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Abstract

Cooperative multi-agent reinforcement learning (CMARL)
enables agents to achieve a common objective. However, the
safety (a.k.a. robustness) of the CMARL agents operating in
critical environments is not guaranteed. In particular, agents
are susceptible to adversarial noise in their observations that
can mislead their decision-making. So-called denoisers aim
to remove adversarial noise from observations, yet, they are
often error-prone. A key challenge for any rigorous safety
verification technique in CMARL settings is the large number
of states and transitions, which generally prohibits the con-
struction of a (monolithic) model of the whole system. In this
paper, we present a verification method for CMARL agents in
settings with or without adversarial attacks or denoisers. Our
method relies on a tight integration of CMARL and a verifi-
cation technique referred to as model checking. We showcase
the applicability of our method on various benchmarks from
different domains. Our experiments show that our method is
indeed suited to verify CMARL agents and that it scales bet-
ter than a naive approach to model checking.

Introduction
Deep cooperative multi-agent reinforcement learning
(CMARL) is a powerful tool to handle sequential decision-
making problems. It has improved the performance of var-
ious applications in critical domains like manufacturing,
transportation, and resource allocation (Serrano-Ruiz, Mula,
and Poler 2021; Qin et al. 2021; Zong and Luo 2022).
CMARL consists of multiple agents, where each one learns
a near-optimal policy based on a given common objective
by making observations and gaining rewards through inter-
actions with the environment (Wong et al. 2021). Compared
to standard RL, CMARL may show superior performance
and scalability in certain settings (Zhang et al. 2022).

MARL Problem
Despite the success of CMARL, the potential unsafe be-
havior of agents (Shalev-Shwartz, Shammah, and Shashua
2016; Amodei et al. 2016) and the security risk of adver-
sarial attacks against critical infrastructures (Dablain 2017)
limit its usage. Adversarial attacks introduce noise into the
observations and may mislead the decision-making of the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents (Lin et al. 2020; Huang et al. 2017; Ilahi et al. 2022;
Moos et al. 2022; Fujimoto and Pedersen 2021). Denoisers
defend CMARL agents against adversarial attacks by clean-
ing the observations from the noise before they are perceived
by the agents (Ohashi et al. 2021; Vincent et al. 2008; Ben-
gio et al. 2013; Im et al. 2017; Bakhti et al. 2019; Serban
and Poll 2018). However, these denoisers can make recon-
struction mistakes and may recover wrong states. Until now,
the performance of CMARL agents equipped with denois-
ers was measured by the decrease in the cumulative rewards
of the CMARL system. Unfortunately, rewards lack the ex-
pressiveness to encode complex safety requirements (Vam-
plew et al. 2022; Hasanbeig, Kroening, and Abate 2020). For
instance, with rewards, it is possible to determine the prob-
ability that all trains will arrive at their destination. How-
ever, rewards are not sufficient for other properties, for in-
stance, the probability that trains will arrive in a specific or-
der. Model checking (Baier and Katoen 2008) is not limited
by properties that can be expressed by rewards (Hahn et al.
2019; Hasanbeig, Kroening, and Abate 2020; Vamplew et al.
2022), but supports a broader range of properties that can be
expressed by probabilistic computation tree logic (PCTL;
Hansson and Jonsson 1994).

Model checking is a formal verification technique that
uses mathematical models to verify the correctness of a
system with respect to a given property. Naive monolithic
model checking is called ”naive” because it does not take
into account the complexity of the system or the number of
possible states it can be in, and it is called ”monolithic” be-
cause it treats the entire system as a single entity, without
considering the individual components of the system or the
interactions between them.

Contribution
This paper aims to allow the model checking of CMARL
agents (equipped with denoisers) in an (adversarial)
CMARL setting, which guarantees that CMARL agents still
comply with given safety requirements. To achieve this, we
take advantage of the fact that a CMARL system can be
modeled as a Markov decision process (MDP) by treating
the collection of agent actions as one joint action and repre-
senting all the RL agents via a joint agent (Boutilier 1996).
We present a model checking method that allows us to ver-
ify CMARL agents. We evaluated our method on different
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benchmarks from the CMARL community (Competitions
2021) and model checking community (Hartmanns et al.
2019), and compared our approach with naive monolithic
model checking.

To summarize, our main contributions are model check-
ing methods and extensive benchmarking for (1) CMARL
agents, (2) under adversarial attacks, (3) equipped with de-
noisers, and (4) the combination of (1), (2), and (3).

The paper is structured in the following way. First, we
summarize the related work and position our paper. Sec-
ond, we explain the fundamentals of our technique, third,
we present the adversarial attack and defense setting and de-
scribe how to model check CMARL systems. Finally, we
evaluate our method in multiple environments.

Related Work
There already exist multiple model checking approaches and
case studies for multi-agent environments (Kwiatkowska
et al. 2021, 2020; Junges et al. 2018; Chen et al. 2011;
Bertrand and Fournier 2013; Kwiatkowska, Norman, and
Parker 2019). The major difference to our work is that they
do not focus on CMARL. Schuppe and Tumova propose a
decentralized solution to a high-level task-planning prob-
lem for a multi-agent system under a set of possibly de-
pendent LTL specifications (Schuppe and Tumova 2021).
Lomuscio and Pirovano developed a parameterized verifi-
cation method for checking unbounded probabilistic multi-
agent systems against strategic properties. They do this by
creating an abstract model whose states have two compo-
nents: the first captures the state of the first m agents, and
the second records the set of states that arbitrarily many
other agents are in (Lomuscio and Pirovano 2020). In our
case, the number of agents in the system is fixed at design
time, we focus on CMARLs, and our agents do not neces-
sarily share the same observations and actions. Furthermore,
we distinguish between swarm systems and CMARL sys-
tems since, in swarm systems, many identical agents inter-
act with each other to achieve a common goal (Hüttenrauch,
Sosic, and Neumann 2019). CMARL agents can be differ-
ent. Mqirmi et al. present a methodology that combines for-
mal verification with (deep) RL algorithms to guarantee the
satisfaction of formally-specified safety constraints in train-
ing and testing. They first use bisimulation to create an ab-
straction of the multi-agent system. Then they build a shield
that restricts the agents’ actions (Mqirmi, Belardinelli, and
León 2021). We directly induce the agents into the formal
model and verify its PCTL properties. Riley et al. introduce
a new approach (they build upon their previous research (Ri-
ley et al. 2021a)) that combines CMARL with a formal veri-
fication technique termed quantitative verification. Their ap-
proach consists of four stages. First, they acquire informa-
tion about the CMARL environment. Second, they model
the environment as a formal PRISM model. Third, they syn-
thesize policies for the formal PRISM model that guaran-
tees given properties. Fourth, they learn CMARL agents in
the non-abstracted environment, where the synthesized poli-
cies constrain learning (Riley et al. 2021b). In comparison,
we train our CMARL agents and verify them directly in the

modeled environment. Khan et al. present a CMARL ap-
proach to goal assignment and guaranteed collision-free tra-
jectory planning for unlabeled robots operating in obstacle-
filled 2D spaces. To ensure an agent still has a collision-free
trajectory, they use an analytical model based on a policy
that runs in the background and checks if the target veloci-
ties produced by the agents are safe (Khan et al. 2019). Wang
et al. present a formal framework for collision avoidance
in multi-robot systems, wherein an existing policy is mod-
ified in a minimally invasive fashion to ensure safety (Wang,
Ames, and Egerstedt 2016). On the other hand, we allow the
model checking of a broad range of CMARL systems.

Background
We now introduce the fundamentals of our work.

Probabilistic Systems
A probability distribution over a set X is a function µ : X →
[0,1] with ∑x∈X µ(x) = 1. The set of all distributions on X is
denoted Distr(X).
Definition 1 (Markov Decision Process). A Markov deci-
sion process (MDP) is a tuple M = (S,s0,A,T,rew) where S
is a finite, nonempty set of states, s0 ∈ S is an initial state, A
is a finite set of actions, T : S×A→Distr(S) is a probability
transition function. We employ a factored state representa-
tion where each state s is a vector of features ( f1, f2, ..., fn)
where each feature f j ∈Z for 1≤ i≤ n (n is the dimension of
the state). rew : S×A → R is a transition-reward function.

The available actions in s∈ S are A(s) = {a∈A | T (s,a) ̸=
⊥}. An MDP with only one action per state (∀s ∈ S :
|A(s)| = 1) is a discrete-time Markov chain (DTMC). A
path of an MDP M is an (in)finite sequence τ = s0

a0,r0−−−→

s1
a1,r1−−−→ ..., where si ∈ S, ai ∈ A(si), ri := rew(si,ai), and

T (si,ai)(si+1) ̸= 0. A state s′ is reachable from state s, if
there exists a path τ from state s to state s′.
Definition 2 (Policy). A memoryless deterministic policy for
an MDP M = (S,s0,A,P,rew) is a function π : S → A that
maps a state s ∈ S to action a ∈ A.

Applying a policy π to an MDP M yields an induced
DTMC, where all non-determinism is resolved. We spec-
ify the properties of a DTMC via the specification language
PCTL (Wang et al. 2020).
Definition 3 (PCTL Syntax). Let AP be a set of atomic
propositions. The following grammar defines a state for-
mula: Φ ::= true | a | Φ1 ∧Φ2 | ¬Φ|P▷◁p|Pmax

▷◁p (φ) | Pmin
▷◁p (φ)

where a∈AP,▷◁∈{<,>,≤,≥}, p∈ [0,1] is a threshold, and
φ is a path formula which is formed according to the fol-
lowing grammar φ ::= XΦ | φ1 U φ2 | φ1 Fθit φ2 |G Φ with
θi = {<,≤}.

Agent 1 a = a1

Environments,rew

a

Figure 1: An MDP with one agent.
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Agent 1 Agent 2

a = a1 ×a2

Environment

s,rewo1, rew o2, rew

a1 a2

a

o1 =O1(s)
rew

o2 =O2(s)
rew

(a) CMMDP with two agents.

Agent 1 Agent 2

a = a1 ×a2

Environment

s,rewo1, rew

D1(o1)

o2, rew

D2(o2)a1 a2

a

o1 =O1(s)
rew

o2 =O2(s)
rew

(b) CMMDP with two agents equipped with denoisers.
Agent 1 Agent 2

a = a1 ×a2

Environment

s,rewo1, rew

δ1(o1)

o2, rew

δ2(o2)a1 a2

a

o1 =O1(s)
rew

o2 =O2(s)
rew

(c) CMMDP with two agents under attack.

Agent 1 Agent 2

a = a1 ×a2

Environment

s,rewo1, rew

D1(δ1(o1))

o2, rew

D2(δ2(o2))a1 a2

a

o1 =O1(s)
rew

o2 =O2(s)
rew

(d) CMMDP with two agents equipped with denoisers under attack.

Figure 2: Different CMARL settings with and without denoisers Di(oi) and with and without attacks δi(oi). It assumes a setting
with two agents and a joint action a = a1 ×a2. This action a is deployed to the environment and executed. The resulting state s
and rew is separated into the observations.

For MDPs, PCTL formulae are interpreted over the states
of the induced DTMC of an MDP and a policy. In a
slight abuse of notation, we use PCTL state formulas to
denote probability values. That is, we sometimes write
P▷◁p(φ) where we omit the threshold p. For instance, in
this paper, P(F collision) denotes the reachability prob-
ability of eventually running into a collision. There ex-
ist a variety of model checking algorithms for verify-
ing PCTL properties (Courcoubetis and Yannakakis 1988,
1995). PRISM (Kwiatkowska, Norman, and Parker 2011)
and Storm (Hensel et al. 2022) offer efficient and mature
tool support for verifying probabilistic systems.
Definition 4 (CMMDP). A cooperative multi-agent
Markov decision process (CMMDP) is a tuple
(S,s0, I,A := {Ai}i∈I ,T,rew,{Oi}i∈I ,{Oi}i∈I) where S
is a finite, nonempty set of states; s0 ∈ S is an initial state; I
is a finite, nonempty set of agents; Ai is a finite, nonempty set
of actions available to agent i; T : S×A1× ...×Ai → [0,1] is
a transition function, and rew : S →R is a joint reward func-
tion. Each agent i gets its local partial observation oi ∈ Oi
according to the observation function Oi(s) : S → Oi. An
observation oi ∈ Oi is a vector composed of features f j from
state s. The observations of all agents result in the full state.

Each agent i ∈ I has a policy πi : Oi → Ai that maps an
observation oi ∈ Oi to an action ai ∈ Ai. The joint policy π

induced by the set of agent policies {πi}i∈I is the mapping
from states into actions and transforms the CMMDP into
an MDP (compare Figure 1 with Figure 2a). This is only
possible if, for every state s and action a, the sub-policies
πi get a set of observations Oi that “reveals” the next state.
They don’t have to know the full state, but their combination
should have that property. Inducing a joint policy π into an
MDP yields an induced DTMC (Boutilier 1996).

Adversarial Multi-Agent Reinforcement Learning
We now introduce CMARL, adversarial attacks and denois-
ers. The standard learning goal for RL is to find a policy π

in an MDP such that π maximizes the expected discounted
reward, that is, E[∑L

t=0 γtRt ], where γ with 0 ≤ γ ≤ 1 is the
discount factor, Rt is the reward at time t, and L is the total
number of steps. CMARL extends the RL idea to find the
near-optimal policies πi in a CMMDP setting. Each agent
policy πi is represented by a neural network. A neural net-
work is a function parameterized by weights θi. The neural
network policy πi can be trained by minimizing a sequence
of loss functions J(θi,oi,ai) (Mnih et al. 2013).

Definition 5 (Adversarial Attacks). An adversarial attack
δi : Oi → Oi maps an observation oi to another oi,adv. An
attack is α-bounded if ∥δi(oi)− oi∥∞ ≤ α with l∞-norm de-
fined as ∥δi(oi)− oi∥∞ = maxδik∈δi |δik − oik|. See Figure 2c
for a visual example.

In this work, we focus on the commonly used FGSM at-
tack (Huang et al. 2017). Given the weights θi of the neu-
ral network policy πi and a loss J(θi,oi,ai) with observa-
tion oi and ai := πi(oi), the FGSM, denoted as δi : Oi → Oi,
adds noise whose direction is the same as the gradient of the
loss J(θi,oi,ai) w.r.t the state oi to the state oi and the noise
is scaled by α ∈ Q (see Equation (1)). We specify the ∇-
operator as a vector differential operator. Depending on the
gradient, we either add or subtract α.

δi(oi) = oi +α · sign(∇oiJ(θi,oi,ai)) (1)

To attack a CMARL system, we attack each RL policy sep-
arately via Equation (1).

Definition 6. We denote a denoiser by Di : Oi → Oi. A de-
noiser Di denoises an adversarial attack δi by passing the
adversarial observation into the denoiser Di(δ(oi)). A de-
noiser is successful if πi(Di(δi(oi))) = πi(oi). An adversar-
ial attack is successful if πi(Di(δi(oi))) ̸= π(oi). See Fig-
ure 2b and Figure 2d for a visual example.

A denoiser uses a neural network that gets trained by min-
imizing the loss function J(θi,δi,oi) (Bakhti et al. 2019; Ser-
ban and Poll 2018).
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Methodolodgy
Safety and security need to be analyzed together. The reason
for that lies in the fact that defense methods (like denoisers)
can make mistakes that influence the overall CMARL sys-
tem behavior. Furthermore, it is important to verify how well
defense methods defend the RL policies against adversarial
attacks and therefore need to be integrated into the verifica-
tion process too. Our method takes all of it into account. It
takes advantage of the fact that CMARL agents have shared
rewards and that all agent behaviors emerge together into a
joint policy. These two CMARL properties allow us to verify
CMARL agents by modeling the joint policy and environ-
ment as an induced DTMC. It is an efficient method because
it only builds the model that is reachable via the trained poli-
cies and allows, therefore, the verification of larger models
than what is possible via naive monolithic model checking.

This section is structured as follows. First, we explain how
we model check deep CMARL agents. Second, we illustrate
the attack setting, show how to attack a trained CMARL sys-
tem, and how to model check such attacks. Third, we illus-
trate the defense setting and explain how to model check the
denoisers in combination with the trained CMARL policies
with and without adversarial attacks.

Model Checking of CMARL Agents
Recall, the joint policy π induced by the set of all agent poli-
cies {πi}i∈I is a single policy π (Boutilier 1996). The tool
COOL-MC1 (Gross et al. 2022) allows model checking of
a single RL policy against a user-provided PCTL property
and MDP. Thereby, it builds the induced DTMC incremen-
tally (Cassez et al. 2005).

To support joint policies, we created a joint policy wrap-
per that handles the generation of the observations for the
RL policies πi and builds the joint action π(s) at every vis-
ited state s (see Figure 2). The wrapper takes (user-provided)
observation functions Oi to map the states s to the corre-
sponding observations oi. Each of the CMARL policies πi
gets queried by its observation oi to build the joint action
a = a1 × ...×ai.

With the joint policy wrapper, we build the induced
DTMC the following way. For every state s that is reach-
able via the joint policy π, we query for an action a = π(s).
In the underlying MDP M, only states s′ that may be reached
via that action a ∈ A(s) are expanded. The resulting Markov
chain induced by M and π is fully deterministic, as no action
choices are left open, and ready for efficient model checking.

Our method is independent of the learning algorithm and
allows the model checking of CMARL policies that select
their actions based on current observations. Checking of
probabilistic policies is supported by always choosing the
action with the highest probability at every state. We sup-
port every environment that can be modeled via the PRISM
language (Kwiatkowska, Norman, and Parker 2011).

1Download it from https://github.com/LAVA-LAB/COOL-
MC. Our main features are supported.

Attack Setting
We now describe the adversarial attack setting (adversary’s
goals, knowledge, and capabilities).

Adversary’s goal. The adversary aims to modify the per-
formance of the trained CMARL agents in their environ-
ment. For instance, the adversary may try to increase the
probability that the CMARL agent’s production costs for a
product exceed a threshold.

Adversary’s knowledge. We consider an adversary that
knows the weights θi of the trained policies (for the FGSM
attack) and knows the CMMDP of the environment. Note
that we can replace the FGSM attack with any other at-
tack. Therefore, knowing the weights of the trained policies
should not be a strict constraint.

Adversary’s capabilities. Our attack setting allows the
adversary to attack the trained policies at every visited state
(see Figure 2c) during the incremental building process for
the model checking of the adversarial-induced DTMC (of-
fline) and after the RL policy got deployed (online).

Defense Setting
We now describe the defense setting (defender’s goals,
knowledge, and capabilities).

Defender’s goal and knowledge. Our defense goal is to
remove the adversarial attack from the agent’s observations
and retain the original observation (Serban and Poll 2018).

Defender’s knowledge. The defender knows everything
about the trained policy, the CMMDP of the environment,
and the adversarial attack method.

Defender’s capabilities. Our defense setting allows the
defender to clean each observation of the trained poli-
cies during the incremental building process for the model
checking (offline) and after the RL policy got deployed (on-
line). A denoiser takes a clean observation (see Figure 2b) or
an adversarial observation (see Figure 2d) as input (depend-
ing if the CMARL system is under attack) and outputs the
cleaned observation.

Experiments
We now evaluate our CMARL model checking method in
three benchmarks. First, we compare our CMARL model
checking method with naive monolithic model checking and
analyze the performance of the trained agents. Second, we
analyze how many CMARL agents we can handle. Third, we
analyze the agent performance change by using denoisers
with and without adversarial attacks.

Setup
In this section, we explain the setup of our experiments 2 and
detail the three case studies that we use for this paper. We ap-
plied our proposed method to an environment inspired by the
dynamic job shop scheduling problem (DJSSP) from the IJ-
CAI 2021 competition (Competitions 2021), an environment
inspired by the Flatland Challenge: Multi-Agent Reinforce-
ment Learning on Trains (TRAINS) from the ICAPS 2021

2Reproduce the experiments with the code from
https://github.com/LAVA-LAB/CMARL-VERIFICATION
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competition (Competitions 2021), and the dining philoso-
pher QComp benchmark (Hartmanns et al. 2019) trans-
formed into a CMARL system.

DJSSP. We transformed the single RL environment of the
IJCAI 2021 challenge into a CMARL environment. Our
CMARL environment comprises a manufacturing system
with a set of jobs that must be manufactured via several au-
tonomous machines before a given deadline (see Figure 3).

Stochastic events such as random machine breakdowns
and changing production costs, all of which frequently hap-
pen in real-world manufacturing (Popper et al. 2021), are
considered in this environment.

Each machine is controlled by a single agent i. We al-
low parallel working on multiple jobs simultaneously. How-
ever, if two machines work on the same job simultaneously,
the environment terminates. Each job j ∈ J consists of a se-
quence of operations; each should be processed on a specific
machine i and takes a particular time, namely the processing
time T ∈ Zi j. For example, T13 = 2 indicates that machine 3
has to execute its operation two time steps for job 1.

Each state s consists of features for the total number of
processing times Tji for each job j and machine i, a feature
for the status of each machine zi ∈ I ∪{0} (agent i is work-
ing on the job j, agent i no operation), a feature about the
current hour of the day time ∈ Z, a feature about the avail-
able budget budget ∈ Z, and a feature about the current en-
ergy price price ∈ Z (extracted from (Tveten, Bolkesjø, and
Ilieva 2016)).

Each operation costs energy, and at every time step, the
energy price may vary. If there is no more budget left, the
environment terminates. Operations depend on each other.
For instance, in our setting, operation 2 can not be executed
before operation 1 and operation 3 have been done (Ti1 ==
0∧Ti3 == 0). If an operation is executed in the wrong order,
the environment terminates. Uncertainty is introduced by the
effect that operations may delay in 10% of cases (a machine
breaks down for a time step).

The observation function Oi for agent i maps the current
state s to the observation oi. An observation oi consists of
the current energy price price, the hour of the day time, all
processing times Tji that must be done by agent i and all the
processing times of operations on which it directly depends
and the working status of the machines zi.

Each agent i has a discrete action space Ai, which includes
take-actions that let the agent choose a specific job to work
on and an action for no-operation.

The CMARLS receive their cooperative penalty as soon
as the environment terminates. If all jobs were finished,
the penalty consists of the spent budget and the number
of needed time steps to finish all jobs. Otherwise, it gets a
penalty of 200 minus the number of executed operations.

Machine 2Machine 1 Machine 4Machine 3

2 3 2 4

T2,1 T2,3 T2,2 T2,4

1 4 2 5

T1,2 T1,4T1,1 T1,3

J2

J1

Energy priceMachine breakdown

Figure 3: In the DJSSP environment, two jobs with different
operation processing times need to be finished. Each ma-
chine is controlled by a CMARL agent and takes care of
one specific operation. A machine can break down, and the
agents know the energy price.

The DJSSP environment has 10,331,493 states and
2,037,223,057 transitions. Differences to the IJCAI
2021 competition: random machine breakdown is simulated
in our case as no operation in the given time step, but the
machine can be used in the next time step again; each ma-
chine is controlled by an agent; each agent partially observes
the environment; and we added fluctuating energy prices and
safety requirements like operation collisions and production
cost thresholds.

S = {(T, price,budget,z1,z2,z3,z4), ...}
O1(s) = {(T11,T21, price,budget, time,z1,z2,z3,z4), ...}
O2(s) = {(T11,T21,T12,T22,T13,T23, price,budget, time,

z1,z2,z3,z4), ...}
O3(s) = {(T13,T23, price,budget, time,z1,z2,z3,z4), ...}
O4(s) = {(T14,T24, price,budget, time,z1,z2,z3,z4), ...}

Ai = {NOP, take1, take2} for each agent i
A = A1 ×A2 ×A3 ×A4

penalty =


if operations are done,
time steps + initial budget - budget
else,
200− number of executed operations

TRAINS. This environment consists of three trains that
try to reach their destination (see Figure 4). The environ-
ment terminates as soon as they reach their destination, the
time runs out, or there is a collision between the trains. The
CMARL agents receive a cooperative penalty as soon as the
environment terminates. It consists of 100 if there was a col-
lision or time out or not all trains arrived in time. Otherwise,
the penalty is 100 minus the number of arrived trains mi-
nus the remaining time. In 5% of cases, a train must stop
because of malfunctioning, and the chosen action is not ex-
ecuted. The TRAIN environment has 217 states and 31,372
transitions. Differences to the ICAPS 2021 competition: train
collisions let the environment terminate; and all trains must
reach their destination in the same time span.
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Env. Label PCTL Property Query (P(φ)) = |S| |T | Time (s)

DJSSP done P(F jobs done) 0.58 11629 27157 8440

DJSSP collision P(F collision) 0.22 11479 27007 6432

DJSSP wrong order P(F wrong order) 0.25 11711 27239 8162

DJSSP time P(F time) 0 11871 27399 8335

DJSSP bankruptcy P(F no budget) 0.004 9241 24769 5065

TRAINS arrived P(F arrived) 0.99 11 16 7

TRAINS delayed P(F delay) 0.0975 10 15 6

TRAINS crashed P(F crash) 0 13 18 8

TRAINS train21 P(¬train1 arrives U train2 arrives) 0.99 8 11 4

DPP3 end P(F done) 0 7 7 1

Table 1: PCTL property queries, with their labels and the original result of the property query without a denoiser and attack
(=). The MDP of the DJSSP environment has 10,331,493 states and 2,037,223,057 transitions, the MDP of the TRAIN
environment has 217 states and 31,372 transitions, and the DPP3 MDP has 190 states and 855 transitions.

Station 4

Station 3

Train 1

Station 0

Train 2

Station 2

Station 1

Train 3

Figure 4: Train network of different train lines (different col-
ors). For instance, the red train starts at station 0 and has to
arrive at station 2.

S = {(done, time,agent0 id,agent0 target id,
agent0 moving, ...), ...}

O1(s) =O2(s) =O3(s) = S
Ai = {nop, le f t,straight,right,stop} for each agent i

A = A1 ×A2 ×A3

penalty =


if collision or time out and not all trains arrived,
100
if no collision and no time out and trains arrived,
100 - number of arrived trains - remaining time

Dining philosophers problem (DPPN). There are N
agents seated around a circular table. To the left of each
agent lays a fork, and in the center stands a bowl of spaghetti.
An agent is expected to spend most of its time thinking; but
when the agent feels hungry, it needs to pick up both the left
and right fork to eat the spaghetti. When the agent finishes
the meal, it puts down both forks and continues thinking.
A fork can be used by only one agent at a time. The envi-
ronment terminates when two agents try to grab the same
fork (fork collision) or one of the agents starves. The agents
must collaborate so that nobody starves and no fork colli-
sions happen. For every additional time step the environment

does not terminate, the agents get a reward.

S = {(hunger level 1, hunger level 2, ..., hunger level N), ...}
Oi(s) = hunger levels of neighbor agents and

its own hunger level
Ai = {eat, think} for each agent i

A = A1 ×A2 × ...×Ai

reward = 1, for each time step

Trained RL policies. We trained three CMARL agents
in the environments such that they organized themselves to
reach their goals. All CMARL agents were trained with sep-
arate deep Q-learning algorithms (Mnih et al. 2013) with a
common reward function (Tampuu et al. 2015). We set for all
training runs the Numpy random seed = 128, PyTorch ran-
dom seed = 128, and Storm random seed = 128. We used
ε = 0.1 (ε = 0.5 for the TRAIN agents), εdecay = 0.9999,
εmin = 0.01 (εmin = 0.1 for the TRAIN agents), γ = 0.99,
a target network replacement of 304, batch size of 32, and
a replay buffer size of 300,000. Each neural network con-
sists of two layers, each with 128 neurons (64 neurons
for the TRAIN agents). The DJSSP CMARL training con-
sisted of 32,462 epochs with a best sliding window (window
size = 100) reward of −60.98. The TRAIN CMARL train-
ing consisted of 25,000 epochs with a best sliding window
(window size = 100) reward of −96.24. The DPP3 train-
ing consisted of 10,000 epochs with a best sliding window
(windows size = 100) reward of 9.75.

Properties. Table 1 presents the performance of the poli-
cies for different properties (=). For instance, done = 0.58
describes the probability of the CMARL agents finishing all
manufacturing jobs. Note at this point that we do not focus
on achieving optimal performance but rather showing that it
is possible to model check.

Technical setup. We executed our benchmarks on an
NVIDIA GeForce GTX 1060 Mobile GPU, 16 GB RAM,
and an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz x 12.
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Figure 5: The exponential building time of each state for
different numbers of CMARL agents via our method.

Analysis
We now answer the following research questions.

Can we model check CMARL environments that are too
large for other model checkers? The naive monolithic
model checking via Storm gives us the maximal reachability
probability Pmax(F arrived) = 0.99 that all trains arrive at
their destination. We model checked our trained CMARL
agents via our method, and we observed that our agents
achieve the same performance (arrived = 0.99).

For the DJSSP environment, it is intractable to check the
MDP of the DJSSP (10,331,493 states and 2,037,223,057
transitions) via naive monolithic model checking. Storm
runs out of memory after 22 minutes with the property query
Pmax(F jobs done). Our method, on the other hand, gives
us a reachability probability for done = 0.58 (see Table 1).
However, at some point, our model checking method is also
limited by the size of the induced DTMC and runs out of
memory (Gross et al. 2022).

How many agents can our method handle? We now
analyze how many agents our CMARL model checking
method can handle. In this experiment, we focus on the
DPPN environment because it is straightforward to scale.
We train CMARL agents in different DPPN environments
with different numbers of agents. Our experiment shows,
that we can handle up to 18 agents at the same time. At
19 agents, the model becomes too large to parse. At every
incremental building process step, a callback function has
to be called |Act(s)||I| = 2|I| times per state. Therefore, the
model building time becomes expensive (you can track the
building times for each state for different numbers of agents
in Figure 5). With our technical setup, the naive monolithic
model checking takes around 1 ·10−5 seconds for each state
(independent of the number of agents). During the model
checking of 11 agents and the property end, the naive mono-
lithic model checking runs out of memory while our method
still allows the model checking of them. We conclude that
the model checking of CMARL systems is also limited by
the number of agents.

How do adversarial attacks influence the performance of
the trained CMARL agents? We now analytically mea-
sure the impact of adversarial attacks in our environments.
Therefore, we create at every visited state an α-bounded

Label = =adv =denoiser =denoiser
adv

¬done 0.42 0.44 0.42 0.42

collision 0.22 0.26 0.22 0.22

wrong order 0.25 0.25 0.25 0.25

time 0 0 0 0

bankruptcy 0.004 0.1 0.004 0.004

¬arrived 0.01 0.1 0.01 0.01

crashed 0 0 0 0

delayed 0.0975 0.0975 0.0975 0.0975

train21 0.99 0.99 0.99 0.99

end 0 1 1 1

Table 2: Comparison between no denoiser and no attack
(=), no denoiser and attack (=adv), denoiser and no attack
(=denoiser), and denoiser and attack (=denoiser

adv ). All attacks
are bounded by α = 0.1.

FGSM attack (α = 0.1) for each policy πi during the incre-
mental building process of the induced DTMC (see an exam-
ple for an attack in Figure 2c). Our experiments show that
FGSM attacks influence the performance of the CMARL
system (compare column = and =adv in Table 2).

How does the CMARL agents’ performance change by
equipping them with denoisers? We now analytically
measure how well CMARL policies perform with denois-
ers under and not under attack. The adversary and defender
operate before the observations get passed to the agents (see
Figure 2d). For each agent, there is a separate adversary at-
tack and a separate denoiser. The adversarial attacks are cre-
ated via FGSM. We trained each denoiser the following way:
1. During CMARL policy training, we collected k states Y
(k = 1000 for DJSSP, k = 11 for TRAINS, k = 7 for DPP3).
2. For each y ∈ Y , we create an adversarial state x via the
FGSM attack (α = 0.1) and store the data point (x,y) and
(y,y) into the data set A. 3. We added synthetic data (plus
m data points) to the dataset by randomly shuffling the vec-
tor elements of each x (m = 19000 for DJSSP, m = 9890
for TRAINS, m = 9993 for DPP3). 4. Train denoiser on A
for 100 episodes with seed = 860,523,297,119,962,652,
learning rate = 0.0001, batch size = 32, and four neural net-
work layers (each with 1048 neurons). The losses of the de-
noisers vary between 0.0005 and 0.2 ·107.

Table 2 shows in column =denoiser that, in most cases, the
denoisers do not decrease the performance of the policies.
In column =denoiser

adv , we observe that, in most cases, the de-
noisers under α-bounded FGSM attacks (α = 0.1) also do
not decrease the performance of the policies.

Conclusion
Our method checks trained CMARL agents equipped with
or without denoisers in adversarial or non-adversarial envi-
ronments to ensure compliance with safety requirements af-
ter deployment. It has been successfully applied to real-life
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applications such as job scheduling, transportation, and re-
source allocation. However, the size of the induced DTMC
and the number of CMARL agents limit our method. Opti-
mizing the incremental model building process of COOL-
MC can increase the number of supported CMARL agents.
Incorporating safe CMARL approaches would also be valu-
able extensions to our method, as already done in the single
RL domain (Carr et al. 2023; Jin et al. 2022; Jothimurugan
et al. 2022; Jansen et al. 2020).
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COOL-MC: A Comprehensive Tool for Reinforcement
Learning and Model Checking. In SETTA. Springer.
Hahn, E. M.; Perez, M.; Schewe, S.; Somenzi, F.; Trivedi,
A.; and Wojtczak, D. 2019. Omega-Regular Objectives in
Model-Free Reinforcement Learning. In TACAS (1), volume
11427 of LNCS, 395–412. Springer.
Hansson, H.; and Jonsson, B. 1994. A Logic for Reasoning
about Time and Reliability. Formal Aspects Comput., 6(5):
512–535.
Hartmanns, A.; Klauck, M.; Parker, D.; Quatmann, T.; and
Ruijters, E. 2019. The Quantitative Verification Bench-
mark Set. In TACAS (1), volume 11427 of LNCS, 344–350.
Springer.
Hasanbeig, M.; Kroening, D.; and Abate, A. 2020. Deep Re-
inforcement Learning with Temporal Logics. In FORMATS,
volume 12288 of LNCS, 1–22. Springer.
Hensel, C.; Junges, S.; Katoen, J.; Quatmann, T.; and Volk,
M. 2022. The probabilistic model checker Storm. Int. J.
Softw. Tools Technol. Transf., 24(4): 589–610.
Huang, S. H.; Papernot, N.; Goodfellow, I. J.; Duan, Y.; and
Abbeel, P. 2017. Adversarial Attacks on Neural Network
Policies. In ICLR (Workshop). OpenReview.net.
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