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Abstract 

Background: Pick’s disease (PiD) is a rare and predominantly sporadic form of frontotemporal 

dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic 

inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is 

characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 

3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been 

associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy 

and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of 

this study was to evaluate the association between MAPT H2 and risk of PiD.   

Methods: We established the Pick’s disease International Consortium (PIC) and collected 338 (60.7% 

male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical 

controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the 

primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant 

rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 

subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521).  

Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk 

of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a 

protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a 

similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk 

haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). 
Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to 

enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its 

protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. 

This finding is critical in directing isoform-related therapeutics for tauopathies.  

 
Funding: See funding section 
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Introduction 

Pick’s disease (PiD) is a rare and predominantly sporadic subtype of frontotemporal lobar degeneration 

(FTLD) which represents approximately 5% of all dementias worldwide. Although there are no clinical 

diagnostic criteria for PiD, it typically develops in individuals approximately 55 years of age and 

presents with behavioral change, impaired cognition and occasionally motor difficulties (1-7). PiD is a 

relatively rapidly progressive disease and patients die approximately 10 years after disease onset (1-6). 

Symptomatic treatments are available, but currently no treatments exist that can delay disease onset or 

progression. A definite diagnosis of PiD requires autopsy confirmation. 

Neuropathologically, PiD is classified by severe frontotemporal, knife-edge like cortical atrophy 

macroscopically, and microscopically the presence of ballooned neurons and argyrophilic, tau-

immunoreactive inclusion “Pick bodies” in frontal and temporal regions (1). Characteristic Pick bodies 

consist of hyperphosphorylated 3-repeat (3R) tau aggregate proteins which are encoded by the MAPT 

gene on chromosome 17 (7, 8), and therefore PiD is classified as a 3R tauopathy. MAPT codes for six 

major tau isoforms in the adult human brain, and this is determined by alternative splicing of exons 2, 3, 

and 10 influencing the number of repeat domains in the N-terminus and C-terminus (9). More 

specifically, alternative splicing leading to exon 10 exclusion results in 3-repeat units in the microtubule 

binding C-terminal domain, generating 3R tau proteins (10).  

Rare mutations in MAPT have been identified in a handful of PiD cases or individuals with PiD-

like pathology (11-14); however, these data are inconsistent as larger, independent cohorts of PiD 

cases do not report MAPT mutations (15).The MAPT gene also has two well characterized common 

haplotypes, H1 and H2, which developed from a 900kb ancestral genetic inversion event (16). Not only 

has MAPT H1 consistently been associated with an increased risk of 4-repeat (4R) primary tauopathies 

such as progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), but the H1 

haplotype is also the strongest genetic risk factor for both diseases (17, 18). To date, this observation 

has not been replicated in 3R tauopathy of PiD which may be due to the limited available sample size 

(19, 20).  

Due to its rare prevalence and the inability to diagnose it clinically in life, PiD is an understudied 

neurodegenerative disease, and its genetic etiology is unknown. As previously mentioned, the few 

studies of MAPT haplotype in PiD that have been conducted were small and underpowered. Moreover, 

limited access to 3R tauopathy samples has stalled research advancement in understanding how 

MAPT haplotypes and isoforms influence disease risk/pathology and has prevented progress in 

developing isoform-specific therapies. To address this, we established the Pick’s disease International 

Consortium (PIC) and are collecting data from pathologically confirmed PiD cases from sites worldwide. 

Whilst also developing an in-depth consortium database of clinical, pathological, and demographic 
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information, the primary aim of the PIC was to evaluate the association of the MAPT H1/H2 haplotype 

with disease risk, age of onset (AAO), and disease duration (DD) in PiD.  

Methods 

Pick’s disease International Consortium (PIC) 

Due to the rare and understudied landscape of PiD, researchers at Mayo Clinic Brain Bank in 

Jacksonville, FL, USA (MC) and the UK Dementia Research Institute at University College London 

Queen Square Institute of Neurology (UCL) led efforts to establish the world’s first international 

consortium for Pick’s disease (PIC). MC led the effort for identifying and sourcing PiD cases from North 

American regions and UCL was responsible for collecting PiD cases from European and Australasian 

territories. Inclusion criteria were a neuropathologic diagnosis of PiD with Pick bodies and available 

frozen brain tissue. Exclusion criteria were frontotemporal dementia due to etiology other than a 3R 

predominant tauopathy or lack of frozen specimens. IRB approval was obtained for the studies at both 

collection hubs (MC and UCL) and each individual brain bank had institutional IRB approval for 

collection and sharing of specimens. 
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Study Subjects 

In the current study, 338 neuropathologically confirmed PiD cases were recruited from 39 sites 

worldwide (Figure 1), at the two major collection hubs in North America (MC) and Europe (UCL). 

Frozen brain tissue from cerebellum or prefrontal cortex were obtained from each case. All subjects 

were self-reported unrelated and Caucasian, non-Hispanic (genetically confirmed by array data). 

Baseline demographic information was collected for all subjects (AAO and age at death (AAD) for PiD 

patients, age at blood collection for controls, and sex). DD was calculated from the difference between 

AAD and AAO for a subset of 309 PiD cases. Subject characteristics are summarized in Table 1. In 

addition to basic demographic information, the PIC also collected information related to family histories, 

clinical outcomes (e.g. behavioral and language impairments, presence/absence of parkinsonism, 

upper and lower motor neurone deficits, Mini-Mental State Examination and Clinical Dementia Rating), 

and pathological information (e.g. Thal phase, Braak stage, and brain weight,) for each individual case, 

as well as noting whether other tissues and brain imaging data were available. Cases were removed if 

a rare MAPT mutation was identified. Peripheral blood-derived DNA was provided from 1,312 controls 

from Mayo Clinic in Jacksonville, FL (N=881) or Rochester, MN (N=431). Control subjects were 

deemed neurologically healthy by neurologists at Mayo Clinic. 

 

 

Variable 
Pick’s disease  

series (N=338) 
Controls (N=1,312) 

Age (years) 69 (40, 100) 69 (45, 92) 

Age of disease onset (years) 58 (33, 80) N/A 

Disease duration (years) 10 (2, 25) N/A 

Sex   

Male 205 (60.7%) 611 (46.6%) 

Female 133 (39.3%) 701 (53.4%) 
Table 1: Summary of subject characteristics.  
The sample median (minimum, maximum) is given for age. Age represents age at death in Pick’s disease cases and 
age at blood draw in controls. Age at disease onset and disease duration information was unavailable for N=29 Pick’s 
disease cases. 
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Neuropathological diagnosis of Pick’s disease 
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Established methods for the neuropathological diagnosis of Pick’s disease 
Currently, diagnostic consensus criteria for the neuropathologic diagnosis of PiD do not exist. In many 

diagnostic centers a neuropathological diagnosis of PiD relies on the presence of argyrophilic, spherical 

neuronal inclusions using traditional silver staining methods, such as Bielschowsky’s or Gallyas-Braak 

silver staining methods. Both silver staining methods stain Alzheimer’s disease (AD) neurofibrillary 

tangles, yet spherical inclusions in PiD are positive with Bielschowsky and negative on the Gallyas-

Braak silver staining method (21). This differentiation in silver staining methods is helpful especially for 

centers that do rely on immunohistochemistry against phosphorylated tau (p-tau) and do not have 

isotype specific tau antibodies incorporated in the diagnostic work-up as AD and PiD neuropathologic 

changes may co-exist in the same patient. Immunohistochemistry against epitope-specific tau 

antibodies further helps to distinguish between AD and PiD features. Since both spherical inclusions 

and neurofibrillary tangles stain positive with antibodies against phosphorylated tau (p-tau), epitope-

specific antibodies highlight selective 3R tau spherical inclusions in PiD, which is further validated by 

antibodies to 4R tau where these spherical inclusions stain negative. This distinction is particularly 

obvious in the granule cell neurons of the hippocampal dentate fascia, which may be used solely to 

diagnose PiD. 

 

PIC diagnostic algorithm for pathology confirmed Pick’s disease 
Since a harmonized neuropathologic diagnostic scheme does not exist it became pivotal to the PIC 

aims to establish a defined set of operational diagnostic criteria within PIC that would ensure that 

submitted PiD cases reflect a 3R-predominant tauopathy. All cases submitted to the PIC had an 

archival neuropathologic diagnosis of PiD (i.e. the presence of argyrophilic or p-tau positive spherical 

inclusions) and underwent neuropathological assessments at their respective brain banks. Due to the 

multi-site nature of the PIC, each participating center were requested to submit and report respective 

3R and 4R tau staining results for each individual PiD case to the PIC. To fulfill PIC criteria all cases 

had to confirm the presence of Pick bodies and must have had 3R tau positive and 4R tau negative 

inclusions. The additional presence of ballooned neurons and negative Gallyas staining of inclusions 

was preferred to confirm diagnosis. If 3R/4R tau immunohistochemistry had not been performed at their 

respective brain banks, centers submitted routinely cut sections (up to seven microns) of unstained, 

formalin fixed paraffin embedded tissue from hippocampal, frontal or temporal lobe regions for 3R and 

4R tau immunohistochemistry assessments (Figure 2). Cases submitted to Mayo Clinic Brain Bank for 

Neurodegenerative Diseases were evaluated by two PIC neuropathologists (DWD, SFR) and cases 

submitted to UCL were examined by two PIC investigators (WS, TL) which included a PIC 
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neuropathologist (TL), all using the PIC diagnostic algorithm. All sections were stained using standard 

immunohistochemical methods (22) (Figure 3). 

 

DNA Preparation 

DNA was extracted from each subject at their respective collection site. At MC, genomic DNA was 

extracted from frozen brain tissue from PiD cases and from peripheral blood lymphocytes from control 

subjects using an automated or manual method. Automated DNA extractions were carried out using 

Autogen Tissue Kit reagents according to manufacturer protocols and were processed on the Autogen 

FlexSTAR+ (both Autogen, Holliston, MA, USA). At QSBB, total genomic DNA was extracted from 

frozen brain tissue using the Kleargene XL Nucleic Acid Purification kit (LGC, Hoddesdon, Herts, UK). 

DNA quality was assessed with a NanoDrop 8000 spectrophotometer (ThermoFisher Scientific, USA) 

and absorbance ratios for 260/280 and 260/230 were between 1.7-2.2 and 2.0-2.2, respectively. 
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SNP Genotyping 

The MAPT H2 haplotype-tagging variant rs8070723 was genotyped in all cases and controls. In 

addition, the five common MAPT variants (rs1467967, rs242557 [the H1C haplotype-tagging variant], 

rs3785883, rs2471738, and rs7521) which along with rs8070723 define H1-subhaplotypes were 

genotyped to assess MAPT subhaplotype structure (23, 24). North American cases and all controls 

were genotyped using TaqMan SNP genotyping assays on an ABI 7900HT Fast Real-Time PCR 

system (Applied Bio-systems, Foster City, CA, USA), as previously described (25). MAPT variants were 

genotyped according to manufacturer instructions (primer sequences available upon request). 

Genotypes were called using TaqMan Genotyper Software v1.3 (Applied Bio-systems, Foster City, CA, 

USA). European and Australasian cases were genotyped using KASPTM SNP genotyping assays on the 

Hydrocyler2 system (LGC Genomics, Hoddesdon, Herts, UK) according to manufacturer instructions, 

and were read on a PHERAStar FSX plate reader (BMG Labtech, Cary, NC, USA). Genotypes were 

called using Kraken KlusterKallerTM software (LGC Genomics, Hoddesdon, Herts, UK). Genotype call 

rates for all subjects were 100% for each variant. There was no evidence of a departure from Hardy-

Weinberg equilibrium in controls for any of the six variants (all P >0.01 after Bonferroni correction). All 

cases were assessed for population stratification using available whole SNP genotyping data. After 

standard genotyping data quality control steps, we performed a principal components analysis (PCA), 

merged all cases with the European (CEU) HapMap reference dataset, and identified any cases of non-

white European ancestry which were excluded from further analysis. Allele and genotype frequencies 

for each variant are detailed in Supplementary Table 1. 

Statistical Analysis 

Single-variant associations with risk of PiD were evaluated using logistic regression models that were 

adjusted for age and sex. Odds ratios (Ors) and 95% confidence intervals (Cis) were estimated and 

correspond to each additional minor allele. Single-variant associations with AAO and DD in PiD patients 

were examined using linear regression models that were adjusted for sex and series (AAO analysis) or 

sex, AAO, and series (DD analysis). Regression coefficients (referred to as β) and 95% Cis were 

estimated and are interpreted as the increase in the mean AAO or DD corresponding to each additional 

copy of the minor allele. For all single-variant associations, analysis involving rs8070723 (the H2-

tagging variant) was considered as the primary analysis, with results for the five remaining variants 

considered as secondary and presented for completeness.   

Associations between six-variant MAPT haplotypes and risk of PiD were assessed using score 

tests for association under a logistic regression framework (26), where tests were adjusted for age and 

sex. Ors and 95% Cis were estimated and correspond to each additional copy of the given haplotype. 
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In analysis of PiD patients, associations of six-variant MAPT haplotypes with AAO and DD were 

assessed using score tests for association under a linear regression framework (26), where tests were 

adjusted for sex and series (AAO analysis) or sex, AAO, and series (DD analysis). Β-coefficients and 

95% Cis were estimated and are interpreted as the increase in the mean AAO or DD corresponding to 

each additional copy of the given haplotype. Haplotypes occurring in <1% of subjects in a specific 

analysis were excluded from that analysis.   

We adjusted for multiple testing separately for each outcome measure that was examined 

(presence of PiD, AAO, or DD). P-values <0.05 were considered as statistically significant in the 

primary analysis involving the MAPT rs8070723 variant. In secondary analysis assessing associations 

between MAPT haplotypes and outcomes, p-values < 0.0028 (18 tests) were considered as statistically 

significant after Bonferroni correction in the disease-association analysis, and p-values < 0.0031 (16 

tests) were considered as statistically significant in the AAO and DD analyses. P-values ≤ 0.05 were 

considered as significant in all remaining analysis. All statistical tests were two-sided. Statistical 

analyses were performed using R Statistical Software (version 4.1.2; R Foundation for Statistical 

Computing, Vienna, Austria). 

 

Role of the funding source 

Study sponsors (for individual brain bank collections) had no such involvement with this study design, in 

the collection, analysis, and interpretation of data, in the writing of the report, or in the decision to 

submit the paper for publication. All authors confirm that they had full access to all the data in this study 

and accept responsibility of publication submission. 

 

Results 

A total of 338 pathologic-defined PiD cases were identified across 39 independent recruitment sites to 

establish the first PiD consortium (PIC). There was a significant association between the MAPT 

rs8070723 H2 allele and an increased risk of PiD in the overall series (OR: 1.35, 95% CI: 1.12-1.64, 

P=0.0021), with minor allele frequencies of 29.0% in the 338 PiD patients and 23.0% in the 1,312 

controls. MAPT rs8070723 was not associated with AAO (β: -0.54, 95% CI: -1.94 to 0.87, P=0.45) or 

DD (β: 0.25, 95% CI: -0.46 to 0.96, P=0.50). Single-variant associations with PiD, AAO and DD are 

shown for all six MAPT variants used to define MAPT haplotypes in Supplementary Tables 2 and 3. 

Of note, there was not a notable association between rs242557 and risk of PiD (OR: 0.94, 95% CI: 

0.79-1.12, P=0.51, Supplementary Table 2). 
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In secondary analysis, an evaluation of associations between six-variant MAPT haplotypes and 

risk of PiD is displayed in Table 2. As with the single-variant analysis, the H2 haplotype was associated 

with an increased risk of PiD (OR: 1.34, 95% CI:1.11-1.63, P=0.0028); the slight difference between the 

two numerical estimates is due to the two different analysis approaches. Additionally, a nominally 

significant (P<0.05) protective association was noted for the rare H1f haplotype (0.0% in PiD, 1.2% in 

controls, P=0.049), with a slightly weaker finding noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, 

P=0.051). There were no other notable associations between MAPT haplotypes and risk of PiD (all 

P≥0.15, Table 2).  

 

Associations of MAPT haplotypes with AAO and DD in PiD patients are shown in Table 3. None 

of the six-variant MAPT haplotypes were significantly associated with AAO or DD after correcting for 

multiple testing (P<0.0031 considered significant). However, nominally significant associations were 

observed with AAO for H1b (β: 2.66, 95% CI: 0.63 to 4.70, P=0.011), H1i (β: -3.66, 95% CI: -6.83 to -

0.48, P=0.025) and H1u (β: -5.25, 95% CI: -10.42 to -0.07, P=0.048), and with a shorter DD for H1x (β: 

-3.73, 95% CI: -6.98 to -0.48, P=0.025). 

 

 
 MAPT variant Haplotype frequency (%) Association with Pick’s disease 

Haplotype rs1467967 rs242557 rs3785883 rs2471738 rs8070723 rs7521 Pick’s disease 
patients (N=338) 

Controls 
(N=1312) OR (95% CI) P-value 

H1b G G G C A A 13.1 16.0 0.76 (0.58, 1.00) 0.051 
H1c A A G T A G 10.2 11.3 0.93 (0.70, 1.25) 0.65 
H1d A A G C A A 7.4 7.1 0.99 (0.68, 1.42) 0.94 
H1e A G G C A A 9.8 9.0 1.03 (0.74, 1.42) 0.87 
H1f G G A C A A 0.0 1.2 N/A1 0.049 
H1g G A A C A A 0.7 1.1 0.43 (0.11, 1.65) 0.22 
H1h A G A C A A 4.0 4.1 0.95 (0.57, 1.57) 0.85 
H1i G A G C A A 3.9 4.4 0.98 (0.60, 1.61) 0.95 
H1l A G A C A G 3.6 3.0 1.11 (0.67, 1.84) 0.69 
H1m G A G C A G 2.9 2.9 1.00 (0.56, 1.78) 0.99 
H1o A A A C A A 1.1 2.3 0.53 (0.23, 1.26) 0.15 
H1p G G G T A G 1.1 1.5 0.82 (0.33, 2.04) 0.66 
H1r A G G T A G 0.7 1.1 0.63 (0.20, 2.01) 0.44 
H1u A A G C A G 2.4 2.4 1.11 (0.58, 2.11) 0.75 
H1v G G A T A G 2.2 1.2 1.50 (0.70, 3.21) 0.30 
H1x G A A T A G 1.3 1.3 1.06 (0.44, 2.56) 0.91 
H1y A A A T A G 1.4 1.6 0.85 (0.34, 2.07) 0.71 
H2 A G G C G G 28.5 22.7 1.34 (1.11, 1.63) 0.0028 

Table 2: Associations between MAPT haplotypes and risk of Pick’s disease.  
ORs, 95% CIs, and p-values result from score tests of association that were adjusted for age and sex. 1Indicates a haplotype that was not observed in Pick’s disease patients, 
making estimation of an OR impossible. P-values <0.0028 are considered as statistically significant after applying a Bonferroni correction for multiple testing. OR=odds ratio; 
CI=confidence interval.  

  Association with age of disease onset Association with disease duration 

Haplotype Haplotype frequency 
(%), N=309 β (95% CI) P-value β (95% CI) P-value 

H1b 13.3% 2.66 (0.63, 4.70) 0.011 -0.03 (-1.07, 1.02) 0.96 
H1c 10.0% 1.63 (-0.61, 3.86) 0.15 0.08 (-1.05, 1.22) 0.88 
H1d 7.2% 0.79 (-1.79, 3.38) 0.55 -0.91 (-2.21, 0.39) 0.17 
H1e 9.3% 0.52 (-1.94, 2.98) 0.68 0.52 (-0.72, 1.76) 0.41 
H1h 4.0% 2.03 (-1.57, 5.64) 0.27 -0.45 (-2.27, 1.37) 0.63 
H1i 4.1% -3.66 (-6.83, -0.48) 0.025 -0.90 (-2.53, 0.72) 0.28 
H1l 3.5% -1.75 (-5.42, 1.92) 0.35 0.43 (-1.42, 2.28) 0.65 
H1m 3.1% -1.25 (-5.33, 2.84) 0.55 0.94 (-1.11, 3.00) 0.37 
H1o 1.2% 0.05 (-6.91, 7.00) 0.99 0.03 (-3.47, 3.52) 0.99 
H1p 1.0% -5.65 (-12.60, 1.30) 0.11 0.17 (-3.36, 3.69) 0.93 
H1u 2.2% -5.25 (-10.42, -0.07) 0.048 -2.40 (-5.03, 0.22) 0.074 
H1v 2.1% -1.74 (-6.61, 3.13) 0.48 1.91 (-0.54, 4.35) 0.13 
H1x 1.4% -5.39 (-11.84, 1.07) 0.10 -3.73 (-6.98, -0.48) 0.025 
H1y 1.5% -0.70 (-6.93, 5.54) 0.83 1.82 (-1.31, 4.95) 0.26 
H1z 1.6% -1.81 (-8.02, 4.40) 0.57 -0.08 (-3.20, 3.05) 0.96 
H2 29.4% -0.62 (-2.03, 0.79) 0.39 0.22 (-0.49, 0.93) 0.54 
Table 3: Associations of MAPT haplotype with age of disease onset and disease duration in Pick’s disease cases.  
β values, 95% CIs, and p-values result from score tests of association that were adjusted for sex and series (age of disease onset analysis) or sex, age of disease onset, and series 
(disease duration analysis). β values are interpreted as the change in the mean value of the given outcome (age of disease onset or disease duration) corresponding to each 
additional copy of the given haplotype. P-values <0.0031 are considered as statistically significant after applying a Bonferroni correction for multiple testing. β=regression coefficient; 
CI=confidence interval. 
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Discussion 
PiD is a rare, predominantly sporadic 3R tauopathy that presents primarily as a behavioral or language 

variant of frontotemporal dementia (1-6). Little is known regarding the etiology or underlying 

pathobiology of the disease. To date, no genetic variation has been shown to associate with disease 

risk, although three cases with PiD or PiD-like pathology have been suggested to be caused by rare 

MAPT mutations (11-14). In the present study we have shown that the common MAPT H2 haplotype, 

strongly protective in 4R-tauopathy, is associated with an increased risk of PiD (3R tauopathy). This 

was only possible by establishing and creating a global consortium (PIC) to increase the number of 

available pathologically-defined PiD cases. Previous early genetic studies were underpowered with only 

34 cases and 33 cases respectively (19, 20); a ten-fold increase in sample size was needed to 

establish MAPT H2 as a risk factor for in PiD. 

Previous research in frontotemporal dementia linked to chromosome 17 with tau pathology 

(FTDP17t) has clearly demonstrated that mutations in the 5′ splice site of MAPT exon 10 can increase 

the incorporation of the exon into the mRNA and increase 4R isoform production, emphasizing how 

important exon 10 alternative splicing regulation is as dysregulation influences tangle formation and 

neurodegeneration outcome (16, 27). Given the association of MAPT H2 with a 3R-tauopathy, and its 

protection in 4R-tauopathy, it is possible that the MAPT H1 and H2 haplotypes increase the expression 

of 4R and 3R tau respectively. Previous studies have attempted to investigate the haplotype influence 

on MAPT/tau expression although results have been inconclusive, given the presence of six different 

isoforms in human brain defining specific isoform expression remains complex (28-30). The genetic 

predisposition herein described would appear to support the hypothesis that the pathologic effects of 

the H1-H2 haplotypes is via isoform specific expression differences. This may have implications in the 

determination of therapeutic strategies that have focused on either overall lowering of tau expression or 

specifically targeting the lowering of 4R-tau or increasing 3R-tau isoforms. The overall balance of the 

3R and 4R forms of tau would appear to be important for the primary tauopathies but does not in itself 

explain the mixed pathology observed in AD, although it is tempting to suggest an overall increased 

expression of total tau may be underlying the mixed pathology. 

In addition to providing evidence that the MAPT-H2 haplotype is associated with an increased 

risk of PiD, we observed nominally significant associations that were observed with risk of PiD, AAO, 

and DD, however these will require validation. This study has strengths in the assembled large PiD 

series of patients and the direct genotyping of the H1-H2 haplotype, but there still remains several 

limitations which are important to note. The possibility of a type II error (i.e. false-negative finding) is 

important to consider, and we cannot conclude that there is no true association between a given 

haplotype and risk of PiD simply due to a non-significant p-value in this study. Additionally, we were 
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unable to regress out genetic principal components, and so it is possible that population stratification 

could have had an influence on our results. However, we used the case genetic principal components 

to exclude any cases of non-European ancestry and our control MAPT H1-H2 frequencies were in 

keeping with published data and the general population frequency, in fact the highest population 

control frequency in gnomAD is 23.8% very similar to our 23% (31). Ongoing studies looking at 

genome-wide disease associations in PiD with available genome-wide SNP data for controls support 

the current findings (data not shown).

In summary, PiD is a rare and understudied disease with a devastating impact on both patients 

and their families. Through collaboration and building of the PIC, we have for the first time a rare 

opportunity to engage in studies that may tease out the underlying pathobiology in PiD. As a primary 

tauopathy, there is the possibility that the identification of genetic variables, such as MAPT H2, involved 

in PiD pathology will inform on other more common tau-related disorders, PSP, CBD, and potentially 

AD. Larger scale unbiased studies to explore genome-wide or structural genetic variation in PiD are 

now warranted. Furthermore, resolving the genetic determinants of PiD may help in establishing 

diagnostic criteria and elucidating the dysfunctional pathways may direct future therapeutic intervention 

strategies.  
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Data sharing 
The PIC have built a database that contains detailed demographic, clinical, and pathological 

information for deidentified participants with Pick’s disease. Basic demographic information (e.g. age at 

onset, age at death, disease duration, sex, and ethnicity), family history, clinical history (e.g. behavioral 

and language impairments, presence of parkinsonism, upper and lower motor deficits, MMSE, and 

CDR), and pathological observations (e.g. immunohistochemical staining records, Thal phase, Braak 

stage, TDP-43 type, post-mortem intervals, brain weight, and vascular pathology), other available 

tissues, genetic data and clinical imaging data are available for each subject upon request. All requests 

must be submitted to Owen A. Ross (email: ross.owen@mayo.edu) or Jonathan Rohrer (email: 

j.rohrer@ucl.ac.uk).
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