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List of abbreviations 

ACCEPT  Automated CTC Classification Enumeration and PhenoTyping (software) 
AKT  A Serine/Threonine kinase 1 (gene) 
A-I  Aromatase inhibitor 
ASCO-CAP American Society of Clinical Oncology/College of American Pathologists 
BC  Breast cancer 
BRCA1 / 2 Breast cancer 1 / 2 (genes) 
CA15.3  Carcinoma antigen 15.3 
CD  Cluster of differentiation 
CDK4/6i Cyclin-dependent kinases 4 and 6 inhibitor 
cfDNA  Circulating free DNA 
CK  Cytokeratin 
CNA  Copy number alteration (acquired) 
CNV  Copy number variation (germline) 
CTC(s)  Circulating tumour cell(s) 
ctDNA  Circulating tumour DNA 
DAPI  4’,6-diamidino-2-phenlylindole 
DNA  Deoxyribonucleic acid 
DTC(s)  Disseminated tumour cell(s) 
EBC  Early breast cancer 
EDTA  Ethylenediaminetetraacetic acid 
EGFR  Epidermal growth factor receptor ?? 
EMA  European medicines agency 
EMT  Epithelial to mesenchymal transition 
EpCAM  Epithelial cell adhesion molecule 
ER  Estrogen receptor 
ERBB2  Erythroblastic oncogene B 2 (gene, encoding HER-2/neu)  
ESR1  Estrogen receptor 1 (gene, encoding ER) 
ET  Endocrine therapy 
FDA  Food and drug administration 
FDG-PET Fluorodeoxyglucose positron emission tomography 
FISH  Fluorescence in situ hybridization 
FITC  Fluorescein 
FU  Follow up 
HER2  Human epidermal growth factor receptor 2 
HR  Hormone receptor 
IF  Immunofluorescence 
IHC  Immune histochemistry 
LN  Lymph node 
Lum  Luminal 
MBC  Metastatic breast cancer 
MTB  Mutational tumour burden 
NSCLC  Non-small cell lung cancer 
OS  Overall survival 
PBMC  Peripheral blood mononuclear cell 
PCR  Polyclonal chain reaction 
PD-L1  Programmed death ligand 1  
PE  Phycoerythrin 
PFS  Progression free survival 



2 
 

 
 
 
 
PIK3CA  Phosphatidylinositol-4,5-bisphosphate 3-kinase (gene) 
PTEN  Phosphatase and tensin homolog (gene) 
PT  Primary tumour 
QC   Quality control 
RECIST  Response Evaluation Criteria in Solid Tumours 
RNA  Ribonucleic acid 
RFU  Relative fluorescent units 
RGE  Relative gene expression 
SNV  Single nucleotide variation 
SNP  Single nucleotide polymorphism 
qRT-PCR (quantitative) reverse transcription PCR 
TNBC  Triple negative breast cancer 
TP53  Tumour protein 53 (tumour suppressor gene) 
WBC  White blood cell 
WES  Whole exome sequencing 
WGA  Whole genome amplification 
WGS  Whole genome sequencing 
WHO   World health organization 
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Summary 
 

During tumour development, cancer cells acquire various genetic and epigenetic aberrations that 

contribute to the ‘hallmarks of cancer’, in which unrestricted cell growth and manipulation of the 

tumour micro-environment are central. Due to selection and clonal expansion, multiple genetically 

distinct subclones emerge, that have phenotypic advantages and expand simultaneously resulting in 

intra-tumour heterogeneity. Over time cancer cells gradually evolve and progressively acquire a 

succession of the ‘hallmark’ capabilities, like: the potential for extravasation and seeding in distant 

tissues. Both early and late dissemination, as well as polyclonal and bidirectional seeding between 

different tumour sites have been described. As a consequence, different tumour sites will have their 

own unique evolutionary landscapes, leading to inter-metastasis heterogeneity. The efficacy of 

targeted therapy depends on their ability to block specific molecular aberrations. Primary tumour 

biopsies provide only a snapshot of cancer evolution, hence therapeutic targets for treatment of 

metastatic disease might be missed.  

Over the last two decades, liquid biopsy has evolved to a very active field of research. It has become 

increasingly clear that it is of critical importance to find specific combinations of markers that can 

identify a cancer’s status, origin, and evolution. In this thesis I will focus on both circulating tumour 

cells (CTCs) and circulating tumour (ct)DNA, which are the most clinically well-developed biomarkers 

detected by liquid biopsy.  

CTCs are shed from various tumour sites into the bloodstream or lymphatic system. CTCs are 

considered to represent a ‘real-time’ snapshot of the actual tumour burden. Still, they are relatively 

rare, representing only one in over a million blood cells. CTCs offer the potential to obtain information 

at the DNA, RNA, and protein level using various molecular techniques. Molecular analysis of CTCs 

enables researchers to detect the presence of multiple aberrations within the same cell, in order to 

decipher tumour heterogeneity and map clonal evolution. Chapter 2 of this thesis is an extensive 

literature review focussed on the genomic and transcriptional heterogeneity found in the CTC 

compartment. It further discusses the technical considerations of CTC analysis and its significance for 

clinical decision making. In chapter 3 we performed targeted and shallow whole genome sequencing 

of numerous single and sorted pools of tumour cells from three patients in order to unveil 

heterogeneity within the CTC and disseminated tumour cell (DTC) compartment.  

HER2 is an frequently used target in the treatment of breast cancer. Multiple prospective studies 

investigated if anti-HER2 therapy can improve progression-free survival in patients that “gained” HER2 

on CTCs at the metastatic stage. In chapter 4 we compare different analysis methods for HER2 on CTCs 

(at DNA, RNA, and protein level).  

Compared to CTCs, cfDNA is easier to obtain, ship and store, however it is restricted to genetic and 

epigenetic analysis of the DNA. Due to the very low concentration of ctDNA, highly sensitive and 

specific methods are needed for detection of cancer alterations like mutations or copy number 

changes. In chapter 5 we discuss how ctDNA fraction can be used to predict treatment outcome and 

progression-free survival.  

Many studies have been performed towards the use of liquid biopsies in early detection, as well as 

determining its prognostic and predictive value in local and advanced disease. These will be extensively 

reviewed in the discussion of this thesis. 
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Samenvatting 
 

Vloeibare biopsies in gemetastaseerde borstkanker: een weg naar gepersonaliseerde behandeling. 

 

Tijdens tumor evolutie ondergaan kankercellen verschillende genetische en epigentische 

veranderingen ten voordele van de zogenoemde ‘hallmarks of cancer’, waarbij ongeremde groei en 

een gunstige micro-omgeving centraal staan. Door selectie en klonale uitgroei ontstaan meerdere, 

genetisch verschillende, subklonen. Sommige van deze klonen hebben een gunstig fenotype waardoor 

ze kunnen uitgroeien, met als resultaat intra-tumor heterogeniteit. Over de tijd kunnen klonen 

ontstaan die in staat zijn tot extravasatie in de bloedbaan en metastatische groei in andere organen. 

Verschillende uitzaaiingen bestaan hierdoor uit een uniek evolutionair landschap van subklonen, 

waardoor er ook inter-metastatische heterogeniteit ontstaat. Een deel van de kankerbehandeling 

bestaat, buiten chemo- en immunotherapie, uit doelgerichte therapie, gericht tegen specifieke 

moleculaire afwijkingen. Met slechts één biopsie kunnen door tumorheterogeniteit belangrijke 

behandeldoelen gemist worden. 

In de laatste twee decennia is er veel onderzoek gedaan naar een ‘vloeibare biopsie’, waarbij tumorale 

afwijkingen in het bloed worden opgespoord. In deze thesis focus ik op zowel de circulerende tumor 

cellen (CTCs) als op het circulerend tumor (ct)DNA.  

CTCs zijn cellen die loskomen van de verschillende tumor locaties en terechtkomen in de bloedbaan of 

de lymfevaten, waardoor ze gezien worden als ‘real-time’ representatie van de aanwezige ziekte. Ze 

zijn vaak maar in lage concentraties aanwezig, van slecht enkele op meer dan een miljoen normale 

bloedcellen. Eenmaal geïsoleerd, kunnen deze cellen bestudeerd worden op afwijkingen op DNA, RNA 

en eiwit niveau. Door per tumorcel de afwijkingen te bestuderen, kan klonale evolutie in kaart gebracht 

worden. Hoofdstuk 2 van deze thesis bevat een uitgebreid overzicht van de literatuur, die gericht is op 

heterogeniteit op DNA en RNA niveau binnen het CTC compartiment. Verder gaat het in op de 

technische aspecten van CTC onderzoek en de klinische relevantie. In hoofdstuk 3 hebben we zelf grote 

aantallen CTCs en DTCs (dat zijn tumorcellen in lichaamsvochten als beenmerg, hersenvocht of 

longvocht) nagekeken op genetische afwijkingen, om zodoende inzicht te krijgen in de heterogeniteit 

in het CTC en DTC compartiment.   

HER2 is een vaak gebruikt doelwit in de behandeling van borstkanker. Verschillende studies hebben 

reeds de impact van een anti-HER2 behandeling getest in patiëntes met HER2-positieve CTCs bij initieel 

HER2-negatieve borstkanker. In hoofdstuk 4 vergelijken we verschillende analyse methoden voor 

HER2 op CTCs (op DNA, RNA en eiwit niveau).  

In vergelijking met CTCs, is cfDNA gemakkelijker te isoleren en bewerken, hoewel er alleen DNA analyse 

op gedaan kan worden. Door de lage concentraties van ctDNA zijn hoog sensitieve en specifieke 

analysemethoden nodig om veranderingen in het DNA vast te stellen. In hoofdstuk 5 beschrijven we 

hoe de ctDNA fractie gebruikt kan worden voor voorspelling van behandeluitkomsten en progressie 

vrije overleving.  

Vele klinische studies zijn uitgevoerd waarbij vloeibare biopsies gebruikt werden voor vroege 

kankerdetectie, alsook prognose en predictie in lokale en gevorderde borstkanker. De (pre)klinische 

toepassingen van vloeibare biopsies worden uitgebreid samengevat in de discussie van deze thesis. 
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Introduction into breast cancer 
 

Cancer is a leading cause of health problems, with a worldwide estimated number of deaths of 9.56 

million annually (1). Cancerous lesions develop when a cell acquires the potential for abnormal cell 

growth, by sustaining chronic proliferation, and is able to form a tumour. Invasive breast carcinoma 

generally develops from epithelial ductal or lobular cells (3). During tumour development, cancer cells 

acquire various genetic and epigenetic aberrations that contribute to these ‘hallmarks of cancer’ (4, 

5). Due to selection and clonal expansion, multiple genetically distinct subclones emerge that have 

phenotypic advantages and expand simultaneously resulting in intra-tumour heterogeneity, as was 

demonstrated by single cell and multi-region sequencing of primary tumours (7, 8). Over time the 

cancer cells gradually evolve and progressively acquire a succession of the ‘hallmark’ capabilities, like: 

the potential for extravasation and seeding in distant tissues. Interestingly, the multistep process of 

tumorigenic cells to become malignant seems to be both spatially or temporally regulated. For 

example, tumour cells can survive in the bone marrow niche, in a dormant state, for several years, 

from where they recirculate and contribute to locoregional relapse or distant metastasis (10). Both 

early and late dissemination, as well as polyclonal and bidirectional seeding between different tumour 

sites have been described (11, 12, 13, 14, 15). As a consequence, different tumour sites will have their 

own unique evolutionary landscapes, leading to inter-metastasis heterogeneity (16) and critical 

genetic differences between primary tumour and metastatic sites (17). Major efforts have been 

undertaken to profile large quantities of breast cancer cases using next-generation sequencing, (18, 

19, 20). Landmark cancer genomics datasets like The Cancer Genome Atlas (TCGA), the International 

Cancer Genome Consortium (ICGC), and AACR Project GENIE include tens of thousands of cases from 

over 30 different tumour types, including primary and metastatic breast cancers, leading to extensive 

and detailed catalogues of somatic changes (21, 22, 23).  

Breast cancer is predominantly seen in women aged over 50 at the time of diagnosis. The 

lifetime risk of developing breast cancer is one in seven (European Cancer Information System, ECIS). 

In 2020, Belgium had the highest (age adjusted) incidence of breast cancer in the world, follow by other 

European countries, emphasising the excellent screening program (24). Besides age, other risk factors 

are implicated, such as hormone exposure: earlier age of menarche, later age or absence of pregnancy, 

omit breast feeding, later age of menopause, or the use of hormonal agents (25). Additionally, recent 

studies have indicated that about 10% of breast cancer cases are directly due to inherited “high 

penetrance” gene mutations, with the most well-known breast cancer associated genes being BRCA1, 

BRCA2 and PALB-2 (26, 27). Women that have inherited a mutated copy of either of these genes have 

an elevated life time risk of breast and ovarium carcinoma exceeding 80% or 30%, respectively (27). 

Besides the hereditary or genetic factors that increase the risk of developing mammary carcinomas, 

lifestyle (obesity) and environmental exposure (smoking, x-ray) may play a role (25).  

The vast majority of breast carcinomas (∼75%) are described as invasive ductal carcinomas not 

otherwise specified (IDC-NOS) based on architectural patterns and cytological features (3). Other 

‘histological special types’ include lobular, tubular, medullary and metaplastic carcinomas. Further 

histopathological analysis is important to determine tumour grade. This is an assessment of 

differentiation (tubule formation and nuclear pleomorphism) and proliferative activity (mitotic index), 

allowing tumours to be further stratified and providing key prognostic information (28). Secondly, 

immune histochemistry (IHC) characterisation of oestrogen receptor (ER), progesterone receptor (PR), 

and human epidermal growth factor receptor 2 (HER2) differentiates between clinically relevant 

subtypes of breast cancer, extensively discussed in the St. Gallen International Consensus Guidelines 
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(29). The majority of early breast cancers are hormone receptor (ER and PR) positive (∼75%), making 

patients eligible for hormonal-based therapies. HER2-enriched tumours account for 15-20% of breast 

cancers. Approximately half also express low levels of ER and PR. These patients are selected for anti-

HER2 based therapies. The remaining 10–15% of breast cancers are defined by hormone receptor and 

HER2 negativity (i.e. triple negative cancers), which represent a key clinical entity given their lack of 

therapeutic options, although immunotherapy is emerging (29). 

Despite above differentiations, breast cancer is a very heterogenous disease with many known 

molecular subtypes, that can be subclassified based upon biomarker expression (30, 31, 32, 33). The 

pivotal studies proposed five original subclasses based on gene expression: Luminal A, luminal B, 

normal-like, HER2-enriched, and basal-like (30) (Figure 1). These subtypes can be distinguished by the 

FDA-approved 50‐gene molecular classifier (PAM50) (34, 35). Luminal tumours are most common 

(60%–70%) and characterized by the expression of hormone receptors ER and PR. They can be 

subdivided in Luminal A and B tumours. The first are well differentiated (lower grade), less proliferative 

(Ki67 low), and have strong ER/PR expression. Luminal B tumours are higher grade, have a higher 

expression of proliferative and cell-cycle genes, a lower expression of ER/PR, and display variable 

expression of the HER2/neu gene cluster. Luminal B tumours harbour an increased frequency of TP53 

mutations. They are associated with significantly shorter overall and disease-free survival, therefor 

requiring more aggressive treatment compared to Luminal A tumours (36, 37). There is no clear cut-

off between Luminal A and B, and controversy exist over the precise thresholds for Ki67 that would 

justify chemotherapy or not (29). Additional multigene assays such as the 70-gene signature test 

(Mammaprint) and 21-gene recurrence score (OncotypeDx) help characterize the heterogeneity of ER-

positive early-stage breast cancers, and serve as prognostic marker for recurrence risk (29, 38, 39). 

HER2-positive tumours are characterized by their very aggressive biological and clinical behaviour and 

have worse prognosis compared to Luminal tumours (36, 37). Patients with HER2 positive tumours are 

eligible for anti-HER2 based therapies like monoclonal antibodies (e.g. trastuzumab, pertuzumab), TKIs 

(e.g. lapatinib, tucatinib, neratinib), and antibody-drug conjugates (e.g. trastuzumab-emtansine T-

Figure 1 Breast Cancer molecular subtypes based on biomarker expression. Molecular analysis 
provide both prognostic and predictive information. Adapted from (6). 
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DM1, trastuzumab-deruxtecan T-DXd) (40). Basal-like tumours are negative for both ER and PR, as well 

as HER2, and are therefore often referred to as triple negative (TN). However, TN- and basal-like breast 

cancer are not synonymous, with TN breast cancer being more heterogenous and 30% of TN tumours 

are not basal. Basal-like tumours are frequently found to have a high mutational rate in BRCA1 and 

have the worst prognosis (41). Recently, additional therapies, beyond chemotherapy, have been added 

to treatment of TN breast cancer, like immunotherapy and TROP directed antibody-drug conjugates in 

trials (e.g. Sacituzumab-govitecan (42) and Datopotamab-deruxtecan NCT05374512). A fifth subtype, 

known as normal-like breast cancer, closely resembles luminal A, but is triple negative. There are few 

studies on this subtype, but their clinical significance remains undetermined. Therefor this subtype is 

not included in the reference treatment guidelines for early breast cancer (29). Ongoing research 

revealed new breast cancer subtypes, such as Claudin-low breast cancer. It represents an aggressive 

molecular subtype that is comprised of mostly triple-negative tumour cells that possess stem cell-like 

and mesenchymal features (43). 

Accurate assessment of breast cancer intrinsic subtypes is important, as they have distinct 

biological features. The expression status of ER, PR, and HER2 is both prognostic and predictive for 

therapy decisions (Figure 1), and further distinct prognostic signatures can be identified with gene 

expression profiling. Mammaprint and OncotypeDX have been approved for clinical use (29).  

Somatic aberrations –caused by replication stress, mitotic errors, spindle multipolarity, and so 

on– contribute to carcinogenesis by inducing abnormal gene expression. These somatic alterations 

include single-nucleotide variants (mutations) and copy number aberrations (CNAs) (18). Although 

being highly influenced by mutations in oncogenes such as ErbB2 (HER2) and tumour suppressors such 

as TP53 and BRCA1/2, breast cancer is predominantly a copy number driven disease, as CNAs account 

for the greatest variability in gene expression (20, 44). Accumulation of CNA such as amplifications, 

deletions or rearrangements of chromosomal segments is an ongoing event in tumour evolution. Large 

studies revealed recurrent driver alterations and specific copy number signatures that attribute to 

biological phenomena like genomic duplication, aneuploidy, loss of heterozygosity (LOH), homologous 

recombination deficiency, and translocations (45, 46). For example, deletions at chromosome 11q and 

17p, with loss of important tumour suppressor genes like TP53 on 17p13, are known to be present in 

early stages of breast cancer, and are associated with relapse and worse clinical outcome (47, 48). 

Chromosomal LOH at 5q, containing important genes for BRCA1-dependent DNA repair, can be found 

in basal-like breast cancers and is associated with genomic instability (49). HER2-enriched breast 

cancers are characterized by the amplification of ErbB2 located at 17q21, generally analysed by FISH 

(50). Integrated analysis of CNAs beyond the standard molecular subtyping (as stated in figure 1), can 

further subclassify breast cancers into integrative clusters that provide important biological insights 

into the potential molecular drivers and pathways underlying certain groups (46). These have distinct 

implications for the rationale development of targeted therapeutics (51). 
The efficacy of targeted therapy depends on their ability to block specific molecular 

aberrations (Table 1). Many effective drugs have been developed for HER2 positive early and advanced 

breast cancer. Analysis of recurrent tumour biopsies only rarely identifies acquisition of HER2 

amplification among tumours originally defined as HER2-negative primary cancers (26). HER2 

mutations that activate HER2 in the absence of gene amplification may sensitize breast cancers to the 

dual-kinase inhibitor neratinib (52). The most common mutations in ER+ breast cancer are activating 

mutations in the PI3 kinase pathway PIK3CA gene, arising in nearly 40% of tumours (26). These ER+ 

tumours respond significantly better to a combination of fulvestrant with the PI3 kinase inhibitor 

alpelisib (53), and therefore should always be tested. Commonly acquired mutations include those in 
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the ER (ESR1) and are associated with resistance to aromatase inhibitors in ER+ advanced breast 

cancers. Recent data suggest that acquisition of PIK3CA mutations may accompany resistance to 

fulvestrant-based endocrine therapy, suggesting that serial determination of ESR1 and PIK3CA 

mutation status may become clinically important (26, 54). Among patients with TNBC, mutations in 

the PI3 kinase pathway genes (PIK3CA, AKT1, PTEN) may identify sensitivity to the AKT inhibitors 

ipatasertib and capivasertib (26), although in the last years other treatment options have become 

available for TNBC. Combined chemotherapy with immunotherapy like pembrolizumab or 

atezolizumab is now considered for patients with TN MBC that are PD-L1 positive (55, 56). Besides, 

Table 1 Targets in Breast Cancer with related FDA and EMA-approved drugs. Abbreviations: ET endocrine 
therapy, Tras trastuzumab, Cape Capecitabine, T-DM1 trastuzumab-emtansine, T-Dxd trastuzumab-deruxtecan, 
Adj. adjuvant, EBC early breast cancer, mt mutated, PD progressive disease. From ESMO handbook Sept 2022. 
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tumour genomic and somatic sequencing for BRCA1 and BRCA2 will reveal pathogenic mutations in 

approximately 5% of breast cancers (26). Identifying germline BRCA1/2 mutations selects patients with 

advanced breast cancer for treatment with platinum chemotherapy or PARP inhibitors (57, 58, 59). 

Primary tumour biopsies provide only a snapshot of cancer evolution, hence therapeutic 

targets for treatment of metastatic disease might be missed (60). Importantly, from a clinical 

perspective, metastasis is the most critical aspect of tumourigenesis since over 90% of cancer mortality 

is caused by metastasis (61). In these patients, disease progression due to continuous changing biology 

and resistance patterns, influenced by prior therapies, seems unavoidable (62). To extend the survival 

of metastatic cancer patients, accurate profiling of the disease is key, as was demonstrated in the 

IMPACT trial (NCT00851032) (63). Investigators found that the 3-year overall survival rate was 15% for 

patients assigned to matched targeted therapy compared with 7% for those who did not receive 

precision therapy. Treatment of patients should therefore be based on ad-hoc information on the 

various tumour subclones present at that moment. However, repeated tumour biopsies are in many 

cases not feasible for technical reasons and mostly not without risk for the patient (64). Therefore, an 

ever-increasing effort is being made to get accurate tumour information through minimal invasive 

sampling of blood, called liquid biopsy. 

Liquid Biopsies 
Over the last two decades, liquid biopsy has evolved to a very active field of research, with over 25,000 

articles listed in PubMed as of January 2000, most of them focussing on circulating tumour cells (CTCs) 

or circulating tumour DNA (ctDNA). Besides, circulating cell-free RNA, micro RNA, extracellular vesicles 

such as exosomes, tumour educated platelets, proteins, and metabolites have been explored and 

extensively reviewed by others (65, 66). From this body of research, it has become increasingly clear 

that it is of critical importance to find specific combinations of markers that can identify a cancer’s 

status, origin, and evolution (67). However, not only circulating tumour biomarkers must be considered 

as with the increased use of immunotherapies as treatment options, the need to monitor the 

circulating immune microenvironment increases (68, 69). For this thesis I will focus on both CTCs and 

ctDNA, which are the most clinically well-developed biomarkers detected by liquid biopsy.  

CTCs are shed from various tumour sites into the bloodstream or lymphatic system (Figure 3). 

Still, they are relatively rare, representing only one in more than a million blood cells (70). CTC count 

in patients with metastatic breast cancer (MBC) is a strong prognostic factor for overall survival (71, 

72). The half-life of CTCs in the circulation is thought to be between 1 and 2.4 hours (73), which enables 

CTC analysis to be considered as a ‘real-time’ snapshot of disease burden. Metastasis through the 

bloodstream is a highly inefficient process due to a combination of physical stress, oxidative stress, 

anoikis (programmed cell death induced upon cell detachment from ECM), and the lack of growth 

factors and cytokines (74, 75). Those few CTCs that do survive either actively extravasate into the 

surrounding tissue or become lodged in a capillary bed (76, 77). CTCs that fully or partially undergo 

epithelial-to-mesenchymal transition (EMT) are more likely to survive in the bloodstream as they have 

an increased plasticity and motility, and are more resistant to anoikis (78, 79). Interestingly, recent 

evidence has emerged showing that neutrophils can escort CTCs through the blood stream and 

promote cell-cycle progression and subsequently increase their survival (80). Another study has 

implicated the recruitment of giant macrophages by platelets possibly promoting CTC survival in 

circulation (81). Moreover, platelets protect CTCs in the bloodstream and form aggregates that 

promote binding to the endothelium and subsequent extravasation into the target tissue (82). It is 

thought to be this sequential recruitment of platelets and granulocytes that promotes metastatic 
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progression of CTCs, by creating an ‘early metastatic niche’ (83). All these studies highlight the 

importance of the immune component in the circulating microenvironment (Figure 3). Additionally, 

the lymphatic environment has been demonstrated to protect circulating melanoma tumour cells from 

ferroptosis and increase their survival during subsequent metastasis through the blood stream (84). 

Overall, CTCs are considered to represent the actual tumour burden and especially mesenchymal cells 

are thought to be the precursors of metastasis (85). Along those lines, CTCs with an intermediate 

phenotype (partial EMT) might have the highest plasticity to adapt to both the bloodstream and distant 

organ sites (78). More recently, the focus has shifted towards CTCs that circulate as clusters of cells. 

These clusters are very rare but have up to a 50 times increased metastatic potential (86), and are 

associated with poor prognosis (87, 88). CTC clusters are even capable of passing capillaries by 

unfolding into single-file chains, and then rapidly reorganise (89). As mentioned above, platelets can 

co-aggregate with these CTC clusters, within these newly formed microenvironments they produce 

high levels of TGF- that increase EMT of the CTCs (82). This acquisition of EMT could also augment 

chemoresistance within these clusters (90). In all, EMT, as well as stromal-derived factors or CTC-

immune cell interactions may provide survival signals that increase CTC survival and enhance their 

metastatic potential. Dissecting the contributions of these various mechanisms requires the ability to 

isolate CTCs from the bloodstream.  

Many devices have been developed to enrich and detect CTCs. Enrichment, in order to increase 

the concentration of CTCs, has been performed by use of biological properties (positive or negative 

selection based on protein expression), physical properties (i.e. density, size, deformability, or electric 

charges), or combinations of these techniques (91). Although, the only FDA approved device for 

enrichment and enumeration of CTCs is the CellSearch® system, that uses positive selection with 

magnetic bead-coupled anti-EpCam antibodies (71). Besides enumeration using immunologic assays, 

CTCs can be used in molecular or functional assays (92). CTCs offer the potential to obtain information 

at the DNA, RNA, and protein level (Figure 2) using various molecular techniques (93). Furthermore, 

Figure 2. Clinical applications of CTC and ctDNA analyses in cancer care. Illustration of molecular analyses 
that are enabled by the isolation of CTCs and ctDNA from blood specimens. These may be applied to guide 
different treatment strategies from the initial diagnosis until advanced disease. Figure adapted from (2). 
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CTCs are used in in vitro (i.e. establishment of cell lines) and in vivo studies (i.e. xenograft models), to 

facilitate functional studies like drug testing (94, 95, 96, 97). Although, establishing cultures or 

xenografts requires many CTCs per patient, and is therefore only possible for patients with advanced 

disease. 

Molecular analysis of CTCs enables researchers to detect the presence of multiple aberrations 

within the same cell, in order to decipher tumour heterogeneity and map clonal evolution (98), while 

conventional molecular analysis of whole tumours provides genotype or phenotype information of 

only the dominant clones or cumulative information of all clones. Chapter 2 of this thesis is an 

extensive literature review focussed on the genomic and transcriptional heterogeneity found in the 

CTC compartment (99). It further discusses the technical considerations of CTC analysis and its 

significance for clinical decision making. In Chapter 3 we performed targeted and shallow whole 

genome sequencing of 136 samples of singles and pools (varying 5-150 cells per pool) of tumour cells 

from three patients in order to unveil heterogeneity within the CTC and disseminated tumour cell (DTC) 

compartment. Interestingly, we observed only a limited heterogeneity of the CTC compartment in 

advanced stages of disease. 

Circulating tumour (ct)DNA is the fraction of circulating cell free (cf)DNA that originates from 

tumour cells. ctDNA is released by apoptotic or necrotic cancer cells from the primary tumour, 

metastases, or CTCs, or might even be actively secreted after digestion by immune cells (100). It can 

be highly diluted, especially during cancer therapy, when normal cells are as well damaged by surgery, 

chemotherapy, or radiotherapy. cfDNA has a typically fragment length of 85-230 base pairs (101). 

ctDNA can be differentiated from normal cfDNA as it carries tumour-related genetic and epigenetic 

alterations that might be relevant to cancer development, progression and resistance to therapy (102). 

The half-life of cfDNA in the circulation is between 16 minutes and 2.5 hours (102, 103, 104, 105), 

which is comparable to CTCs. It is cleared from the circulation via direct nuclease action or via renal 

excretion (105, 106, 107). It is even described that ctDNA can be taken up by host cells inducing cell 

transformation, which fosters tumour progression (100, 108). 

cfDNA is easier to obtain, ship and store compared to CTCs, however it is restricted to genetic 

and epigenetic analysis of the DNA (Figure 2) (109). Straightforward DNA extraction will deliver 

fragments within a small size range that does not need cutting or shearing for downstream analysis. 

This makes ctDNA research far less laborious and expensive compared to CTC studies. However, due 

to its very low concentration, highly sensitive and specific methods are needed for detection of cancer 

alterations like mutations or copy number changes.  

Clinical use of liquid biopsies  
Liquid biopsies have the potential to provide a more comprehensive profile of both primary tumours 

and metastases, compared to a sample harvested directly from the solid tumour. This is especially true 

considering the spatial heterogeneity of primary tumours. Blood sampling can be focussed on various 

stages of the disease being early detection or screening, prognostication in primary cancer, detection 

of minimal residual disease (MRD) to select patients at risk for recurrence or metastatic disease, or at 

time of advanced disease for monitoring therapy response or even therapy selection (110, 111). On 

the downside, compelling evidence that CTC guided treatment is improving patient survival is lacking 

and has so far only be studied in few trails. One on these, known as STIC-CTC, based treatment of 

advanced breast cancer patients on CellSearch results and suggest that patient with high CTC counts 

should be treated aggressively and have better outcome when receiving chemotherapy as front-line 

treatment (72, 112). Multiple prospective studies (CirCe01, LAP105594, NCT01048099) investigated if 
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treatment of patients with various anti-HER2 drugs can improve progression-free survival (PFS) in 

patients that “gained” HER2 in CTCs at the metastatic stage (113), though no major break throughs 

have been made. In chapter 4 we compare different analysis methods for HER2 on CTCs (at DNA, RNA, 

and protein level) and discuss the why above trials were not able to demonstrate clinical significance. 

In all, these data show that more clinical testing is needed to propel this technology as a tool for guiding 

treatment. In recent years, ctDNA research has overtaken CTCs as studied analyte in liquid biopsies. 

ctDNA quantity, measured by CNA or mutation burden, is a strong prognostic factor for overall survival 

in MBC (114, 115). In chapter 5 we discuss how ctDNA fraction can be used to predict treatment 

outcome and progression-free survival. ctDNA is rapidly entering clinical use. In NSCLC, real-time PCR 

for the qualitative detection of EGFR exon 19-21 deletions and mutations is used determine whether 

patients are eligible for treatment with EGFR inhibitors (116). Also in advanced breast cancer cfDNA 

presents an alternative way to conduct genomic testing in patients (117). It is particularly useful to 

identify mutations in the cancer that are acquired through treatment and may not be readily 

detectable before treatment or that might evolve over time. The most prevalent acquired mutation in 

breast cancer is mutation in the ESR1 gene in advanced ER+ breast cancer. These are selected in the 

cancer by prior aromatase inhibitor (A-I) therapy. Identification of ESR1 mutations in ctDNA predicted 

resistance to subsequent A-I and showed improved progression-free and overall survival with 

fulvestrant (118, 119). Many studies have been performed towards the use of liquid biopsies in early 

detection, as well as determining its prognostic and predictive value in local and advanced disease. 

These will be extensively reviewed in the discussion of this thesis. 

 

  

Figure 3. Biology of tumour blood dissemination: stepwise progression from CTC release to overt metastasis 
formation. The diversity of molecular mechanisms leading to tumour dissemination are mirrored by a substantial 
heterogeneity in the pool of CTCs present in the blood. There are multiple entry sites for cells into the blood (primary 
tumour, lymph node, metastasis) and molecular mechanisms implicated in invasion (EMT, mesenchymal-amoeboid 
transition (MAT), single or collective migration). Figure adapted from (9). 
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Evaluation and Consequences of Heterogeneity in the Circulating Tumor Cell 

Compartment 

ABSTRACT 

 

A growing understanding of the molecular biology of cancer and the identification of specific aberrations 

driving cancer evolution have led to the development of various targeted agents. Therapeutic decisions 

concerning these drugs are often guided by single biopsies of the primary tumor. Yet, it is well known 

that tumors can exhibit significant heterogeneity and change over time as a result of selective pressure. 

Circulating tumor cells (CTCs) are shed from various tumor sites and are thought to represent the 

molecular landscape of a patient’s overall tumor burden. Moreover, a minimal-invasive liquid biopsy 

facilitates monitoring of clonal evolution during therapy pressure and disease progression in real-time. 

While more information becomes available regarding heterogeneity among CTCs, comparison between 

these studies is needed. In this review, we focus on the genomic and transcriptional heterogeneity found 

in the CTC compartment, and its significance for clinical decision making. 

INTRODUCTION 

 
Metastatic disease is responsible for over 90% of cancer-related deaths (1). Due to a growing insight in 

the molecular mechanisms driving cancer evolution and identification of specific molecular aberrations 

involved, an increasing number of patients is now considered candidate for treatment with so called 

targeted agents (2, 3). However, when it comes to therapy decision making, intra-patient heterogeneity 

should be taken into account. Here we discuss the molecular heterogeneity within the circulating tumor 

cell (CTC) compartment in various tumor types. Furthermore, we review the causes and consequences 

of this heterogeneity and the clinical perspective.  

Intra-tumor heterogeneity  
Advances in DNA sequencing techniques and comparison of tumor samples obtained from different sites 

and at different time points, have revealed an extensive view on clonal evolution and intra tumor 

heterogeneity (ITH). During tumor development, cancer cells acquire various aberrations, including both 

passenger (neutral) and driver (advantageous) mutations. Due to selection and clonal expansion, 

multiple genetically distinct subclones can emerge that often evolve following a pattern of branched 

evolution, which has been described for various solid tumor types (4-15). This branched evolution 

comprises multiple subclones that have a phenotypic advantage within a particular environment and 

evolve simultaneously resulting in ITH, whereas a linear evolutionary pattern describes a random genetic 

drift where fitter clones outgrow ancestral clones, resulting in a relatively homogeneous tumor at any 

given moment (16). Exome sequencing of multiple tumor foci from clear-cell renal carcinomas revealed 

that only one-third of the identified driver aberrations were present in every region analyzed from an 

individual tumor, suggesting these to be early founder aberrations. In contrast, 71% of driver mutations 

were heterogeneous between tumor regions, although appearing clonally dominant within individual 

regions, showing branched evolution with spatially separated dominant subclones (6).  

During the development of metastatic disease, tumor cells shed from the primary tumor are 

able to travel to distant organ sites to seed metastatic tumors (17). Moreover, in breast, prostate, and 

pancreatic cancers, it has been shown that these cells disseminate long before metastatic colonization 
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becomes clinical evident (18, 19). Both early and late dissemination, as well as polyclonal and 

bidirectional seeding between different tumor sites, and parallel evolution have been described (20, 21). 

Hence, different tumor sites will consist of unique evolutionary landscapes, leading to inter-metastasis 

heterogeneity (12, 21-23). 

Although clonal diversity can be resolved by spatial sampling (7) in combination with deep-

sequencing of tumor tissue to determine (sub)clonality of certain mutations (9-11, 24, 25), the field is 

shifting towards single cell sequencing (SCS) studies to shed light on this heterogeneity. SCS allows to 

study rare tumor cell populations and clonal expansion, and is already widely used in hematopoietic 

cancers, including Acute Myeloid Leukemia (26, 27). However, in solid tumors, patients often exhibit 

multiple lesions composed of genetically diverse subclones that evolve in parallel over time (28, 29), 

hampering the evaluation of targetable aberrations in a patient’s metastatic disease (22, 30, 31). Hence, 

single tumor biopsies fail to represent the clonal landscape of the overall tumor burden. Moreover, 

changing biology and resistance patterns, influenced by prior therapies, stresses the need for repeated 

sampling of a patients tumor burden, to expose the molecular landscape at various moments in time 

(23, 32). 

Circulating tumor cells 

CTCs are shed into the peripheral blood from various tumor deposits and represent the actual tumor 

mass as was demonstrated by comparative analysis of CTCs, primary tumors, and metastases in various 

tumor types (33-37). CTC capturing systems have revealed that aggressive tumors release thousands of 

cancer cells into the circulation each day (38-41), although most CTCs only persist for a short time in the 

circulation, with an estimated half-life between 1 and 24 hours (38, 42, 43). It is assumed, however, that 

CTCs with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity 

and can survive in the circulation (44-46). Although CTCs are a frequent phenomenon in cancer, only a 

small fraction (<0.01%) eventually succeed in forming metastasis (47, 48). This was further 

demonstrated with the identification of specific subsets of CTCs with tumor-initiating capacity (39, 40, 

49, 50).  

In general, CTCs are relatively rare, representing only one in more than a million blood cells (40). 

Still, CTC count of patients with metastatic cancer is a strong prognostic factor for overall survival in 

several tumor types (51-60). Moreover, changes in CTC counts during treatment are used as a marker 

for therapy response (42, 55, 61-64). Genotyping of circulating tumor (ct)DNA, derived from tumor 

deposits and lysed CTCs, also has the potential to serve as a marker for tumor burden, therapy response, 

and even therapy resistance patterns, when followed longitudinally (32, 65-68). Moreover, mutation 

levels in plasma can reflect the multifocal clonal hierarchy of tissue biopsies from a patient with 

metastatic breast cancer during therapy (23). Compared to CTCs, ctDNA is easier and less laborious to 

obtain. Nonetheless, CTCs represent pure and intact tumor cells. Molecular analysis on DNA, RNA, and 

protein level (33, 69), as well as functional cellular characteristics can only be interrogated in CTCs (39). 

In addition, molecular analysis of CTCs enables researchers to detect the presence of multiple mutations 

within the same cell, in order to decipher tumor heterogeneity and map clonal evolution. When 

combining genomic and transcriptomic evaluation of CTCs, a potential linkage between mutational 

status and pathway activation can be observed (70).  

CTCs can be analyzed both as pure cells as well as enriched fractions. Mutation detection of DNA 

extracted from CTC-enriched samples demonstrated activating mutations in the EGFR, KRAS, and AR 

genes in patients suffering from lung cancer, colorectal cancer (CRC), and castration-resistant prostate 

cancer (CRPC) respectively (65, 71, 72). Additionally, RNA analysis of enriched CTC fractions have been 
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performed using reverse transcription PCR (RT-PCR) amplification of tumor-specific transcripts, such as 

AR splice variant 7 in CRPC, and translocations like EML4–ALK in lung cancer and TMPRSS2–ERG in 

prostate cancer (42, 73-75). However, sequencing of enriched fractions is complicated by low levels of 

tumor-specific templates and contamination by abundant leukocyte-derived sequences, limiting the 

sensitivity and specificity (76, 77). Advances in next generation sequencing (NGS) strategies and 

computational analyses help resolve this challenge. Nevertheless, single CTC sequencing strategies can 

provide a direct insight into CTC heterogeneity by identifying co-existing mutations within a cell. Heitzer 

and colleagues, profiled individual CTCs isolated from patients with metastatic CRC, using array-

Comparative Genomic Hybridization (CGH) and targeted panel sequencing of 68 genes. Various genomic 

aberrations in CTCs were found, indicative for their subclonal origin from specific areas of the original 

tumor (33). 

Overall, cancer presents a problem of continuous spatial and temporal complexity, particularly 

due to selection pressures such as anti-cancer drugs, that may promote dominance of previously minor 

or dormant lineages (78). It is important to note that subclonal diversity is viewed as a snapshot, and 

only serial analysis of CTCs can clarify the much needed dynamic view of tumor genomes, as pointed out 

in figure 1. Both in metastasis research, as well as in clinical practice, it is important to know whether a 

minor subclone is emerging or has been outcompeted by the dominant subclone (16). Longitudinal CTC 

studies have been performed to investigate the clonal changes in both phenotypical and molecular 

profiles associated with disease evolution and therapy resistance (79-81). Hence, CTCs might reflect the 

characteristics of the current status of the biologically and clinically relevant subclones irrespective of a 

detailed anatomical distribution, and should ideally be suited to provide dynamic assessments of tumor 

characteristics in patients with metastatic disease. Even more since repeated sampling of multiple 

metastatic lesions is an invasive procedure and often not feasible.  

Although increasingly sophisticated technologies have become available to detect and isolate 

CTCs, as is already extensively reviewed (82-88), further progress in CTC research is needed to envision 

heterogeneity and clonal evolution within the CTC compartment. Major questions in CTC research 

implicate the clonal relationship between CTCs and the number of CTCs that have to be analyzed in order 

to capture the overall profile of the dominant disease driving (sub)clones in a patient suffering from 

widespread metastatic disease. In this review, we will focus on the genomic and transcriptional 

heterogeneity found in the CTC compartment, and its significance for clinical decision making. 

GENOTYPIC CTC HETEROGENEITY 

 

A growing number of research articles have been published demonstrating genotypic heterogeneity in 

the circulating compartment, emphasizing the need for studies analyzing multiple purified CTC samples. 

This can be performed focusing on several types of aberrations such as gene rearrangements, mutations, 

and CNA profiles. Here we compare the results regarding genomic variation in CTCs of various tumor 

types (summarized in table 1). We found that in many patients rearrangements as well as specific and 

global mutation profiles were highly heterogeneous. Concerning CNA profiles, homogeneity in overall 

profiles was reported frequently, although in both breast and prostate cancer intra-patient variation 

was observed. Furthermore, changes in CNA profiles over time were documented and in depth analysis 

of copy number profiles of specific genes in various tumor types demonstrated extensive heterogeneity. 
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Figure 1: CTCs as snapshot of the evolving tumor landscape. Clonal evolution depicted as emergence 
of clones after acquisition of driver mutations. New (sub) clones derive from ancestral clones following 
linear and branched evolution. Outgrowth and repression (therapeutic or outcompeting) of these 
subclones can lead to emergence and disappearance of driver mutations respectively. Seeding and re-
seeding of tumor cells causes development of changing tumor landscapes at multiple sites. Selective 
therapy pressure can lead to outgrowth of resistant clones at time of disease progression. CTCs sampling 
can function as a snapshot of the overall tumor bulk (primary tumor and metastases). When profiling 
CTCs at multiple time points emerging and decreasing subclones can be unveiled. Techniques to profile 
CTCs include phenotypical and molecular analyses. 



32 
 

Rearrangements  

Several research groups studied rearrangements of the ALK gene in CTCs using Fluorescence in situ 

hybridization (FISH) (89-91). In non-small cell lung cancer (NSCLC), EML4-ALK fusion is present in 

approximately 3-7% of cancers, and these patients are eligible for targeted treatment with crizotinib and 

ceritinib (92-94). Pailler and colleagues demonstrated that percentages of ALK-rearranged CTCs ranged 

between 28% and 100% in patients with ALK-positive tumors, and varied within these patients during 

crizotinib therapy. This suggests that the ALK-rearranged CTC population might be a consequence of 

clonal selection from a specific subpopulation of primary tumor cells, and that outgrowth of this 

subpopulation can be an indication for therapy resistance (89). Percentages of ALK-rearranged CTCs 

were confirmed by two other studies. In a first report, one-fourth of the total 177 CTCs of one patient 

harbored ALK rearrangements (90) and in the other, 100% of the CTCs of 5 patients were ALK-rearranged 

(91), whereas in the primary tumor tissue this was around 50% in both studies. Furthermore, ROS1 

rearrangements were found in CTCs of four patients with lung cancer (95). FISH has also been used to 

analyze ERG rearrangement in prostate cancer CTCs (96, 97). TMPRSS2-ERG gene fusion was either 

homogeneously present in all CTCs of one patient or absent (96). Although presence of this ERG 

rearrangement demonstrates a significant association with PSA response to abiraterone in this study, 

TMPRSS2-ERG status could not predict a decline in PSA or other clinical outcomes in response to 

abiraterone therapy in a clinical trial evaluating enriched CTC populations (97).  

Hotspot mutations  

In breast cancer, PIK3CA is mutated in up to 25% of patients, with mutation frequencies rising to 40% in 

the hormone receptor-positive subgroups (98, 99). Analyzing the PIK3CA genotype has clinical relevance 

with respect to drug resistance, e.g. against HER2-targeted therapy. Hence, various studies are 

performed investigating the PIK3CA mutational status in CTCs. In a first study, two single CTCs per 

patient were analyzed (100). In two patients PIK3CA mutations were found in all CTCs of these patients 

(resp. 1 and 2 CTCs). In a similar, but much larger study, PIK3CA mutations were detected in 16 patients, 

two of whom harboring a heterogeneous mutational status in their single and pooled CTCs (101). De 

Laere and colleagues profiled CTCs of 26 hormone receptor positive patients, ranging between 4 and 

311 CTCs per patient. In 19 cases (73%) PIK3CA mutations were detected. Of these, six cases were found 

almost homogeneously mutant for one specific mutation, whereas another six patients were extensively 

heterogeneous with subclones harboring one or multiple PIK3CA mutations (102). In contrast, another 

study detected PIK3CA mutations in only one out of 17 patients, which might be due to different patient 

selection (103). Single CTCs of 24 samples (containing 2-50 CTCs) of 12 patients were examined for 

presence of PIK3CA mutations. In one patient an exon 9 mutation was detected in two out of nine serial 

samples, both at a heterogeneous level (103). Pestrin et al. identified PIK3CA mutations in CTCs in 6 out 

of 18 patients (104). In three cases with multiple CTCs analyzed, all CTCs were homogeneously mutant. 

One patient had a heterogeneous mutational status, with 3 out of 16 single CTCs harboring three 

different PIK3CA mutations (104). When combining aforementioned studies, from a total of 47 PIK3CA 

mutated patients, 15 had a heterogeneous circulating compartment with mutated CTCs present at a 

subclonal level. Also in a study on CRC, PIK3CA mutations were present at a subclonal level in four 

patients; one of whom harbored two different PIK3CA mutations in separate CTCs (105).  

Since PIK3CA, BRAF, KRAS, and PTEN are relevant genes in predicting resistance to anti-EGFR 

therapy (106), mutations in these genes are frequently studied using CTCs. A recent study isolated 37 

single CTCs from six patients with metastatic CRC for sequencing of a 68 CRC-associated gene panel to 

determine mutational landscapes in CTCs and the corresponding primary tumors and metastases (33). 

https://en.wikipedia.org/wiki/EML4
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Point mutations in APC, KRAS, PIK3CA, and TP53 in the primary tumors were also present in the single 

CTCs. However, 20 ‘branch’ mutations were found exclusively in CTCs, although targeted ultra-deep 

sequencing revealed the presence of 17 of these mutations at subclonal level in either the primary tumor 

or metastases (33). Two more studies performed targeted sequencing of BRAF, KRAS, and TP53 of 

respectively 741 and 126 single CTCs (105, 107). The first study detected the presence of KRAS mutations 

in one-third of CTCs of one patient (105), while in the other, 6 out of 18 patients demonstrated a 

heterogeneous CTC compartment regarding these genes (107). Moreover, two studies examined 

heterogeneity of KRAS mutations in pools of CTCs (108, 109). Fabbri et al. reported one patient harboring 

three pools of CTCs with different mutational statuses. Two specific KRAS mutations were detected in 

the first pool, and another KRAS mutations was found in a second pool of pure CTCs (108). Also, temporal 

heterogeneity was shown as enriched CTC fractions exhibiting different mutational status of KRAS during 

treatment (109). However, one can argue on the sensitivity of mutation detection in enriched samples 

containing low CTC-counts, as often seen during therapy. Furthermore, mutational analysis was 

performed on multiple single CTCs collected from two patients with stage-IV melanoma. All CTCs were 

consistently BRAFV600E mutated analogous to the primary tumor (110). 

In a study towards TP53 mutations, single and pooled CTCs of two patients with metastatic 

triple-negative inflammatory breast cancer, known for harboring a TP53 mutation in their primary 

tumor, were recovered for molecular analysis (111). In the first patient, 2 of 6 single CTC harbored two 

different TP53 mutations, one of these was also found in the pool of 14 CTCs. In the second patient, 3 

of 5 single and 5 of 6 clusters of CTCs had a TP53R110delC mutation. In contrast, TP53 and RB1 were 

homogeneous in all CTCs of lung cancer patients (112).  

Temporal heterogeneity was demonstrated in pools of pure CTCs from patients with NSCLC 

receiving tyrosine kinase inhibitors. Serial analysis showed emergence of activating mutations in the 

gene encoding the EGFR conferring a mechanism of acquired resistance to therapy (65). EGFR mutation 

detection was also performed on enriched CTC samples. In 4 out 31 cases, multiple EGFR mutations were 

documented, suggesting possible CTC heterogeneity (113). However, the actual mutational landscape 

and subclonality can only be detected in single CTC samples or multiple pools of pure CTCs. 

Global mutational profile  

A recent study applied whole exome sequencing (WES) of 19 single CTCs from a patient with metastatic 

prostate cancer (34). Although non-uniform coverage, a heterogeneous mutation profile was detected 

in single CTCs. To compensate for the low coverage and random polymerase errors that did occur in 

individual CTCs, single-CTC data was pooled. Half of the somatic SNV in CTCs could be detected in the 

primary and metastatic sites, whereas the rest were CTC-specific mutations (34). Moreover, Ni et al. 

determined single nucleotide variation landscapes in CTCs of four patients with lung cancer by single-

cell exome sequencing (35). The exome data showed extensive variation from cell to cell and presence 

of ‘private’ CTC mutations, not detected in tissue samples. The authors raise the question of false 

discovery due to interfering technical errors compatible with the MALBAC method used (35). 

Copy number alterations  

Methods used to study genome-wide CNA include array-CGH and whole genome or exome sequencing. 

In prostate cancer, a wide range of CNA in pools of pure CTCs were detected in nine patients, using array-

CGH. But more specifically, CTCs showed uniform copy number gains in both the AR and CCND1 locus 

(114). In one study where two single breast cancer CTCs per patient were analyzed for CNA, all CTCs 

displayed a typical breast cancer related copy number profile (100), with six patients harboring CCND1 
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amplification in both CTCs. Yet, differences in CNA between CTC couples were to a greater or lesser 

extent visible in all cases. Furthermore, multiple CTCs of 16 patients with breast cancer were analyzed 

using array-CGH. Ten of these patients showed molecular heterogeneity based on CNA. Although, in 

seven cases were ERBB2 amplification was detected, it was homogeneous in all CTCs (101). 

However, in multiple studies in various tumor types, homogeneity in the copy number profile 

was demonstrated. WES was applied to lung cancer CTCs in two studies (35, 112). Five out of six patients 

had highly homogeneous copy number profiles, although one patient harbored substantial CNA 

heterogeneity (112). In another study, the copy number profiles of the single CTCs were highly similar 

and shared most of the same CNAs as the primary and metastatic tumor cells. Furthermore, CNA 

patterns were indicative for specific lung cancer subtypes (35). A recent study isolated 37 single CTCs 

from six patients with metastatic CRC for copy number profiling with array-CGH (33). In general, many 

of the CTCs shared a number of gains and losses with the primary and metastatic lesions. However, they 

also observed private copy number changes in CTCs as well as heterogeneity between CTCs (33). To 

define CNA in melanoma, the genomes of 15 individually isolated CTCs from seven patients were 

analyzed by single-cell CGH (115). All of the analyzed CTCs displayed multiple chromosomal changes and 

carried aberrations typical for melanoma. In five of six cases with multiple CTCs isolated, hierarchical 

clustering of the CTCs showed a clonal relationship (115).  

Sampling at multiple time-points to evaluate genetic evolution based on CNA profiles was 

performed in three studies (36, 80, 116). Dago and colleagues thoroughly analyzed CNA of multiple 

single CTCs of one patient with prostate cancer by WGS at various time points. Three different clonal 

lineages were found. One specific clone was present at subclonal level at the first blood draw, but 

demonstrated outgrowth at time of the third blood draw. A third clone only emerged at the fourth time 

point (80). Both array-CGH and WGS were applied for copy number analyses in one patient with breast 

cancer harboring extensive numbers of CTCs (36). CNA demonstrated high similarities between the 31 

single and 21 pools of CTCs ranging between 5 and 100 CTCs. Furthermore, a high degree of analogy was 

also found with CNA in primary and metastatic tissue samples (36). In a large breast cancer cohort, array-

CGH of CTCs revealed a wide range of CNA, including those known for breast cancer (116). In one patient, 

where multiple sampling was performed, CTCs of the second blood draw revealed numerous additional 

CNA beyond the baseline profile, while the third sample, divided in two pools, was comparable with 

itself and the second. Interestingly, the patient initially responded to her cancer treatment, but 

subsequently developed disease progression. In two other cases temporal homogeneity was 

documented between first and second blood draw. Furthermore, CTCs and the primary tumor were 

moderately and highly correlated, respectively (116).  

Then, various studies have thoroughly analyzed CNA of specific target genes using FISH. In 4 

patients with lung cancer, ROS1 copy numbers were heterogeneous between CTCs (95). In prostate 

cancer, FISH was applied to study CNA of AR, BRCA1, MYC, and PTEN (96, 117, 118). Leversha and 

colleagues report a considerable variability in CTCs of individual patients. In one patient, a subset of CTCs 

showed AR amplification, whereas all CTCs had high copy number gain for MYC (117). A similar 

heterogeneity in AR amplifications and loss of the tumor suppressor gene PTEN was detected by Attard 

et al. when profiling 49 patients suffering CRPC (96). FISH analysis further revealed BRCA1 losses 

appearing in minute fractions of CTCs in four of seven patients (118). In breast cancer, fluorescent cell 

sorting was combined with FISH to analyze EGFR amplification in CTCs (50). 11% and 6% of CTCs from 

ALDH1 positive and negative populations respectively, harbored EGFR amplification (50). Furthermore, 

EFGR copy number gain was found in 37% of CTCs of three patients with CRC, based on array-CGH data 

(105).  
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Table 1:  Genomic heterogeneity in CTCs 

#CTC #Pts Isolation Analysis Targets Heterogeneity Ref. 

Lung cancer 

n.s. 32 MF (ISET) FA-FISH ALK 
rearrangements 

18 ALK+ patients exhibited between 7 and 24 CTCs/ml, mean 
percentage of ALK-rearranged CTCs was 63% (range 28-100%).  
All ALK- patients had <4 rearranged CTCs.  
 

89 

n.s. 5 MF (ISET) FA-FISH ALK 
rearrangements 

5 patients showed ALK-gene in all CTCs (100%), while in the primary 
tumor only half of the tumor cells show ALK-gene rearrangements. 
 

91 

177 
 

1 microfluidics 
+ cytospin 

FISH  
 

ALK 
rearrangements 

25% of the total 177 CTC of 1 patient harbored ALK-gene 
rearrangements, and 54% of the 200 primary tumor cells did.  
 

90  

n.s. 8 MF (ISET) FA-FISH ROS1 
rearrangements 

ROS1 rearrangements were detected in the CTCs of all 4 ROS+ 
patients. ROS1 copy number was heterogeneous within these    
CTCs. CN was increased at time of disease progression. 
 

95 

8 
 

1 CS + MM WES CNA;  
mutations;  
indels 

CNA show inter-CTC homogeneity, and represent metastatic tumor. 
SCLC and NSCLC can be differentiated based on CN-profile. 
Mutations and indels were highly heterogeneous in all CTCs. 
 

35 

8 + 
pools 
 

2 CS + DEPArray WGS; 
TAS 

CNA; TP53, RB1 
mutations 

CNA strongly correlated, but  1 of 6 CTC harbored substantial        
CNA differences. TP53 and RB1 mutations were homogeneous. 
 

112 

1 pool 4 microfluidics Allele-
specific 
PCR 

EGFR mutations 
and CNA 

Temporal heterogeneity in EGFR mutations. Genotypes of enriched 
CTC fractions evolved during therapy, with consistent presence of 
the primary EGFR activating mutation and the emergence of a drug-
resistant mutation. 

65 

Colorectal cancer 

37 
 

6 CS + MM aCGH; 
Panel 

CNA;  
68 CRC-related 
gene panel 

Multiple CRC related CNA and mutations were found in CTC and 
tissue samples. Various CTC-specific mutations, but most were  
retraced at subclonal level by ultra-deep sequencing of the tissue 
samples. Inter-CTC heterogeneity, with some private mutations.  
 

33 

741 
 

33 CS + MM qPCR; 
TAS 

EGFR CNA;  
PIK3CA, KRAS, 
and BRAF 
mutations 
 

CN-gain of EGFR was found in 27% of CTCs of 3 patients,                     
1 patient had KRAS mutations in 33% of CTCs, 39% of CTCs                 
of 4 patients harbored PIK3CA mutations. 
 

105 

126 
 

31 CS + MM TAS 
 

TP53, KRAS and 
BRAF mutations 
 

CTCs were analyzed of 18 patients. 6 patients harbored 
heterogeneous CTC populations. 
 

107 

pools 21 DGC + 
DEPArray 

TAS; 
PyroSeq 

KRAS mutations In 1 patient, 3 pools of CTCs had different mutational statuses,       
two mutations were found in the first pool and another mutation       
in a second pool of isolated CTCs. 
 

108 

pools 
 

2 CS enriched qPCR KRAS mutations Temporal heterogeneity: enriched CTC fractions exhibited        
different mutational status of KRAS during treatment. 

109 

Prostate cancer 

n.s. 49 CS On-chip 
FISH 

ERG rearrange-
ments; PTEN 
and AR CNA  
 

FISH on CTCs reveals homogenous ERG rearrangements but 
heterogeneous AR amplifications and PTEN deletions. 
 

96 

n.s. 77 CS + cytospin FISH AR and MYC 
CNA 

There was considerable variability in the morphology of CTCs              
in individual patients. 1 patient showed heterogeneity of FISH 
patterns, with AR amplification in a subset of CTCs, but all with    
high copy number gain for MYC. 
 

117 

n.s. 7 DGC + 
cytospin 

FISH BRCA1 CNA In 4 of 7 patients, BRCA1 losses appeared in a fraction of CTCs. 
 
 

118 
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pools 
 

9 IE/FACS aCGH CNA  CTCs from all patients revealed a wide range of CNA. Replicate     
CTC isolates where comparable showing gains in the CCND1           
and AR locus. 
 

114 

41 
 

1 HD-CTC + MM WGS CNA Three different clonal lineages were found. Clone B was present 
subclonally at first blood draw, but demonstrated outgrowth in       
the third blood draw. A third clone emerged at fourth blood draw. 
 

80 

19 + 
10 
 

2 
 

MagSweeper 
+ MM 

WES Somatic SNV Although non-uniform coverage, a heterogeneous mutation profile 
was detected in single CTCs. When pooling the CTC data, found   
SNVs were comparable to the primary tumor. 
 

34 

Breast cancer 

261 + 
pools 
 

42 CS + DEPArray aCGH; 
qPCR; 
TAS 

CNA;  
ERBB2 CNA;  
PIK3CA 
mutations  

2 patients had heterogeneous PIK3CA mutational status in their 
single and pooled CTCs. 10 of 16 patients harboring PIK3CA 
mutations showed molecular heterogeneity based on CNA. ERBB2 
amplification was uniformly detected in all CTCs of 7 patients.  
 

101 

26 
 

12 CS + flow 
sorting 
(MoFlo XDP)  

aCGH; 
qPCR; 
TAS 

CNA; 
CCND1 CNA; 
PIK3CA 
mutations 

CNA were found breast cancer related in all CTCs, but differences    
in CNA between related CTCs were visible in all cases. 1 patient 
harbored a mutation in exon 20 of the PIK3CA gene in both CTCs  
and 1 patient harbored another PIK3CA mutation in 1 of 1 CTCs. 
 

100 

147 + 
pools 
 

26 CS + DEPArray TAS PIK3CA 
hotspots 

11 of 26 patients were found to harbor a heterogeneous PIK3CA 
mutational status in their CTC compartment. 
 

102 

115 + 
pools 
 

18 CS + DEPArray TAS PIK3CA 
hotspots 

3 patients were homogeneously mutated in all CTCs. 1 patient       
was found to have three different PIK3CA mutations. 
 

104 

185 
 

17 MagSweeper  
+ MM 
 

TAS PIK3CA 
hotspots 

1 patient showed to harbor a heterogeneous CTC compartment    
based on PIK3CA status. 
 

103 

11 + 
pools 
 

2 CS + DEPArray TAS TP53 mutations In one patient, 2 of 6 single CTC harbored two different TP53 
mutations. In the second patient, 3 of 5 single and 5 of 6 clusters      
of CTCs showed a TP53R110delC mutation. 
 

111 

402 
 

3 DGC + 
cytospin 

IF/FISH 
(BioView) 

EGFR CNA 10 of 91 ALDH1+/HPSE+ cells showed EGFR amplification.              
This was 19 of 311 in the ALDH1-/HPSE+ population. 
 

50 

31 + 
pools 

1 CS ór DGC + 
MM  
 

WGS; 
aCGH 

CNA CNA show homogeneity within all isolated CTCs. 
 
 

36 

n.s. 
 

3 IE/FACS aCGH CNA Temporal heterogeneity: Serial testing of enriched CTC populations 
revealed numerous additional CNA beyond the baseline profile. 
 

116 

Melanoma 

24 + 
18 
 

2 Microfluidic + 
LCM 

TAS BRAF mutations Consistency in the BRAFV600E mutation, and analogous to the 
mutation found in the primary tumor. 
 

110 

15 
 

7 IM + MM CGH CNA In 5 of 6 patients with ≥1 isolated CTC, hierarchical clustering 
showed a clonal origin. 
 

115 

Multiple cancers 

n.s. 20 
 

IM + cytospin FISH CNA 6 patients had a homogeneous pattern of aneusomy in all CTCs.       
In 10 patients a heterogeneous pattern was observed, including 6 
cases with two distinct clones. 
 

49 

Abbreviations: aCGH, array comparative genomic hybridization; CNA, copy number alterations; CS, CellSearch enrichment; CTC, circulating 
tumor cell; DGC, density gradient centrifugation; FA-FISH, filter adapted fluorescent in situ hybridization; HD-CTC, high-definition CTC assay; 
IE/FACS, immunomagnetic enrichment and fluorescence-activated cell sorting; IF, immunofluorescence; IM, immunomagnetic enrichment; LCM, 
laser capture microscopy; MF, microfiltration; MM, micromanipulation; TAS, targeted amplicon sequencing; qPCR, quantitative polyclonal chain 
reaction; WES, whole exome sequencing; WGS, whole genome sequencing; n.s., not specified. 
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TRANSCRIPTIONAL CTC HETEROGENEITY 

 

While in diploid cells chromosomal DNA molecules are present with only two copies, a single cell harbors 

thousands of copies of each mRNA transcript, which facilitates single-cell RNA approaches (119). Yet, 

single cell RNA studies are affected by transcriptional bursting or pulsing (120, 121). This phenomenon 

can account for the high variability in gene expression between cells in isogenic populations, and 

therefore transcriptional heterogeneity should be evaluated with caution. On the other hand, variability 

in gene expression may also contribute to resistance of sub-populations of cancer cells to chemotherapy 

(122). Gene-expression studies in single CTCs may be essential for determining the nature and extent of 

tumor heterogeneity, linking phenotypic differences with genetic and epigenetic aberrations. However, 

preserving RNA is more difficult than DNA and concerns have been raised about the impact of sample 

processing on CTC expression profiles (123). Hence, several devices have been developed for direct and 

fast isolation of CTCs using a microfluidic approach (37, 75, 81, 124-126).  

Single cell expression profiling is performed using RNA-in situ hybridization (ish), RT-PCR, and 

RNA-sequencing (seq). While RNA-ish has the advantage of direct analysis of the RNA without whole 

transcriptome amplification, expression of far more genes can be evaluated using RT-PCR or RNA-seq. 

Differentiating the changes in gene expression that are biologically relevant from those caused by 

technical and biological noise remains a significant hurdle for single-cell transcriptome studies. Hence, 

single cell mRNA-seq protocols are being developed with improved transcriptome coverage, high 

reproducibility, and low technical variation (127, 128).  

Hereafter, we review various publications on transcriptional heterogeneity in CTCs. Often, 

patient-specific global expression profiles were observed. However, when looking in detail, significant 

heterogeneity between CTCs is found regarding specific transcripts, which is often linked to therapy 

selection or response. Table 2 gives an overview of the experimental details of these studies. 

Metastasis-associated gene expression 

In prostate cancer RT-PCR of 84 EMT-related genes was applied to analyze multiple single CTCs of 8 

patients (129). Heterogeneous upregulation of EMT-associated gene expression was found, especially in 

CRPC. RT-PCR was also used to target vimentin, EpCAM, and stem cell gene NANOG mRNA for EMT 

evaluation in approximately 400 breast CTCs (130). Temporal heterogeneity was shown as expression 

patterns changed after surgery, with emerging of a sub-population of EpCAM positive CTC expressing 

NANOG and/or vimentin. Yu et al. applied RNA-ish for scoring the relative abundance of epithelial versus 

mesenchymal transcripts within individual breast cancer CTCs of 15 patients, both during therapy or at 

time of progression (81). Clear heterogeneity was shown, with various proportions of CTCs that were 

mesenchymal. Moreover, relative changes during treatment in the expression of epithelial and 

mesenchymal markers in CTCs correlated with response and prognosis. For one patient, single CTCs were 

analyzed with RNA-ish over 7 time points and two different treatment regimens. An increased number 

of mesenchymal CTCs was repeatedly detected in the samples taken at time of disease progression (81). 

Additionally, single molecule RNA-seq was applied on CTCs to identify signaling pathways that contribute 

to EMT, and 45 enriched genes were identified (81). In metastatic pancreatic cancer, RNA-ish was used 

for detection of CTC-specific transcripts of Wnt2, which is known for its role in tumor sphere formation 

and metastasis initiation (37). Wnt2 transcripts were identified in 23 out of 66 (35%) cytokeratin-positive 

CTCs from 2 out of 8 patients. Heterogeneity was also shown in the primary tumors. The small number 

of Wnt2-positive cells was consistent with RNA-seq analysis, which showed rare Wnt2 RNA reads in both 

enriched CTCs and primary tumors (37). This demonstrates Wnt2-positive CTCs are present at subclonal 
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level and represent a rare subset of the primary tumor population. Ting and colleagues isolated 7, 29, 

and 77 single CTCs from patients with pancreas, breast, and prostate cancer respectively (125). In more 

than 15% of all CTC samples, CTCs exhibit a very high expression of stromal-derived extracellular matrix 

(ECM) genes, which have an important role in metastatic spread. One specific ECM glycoprotein gene 

was expressed at high levels in 100% of pancreatic CTCs compared to 31% of breast and 9% of prostate 

CTCs (125). 

Global gene expression profiling 

Recently, genome-wide expression profiling of single cells using NGS has been achieved (127, 128). In a 

study regarding patients with metastatic breast cancer, a homogeneous global expression pattern was 

shown, with all CTCs clustering together patient wise, except for two patients (124). Furthermore, in 

advanced melanoma, some highly expressed transcripts in single CTCs were detected (128). Although 

slight differences in gene expression, CTCs show a uniform and high upregulation of cell-cycle and 

melanoma specific markers, as well as uniform up- or downregulation of certain plasma membrane 

proteins (128). The same single cell mRNA-seq protocol was used for CTCs isolated from patients with 

metastatic prostate cancer (131). High rates of RNA degradation consistent with apoptosis amongst CTCs 

was noted, although prostate-specific and cancer-specific transcripts could still be elucidated. 181 genes 

were overexpressed in the CTCs compared to normal prostate tissue (131). Unsupervised clustering 

revealed that all CTCs, except two, cluster in a patient specific manner. Specific transcripts, e.g. related 

to CRPC or ERG-fusion, were detected homogeneously within the same patients (131). In another RNA-

seq study on prostate cancer, hierarchical clustering analysis also demonstrated patient-specific CTCs 

clustering, separated from cancer cell lines. However, single CTCs from nine individual patients with at 

least 3 CTCs analyzed, showed considerably higher heterogeneity in their transcriptional profiles 

compared to single cells from prostate cancer cell lines (126). Moreover, RT-PCR of a panel of 87 cancer 

genes demonstrated heterogeneity among individual breast cancer CTCs, separating them into two 

major subgroups based on 31 highly expressed genes (132). This was in contrast to several breast cancer 

cell lines tested. 

Prostate cancer specific gene expression 

Isolated single CTCs were tested for expression level of the PSA gene KLK3 (34). The expression profile 

of KLK3 was heterogeneous between the 26 out 48 selected individual CTCs, for which sufficient part of 

the transcriptome was covered (34). Besides, expression patterns of AR splice variants have been studied 

at a single cell level using either RT-PCR or RNA-seq (73, 126). One study demonstrated that more than 

half of all patients had multiple AR splice variants present within different CTCs and that a subpopulation 

of single CTCs had simultaneous expression of several AR splice variants (126). These results are in line 

with other data showing that acquisition of AR-independent alterations conferring resistance to 

antiandrogen therapies is very heterogeneous in patients with CRPC (79). Temporal heterogeneity 

between multiple enriched CTC samples from 21 patients with prostate cancer was shown by emerging 

of AR-V7 in one out nine patients treated with taxane chemotherapy. In contrast, seven out of twelve 

patients who were AR-V7 positive at baseline, only harbored full length AR at time of progression (73). 

Relations between therapy response and presence of variants are increasingly studied (74, 97), although 

usually not at multiple time points or with multiple CTC samples, which is needed to study tumor 

evolution.  
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Table 2: Transcriptional heterogeneity in CTCs 

#CTC #Pts Isolation Analysis Targets Heterogeneity Ref. 

Breast cancer 

n.s. 17 HBCTC-Chip RNA-ish; 

RNA-seq-

DGE 

EMT markers Heterogeneous fractions of Epithelial (E), Mesenchymal (M), and 

EM-CTCs; In TNBC more homogeneous pool of M-CTCs. Temporal 

heterogeneity was examined in 10 patients. At progressive disease, 

patients harbored emerging numbers of M-CTCs. 

 

81 

105 35 MagSweeper  

+ MM 

qRT-PCR  87 cancer-

associated 

genes 

Two major subgroups of CTCs, i.e. high expression of EMT genes and 

high metastasis-associated genes. Heterogeneity based on CTCs not 

clustering by patient-ID and 8 patients had CTCs in both clusters. 

 

132 

15 pools  10   

+ 14  

clusters 

negCTC-iChip  
+ MM 

RNA-Seq  

 

Whole 

transcriptome 

expression level 

At global gene expression level, all isolated CTCs clustered closely  

by patient of origin. Based on JUP and 31 cluster-associated genes, 

CTC-clusters could be differentiated from pooled single CTCs. 

 

124 

~400 20 IM (Maintrac)  

+ AP 

PCR + 

gelelectro

-phoresis 

HER2, EpCAM, 

Vimentin, and 

NANOG 

Expression patterns changes after surgery, with emerging of a sub-

population of EpCAM positive CTC expressing NANOG and/or 

vimentin.  

130 

Prostate cancer  

77 13 negCTC-iChip  
+ MM 

RNA-seq 

 

Whole 

transcriptome 

expression level 

Single CTCs from nine individual patient with at least 3 CTCs 

analyzed, showed considerably greater intra-patient heterogeneity 

in their transcriptional profiles compared to single cells from 

prostate cancer cell lines. 

 

126 

20 4 MagSweeper 

+ MM 

RNA-seq  Whole 

transcriptome 

expression level 

All CTCs, except two, cluster in a patient specific manner. 181 

cancer-specific genes were overexpressed in the CTCs, compared    

to normal tissue. Specific transcripts, e.g. related to CRPC or ERG-

fusion, were detected homogeneously within the same patients. 

 

131 

48 2 MagSweeper 

+ Nanowell 

RNA-seq  KLK3 (PSA) 

mRNA  

KLK3 expression was variable between the 26 individual CTCs, for 

which a sufficient number of genes including KLK3 were detected. 

 

34 

38 8 MF + MM qRT-PCR  84 EMT-related 

genes 

Heterogeneous upregulation of EMT-associated gene expression, 

especially in CRPC. 

 

129 

pools 

 

21 IM (AdnaTest) qRT-PCR  AR full length   + 

AR-V7 

Temporal heterogeneity: 1 out 9 patients converted to AR-V7 

positive, at progression on Taxane. While 7 out 12 patient who    

were at baseline AR-V7 positive became negative at progression. 

73 

Pancreatic cancer 

265 15 HBCTC-Chip RNA-ish; 

RNA-Seq-

DGE  

WNT2 RNA-ish showed heterogeneity of WNT2 expression in CTCs and the 

primary tumor. This was confirmed by RNA-seq with DGE, showing 

rare WNT2 RNA reads in the enriched CTC sample and the primary.  

37 

Melanoma       

6 1 MagSweeper 

+ MM 

RNA-seq 

 

Whole 

transcriptome 

CTCs show a uniform upregulation of melanoma markers, including 

melanoma associated tumor antigens (MAGE), as well as uniform 

up- or downregulation of certain plasma membrane proteins. 

128 

Multiple cancers 

7, 29, 

77 

n.s.  

 

negCTC-iChip  
+ MM  

RNA-seq  

 

Whole 

transcriptome 

High expression of stromal-derived ECM proteins in >15% of CTC 

samples. One glycoprotein was expressed in 100% of pancreatic 

CTCs compared to 31% of breast and 9% of prostate CTCs. 

 

125 

Abbreviations: CTC, circulating tumor cell; DGE, digital gene extraction; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; 

IM, immunomagnetic enrichment; MF, microfiltration; MM, micromanipulation; qRT-PCR, quantitative reverse transcription polyclonal chain 

reaction; RNA-ish,  RNA in situ hybridization; RNA-seq, RNA sequencing; n.s., not specified. 
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Figure 2: Power analysis for detection of minor subclones in pools of CTC. Chances of detection of minor subclones (i.e. 1%, 
5%, or 10%), calculated with a power of 0.87, for three different number of groups (i.e. 3, 5, or 10 groups) and three different 
number of cells per group (i.e. 5, 10, or 20 cells). As depicted in the lower right graph (10 groups of 20 cells), there is a 90% 
change of detecting a 1% subclone in 1 out of 10 groups, or detecting a 5% subclone in 5 out of 10 groups, or detecting a 10% 
subclone in 8 out of 10 groups. 

DISCUSSION 

Technical considerations 

Studies across multiple tumor types have demonstrated the feasibility of analyzing molecular profiles of 

single CTCs. Although technical improvements are needed, it becomes clear that CTC profiling 

contributes to our understanding of tumor heterogeneity, disease evolution (through serial sampling), 

and clinical management. To maximize the potential of CTC profiling, key issues in CTC research must be 

addressed regarding both technical and biological challenges.  

Evolution in multiple-marker and marker-independent CTC enrichment has already increased 

yield and diversity of CTCs (50, 81, 133), although it is not as extensively validated as EpCAM enrichment 

strategies. Furthermore, efforts have been made to improve both amplification methods (134-136) and 

sequencing techniques (34, 127, 128) as well as subsequent data interpretation and bioinformatics (10, 

137, 138), reviewed in more detail by Van Loo and Voet (24). This all contributes to more reliable 

detection of aberrations and evaluation of heterogeneity in CTC research. 

A major question in CTC research remains how many CTCs should be profiled to account for 

heterogeneity. Often, the molecular characteristics of only a few CTCs out of the entire pool of CTCs 

from a patient have been adequately analyzed (34, 100). As a consequence their diversity remains largely 

unknown. In primary breast cancer for example, single-molecule sequencing indicated that many of the 

diverse mutations occur at low frequencies (<10%) in the tumor mass (139). Navin demonstrated, using 

a power analysis, that detection of a 10% subclone would require sequencing at least 20 single cells to 

achieve a 0.87 detection power (140). Besides, subclonality can be evaluated using multiple small pools 

of pure CTCs (Figure 2) and determining the variant allele frequencies. Herewith technical errors typical 

for single cell research (24) can be reduced, although more CTCs need to be available and isolated. 

Furthermore, in depth comparative research towards CTCs and multiple metastases (31) should clarify 

whether the whole tumor burden contributes equally to the CTC pool or if some subclones might be 

underrepresented or absent. 
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Clinical implications and future perspectives 

Currently, biomarkers predicting therapy response are frequently assessed using primary tumor 

biopsies, reflecting only parts of a patient’s disease at a specific moment in time (141). It is well-known 

that targetable molecules can change during the course of the disease. CTCs have shown to be useful in 

understanding and predicting acquired resistance to therapies, and might in the future be used to 

circumvent this. In lung cancer, serial analysis identified emergence of activating mutations in the EFGR 

gene in some patients receiving EGFR-targeting therapy, conferring a mechanism of acquired resistance 

to therapy (65). Moreover, clonal selection of ALK-rearranged CTCs during crizotinib therapy was 

detected in patients with lung cancer (89). Serial RNA analysis of prostate CTCs demonstrated 

emergence of AR-V7 during taxane chemotherapy (73), and TMPRSS2-ERG status in CTCs is a predictive 

biomarker of abiraterone acetate sensitivity in CRPC (97). Hence, repeated CTC sampling may have the 

potential to guide optimal therapy regimens depending on the evolving molecular profile of the tumor 

burden within an individual patient. However, CTC characterization is currently only performed in clinical 

trials (142). Therefore, efforts to increase clinical utility, have to be made. A comprehensive analysis of 

multiple patient samples, including CTCs, cfDNA, and tissue samples, on both RNA and DNA level can 

provide a holistic view of a patient’s (sub)clonal landscape. The development of multi-compartment 

molecular databases of large patient cohorts will enable the creation of algorithms able to predict 

outcome at a more individual patient level (3, 143, 144). 

A key issue remains to what extent heterogeneity in the circulating compartment affects therapy 

outcome and whether one should take a minor subclone into account if it comes to treatment selection. 

The analysis of subclonal heterogeneity may help clinicians understand why patients do not respond 

homogeneously to targeted drugs. Furthermore, longitudinal molecular analysis of individual CTCs can 

uncover clonal evolution caused by therapy pressure (32, 78, 145). In a patient with CRPC, sequentially 

progressive on chemo and targeted therapy, comparable CTC clones were observed before the start and 

during standard chemotherapy. However, subsequent clinical response to targeted therapy was 

associated with the drastic depletion of the fist clone and emergence of a second clone, while a third 

tumor lineage was detected at time of disease progression (80). As acquired drug resistance and disease 

relapse is common, drugs may only ablate specific subpopulations of tumor cells, allowing resistant cells 

to grow, evolve and seed new tumor foci that may not respond to cytotoxic or targeted therapies (32, 

78, 145). Hence, a tremendous potential of CTCs lies in profiling them over the entire clinical course to 

study the evolutionary history of tumors and to optimize clinical trial design. In the TRACERx trial 

(NCT01888601), primary tumors of 842 NSCLC patients will be sequenced, as well as cfDNA and CTCs, 

obtained at multiple time points during therapy. To evaluate the effect of clonal heterogeneity and 

selection pressure on clinical outcomes, and to identify targetable driver events, repeated tumor 

sampling will be performed at time of disease recurrence. These patients will be eligible for the DARWIN 

trial (NCT02183883). This trial aims at evaluating whether targeting driver events, detected by the 

TRACERx trial, has a different clinical outcome in patients harboring the driver dominantly compared to 

subclonally. 

In conclusion, molecular characterization of CTCs provides the opportunity to repeatedly assess 

the biological features of cancer during the evolution of the disease. Therefore, CTCs may facilitate the 

development of new therapeutic strategies and enable clinicians to tailor therapy to an individual 

patient in a longitudinal fashion. The relevance of CTC heterogeneity as a cause or consequence of 

resistance to targeted therapy is yet to be unveiled. Hence, a tremendous potential of CTCs lies in single-

cell profiling techniques that will contribute to understanding the predictive value of driver molecular 

aberrations in subclones of CTCs and emergence of resistant populations on targeted therapy. 
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Abbreviations 

General: CGH, comparative genomic hybridization; CNA, copy number alteration; CRC, colorectal cancer; CRPC, 

castration resistant prostate cancer; CTC, circulating tumor cell; DGE, digital gene extraction; EMT, epithelial-to-

mesenchymal transition; FISH, fluorescent in situ hybridization; ITH, intra tumor heterogeneity; NCSLC, non-small 

cell lung cancer; NGS, next generation sequencing; SCS, single cell sequencing; SNV, single nucleotide variation; 

WGA, whole genome amplification; WGS, whole genome sequencing; WTA, whole transcriptome amplification; 

Genes: ALK, anaplastic lymphoma kinase; APC, adenomatous polyposis coli; BRAF, v-Raf murine sarcoma viral 

oncogene homolog B; BRCA1, breast cancer 1; CCND1, cyclin-D1 ; EGFR, epidermal growth factor receptor; EML4, 

echinoderm microtubule-associated protein-like 4; ERBB2, avian erythroblastosis oncogene B 2; ERG, ETS-related 

gene; KLK3, kallikrein 3; KRAS, Kirsten rat sarcoma viral oncogene homolog; MYC, V-myc avian myelocytomatosis 

viral oncogene homolog; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase; PTEN, phosphatase and tensin 

homolog; RB1, retinoblastoma 1; ROS1, ROS Proto-Oncogene 1; TMPRSS2, transmembrane protease serine 2; 

TP53, tumor protein 53; Markers: ALDH, aldehyde dehydrogenase; AR, androgen receptor; ; EpCAM, epithelial 

cell adhesion molecule; HER2, receptor tyrosine-protein kinase erbB-2; PSA, prostate-specific antigen. 
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Mutational and copy number analysis of numerous sorted CTC and DTC          

to interrogate subclonal evolution in advanced breast cancer. 

ABSTRACT 

 

Background. Liquid biopsies have been studied as an accessible method to capture spatial tumour 

heterogeneity and repeatedly evaluate targetable aberrations in cancer. Here, we analysed pure single 

and pools of circulating and disseminated tumour cells (CTC and DTC) to study genetic heterogeneity. 

Methods. From, three patients with metastatic breast cancer, CTC and DTC (bone marrow, pleural 

fluid, and cerebrospinal fluid) were CellSearch® enriched and DEPArray® sorted into 136 samples. 

Sorted cells, primary tumour, circulating free (cf)DNA, and enriched CTC/DTC fractions were analysed 

for mutations and copy number alterations (CNA). Results. Two patients harboured a driver PIK3CA 

mutation in all samples. Variant allele frequencies matched the ploidy status calculated from copy 

number data. The majority of CNA were homogeneously present in most samples of each patient, 

including breast cancer subtype specific CNA. One patient who rapidly progressed harboured 

additional CNA in the CTC/DTC compartment, reflecting the aggressive course and possibly subtype 

switch. These clones emerged at distinct timepoints in the different compartments. Furthermore, 

various mutations were present in unique samples. Conclusion. Repeated tumour analysis with liquid 

biopsies unveils changing molecular characteristics over time, and even a difference between 

simultaneous primary and metastatic disease. We show that all major subclones can be captured by 

combined sequencing of enriched CTC and cfDNA at disease progression. 

INTRODUCTION 

 
A growing understanding of the molecular biology of cancer and the identification of specific 

aberrations driving cancer evolution have led to the development of various targeted agents. 

Therapeutic decisions are generally guided by unique tumour biopsies. Yet, tumours can exhibit 

significant heterogeneity and change over time, e.g. as a result of selective therapeutic pressure (1, 2). 

Patients often present with multiple metastatic lesions, each composed of numerous genetically 

diverse subclones (3, 4, 5). Circulating Tumour Cells (CTCs), shedded directly from the one or multiple 

tumour sites (6, 7, 8, 9), hold considerable promise to provide a convenient and safe alternative for 

real-time and repeated tumour biopsies. The enumeration of CTCs bears prognostic significance in 

patients with MBC (10, 11) and other malignancies (12, 13). Furthermore, phenotypical and molecular 

characterization of CTCs are informative with regards to targetable aberrations present during the 

course of the disease (14, 15, 16, 17).  

Although mutation detection in DNA extracted from CTC-enriched samples demonstrated activating 

mutations in for example EGFR, KRAS, and AR genes in patients suffering from lung, colorectal, or 

castration-resistant prostate cancer respectively (17, 18, 19), sequencing of enriched fractions is 

complicated by low levels of tumour-specific templates and contamination by abundant 

leukocyte-derived sequences, limiting the sensitivity and specificity (20, 21). Molecular analysis of pure 

isolated CTCs enables the detection of multiple mutations within the same cell, in order to decipher 

tumour heterogeneity and map clonal evolution (22, 23, 24). Here, we aim to unveil clonality within 

the CTC and disseminated tumour cell (DTC) compartment at a mutational and copy number level, 

using both multiple single and pools of pure isolated tumour cells. 
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Patient 1 0m 11m 1y7m 6y4m

de novo Exemestane + αIGFR-1 Docetaxel Capecitabine

MBC Trastuzumab Lapatinib Trastuzumab + αHER3

CTC, PLF

Patient 2 -8y -3y 0m 1m

EBC Tamoxifen 5y MBC Exemestane

CTC

Patient 3 0m 7m 11m 13m 14m

de novo Paclitaxel Intrathecal MTX-Trastuzumab

MBC Trastuzumab Trastuzumab + Tamoxifen

CTC, PLF, BNM CTC, CSF CTC CTC CTC CTC

MATERIALS AND METHODS 

Patients and samples  

Patients were recruited after giving written informed consent at the Oncology Centre of GZA Hospitals 

Sint-Augustinus (Antwerp, Belgium). A detailed description of the patients oncological history is 

written in the supplementary methods. Patient 1 was diagnosed with de novo ductal MBC, hormone 

receptor (HR)+ and HER2+, with bone and visceral metastasis (liver and pleura). Shortly after, she 

developed brain metastasis. Whole brain radiation in combination with systemic chemo and HER2 

directed therapy led to 5.5 years of stable disease. Subsequently, she developed progressive liver, 

pleura, and bone metastasis and CTCs and DTCs from pleural fluid were collected. Patient 2 was 

enrolled when she developed metastatic disease eight years after the diagnosis of HR+ HER2- early 

breast cancer. PET-CT showed bone, lymph node, and pleura metastasis. At the first blood draw, 

>30.000 CTCs per 7.5 ml blood were enriched. Patient 3 presented with de novo MBC with extensive 

local disease and diffuse bone and visceral metastasis (PET images and pictures of local disease are 

depicted in Figure S3). Shortly after, also leptomeningeal metastasis was detected. Primary tumour 

biopsy showed HR+ HER2+ lobular breast cancer. Multiple samples were taken at different time points 

(Figure 1 and 4B). She received two lines of chemo-trastuzumab, after which CTC counts dropped for 

only several months. 

 

   

 

 

 

 

Figure 1. Patient samples. Detailed description of collected samples per patient. Patient 1 and 3 were 
diagnosed with de novo hormone receptor (HR) and HER2 positive metastatic breast cancer (MBC). 
Patient 2 was included at time of progression to MBC. Archival primary tumour tissue (HR+) was used. 
Samples include sorted white blood cells (WBC), circulating and disseminated tumour cells (CTC and 
DTC) into single cell samples or pools of varying size (between 5 and 150 cells per pool). Mixed samples 
include Cellsearch enriched CTC/DTC and cell free (cf)DNA from plasma. Abbreviations: BNM bone 
marrow, CSF cerebrospinal fluid, PLF pleural fluid, MTX Methotrexate. 



54 
 

CTCs and DTCs were enriched from 7.5 ml blood or effusion using the CellSearch® CTC enumeration kit 

and subsequently further purified using the DEPArray® system, as previously described (25). Individual 

CTCs, DTCs and white blood cells (WBC) as well as small pools were successfully recovered for each of 

the three MBC patients. Samples per patients are depicted in Figure 1. Fresh frozen tissue from solid 

metastases and the primary tumour, as well as bulk CTC and DTC samples (CellSearch® Profile) were 

sequenced as comparators for mutation and copy number profiles. DNA of buffy coat was sequenced 

to enable germline variant detection. 

Targeted AmpliSeq sequencing and shallow WGS  

A detailed description of the materials and methods can be found in the supplementary methods. 

After DNA extraction, Ampli1™ whole genome amplification (WGA), and library preparation samples 

were subjected to Ion Torrent deep amplicon sequencing using the Ion AmpliSeq™ Cancer Hotspot 

Panel v2 covering 50 oncogenes and tumour suppressor genes (see supplementary methods). State-

of-the-art bio-informatics are described in the supplementary methods. Annotated variants where 

further selected based on coverage >20x and variant allele frequency (VAF) >10% for pools and bulk, 

VAF >30% for single cells, and VAF 0% for reference sample (buffy coat or normal tissue) (Figure S1).  

Shallow WGS was performed to determine the copy number profile. Ampli1™ WGA products were 

used for library preparation and sequencing on a Illumina HiSeq 4000, as described in the 

supplementary methods. After read trimming, mapping, merging, and sorting, BED files were 

subjected to the Ginkgo pipeline (26), especially designed for copy-number alteration (CNA) analysis 

of single cells, although also very capable of analysing bulk data. Single-cell CNAs were identified with 

Ginkgo using variable-length bins of around 500 kb. Bin counts were normalized using a buffy coat 

reference and corrected for GC bias (supplementary methods). Gains and losses within single cells are 

assigned to regions with copy numbers ≥3 and ≤1 respectively (as cancer cells can be triploid or more), 

for pools the cut-off is ≥2.3 and ≤1.7 respectively (which can result from a mix of cells with altered and 

normal CN). Amplifications and deletions have copy numbers ≥4 or ≤0 respectively. 

RESULTS 

Quality control  

A high average read depth and width was obtained (Figure S2A) with Ion AmpliSeq™ panel sequencing. 

The allelic dropout (ADO) rate across individual CTCs and WBCs was 30.85% (SEM 17.73%) and for 

sorted pools 9.98% (SEM 5.62%) (Table S1A). The mean false positive (FP) rate was 0.63% (SEM 0.73%) 

(Table S1B). This is all within the range reported previously (24, 27). In total we found 33, 21, and 93 

exon variants over all samples of patients 1 to 3, respectively (Figure S1). Similar to previously reported 

data by Rothé and colleagues (28), the number of variants found in sorted WBC samples are 

significantly lower compared to sorted CTC or DTC samples. 

Illumina shallow WGS raw data demonstrated coverages of 2-30 (median 5) million reads per samples, 

phred scores of 37.7-38.8 and high concordance between duplicate lanes (Figure S2B). The data was 

analysed in the GINKGO pipeline (26). Binned read counts were used to measure further data quality 

metrics, i.e. GC bias and coverage dispersion. We found a GC bias within the range (typically 0.4-0.6) 

for uniform or non-preferential amplification (26). Coverage dispersion was evaluated by the Median 

Absolute Deviation (MAD) of neighbouring bins. MAD-scores were consistently horizontal across all 

samples (Figure S2C). This was comparable with single cell studies using DOP-PCR (26). The coverage 

uniformity was further confirmed by Lorenz curves (Figure S2D). 
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Figure 2A. Heatmap of normalized read counts across segment breakpoints using Euclidian distance. 
Cluster analysis shows clear separation between samples of the two patients. Buffy coats and mixed 
samples, like primary tumours and cfDNA, cluster together (written in blue), including the enriched 
CTC fraction of patient 1, confirming the relative low quantity of CTCs present in that sample (150 
versus >30,000 in the enriched sample of patient 2). Clear aneuploidy was seen in 1q, 8q 11q and 16q, 
which reflects metastatic breast cancer in general. Further aneuploidy and CNA were patient specific. 
B+C. Copy number profile. Representative examples of detailed CN profile of a single CTC from patient 
1 (A) and small pool of CTCs from patient 2 (B). Upper parts show the calculated copy number per bin. 
Lower graphs show CN status per chromosome. There is a general diploidy with patient and sample 
specific deletions (CN -1) and amplifications (CN ranging 3-7). 
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CNA landscapes and subclonality  

Several As breast cancer is a copy number (CN) driven disease, we explored heterogeneity within the 

CTC and DTC compartment based on the CNA profiles generated after shallow WGS. Hierarchical 

clustering of CTC, DTC, and other samples demonstrates clear separation between patient 1 and 2 

(Figure 2). Both buffy coats have a CN neutral profile and cluster together with the enriched CTC 

fraction of patient 1, confirming the relative low quantity of CTCs present in that samples (i.e. 

150/7.5ml versus >30,000/7.5ml in the enriched CTC sample of patient 2). cfDNA and enriched CTC 

samples have lower tumour purity with reduced signal on CN level compared to pure CTC and DTC, 

therefor clustering with non-tumour samples. In patient 1, the buffy coat, primary tumour, enriched 

CTC fraction and one single CTC cluster separate from all other CTC and pleural fluid DTC samples. In 

both patients distinct aneuploidy of chromosome arms 1q and 8q, as are deletions in 11q and 16q are 

present (Figure 2B and C, Table 1), all frequently observed in metastatic breast cancer (29). For 

example, most samples of patient 1 (ER+HER2+) contain increased copies of the ERBB2 gene mainly as 

a result of 17q arm aneuploidy, apart from a single and pooled PLF sample harbouring a local 

amplification. 

 

 
Table 1. Regions with altered copy number per sample. Samples of patient 1 (A) and patient 2 (B) 
include buffy coat, primary tumour, enriched CTC, cfDNA, sorted CTC (with recovery number), and DTC 
from pleural fluid (only patient 1). Amplifications (red) and deletions (blue) per chromosome region 
with size (number of base pares) and corresponding cytoband position. 1 Data adapted from (29). 2 
Data adapted from  (30), table 1. 
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Approximately half of the CNAs found in patient 1 are homogeneously present in most of the samples 

(Table 1A). These include amplifications (or gains in pooled samples) in 1p, 8q, 11q, 16p, 17q, 20q, and 

deletions in 11q, 16q, and 17p. In contrast, few alterations that are present in the -time matched- 

primary tumour (amplification within 3q, and deletions in parts of 1p and 18q), are only subclonal in 

CTCs or DTCs. Others are new compared to the primary tumour, i.e. 6p21 (in cfDNA), 5q31-35 (mainly 

in PLF), and 18q21-23 (only in CTCs). Most of the alterations found in patient 2 are homogeneous 

(Table 1B). Still some newly detected CNAs are seen 8 years after the primary tumour was sampled. 

CNAs within 1p, 9p, 12p, various in chr 13, 18p, and Xq are present at a clonal level. Only a 

subpopulation of CTCs in pure pools, harbour 10q22, 16p11, 20q11 amplifications, which were not 

detectable in the enriched CTC fraction or cfDNA (31).  

 

 

 
Figure 3. Heatmap of normalized read counts. Copy number (CN) profile per sample: primary tumour, 
CTC or DTC from bone marrow (BNM), pleural fluid (PLF), or cerebrospinal fluid (CSF) of patient 3 (A), 
taken at three phases of disease (separated by horizontal black line), i.e. at diagnosis (February 2014), 
first progression (September 2014) and after second progression (from August 2015). CN profiles are 
correct for ploidy status as calculated by Ginkgo. In general, there is a very homogeneous appearance 
of the copy number profile, with amplifications in chromosome 5, 8, and 20; and significant losses in 
8, 11, 16, 17, and 22. Amplification with CN of ≥4 was only seen chromosomes 8 and 20. Co-occurring 
alterations of chromosome arms 1q, 5q, parts of 12q, and 16p were initially predominantly present in 
the bone marrow, then emerging in the cerebrospinal fluid, to only become dominant in the CTC 
compartment after second progression. B: Details on CTC count per 7,5ml (3ml for CSF) and therapy 
choice per timepoint (MTX: methotrexate). 
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Timeline studies 

From patient 3 we were able to extensively collect samples from multiple anatomical sites and at 

various time points (Figure 3B). This patient presented with de novo metastatic disease, that was 

initially thought to be ER+HER2+, though with current ASCO/CAP guidelines, nowadays this patient 

would be classified as group 2 HER2 negative. At baseline we collected tumour cells from the blood, 

pleural fluid and bone marrow. After the first administration of paclitaxel and trastuzumab the CTC 

count dropped from approximately 1000 to 50 cells per 7.5 ml of blood. Subsequent samples were 

taken at time of progression under this treatment, and showed again high CTC count. At that point, 

leptomeningeal metastasis was diagnosed, and high DCT numbers up to 10,000 tumour cells were 

isolated from 3 ml of cerebrospinal fluid (CSF, or liquor). Systemic therapy was switched to 

trastuzumab plus tamoxifen (due to general condition and age) and intrathecal therapy with 

methotrexate and trastuzumab was started as well. Within two weeks the numbers of CTC and DTC 

from CSF dropped below ten cells/3 ml, and subsequently we were not able to capture any DTC again. 

Final CTC sampling occurred at time of progression. Figure 3A demonstrates the heatmap of CN profiles 

from CTC and DTC of patient 3, separated in the three timepoints of diagnose and respectively the first 

and second episode of progressive disease. In general there is a very homogeneous appearance of the 

copy number profile. Alterations seen in the primary tumour are present in all liquid biopsy samples, 

with prominent aneuploidy of chromosome arm 8q (copy number counts of 4 to 10 in all samples but 

WBC) and parts of 20q, as well as deletions in 8p, 11q, 16q, 17p, and 22. Additional amplifications with 

CN of 3-4 are seen in 1q, 5q, 12, and 16p, in part of the CTC and DTC samples. This specific signature, 

present in half of the CSF DTCs, is predominantly found in the BNM compartment a few months before, 

and only becomes dominant in the CTC compartment at second progression (Figure 3A). 

Mutational profiling by targeted AmpliSeq 

In all three patients many variants were detected, the most being unique variants present in only one 

sample (Figure S1). After filtering and selection of variants present in multiple samples, a PIK3CA 

mutation was found in both patient 1 and 2 (Figure 4A). No clonal pathogenic mutations according to 

the OncoKBTM(32) were detected in samples of patient 3, though two samples contain a probably 

damaging TP53 G361W mutation. Patient 1 harboured a PIK3CA p.H1047R mutation in the primary 

tumour, which is homogeneously present in 13/14 (93%) of CTC and DTC samples in various variant 

allele frequencies (VAF). The PIK3CA p.E542K variant found in patient 2 was heterozygously present in 

almost all CTC samples, but not in the enriched bone marrow fraction. In total we found 33, 21, and 93 

unique exon variants over all samples of patients 1 to 3, respectively (Figure S1B). After further 

selection for presence COSMIC and/or annotation in PolyPhen(33), remaining unique variants are 

depicted in Figure 4B. Variant allele frequencies (VAF) are mostly ~50% (heterozygous), or lower in 

pooled samples, though some variants have VAFs of 100%, almost solely present in single cells, at least 

partly due to ADO (as ADO rate was 30% in single cells, Table S1). 

When combining the copy number and mutational data we found heterogeneity in ploidy status in 

patient 1 (Figure 5). The copy number of the PIK3CA gene was reflected in variant allele frequency 

(VAF) of the PIK3CA H1047R mutation. This mutation was found to be heterozygous level in six CTC 

and DTC samples, varying between VAF of 66-75% (i.e. 2 mutant copies while triploid, and 3 mutant 

copies while tetraploid). In five other samples, the H1047R mutation was found to be homozygous, 

mostly with a copy number of two, although one single CTC harboured 2 normal and 2 mutated copies. 

Two single cells had VAF of 0 and 100, which can caused by either loss of heterozygosity or allelic drop 

out. The VAF of the PIK3CA H1047R mutation was 30% in the primary tumour, which had a tumour cell  
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Figure 4 A. Mutation analysis. Pathogenic mutations with variant allele frequency (VAF), detected per 
sample: tissue, white blood cell (WBC), circulating or disseminated tumour cells (CTC or DTC) from 
pleural fluid (PLF). Both patients harbour a different PIK3CA mutation generally present in all samples, 
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but 1 single CTC. B. Unique variants per sample. After filtering as stated in the method section and 
further selection of exon variants described previously in COSMIC or as reference single nucleotide 
polymorphism (SNP) with rsID. Mostly variant allele frequencies (VAF) are heterozygous or lower in 
pooled samples, though some. None are present in normal tissue or sorted WBC, nor in the primary 
tumour. Abbreviations: BNM, bone marrow; CSF, cerebrospinal fluid; PLF, pleural fluid; aa, amino acid; 
prob.dam, probably damaging; poss.dam, possibly damaging. 

 

Figure 5. Heatmap of copy number values across all segment breakpoints using Euclidian distance 
metric. Correlation between average ploidy status based on CN profile (light green:2, dark green: 3, 
shades of purple: 4-6) and variant allele frequency (VAF) of the PIK3CA H1047R mutation, with 
suspected number of mutant or wild type alleles (example: 3+1). LOH: Loss of heterozygosity, ADO: 
Allelic drop out. 

 

content of approximately 70%. Similar results were found for patient 2 with regards to the PIK3CA 

E542K mutation (Figure S4). In this patient the majority of samples were pure pools with VAFs of the 

mutation mostly around 50% and a mean ploidy status that was diploid or triploid. In the single CTCs 

the E542K VAF matches the ploidy status that was diploid (47%) or tetraploid (42% and 79% resp.) 

(Figure 4A, Figure S4). Balanced amplification of both alleles as well as preferential amplification of 

the mutant allele have been described for PIK3CA (34). 

DISCUSSION 

CTCs are frequently studied as part of the metastatic cascade in the early stages of breast cancer, trying 

to identify those cells that are able to intravasate into the blood stream and subsequently extravasate 

to form micro- and macrometastasis. These studies focus on phenotypic changes like epithelial-to-

mesenchymal transition and CTC clusters (35). Contrarily, CTCs can be studied in overt metastatic 

disease, where shedding of these cell potentially represent all different tumour sites, justifying the use 

of EpCAM and cytokeratin for selection of CTCs (36). With this, there is a risk of finding tumour DNA in 

sorted WBC, as hybrid cells (CTC-macrophage) have been described (37, 38). In this study we aimed to 

extensively look into the CTC and DTC profile of three patients with a high CTC count, to investigate 

spatiotemporal heterogeneity, using both copy number and mutational profiles.  
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We found an overall intra-patient homogeneity in the CNA profile, involving copy number gain of the 

long arm of chromosome 8 in all three patient samples, as well as amplifications in 1q and deletions in 

chromosome arms 11q, 16q and 17p. Amplification of 8q, especially 8q21 and 8q24, is the most 

common CNA in breast cancer, and is associated with tumour progression and chemoresistance (39, 

40), and is often present with high copy numbers (41). Besides activation of oncogenes, inactivation of 

tumour suppressor genes is key in cancer development. The latter can occur when one allele is 

mutated in combination with loss of heterozygosity (LOH) of a chromosomal segment containing the 

wild-type allele (42, 43), or with loss of both wild-type alleles (homozygous deletion). Deletions at 

chromosome 11q and 17p, with loss of important tumour suppressor genes like TP53 on 17p13, are 

known to be present in early stages of breast cancer, and are associated with relapse and worse clinical 

outcome (44, 45). Also similar to our data, co-occurrence of 1q-gain and 16q-loss is a frequent 

cytogenetic abnormality in breast cancer. Transcriptome and functional pathway analysis suggested 

cooperation of overexpressed 1q genes and underexpressed 16q genes in the genesis of both ductal 

and lobular carcinomas (46). These data support our findings of 1q, 8q, 11q, 16q and 17p alterations 

to be present in all samples including the primary tumour.  

This general homogeneity is coherent with time of sampling, i.e. end stage metastatic disease. 

Compared to genetic heterogeneity in DTCs in early breast cancer (47), CTCs in the metastatic setting 

are often homogeneous, as fit and aggressive subclones become dominant either primarily or due to 

selective pressure from therapeutic interventions (35, 48, 49, 50). A continuous escape from treatment 

is expected and evolution can continue from reservoirs of minor subclones (51). Following subclones 

during the entire course of disease therefor seems sensible. 

CNA in liquid biopsies can be used to identify breast cancer subtypes, as ER+ tumours are known to 

harbour 1q gain and 11q and 16q losses, compared to ER- HER2+ and TN subtypes. Moreover, in patient 

1 (ER+ HER2+) we detected 17q, including ERBB2, and 20q amplification typical for HER2+ tumours, 

and not arm 16q deletion as this alteration matches HER2- subtypes (52). The opposite was 

homogeneously found in the CN profile of patient 2 (ER+ HER2-). Interestingly, in patient 3 (initially 

diagnosed as ER+ HER2+) we were not able to detect amplification of the 20q, 17q, or even the locus 

containing ERBB2, while we found a general 16q loss in all samples, including the primary tumour. 

Archival immune histochemistry (IHC) results were 2+ or equivocal, showing only weak to moderate 

HER2 expression. Initially the in situ hybridisation (ISH) result was reported as being positive with a 

HER2/CEN17 ratio of 2.4. Though with the changed ASCO/CAP guidelines, nowadays this patient would 

be classified as group 2 HER2 negative (3.85 HER2 signals/nucleus) (53, 54). We have shown previously 

that the majority of CTCs from this patient express HER2 at low or intermediate levels, while only few 

CTCs were actually HER2+ (14). This patient progressed within 7 months on trastuzumab, emphasising 

the need for regular re-evaluating tumour characteristics during the course of the disease, as is shown 

possible with liquid biopsies. Moreover, various additional amplifications were seen in 1q, 5q, 12, and 

16p, in part of the CTC and DTC samples of patient 3, stressing the aggressive nature, possibly even 

subtype switch, of the metastatic disease in this patient that was ER+ on primary tumour biopsy (52), 

as chromosome 1q and 12p amplifications are associated with TNBC/basal-like breast cancer and poor 

survival (55, 56). These co-occurring alterations, absent in the primary tumour, were initially 

predominantly present in the bone marrow, then emerging in the cerebrospinal fluid, to only become 

dominant in the CTC compartment after second progression. Studies have shown early bone marrow 

involvement functioning as a reservoir, before overt metastatic disease (47, 57). New CNAs may occur 

as a consequence of clonal evolution, or were present as minor subclones not detected in the primary 

tumour due to insufficient sequencing depth or spatial heterogeneity (58). 
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Since two decades large scale sequencing studies have revealed the landscapes of somatic mutations 

in tumours. For example, when sequencing over 13 thousand genes of 11 breast tumours, 519 

harboured a mutation (59). Notwithstanding only a few mutational events affect driver genes that play 

important roles in tumorigenesis. Large tumour sequencing studies such as The Cancer Genome Atlas 

(TCGA)(60) and the International Cancer Genome Consortium (ICGC)(61) contributed to defining a list 

of driver genes (62, 63). Ongoing efforts are now revealing the landscape of driver alterations in 

metastatic disease (64, 65, 66). In a comprehensive study, 568 cancer driver genes were identified 

through a large-scale transcriptome analysis (66). They showed an extensive heterogeneity in mutation 

burden within the 2711 breast cancer samples. From these, 99 driver genes were extracted. Most of 

them not annotated for breast cancer before, stressing the importance including patients in trials 

during the full treatment trajectory. We detected a known PIK3CA mutation in the primary tumour and 

all other samples of both patient 1 and 2, common in ER+ breast cancer (67, 68). However, no clonal 

drivers were found in samples of patient 3. Minor subclones within the expected homogeneous liquid 

biopsy landscape during overt metastatic disease, could be detected by sequencing many pure pools 

of CTC and DTC. Power analysis showed that a 1% subclone can only be detected when sequencing 10 

groups of 20 CTCs, although there is a 90% chance of detecting a 5% subclone in only 5 pools of 10 CTC 

(69). The TP53 gene was frequently mutated in all three patients at a subclonal level (Figure 4B), as 

were genes encoding for growth factor receptors within unique samples, like FGFR2 in a single CTC of 

patient 3. 

This subclonal evolution was also noted based on CNA profiles. Besides the general homogeneity as 

described above, there were few newly acquired CNA, mostly amplifications, in the liquid biopsy 

samples compared to the primary tumours. For patient 1, gain in region 5q31-35 was only seen in two 

CTC samples and almost all DTC from pleural fluid, though not detected in the enriched CTC or cfDNA 

fractions. This region includes a FGFR4 amplification which is associated with endocrine therapy and 

CDK4/6 inhibitor resistance (70). Currently over 20 trials are registered on clinicaltrials.gov using FGFR 

inhibitors alone or in combination with endocrine therapy. In patient 2, we noticed new 10q22 gain 

and 16p11 amplification (31) present in CTC samples. Furthermore, co-occurring alterations in 

chromosome arms 1q, 5q, 12q, and 16p in patient 3 developed over time.  

Multiple spatial biopsies of the primary tumour helps capturing heterogeneity in CNA and mutations, 

though some variation is only captured in the single-cell data from primary breast tumours (71). Still, 

advanced disease has shown differences compared to local breast cancer, even in de novo metastatic 

breast cancer. Repeated liquid biopsies, preferably a combination of both enriched CTC fractions and 

cfDNA can trace these outgrowing and changing clones, to help therapy decision making. 
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WBC pool 0,00% WBC pool 8,33% CTC1 27,27% BNM1 10,00% CTC pool1 10,00% BNMpool1 0,00% WBC1 25,00%

Primary tumor 0,00% Profile CTC 0,00% CTC2 30,00% BNM2 37,50% CTC pool2 9,09% BNMpool2 10,00% WBC2 55,56%

Profile BNM 25,00% CTC3 36,36% BNM3 20,00% CTC pool3 9,09% PLF pool1 10,00% WBC3 25,00%

CTC1 10,00% CTC4 40,00% BNM4 33,33% CTC pool4 9,09% PLF pool2 10,00% WBC4 27,27%

CTC2 30,00% CTC1 63,64% CTC5 30,00% BNM5 14,29% CTC pool5 18,18% CSF pool1 9,09% WBC5 60,00%

CTC3 18,18% CTC2 44,44% CTC6 10,00% BNM6 42,86% CTC pool6 9,09% CSF pool2 9,09% WBC6 45,45%

CTC4 40,00% CTC3 50,00% CTC7 36,36% BNM7 0,00% CTC pool7 18,18% CSF pool3 9,09% WBC7 10,00%

CTC5 10,00% CTC4 71,43% CTC8 20,00% BNM8 NA CTC pool8 0,00% CSF pool4 9,09% WBC8 18,18%

CTC6 18,18% Average 57,38% CTC9 45,45% PLF1 14,29% CTC pool9 9,09% CSF pool5 9,09% WBC9 27,27%

CTC7 18,18% CTC10 9,09% PLF2 66,67% CTC pool10 9,09% CSF pool6 9,09% Average 32,64%

CTC8 36,36% CTC pool1 16,67% CTC11 50,00% PLF3 22,22% CTC pool11 9,09% CSF pool7 9,09%

CTC9 27,27% CTC pool2 16,67% CTC12 33,33% PLF4 25,00% CTC pool12 18,18% CSF pool8 9,09% WBC pool1 0,00%

CTC10 55,56% CTC pool3 8,33% CTC13 9,09% PLF5 66,67% CTC pool13 9,09% CSF pool9 20,00% WBC pool2 9,09%

Average 26,37% CTC pool4 16,67% CTC14 77,78% PLF6 36,36% CTC pool14 9,09% CSF pool10 NA WBC pool3 0,00%

CTC pool5 8,33% CTC15 33,33% PLF7 NA CTC pool15 9,09% CSF pool11 NA WBC pool4 0,00%

CTC pool1 20,00% CTC pool6 16,67% CTC16 36,36% CSF1 18,18% CTC pool16 9,09% CSF pool12 9,09% Average 2,27%

CTC pool2 18,18% CTC pool7 16,67% CTC17 18,18% CSF2 40,00% CTC pool17 8,33% CSF pool13 9,09%

CTC pool3 18,18% CTC pool8 16,67% CTC18 10,00% CSF3 20,00% CTC pool18 9,09% Average 9,39% Primary tumor 8,33%

CTC pool4 18,18% CTC pool9 16,67% CTC19 18,18% CSF4 33,33% CTC pool19 0,00% Profile CTC 0,00%

Average 18,64% CTC pool10 8,33% CTC20 18,18% CSF5 20,00% CTC pool20 9,09% Profile BNM 0,00%

CTC pool11 8,33% CTC21 33,33% CSF6 9,09% CTC pool21 9,09% Profile PLF 0,00%

CTC pool12 16,67% CTC22 33,33% CSF7 50,00% CTC pool22 9,09%

Average 13,89% CTC23 9,09% Average 28,99% CTC pool23 0,00%

CTC24 9,09% CTC pool24 0,00%

Average 28,08% Average 8,72%

Patient 1 (11 SNPs) Patient 2 (12 SNPs) Patient 3 (12 SNPs)

Single Cells Sorted pools

ADO 30,85% ADO 9,98%

SEM 17,73% SEM 5,62%

TABLE S1 

WBC pool 0,00% WBC pool 1,20% CTC1 2,09% BNM1 0,58% CTC pool1 1,04% BNMpool1 0,23% WBC1 0,12%

Primary tumor 0,40% Profile CTC 0,80% CTC2 1,74% BNM2 1,51% CTC pool2 0,81% BNMpool2 0,23% WBC2 0,58%

Profile BNM 1,60% CTC3 1,86% BNM3 0,70% CTC pool3 0,23% PLF pool1 0,23% WBC3 0,23%

CTC1 0,60% CTC4 2,67% BNM4 0,70% CTC pool4 0,12% PLF pool2 0,00% WBC4 0,23%

CTC2 0,80% CTC1 2,80% CTC5 2,55% BNM5 0,81% CTC pool5 0,23% CSF pool1 0,12% WBC5 0,35%

CTC3 0,00% CTC2 2,40% CTC6 1,74% BNM6 1,04% CTC pool6 0,23% CSF pool2 0,23% WBC6 0,23%

CTC4 0,40% CTC3 2,80% CTC7 1,74% BNM7 0,81% CTC pool7 0,23% CSF pool3 0,12% WBC7 0,23%

CTC5 0,40% CTC4 2,00% CTC8 1,51% BNM8 0,58% CTC pool8 0,23% CSF pool4 0,00% WBC8 0,23%

CTC6 0,40% Average 2,50% CTC9 0,23% PLF1 0,35% CTC pool9 0,12% CSF pool5 0,00% WBC9 0,23%

CTC7 0,80% CTC10 0,23% PLF2 0,23% CTC pool10 0,00% CSF pool6 0,23% Average 0,27%

CTC8 0,40% CTC pool1 1,60% CTC11 0,35% PLF3 1,04% CTC pool11 0,12% CSF pool7 0,23%

CTC9 0,20% CTC pool2 0,80% CTC12 0,35% PLF4 0,35% CTC pool12 0,12% CSF pool8 0,12% WBC pool1 0,58%

CTC10 0,80% CTC pool3 2,00% CTC13 0,35% PLF5 0,35% CTC pool13 0,23% CSF pool9 0,23% WBC pool2 0,35%

Average 0,48% CTC pool4 1,60% CTC14 0,46% PLF6 0,23% CTC pool14 0,23% CSF pool10 0,23% WBC pool3 0,23%

CTC pool5 1,20% CTC15 0,12% PLF7 0,46% CTC pool15 0,12% CSF pool11 0,00% WBC pool4 0,23%

CTC pool1 2,20% CTC pool6 0,80% CTC16 0,23% CSF1 0,35% CTC pool16 0,23% CSF pool12 0,00% Average 0,35%

CTC pool2 2,20% CTC pool7 2,80% CTC17 0,12% CSF2 0,23% CTC pool17 0,12% CSF pool13 0,00%

CTC pool3 2,00% CTC pool8 1,60% CTC18 0,35% CSF3 0,23% CTC pool18 0,23% Average 0,13% Primary tumor 0,00%

CTC pool4 2,00% CTC pool9 2,00% CTC19 0,12% CSF4 0,12% CTC pool19 0,00% Profile CTC 0,12%

Average 2,10% CTC pool10 0,80% CTC20 0,23% CSF5 0,23% CTC pool20 0,12% Profile BNM 0,00%

CTC pool11 0,80% CTC21 0,12% CSF6 0,23% CTC pool21 0,12% Profile PLF 0,12%

CTC pool12 2,00% CTC22 0,23% CSF7 0,23% CTC pool22 0,23%

Average 1,50% CTC23 0,12% Average 0,52% CTC pool23 0,00%

CTC24 0,00% CTC pool24 0,23%

Average 0,81% Average 0,22% TOTAL FPR 0,63%

SEM 0,73%

Patient 1 (501 events) Patient 2 (250 events) Patient 3 (862 events)

A 

B 

Supplementary table 1. Quality control of Ion Torrent targeted sequencing. A. Allelic dropout (ADO) 
per sample, per patient. The ADO across individual CTCs and WBCs was 30.85% (SEM 17.73%) and for 
sorted pools 9.98% (SEM 5.62%). B. False positive rate (FPR) per sample, per patient. The mean FPR 
was 0.63% (SEM 0.73%).  
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Supplementary figure 1. Filtering of single nucleotide variant (SNV) after prior quality control.                      
A Number of variants found after processing as described in method section. Further filtering based 
on variant allele frequencies (VAF), subsequent filtering for false positive variants present in normal 
bulk samples (tissue or buffy coats), and finally filtering for variants that possibly can have an effect on 
the amino-acid. Resulting in 33 variants (4 shared*) for patient 1, 21 variants (5 shared*) for patient 2 
and 93 variants (2 shared*) for patient 3. # Samples excluding bulk normals  * Variants present in 
multiple samples, none were present in WBC samples. B Number of variants per patient present in 
multiple samples (black), unique samples (grey) or unique sorted WBC samples (white), after filtering 
for presence in normal tissue and/or buffy coat. 
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Supplementary figure 2. Quality control data of Ion Torrent targeted sequencing data (A) and 
Illumina shallow WGS (B-D). A. Average read depth and width per sample type, per patient. B. 
Average coverage depth and Phred scores per sample type, per patient C. Overall Median 
Absolute Deviation (MAD) score of neighbouring bins D. Lorenz curves displaying coverage 
uniformity per sample type. 

  



70 
 

Supplementary Figure 3. Images of patient 3 at time of diagnosis. A. PET images of anterior (left) 
and posterior (right). Conclusion based on PET and CT: diffuse bone and probably also bone marrow 
metastasis. Multiple mediastinal, hilar, and bilateral (L more than R) axillary pathological lymph 
nodes. Extensive tumour infiltration in the left breast with central ulceration and skin invasion. 
Diffuse infiltration at the base of the left breast with extension towards the left lateral thorax and 
invasion of the pectoralis muscle. Left sided pleural fluid with subsequent compression atelectasis of 
the complete left lower lobe and part of het left upper lobe. No obvious liver involvement. B. Picture 
taken from the left breast showing mastitis carcinomatosa due to extensive tumour infiltration. 
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Supplementary figure 4A. Heatmap of copy number values across all segment breakpoints using 
Euclidian distance metric. Correlation between average ploidy status, based on CN profile, and variant 
allele frequency (VAF) of the PIK3CA mutation. In both patients some samples have a mean ploidy of 
3 or 4 (darker greens and purple). Variant allele frequencies of the PIK3CA mutations point towards 
similar ploidy status as CNA data. B. Copy number profile and ploidy calculation of single CTC recovery 
9 from patient 2, showing a mean ploidy of four. 
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SUPPLEMENTARY METHODS 

Patients and samples 

Patients were recruited after giving written informed consent at the Oncology Centre of GZA Hospitals 

Sint-Augustinus (Antwerp, Belgium). Patient 1 was diagnosed with de novo ductal MBC, hormone 

receptor (HR)+ and HER2+, with bone and visceral metastasis (i.e. liver and pleural metastasis), for 

which she was treated with Exemestane and an IGFR-1 inhibitor. Second line treatment with 

Docetaxel-Trastuzumab was started after 11 months due to development of brain metastasis, although 

there was stable disease in the bone and liver. After 8 months there was general progression and the 

patient was switched to Capecitabine-Lapatinib and whole brain radiotherapy. Five years and 9 months 

later she developed progressive liver, pleura, and bone metastasis and a study with Trastuzumab and 

an anti-HER-3 antibody was started in fourth line. At this time, CTCs and DTCs from pleural fluid were 

collected. Patient 2 was enrolled when she developed metastatic disease eight years after the 

diagnosis of HR+ HER2- early breast cancer. PET-CT showed bone, lymph node and pleura metastasis. 

At the first blood draw, >30.000 CTCs per 7.5 ml blood were enriched. Patient 3 presented with de 

novo MBC with extensive local disease and diffuse bone and visceral metastasis. PET images and 

pictures of local disease are depicted in Figure S8. They demonstrate diffuse bone and probably also 

bone marrow metastasis. Multiple mediastinal, hilar, and bilateral axillary pathological lymph nodes. 

Extensive tumour infiltration in the left breast with central ulceration and skin invasion. Diffuse 

infiltration at the base of the left breast with extension towards the left lateral thorax and invasion of 

the pectoralis muscle. Left sided pleural fluid with subsequent compression atelectasis of the complete 

left lower lobe and part of het left upper lobe. No obvious liver involvement.  Shortly after, also 

leptomeningeal metastasis was detected. Primary tumour biopsy showed HR+ HER2+ (IHC 2+, SISH+) 

lobular breast cancer. Multiple samples were taken at different time points (Figure 1 and 4B). She 

received two lines of chemo-trastuzumab (Figure 4B), after which CTC counts dropped for only several 

months. 

CTCs and DTCs were enriched from 7.5 ml blood or effusion using the CellSearch® CTC enumeration kit 

(Menarini Silicon Biosystems Inc, Huntingdon Valley, PA, USA) and subsequently further purified using 

the DEPArray® system (Menarini Silicon Biosystems Inc), as previously described (1). Individual CTCs, 

DTCs and white blood cells (WBC) as well as small pools were successfully recovered for each of the 

three MBC patients. In total 37 and 27 single and 38 and 21 pools of 10-150 EpCAM-positive CTC and 

DTC respectively, and 10 single and 6 pools of leukocytes acting as germline and quality controls, were 

isolated with DEPArray, and passed QC checks (genomic integrity index ≥3) for sequencing (2). Samples 

per patients are depicted in Figure 1. DNA was isolated and amplified using the Ampli1™ kit and double 

stranded using the Ampli1™ ReAmp/ds kit (Menarini Silicon Biosystems Inc) (3). Whole genome 

amplified (WGA) samples were subjected to Illumina whole genome sequencing (WGS) and Ion Torrent 

AmpliSeq panel sequencing. Fresh frozen tissue from solid metastases and the primary tumour, as well 

as bulk CTC and DTC samples (CellSearch® Profile, Menarini Silicon Biosystems Inc) were sequenced as 

comparators for mutation and copy number profiles. DNA of buffy coat was sequenced to enable 

germline variant detection. 

Targeted AmpliSeq sequencing 

The Ampli1™ cancer hotspot panel (CHP) custom panel β (Menarini Silicon Biosystems Inc), covering 

2265 Hotspot COSMIC variants in 315 amplicons of 50 oncogenes, is compatible with the Ampli1™ 

WGA product (Figure 1). Libraries were prepared using a single-tube ultrahigh-multiplex PCR according  
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to the Ion AmpliSeq™ DNA Library Preparation User Guide (MAN0006735, Life Technologies). Quality 

control of the amplicon libraries were evaluated by Bioanalyzer 2100 (Agilent Technologies) using 

Agilent High Sensitivity DNA kit and subsequently sequenced on the Ion PGM (Personal Genome 

Machine) system. Alignment and variant calling was performed using the TorrentSuite v4.2. A Burrows-

Wheeler algorithm (TMAP) is included in the TorrentSuite, used for alignment against the human 

reference genome hg19. Variants will be called with the ‘tvc’ variant caller with ‘somatic low-

stringency’ configuration using Ampli1™ BED regions and HotSpot variants included in the Ampli1™ 

CHP custom β. This configuration is optimized for allele frequencies >2% and high sensitivity to  

minimize false negatives. The algorithm included in the TorrenSuite makes several filtering steps 

according to strand bias, read quality, and minimal coverage. Obtained variants were annotated in 

order to identify related COSMIC and dbSNP IDs. Further selection of variants is based on following 

inclusion criteria: coverage >20x and variant allele frequency (VAF) >10% for pools and bulk, VAF >30% 

for single cells, and VAF 0% for reference sample (i.e. buffy coat or normal tissue). Allelic dropout (ADO) 

rate was calculated as follows: homozygous SNPs in every sample, present as heterozygous in 

reference, divided by the heterozygous SNPs in reference. False positivity rate (FPR) was calculated: 

number of heterozygous variants (VAF >10%, or >30% for singles) in every sample divided by the 

number of homozygous events (VAF 0%) of the reference sample in the whole dataset (4, 5). As the 

majority of the FP errors occur at random sites in the genomes of single cells, it allows the FPR to be 

mitigated by calling mutations in two or more single cells (5). To maximize specificity amplified 

products of single WBC were used as negative controls. Subsequently, protein configurations were 

determined using PolyPhen and SIFT. 

Shallow WGS 

Shallow WGS was performed to determine the copy number profile. Ampli1™ WGA products were 

sheared using the Covaris system (microTUBE-15, PN520145) and subsequently purified using Ampure 

beads (Agencourt AMPure XP PCR pruification). Libraries were generated using the ThruPlex dual 

indexes kit according to manufacturer’s instructions (Sopachem, Eke, Belgium). Quality of the Ampure 

purified libraries were evaluated using the Qubit 2.0 Fluorometer and the 2100 Bioanalyzer, and 

subsequently pooled and sequenced using paired-end chemistry on a Illumina HiSeq 4000 with a read 

length of 150 base pairs and at an estimated coverage depth of 0.5x (6, 7). Raw reads were analysed 

using FASTQC 0.11.5 (Babraham institute, UK). Reads were trimmed using Trimmomatic-0.36, to 

remove the adaptors and low quality base pairs (sliding window 5:20, average PHRED score ≥ 30, 

COPY NUMBER HOTSPOTS     

MET ABL1 DDR2 GNA11 KIT PTEN 

FGFR3 AKT1 EGFR GNAQ KRAS PTPN11 

EGFR ALK ERBB2 GNAS MEK1 RB1 

ALK APC ERBB4 HNF1A MET RET 

AR ATM EZH2 HRAS MLH SMAD4 

MYC BRAF FBXW7 IDH1 NOTCH1 SMARCB1 

PTEN CDH1 FGFR1 IDH2 NPM1 SMO 

 CDKN2A FGFR2 JAK2 NRAS SRC 

 CSF1R FGFR3 JAK3 PDGFRA STK11 

 CTNNB1 FLT3 KDR PIK3CA TP53                VHL 

Table 1. AmpliSeqTM Cancer hotspot panel (CHP) Version 2 
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average length ≥ 40 bp). Trimmed reads were analysed using FASTQC 0.11.5, and subsequently 

mapped to reference genome Hg19 using BWA-MEM 0.7.12, resulting in three SAM files (paired reads 

and single forward or reverse reads). SAM files were converted to BAM files using SAMTOOLS 1.3.1, 

where forward and reverse reads with MAPQ >20 were merged and sorted. BAM files were converted 

to BED files using BEDTOOLS 2.25.0, and subsequently subjected to the Ginkgo pipeline (Cold Spring 

Harbor, USA) (8), especially designed for copy-number alteration (CNA) analysis of single cells, 

although also very capable of analysing bulk data, according to the authors. Single-cell CNAs were 

identified with Ginkgo using variable-length bins of around 500 kb. After binning, data for each cell was 

normalized and segmented using a diploid reference sample (.bed file of the buffy coat) to normalize 

bin counts and eliminate additional biases uncorrected by GC normalization (or: using default 

parameters). Sensitivity was evaluated by assessing the recall of the CNAs and segment breakpoints at 

the different sequencing depths. Gains and losses within single cells are assigned to regions with copy 

numbers ≥3 and ≤1 respectively (as cancer cells can be triploid or more), for pools the cut-off is ≥2.3 

and ≤1.7 respectively (which can result from a mix of cells with altered and normal CN). Amplifications 

and deletions have copy numbers ≥4 or ≤0 respectively. Alterations are referred to as recently 

proposed by Ben-David and Amon (9): (i) the term aneuploidy to describe all CNAs affecting either 

entire chromosome arms or whole chromosomes; (ii) the term CNAs to describe all sub-arm gains or 

losses larger than 10 kilobases (kb); and (iii) the term indels to describe all other CNAs. 

Quality control 

Samples were subjected to deep amplicon sequencing using the Ion AmpliSeq™ Cancer Hotspot Panel 

v2 covering 50 oncogenes and tumour suppressor genes. A high average read depth and width was 

obtained (Table s1). As each single cell provides only two (or a few more in case of cancer genomes) 

template DNA molecules for WGA, errors that occur in the initial rounds of amplification are inherited 

by all subsequent molecules (5). Major sources of technical errors that occur during WGA include allelic 

dropout (ADO) and introduction of false positive (FP) variants (10, 11). ADO rate across individual CTCs 

and WBCs and the mean FP rate was calculated and compared to previously reported data (5, 12). 

Variants were only called when absent in sorted leukocytes and present in ≥2 samples to eliminate 

false discovery, discarding the vast majority of variants (5).  
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HER-2 status of Circulating Tumor Cells in a Metastatic Breast Cancer cohort: 

a comparative study on characterization techniques 

ABSTRACT 

 

Background:  

Personalized targeted treatment in metastatic breast cancer relies on accurate assessment of 

molecular aberrations, e.g. overexpression of Human Epidermal growth factor Receptor 2 (HER-2). 

Molecular interrogation of circulating tumor cells (CTCs) can provide an attractive alternative for real-

time biomarker assessment. However, implementation of CellSearch®-based HER-2 analysis has been 

limited. Immunofluorescent (IF) image interpretation is crucial, as different HER-2 categories have 

been described. Major questions in CTC research are how these IF categories reflect gene expression 

and amplification, and if we should consider ‘medium’ HER-2 expressing CTCs for patient selection. 

Methods:  

Tumor cells from spiked cell lines (n=8) and CTCs (n=116 samples) of 85 metastatic breast cancer 

patients were enriched using CellSearch®. Comparative analysis of HER-2 expression by IF imaging 

(ACCEPT, DEPArray™, and visual scoring) with qRT-PCR and HER-2/neu FISH was performed.  

Results:  

Automated IF HER-2-profiling by DEPArray™ and ACCEPT delivered comparable results. There was a 

98% agreement between 17 trained observers (visual scoring) and ACCEPT considering HER-2neg and 

HER-2high expressing CTCs. However, 89% of HER-2med expressing CTCs by ACCEPT were scored negative 

by observers. HER-2high expressing tumor cells demonstrated HER-2/neu gene amplification, whereas 

HER-2neg and HER-2med expressing tumor cells and CTCs by ACCEPT were copy-number neutral. All 

patients with HER-2-positive archival tumors had ≥1 HER-2high expressing CTCs, while 80% of HER-2-

negative patients did not. High relative gene expression of HER-2 measured on enriched CTC lysates 

correlated with having ≥1 HER-2high expressing CTCs. 

Conclusion:  

Automated images analysis has enormous potential for clinical implementation. HER-2 

characterization and clinical trial design should be focused on HER-2high expressing CTCs. 

INTRODUCTION 

 

Breast cancer is a heterogeneous disease, with distinct subgroups based on histological type, grade, 

and hormone receptor status. Human epidermal growth factor receptor 2 (HER-2) overexpression 

accounts for 10-15% of the primary invasive breast cancers and is associated with a more aggressive 

phenotype and inferior prognosis. In patients with advanced disease, clinically relevant discrepancies 

can arise in HER-2 expression status compared to the localized setting (1-3). Furthermore, patients 

often develop multiple lesions that might be composed of various tumor subclones harboring different 

molecular characteristics (4). As the HER-2 status can be subjective to temporal heterogeneity, in part 

influenced by prior therapies, it stands to reason that repeated analysis is a prerequisite for precision 

medicine. However, the acquirement of metastatic tissue is not always feasible and not without risk 

for the patient (5).  

Circulating Tumor Cells (CTCs), isolated from the blood of patients with metastatic cancer, hold 

considerable promise to provide a convenient and safe alternative for real-time and repeated tumor 

profiling. Before molecular characterization of CTCs can be used to discover predictive biomarkers, e.g. 
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HER-2 receptor status, in-depth testing of analysis methods is essential. The CellSearch® system is an 

FDA-cleared and widespread implemented platform for enumeration of CTCs, and HER-2-positive CTCs 

have been detected using HER-2 immunofluorescence (IF) phenotyping. Visual scoring of HER-2 on 

CellSearch® IF images by individual observers has been performed in several studies (6-8). Image 

interpretation is crucial, especially when using CTCs in interventional trials testing HER-2-directed 

therapies. Although trained observers can reach acceptable agreement using a predefined definition 

(9), visual scoring is not objective and independent image review is laborious. Recently, an objective 

analysis software for CellSearch® IF images: Automated CTC Classification Enumeration and 

PhenoTyping (ACCEPT) has been made available, which is able to divide CTCs in HER-2neg(ative), HER-

2med(ium), and HER-2high expression (8). One major question in CTC research is how these IF categories 

reflect gene expression and amplification. One study demonstrated that HER-2-positive CTCs based on 

visual scoring were HER-2 gene amplified (10). Still the value of HER-2med expressing CTCs has to be 

studied, as patients harboring these CTCs might as well benefit from HER-2-directed therapies. In this 

study we compare ACCEPT results with other IF imaging, quantitative reverse transcription (qRT)-PCR, 

and fluorescent in-situ hybridization (FISH). 

METHODS 

 

A detailed description of all materials and methods is provided in supplementary methods. A schematic 

overview of all samples and the workflow is depicted in Figure 1. 

 

 

 
Fig 1. Overview of all samples and workflow. 
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Samples  

The preclinical model utilizes eight breast cancer cell lines with increasing levels of HER-2 expression 

and/or amplification: MDA-MB-436, MCF-7, BT-20, MDA-MB-453, KPL-4, IBC-3, SUM190, and SKBR-3 

(8, 9, 11-16). Cultured tumor cells were spiked in 7.5mL Cell Save®-collected healthy donor blood and 

subjected to the CellSearch® CTC procedure (Menarini Silicon Biosystems Inc., Huntingdon Valley, PA, 

USA), with addition of the HER-2 phenotyping reagent (Menarini Silicon Biosystems Inc.). Briefly, the 

CellTracks Autoprep® immunomagnetically enriches EpCAM-positive cells from blood and stains them 

with the nuclear dye DAPI, phycoerythrin conjugated antibodies against cytokeratin 8, 18 and 19 (CK-

PE) and allophycocyanin conjugated antibody against the leukocyte specific marker CD45 (CD45-APC). 

The enriched cells are contained in a cartridge. Similarly, CTCs were enriched from 7.5 ml blood 

samples (n=116) of 85 patients starting a new line of systemic therapy for metastatic breast cancer 

(MBC), who were recruited between 2012 and 2015 at the Oncology Center of GZA Hospitals Sint-

Augustinus (Antwerp, Belgium), after written informed consent (Study UA A11-18)(S1 and S2 Tables). 

In total, 45/116 (38.8%) samples contained ≥5 CTC/7,5 ml blood. For the inter-observer concordance 

study, 17 international pathologist and scientists scored 2000 CellSearch® HER-2-FITC thumbnail 

images of CTCs acquired from MBC patients who were enrolled, after written informed consent, in CTC 

studies at the Erasmus MC (Rotterdam, The Netherlands) (METC 2016-313 and METC 2009-405). 

 

IF imaging 

Image-based HER-2 fluorescent intensities were analyzed using three methodologies (S3 Table). First, 

visual scoring, which classifies the cells into negative, 2+, and 3+ was employed, as previously described 

(9). Using an online survey platform, CellTracks Analyzer II® thumbnail images of CTCs (n=2000) were 

reviewed by 17 international scientists and pathologists, who were trained to perform the visual HER-

2 scoring. The obtained scores were benchmarked against the automated scoring results by ACCEPT 

(8). ACCEPT was used to automatically analyze the raw TIFF images of every fluorescent filter (DAPI, 

PE, APC, and FITC) taken by the CellTracks Analyzer II® (Menarini Silicon Biosystems Inc.) (8). CTC 

identification and HER-2 IF intensity classification (HER-2neg, HER-2med, and HER-2high) was performed 

with gating and HER-2-FITC cut-off settings as previously described (8, 17). Briefly, CTC gates are 

defined as: Mean Intensity CD45 ≤ 5, Mean Intensity DNA > 45, Mean Intensity CK > 60, 16 ≤ Size CK ≤ 

400, DNA overlay CK > 0.2; and HER-2 cut-offs are: HER-2neg (Mean Intensity HER-2 = 0), HER-2med 

(<100), and HER-2high (≥100). Thirdly, to validate objective IF scoring by ACCEPT, 7 CellSearch®-enriched 

tumor cell lines and 4 CTC samples with high count were transferred to the DEPArray™ V2 system 

(Menarini Silicon Biosystems Inc.), as we have described previously (18). Briefly, the loaded sample is 

automatically injected into the microchamber of a cartridge where single cells are trapped in one of 

16,000 electrical cages. IF images of the entire surface area are taken and cells are automatically 

detected by the system, generating an image library and 40 parameters per individual cell. HER-2 

scoring was performed using the relative fluorescent units (RFU) of the HER-2-FITC signal after 

background subtraction (i.e. Mean Intensity-bgsub parameter). A cut-off for HER-2 positivity was 

defined at >1185 RFUs. Using this cut-off, 95% of the analyzed cells within the theoretically expected 

HER-2-positive and -negative cell lines classified as positive and negative, respectively.  

 

FISH  

A HER-2/neu FISH protocol was established using cell line models. CellSearch®-enriched tumor cells (8 

spiked cell lines) and patient CTCs (4 samples) were spinned on a Superfrost Plus slide (Fisherbrand) 

using a Slide carrier with a 1ml One-Funnel Cytochamber (cat. 1662 and 1663 resp., Hettich) and fixed 
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in acetone at 4˚C for 5 minutes. FISH on slide was performed using the DAKO IQFISH kit (Agilent), with 

adjusted protocol as described in supplementary methods. Before and after FISH, slides were scanned 

on the BioView® scan device with a specialized CTC protocol (BioView®, Israel), in order to detect and 

map the tumor cells in the leukocyte background. HER-2 status was assessed according to the 

manufactures guidelines (Agilent). 

 

qRT-PCR 

Besides HER-2 image analysis, CellSearch Profile®-enriched tumor cell fractions (cell lines: n=7, patient 

samples: n=54) were subjected to HER-2 expression analysis, as described previously (19). Samples 

were taken simultaneously with CellSearch® CTC samples, to facilitate comparison between gene 

expression and IF. Briefly, 25% of the isolated RNA from the enriched fraction was subjected to 

complementary DNA (cDNA) synthesis and pre-amplification, using the RevertAid H Minus First Strand 

cDNA synthesis kit and TaqMan PreAmp master mix, respectively (Thermo Fisher Scientific #K1632 and 

#4488593). Pre-amplified cDNA was diluted 15x with 1xTE-buffer, after which qRT-PCR was performed 

for ERBB2 as target gene, 3 housekeeping genes (SDHA, HMBS and HPRT1) to control for sample 

loading and RNA integrity, epithelial (EPCAM, KRT19) and leukocyte (PTPRC) markers to control for 

presence of epithelial and leukocyte content. ERBB2 Cq value of every sample was normalized to the 

epithelial signal within that sample (dCq). All samples were further normalized to the calibrator (ddCq).  

 

Statistics 

Correlations between the HER-2 analysis methods ACCEPT, DEPArray™, and qRT-PCR was calculated 

using Pearson’s correlation coefficient. Fisher’s exact test was used to compare ACCEPT and qRT-PCR 

results within HER-2-negative and HER-2-positive patient groups. 

RESULTS 

 

HER-2 protein expression and gene amplification  

HER-2 IF image interpretation is crucial, especially when using CTCs in interventional trials testing HER-

2-directed therapies. In our international observer study, 17 trained readers performed visual HER-2 

scoring (negative, or positive: 2+ or 3+) of 2000 patient-derived thumbnail CellSearch HER-2 images, 

which was compared to the new objective ACCEPT algorithm (HER-2neg, HER-2med, and HER-2high). For 

1535 CTCs (77%) a high concordance (i.e. >75%) between observers was reached, which was 

predominantly driven by agreement on HER-2 negativity (Fig 2A). According to ACCEPT, 860 (43.8%) 

CTCs were HER-2neg, 608 (31.0%) were HER-2med, and 495 (25.2%) were HER-2high expressing CTCs. 37 

CTCs were not detected by ACCEPT. When comparing the 1535 highly concordant scored CTCs with 

ACCEPT results, observers tend to score HER-2 expression on these CTCs lower than ACCEPT does (Fig 

2B). Especially HER-2med expressing CTCs were frequently scored as negative cells by observers. When 

merging the 2+ and 3+ scored CTCs into one HER-2-positive group, high concordance (i.e. >75%) was 

reached for 1843/2000 (92%) CTCs. 460/468 (98%) HER-2high expressing CTCs were scored as positive 

by the observers, and 816/831 (98%) HER-2neg CTCs were scored negative by the observers. Again, 

ACCEPT HER-2med CTCs were scored negative in 457/511 (89%) cases (Fig 2C). These dim expressing 

CTCs are covered in the negative category of the visual scoring system, as it includes 0 and 1+ scores. 

Furthermore, there was a significant difference between the mean IF intensity of the HER-2med CTCs 

scored negative (47.9 +/- 15.5) versus positive (82.1 +/- 13.1) on visual scoring. Inter-observer 

variability (Kappa test) was 0.636 for visual scoring in negative, 2+, and 3+ groups, and 0.785 for scoring  
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Fig 2. HER-2 scoring of 2000 CTC thumbnail IF images by 17 trained observers (0, 2+, 3+) versus ACCEPT 

(HER-2neg, HER-2med, HER-2high). A. ≥75% concordance between observers was reached for 1535 CTCs. For 

358 CTCs agreement was reached between >50% of observers, and for 107 CTCs (dashed box) no agreement 

was reached B. HER-2 scores of 1535 CTCs given by ≥75% of observers versus ACCEPT. HER-2-negative CTCs 

according to observers were mainly scored HER-2neg or HER-2med by ACCEPT. HER-2high expressing CTCs by 

ACCEPT were predominantly scored 2+ or 3+ by the observers. C. HER-2 scores of 1810 CTCs given by ≥75% 

of observers versus ACCEPT. HER-2high expressing CTCs by ACCEPT were predominantly scored positive by 

the observers. 

 

 

in negative versus positive groups, which are both considered as ‘good’ according to the Koch and 

Landis classification (20). Overall, we found high agreement between observers and ACCEPT regarding 

HER-2neg and HER-2high expressing CTCs, however ACCEPT HER-2med CTCs appear negative on visual 

scoring. To further investigate this, we performed IF image analysis and FISH on a cell line model.  

Two automated image analysis methods, i.e. DEPArray™ and ACCEPT, were used to measure 

HER-2 IF signal on CellSearch-enriched samples of eight breast cancer cell lines with incremental HER-

2-FITC intensity, categorized as HER-2neg (MCF-7, MDA-MB-436, and BT-20), HER-2med (MDA-MB-453), 

and HER-2high (KPL-4, SUM190, IBC-3, and SKBR-3) according to literature (8, 9, 13) (Figs 3A and 3B). 

ACCEPT analysis of CellSearch Analyzer II® raw images demonstrated absence of HER-2-FITC signal in 

8409/8434 (99.7%) leukocytes and 496/509 (97.4%) negative cell line cells (Fig 3B). MDA-MB-453 cells 

were HER-2med expressing in 368/640 (57.5%), the rest being HER-2neg. Within the HER-positive cell 

lines KPL-4, IBC-3, SKBR-3, and SUM190 we observed an incremental increase in the median HER-2-

FITC intensity, with 415/542 (76.6%), 187/212 (88.2%), 189/208 (90.9%) and 220/228 (96.5%) cells, 

respectively, being classified as HER-2high expressing cells (Fig 3B).  

Overall, when comparing both DEPArray™ and ACCEPT cell line data, a comparable gradient in 

the mean HER-2 expression levels was observed (Pearson r = 0.96, p = 0.0001). As the DEPArray™ 

system is able to recover individual CTCs, the found cut-off can be used to sort samples into different 

HER-2 categories for downstream analysis. 

To infer whether increased HER-2-FITC IF signals find their origin in gene amplification, we 

applied HER-2/neu FISH on the CellSearch®-enriched fractions. In all samples, analyzed leukocytes 

(n=20) demonstrated a copy-number neutral HER-2/neu status (S1 Fig). A similar observation was 

made in HER-2-negative cell lines MDA-MB-436, MCF-7, and BT-20, (n=10 per cell line). High gene 

amplification was detected in all visualized cells of HER-2-positive cell lines KPL-4, IBC-3, SKBR-3, and  
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Fig 3. HER-2 IF and FISH on a cell line model and 4 patient samples. A. HER-2 mean intensity background 

subtracted (bgsub) for donor leukocytes, 3 HER-2-negative cell lines (MDA-MB-436, MCR-7, BT-20) and 4 

HER-2-posititve cell lines (KPL-4, IBC-3, SKBR-3, SUM190), and 4 patient samples measured by DEPArray™. 

The cut-off between HER-2-negative and -positive cells was defined at 1185 RFU. B. HER-2 mean intensities 

for donor leukocytes, 8 cell lines, and 4 patient samples measured by ACCEPT. HER-2neg, HER-2med and HER-

2high expressing cells are defined as mean intensity = 0, ≤100, and >100 respectively (8). C. Table showing 

the number and percentage of HER-2-positive CTCs in 4 patient samples based on ACCEPT and DEPArray™. 

HER-2-positive cells are subdivided in HER-2med and HER-2high expressing cells using ACCEPT. D. BioView IF 

and FISH images of DEPArray™-sorted HER-2-positive and -negative CTCs from patient 1. HER-2-negative 

CTCs are copy-number neutral (example shown). 7/24 (29%) HER-2-positive CTCs revealed a HER-2/CEP17 

ration of 3:2, still being FISH negative (example shown). 

 

 

SUM190 (n=7 for KPL-4, n=10 for IBC3, SKBR-3, and SUM190), with mean HER-2/CEP17 ratios of 5.5 

(KPL-4), 6.3 (IBC-3), 8.3 (SKBR-3), and 4.5 (SUM190). Medium cell line MDA-MB-453 had on average 6 

HER-2 and 3 CEP17 copies, being scored as borderline (S1 Fig). 

Cell line results were confirmed in an explorative study on four patient samples with high CTC 

count. The majority of CTCs were HER-2-negative using DEPArray™ and ACCEPT (Fig 3C). With 

DEPArray™ image analysis, 23.3% of CTCs in patient sample 1 exceeded the HER-2-positivity threshold. 

A comparable HER-2med expressing CTC rate was detected by ACCEPT. In patient samples 3 and 4 we 

observed 2283 (12.3%) and 1139 (13.1%) HER-2med expressing CTCs, respectively. In all CellSearch 

patient samples no HER-2 amplification was observed. Additionally, CTCs from patient 1 just exceeding 

the positivity threshold were DEPArray™-sorted. HER-2/neu FISH analysis showed no amplification in 

these CTCs, although 7/24 (29%) cells visualized, revealed a HER-2/CEP17 ratio of 3:2 (i.e. non-

amplified according to HER-2-FISH guidelines) (Fig 3D).  
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Our finding that HER-2med expressing cells are mainly scored as negative using visual scoring, 

and are not HER-2-amplified, is in line with results from a large patient cohort where only positive CTCs 

by visual scoring were HER-2-amplified (10). 

 

HER-2 analysis in a MBC patient cohort 

Using the objective analysis software of ACCEPT, we studied the distribution of HER-2neg, HER-2med, and 

HER-2high expressing CTCs in 45 CellSearch® CTC samples containing ≥5 CTCs from 35 MBC patients. 

11/45 (24%) samples came from 10 patients with a HER-2-positive primary tumor and/or metastasis, 

and 34/45 (76%) samples came from 25 patients with a HER-2-negative primary tumor and/or 

metastasis (Fig 4, S1 Table). In the HER-2-negative patient group, all first blood samples were taken at 

the start of a new line (1st-3rd) of therapy for MBC. None of these patients received any anti-HER-2 

directed therapy. From HER-2-postitive patients, all samples (except from patient 2000) were taken at 

first line of therapy for MBC and none of them were at that moment treated with anti-HER-2 directed 

therapy, due to various reasons (i.e. de novo MBC; adjuvant trastuzumab had already stopped; or in 1 

patient no anti-HER-2 directed therapy had been added to the adjuvant treatment). Sample 2000_1 

was taken at the start of the second line of therapy, however the first line did not include trastuzumab. 

During further treatment this patient did receive anti-HER-2 directed therapy, as was the case when 

sample 2000_2 was taken (S2 Table). We observed in both groups heterogeneous HER-2 expression 

patterns. All 10 (100%) patients with HER-2-positive MBC, had ≥1 HER-2high expressing CTCs, while in 

the HER-2-negative MBC patients, this was in 5/25 (20%) patients (Fisher exact: p < 0.0001). Overall, 

37% of patients harbored >10% HER-2high expressing CTCs. However, when combining HER-2med and 

HER-2high expressing CTCs, this was 94% of patients. This is comparable with recent data of 132 patients 

(39% HER-2-positive and 61% HER-2-negative patients), where 89.4% of patients had HER-2med and/or 

HER-2high expressing CTCs (8). 

Focusing on patients with multiple sampling, comparable HER-2neg, HER-2med, and HER-2high CTC 

counts were observed. However, in patient 2000, diagnosed with HER-2-positive de novo MBC, HER-

2high expressing CTCs were eliminated after anti-HER-2 directed therapy. Similarly, in patient 3495, who 

was diagnosed with HER-2-negative (IHC 2+/FISH-negative) de novo MBC, 20% of the CTCs were HER-

2high expressing at the start of an aromatase inhibitor. Although the CTC burden was comparable, HER-

2high expressing CTCs disappeared completely after 6 weeks on therapy (Fig. 4, S2 Table).  

Surprisingly, in all 71 samples containing <5 CTCs, we found no HER-2neg CTCs and solely HER-

2med and HER-2high expressing CTCs, independent of the primary tumor or metastasis status (S2 Fig). A 

similar observation was made by Zeune et al, with samples containing solely HER-2med and/or HER-2high 

CTCs all having ≤6 CTCs in total (8). When analyzing leukocytes, we found in all samples up to 5% of 

leukocytes did express some HER-2. This physiological phenomenon will not affect IF image-based HER-

2 analysis of CTCs, as CTCs and leukocytes are measured individually (21). 

We aimed to validate the ACCEPT results by applying gene expression analysis on enriched CTC 

fractions of blood samples taken simultaneously. ACCEPT image analysis and qRT-PCR data on 

CellSearch Profile®-enriched CTC fractions were available for 7 cell lines and 54 patient samples. ERBB2 

(HER-2/neu) relative gene expression (RGE) levels in cell lines (S3 Fig) correlated with mean intensity 

HER-2 IF data, as measured by DEPArray™ (r = 0.97 , p = 0.0002) and ACCEPT (r = 0.96 , p = 0.0007) 

image analysis. ERBB2 expression, corrected for CTC content, in 20 patient samples with ≥5 CTCs (range 

5-17502) demonstrated variable ERBB2 RGE (Fig 5), but correlated well with ACCEPT data ( r = 0.8255, 

p < 0.00001). Focusing on HER-2high expressing CTCs, comparative analysis with ERBB2 RGE data 

demonstrated how 3/10 (30%) samples with low ERBB2 RGE (<0.2, i.e. below median RGE) contained  
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Fig 4. HER-2 IF scoring by ACCEPT of a MBC patient cohort. Percentage of HER-2neg, HER-2med, and HER-2high 

expressing CTCs in a MBC cohort divided in patients with HER-2-positive or -negative tissue (primary tumor 

and/or metastasis) samples. Total CTC count per sample is depicted on top. HER-2high expressing CTCs are 

present in at least 1 sample of 10/10 (100%) HER-2-positive patients, and 5/25 (20%) HER-2-negative 

patients.  

 

 

HER-2high expressing CTCs (range 1-2), whereas HER-2high expressing CTCs (range 1-16) were present in 

7/10 (70%) samples with high ERBB2 RGE (>0.2) (Fisher exact: p = 0.1789). When focusing on the 

samples with a highest ERBB2 expression (RGE >0.34, i.e. above the third quartile) 5/5 patients 

harbored >20% (i.e. above the third quartile) HER-2high expressing CTCs, while in the other group this 

was in 1/15 of patients (Fisher exact: p = 0.0004). Moreover, 5/5 patients with the highest ERBB2 

expression had ≥1 HER-2high expressing CTC, while this was 5/15 in the group with a lower ERBB2 RGE 

(Fisher exact: p = 0.016). We did not observe a correlation between ACCEPT and qRT-PCR data in 

samples with <5 CTCs. Taken together, this demonstrates that in patients with ≥5 CTCs, qRT-PCR on 

CellSearch®-enriched samples can identify samples containing HER-2high expressing CTCs. 

DISCUSSION 

 

Personalized targeted treatment of patients with MBC relies on the accurate assessment of specific 

molecular aberrations in tumor cells, e.g. the overexpression of the transmembrane HER-2 receptor. 

To circumvent potential clinically-relevant discordances in HER-2 receptor status between archival 

primary tumor tissue and metastatic lesions, the molecular interrogation of FDA-cleared CellSearch®-

enriched CTCs can provide an attractive alternative for real-time biomarker assessment (1-3).  
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Fig 5. HER-2 protein (ACCEPT) versus mRNA (qRT-PCR) expression of MBC patient samples. A. Increasing 

ERBB2 (HER-2) relative gene expression (RGE) corrected for CTC content of 20 patient samples with ≥5 CTCs. 

B. Corresponding HER-2med and HER-2high expressing CTC count by ACCEPT of 20 patient samples with ≥5 

CTCs. For four samples the total number of HER-2med expressing cells is given on top. For six samples ≥20% 

of total CTC count were HER-2high expressing CTCs (). 

 

 

However, implementation of CellSearch®-based HER-2 analysis using visual scoring has been limited. 

Most recently an objective analysis software has been made available (8), which we compared to other 

CTC analysis techniques.  

Our observer study demonstrated high agreement between the observers and ACCEPT 

considering the HER-2neg and HER-2high expressing CTCs, while HER-2med expressing CTCs by ACCEPT 

were scored negative by the observers in 89% of CTCs. Moreover, we show that HER-2med expressing 

cell line cells and patient CTCs, did not show HER-2/neu gene amplification, which is in agreement with 

literature, were MDA-MB-453 was scored IHC and FISH negative (8, 9, 11-13, 22). Both results are in 

line with data from a large patient cohort where negative CTCs by visual scoring were HER-2 copy 

number neutral (10). As patients only receive HER-2-directed therapy when HER-2 overexpression is 

proven on tissue samples (i.e. IHC 3+ or FISH+), one might argue on the clinical benefit of treating 

patients harboring HER-2med expressing CTCs. 

When inferring the prevalence of HER-2neg, HER-2med, and HER-2high expressing CTCs in our 

patient cohort, we found that one third harbored >10% HER-2high expressing CTCs, while almost all 

patients harbored HER-2med expressing CTCs. This is comparable with recent data on a similar cohort 

of 132 patients (8). In daily clinic, HER-2 overexpression (IHC 3+ or FISH+) is only present in a minority 

of patients with primary invasive breast cancer, although a higher incidence of HER-2-positivity is seen 

in MBC (26,3% in stage IV versus 15% in stage I-III patients) (23). This prevalence is in line with the 

percentage of patients with HER-2high expressing CTCs in both our and the MBC cohort examined by 

Zeune et al (8). Taken together, we suggest that HER-2high expressing CTCs might be more clinically 

relevant than HER-2med expressing CTCs.  

Besides all HER-2-positive patients, also 5/25 HER-2-negative patients harbored ≥1 HER-2high 

expressing CTCs based on ACCEPT. This suggests either a shift in HER-2 status in these 5 patients, or 

outgrowth of a minor HER-2-positive subclone not detected with FISH on tissue samples. The latter has 

been demonstrated with FISH on DEPArray™ sorted primary tumor samples (24). One should realize 

that HER-2 expression on tissue samples is often heterogeneous and are given IHC scores of 1+ or 2+. 

In our cohort, 3 out of 5 patients with discrepant HER-2 status were assigned IHC 1+ or 2+, suggesting 
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some HER-2-positive tumor cells were already present at baseline. In general, IHC status (i.e. more 

homogeneous 0 or 3+, or more heterogeneous 1+ or 2+) of the archival tumor was not related to the 

degree of heterogeneity we found in the CTC samples. Acquisition (i.e. clonal selection/expansion) of 

HER-2 gene amplification in CTCs has reported to be associated with cancer progression (25). Still, 80% 

of patients with a HER-2-negative primary tumor did not harbor any HER-2high expressing CTCs. We 

argue that in these patients a major clinical impact of HER-2-directed monotherapy cannot be 

expected. 

Clinical trials incorporating quantitative HER-2 analysis on CTCs might learn us the clinical 

validity of both HER-2med and HER-2high expressing CTCs. The ongoing DETECT III trial aims to 

demonstrate the benefit from Lapatinib therapy in initially HER-2-negative patients, who are HER-2-

positive on CTCs (7). The CirCe T-DM1 trial showed that HER-2/neu gene amplification in CTCs from 7 

HER-2-negative MBC patients occurs in a minor CTC subpopulation (26). Overall a low response rate 

was reported (1/7), questioning the clinical utility of anti-HER-2 therapy in patients with HER-2 

amplification in a minor subset. Another phase II trial tested effectiveness of Lapatinib in MBC patients 

with HER-2-negative primary tumors and HER-2-positive CTCs analyzed by visual scoring of CellSearch® 

images and FISH (27). 7/96 patients, harboring 2-5 CTCs, were eligible (i.e. ≥50% of CTCs were HER-2-

IF positive, and 1 sample was FISH-positive). No objective tumor responses occurred in this population, 

underlining the importance of patient selection for such trials. Based on our findings this should be 

patients with ≥5 CTCs and at least one HER-2high expressing CTC. To enhance clinical utility of CTC-based 

therapy selection, it is important to consider improved quality control, validation, and standardization 

for HER-2 characterization and scoring on CTCs, as is required for HER-2 diagnostics on tissue. Objective 

image analysis is key start.  

Liquid biopsies have the major advantage that they can be taken easily and repeatedly. The 

ability to detect ERBB2 gene amplifications in plasma has already been proven (28), however no trials 

testing anti-HER-2 directed therapy in MBC based on HER-2 alterations in cell free (cf)DNA have been 

performed. Although, efforts have been made in gastric cancer (29). For both cfDNA and CTCs 

(independent of the enrichment technique, i.e. EpCAM based or marker free) applies: a standardized 

biomarker should be tested in the right patient population in a four-armed randomized trial (30, 31) 

to proof its utility in distinguishing between patients that will or will not benefit from specific therapies. 

CONCLUSIONS 

 

Our data shows that HER-2 characterization on CTCs should be focused on HER-2high expressing CTCs 

in patient samples containing ≥5 CTCs. Although CTC-derived HER-2 expression in patients is 

heterogeneous, the prevalence of patients with ≥1 HER-2high expressing CTCs better reflects the 

incidence of HER-2-positive MBC seen in the clinic. Additionally, we have demonstrated that only HER-

2high expressing tumor cells harbor amplification of the HER-2/neu gene, and samples containing HER-

2high expressing CTCs show high relative gene expression of HER-2 on qRT-PCR. For both these 

downstream techniques, prior CTC enrichment is necessary, involving extra cost and labor. Therefore, 

straightforward automated images analysis has enormous potential for clinical implementation. When 

focusing on the right patient population, CTC-direct anti-HER-2 therapy might proof itself in clinical 

trials. 
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SUPPORTING INFORMATION 

 

 

 

S1 Table. HER-2 tissue status. IHC (0-3+) and FISH (0=negative, 1=positive) results for primary tumor 
(PT) and metastatic tissue (MET) per patient. 
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S3 Table. Methodologies and cut-offs used for image-based analysis of HER-2 fluorescent 
intensities. 

  

S2 Table. Line of treatment at time of CTC enumeration. In the HER-2-negative patient group, all first 
blood samples were taken at the start of a new line (1st-3rd) of therapy for MBC. None of these patients 
received any anti-HER-2 directed therapy. From the HER-2-postitive patients, all samples were taken 
at first line of therapy for MBC, but sample 2000_1 (start of the second line), and none of them were 
at that moment treated with anti-HER-2 directed treatment. Sample 2000_2 was taken at the start of 
the fifth line of therapy, after prior anti-HER-2 directed therapy. Abbreviations: Adj, adjuvant; 
prim_MBC, de novo Metastatic Breast Cancer; DCIS, ductal carcinoma in situ; FU, follow-up; PD, 
progressive disease. 
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S1 Fig. BioView IF and FISH images of leukocytes and cell line cells. IF composite image is taken before 
FISH. Secondly, Nucleus/DAPI, CEP-17/SpectrumGreen, HER-2-neu/SpectrumOrange, and the 
composite images are shown. Leukocytes, MDA-MB-436, MCF-7, and BT-20 cells demonstrated a copy-
number neutral HER-2/neu status. Mean HER-2/CEP17 ratios for amplified cell lines were 5.5 (KPL-4), 
6.3 (IBC-3), 8.3 (SKBR-3), and 4.5 (SUM190). Medium cell line MDA-MB-453 had on average 6 HER-2 
and 3 CEP17 copies.   
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S2 Fig. ACCEPT results in <5 CTC patient samples. HER-2neg, HER-2med, and HER-2high expressing CTC 
count in a MBC cohort with samples <5CTC, divided in patients with HER-2-positive or -negative tissue 
(primary tumor and/or metastasis) samples. 
 

 
S3 Fig. HER-2 gene expression. ERBB2 relative gene expression (RGE) corrected for housekeeping gene 
expression, of bulk samples from 7 cell lines. 
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SUPPLEMENTARY METHODS 

 

Samples 

The preclinical model consists of eight breast cancer cell lines with increasing levels HER-2 expression 

and/or amplification: MDA-MB-436, MCF-7, BT-20, MDA-MB-453, KPL-4, IBC-3, SUM190, and SKBR-3 

(8, 9, 11-16). SUM190 and IBC-3 were cultured in Ham's F12 Nutrient Mixture (Life Technologies: 

21765-029) with 1% penicillin/streptomycin/L-glutamine (Life Technologies: 10378-016), 1% anti/anti 

(Life Technologies: 15240-062), 5% FBS (Life Technologies: 10270-106), 1% HEPES buffer 1M (Life 

Technologies: 15630-056), 1µg/ml hydrocortisone (Sigma-Aldrich: H4001-1G), and 5µg/ml insulin 

solution (Sigma-Aldrich: I9278-5ML). MCF-7, MDA-MB-436, BT-20, and KPL-4 were cultured in RPMI 

(Life Technologies: 11835-063), and SKBR-3 in McCoy’s (Life Technologies: 16600-082), all with 1% 

penicillin/streptomycin/L-glutamine, 1% anti/anti, and 10% FBS. Tumor cells were spiked in CellSave® 

tubes containing 7.5 ml donor blood and subjected to the CellSearch® system (Menarini Silicon 

Biosystems Inc., Huntingdon Valley, PA, USA), with addition of a FITC-bound HER-2 antibody (Menarini 

Silicon Biosystems Inc.). Similarly, CTCs were enriched from 7.5 ml blood samples (n=116) of 85 

patients with metastatic breast cancer (MBC), who were recruited between 2012 and 2015 at the 

Oncology Center of GZA Hospitals Sint-Augustinus (Antwerp, Belgium), after written informed consent 

(Study UA A11-18)(Supplementary Table S2). In total, 45/116 (38.8%) samples contained ≥5 CTC/7,5 

ml blood. For the inter-observer concordance study, 17 international pathologist and scientists scored 

2000 CellSearch® HER-2-FITC thumbnail images of CTCs acquired from MBC patients who were 

enrolled, after written informed consent, in several CTC studies at the Erasmus MC (Rotterdam, The 

Netherlands). For this part we included all single, fully visible CTC images of selected patients (known 

to be CTC-HER-2 positive or negative) regardless of image quality. 

 

HER-2 IF scoring methods 

Image-based HER-2 fluorescent intensities were analyzed using three methodologies.  

 

 

First, a semi-quantitative scale, which classifies the cells into 0, 1+, 2+, and 3+ was employed, as 

previously described (9). 0 and 1+ cells are considered negative. They have a pixelated cell staining 

with a grey and pixelated background. While 2+ and 3+ cells have sharp edge and fluent cell staining 

with a dark to completely black background respectively. Using an online survey platform, CellTracks 

Analyzer II® CTC images (n=2000) were reviewed by 17 international scientists and pathologists, who 

were trained to perform the visual semi-quantitative HER-2 scoring. The obtained scores were 

benchmarked against the automated scoring results by ACCEPT (8). 

 

 

Tool Source HER-2 classes HER-2 cut-off reference 

Visual Image gallery of 
CellSearch® Analyzer II 

0, 1+,  
2+, 3+ 

Semi-quantitative 
scale 

9 

ACCEPT Raw cartridge images of 
CellSearch® Analyzer II 

negative, 
medium, high 

mean intensity:  
0, 0-100, ≥100 

8 

DEPArray™ DEPArray™ V2    parameters negative,  
positive 

mean intensity-
bgsub: 1185 RFU 
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Secondly, ACCEPT was used to automatically analyze the raw TIFF images from the CellTracks Analyzer 

II® (Menarini Silicon Biosystems Inc.)(8). CTC identification, and classification of HER-2 intensity levels 

(negative, medium, and high) was performed with gating and HER-2-FITC cutoff settings as previously 

described (8, 17). It generates multiple parameters on shape and fluorescent intensities per individual 

cell. Cut-offs were set for CTCs (CD45-APC mean intensity ≤ 5, DAPI mean intensity >45, CK-PE mean 

intensity >60, CK-PE size 16-400, CK-PE overlay with DAPI >0.2) and leukocytes (CK-PE ≤ 5,  DAPI mean 

intensity >45, CD45-APC mean intensity >5, CD45-APC size 16-400, CD45-APC overlay with DAPI >0.2). 

HER-2 scoring is divided in negative (HER-2 mean intensity is 0), medium (HER-2 mean intensity is 

≤100), and high (HER-2 mean intensity is >100). 

Thirdly, CellSearch®-enriched CTC samples were transferred to the DEPArray™ system 

(Menarini Silicon Biosystems Inc.), as described previously (18). Briefly, the loaded sample is 

automatically injected into the microchamber of a cartridge where single cells are trapped in one of 

16,000 electrical cages. IF images of the entire surface area are taken and cells are automatically 

detected by the system, generating an image library and 40 parameters per individual. This can be 

used for further cell sorting.. HER-2-FITC scan filter configuration was set to an exposure time of 800ms 

with a gain of 5%, empirically defined using cell line samples, and maintained throughout all preclinical 

and clinical experiments. HER-2 scoring was performed using the relative fluorescent units (RFU) of the 

HER-2-FITC signal after background subtraction (i.e. Mean Intensity-bgsub parameter). A cut-off for 

HER-2 positivity was defined at >1185 RFUs. Using this cut-off, 95% of the analyzed cells within the 

theoretically expected HER-2-positive and -negative cell lines classified as positive and negative, 

respectively.  

 

HER-2 qRT-PCR on CellSearch® enriched samples 

CellSearch® CTC and CellSearch Profile® samples were taken simultaneously to facilitate comparison 

between IF and gene expression. CellSearch Profile®-enriched tumor cell fractions were subjected to 

HER-2 expression analysis, as described previously (19). Tumor cell fractions were lysed in 250μL 

RNeasy RLT+ buffer (Qiagen BV, The Netherlands) and stored at -80°C until RNA isolation. RNA was 

isolated from these lysates with the AllPrep DNA/RNA Micro Kit (Qiagen). Complementary DNA (cDNA) 

synthesis and ERBB2 pre-amplification was performed on 25% of the isolated RNA, using the RevertAid 

H Minus First Strand cDNA and TaqMan PreAmp amplification kit, respectively (Thermo Fisher 

Scientific #K1632 and #4488593, Merelbeke, Belgium), in a GeneAmp® PCR System 9700 (Life 

technologies). Pre-amplified cDNA was diluted 15x with 1xTE-buffer, after which qRT-PCR was 

performed to quantitate ERBB2 transcripts. Additionally, 3 housekeeping genes (SDHA, HMBS and 

HPRT1) were used to control for sample loading and RNA integrity. Epithelial (EPCAM, KRT19) and 

leukocyte (PTPRC coding for CD45) markers were used to control for presence of epithelial and 

leukocyte content. PCR reactions (40 cycles) were performed using TaqMan Gene Expression Assays 

with Universal PCR Master Mix No AmpErase UNG on a 7900HT Fast Real-time PCR System (all Applied 

Biosystems). A calibrator (positive control) sample was used in each run to assess inter-run variability. 

Negative controls included a NTC and -RT sample. Only samples with a Cq value of <35 for each of the 

3 reference genes, were considered of sufficient quality and quantity. ERBB2 Cq value of every sample 

was normalized to the epithelial signal within that sample (dCq). All samples were further normalized 

to the calibrator (ddCq). RGE was calculated as 2^-ddCq. 
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HER-2 FISH on CTC 

A FISH protocol was established using the preclinical cell line model. CellSearch® enriched cells were 

spinned on a Superfrost Plus slide (Fisherbrand) using a Slide carrier with a 1ml One-Funnel 

Cytochamber (cat. 1662 and 1663 resp., Hettich, The Hague, The Netherlands). Cells were fixed on the 

slides in acetone at 4˚C for 5 minutes. FISH on slides was performed using the DAKO IQFISH kit (Agilent, 

Diegem, Belgium), including a pretreatment step, denaturation and hybridization, a stringent wash, 

mounting, and reading. A detailed prescription of the protocol is written in the table below. Before 

and after FISH, slides were scanned on the BioView® with CTC protocol (BioView®, Israel), in order to 

detect and map the tumor cells in the leukocyte background before the FISH protocol was applied. 

Amplification status was scored by the algorithm included in the BioView® software. Furthermore, four 

patient samples were subjected to HER-2 FISH analysis on BioView®. 
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A large-scale retrospective study in metastatic breast cancer patients using 
circulating tumor DNA and machine learning to predict treatment outcome 
and progression-free survival 
ABSTRACT  

Purpose  

Monitoring levels of circulating tumor-derived DNA (ctDNA) represents a non-invasive snapshot of 

tumor burden and potentially clonal evolution. Here we describe how a novel statistical model that 

uses serial ctDNA measurements from shallow whole genome sequencing (sWGS) in metastatic breast 

cancer patients produces a rapid and inexpensive assessment that is predictive of treatment response 

and progression-free survival. 

Patients and Methods  

A cohort of 188 metastatic breast cancer patients had DNA extracted from serial plasma samples (total 

1098, median=4, mean=5.87). Plasma DNA was assessed using sWGS and the tumor fraction in total 

cell free DNA estimated using ichorCNA. This approach was compared with ctDNA targeted sequencing 

and serial CA 15-3 measurements. The longitudinal ichorCNA values were used to develop a Bayesian 

learning model to predict subsequent treatment response. 

Results  

We identified a transition point of 7% estimated tumor fraction to stratify patients into different 

categories of progression risk using ichorCNA estimates and a time-dependent Cox model, validated 

across different breast cancer subtypes and treatments, outperforming the alternative methods. We 

then developed a Bayesian learning model to predict subsequent treatment response with a sensitivity 

of 0.75 and a specificity of 0.66.  

Conclusion  

In patients with metastatic breast cancer, sWGS of ctDNA and ichorCNA provide predictive real-time 

data on treatment response across subtypes and therapies. A prospective large-scale clinical trial to 

evaluate clinical benefit of early treatment changes based on ctDNA levels is now warranted.  

 

INTRODUCTION 

 

Breast cancer is the most common cancer diagnosis and the fifth leading cause of cancer death 

worldwide. Treatment options for patients with metastatic breast cancer have greatly increased but 

there remains an unmet need to monitor therapy response in real time1–3. Accurate real-time methods 

of monitoring treatment response are required to minimize time spent on ineffective therapies and 

improve access to more effective therapy. CA15-3, a tumor marker available in the clinic is often used 

to monitor response but has limited sensitivity and dynamic range4. We have shown it has inferior 

performance when compared with circulating tumor DNA (ctDNA)4. ctDNA assays can also provide a 

rapid, non-invasive and dynamic way of tracking genomic evolution and detecting the emergence of 

resistance mutations which could prompt therapy change5–7.  

Breast cancer genomic landscapes are dominated by  chromosomal copy number aberrations (CNAs), 

with around 85% of tumor gene expression changes driven by these CNAs 8–10. CNAs can be profiled 

using shallow whole genome sequencing (sWGS) of plasma DNA as a rapid and cheap method to 

characterize CNAs in ctDNA. Crucially, the detection of ctDNA in plasma using sWGS does not rely on 

any prior knowledge of the originating tumor genome.  
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Here, we evaluated the utility of ctDNA quantification using sWGS to predict treatment response in a 

consecutive cohort of metastatic breast cancer patients. We assessed the performance of established 

analysis tools to measure ctDNA levels, including  ichorCNA11, z-score12 and t-MAD13 and developed a 

Bayesian learning model that uses data from serial ctDNA measurements to dynamically predict 

treatment response. We also compared this approach to the use of a ctDNA targeted sequencing panel 

and measuring CA15-3 in the same plasma samples to determine how these different methods 

performed in predicting treatment response. 

 

PATIENTS AND METHODS   

  

Patient Cohort and Sample Collection 

A cohort of 188 patients with metastatic breast cancer was recruited into the DETECT clinical study at 

Cambridge University Hospitals (CUH), UK between 2012-2019. Eligible patients were those women 

with metastatic breast cancer undergoing treatment. Serial blood samples were collected at specific 

time points as shown in Figure 1. For patients on chemotherapy, blood samples were taken prior to 

the next cycle of therapy and for a minimum of four cycles.  For patients on continuous treatments 

such as endocrine therapy, blood samples were taken at routine clinic visits (typically every 3-6 

months). Cohort composition for each analysis is shown in Figure 1a-c.  

  

Sample Processing and analysis 

In total 1,098 blood samples were collected in ethylenediaminetetraacetic acid (EDTA) tubes and 

processed within 1 hour for plasma and buffy coat separation (Supplementary Methods). DNA was 

extracted from plasma and buffy coat and sequencing libraries for sWGS were prepared using 5 ng of 

cfDNA from each sample and 50 ng of DNA from buffy coat using the ThruPLEX® Tag-seq Kit (Takara 

Bio, Inc., Shiga, Japan) as described in the manufacturer’s instructions. The sequencing libraries were 

purified and quantified as detailed in the Supplementary Methods.  

Targeted sequencing of 20 breast cancer specific genes (NGTAS), as described in Gao,et. al.14, was also 

performed using 5ng DNA and library preparation as above for sWGS. Samples were then amplified in 

triplicate with specific primers using the Fluidigm Access arrayTM platform.  

All libraries were sequenced using an Illumina HiSeq 2000, at a mean depth of 0.1x for sWGS and >100x 

for NGTAS.  

Serum Ca15-3 levels collected as part of routine clinical care were analyzed at the Cambridge University 

Hospitals biochemistry laboratory (accredited by the United Kingdom Accreditation Service). 

 

Bioinformatic analysis 

Sequencing data was processed and analyzed as described in the Supplementary Methods. The copy 

number profiles produced using QDNAseq15 were used as input into three algorithms for tumor 

fraction estimation (ichorCNA11, z-score12 and t-MAD13, see Supplementary Methods). Mutational 

profiling was performed using the NGTAS pipeline14, with the maximum variant allele frequency (VAF) 

of any somatic mutation detected used for assessing its predictive performance. 

 

RECIST Criteria  

Progression-free survival (PFS) for each line of treatment was calculated using RECIST 1.116 guidelines 

to determine Progression Free Survival 2 (PFS2) as described previously (the time from the start of a 

line of treatment until objective progression on medical imaging using computed tomography (CT) of 
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ctDNA Isolation (4h)
sWGS-HiSeq4000 (SE50) 

ichorCNA Analysis
CNAs & Tumour Fraction %

Tumour Histology
ER+/Her2- (n = 116)
ER+/Her2+ (n = 54)
ER-/Her2+ (n = 11)
ER-/Her2- (n = 6)

Population

n=188 n=1034 n=1098

Selection criteria 
• ER/Her2 information

• At least one ichorCNA score before first progression/censoring 

Selection criteria: 
• Earlier subset of plasma samples

• Progression-free survival estimation

Selection criteria: 
• ER/Her2/Treatment information

• Scan/ichorCNA between 3 weeks and 6 
months after treatment start

• Comparison with last ichorCNA if positive
• Scan no later than 90 days after plasma
• We use every plasma sample to predict 

the next scan in the treatment

Progression-free 
Survival

n=121 n=453

Comparison of 
tumour fraction scores

n=51 n=250
n=166

Prediction of treatment response

n=95 n=237 n=254

ichorCNA≥7

NO
NO YES

Has 
ichorCNA

increased?

a)

c)

b) d)

n=355

Bayesian Learning Model

n=143 n=891 n=886

Model training

CONTINUE 
TREATMENT

STOP

TREATMENT

n=129 n=129

Model validation

Computed Tomography
Chest & Abdomen 

RECIST 1.1 guidelines 

n=92 n=695
CA 15-3 

Targeted-NGS
377 Amplicons 

20 Cancer Genes

CA 15-3 
Units/mL

YES

Figure 1. Clinical cohort and sample analysis with histology, sample timelines and treatment 
types.  A. Patient numbers, histology and sample processing. B. Timeline of ctDNA collection 
per patient C. Treatment types assessed. *one patient was excluded as no relevant CT staging 
scan. 29 samples were not used for sWGS library preparation due to the very low levels of DNA 
in these samples (<5ng DNA total).   
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the chest and abdomen, or death)17,18. For each line of treatment, the CT scan prior to the start of this 

line of treatment was used as baseline. Imaging of the head was not included in the assessment of 

progression in this study. Longitudinal data available for two representative patients is shown in Figure 

2. 

 

RESULTS 

  

ichorCNA best predicts progression-free survival 

Several methods for ctDNA fraction estimation using sWGS CNA data of DNA extracted from plasma 

have been proposed, including ichorCNA11, z-scores12 or t-MAD13. In order to identify which method 

performed best at estimating tumor burden in plasma, we used a discovery dataset consisting of the 

first 51 patients totaling 250 plasma samples. We built univariable time-dependent Cox models for PFS 

using each measure (ichorCNA, t-MAD, or z-score) individually. Using the c-index20 to assess the three 

models showed ichorCNA performed best (ichorCNA c-index=0.71, se=0.05; t-MAD c-index=0.68, 

se=0.06; z.OR c-index=0.61, se=0.06).  

We subsequently determined a threshold to identify patients at high risk of progression in order to 

facilitate clinical implementation. We used a spline term to model the effect of ichorCNA score on the 

hazard of progression and then fitted a segmented linear regression. This revealed a linear increase in 

the risk of progression followed by a changepoint at a score of 6.4% (Supplementary Figure 1, whole 

cohort, n=121). As expected, this categorization of the score showed lower predictive power than the 

continuous model (c-index=0.64, se=0.04, vs. 0.71, n=51), though the introduction of a static threshold 

Figure 2. Profiles of two patients, showing the complexity of the longitudinal data available for each 
patient. Treatment regimes, CT Scans (PD=Progressive disease, SD=Stable disease, PR=Partial 
response) and ichorCNA scores are shown. Treatments ongoing are labelled with a > symbol. 



108 
 

makes clinical implementation easier. By choosing a threshold of 7%, the hazard ratio of progression 

for high ichorCNA score (7%) was 5.97 [3.72, 9.59] for the whole cohort. When we stratified tumors 

by subtype, we observed differences in predictive ability. In ER+HER2- patients, the hazard ratio was 

5.60 [2.80, 11.18] and the expected time until progression for patients with a ‘low risk’ ichorCNA score 

(<7%) was 19.8 months, versus 8.2 months if the ichorCNA score was high. The prognostic effect was 

even higher for HER2+ patients, with a hazard ratio of 7.55 [3.39, 16.82] and a difference in the 

expected time of progression of 31.1 vs. 5.0 months. Figure 3 shows the predicted survival curves for 

two patients with high and low ichorCNA scores.   

We observed that ichorCNA can also be used to predict overall survival. Using a continuous score with 

a linear term (p=9.77x10-8, hazard ratio: 1.08, [1.05, 1.11]) and the common threshold of 7%, a higher 

ichorCNA value was associated with an increased risk of death (p-value: 0.001, hazard ratio: 7.40, [2.38, 

23.00]). This result highlighted the ability of ichorCNA to predict prognosis and the utility of our 

proposed threshold.  

 

Comparison with targeted sequencing (NGTAS) and CA15-3 

Targeted mutational sequencing data was also available in 92 samples obtained from 22 patients 

(described in Gao et. al.14). In this smaller sub-cohort and using the maximum VAF observed in the 

sample, we did not observe a significant effect on the hazard of progression (p=0.24) while the 

ichorCNA remained significant (p= 0.034). Combining the two scores into the same model did not 

improve the fit (p=0.44).  

We also looked at the ability of CA15-3 to predict response. For this analysis we compared data from 

a sub-cohort of 66 patients where 695 CA15-3 measurements were available with the corresponding 

ichorCNA values for the matched patient samples. Acknowledging the limitations of comparing both 

datasets (different number of patients and different sampling intervals, with the CA15-3 and the 

ichorCNA not always taken on the same day), a similar model using CA15-3 showed lower performance 

in terms of c-index (0.60, se=0.074) than the model using ichorCNA scores.  

 

 
Figure 3. Predicted progression-free survival curves for two patients (ER+/HER2- and HER2+) with low 
and high ichorCNA scores. The hazard ratio for each subtype has been obtained from a different model 
fitted for each disease subtype. 
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Considering a threshold of 0.01% VAF for NGTAS and 31U/ml (positivity threshold) for CA15-3, there  

was 78% concordance between NGTAS and ichorCNA, and a 60% concordance between ichorCNA and 

CA15-3. Figure 4 shows the instances where these measures showed discrepant results. Although the 

sampling times were different, comparing these values with the closest CT scan gave a better 

performance to the maximum VAF from NGTAS based on the area under the curve, but with a very 

small number of observations (0.78, n=15, ichorCNA=0.63, n=96 and CA15-3=0.59, n=81). Given these 

results, we decided to focus on ichorCNA for the rest of the study. 

 

ichorCNA ctDNA fraction predicts treatment response 

Using the ichorCNA 7% threshold we evaluated its ability to predict subsequent response or resistance 

to treatment at each time point. We used the following rules: (i) for a prediction of response ichorCNA 

<7% or 7% if a decrease from the previous time point, (ii) for a prediction of progression ichorCNA 

7% and an increase (or no change) from a previous time point (when available). The preceding time 

points needed to be on the same treatment to be relevant for decision-making. The application of 

these rules produced a sensitivity of 0.42 and a specificity of 0.90. The median time prior to prediction 

of progression for concordant decisions (stopping treatment) was 36 days (versus 29 days for 

discordant). For concordant decisions about continuing treatment the median time prior to the CT scan 

was 40 days (versus 38 days for discordant). These differences in the time where the decisions were 

made were not statistically significant and would not explain the difference in predictive ability. 

 
Figure 4. Discrepant results of ichorCNA measured with sWGS, mutant VAF measured with NGTAS and 
CA15-3. 96 instances where the CT Scan was done less than 90 days from or to the plasma sample and 
the CA15-3 was taken 15 days apart from the plasma sample measure are considered, Discrepancies 
are considered based on the 6 threshold for ichorCNA, 30 for CA15-3 and 1% for VAF. 
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 Specificity    

 71% 69% 66% 61% 

Sensitivity 68% 69% 75% 76% 

Table 1. Sensitivity at various levels of specificity (last observation not included for each patient)  

A Bayesian machine learning model (BAY-ML) to predict treatment response 

Motivated by these findings, we developed a novel statistical model to predict treatment response 

(based on RECIST criteria) using the full history of ichorCNA scores and CT imaging (Figure 5a). The 

model comprises two components, one that includes the characteristics common to the cohort 

(ER/HER2 status and treatment regime) and another that models the patient specific longitudinal 

ctDNA scores and disease progression measurements on CT. The model is fitted using a two-stage 

approach: in the first stage, the evolution of the repeated ctDNA measurements is summarized by 

random effects obtained by fitting a linear mixed effects model, and in the second stage, the resulting 

random effects are used as covariates in a logistic regression to predict the risk of progression. Both 

steps include a set of independent variables, such as the treatment regime and the tumor (see 

Supplementary methods). The model adapts to each patient learning from common cohort's effects 

such as the current treatment or the tumor subtype in both the ichorCNA trajectories and the 

probability of progression, but the model also learns from specific features of the patient. Leaving the 

final observation out for each patient (see Supplementary methods for details), we evaluated the 

sensitivity for predicting progressive disease when using ctDNA information at several clinically 

relevant specificity thresholds (Table 1). Leaving the last observation out in the model estimation, at 

 
Figure 5. BAY-ML model. A) Visual summary of the two-stage model. B) Left: Receiver operator 
characteristic (ROC) curve of our dynamic predictive model. The predictions were obtained with the 
last CT scan for each patient, left out when the model was fit. Right: Number of true/false positives 
and negatives over 100 patients when the simplest threshold model and when the longitudinal ctDNA 
scores are considered or not into the BAY-ML model. C) Instances where the model correctly predicted 
progression and instances where it did not, comparing the available information at that moment.  
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66% specificity, the sensitivity for detecting PD was 75%, significantly higher than our previous model 

based on a simple stopping rule. Figure 5b shows the receiver operator characteristic (ROC) curve for 

the model, highlighting the improvement in predictive performance, particularly in 

sensitivity, when iterative ichorCNA data is included. 

 

Treatment types  

We looked at the predictive capability of ichorCNA for different treatment types.  Predictions of 

response to targeted therapy (mainly CDK4/6 inhibitors and anti-HER2 therapy) and chemotherapy 

showed a higher concordance with CT results than endocrine treatment alone though this would need 

to be substantiated with larger data sets for statistical significance (see Figure 6). Blood test sampling 

was also less frequent for patients on endocrine treatment alone which could also explain this 

apparent difference.  

 

Discordant result analysis  

In order to understand better the limitations of ichorCNA we evaluated decisions whereby the 

ichorCNA values did not agree with disease status as measured using RECIST 1.1. The ichorCNA score 

was high (predictive of treatment failure) but the subsequent CT showed RECIST stable disease in 24 

instances. In 11/24 cases (46%), progressive disease was observed on the subsequent CT scan, 

suggesting early detection of progression by ctDNA, with a median lead time of 4.8 months. In 2/24 

cases disease progression was observed in the brain (not evaluated as part of the RECIST criteria for 

this study).  

In the cases where progression occurred on a CT scan but were not detected by ichorCNA (22 instances 

in total), in 5 of these cases this followed treatment with palliative radiotherapy which we hypothesize 

may have led to a reduction in ctDNA levels, separate to other systemic treatments. In 2/22 of cases a 

mixed response was seen, and it may be that having additional information from ctDNA could have 

aided the decision-making process. For an additional 6/22 cases low volume changes were seen 

(<10mm in <2 lesions) which may have had limited clinical impact. In 60% of these cases clinical 

management continued unchanged.  

 
Figure 6. Analysis showing the association between the probability of predicting progressive disease 
and the result of the CT scan depending on different treatment types. 
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DISCUSSION   

 

We have demonstrated the real-world performance of ichorCNA in predicting treatment response for 

metastatic breast cancer patients and have used a novel Bayesian machine learning approach which 

uses longitudinal data, improving its predictive capability. This approach has several advantages over 

other methodologies. Firstly, all data is useful (including ichorCNA = zero) as it evaluates changes across 

the whole genome, having an important advantage over targeted sequencing, whereby a lack of 

somatic mutations in ctDNA only means that those specific mutations have not been detected. 

Moreover, within our study the average turnaround time, including library preparation and 

sequencing, was less than one week, and the assay we used was cheaper than currently available 

alternatives, with a typical cost of £100 per sample including processing costs. This compares 

favourably to commercially available ctDNA panel tests e.g Guardant360 (98 genetic alterations) at 

~£4,000 per sample and MSK-IMPACT™ panel (468 genes) at ~£2,000 per sample. In addition, ctDNA 

monitoring could reduce the need and frequency of CT scanning if levels continued to be low.   

Altogether, this shows that the method we describe in this study can be cheaply deployed within the 

clinic for therapy monitoring in real time. Importantly, the prediction capability was agnostic of breast 

cancer subtype and treatment regime, though it may be that predicting response to targeted therapy 

and chemotherapy may be slightly more reliable than for endocrine treatment alone. This may reflect 

the biology of disease as patients on targeted treatment and chemotherapy are likely to have more 

aggressive disease or have a higher tumor burden potentially making ctDNA levels higher and more 

dynamic. Moreover, cytostatic treatments are probably less likely to cause large changes in ctDNA 

compared with cytotoxic treatments. For a subset of cases, we also had data on CA15-3 levels and 

somatic mutations from a targeted sequencing panel. From this analysis ichorCNA was more accurate 

than CA15-3, and targeted sequencing data did not improve the predictive power with the caveat these 

comparisons were in smaller numbers of patients.  

Due to lower patient numbers, we were less able to comment on any specifics for triple negative breast 

cancer. A prior study in metastatic triple negative breast cancer patients found a similar link between 

PFS and ichorCNA score19 and we do not believe there would be any significant difference for this 

subtype though the optimal threshold may be different. This also highlights the potential benefits of 

using machine learning to improve predictive power. We initially developed a simple stopping rule that 

is easy to implement in the clinic that is prognostic of progression and can predict treatment response 

with moderate success. We improved on this using a dynamic model that uses the history of the patient 

to predict more accurately the probability of progression under a given treatment.  

Thinking more broadly about estimating ctDNA it could be that this is a better marker of overall disease 

activity than purely measuring disease on a CT scan. In a recent publication evaluating the use of ctDNA 

in the neoadjuvant setting it was shown that the presence of residual ctDNA post operatively was more 

predictive of relapse than pathological complete response20.  We hypothesize that using the approach 

we describe here could provide benefits in terms of both quality of life, by reducing unnecessary 

toxicity, and increased access to more efficacious treatments in a timely fashion. This is also a realistic 

prospect as genomic assessment using ctDNA is rapid and relatively inexpensive making it accessible 

to public health systems. Our findings need to be fully evaluated in a prospective randomized clinical 

trial to assess the use of ctDNA to make treatment decisions, comparing it also to endpoints such as 

quality of life and overall survival. 
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Shallow whole genome sequencing data for all samples has been deposited at the European 
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ADDENDUM 
 
For above study, longitudinal ichorCNA values of retrospectively collected plasma samples from the 
Sint Augustinus Antwerp-cohort were used for a training set to develop the Bayesian learning model 
to predict subsequent treatment response.  

From 74 patients 814 plasma samples and 74 buffy coats were sequenced. Figures below 
demonstrate preliminary data of tumor fraction per sample. Colored blocks depict various lines of 
therapy in the metastatic setting and vertical lines are scan evaluations. The five graphs of figure 1 
show often decrease in tumor burden (CNA values) after the start of a therapy line, and subsequent 
increase at time when treatment switch is needed. Figure 2 depicts increase in tumor burden at time 
of progressive disease on scans, just before therapy switch. Figure 3 shows the response on therapy. 

Limitations of this work is the diverse population in this retrospective Antwerp-cohort, as well 
as infrequent sampling. Ideally, samples should be taken at baseline, around 8 weeks into therapy, and 
at time of progressive disease (i.e. the new baseline of the next line of therapy). Missing data can 
interfere with the predictive value ichorCNA values like depicted in the last graph of figure 1. 
(Abbreviations: HR hormone receptor, ET endocrine therapy, CT chemotherapy, i inhibitor) 
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GENERAL DISCUSSION 
 

Technical considerations 

Circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA), but also RNA, exosomes, 

proteins are all present in liquid biopsy samples. An exploration of the advantages and disadvantages 

of each substrate and how to better incorporate them into clinical application is needed to achieve 

more clinical validity. 

Various CTCs detecting technologies have emerged. Epithelial marker-based CTC detection 

technologies, such as the CellSearch system, have been extensively validated. Although its drawbacks 

have become increasingly acknowledged, since CTCs are frequently studied as part of the metastatic 

cascade in the early stages of breast cancer. These studies focus at the phenotypic changes like 

epithelial-to-mesenchymal transition (EMT), CTC clusters, and interactions between CTCs and 

peripheral blood cells (2), indicating insufficient capture efficiency of EpCAM-based methods. 

Evolution in multiple-marker and marker-independent CTC enrichment has already increased yield 

and diversity of CTCs (3, 4, 5, 6). Still, mesenchymal marker-based detection technologies may also 

be contaminated by non-CTCs, as do physical-property-based CTC detection technologies (6). In the 

last decade efforts have been made to optimize microfluidic- and nanotechnology-based CTC 

detection technologies, though they are still lacking large-scale clinical validation (6). An extensive 

summary of novel enrichment technologies can be found in table 2 of (6). For the research described 

in this thesis, the epithelial marker-based CellSearch system was used. We have studied CTCs in overt 

metastatic disease, where abundant shedding of these cell represent different tumour sites, 

justifying the use of EpCAM and cytokeratin for selection of CTCs. In general high cell detection 

efficiency and contamination removal capability are the two key strengths of a successful CTC 

detection technology. 

Efforts have been made to increase the yield of CTCs in liquid biopsies for downstream 

analysis. In early cancer stages, studies have been performed with local blood draw such as in the 

liver veins in colorectal cancer and pulmonary veins in lung cancer (7, 8, 9, 10, 11). Furthermore, 

diagnostic leukapheresis (DLA) has been applied to increase the yield (12). Many studies are currently 

focussing on single cell sequencing requiring further sorting of CTCs, that consequently causes cell 

loss. Isolation of single CTCs can be performed with micromanipulation or FACSorting, though these 

techniques are very inefficient. New nano-chips for direct single CTC sorting without prior 

enrichment are being developed (13). Still, various studies have been conducted using the DEPArray 

system (14, 15). In chapter 2 we performed a power analysis on the number of CTC that should be 

analysed to be able to capture the full heterogenetic landscape with its subclones, and applied that 

by sequencing many pure DEPArray sorted pools of CTC and DTC of three patients with high CTC 

count (chapter 3).  

Studies across multiple tumour types have demonstrated the feasibility of molecular analysis 

of CTCs. In order to use CTC profiling for understanding tumour heterogeneity, disease evolution 

(through serial sampling), and clinical management, technical improvements are needed. Efforts 

have been made to improve and standardize both amplification methods (16, 17, 18) and sequencing 

techniques (19, 20, 21) as well as subsequent bioinformatics and data interpretation (22, 23, 24, 25). 

This all contributes to more reliable detection of aberrations in CTC research. Mainly the limited 

amount of genomic DNA, RNA, and protein content of CTCs is a bottleneck for exploring their 

genome, transcriptome, epigenome, and proteome properties. Various whole genome amplification 

methods have been developed, with in mind to minimize introduction of artifacts. Still, part of SNV 
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found in CTCs, especially when not detected in other samples, likely represent passenger mutations 

with little clinical significance and should be interpreted with caution. Sequencing of WBC samples 

has shown that the number of private mutations was at least one order of magnitude lower as 

compared to CTCs (15). Nonetheless, the emerging genome and transcriptome studies of CTCs have 

recently profited from the fast-evolving technology of single-cell sequencing (6, 26). Moreover, 

isolation of viable CTCs for culture, three-dimensional organoid cultures, and generating CTC-derived 

Xenografts (CDXs) constitute new tools for drug development, understanding of drug resistance, 

exploring the biology of advanced cancers, and identifying novel biomarker signatures. However, the 

culture of CTCs is very challenging due to limited methods that are available to isolate enough viable 

CTCs and difficulties mimicking a favourable circulatory microenvironment for CTC survival (6)  

In all, the study of CTCs is attractive, and CTC detection and downstream analysis may likely 

become an essential component of cancer management in the future. On the other hand, cell free 

(cf)DNA can be obtained with straightforward DNA extraction from plasma, that will deliver 

fragments within a small size range that do not need cutting or shearing for downstream analysis. 

This makes cfDNA research far less laborious and expensive compared to CTC studies. ctDNA is 

detectable in the majority (85.7%) of MBC patients (27) and only requires standard laboratory 

equipment facilitating its use in daily clinical practice (28). 

 Nonetheless, cfDNA studies are compromised by very low concentrations of ctDNA, therefor 

needing highly sensitive and specific methods for detection of cancer alterations like somatic 

mutations or copy number alterations (CNA) (29, 30). These include digital PCR (31), BEAMing (32), 

Safe-SeqS (33), Capp-Seq (34) and TamSeq (35) for targeted mutation detection, or whole-genome 

next generation sequencing (NGS) (36) for copy number analysis. PCR-based methods have a very 

low limit of detection, are cost-effective and require low hands-on time, making them well suited for 

large sample series, although they can only detect a limited number of predefined alterations (37). 

Contrarily, targeted or genome-wide NGS requires more laborious, comes at a higher cost, and 

generally requires more cfDNA. However, depending on sufficient sequencing depth, NGS can detect 

every alteration present within the included amplicons (37). In chapter 5 we describe that with our 

workflow, the study could be fast (less than one week turnaround time) and cheaply (£100 per 

sample, compared to £2000-4000 for commercial kits) deployed within the clinic for therapy 

monitoring in real time. 

 Implementing ctDNA into the clinic requires standardized procedures for collection and 

cfDNA extraction. A recent systematic review comparing 33 cfDNA studies in metastatic breast 

cancer (MBC) discusses the need for cell stabilizing tubes to minimize the leakage of genomic DNA 

from leukocytes into the plasma thereby decreasing the ctDNA fraction (37). However, most of the 

included studies made use EDTA tubes (37) –as did we in chapter 5– rather than the preservative-

based tubes commonly used for ctDNA studies now (i.e. Streck and CellSave tubes) (38). Still, EDTA 

tubes are reliable with swift processing time, according to ASCO/CAP guidelines (39). Isolation of 

cfDNA in the 33 studies was predominantly (16 studies) performed by the QIAamp Circulating Nucleic 

Acid kit (37). This kit showed the highest cfDNA recovery rate in a recent multicenter comparison, 

which in combination with semi-automated extraction protocols performs most consistently in 

extracting cfDNA (40). In our study we did use this kit on the QIAsymphony instrument. 

 Lastly, data analysis and reporting needs to be standardized for successful future clinical 

implementation of ctDNA for longitudinal monitoring of treatment response. ctDNA fraction can be 

monitored using VAF or the absolute number of mutant molecules per defined unit (37), whereas for 

CNAs ploidy profile determines ctDNA fraction. A previous study has compared several 
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bioinformatics pipelines and found that ichorCNA provided the most stable ploidy profile, with 

similar purity estimates to ABSOLUTE/FACETS (41). We used a novel Bayesian machine learning 

approach which uses longitudinal data, improving its predictive capability. Herewith all data is useful 

(including ichorCNA = zero) as it evaluates changes across the whole genome, having an important 

advantage over targeted sequencing, whereby a lack of somatic mutations in ctDNA only means that 

those specific mutations have not been detected. Each of the approaches (mutations, CNA, 

methylation, cfDNA concentration) for longitudinal monitoring of treatment response have their own 

strengths and limitations, which are extensively reviewed by Jongbloed et al (37). 

Subclone analysis and tumour evolution 

It is well established now that breast cancer evolves over time under the selection pressure of 

various factors including treatments received by the patients (42). Breast cancer is mostly a copy 

number driven disease as activation of oncogenes and inactivation of tumour suppressor genes is key 

in cancer development. Furthermore, different routes of tumour cell dissemination contribute to 

heterogeneity (43). Various studies have been performed assessing clonality based on CNA and 

mutations in both single or pooled CTCs and cfDNA. 

 Like the CTC research described in chapter 2, two very recent studies (2022) used the same 

CellSearch®/DEPArray™/Ampli1 workflow to decipher clonality in breast cancer CTCs (14, 15). In our 

study we extensively looked into the CTC as well as DTC profile of three patients, in order to conclude 

on spatiotemporal heterogeneity. 136 samples of singles and pools (varying 5-150 cells per pool) 

were sequenced. On mutational level, two patients harboured a truncated PIK3CA mutation, 

common in ER+ breast cancer (44, 45), detected in the primary tumour and all CTC and DTC samples. 

Rothé et al, profiling 11 singles and 10 pools of CTC, describe a similar finding of the same patient-

specific driver mutations in bulk tissue and the majority (~80%) of CTCs in 2 out of 3 patients (15). 

Homogeneous CNA profiles were found in bulk tissue and CTCs for these two patients as well.  

Whereas three distinct clones with different CNA profiles and driver mutations (defined by mutations 

in ESR1 and TP53, respectively) were identified for the third patient (ER+). However, only three CTCs 

were sequenced. In our targeted panel sequencing data we ended up with an abundance of 

passenger mutations or single nucleotide variants (SNV), suggesting every patient harbouring over a 

dozen unique cells within the mayor subclone lineages. 

 In our study, a baseline intra-patient homogeneity was also seen on CNA level. All samples 

including the primary tumour had an prominent 8q amplification as well as deletions at chromosome 

11q and 17p, with loss of important tumour suppressor genes (like TP53 on 17p13), known to 

emerge in early stages of breast cancer and are associated with relapse and worse clinical outcome 

(46, 47, 48, 49). This general homogeneity with many CNA is coherent with time of sampling, i.e. end 

stage metastatic disease. Fernandez-Garcia et al sequenced 58 CTC samples (majority singles) and 21 

WBC samples and found many of the breast cancer- or patient-specific CNA present in all samples 

within one patient, with only a scarce CNAs marking subclonality (14). Identically, here most of the 

ten MBC patients had progressive drug-resistant metastatic breast cancer. On top of the 

homogeneous background, we found a few newly acquired CNA in the liquid biopsy samples 

compared to the primary tumours. For patient 1, amplification in part of 18q (apoptosis-related 

genes Bcl-2 and NOXA) was only present in CTCs and cfDNA, while not in the primary tumour nor 

pleural fluid DTC. Oppositely, partial 5q gain (FGFR4) was only seen in two CTC samples and almost all 

DTCs. Patient 2 had full clonal CNA profile in CTC samples, while samples of patient 3 had various 

additional amplifications in 1q, 5q, 12, and 16p, in most of the bone marrow DTCs at baseline, then 

https://pubmed.ncbi.nlm.nih.gov/?term=Fernandez-Garcia+D&cauthor_id=36088510
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emerging in the cerebrospinal fluid, to only become dominant in the CTC compartment after second 

progression. Similarly in prostate cancer, using diagnostic leukapheresis (DLA), analysis of hundreds 

of CTCs unravelled a marked tumour heterogeneity including subclonal CNAs that were not easily 

distinguished from bulk analysis of tumour biopsies (50). Still CTC represent the metastatic sites. 

Comparison of individual and pooled CTCs from MBC patients with their metastatic tissue 

counterparts revealed 85% concordance in at least one or more recurrent somatic mutations and 

CNAs (51). On a transcriptomic level, that has the potential to unravel altered molecular pathways 

during tumour evolution, a pioneering single-cell study in CTCs from MBC patients demonstrated a 

remarkable intra-patient heterogeneity in expression of 87 cancer-associated and reference genes 

(52). Also in other tumour types like prostate cancer and melanoma, single cell RNA-sequencing 

revealed networks of tumour evolution (43).  

The enormous advances made in high-throughput sequencing methods have mainly 

highlighted ctDNA as a non-invasive biomarker able to recapitulate some of the branched subclone(s) 

seeding the tumour relapse in patients with lung cancer (53, 54). However, ctDNA sampling strategy 

could present some caveats in terms of providing a detailed phylogeny due to a potential over-

representation of DNA from dying cells (43). Moreover, the low concentration of some ctDNA 

variants requires a substantial sequencing depth combined with the need for multiplexing to 

encompass tumour heterogeneity, which is a technical challenge (55). A pilot study on five patients 

with MBC compared the mutational content of CTCs at single-cell resolution and ctDNA (56). In all 

patients, ctDNA profiles provided an accurate reflection of mutations seen in individual CTCs.  

ctDNA offers a less laborious method to repeatedly interrogate tumour genomes, providing 

opportunities to track clonal dynamics induced by metastasis and therapeutic selective pressures in 

various tumour types over time (57, 58, 59). In an effort to exploit the use of ctDNA for determining 

how a patient's cancer is evolving, deep WGS of various metastatic lesions (via a rapid autopsy 

programme) and cfDNA was performed for two patients (60). Reconstruction of the metastatic 

cascade revealed that early monoclonal seeding was the dominant pattern of metastatic spread, as 

previously reported in colorectal cancer (61, 62), with evidence of polyclonal seeding restricted to 

one liver and one ovary sample. In the second patient, monoclonal and early seeding was also 

dominant (60). In both patients, the ctDNA reflected predominantly active metastatic sites, as seen 

on PET/CT. Plasma of patient 1 predominantly reflected metastatic liver disease, especially the 

treatment-resistant ESR1 mutant clone under hormone therapy, consistent with clinical course 

(progressive liver disease and death due to liver failure) (60). In the sub-analysis of the PALOMA-3 

trial they found similar results with PIK3CA mutation being clonal, while ESR1 mutations are 

frequently sub-clonal (lower variant allele frequencies), and became undetectable during both 

therapy regimens (29). Whole exome and 396-gene panel sequencing on an extensive ctDNA sample 

series from seven patients with metastatic triple-negative breast cancer (TNBC) treated with 

Cabozantinib, showed distinct clonal populations specific to each patient (41). They were able to 

build phylogenetic trees revealing alterations in hallmark breast cancer drivers, including TP53, 

PIK3CA, CDK4, and PTEN. In some patients shifts in SNVs were seen under treatment, while copy 

number profiles remained stable across the seven patients (41). This may reflect that large-scale CNA 

events occur early in TNBC development (63). 

 In conclusion, both CTCs and ctDNA can be used to study clonal evolution during treatment 

and at progression without the need for repeated biopsies, which may not even be feasible if the 

tumour is in an inaccessible site. 
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Serial sampling and disease monitoring 

Monitoring levels of ctDNA represents a non-invasive snapshot of tumour burden and is able to 

predict treatment response and progression-free survival. In a recent overview of 33 studies using 

cfDNA to measure treatment response, two types of assessment were used: ctDNA dynamics related 

to PFS versus real-time response (RECIST or tumour markers like CA 15-3) (37). The majority of 

studies use a single marker for ctDNA detection. Mutations in PIK3CA, ESR1 and TP53 were most 

frequently assessed. On average, these were present in 10-50% of the included patients (37). This 

indicates that even in selected populations only around half of the patients could be monitored by 

use of mutations in a single gene. The association with treatment response was less evident for 

dynamics in ESR1 mutations (37), which is consistent with the findings described in the paragraph 

above. The use of gene panels could broaden the applicability of a test since the mutational 

landscape in MBC is heterogeneous. The studies that did use a combination of genes, observed an 

association between the dynamics in mutations and treatment response during monitoring (37). One 

of these, exploring resistance to anti-HER2 therapy, showed that mutational tumour burden index 

(mTBI, i.e. mean VAFs of mutations as measure for ctDNA levels) was superior to single gene 

mutations for assessing therapeutic response (64). Personalized mutation panels may allow for 

higher sensitivity detection of known variants in ctDNA, however fail to capture the development of 

new alterations over time, limiting their utility to largely retrospective analyses. Of notice, half of the 

studies excluded patients without detected alterations at baseline, making it less applicable to the 

general patient population (37). Studies using CNAs to evaluate treatment response can be based on 

gene specific or genome-wide cfDNA aneuploidy-score. The level of HER2 amplification in the cfDNA 

was associated with treatment response during HER-targeted therapy (64, 65, 66). Contrary, for 

shallow WES or WGS only minimal cfDNA input is necessary. However, similar to mutation based 

ctDNA detection, various patients were excluded due to low aneuploidy scores for all analysed time 

points despite progressive disease (30). 

In our study (chapter 5) we performed shallow WGS on 1098 samples of 188 MBC patients. 

Longitudinal ctDNA levels (ichorCNA values) provided predictive real-time data on treatment 

response across subtypes and therapies, outperforming ctDNA targeted sequencing and serial CA 15-

3 measurements. However, it may be that predicting response to targeted therapy and 

chemotherapy may be slightly more reliable than for endocrine treatment alone. This may reflect the 

biology of disease as patients on targeted treatment and chemotherapy are likely to have more 

aggressive disease or have a higher tumour burden potentially making ctDNA levels higher and more 

dynamic. Moreover, cytostatic treatments are probably less likely to cause large changes in ctDNA 

compared with cytotoxic treatments. Using similar workflow in seven patients with metastatic TNBC 

treated with Cabozantinib (a multi-tyrosine kinase inhibitor; cytostatic), no significant relationship 

between early tumour fraction change and RECIST measured outcomes was found (41). A 

prospective large-scale clinical trial to evaluate clinical benefit of early treatment changes based on 

ctDNA levels is now warranted. Thinking more broadly about estimating ctDNA it could be that this is 

a better marker of overall disease activity than purely measuring disease on a CT scan.  

Baseline CTC count has been known to correlate with PFS and OS for many years now (67). 

Besides, CTC count can be used to stratify patients with MBC, irrespective of disease subtype, line of 

therapy, and site of disease into two groups: indolent versus aggressive disease (68). A recent study 

(2,202 samples from 469 MBC patients) found that the CTC trajectory patterns during the course of 

treatment was a better predictor of PFS and OS compared to baseline CTC and combined CTC 

(baseline-end of cycle 1) models (69). This was preceded by two smaller studies in patient with MBC 
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treated with hormonal therapy and bevacizumab, or chemotherapy respectively. The first showed 

failure to clear CTCs during treatment was associated with significantly increased risk of progression 

and death (70). The other stating that changing CTC levels significantly correlated with response to 

therapy as measured by radiologic RECIST criteria and serum CA 15-3 level changes (71). One study 

even reported a higher sensitivity of CTCs than imaging examination in a few cases (5). This makes 

CTCs as well as cfDNA possibly a biomarker for early response evaluation in MBC, which should be 

further investigated in large prospective trials.  

With the growing body of evidence concerning the prognostic value of CTCs, clinicians began to 

investigate interventions able to increase survival in patients with poor prognosis associated with 

high CTC count or an unfavourable CTC variation, as reviewed by Vasseur et al (72). In the pre-

CKD4/6 inhibitor era, the first trial to compare clinician‐based choice of first‐line therapy 

(chemotherapy versus endocrine therapy in ER+HER2- MBC) to a CTC‐based choice, was the STIC‐CTC 

trial (NCT01710605). The CTC-driven choice was noninferior in terms of PFS ( 15.5 months in the CTC 

arm versus 13.9 months) (73). The AMBRE trial (NCT04158362) is currently recruiting. They aim to 

evaluate CTCs a secondary outcome when comparing first-line chemotherapy to endocrine therapy 

plus the CDK4/6 inhibitor abemaciclib. Two trials have explored CTC trajectory for decision making on 

early therapy switch in subsequent lines in MBC. SWOG S0500 (NCT00382018) randomly assigned 

patients to early change or continuation of first-line chemotherapy in the presence of persistently 

high CTC count (>5 CTC/7.5ml on CellSearch). Early switching to an alternate cytotoxic therapy was 

not effective in prolonging OS (10.7 months in the standard arm versus 12.5 months in the CTC arm) 

(74, 75). A similar study, CirCe01 (NCT01349842), was also negative (76). In metastatic TNBC 

Cristofanilli et al. have initiated a phase II trial evaluating the combination of pembrolizumab and 

carboplatin in high-risk patients (i.e. ≥ 5 CTCs/7.5 mL at baseline) (NCT03213041). 

 

In contrast to MBC, ctDNA is less frequently detected in non-metastatic, early breast cancer (EBC). 

Zhou et al. reported that 86% of stage IV MBC patients carried tumour-derived mutations in blood, 

compared to only 58% of stage I–III patients (27). Another study, using digital droplet PCR, found that 

ctDNA was detectable in >75% of patients with advanced cancers, like MBC. In patients with EBC, 

ctDNA detection rate was 50% (77). Over all tumour types, ctDNA was often present in patients 

without detectable circulating tumour cells, suggesting that these two biomarkers are distinct 

entities (77). There are major opportunities to further develop liquid biopsies in EBC, like monitoring 

of primary resistance or even recurrence (Figure 1).  

In both colorectal and oesophageal cancer relapse could be detected by ctDNA levels months 

ahead as compared to conventional imaging follow-up (78, 79). The recent CHiRP study showed that 

ctDNA successfully identified minimal residual disease in patients with hormone receptor-positive 

(HR+), HER2- EBC who are at high risk for recurrence, at least 5 years post diagnosis (80). 

Personalized ctDNA assays, based on WES of the archival primary tumour, were made for 83 

patients. Six patients (7.2%) developed distant metastatic recurrence, all of whom were ctDNA-

positive (total of eight positive patients) before overt clinical recurrence, with median ctDNA lead 

time of 12.4 months (80). Additionally, ctDNA detection shortly after neo-adjuvant chemotherapy for 

EBC was also associated with relapse, especially in patients with non-pathological complete response 

(pCR) (81, 82). A retrospective analysis of ctDNA samples from the i-SPY2 trial (NCT01042379)              

in the neoadjuvant setting showed that the presence of residual ctDNA post operatively was more 

predictive of relapse than pCR (83). Publications from before 2022 on ctDNA in EBC follow-up and 

detection of minimal residual disease are nicely reviewed by Sant et al (84). c-TRAK-TN 

https://clinicaltrials.gov/ct2/show/NCT03213041
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(NCT03145961), a multi-centre phase II trial, with integrated prospective ctDNA surveillance by 

digital PCR, enrolled patients with early TNBC and residual disease following neoadjuvant 

chemotherapy or stage II/III with adjuvant chemotherapy (85). ctDNA+ patients were initially 

randomized 2:1 to intervention (pembrolizumab) versus observation. 45 of 161 patients were 

ctDNA+. 72% (23/32) of patients allocated to intervention had metastases on staging at time of 

ctDNA+. Five patients commenced pembrolizumab in EBC, though none achieved sustained ctDNA 

clearance. This emphasizes the need for larger interventional trials for testing the clinical utility of 

ctDNA monitoring in this setting (85). Currently the ZEST phase III trial (NCT04915755) is recruiting 

800 patients for niraparib versus placebo after (neo)adjuvant chemotherapy, in HER2- patients with 

BRCAMT ctDNA or TNBC patients with BRCAWT ctDNA.  

CTC detection mid- or post therapy in EBC have been shown to harbour both prognostic 

relevance towards DSF and OS, as well as information for monitoring therapeutic effects (86). In a 

large trial with 1,697 patients, CTC count was shown to possibly predict a benefit of radiotherapy in 

the adjuvant setting of EBC (87). The detection of CTCs before the start of neoadjuvant 

chemotherapy adversely affected metastatic-free and overall survival (REMAGUS02-study) (88). This 

was confirmed by a meta-analysis of 21 studies (89). Additionally, SUCCESS-A and ECOG-ACRIN-

E5103 trials were clearly able to show an increased risk for recurrence in patients with persistence of 

CTCs two years and even five years after (neo)adjuvant chemotherapy (90, 91, 92). A very recent trial 

measured pre- and post-therapy CTC levels in 1220 patients with EBC. CTC positivity at baseline was 

associated with shorter OS, while CTC status at follow-up (post-therapy) predicted disease 

recurrence. CTC positivity predicted early (within 5 years) but not late recurrence, emphasising the 

need for investigations into novel adjuvant therapeutic approaches (93). 

  

Figure 1. Theoretical model on ctDNA levels over time in localized cancer. ctDNA levels might predict primary 
therapy resistance, or early versus late relapse in early breast cancer, emphasising the need for escalation of therapy 
(Tx). Adapted from ESMO webinar series on liquid biopsies. 
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Actionable targets in breast cancer 

Biomarkers predicting therapy response are frequently assessed using tumour biopsies, reflecting 

only parts of a patient’s disease at a specific moment in time (94). It is well-known that targetable 

molecules can change during the course of the disease. Already 15 years ago CTCs were used in serial 

analysis to identify emergence of activating mutations in the EFGR gene in lung cancer patients 

receiving EGFR-targeting therapy, conferring a mechanism of acquired resistance (95). Meanwhile 

CTCs have shown to be useful in understanding and predicting acquired resistance to therapies in 

various cancer types, and might be used to circumvent this. In the TRACERx trial (NCT01888601), 

primary tumours of hundred non-small cell lung cancer (NSCLC) patients were sequenced, as well as 

cfDNA and CTCs obtained at multiple time points during therapy, to identify targetable driver events 

(96, 97). The subsequent DARWIN trial (NCT02183883) aims to evaluate whether targeting driver 

events, detected by the TRACERx trial, has a different clinical outcome in patients harbouring a 

dominant versus subclonal driver mutation (98). Similarly, the Prostate-Biomarker (ProBio, 

NCT03903835) study is a large international multi-centre, outcome-adaptive, multi-arm, ctDNA 

biomarker-driven platform trial for tailoring treatment decisions in metastatic castration resistant 

prostate cancer (mCRPC) (99, 100). 

 In breast cancer, HER2 status has been extensively evaluated in both CTCs and cfDNA. Several 

studies have demonstrated the feasibility of determining the HER2 status of CTCs in MBC using 

CellSearch® (101, 102, 103, 104). HER2 protein detection using immunofluorescence by the 

CellSearch® system has been under debate, since only a limited correlation was observed between 

the HER2 status of CTCs and of the primary tumour (e.g. 33% of patients with a HER2‐negative 

tumour had HER2‐positive CTCs and 42% of patients with a HER2‐positive tumour had exclusively 

HER2‐negative CTCs) (105). This was confirmed by others (14, 15, 106). To address this issue, we 

analysed thousands of CTCs from 85 MBC patients (all subtypes) with >5 CTCs, on HER2 protein level 

(immunofluorescence) and compared this to ERBB2 gene expression (qrt-PCR) and amplification 

(FISH); see chapter 4. We argue that immunofluorescent scores should divided in HER2 negative, 

medium and high expressing CTCs. One third of patient samples harboured >10% HER2high expressing 

CTCs, while almost all patients harboured HER2med expressing CTCs. This first prevalence is in line 

with the incidence of HER2-positivity is seen in MBC (26,3% in stage IV) (107). Furthermore, there 

only was a correlation between having >10% HER-2high expressing CTCs and ERBB2 gene 

overexpression. No patients switched from HER2-positive primary to negative based on CTCs, while 

five HER2-negative patients (20%) had ≥1 HER-2high expressing CTCs. These five patients could be 

eligible for anti-HER2 directed therapy.  

The DETECT III trial (NCT01619111) aimed to demonstrate the benefit from lapatinib therapy 

in HER2-negative MBC patients, who are HER2-positive on CTCs (108). 105 patients were randomized 

between standard chemotherapy with or without lapatinib. They showed promising preliminary 

results of improved OS with the addition of lapatinib (109). Further validation in larger patient 

cohorts is needed. The CirCe T-DM1 trial (NCT02975142) showed that ERBB2 gene amplification in 

CTCs from 7 HER2-negative MBC patients occurs in a minor CTC subpopulation (110). Overall a low 

response rate to trastuzumab-emtansine was reported (1/11), questioning the clinical utility of anti-

HER-2 therapy in patients with HER-2 amplification in a minor subset. Similar results were found in a 

trail measuring HER2 protein expression on CTCs from HER2-negative patients using the PRO Onc 

assay (NCT01048099). Only 1/14 patients treated with trastuzumab-pertuzumab had stable disease. 

Another phase II trial (NCT00820924) tested effectiveness of Lapatinib in MBC patients with HER2-

negative primary tumours and HER2-positive CTCs analysed by visual scoring of CellSearch® images 

http://clinicaltrials.gov/show/NCT03903835
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or FISH (111). 7/96 patients, harbouring 2-5 CTCs, were eligible (i.e. ≥50% of CTCs were HER2 positive 

on immunofluorescence, and 1 sample was FISH-positive). No objective tumour responses occurred 

in this population, underlining the importance of patient selection for such trials. Based on our 

findings this should be patients with ≥5 CTCs and at least one HER-2high expressing CTC. From all 

above studies, only DETECT III shows preliminary but positive results. This result was also shown in a 

small study that randomized 11 HER2-negative and 60 HER2-positive patients (112). They 

demonstrated increased PFS in patients with HER2+ CTCs when treated with anti-HER2 therapy 

compared to those not receiving this. Notably, up to 52% of patients with HER2+ primary tumours 

harboured HER2- CTCs and anti-HER2 therapy in this group did not significantly improve median PFS 

(112). One such case is also been described in chapter 3. 

Further investigations aimed at evaluating the impact of HER2-expression or ERBB2 copy 

number heterogeneity detected in CTCs on anti-HER2 treatment response is warranted, even in 

patients with tumours classified as HER2-negative and especially in the light of the recent 

introduction of the “HER2-low” category (113) and the DESTINY-Breast06 trial, randomising patients 

with HER2-low disease for Trastuzumab-deruxtecan versus standard of care (NCT04494425).  

Finally, efforts have been made to look into HER2 gene mutations in ctDNA. Acquired HER2 

mutations confer sensitivity to HER2-targeted therapies such as neratinib in HER2-negative MBC, as 

shown in the plasmaMATCH trial (NCT03182634) (114). Ma and colleagues found several HER2 

mutations in ctDNA of HER2-negative MBC patients that demonstrated neratinib sensitivity (115). 

These mutations decreased during treatment with neratinib and increased at progression. Then, also 

new mutations emerged, including T798I, which is known for neratinib resistance (116). In women 

with HER2-positive MBC, the HER2 V777L mutation induces acquired resistance to trastuzumab (65, 

117). 

CTC and cfDNA profiling can identify diverse intra- and interpatient molecular mechanisms of 

endocrine therapy resistance (Figure 2). Several studies have investigated PIK3CA mutations in CTCs 

and cfDNA (44, 118, 119, 120, 121). The majority of PIK3CA mutations are truncal mutations, but 

others are subclonal (29, 122, 123). PIK3CA mutations are associated with worse prognosis (121), 

although they confer sensitivity to PI3K inhibitors (PI3Ki) such as taselisib, alpelisib, buparlisib, and 

copanlisib (114, 124, 125, 126). A subgroup analysis of the phase III SOLAR-1 trial (NCT02437318) 

Figure 2. PIK3CA/PTEN/AKT and Estrogen Receptor (ER) pathways, and their inhibitors. LEFT. Activated PI3K-AKT-
mTOR can enhance genomic actions of ERα: activation of PI3K leads to activation of AKT, which can directly 
phosphorylate ERα to promote ligand-independent activity and endocrine therapy resistance. RIGHT. Membrane 
anchored ERα can also activate various cytoplasmic kinases including PI3K-AKT-mTOR pathway through nongenomic 
actions and these actions occur rapidly (within five minutes) after encountering the ligand. Adapted from (1). 
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showed that patients with a PIK3CA mutation detected in ctDNA benefit more from addition of 

alpelisib compared to all patients in which PIK3CA mutations were detected in tumour (125, 127). 

One study demonstrated that PTEN loss-of-function mutations found in cfDNA promotes PIK3α-

independent activation of AKT, causing resistance to alpelisib (128). AKT1 mutations are truncal and 

respond to capivasertib, an AKT kinase inhibitor (114). Other frequently used drugs in ER+ MBC are 

CDK4/6 inhibitors like palbociclib, ribociclib, or abemaciclib. In the PALOMA-3 trial (NCT01942135, 

HR+ MBC after progression on endocrine therapy), early response to cytostatic palbociclib and 

fulvestrant was correlated to early decrease of the PIK3CA-mutant ctDNA (29). This makes ctDNA 

dynamics of truncal PIK3CA mutations a predictive biomarkers for response to CDK4/6 inhibitors. 

Though also to fulvestrant alone (122).  

The most frequently assessed genes in ctDNA to monitor therapy response include PIK3CA and ESR1 

(37). ESR1 encodes for ER and its acquired mutations are found, often subclonal, in 30% of patients 

receiving endocrine therapy (114, 128, 129, 130, 131, 132). ESR1 mutations are located in the ligand-

binding domain and are hormone-independent activating mutations, driving resistance to aromatase 

inhibitors (A-I) (130, 133, 134). Although no relationship between ESR1 dynamics in cfDNA and 

general treatment response has been found (29, 122), ESR1 mutation rates decrease after treatment 

with a CDK4/6 inhibitor together with an A-I (135). The recently published PADA-1 phase III trial 

(NCT03079011) demonstrates a significant benefit for switching from first line palbociclib plus A-I to 

palbociclib plus fulvestrant when ESR1 mutations emerge in cfDNA (136). Moreover, ESR1 mutations 

detections before start of first line therapy is important, as these are twice as prevalent (7% vs. 3%) 

among patients who received an A-I in the adjuvant setting (137). BOLERO-2 (NCT00863655) included 

ESR1 mutation detection in cfDNA as an exploratory endpoint. Sub-analysis showed these were 

associated with more aggressive disease (132). Currently, CICLADES (NCT03318263) enrolled 146 

patients to  monitor ESR1, PIK3CA, and AKT mutations for early detection of A-I resistance. INTERACT 

(NCT04256941), will screen patients for acquired ESR1 mutations 12 months after initiation of an A-I 

and CDK4/6 inhibitor, and will switch them to fulvestrant if detected. 

Functional retinoblastoma protein (encoded by the RB1 gene) is a requirement for response to 

CDK4/6 inhibition in vitro (138). Analysis of the individual and pooled CTCs revealed loss of RB1 (13q) 

in one patient that developed resistance to palbociclib (14). In the PALOMA-3 trial, RB1 mutations 

were present in 5% of the patients who progressed during treatment with palbociclib plus fulvestrant 

but not in those treated with a placebo plus fulvestrant (136, 137). However, these mutations are 

likely subclonal and of relatively low prevalence, suggesting that they are not a major mechanism of 

resistance to CDK 4/6 inhibitors. 

In metastatic TNBC, patients are eligible for immune checkpoint inhibitors (ICI) when PD-L1 

positive (139, 140) or PARP inhibitors when BRCA1/2 mutations haven been detected (141, 142, 143). 

BRCA mutations have been identified in liquid biopsies, though patients are only eligible when 

germline mutations are detected (141, 142, 143). Many studies have shown that PD‐L1 expression 

can be assessed on breast cancer CTCs by immunofluorescence (144, 145, 146), and might represent 

an alternative to PD‐L1 assessment on tissue (147). In NSCLC, patients with tumour response to ICI 

showed decreased levels of PD‐L1 positive CTCs, and vice versa (148, 149). I-CURE-1 (NCT03213041, 

currently recruiting) is a single arm study to evaluate the impact on PFS of the combination 

pembrolizumab-carboplatin in patients with CTC+ HER2- MBC. In this study they will also include 

PD‐L1 expression analysis on CTCs by immunofluorescence. 

In conclusion and nicely depicted by Sant et al (84): HER2 mutations predict sensitivity to 

HER2 inhibitors like lapatinib and neratinib. PIK3CA mutations are correlated to resistance to 

http://clinicaltrials.gov/show/NCT01942135


132 
 

endocrine therapy and CDK4/6 inhibitors, while they show sensitivity to PI3K inhibitors like alpelisib 

and others. PTEN and AKT mutations demonstrated sensitivity to capivasertib (AKT inhibitor), though 

PTEN loss of function mutations cause resistance to PI3K inhibitors. ESR1 mutations are known for 

their role in resistance to aromatase inhibitors. All of these mutations are trackable in liquid biopsies. 

 

Concluding remarks 

To implement liquid biopsies into daily clinical practice, a test must have shown analytical and clinical 

validity, and clinical utility. In the first part of this discussion we have brought up some technical 

considerations to improve the accuracy of detecting or excluding relevant biomarkers, i.e. analytical 

validity (38, 40). A lot of effort has already been done to improve clinical validity of CTCs and cfDNA, 

for example specific copy number profiles or mutations corresponding to tumour subtype or 

acquired mutations after certain therapies. Clinical utility is the added value of the test for diagnosing 

or clinical decision making. CTC trajectory and ctDNA level monitoring have both been able to predict 

therapy response, PFS and OS. Targetable mutations can be detected in both CTC (6, 14) and cfDNA 

(37, 84). To further improve the applicability of liquid biopsies, they are increasingly incorporated in 

clinical trials for diagnosing and therapy decision making.  
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“Life is like riding a bicycle. To keep your balance, you 
must keep moving.” Albert Einstein (1879 -1955) 


