaRG cells, showing the potential of the methods for 
untargeted purposes. 
 
In chapter 4, a lipidomics platform was optimized to be able to analyze lipids in HepaRG 
extracts. There are thousands of lipids in most biological samples, and therefore 
separation methods before introduction to the mass spectrometer are key for relative 
quantitation and identification. Chromatographic methods differ across laboratories, 
without any consensus on the best methodologies. Therefore, we designed an 
experiment to determine the optimal LC methodology, and assessed the value of ion 
mobility as an additional dimension of separation. To apply an untargeted method for 
hypothesis generation focused on lipidomics, LC-HRMS parameters were optimized 
based on the measurement of 50 panel lipids covering key human metabolic pathways. 
Similar to the approach in chapter 3, reversed-phase liquid chromatography columns 
were compared based on a quality scoring system considering the signal-to-noise ratio, 
peak shape, and retention factor. DTIMS was implemented to increase peak capacity 
and confidence during annotation by providing collision cross section (CCS) values for 
the analytes under investigation. However, hyphenating DTIMS to LC-HRMS may result 
in a reduced sensitivity due to impaired duty cycles. To increase the signal intensity, a 
Box-Behnken design (BBD) was used to optimize four key factors; drift entrance voltage, 
drift exit voltage, rear funnel entrance, and rear funnel exit voltages. Application of a 
maximized desirability function provided voltages for the above-mentioned parameters 
resulting in higher signal intensity compared to each combination of parameters used 
during the BBD. In addition, the influence of single pulse and Hadamard 4-bit 
multiplexed modes on signal intensity was explored and different trap filling and release 
times of ions were evaluated. The optimized LC-DTIM-HRMS platform was applied to 
extracts from HepaRG cells and resulted in 3912 high-quality features. From these 
features, 436 lipid species could be annotated (i.e., matching based on accurate mass 
<5 ppm, isotopic pattern, MS/MS fragmentation, and CCS database matching <3%). 
 
As feature annotation is crucial in untargeted metabolomics and remains a major 
challenge, chapter 5 was dedicated to the construction of multidimensional libraries for 
untargeted MS-based metabolomics. The large pool of metabolites collected under 
various instrumental conditions is underrepresented in publicly available databases. 
Retention time (RT) and CCS measurements from liquid chromatography ion mobility 
high-resolution mass spectrometers can be employed in addition to MS/MS spectra to 
improve the confidence of metabolite annotation. Recent advancements in machine 
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learning focus on improving the accuracy of predictions for CCS and RT values. 
Therefore, high-quality experimental data are crucial to be used either as training 
datasets or as a reference for high-confidence matching. Chapter 5 provides an easy-to-
use workflow for the creation of an in-house metabolite library, offers an overview of 
alternative solutions, and discusses the challenges and advantages of building in-house 
libraries. A total of 100 metabolite standards from various classes were analyzed and 
subjected to the described workflow for library generation. The outcome was an open-
access available NIST format metabolite library (.msp) with multidimensional 
information. The library was used to evaluate CCS prediction tools, MS/MS spectra 
heterogeneities (e.g., multiple adducts, in-source fragmentation, and radical fragment 
ions using collision-induced dissociation), and the reporting of RT. 
 
Chapter 6 provides a summary of the optimized analytical methods that were used to 
study ethanol-induced hepatotoxicity in HepaRG cells, in addition to a description of 
experimental exposure conditions, procedures for sample preparation, data processing, 
statistics and metabolite annotation. Sample preparation was based on a liquid-liquid 
extraction with H2O/MeOH/CHCl3 and was used to divide each biological sample in 2 
polar and 2 apolar subfractions, which were analyzed using separate corresponding 
analytical methods to increase metabolite coverage. Throughout the analytical 
workflow, comprehensive quality assurance and quality control measures were 
implemented to ensure high reproducibility. These latter measures included, for 
example, usage of standardized acquisition sequences, pooled quality control samples, 
and system suitability samples.   
 
Alcoholic fatty liver disease was simulated in HepaRG cells in chapter 7 by exposure of 
these cells to ethanol at different concentrations and exposure times. Excessive ethanol 
consumption is known to alter lipid metabolism, followed by progressive intracellular 
lipid accumulation, resulting in alcoholic fatty liver disease. In chapter 7, HepaRG cells 
were exposed to ethanol at IC10 and 1/10 IC10 for 24 and 48 h. Metabolic alterations 
were investigated intra-and extracellularly with LC-HRMS. Ion mobility was added as an 
extra separation dimension for untargeted lipidomics to improve annotation 
confidence. Distinctive patterns between exposed and control cells were consistently 
observed, with intracellular upregulation of di- and triglycerides, downregulation of 
phosphatidylcholines and -ethanolamines, sphingomyelins, and S-adenosylmethionine, 
among others. Several intracellular metabolic patterns could be related to changes in 
the extracellular environment, such as increased intracellular hydrolysis of 
sphingomyelins, leading to increased phosphorylcholine secretion. Carnitines showed 
alterations depending on the size of their carbon chain, which highlights the interplay 
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between β-oxidation in mitochondria and peroxisomes. Potential new biomarkers of 
ethanol-induced hepatotoxicity have been observed, such as ceramides with a 
sphingadienine backbone, octanoylcarnitine, creatine, acetylcholine, and ethylated 
phosphorylcholine. The combination of the metabolic fingerprint and footprint enabled 
a comprehensive investigation of the pathophysiology behind ethanol-induced 
hepatotoxicity. 
 
In chapter 8, HepaRG cells were exposed for 24 h to both ethanol (IC10, 368 mM) and 
tumor necrosis factor alpha (TNF-α, 50 ng/mL), in order to improve in vitro simulation 
of alcoholic steatohepatitis. This combined exposure was compared to solely ethanol-
exposed as well as -nonexposed cells. As in chapter 7, LC-(DTIMS)-HRMS was used to 
elucidate both intracellular and extracellular metabolic alterations. Some of the key 
findings include the influence of TNF-α in the upregulation of hepatic triglycerides and 
the downregulation of hepatic phosphatidylcholines and -ethanolamines. S-
adenosylmethionine showed to play a central role in the progression of alcoholic 
steatohepatitis. In addition, fatty acyl esters of hydroxy fatty acid (FAHFA)-containing 
triglycerides were detected for the first time in human hepatocytes and their alterations 
showed a potentially important role during the progression of alcoholic steatohepatitis. 
As in chapter 7, ethylated phosphorylcholine was observed as a potential new 
biomarker of ethanol exposure. In order to evaluate the biomarker potential of this 
latter compound in humans, a targeted method was developed. As a proof-of-concept, 
the presence of ethylated phosphorylcholine was confirmed in whole blood samples of 
heavy drinkers. Details on these latter findings are described in the supplementary 
information of chapter 7. 
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SAMENVATTING 
Ondanks de hoge prevalentie van alcoholische leverziekte zijn de identificatie en 
karakterisering ervan ondermaats, en dan voornamelijk in vroege stadia zoals 
alcoholische leververvetting en alcoholische steatohepatitis. Dit laatste impliceert 
diagnostische moeilijkheden, weinig therapeutische opties en onduidelijke 
werkingsmechanismen. In dit proefschrift werd op LC-MS-gebaseerde metabolomics 
gebruikt in een in vitro opstelling om biochemische biomarkers te identificeren die 
ethanol-geïnduceerde hepatotoxiciteit op mechanistisch cellulair niveau kunnen 
ophelderen. HepaRG, een cellijn van menselijke hepatocyten, werd gebruikt om 
metabole veranderingen op te helderen en aangetaste metabole routes te lokaliseren 
tijdens alcoholische leververvetting. Gecombineerde blootstelling aan ethanol en 
tumornecrosefactor-alfa werd gebruikt om in vitro alcoholische steatohepatitis te 
simuleren. 
 
Deel A van dit proefschrift (d.w.z. hoofdstuk 3-5) werd gewijd aan de ontwikkeling van 
analytische methoden met behulp van vloeistofchromatografie-quadrupool-time-of-
flight hoge-resolutie massaspectrometrie (LC-QTOF-HRMS) en de koppeling met drift 
tube ionenmobiliteitsspectrometrie (DTIMS) werd onderzocht. Daarnaast werd een 
multidimensionale bibliotheek voor untargeted MS-gebaseerde metabolomics 
geconstrueerd en werden richtlijnen en overwegingen geformuleerd. Deel B van dit 
proefschrift (d.w.z. hoofdstuk 6-8) beschrijft de toepassing van de geoptimaliseerde 
metabolomics methoden om ethanol-geïnduceerde hepatotoxiciteit te bestuderen in 
een in vitro opstelling. 
 
In hoofdstuk 3 werd een metabolomics-platform geoptimaliseerd om polaire 
metabolieten in HepaRG-extracten te kunnen analyseren. Bij de analyse van polaire 
metabolieten op basis van LC-MS-methoden moet rekening worden gehouden met de 
complexiteit van interacties in LC-kolommen om een breed scala aan metabolieten van 
belangrijke biologische routes te kunnen dekken. Daarom werden in hoofdstuk 3 
verschillende chromatografische kolommen getest voor polaire metabolieten, 
waaronder reversed-phase en hydrofiele interactie vloeistofchromatografie (HILIC) 
kolommen. Op basis van een kolomscreening werden twee nieuwe generaties 
zwitterionische HILIC-kolommen geselecteerd voor verdere evaluatie. Een tree-based 
methodeoptimalisatie werd toegepast om de chromatografische factoren te 
onderzoeken die de retentiemechanismen van polaire metabolieten met 
zwitterionische stationaire fasen beïnvloeden. De resultaten werden geëvalueerd op 
basis van een scoresysteem dat werd toegepast voor meer dan 80 polaire metabolieten 
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met een hoge dekking van belangrijke menselijke metabole routes. De uiteindelijk 
geoptimaliseerde methoden vertoonden een hoge complementariteit om een breed 
scala aan metabole klassen te analyseren, waaronder aminozuren, kleine peptiden, 
suikers, aminosuikers, gefosforyleerde suikers, organische zuren, nucleobasen, 
nucleosiden, nucleotiden en acylcarnitines. De geoptimaliseerde methoden werden 
toegepast om verschillende biologische matrices, waaronder HepaRG-extracten, 
menselijke urine en plasma, te analyseren met behulp van een untargeted benadering. 
Het aantal features met hoge kwaliteit (< 30% mediane relatieve standaarddeviatie) 
varieerde van 3.755 voor urine tot 5.402 voor het intracellulaire metaboloom van 
HepaRG cellen, wat het potentieel van de methoden voor untargeted doeleinden 
aantoont. 
 
In hoofdstuk 4 werd een lipidomics-platform geoptimaliseerd om lipiden in HepaRG-
extracten te kunnen analyseren. In de meeste biologische stalen zijn duizenden lipiden 
aanwezig, waardoor scheidingsmethoden alvorens MS-analyse belangrijk zijn voor 
relatieve kwantificering en identificatie. Chromatografische methoden verschillen 
tussen laboratoria, zonder enige consensus over de beste methodologieën. Omwille 
hiervan hebben we een experiment ontworpen om de optimale LC-methodologie te 
bepalen en de waarde van ionenmobiliteit als een extra dimensie van scheiding 
beoordeeld. Om een untargeted methode toe te passen voor het ontwikkelen van 
hypothesen gericht op lipidomics, werden de LC-HRMS-parameters geoptimaliseerd op 
basis van de meting van 50 panel lipiden die de belangrijkste menselijke metabole 
routes dekken. Vergelijkbaar met de benadering in hoofdstuk 3, werden reversed-phase 
vloeistofchromatografiekolommen vergeleken op basis van een kwaliteitsscoresysteem 
waarbij rekening werd gehouden met de signaal-ruisverhouding, piekvorm en 
retentiefactor. DTIMS werd geïmplementeerd om de piekcapaciteit en het vertrouwen 
tijdens annotatie te vergroten door collision cross section (CCS) waarden te bepalen 
voor de te onderzoeken analieten. Het koppelen van DTIMS met LC-HRMS kan 
resulteren in een verminderde gevoeligheid als gevolg van verminderde duty cycles. Om 
de signaalintensiteit te verhogen, werd een Box-Behnken-design (BBD) gebruikt om vier 
sleutelfactoren te optimaliseren; drift entrance voltage, drift exit voltage, rear funnel 
entrance en rear funnel exit voltages. Toepassing van een maximale desirability functie 
leverde voltages op voor de bovengenoemde parameters, wat resulteerde in een 
hogere signaalintensiteit in vergelijking met elke combinatie van parameters die tijdens 
de BBD werden gebruikt. Daarnaast werd de invloed van single puls en Hadamard 4-bit 
multiplexed modi op de signaalintensiteit onderzocht en werden verschillende trap 
vullingstijden en vrijgavetijden van ionen geëvalueerd. Het geoptimaliseerde LC-DTIM-
HRMS-platform werd toegepast op extracten van HepaRG-cellen en resulteerde in 3912 
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features van hoge kwaliteit. Van deze features konden 436 lipide species worden 
geannoteerd (d.w.z. matching op basis van nauwkeurige massa <5 ppm, isotopisch 
patroon, MS/MS-fragmentatie en CCS-database-matching <3%). 
 
Omdat annotatie van features cruciaal is in untargeted metabolomics en een grote 
uitdaging blijft, werd hoofdstuk 5 gewijd aan de constructie van multidimensionale 
bibliotheken voor untargeted MS-gebaseerde metabolomics. De grote verzameling 
metabolieten, die onder verschillende instrumentele omstandigheden zijn 
gecollecteerd, is ondervertegenwoordigd in openbaar beschikbare databases. 
Retentietijd (RT) en CCS-metingen van vloeistofchromatografie-ionenmobiliteit 
massaspectrometers met hoge resolutie kunnen in additie van MS/MS-spectra worden 
gebruikt om de betrouwbaarheid van metabolietannotatie te verbeteren. Recente 
ontwikkelingen in machine learning richten zich op het verbeteren van de 
nauwkeurigheid van voorspellingen voor CCS- en RT-waarden. Daarom zijn 
experimentele gegevens van hoge kwaliteit cruciaal om te worden gebruikt als 
trainingsdatasets of als referentie voor betrouwbare matching. Hoofdstuk 5 biedt een 
gebruiksvriendelijke workflow voor de constructie van een interne 
metabolietbibliotheek, biedt een overzicht van alternatieve oplossingen en bespreekt 
de uitdagingen en voordelen van de constructie van interne bibliotheken. In totaal 
werden 100 metabolietstandaarden uit verschillende klassen geanalyseerd en 
onderworpen aan de beschreven workflow voor het genereren van bibliotheken. Het 
resultaat was een vrij toegankelijke metabolietbibliotheek (.msp) in NIST-formaat met 
multidimensionale informatie. De bibliotheek werd gebruikt voor de evaluatie van CCS-
voorspellingstools, MS/MS-spectra-heterogeniteiten (bijv. meerdere adducten, 
fragmentatie in de bron en radicale fragmentionen met behulp van door collisie 
geïnduceerde dissociatie) en de rapportering van RT. 
 
Hoofdstuk 6 geeft een samenvatting van de geoptimaliseerde analytische methoden die 
werden gebruikt om ethanol-geïnduceerde hepatotoxiciteit in HepaRG-cellen te 
bestuderen. Verder bevat dit hoofdstuk een beschrijving van experimentele 
blootstellingsomstandigheden, procedures voor monstervoorbereiding, 
dataverwerking, statistieken en annotatie van metabolieten. De monstervoorbereiding 
was gebaseerd op een vloeistof-vloeistofextractie met H2O/MeOH/CHCl3 en werd 
gebruikt om elk biologisch staal te verdelen in 2 polaire en 2 apolaire subfracties, 
dewelke werden geanalyseerd met afzonderlijke overeenkomstige analytische 
methoden om de metabolietdekking te vergroten. Gedurende de hele analytische 
workflow werden uitgebreide maatregelen voor kwaliteitsborging en kwaliteitscontrole 
geïmplementeerd om een hoge reproduceerbaarheid te garanderen. Deze laatste 
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maatregelen omvatten bijvoorbeeld het gebruik van gestandaardiseerde 
acquisitiesequenties, gepoolde kwaliteitscontrolestalen en stalen om de 
systeemgeschiktheid te evalueren. 
 
Alcoholische leververvetting werd gesimuleerd in HepaRG-cellen in hoofdstuk 7 door 
deze cellen bloot te stellen aan ethanol in verschillende concentraties en met 
verschillende blootstellingstijden. Van overmatig ethanolgebruik is bekend dat deze het 
vetmetabolisme verandert, gevolgd door progressieve intracellulaire vetophoping, 
resulterend in alcoholische leververvetting. In hoofdstuk 7 werden HepaRG-cellen 
gedurende 24 en 48 uur blootgesteld aan ethanol bij IC10 en 1/10 IC10 concentraties. 
Metabolische veranderingen werden intra- en extracellulair onderzocht met LC-HRMS. 
Ionenmobiliteitsspectrometrie werd toegevoegd als een extra scheidingsdimensie voor 
untargeted lipidomics om het annotatievertrouwen te verbeteren. Discriminerende 
patronen tussen blootgestelde en controlecellen werden consistent waargenomen, met 
intracellulaire opregulatie van onder andere di- en triglyceriden, neerwaartse regulatie 
van fosfatidylcholines en -ethanolamines, sfingomyelines en S-adenosylmethionine. 
Verschillende intracellulaire metabole patronen konden in verband worden gebracht 
met veranderingen in de extracellulaire omgeving, zoals een verhoogde intracellulaire 
hydrolyse van sfingomyelines, wat leidde tot een verhoogde secretie van 
fosforylcholine. Carnitines vertoonden veranderingen afhankelijk van de grootte van 
hun koolstofketen, wat de wisselwerking tussen β-oxidatie in mitochondriën en 
peroxisomen benadrukt. Er werden potentiële nieuwe biomarkers van ethanol-
geïnduceerde hepatotoxiciteit waargenomen, zoals ceramiden met een sfingadienine-
ruggengraat, octanoylcarnitine, creatine, acetylcholine en geëthyleerde fosforylcholine. 
De combinatie van de metabole vinger- en voetafdruk maakte een uitgebreid onderzoek 
mogelijk naar de pathofysiologie achter ethanol-geïnduceerde hepatotoxiciteit. 
 
In hoofdstuk 8 werden HepaRG-cellen gedurende 24 uur blootgesteld aan zowel ethanol 
(IC10, 368 mM) als tumornecrosefactor-alfa (TNF-α, 50 ng/ml), om de in vitro simulatie 
van alcoholische steatohepatitis te verbeteren. Deze gecombineerde blootstelling werd 
vergeleken met uitsluitend aan ethanol blootgestelde en niet-blootgestelde cellen. Net 
als in hoofdstuk 7 werd LC-(DTIMS)-HRMS gebruikt om zowel intracellulaire als 
extracellulaire metabole veranderingen op te helderen. Enkele van de belangrijkste 
bevindingen waren de invloed van TNF-α op de opwaartse regulatie van hepatische 
triglyceriden en de neerwaartse regulatie van hepatische fosfatidylcholines en -
ethanolamines. S-adenosylmethionine bleek een centrale rol te spelen in de progressie 
van alcoholische steatohepatitis. Bovendien werden voor het eerst fatty acyl esters van 
hydroxyvetzuur (FAHFA)-bevattende triglyceriden gedetecteerd in menselijke 
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hepatocyten en hun veranderingen toonden een potentieel belangrijke rol tijdens de 
progressie van alcoholische steatohepatitis. Net als in hoofdstuk 7 werd geëthyleerd 
fosforylcholine waargenomen als een potentiële nieuwe biomarker voor blootstelling 
aan ethanol. Om het biomarkerpotentieel van deze laatste compound bij mensen te 
evalueren, werd een targeted methode ontwikkeld. Als proof-of-concept werd de 
aanwezigheid van geëthyleerde fosforylcholine bevestigd in volbloedstalen van zware 
drinkers. Details over deze laatste bevindingen werden beschreven in de appendix van 
hoofdstuk 7. 
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