
University of Antwerp
Faculty of Science

Department of Computer Science
IDLab Research group

Learning to Navigate through Abstraction and
Adaptation

Matthias Hutsebaut-Buysse

Submitted in fulfillment of the requirements for the degree of
Doctor of Science: Computer Science

Promotor
Prof. dr. ir. Steven Latré

Supervisors
Prof. dr. ir. Kevin Mets
Prof. dr. Tom De Schepper

Antwerp, 2023

University of Antwerp
Faculty of Science

Department of Computer Science
IDLab Research group

Members of the jury

Chair
Prof. dr. Bart Goethals
Universiteit Antwerpen, Belgium

Promotor
Prof. dr. ir. Steven Latré
Universiteit Antwerpen, Belgium

Members
Dr. Abdellatif Bey-Temsamani
Flanders Make, Belgium

Prof. dr. ir. Kevin Mets
Universiteit Antwerpen, Belgium

Prof. dr. Ann Nowé
Vrije Universiteit Brussel, Belgium

Prof. dr. Juan Hernandez Vega
Cardiff University, United Kingdom

Acknowledgments

When I first graduated from university and needed to figure out what to pursue next
I was somewhat aware of the area of machine learning. However, the examples
I encountered back then were about clustering Iris flowers and predicting house
prices based on the number of bedrooms. So instead of pursuing a career in re-
search at that point, I decided to give software development a try. During these
years I quickly learned that developing most qualitative customer-facing software
is mainly not about technology, but is really about understanding people and pro-
cesses. I also learned that no matter how many automated tests you write, or hours
of manual testing you do, users will always (mostly unwillingly) manage to find
edge cases in order to break the rules you have defined.

After doing software development for a few years, one day I stumbled upon a
blog post about a research area which was called Reinforcement Learning (RL).
I was immediately blown away by the idea of instead of coming up with a set of
rules, having the system figure out the rules by itself. In pursuit of learning more
about RL, I spent many evenings trying to implement basic RL algorithms. I still
remember the magical moments when my models managed to somewhat learn how
to play a video game. I was convinced that this approach would be the future, and
I decided to jump ship.

Through a friend, I heard that Prof. dr. ir. Steven Latré together with Prof. dr.
ir. Kevin Mets were starting up a new RL lab, and they were looking for new
Ph.D. students. I grabbed the opportunity and they became my supervisors. Being
a research supervisor, however, is no easy job. You have to push aspiring future
researchers in order to always go further, and obtain the highest quality and ethical
standards while keeping everyone motivated, even when confronted with many fai-
led attempts. I would like to thank Steven, for while also leading a large research
lab, making the time to guide me, and allowing me to explore novel ideas on my
own. I would also like to thank Kevin. Our conversations and your many critical
reviews were of paramount importance in this journey. You really demonstrated
through leading by example what being a researcher is all about. In the last few
years, I also enjoyed the luxury of having Prof. dr. Tom De Schepper as an additi-
onal supervisor. I would like to thank Tom for the many often out-of-the-box and
practical insights that he brought to the table. Through Tom, I also now know that

6

there is such a thing as an ”Oxford Comma”.

In the past few years, I had the pleasure of being part of the IDLab research group.
As there are currently more than 100 people affiliated with IDLab, it would be
impossible to individually thank each of you for the collaborations, the inspiring
lunch conversations, and the support.

I would also like to thank the people at Flanders Make. As a programmer, I have
developed a common fast-feedback loop habit. You write some code, see where
it fails, and then iterate. If you utilize a similar strategy when working with hard-
ware, you just might see some smoke. Working with the people from Flanders
Make allowed me to rely on their hardware expertise and allowed me to develop
novel approaches on real-world platforms. Through our various conversations, I
learned a lot about the differences between the often very simplified virtual agents,
and systems that actually operate in real-world environments.

My sincere thanks also go to all members of the jury for making the time and
providing feedback on this dissertation.

Finally, I’m eternally grateful to be blessed with such an amazing family, friends,
wife Céline, and kids Louise and Manon. Watching an AI system develop from
random behavior into complex strategies is an unbelievable magic experience.
However, this is still nothing compared to witnessing the human counterpart.

Antwerp, September 2023
Matthias Hutsebaut-Buysse

Samenvatting

Artificiële Intelligentie (AI) is niet meer uit het dagelijkse leven weg te denken en
heeft onlangs grote doorbraken gekend. Deze doorbraken zijn echter vooral gesi-
tueerd in de domeinen van Computer Visie (CV) en taalverwerking. Deze door-
braken werden mogelijk gemaakt door de overvloedige aanwezigheid van grote
internet datasets die vaak grote hoeveelheden zorgvuldig gelabelde voorbeelden
bevatten.

Helaas zijn er ook heel wat domeinen waarbij deze aanpak niet succesvol kan
ingezet worden. Navigatie-taken waarbij het systeem bijvoorbeeld naar een punt
moet navigeren, of een object moet terugvinden in een onbekende omgeving zijn
bijvoorbeeld minder geschikt voor deze aanpak. Deze navigatiesystemen moeten
namelijk interageren met vaak complexe omgevingen, die moeilijk weer te geven
zijn met eenvoudige invoer/uitvoer combinaties.

Reinforcement Learning (RL) is een alternatieve werkwijze waarbij een AI-systeem
zijn eigen dataset zal verzamelen door directe interactie met de omgeving. Helaas
kent RL momenteel nog een aantal beperkingen. Een belangrijke beperking is bij-
voorbeeld de hoeveelheid interacties met de omgeving die nodig zijn. Momenteel
zijn er in heel wat gevallen nog erg veel interacties nodig om een gewenst gedrag
te kunnen leren.

Dit maakt het momenteel nog moeilijk om RL onmiddellijk in te zetten in de echte
wereld. Momenteel wordt er vaak gebruik gemaakt van virtuele gesimuleerde om-
gevingen om systemen te trainen. Helaas is het bij deze aanpak niet vanzelfspre-
kend om een agent die getraind is door middel van een virtuele omgeving onmid-
dellijk in te zetten in de echte wereld.

In deze thesis introduceren we een aantal nieuwe methodes die zich er op richten
om RL efficiënter te maken in termen van het aantal benodigde interacties met de
omgeving. Dit doen we door te werken op meerdere abstractieniveaus, en door
voorgaand geleerd gedrag aan te passen. Het werken op meerdere niveaus laat
het systeem toe om zowel op langere termijn te plannen, als acties voor te stellen
om het plan effectief te kunnen uitvoeren. Voor een navigatieprobleem zou er bij-
voorbeeld één niveau verantwoordelijk kunnen zijn om een volgende kamer om te
bezoeken voor te stellen, een ander niveau kan dan verzocht worden om acties voor

8

te stellen om deze kamer effectief te bereiken. Deze aanpak (Hierarchical Rein-
forcement Learning (HRL)) is in sterke tegenstelling tot hoe RL momenteel wordt
toegepast. Momenteel wordt er meestal met een volledig schone lei begonnen, en
wordt er slechts op één abstractieniveau gewerkt.

Het werken op meerdere abstractieniveaus is echter geen nieuw idee en een grote
hoeveelheid voorgaand onderzoek werd al verricht om dit mogelijk te maken. Er
werden in het verleden al heel wat verschillende technieken en methodes voorge-
steld. De eerste contributie van deze thesis bestaat uit het systematisch beschrijven
en evalueren van bestaande aanpakken. Dit hebben we gedaan om het bestaande
werk te verdelen in distinctieve categorieën. Door dit te doen waren we ook in
staat om een aantal openstaande problemen te identificeren.

Om de kracht van het gebruik van abstracties aan te tonen, en om een eerste stap
te zetten in het oplossen van de geformuleerde uitdagingen werd er een nieuwe
methode genaamd Structured Exploration through Instruction Enhancement (SE-
TIE) geı̈ntroduceerd. Deze methode gebruiken we om een object terug te vinden
in een procedureel gegenereerde huishoudelijke omgeving. De nieuwe methode
heeft genoeg aan een beschrijving van het object geformuleerd in taal, en een RGB
egocentrische observatie van de omgeving. Waar typische RL methodes in deze
configuratie niet in staat blijken om een succesvolle strategie te ontwikkelen, is de
nieuw geı̈ntroduceerde methode in staat om dit probleem gedeeltelijk op te lossen
door te handelen en te verkennen op verschillende abstractieniveaus.

De tweede aanpak die nagestreefd werd in dit werk om de mogelijkheden van
RL verder uit te breiden formuleert een antwoord op de vraag öp welke manier
kunnen we bestaande voorkennis selecteren en aanpassen om nieuwe taken sneller
te kunnen oplossen?”

Om dit probleem op te lossen werd een eerste methode voorgesteld die gebruik
maakt van steekproeven. De resulterende methode is in staat om in te schatten
hoe goed een bestaand gedrag kan aangepast worden naar een nieuwe taak door
enkel en alleen rekening te houden met de beschrijving van voorgaande kennis en
de nieuwe taak.

Het nadeel van deze methode is dat er echter een significante hoeveelheid reken-
kracht nodig is om de steekproeven uit te voeren. Deze extra rekenkracht zal pas
te rechtvaardigen zijn na een redelijk aantal adaptaties. Om deze extra kost te ver-
mijden hebben we een tweede alternatieve methode voorgesteld die gebruik maakt
van een apart getrainde taalvoorstellingsmethode. We tonen aan dat door een ma-
nier waarop taal numeriek kan worden voorgesteld, we ook in staat zijn om na te
gaan welke voorkennis het meeste geschikt is om een nieuwe taak op te lossen.

Het selecteren van voorkennis is echter slechts een deel van het taak adaptatie
probleem. Een tweede deel van het probleem bestaat uit het efficiënt gebruiken
van voorkennis. Wanneer een systeem simpelweg het vorige gedrag overneemt,

9

zal het ook geen nieuwe uitkomsten vertonen. Er moet dus een afweging worden
gemaakt tussen wanneer voorkennis gebruikt kan worden, en wanneer het systeem
op zoek moet gaan naar nieuwe oplossingen.

Om dit mogelijk te maken werd het Disagreement Options framework voorgesteld.
In dit framework worden de uitkomsten van meerdere gerelateerde voorgaande
strategieën geraadpleegd. De beslissing om voorkennis te gebruiken of niet wordt
gemaakt op basis van het feit of de uitkomsten van de geselecteerde voorkennis
consistent zijn of niet. In navigatieproblemen zal deze aanpak het systeem vlot tot
bij het doel brengen, en toelaten om de laatste stappen zelf te ontdekken.

In deze thesis werd er ook onderzoek verricht naar het gebruik van RL in ver-
schillende toepassingen. Dit werd gedaan door te focussen op de verschillen tus-
sen gesimuleerde omgevingen en observaties geproduceerd door echte sensoren.
Om dit probleem ten gronde te kunnen bestuderen werd een nieuwe omgeving
geı̈ntroduceerd die bestaat uit een fotorealistische scan van de IDLab - imec Ant-
werpen kantoren. Door zowel toegang te hebben tot de virtuele als de echte omge-
ving zijn we in staat om verschillen en problemen te kunnen identificeren tussen
deze twee omgevingen bij het gebruik van RL.

Om verder het verschil tussen de echte fysieke wereld en de virtuele wereld te
verkleinen werden er in deze thesis twee nieuwe aanpakken voorgesteld. In de
eerste methode maken we gebruik van een digital twin. De tweede methode bestaat
uit een nieuwe manier om om te gaan met Light Detection And Ranging (LiDAR)
sensoren en een hiervoor speciaal ontwikkelde nieuwe simulator. We tonen aan
dat op basis van deze simulator we in staat zijn om een strategie te ontwikkelen in
deze simulator, en dat deze onmiddellijk kan ingezet worden in de echte wereld.
Bovendien tonen we aan hoe deze methode kan worden ingezet om een ongeziene
omgeving te verkennen in functie van een externe taakmodule.

Samengevat kunnen we stellen dat het werk dat voorgesteld wordt in deze thesis
de mogelijke toepassingen van RL uitbreidt door gebruik te maken van verschil-
lende abstractielagen, en door het mogelijk te maken om bestaande strategieën aan
te passen naar nieuwe taken. Om dit mogelijk te maken kunnen verschillende con-
tributies worden geı̈dentificeerd. Als eerste werd er een studie verricht van hoe er
momenteel gebruik gemaakt wordt (en de huidige beperkingen) van abstractieni-
veaus in het gebied van RL. Als tweede werd het SETIE framework voorgesteld
als een praktische methode om abstracties te leren en te gebruiken. Als derde
werden twee verschillende methodes geı̈ntroduceerd om voorgaande kennis te se-
lecteren en te gebruiken. En tot slot introduceerden we twee methodes die het
mogelijk maken om een RL systeem te trainen in een gesimuleerde omgeving, om
dit vervolgens ook in te zetten in de echte wereld.

10

Summary

Artificial Intelligence (AI) has seen tremendous successes in the past few years.
These breakthroughs have, however, mainly been situated in the areas of Compu-
ter Vision (CV) and Natural Language Processing (NLP). Breakthroughs in these
areas have been fueled by the abundance of large internet datasets containing huge
amounts of nicely labeled examples.

Unfortunately, this dataset approach is not very well suited for other types of tasks
such as navigation tasks (e.g., navigating towards a set of coordinates, or searching
for an object in an unknown environment). Navigation systems need to interact
with often noisy environments which are often hard to model in terms of clean
input/output labels.

Reinforcement Learning (RL) offers an alternative learning paradigm, which al-
lows an AI system to obtain its own dataset through direct interaction with the
environment. Unfortunately, RL is still plagued with its own set of problems. One
major limitation of RL is its sample inefficiency. Currently, an RL-based approach
needs large amounts of interactions with its environment in order to learn a satis-
fying behavior. This makes it impractical to utilize RL in real-world environments,
and most often requires RL practitioners to train agents in simulated versions of
the environment. It is however in most cases not straightforward how to utilize
agents trained in simulation in the real world.

In this thesis, we propose a number of novel approaches which are able to increase
the sample efficiency of RL approaches. This is done through working on multi-
ple levels of abstraction, and through adapting prior related behaviors. Working
on multiple levels of abstraction allows the agent to both define a long-term plan
and come up with actual implementations of this plan. In a navigation setting one
level could for example propose the next room to visit, while another level might
be tasked with actually reaching this room. This approach, which is called Hierar-
chical Reinforcement Learning (HRL), is in sharp contrast to how RL is typically
approached. Typical RL approaches start from scratch for each new problem and
only work on a single level of abstraction.

Utilizing multiple levels of abstraction in RL is not a novel idea, and a lot of
research has been conducted on this topic. However, there has been a copious

12

amount of different approaches and ideas. The first contribution of this thesis con-
sists of a thorough survey and comparative study of the available approaches. This
was done in order to categorize these approaches into distinct frameworks. This
survey also resulted in a list of open research challenges, which were formulated
in order to further advance the state of the art.

To demonstrate the power of utilizing abstraction and work towards solving the
formulated open challenges, we introduce a novel method dubbed Structured Ex-
ploration through Instruction Enhancement (SETIE). In this approach, an agent
is tasked with finding an object in a procedurally generated simulated domestic
apartment setting. The agent only receives a description of the object formula-
ted in language and only requires access to egocentric RGB observations of the
environment. While regular RL approaches fail to learn any successful strategy,
the introduced method is able to advance this problem by acting and exploring on
multiple levels of abstraction.

The second approach of extending the capabilities of RL studied in this thesis re-
solves around the question of how we can efficiently select and use fully developed
prior policies when learning novel related tasks.

The first contributed method in this setting takes a sampling-based approach. The
resulting method is able to predict transfer performance solely by looking at the
(language) instructions attached to prior developed policies, and a new task.

However, sampling task adaptations requires a lot of computing resources, which
could probably only be amortized after a lot of different adaptations have been
performed. An alternative approach to sampling is introduced in the form of utili-
zing a pre-trained word embedding in order to select a prior policy, which can be
adapted to solve a novel task. The main demonstrated hypothesis utilized here is
that instructions that are close in a language space, will also have a policy close in
policy space (and thus adapt well into each other).

Deciding which priors to select is however only part of the task-adaptation pro-
blem. The second part entails the question of how to efficiently utilize these priors.
An agent cannot simply fully greedily exploit prior policies, as in this case, it will
not learn anything new. Thus, a delicate balance between exploring new strategies
and exploiting prior knowledge is required.

The proposed Disagreement Options framework is able to handle this trade-off.
In this approach, multiple priors are consulted, and decisions are made based on
whether they agree or disagree on the next action. In an object navigation setting
utilizing this scheme allows the agent to utilize a prior policy to navigate close to
the object and then explore for itself how to reach the new goal object.

To extend RL systems towards real-world applications we study the sim2real gap
in navigation applications in the final part of this thesis. In order to study this

13

problem, a baseline task is introduced which utilizes a photorealistic scanned mesh
of the IDLab - imec Antwerp office floors. This task is utilized to study various
problems encountered when deploying real-world RL navigation policies.

In order to further minimize this sim2real gap, and allow the deployment of real-
world RL systems, there were two novel approaches introduced. In the first appro-
ach, a digital twin is utilized in order to perform navigation tasks using a real-world
Automated Guided Vehicle (AGV), utilizing an RL model trained in simulation.
The second proposed method utilizes a novel developed Light Detection And Ran-
ging (LiDAR)-based warehouse simulator. This simulator allows training policies
utilizing RL, which can in turn be directly deployed on real-world hardware. Fi-
nally, it is demonstrated how this approach can be utilized to explore a previously
unseen building, or how to utilize it in order to perform directed exploration (e.g.,
navigation in function of reducing the uncertainty of a second separately trained
model).

To summarize, this dissertation further improves the applicability of RL by har-
nessing the power of abstraction and by allowing policies to adapt from prior
knowledge. In order to achieve this, different contributions were made: first, a
comprehensive survey was conducted on the usage of abstraction in RL. Second,
the SETIE framework offers a practical approach to using and learning abstracti-
ons. Third, two approaches for selecting prior knowledge were introduced together
with a novel method on how to efficiently utilize priors. Finally, we focus on how
to apply RL in real-world settings through training in simulation.

Inhoudsopgave

Acknowledgments 5

Samenvatting 7

Summary 11

1 Introduction 19
1.1 Context . 19
1.2 Problem Statement . 21
1.3 Hypothesis . 26
1.4 Research Questions . 28
1.5 Research Contributions . 29
1.6 List of Publications . 32
1.7 Outline . 33

2 Preliminaries 35
2.1 Markov Decision Processes . 35
2.2 Dynamic Programming . 38
2.3 Reinforcement Learning . 39
2.4 Deep Learning . 44
2.5 Deep Reinforcement Learning 46
2.6 Navigation . 48

3 Hierarchical Reinforcement Learning 57
3.1 Introduction . 57
3.2 Abstraction Mechanisms . 60
3.3 HRL Advantages . 61
3.4 HRL Challenges . 63
3.5 Problem-Specific Models . 66
3.6 Options . 69
3.7 Goal-Conditional . 83
3.8 Benchmarks . 92
3.9 Comparative Analysis . 95
3.10 Open Research Challenges . 104
3.11 Conclusion . 109

INHOUDSOPGAVE 16

4 SETIE: Structured Exploration Through Instruction Enhancement 111
4.1 Introduction . 111
4.2 Approach . 113
4.3 Empirical Evaluation . 117
4.4 Conclusion . 126

5 Language Grounded Task-Adaptation 127
5.1 Introduction . 127
5.2 BabyAI Environment . 128
5.3 Task-Adaptation Method: Sampling Approach 129
5.4 Empirical Evaluation . 132
5.5 Conclusion . 136

6 Task-Adaptation Through Pre-Trained Word Embeddings 137
6.1 Introduction . 137
6.2 Object Navigation Task Setting 138
6.3 Task-Adaptation Method: Prior Embedding Approach 140
6.4 Empirical Evaluation . 142
6.5 Conclusion . 146

7 Disagreement Options 147
7.1 Introduction . 147
7.2 Policy Training . 148
7.3 Method . 149
7.4 Empirical Evaluation . 155
7.5 Discussion . 161
7.6 Conclusion . 162

8 Real-World PointGoal Navigation 163
8.1 Introduction . 163
8.2 Sim2Real: The Beacon Office Simulator 164
8.3 Digital Twin . 166
8.4 Conclusion . 169

9 Directed Learned Exploration 171
9.1 Introduction . 171
9.2 Directed Exploration Method . 173
9.3 Warehouse Simulator . 176
9.4 Case Study: Warehouse Inventory Task Module 179
9.5 Empirical Evaluation in Simulation 183
9.6 Real-world Evaluation . 186
9.7 Conclusion . 188

10 Conclusions and Future Perspective 189
10.1 Review of Problem Statement 189

INHOUDSOPGAVE 17

10.2 Review of Hypothesis and Research Questions 192
10.3 Future perspective . 193
10.4 Conclusion . 195

References 225

1
Introduction

1.1 Context

Imagine you are tasked with building software that autonomously would operate
a cargo ship across the Atlantic Ocean. A lot of the day-to-day operations can
probably be automated using regular software programs. Pieces of code can be
written to operate the engines, perform navigation on the ocean, keep the freight
at the right temperature, turn on the lights at night, and probably even detect and
extinguish fires.

However, if it would be impossible to physically reach the vessel when issues
pop up, would you not bring any humans aboard? Probably not. Similar to how
commercial airplanes are mostly relying on software to carry out most of their
operations, human pilots are still kept in the loop in order to handle unexpected
situations. When looking at (old) sci-fi books and movies, we would have expected
that these ships and airplanes should not require any human operators at all by now.
So one could ask why it currently is still unfeasible to also program autonomously
operating pieces of code to handle calamities.

When looking at typical pieces of programming code utilized today, it is possible
to observe some commonalities. The first common property of commonplace pro-
gramming code is that it typically works on structured data. Think of tables filled

1.1. CONTEXT 20

with mostly numbers stored in (relational) databases and spreadsheets. A common
banking transaction will typically remove some money from one row of a database
table, and add the same amount to another row.

The second property of common programs is that the rules which are applied are
mostly not very complicated, and if broken down into smaller submodules, can be
well-defined by human programmers through the definition of various functions
filled with conditional statements. Computers nowadays have become extremely
fast and precise in applying these rules to huge amounts of structured data.

Unfortunately, a lot of tasks do not fit this paradigm very well, and require the
software to work on unstructured data such as images or natural language. This is
especially true when interfacing with humans. Additionally, it might be impossible
for a human programmer to come up with sets of rules in order to reliably solve
the task. This might be due to the sheer amount of rules required, the often subtle
thresholds, or because we might simply have no clue what the solution should look
like. The typical example often mentioned in this context is the problem of how to
write a program capable of detecting whether an image contains a cat or dog when
only having access to a numeric representation of the individual pixels within the
image.

So what alternative to writing code do we have in order to autonomously solve
complex problems which require the processing of unstructured inputs and out-
puts? One might argue that solving such problems requires a form of intelligence.
Intelligence has been defined in various ways (Legg and Hutter, 2007). Howe-
ver, properties such as creative problem-solving and the ability to adapt to various
novel environments and task variations are commonly mentioned. While intelli-
gence has often been linked with how humans or animals behave, the research area
of Artificial Intelligence (AI) (McCarthy et al., 1955) has been tasked with finding
approaches on how to obtain similar intelligent behavior within a computer sys-
tem.

One of the directions pursued in this field consists of building a Thinking Machine
(Turing, 1950). Instead of defining the rules on how to solve tasks, a thinking ma-
chine could learn these rules by itself given enough examples. Turing proposed to
base the thinking machine of a child brain, as it is potentially simpler in structure,
but capable of developing into an adult brain through embodied interaction with
the world.

In the past a lot of different algorithms have been introduced following this para-
digm on datasets containing structured data. Deep learning-based approaches (Le-
Cun et al., 2015; Schmidhuber, 2015) have also demonstrated of being capable of
implementing thinking machines through processing large amounts of high dimen-
sional unstructured data, often curated from various internet sources (e.g., Image-
Net (Deng et al., 2009), COCO (Lin et al., 2014) or VQA (Antol et al., 2015)).

1.2. PROBLEM STATEMENT 21

Due to the origin of these datasets, the type of intelligence obtained through them
is often termed Internet AI.

Figuur 1.1: Internet AI Example: Visual Question Answering
Examples taken from the VQA dataset. Through numerous labeled examples
and deep learning approaches this dataset can be utilized to train a system ca-
pable of answering questions on the contents of an image. (Figure reproduced
from Goyal et al. (2017).)

Current deep learning systems are capable of learning to solve different kinds
of tasks by discovering complex patterns within these static collections of large
amounts of labeled (unstructured) examples such as images, videos, or written
texts. Even a generalist model (Reed et al., 2022) has been proposed, capable of
handling different modalities and tasks (e.g., game playing, robotic manipulation,
question answering) using the same trained model.

1.2 Problem Statement

1.2.1 Towards Human-like Learning

There is still more to intelligence that we would like to see in artificially intelli-
gent systems than is currently possible. Humans still outperform AI systems in
various complex tasks such as navigating in a 3D space (Mishkin et al., 2019) or
finding objects in buildings (Ramrakhya et al., 2022). Additionally, in tasks in
which AI systems already have outperformed humans, we however still often see
that humans require far fewer data samples in order to reach a reasonable perfor-
mance level. Figure 1.2 displays this phenomenon in the classic Atari 2600 game
Frostbite. Diuk et al. (2009) observed similarly that humans (especially those ac-

1.2. PROBLEM STATEMENT 22

quainted with video games) utilized a significant amount of prior knowledge when
comparing humans and AI agents in a Taxi-game.

Figuur 1.2: Human vs AI Training Performance on the Frostbite Video Game
Human performance compared to learned agents on the Atari 2600 video game
Frostbite. While the learned agent is able to outperform the human, the human
is almost instantly able to abstract the game mechanics and adapt prior skills.
(Figure reproduced from Lake et al. (2017).)

Lake et al. (2017) argues that in order to reach truly human-like learning and thin-
king AI systems should (1) build causal models of the world that support expla-
nation and understanding; (2) ground learning in intuitive theories of physics and
psychology; and (3) harness compositionality and learning-to-learn to rapidly ac-
quire and generalize knowledge to new tasks and situations.

It is however still mostly unclear how to exactly implement these requirements.
As solving all these requirements will most definitely not fit inside a single doc-
toral thesis, the scope of this thesis will focus on answering the question of how
to harness compositionality and how to implement learning-to-learn mecha-
nisms. Compositionality resolves around the idea that new representations can
be constructed through combining primitive elements. Think of individual Lego
bricks which can be stacked in order to build the most diverse constructions. This
concept of compositionality is naturally related to the concept of learning-to-learn,
in which prior knowledge can be seen as the Lego bricks which facilitate the ac-
quisition of new skills.

1.2.2 Efficiently Obtaining the Right Experiences

Deep learning has amounted to impressive results in the areas of computer vision
and natural language understanding, partly through the availability of large data-
sets, containing labeled examples.

1.2. PROBLEM STATEMENT 23

Expert demonstrations

Learned policy
makes an error No data on how to

recover

Figuur 1.3: Mismatch between samples observed during training and inference
If an autonomous vehicle would be trained on expert demonstrations, it might
not be capable to recover from mistakes, as it has no data on how to perform
these recovery procedures.

While such Internet AI datasets could also be constructed for other types of tasks
such as robotic navigation (Mo et al., 2018) or manipulation tasks (Dasari et al.,
2019), this approach has not been as effective as in computer vision and language
understanding. One simple reason for this, is that there currently are no internet-
scale datasets available on robotic behaviors. However, if such datasets would be
commonly available there would still be the issue of a mismatch between the
distribution of samples observed during training, and observations during
evaluation (Figure 1.3) (Kumar et al., 2019; Fujimoto et al., 2019) and overfit-
ting (Fu et al., 2019). In order to work efficiently with current machine learning
approaches, the dataset would need to consist of independent and identically dis-
tributed random variables. However, in a sequential decision-making context, this
is typically not the case as actions and states influence future states.

Additionally, there is the related question of representation learning. How can we
represent the current state of the environment in order to come up with an
optimal answer? In a setting in which a robot is tasked with navigation, the tra-
ditional approach of representing the environment is through an occupancy map.
However, such an occupancy map might not be the best representation in all ca-
ses (Levine and Shah, 2023). For example, tall grass might show up as occupied
space, and thus inaccessible, while in reality, a robot could perfectly traverse the
grass. The opposite might be true for a muddy puddle which will not be picked
up as special inaccessible terrain by typical laser-based sensors but might bring
the robot to a full stop in practice. A recent study (Partsey et al., 2022) has even
presented evidence that explicit mapping may not be necessary for navigation at
all. Blind agents with only access to an ego-motion sensor have been shown capa-
ble of building and utilizing implicit map-like representations of their environment
solely through environmental interaction (Wijmans et al., 2023).

1.2. PROBLEM STATEMENT 24

Programming

How can we find a set of rules
to transform inputs into the
appropriate outputs?

Internet AI

How can we curate
representative datasets with
enough examples to learn the
patterns?

Embodied AI

How can we build learning
systems capable of collecting
relevant experiences
themselves?

Figuur 1.4: Evolution of AI Approaches
Different approaches of obtaining intelligent behavior together with their main
challenges. This thesis addresses the problem of how to move beyond Internet
AI towards Embodied AI.

So how do we need to represent the world in order to successfully navigate? If
we look at human intelligence (Ormrod, 1999) again, it quickly becomes clear that
processing large amounts of labeled examples is not the only way humans learn
about the world. So what other methods of learning can we use as inspiration in
order to be more successful in the envisioned tasks? Research in developmental
psychology (Smith and Gasser, 2005) has argued that intelligence emerges in the
interaction of an agent with the environment and as a result of its sensorimotor
activity. This Embodiment Hypothesis has been the basis of a subfield of AI called
Embodied AI (EAI) (Figure 1.4).

This subfield is closely intertwined with Reinforcement Learning (RL). RL (Sutton
and Barto, 2018) is simultaneously a problem and a class of solution methods that
attempt at solving sequential decision-making problems. A key property of RL
consists of trial-and-error learning through interaction with the environment. The
idea of trial-and-error learning is closely related to the embodiment hypothesis.
RL can be seen as a practical framework for obtaining intelligent behavior through
interaction with the environment. For example, if one would like an agent to be
capable of riding a bicycle, we could utilize a deep learning-based approach, and
provide the agent with images or videos of people riding bicycles. If we instead
apply RL on the same task, we would allow the agent to control a bicycle, and
figure out for itself how to optimally control it through trial and error.

RL has seen tremendous successes in the past few years. Some examples include;
outperforming humans in (video) games (Mnih et al., 2015; Silver et al., 2016; Vi-
nyals et al., 2019; OpenAI, 2019a), controlling nuclear fusion reactions (Degrave
et al., 2022), steering stratospheric balloons (Bellemare et al., 2020), molecular
design (Simm et al., 2020), chip placement (Mirhoseini et al., 2020) and dexterous
robotic manipulation (OpenAI, 2019b).

However, RL is still plagued with a lot of open problems as well. On a fundamental
level coming up with a good exploration scheme has been deemed challenging.
When do we utilize the knowledge we already have obtained, and when should we
try a new action?

1.2. PROBLEM STATEMENT 25

A second fundamental issue consists of finding an answer on how to design a re-
ward function? If we would like the agent to learn how to behave in a certain way,
there is the need to specify what exactly is good behavior. In the RL framework
this is done by specifying a reward function. Ideally, such a function is capable of
providing stable and dense feedback on how desirable each step taken by the agent
is, given the state of the environment. Designing such a function is called reward
shaping (Ng et al., 1999), and is very prone to error. For example, a drone might
have learned to crash itself if the specified penalty for crashing is not in balance
with the penalty for utilizing energy while navigating to a destination. Ideally, one
would not have to engineer a complicated reward function. For most tasks, it is
simpler to specify the reward function in a sparse and binary fashion. This would
only provide a positive value for completing the entire task. While specifying the
reward function only sparsely alleviates the complexity of reward shaping, a new
issue of how we can learn from sparse reward signals arises.

The areas in which RL has been applied successfully are often areas in which
samples are easy to obtain because the task at hand is either virtual by nature
(e.g., a video game), or the environment can be simulated with a high level of
realism. However, in order to advance to more real-world RL applications, sample
complexity is one of the main problems hindering progress (Dulac-Arnold et al.,
2019; Zhu et al., 2020; Ibarz et al., 2021). Utilizing RL based solutions still often
requires too many interactions with the environment in order to learn the desired
behavior, rendering RL a highly impractical approach.

In summary, in this thesis we will propose novel methods which will work to-
wards allowing AI systems to learn more human-like by allowing them to harness
compositionality and implement learning-to-learn mechanisms. In order to solve
complex problems we allow the AI system to collect its own experiences through
embodied interaction with the environment. To make this possible we focus on the
problems of exploration, reward function specification, and sample complexity.

1.3. HYPOTHESIS 26

1.3 Hypothesis

In the previous section, multiple core problems were identified for which finding
solutions will be quintessential in order to further progress the current state of RL.
To do this we formulate the following hypothesis:

In order to extend the real-world potential of RL approaches, they need to
become more sample efficient. This can be done by introducing composi-
tionality through learning with abstractions, and by allowing the agent to
efficiently adapt abstracted prior knowledge obtained in the past.

Training an RL agent could take days or even weeks (Silver et al., 2018; Vinyals
et al., 2019; Wijmans et al., 2022b) depending on the complexity of the task. We
believe that by focusing on working towards reducing the number of required in-
teractions with the environment, and thus the overall training time, the potential
applications will increase.

We believe that this will be possible by introducing both abstractions and allowing
the agent to adapt to related (e.g., same environment, same sensors), but novel,
problems (e.g., different task). The idea of working with abstractions, mapping
a representation of a problem onto a new representation (Giunchiglia and Walsh,
1992), can be dated back to the very origins of AI (McCarthy et al., 1955). Howe-
ver, this approach is still in sharp contrast to how RL problems are typically ap-
proached. RL problems are typically approached by directly approaching tasks on
the level of individual primitive actions and states. This however results in huge
search spaces and makes credit assignment, figuring out which past individual ac-
tions actually made a difference on the final result challenging. This problem is
further exacerbated if the reward signal is only sparsely defined. An example of
this approach would be if you have access to a handheld controller in order to
move a robot in small steps (e.g., move 15 cm forward, or turn 30 degrees to the
left). You would repeatedly need to carry out a complicated set of action sequen-
ces. The only information you receive is whether you completed the task or not.
Even finding a single example solution in this setting will require an unreasonable
amount of trial and error. In order to figure out the pattern and learn a repeatable
solution, you will probably require a lot of these examples.

The introduction of multiple layers of (learned) abstractions has been a key break-
through in deep learning (LeCun et al., 2015). Utilizing many layers of abstracti-
ons on different levels has made many tasks possible within areas such as compu-
ter vision (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012), and
Natural Language Processing (NLP) (Sutskever et al., 2014). Instead of directly
looking at values of pixels, it becomes easier to detect if a dog is present in a pic-

1.3. HYPOTHESIS 27

Na
vig

at
e

to
 th

e

loa
din

g
do

ck
Forw

ard

...

M
ov

e
lef

t

M
ove right

Forw
ard

M
ov

e
lef

t M
ove right

Forw
ard

M
ov

e
lef

t M
ove right

Pick up the boxNa
vig

at
e

to
 th

e

loa
din

g
do

ck

Pick up the box

(a) searching for a solution by
utilizing only primitive actions

(b) searching for a solution by
utilizing abstractions

Figuur 1.5: Searching for a solution through primitive actions vs abstracted actions
Searching for solutions (green node) in search trees with only primitive actions
(arrows) quickly becomes intractable. Having access to the right temporally
extended actions reduces the search space significantly.

ture if you have access to a (latent) high-level representation which might contain
information about if the image contains dog ears, a tail, four paws, and fur.

We believe that similar utilization of learned abstraction within RL might signifi-
cantly reduce the search space of potential solutions. In the example of the hand-
held controlled robot, the controller would now not contain individual primitive
movement actions but would contain temporally extended actions which would
group multiple primitive actions in order to make a signification impact on the en-
vironment. Buttons on the controller now might trigger behaviors such as pick up
the box or navigate to the loading dock. In this setting, there is a much smaller set
of possible solutions to explore (Figure 1.5).

The ability to reason on multiple levels of abstraction will be an important part
of making RL more sample efficient. However, working with immutable abstrac-
tions is only a partial solution. It would be possible to learn new abstractions as
new tasks require them. We however believe that it would be more sample effi-
cient to start the development of novel abstractions by adapting existing related
abstractions.

1.4. RESEARCH QUESTIONS 28

1.4 Research Questions

In order to validate the formulated hypothesis, we define the following five re-
search questions:

1. What are the various approaches in which abstractions are currently
utilized in RL? What problems still need to be solved in order to allow
efficient usage of abstractions? The usage of abstractions is not a novel ap-
proach within RL. It is, however, a very broad field with various techniques
introduced both before the advent of deep learning, and after deep learning
became broadly adopted. In order to get a good understanding of what is
currently addressed, and what are still open challenges, an extensive survey
is required to further expand its applicability.

2. Can a learned hierarchical approach extend the capabilities of naviga-
tion agents? Non-hierarchical flat approaches often fail to make any pro-
gress, when the task requires long-horizon planning and memory. This is
often the case in navigation tasks. In this type of task, an agent often needs
to explore an unseen complex area in order to solve a given task. However,
utilizing abstractions in this setting is also far from trivial. Questions such
as how can different abstraction levels be rewarded, trained, explore, and
communicate with each other, need to be carefully addressed. Additionally,
if the task is specified semantically (e.g., find a specific object), the issue
of grounding these instructions in the environment needs to be addressed.
To solve this issue the agent will need to be capable of mapping instruction
subjects to real-world concepts.

3. How can an agent tasked with a new goal select prior knowledge in
order to perform this new task more efficiently? As plotted in Figure 1.2,
a human player is able to achieve a certain level of performance on a new
task (in this case playing the Frostbite game) with only a relatively small
amount of practice. While the artificial agent in this setting is able to achieve
an above-human level of performance, it requires far more hours of training
in order to do so. These results can be explained due to the fact that the
artificial RL agent started from a random initialization, while the human
agent has a lifetime of acquired skills, which potentially can be adapted to
the novel task. In order to emulate the usage of prior skills within an artificial
agent, the question of, given a set of prior skills, which ones will be the most
beneficial to this novel task should be addressed.

4. How can the selected prior knowledge be utilized efficiently when sol-
ving novel tasks? Selecting which prior skills to use is only the first step
in an approach toward solving efficient task adaptation. A second question
that should be addressed is the question of how this prior knowledge might

1.5. RESEARCH CONTRIBUTIONS 29

actually be utilized. A naive approach could consist of initializing a no-
vel policy with the learned parameters from the selected prior knowledge.
However, it was observed that within machine learning in general (Wang
et al., 2019b) and RL (Taylor and Stone, 2009; Lazaric and Restelli, 2011;
Rajendran et al., 2017) negative transfer performance can occur when pur-
suing this approach. More elaborate prior knowledge sampling approaches
will be required in order to avoid negative transfer effects.

5. How can an RL approach be utilized in the real world when taking into
account current sample complexity limitations? The results from addres-
sing the previous problems and questions could have the potential of greatly
improving the sample complexity of current RL approaches. If at some point
RL approaches would require only a few interactions with the environment,
they can potentially be directly trained on real-world observations. Until this
might become possible, it will also be important to study alternative approa-
ches in which sample complexity is not the performance bottleneck holding
back real-world application of RL-based approaches.

1.5 Research Contributions

In the search for answers to the previously defined research questions, the follo-
wing contributions were made:

1. A survey on the integration of abstractions within the RL framework
(Chapter 3)

• While prior work was mainly focussed on pre-deep learning-based ap-
proaches, this survey makes a bridge between classic approaches and
novel deep RL based approaches.

• The introduction of a taxonomy of the frameworks currently in use.

• A comparative analysis of the different reviewed frameworks.

• A comparative analysis of the main implementations within each re-
viewed framework.

• In order to spark further research, within this research area, a list of
open challenges was proposed together with hints of potential soluti-
ons.

2. A hierarchical framework (SETIE) capable of utilizing abstractions in
challenging object navigation settings (Chapter 4)

• The framework is capable of operating on two different levels of ab-
straction. The top-level learned planner is capable of reasoning and

1.5. RESEARCH CONTRIBUTIONS 30

exploring on a floor plan level, while the lower-level learned controller
is capable of navigating by utilizing primitive actions. The agent only
requires an egocentric RGB camera input.

• Instructions can be provided as simple language instructions. In order
to facilitate language grounding a separately trained goal assessment
module is proposed.

• A novel loosely coupled interface (instruction enhancement) is intro-
duced in order to communicate between both levels using language.

• A partly procedurally generated environment was introduced. This en-
vironment was specifically developed in order to fundamentally study
object navigation in domestic settings.

3. An approach to select prior knowledge in order to perform task adapta-
tion (Chapter 5 and 6)

• In order to select prior knowledge, an approach based on supervised
learning and sampling of task adaptations was proposed, based on the
instructions attached to various tasks.

• A study was conducted on how well policies linked to different tasks
were able to adapt to novel (related) tasks.

• A related follow-up approach was proposed in which the supervised
learning scheme was replaced by utilizing a pre-trained word embed-
ding.

4. An approach to efficiently sample from prior knowledge (Chapter 7)

• In order to answer the question of how to utilize the selected prior
knowledge efficiently, a novel framework was developed capable of
assessing when to utilize prior knowledge, and when to explore.

• These exploit/explore decisions are made by a novel strategy based on
the disagreement between the action distributions of the prior policies.

5. The Beacon: A photo-realistic office simulator (Section 8.2)

• For studying whether utilizing a photorealistic simulator could allow a
policy to be trained and then be utilized in the real world, a simulated
virtual version of the IDLab - imec office floors was constructed.

6. A digital twin based approach in order to utilize RL approaches in real-
world environments (Section 8.3)

• In order to perform real-world point goal navigation through RL trai-
ning an approach based on a digital twin was proposed. This digital
twin offers a digital synchronized representation of relevant aspects of
the real world, which can both be utilized during training and infe-
rence.

1.5. RESEARCH CONTRIBUTIONS 31

Harness
compositionality

Learning-to-learn

Exploration

Credit assignment

Sample complexity

Real-world
applications

H
um

an
-li

ke
le

ar
ni

ng
Em

bo
di

ed
 A

I

HRL Survey SETIE Language Grounded
Task-Adaptation

Disagreement
Options Digital Twin Directed Exploration

Figuur 1.6: Research Contributions Overview
Overview of how the different research contributions are linked together within
this thesis.

• The proposed method was evaluated using a real-world tractor in a
parking lot.

7. A framework capable of supporting a separately trained external task
with directed navigation and exploration (Chapter 9)

• A novel way to make learned RL exploration directed through integra-
tion with a separately trained task-specific module.

• A novel representation based on Light Detection And Ranging (Li-
DAR) point clouds that is able to robustly bridge the sim2real gap bet-
ween training in simulation and real-world usage.

• A training approach capable of balancing directed and more generic
exploration.

• A warehouse simulator with procedurally generated warehouse lay-
outs, that can be utilized to further build upon the presented work.

• The proposed method was evaluated using a real-world Automated
Guided Vehicle (AGV) in a warehouse environment.

In order to solve the question of how RL can be made more sample efficient an in-
terplay between abstractions and adaptation will be required. Figure 1.6 illustrates
how these various components are linked together.

1.6. LIST OF PUBLICATIONS 32

1.6 List of Publications

The work presented in this thesis has also been disseminated in the following peer-
reviewed publications:

Conference publications

• Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. ”Language
grounded task-adaptation in reinforcement learning.”28th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning, 2-4 October, 2020, Bruges, Belgium. 2020.

• Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. ”Pre-trained
word embeddings for goal-conditional transfer learning in reinforcement
learning.” Language in Reinforcement Learning Workshop at ICML 2020,
the 37th International Conference on Machine Learning, 18 July, 2020, Vi-
enna Austria.

• Matthias Hutsebaut-Buysse, Kevin Mets, Tom De Schepper, and Steven
Latré. ”Disagreement Options: Task Adaptation Through Temporally Ex-
tended Actions.” Joint European Conference on Machine Learning and Know-
ledge Discovery in Databases. Springer, Cham, 2021.

• Abdellatif Bey Temsamani, Anil Kumar Chavali, Ward Vervoort, Tinne Tuy-
telaars, Gorjan Radevski, Hugo Van Hamme, Kevin Mets, Matthias Hutsebaut-
Buysse, Tom De Schepper, Steven Latré. ”A multimodal AI approach for
intuitively instructable autonomous systems: a case study of an autonomous
off-highway vehicle.” The Eighteenth International Conference on Autono-
mic and Autonomous Systems, ICAS 2022, May 22-26, 2022, Venice, Italy.

• Matthias Hutsebaut-Buysse, Kevin Mets, Tom De Schepper, and Steven
Latré. ”Structured Exploration Through Instruction Enhancement for Ob-
ject Navigation.” The 34th Benelux Conference on Artificial Intelligence,
BNAIC/Benelearn 2022, November 7-9, 2022, Mechelen, Belgium.

• Ferran Gebelli Guinjoan, Erwin Rademakers, Abdellatif Bey Temsamani,
Gorjan Radevski, Tinne Tuytelaars, Matthias Hutsebaut-Buysse, Kevin
Mets, Tom De Schepper, Steven Latré, Erik Mannens, and Hugo Van Hamme.
”A Multi-modal AI Approach For AGVs: A Case Study On Warehouse Au-
tomated Inventory.” The Nineteenth International Conference on Autono-
mic and Autonomous Systems, ICAS 2023, March 13-17, 2023, Barcelona,
Spain.

• Matthias Hutsebaut-Buysse, Ferran Gebelli Guinjoan, Erwin Rademakers,
Steven Latré, Abdellatif Bey Temsamani, Kevin Mets, Erik Mannens and

1.7. OUTLINE 33

Tom De Schepper Directed Real-World Learned Exploration The 2023 IEEE/RSJ
International Conference on Intelligent Robots, IROS 2023, October 1-5,
2023, Detroit, USA.

Journal publications

• Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. ”Hierarchical
Reinforcement Learning: A Survey and Open Research Challenges.” Ma-
chine Learning and Knowledge Extraction 4.1 (2022): 172-221.

• Abdellatif Bey Temsamani, Ferran Gebellı́ Guinjoan, Erwin Rademakers,
Anil Kumar Chavali, Ward Vervoort, Tinne Tuytelaars, Gorjan Radevski,
Hugo Van Hamme, Kevin Mets, Matthias Hutsebaut-Buysse, Tom De
Schepper, Steven Latré and Erik Mannens ”A Multi-modal AI Approach For
Intuitively Instructable Autonomous Systems” International Journal On Ad-
vances in Systems and Measurements 16.1 (2023): 1-13.

1.7 Outline

The next part of this thesis will introduce the necessary preliminaries. Chapter 2
first introduces the formal definition of sequential decision-making problems. This
first part also includes Section 2.6, which includes a brief overview of the definition
and state-of-the-art of common tasks in robotic navigation.

The second part of this thesis introduces the concept of abstraction in deep RL.
Chapter 3 contains a survey of the different approaches that have been introduced
in RL. This survey concludes by addressing open challenges. A novel framework
for solving object navigation tasks through abstraction is introduced in Chapter 4.

The third part of this thesis focuses on the topic of task adaptation. Chapter 5 in-
troduces an approach to performing task adaptation through sampling task adapta-
tions. An alternative approach that replaces this sampling approach with one based
on pre-trained word embeddings is introduced in Chapter 6. Finally, this method
is extended in Chapter 7 with a method to balance exploiting prior knowledge and
exploring a novel task.

The final part of this thesis revolves around applying RL in real-world applicati-
ons. In Chapter 8 real-world PointGoal navigation is studied. In order to study
differences between the real world and simulation, a novel office simulator is in-
troduced in Section 8.2. Section 8.3 introduces a digital twin-based approach to
carry out PointGoal navigation tasks in a real-world setting. In the final chapter
of this thesis (Chapter 9) a method is introduced which is capable of exploring a
warehouse environment in a directed manner.

1.7. OUTLINE 34

2
Preliminaries

The navigation problems studied in this thesis can be formally described as sequen-
tial decision-making problems. In a sequential decision-making problem, earlier
actions typically influence later available options.

2.1 Markov Decision Processes

A Markov Decision Process (MDP) (Howard, 1960; Puterman, 1994) is a formal
model, used to describe discrete-time stochastic control processes. The MDP mo-
del is useful for representing decision-making problems in which an agent (the
decision maker) can influence the process by executing actions.

An MDP is defined by a tuple M = (S,A,P,R, γ), in this tuple:

• S defines the set of possible states the agent can be in, also called the state
space,

• A contains the set of actions the agent can execute, also called the action
space,

• P : S × A × S → [0, 1] is the probabilistic state transition function. This
function determines what the outcome state of an action in a state will be.

2.1. MARKOV DECISION PROCESSES 36

• R : S × A × S → R is the reward function, an agent can receive a certain
reward when visiting certain states after executing an action.

• γ ∈ [0, 1] is a discounting factor

The agent exercises control over the MDP by executing actions. A solution to an
MDP can be expressed with a policy π. The policy models which action the agent
takes in each state: π : S×A → [0, 1]. The interaction trace s0, a0, r0, s1, a1, r1, . . .
between the agent and the environment is called a trajectory τ .

The objective in an optimal control problem is to find an optimal policy π∗ that
maximizes the return, which is defined as the expected accumulated discounted
reward along a trajectory:

π∗ = argmax
π

Eτ∼π

[
T∑

t=0

γtR (st, at, st+1)

]
(2.1)

In order to assess the quality of a specific policy, the concept of a value function
can be utilized. A value function Vπ(st) represents the total expected discounted
reward starting in state st and following policy π:

Vπ(st) = Eπ

[
T∑

k=0

γtR(st+k, at+k, st+k+1)

]
(2.2)

There might be multiple policies that are optimal, but they all share a common
value function V ∗.

In an episodic MDP, the state of the MDP is reset after a finite number of T -steps.
In a non-episodic MDP T =∞ and the objective is often changed to learn a policy
that maximizes reward on average, each timestep (Mahadevan, 1996).

In an MDP, the probability of future state transitions only depends on the current
state and action and does not take the history of prior states into account. This
assumption is called the Markov property. In practice, this entails that the current
state should contain all the information an agent needs to make optimal action
decisions. And thus the agent does not require the usage of a memory of past
states.

The received reward is typically discounted using a discount factor γ. The reward
received in the distant future is often considered less valuable to the agent than
the reward we can receive immediately. If γ < 1 this also entails that cumulative
rewards of trajectories are finite. This is especially important when the MDP is
non-episodic and can go on forever.

2.1. MARKOV DECISION PROCESSES 37

s1 s2 s3a1 a2

s1 s4s2 s3

a1 (temporally extended action)

a2

Discrete timestep

Variable length timestep

(a) MDP

(b) SMDP

Figuur 2.1: MDP vs SMDP framework
The MDP framework differs from an SMDP, in that an SMDP allows the length
between timesteps to be variable. This is an essential property to support tem-
porally extended actions.

2.1.1 Partially Observable Markov Decision Processes

However, assuming that the complete underlying state of the environment is avai-
lable to the agent is in a lot of cases an unreasonable assumption. An agent often
only has a partial, and noisy observation of the underlying state. For example, if a
camera is utilized as input to the agent, the agent only has information about what
is happening in front of the agent but does not have any information about what is
behind the camera. Due to camera noise and artifacts, the agent might also only
have a distorted observation of the state.

The setting in which the agent only has a partial view of the state is described
using a Partially Observable Markov Decision Process (POMDP) (Kaelbling et al.,
1998). The MDP model is extended in order to describe a POMDP by introducing
an additional observation-space Ω and a function O(st) which can be utilized to
sample observations ot ∼ O(st). In a POMDP a policy consists of a mapping
from the history of observations (the belief state) to an action.

Calculating exact solutions for a POMDP problem is only trackable for very sim-
ple problems, due to the large amounts of possible belief states. Approximation
methods have however been proposed (Hauskrecht, 2000).

2.1.2 Semi-Markov Decision Processes

In the MDP framework an action is taken on each discrete time step. However,
when working in a continuous time space, or when dealing with temporally exten-
ded sequences of actions (e.g., a sub-behavior that takes the agent to a different
part of the state space), different actions might have different execution lengths, as
demonstrated in Figure 2.1.

2.2. DYNAMIC PROGRAMMING 38

In order to support the variable duration of a single action, the MDP framework has
been extended to the Semi-Markov Decision Process (SMDP) framework (Bradtke
and Duff, 1995; Mahadevan et al., 1997; Parr and Russell, 1998b). This was done
by adding a random variable T to the transition function P . This random variable
denotes the time between actions. In the case of an SMDP the reward-function
R(st, at, st+1) denotes the cumulative reward collected during T steps after exe-
cuting at in st.

2.2 Dynamic Programming

When provided with the transition function P and reward function R, how could
one obtain an optimal policy π∗ in a finite MDP (containing a finite number of
states and actions)? Both policy iteration and value iteration are two dynamic
programming methods that can be utilized to find an optimal policy in this setting.

These methods make use of the Bellman equation (Bellman, 1952) which states
that the value of a state is equal to the immediately received reward combined with
the discounted value of the expected next state. This equation allows the problem
to be broken down into smaller sub-problems.

2.2.1 Policy Iteration

Policy Iteration is a dynamic programming method that can be utilized to calculate
an optimal policy. This method consists of two phases. In the first phase, the
current policy π is evaluated by obtaining the value function by iterating over all
states s and result states s′:

Vπ(s)←
∑
s′,r

P (s′, r | s, π(s)) [r + γV (s′)] (2.3)

This is done iteratively until the change between the old and new value function
|V new

π (s)−V old
π (s)| becomes smaller than a small positive number for each state.

In the second phase the policy is improved in each state by utilizing the obtained
value function:

π(s)← argmaxa
∑
s′,r

P (s′, r | s, a) [r + γV (s′)] (2.4)

2.3. REINFORCEMENT LEARNING 39

This is also done repeatedly until the policy obtained becomes stable (which can
be defined as outputting the same actions as the prior policy for each state). Unless
the policy is already optimal, each step in this process is guaranteed to improve the
policy.

2.2.2 Value Iteration

Value Iteration is an alternative approach in which the focus is on iterating the
value function in order to obtain an approximation of the optimal value function
V ∗:

V new
π (s)← max

a

∑
s′,r

P (s′, r | s, a)
[
r + γV old

π (s′)
]

(2.5)

The value function is iteratively updated until individual state values do not change
anymore, and |V old

π (s)− V new
π | becomes smaller than a small number.

Once the optimal value function is obtained an optimal policy π∗ can be derived
from it:

π∗(s) = argmax
a

∑
s′,r

p (s′, r | s, a) [r + γV ∗ (s′)] (2.6)

While value iteration is a considerably simpler algorithm to implement compared
to policy iteration, it is also generally more expensive in terms of computational
costs (Pashenkova et al., 1996).

2.3 Reinforcement Learning

Assuming full knowledge of the MDP, dynamic programming approaches can be
utilized to obtain an optimal policy π∗. However, full knowledge of the underly-
ing MDP is often an unrealistic assumption. In most realistic sequential decision-
making processes, the transition function P and the reward function R are un-
known to the agent. In such cases, we are not able to calculate the next state and
reward from the current state and action. It might only be possible to obtain the
next state by actually executing an action in the environment.

Additionally, if the number of states and actions is too large (or even infinite) it
might not be possible to utilize dynamic programming, which typically requires
multiple iterations over all states.

2.3. REINFORCEMENT LEARNING 40

Agent

Environment

State
st

Action
at

Reward
rt

Figuur 2.2: The reinforcement Learning Framework

Reinforcement Learning (RL) (Sutton and Barto, 2018) is the problem set, con-
cerned with handling unknown factors in the MDP, by utilizing a trial-and-error
approach. In the model-free RL setting, the agent does not have access to the en-
vironment dynamics and does not try to explicitly learn such a model. In the case
of model-based RL the agent is either provided with a model of the environment
dynamics or learns an explicit predictive dynamics model.

An RL agent starts in an initial state s0 ∈ S. At each time step t the agent interacts
with the environment by taking an action at ∈ A. On each timestep, the agent can
either act greedy, and exploit what it already has learned by following its current
policy π(st). Alternatively, the agent can also choose to explore the outcome of
a different random action in order to possibly improve its policy. This distinctive
interaction between agent and environment is pictured in Figure 2.2.

RL could for example be utilized for selecting your next restaurant reservation.
You can either act greedy, and visit your current favorite place, or explore a new
restaurant. When exploring the new place, you might end up not liking it, but it
can of course also become your new favorite restaurant.

Balancing this exploration-exploitation dilemma is one of the characteristic pro-
blems of RL. Different exploration schemes exist. For example, by adding noise
to the action-space ϵ-greedy takes random actions ϵ% of the time. The ϵ parame-
ter is often decayed over a number of steps. Other exploration schemes add noise
directly to the policy parameters (Plappert et al., 2018; Fortunato et al., 2018), add
an intrinsic curiosity bonus to the reward signal (Burda et al., 2018b,a; Bellemare
et al., 2016; Houthooft et al., 2016), or use a distributional perspective (Dabney
et al., 2018a; Bellemare et al., 2017).

After taking action at, the agent gets feedback in the form of a reward-signal rt+1,
and a new state st+1. The second key problem in RL, the credit assignment pro-
blem is concerned with figuring out which of the previously taken action (or set of
actions) led to a delayed reward signal.

2.3. REINFORCEMENT LEARNING 41

The reward an agent receives directly from the environment is called the extrinsic
reward. Extrinsic, because it is external to the agent. These reward signals can
be dense or sparse. An open field in which the agent gets the distance to the goal
state after each action is an example of an environment with a dense reward signal.
Alternatively, if the agent only receives feedback upon reaching the goal state,
the reward is sparsely observed. An environment with a dense reward structure
makes the credit assignment problem more tractable. However, in most realistic
environments, non-zero rewards are often only sparsely observed.

Similar to the dynamic programming approaches of finding optimal policies di-
rectly (policy iteration) or indirectly through a value function (value iteration), RL
approaches can also be split into value-based and policy gradient methods.

2.3.1 Value-based Methods

Value-based methods are an indirect RL approach. They utilize a value function
Vπ(s) in order to derive a policy. A value function is capable of estimating the cu-
mulative discounted future reward (the value) starting from state st and following
policy π:

Vπ(st) = E

[
T∑

k=0

γtR(st+k, at+k, st+k+1)

]
(2.7)

In order to decide what action to take given the current state st, a state-action-value
function (or Q-function) can be used. This Q-function represents the estimated cu-
mulative future discounted reward of taking an action at in state st while following
policy π:

Qπ(st, at) = E

[∞∑
k=0

γkrt+k+1

]
(2.8)

The goal of the agent is to come as close as possible to the optimal Q-function.
The optimal Q-function (Q∗), is capable of outputting the maximum achievable
cumulative reward, starting in state st, and taking action at.

Q∗(st, at) = max
π

Qπ(st, at) (2.9)

This function can be learned through algorithms such as the off-policy Q-Learning
(Watkins and Dayan, 1992) algorithm or the on-policy SARSA algorithm (Rum-
mery and Niranjan, 1994). An on-policy algorithm updates the policy only with
samples gathered by utilizing this same policy. Off-policy learning is typically
more sample-efficient, as it also is capable of utilizing experiences gathered when

2.3. REINFORCEMENT LEARNING 42

following a different policy (e.g., a random exploration policy) and re-using prior
experiences gathered by utilizing previous versions of the policy.

Q-learning is an off-policy approach, because it does not use the current policy to
estimate the total value of the next state st+1, but instead uses the highest expected
obtainable value.

Qπ (st, at)← Qπ (st, at) + α(rt + γmax
a

Qπ (st+1, a)−Qπ (st, at)) (2.10)

While SARSA is considered on-policy because it uses the current policy to sample
the next action at+1:

Qπ (st, at)← Qπ (st, at) + α(rt + γQπ (st+1, at+1)−Qπ (st, at)) (2.11)

In both algorithms, α is the learning rate used to gradually update the old function.

In order to actually learn the Q-function from interaction (st, at, rt, st+1) with
the environment, both Q-learning and SARSA make use of the Bellman equation
(Bellman, 1952), which allows to recursively update Q-values:

Qπ(st, at) = E [rt + γQπ (st+1, at+1)] (2.12)

Once the agent has iteratively learned a good estimate of Q∗ from interaction with
the environment, a greedy policy can be derived:

π∗(st) = argmax
a

Q∗(st, a) (2.13)

2.3.2 Policy Gradient Methods

An alternative family of policy gradient methods directly searches for a policy πθ

parameterized by θ. The parameters of the policy are updated through the gradient
of an objective function J(θ) and a learning rate α:

θt+1 = θt + α∇J(θt) (2.14)

The objective function J(θ) that is being optimized in this setting can be defined
as the total expected future value:

J(θ) = E

[∞∑
t=0

γkrt

]
= Vπθ

(2.15)

2.3. REINFORCEMENT LEARNING 43

Unfortunately calculating∇J(θ) is non-trivial because it depends on the stationary
distribution of states:

J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπθ
(s, a) (2.16)

In order to obtain this distribution dπ one typically requires access to the (un-
known) environment dynamics (dπP = dπ). The policy gradient theorem (Sutton
et al., 2000) however allows the gradient to be represented without requiring dπ(s):

∇θJ (πθ) = E
τ∼πθ

[
T∑

t=0

∇θ log πθ (at | st) Φt

]
(2.17)

In practice, policy gradient algorithms try out different actions (policy evaluation)
and increase the likelihood that the policy will sample successful actions which
led to high future returns again, when in similar states (policy improvement).

In order to perform this policy improvement step, the agent needs an estimate
of the total future value of an action in a state (the RL prediction problem). To
obtain such value estimations, Monte Carlo simulation can be used to estimate
the cumulative future discounted reward by utilizing entire past trajectories. This
approach is utilized by the REINFORCE algorithm (Williams, 1992).

Φt =

∞∑
t=0

γtrt (2.18)

Instead of utilizing entire trajectories to estimate the return, Actor-Critic (Konda
and Tsitsiklis, 2000) methods utilize a learned action-value function (the critic) in
order to estimate the return:

Φt = Qπθ
(st, at) (2.19)

Because returns obtained by sampling trajectories are often subject to high vari-
ance, it is also common to subtract a baseline b(st) from the estimated return, in
order to obtain a lower update variance, while remaining unbiased:

Φt =

∞∑
t=0

γtrt − b(st) (2.20)

A simple baseline could exist of subtracting an average reward obtained over a
number of episodes. An advantage function is also often used, using the value of

2.4. DEEP LEARNING 44

the state V (st) as the baseline:

Φt = A(st, at) = Q(st, at)− V (st) (2.21)

In order to facilitate exploration within policy gradient methods, an entropy regu-
larizer can be used which would make the policy as random as possible, while still
maximizing the expected return.

2.4 Deep Learning

When the state and action space are limited and discrete, elements of an RL ar-
chitecture (such as the policy, and/or value function), can be represented using
a tabular representation. However, this method quickly becomes intractable for
more complex problems, which require the processing of high-dimensional input
data such as images. Various function approximation methods have been used in
the past in order to represent the different components of an RL agent. Example
function approximation techniques include: linear models that learn through uti-
lizing high-level expert-provided features of the state space (Diuk et al., 2008),
and tree-based algorithms (Damien et al., 2005). However, more recently deep
learning has become the most common approach to handling high-dimensional
inputs in RL.

Deep neural networks have demonstrated to be capable of learning useful hier-
archies of task-specific representations from raw high-dimensional input signals
(LeCun et al., 2015; Schmidhuber, 2015). These representations can be used to
perform complex machine-learning tasks in an end-to-end fashion. They are con-
sidered end-to-end because they are able to provide answers by using raw high-
dimensional data directly, without the requirement of any preprocessing. Example
tasks include: image classification (Dosovitskiy et al., 2021; Szegedy et al., 2016;
He et al., 2016; Szegedy et al., 2015; Krizhevsky et al., 2012), image captioning
(Wang et al., 2022; Karpathy and Fei-Fei, 2015), visual question answering (Driess
et al., 2023; Antol et al., 2015), image generation (Rombach et al., 2022; Donahue
and Simonyan, 2019; Radford et al., 2016; Gatys et al., 2015), sound generation
(van den Oord et al., 2016), object detection (Redmon et al., 2016; Girshick, 2015),
speech recognition (Schneider et al., 2019; Bahdanau et al., 2016; Sainath et al.,
2013; Hinton et al., 2012), natural language translation (van den Oord et al., 2016;
Sutskever et al., 2014), and natural language understanding (Ouyang et al., 2022;
Devlin et al., 2019; Radford et al., 2019). These techniques have to some extent
already been adopted in real-life practice such as in agriculture (Kamilaris and
Prenafeta-Boldú, 2018) and medicine (Litjens et al., 2017).

2.4. DEEP LEARNING 45

2.4.1 Computer Vision

The progress made in the area of deep learning has been made mainly possible by
a few building blocks. For example, in computer vision applications, convoluti-
onal neural networks (LeCun et al., 1998) have been demonstrated to be capable
of capturing task-specific spatial dependencies. In such a network each layer uses
learned filters in order to extract high-level features from the input in order to pro-
vide a lower dimensional representation as the original input to the downstream
task. More recently, transformer-based approaches (Dosovitskiy et al., 2021) have
become an alternative popular approach.

2.4.2 Sequential Data

Building blocks such as Long Short-term Memory (LSTM) (Hochreiter and Sch-
midhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) recurrent
networks allow deep learning to work with data which is sequential in nature. To
accomplish this, they use gates that are capable of learning which parts of the se-
quential input data, summarized in a hidden state, should be passed on, and what
to forget. These techniques are especially interesting when working with natu-
ral language, as the meaning of a word in a sentence is often dependent on other
neighboring words. However, in RL too, memory can be useful (Hausknecht and
Stone, 2015; Mnih et al., 2016), or even required, when the task is formulated as
an POMDP.

However, when sequences become longer, LSTM and GRU-based approaches
struggle due to their reliance on a single fixed-length vector to represent a long
sequence of previous inputs. Attention (Bahdanau et al., 2015) is a mechanism in-
troduced to solve this problem. When using Attention, instead of relying on a sin-
gle hidden state, representing past members of a sequence, attention mechanisms
learn how to weigh different hidden states associated with different past sequence
members. More recently transformer architectures (Vaswani et al., 2017) solely
rely on this attention mechanism and eliminate the usage of recurrent networks.
The usage of a transformer architecture also typically allows for faster inference,
as inputs can be processed in parallel.

2.4.3 Generative Approaches

Also, semi-supervised generative deep learning approaches, capable of generating
new previously unseen data instances have recently achieved tremendous succes-
ses, and have been added to the standard set of deep learning building blocks.
These techniques include Variational Autoencoders (VAE) (Kingma and Welling,

2.5. DEEP REINFORCEMENT LEARNING 46

2014), which utilize a regularized bottleneck autoencoder approach. A regular
autoencoder (Rumelhart et al., 1985) encodes a high-dimensional input in a lower-
dimensional latent space. The VAE regularization tries to make sure that points
close in the latent space are also similar once decoded back into their high-dimensional
form. This regularization allows the generation of new data instances by genera-
ting points in the latent space.

Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) generate new
data using a generator network, which receives feedback that the generated instan-
ces look realistic or not by a second discriminator network. This approach has been
demonstrated to be capable of generating out-of-sample high-dimensional images
(Donahue and Simonyan, 2019) indistinguishable from real photographs.

2.5 Deep Reinforcement Learning

One of the key challenges of RL applied on problems with large state spaces is to
be able to generalize feedback received from the environment to unvisited states,
and untested actions. Using deep neural networks we can learn representations
from raw high-dimensional inputs, which in turn can be used to approximate va-
lue functions, or directly express a policy. Unfortunately, combining non-linear
function approximation, and iterative value function bootstrapping has been found
prone to unstable learning (van Hasselt et al., 2018; Tsitsiklis and Van Roy, 1996),
especially in an off-policy setting in which the policy used to obtain prior experien-
ces might significantly differ from the current version of the policy. This problem
has been identified as the deadly triad of RL (Sutton and Barto, 2018).

Combining RL with recent advancements in the area of deep learning has had a big
impact on RL, giving birth to a new subfield called deep reinforcement learning
(François-Lavet et al., 2018; Arulkumaran et al., 2017; Li, 2017; Mnih et al., 2015).
Deep RL applies RL techniques, using high-dimensional state spaces, such as ima-
ges (Justesen et al., 2019) or natural language (Luketina et al., 2019). This has
been made possible due to the capability of deep learning algorithms to introduce
different learnable layers of abstractions on the raw input data.

The seminal work of Mnih et al. (2015) demonstrated above human-level perfor-
mance on a set of classic Atari 2600 video games (Bellemare et al., 2013). The
introduced off-policy Deep Q-Network (DQN) architecture was able to learn dif-
ferent policies for a range of different video games, using only the screen pixels
as input data. In order to generalize collected experience to unseen states, and un-
tested actions, the Q(st, at) function is represented using a deep neural network.
The issue of instability caused by function approximation in RL (Tsitsiklis and
Van Roy, 1996) was tackled by the usage of a separate target network, used to
predict next-state future values. This target network is only periodically updated.

2.5. DEEP REINFORCEMENT LEARNING 47

Additionally, an experience replay buffer (Zhang and Sutton, 2017; Lin, 1992) was
used, in order to reduce temporal correlation in the observed state-reward sequen-
ces.

The DQN algorithm has been heavily studied, and various improvements have
been proposed such as Double Deep Q-Networks (DDQN) (van Hasselt et al.,
2016), prioritized replay (Schaul et al., 2016), dueling networks (Wang et al.,
2016), multi-step learning (Sutton, 1988) and distributional RL (Dabney et al.,
2018a,b; Bellemare et al., 2017). The Rainbow framework (Hessel et al., 2018)
combines these improvements. While the original DQN-architecture could not
achieve above-human performance on all tested games, the Agent57 approach (Ba-
dia et al., 2020), outperforms humans in all proposed test games, by automatically
parameterizing a family of policies.

Various algorithms that directly optimize a parameterized policy such as Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016), Trust Region Po-
licy Optimization (TRPO) (Schulman et al., 2015) and Proximal Policy Optimi-
zation (PPO) (Schulman et al., 2017) have also been able to work directly on
high-dimensional input spaces using deep neural networks. In order to stabilize
learning, policy improvements are often restricted in order to avoid making too
big updates, which could collapse performance.

Recent successes of deep RL include beating top professional human players in
the complex board game of Go (Silver et al., 2016), and achieving human-level
performance in cooperative 3D multiplayer video games such as DOTA 2 (Ope-
nAI, 2019a, 2018), StarCraft II (Vinyals et al., 2019) and a modified version of
Quake III Arena (Jaderberg et al., 2019).

2.5.1 Towards Real-world Deep Reinforcement Learning

There has also been significant progress towards applying deep RL in real-world
applications such as robotics (OpenAI, 2019b; Mahmood et al., 2018; Kalashnikov
et al., 2018; Levine et al., 2016a,b; Kober et al., 2013), dialog management systems
(Cuayáhuitl et al., 2010), education (Mandel et al., 2014), autonomous vehicles
(Bellemare et al., 2020; Pan et al., 2017; Ng et al., 2003) smart grids (François-
Lavet et al., 2016), fleet management (Lin et al., 2018), resource management
(Mirhoseini et al., 2018; Mao et al., 2016), nuclear fusion (Degrave et al., 2022)
and recommender systems (Zhang et al., 2019). However, building real-world
RL applications remains challenging, because RL algorithms often struggle with
being sample efficient (Lee et al., 2019; Yu, 2018; Wang et al., 2017b; Strehl et al.,
2006), that is, being able to learn a satisfying behavior from a limited amount of in-
teraction with the environment. Furthermore, real-world RL systems require hard
constraints in order to not damage equipment and allow safe exploration (Amodei

2.6. NAVIGATION 48

et al., 2016; Garcı́a et al., 2015). Many practical issues (Zhu et al., 2020) need
to be addressed as well, such as, how to reset the environment (Lu et al., 2020),
and how to provide the agent with a reward signal. Real-world RL systems should
also commonly be able to handle real-time systems, allowing states and actions to
evolve simultaneously (Wang et al., 2020; Ramstedt and Pal, 2019; Doya, 2000) as
the environment might have changed while the agent was selecting its next action.

2.6 Navigation

Navigation is at the core of Embodied AI (EAI), and the main focus of this thesis.
Navigation tasks can be defined in a variety of different manners depending on how
the goal is specified (e.g., a set of coordinates, or an object to navigate towards).

What is however a common assumption in these tasks, is that the agent only has
access to egocentric observations of the environment. Typically, in the form of an
RGB camera, depth camera, or a combination of both. The agent does not have
access to a map of the environment. This is much like how humans are able to
operate with only limited information.

The currently most studied tasks and approaches related to the work presented in
this thesis are outlined in the following subsections.

2.6.1 Classical Navigation in Mobile Robotics

Autonomous mobile robots which are able to make decisions on what action to
take based on their own perception of the world are starting to emerge in our eve-
ryday lives, and are increasingly more common in the industry.

Most mobile platforms encountered today (Rubio et al., 2019) however do not
make use of RL, and typically do not operate in an end-to-end fashion. Different
modules for locomotion, perception, cognition, and navigation (Siegwart et al.,
2011) are often developed, and the output from one module is utilized by others.
This approach is also often described as Sense-Plan-Act.

The locomotion modules allow the robot to actually move in the physical space.
These modules most often depend on control theory and the understanding of va-
rious kinematics and dynamics models.

In order to obtain an observation of the state of the environment, a perception mo-
dule is tasked with processing various signals obtained from various sensors. A
laser scanner is for example able to determine the distance to various obstacles

2.6. NAVIGATION 49

placed near the robot. Sensors are often only accurate up to a certain point. Addi-
tionally, most sensors are not ubiquitously usable and may have trouble handling
reflective surfaces or bad weather. Computer vision approaches, both traditional
and deep learning based, are also heavily used when working with cameras.

The cognition module is the module that is responsible for the actual execution of
the overall task. It does this by taking into account the input from the perception
module and decides which action aligns best with the goal(s) of the agent.

An action of the cognition module could for example consist of navigating to a
certain location. Such an action is typically not directly executed by the low-level
control systems but handled by a separate navigation model which takes the state
of the environment into account in order to devise a low-level navigation plan.

Traditionally navigation has been considered a geometric mapping and planning
problem. Typical approaches try to build an accurate explicit representation of the
world (a map). This map can then in turn be utilized to carefully calculate a so-
lution through planning. If the environment is static, the agent can be provided
upfront with such a map. The domain of Simultaneous Localization and Mapping
(SLAM) (Smith and Cheeseman, 1986; Bresson et al., 2017) however is capable of
dynamically constructing a map of the environment by moving around in the en-
vironment. In order to plan within a map the agent needs to be aware of its current
location. Localization is often done through the usage of static beacons placed in
the environment. SLAM approaches try to match past and current observations in
order to relatively localize the agent within the map.

This modular approach has been widely adopted in controlled industrial static en-
vironments. In this setting, expensive sensors, guiding tracks, and beacon con-
figurations are often worth the large investments. However, when applied using
cheaper sensors and when being confronted with less static and predictable envi-
ronments the robustness of these traditional approaches can become an issue (Lin
et al., 2021; Bujanca et al., 2021; Mishkin et al., 2019). Due to the nature of a
modular approach, making an error in one module will also influence the outputs
of the other modules.

Additionally, individual modules are often rule-based. These rules are mainly de-
signed by human experts but might contain mistakes, or they might not be able to
handle unexpected situations.

2.6.2 Embodied AI Tasks
EAI offers an alternative to the modular Sense-Plan-Act paradigm. Instead of re-
lying on chains of hand-crafted modules, EAI aims at solving tasks mainly in an
end-to-end fashion through trial-and-error learning. The currently most actively
researched tasks and their main approaches are presented in the following subsec-
tions.

2.6. NAVIGATION 50

2.6.2.1 PointGoal Navigation

In PointGoal navigation (Anderson et al., 2018) the goal of the agent is specified
as a set of (relative) coordinates. The agent is successful if it is able to utilize
a designated done action close to the specified set of goal coordinates. This is a
trivial task if the environment is completely empty, but difficult if the environment
is filled with obstacles.

When the agent has access to a perfect GPS+Compass sensor, this task has been
considered solved in noiseless simulated photorealistic environments through uti-
lizing a near-linear scalable distributed approach (Wijmans et al., 2020). This
DD-PPO approach allowed the agent to interact 2.5B times with the environment,
which would take a human about 80 years. However, interestingly 90% of its per-
formance is achieved in the first 100M interactions. This indicates that the Point-
Nav task is relatively easy to get a rough policy trained on, however, it is very hard
to further fine-tune.

As this is a large amount of compute, efforts (Wijmans et al., 2022a) have been
made to reduce the required number of computing resources by fine-tuning the
DD-PPO approach. A different approach in order to improve the sample efficiency
in PointNav was done through the introduction of auxiliary tasks (Ye et al., 2020;
Desai and Lee, 2021). Examples of such auxiliary tasks include the prediction of
the action taken given two observations or the prediction of the distance between
two observations taken from a prior trajectory.

The visual encoder part of most of the introduced approaches currently relies on
ResNet-based architectures. Alternative visual backbones have also been studied.
A CLIP-based (Khandelwal et al., 2022) solution has been found to be more suc-
cessful at encoding primitives than ImageNet-pre-trained visual representations.

Unfortunately, in a more realistic setting (pointnav-v2) in which the agent has no
access to a GPS+Compass sensor, and observations and movements are noisy the
performance quickly drops. Zhao et al. (2021) proposed to replace the GPS+Compass
sensor with a learned visual odometry model. By doing so a Success Rate (SR) of
71.7% was achieved on the Habitat 2021 challenge (Kadian et al., 2020). Partsey
et al. (2022) verified that localization, and not sensor/actuation noise is the actual
bottleneck in the more realistic (pointnav-v2) setting. They continued to build
upon the approach of using a learned visual odometry module. Through some
extensions (action embeddings, data augmentations, larger datasets, and model si-
zes) of this module, they were able to improve performance to 96% SR and 77%
Shortest-Path Length (SPL).

Because high computational demands remain a limiting factor, further efforts have
been made (Wijmans et al., 2022b) to further increase the scaling of RL algorithms
on this task by reducing the required synchronization points in on-policy learning.

2.6. NAVIGATION 51

Dataset Approach Success Rate SPL
Gibson Random (Savva et al., 2019) 0.03 0.02
Gibson Blind (Savva et al., 2019) 0.62 0.42
Gibson DD-PPO (Wijmans et al., 2020) 0.996 0.941
MP3D Random (Savva et al., 2019) 0 0
MP3D Blind (Savva et al., 2019) 0.35 0.25
MP3D DD-PPO (Ramakrishnan et al., 2021; Wijmans et al., 2020) 0.94 0.83
HM3D DD-PPO (Ramakrishnan et al., 2021; Wijmans et al., 2020) 0.99 0.92

Tabel 2.1: SOTA performance on the PointNav-v1 task (using a depth sensor). In the v1
task, the agent has access to a compass+GPS sensor

Dataset Approach Success Rate SPL
Gibson Visual Odom (Zhao et al., 2021) 0.82 0.63
HM3D Visual Odom (Zhao et al., 2021) 0.94 0.74

Tabel 2.2: SOTA performance on the PointNav-v2 task. In the v2 task, the agent has no
access to a compass+GPS sensor

PointGoal navigation can be considered the most well-understood task in EAI (Ta-
ble 2.1 and 2.2). The research conducted on this task has also led to an interesting
insight that navigation does not require a map. This is in contrast to how navigation
is typically solved in more traditional robotic setups through the usage of various
SLAM techniques in which a map is constructed based on egocentric observations
of the agent. This map in turn is then utilized to plan trajectories.

2.6.2.2 ImageGoal Navigation

In the ImageGoal task (Zhu et al., 2017) the agent receives an image of a goal
location in the environment. The agent is deemed successful if it manages to find
the location in which the goal image was taken. This task is especially interesting
because the modality of the goal and the observation are the same (e.g., an RGB
image).

Zhu et al. (2017) proposed a deep siamese model which utilizes a shared visual
processing for the goal image and the current observation. This fused state and
goal embedding is then provided to scene-specific layers which should encode
specific characteristics of the current environment such as the floor plan and object
arrangements.

A different approach that only utilizes passive pre-recorded videos has also been
applied in this setting (Hahn et al., 2021). In this approach, a topological map is
maintained and a learned visual and semantic module is utilized to sample sub-
goals, which are defined by a distance and angle. These subgoals can then be
reached through a simple visual planner.

2.6. NAVIGATION 52

2.6.2.3 ObjectGoal Navigation

The ObjectGoal task (Anderson et al., 2018) differs from the PointGoal task in the
sense that the agent receives an object category instead of a set of coordinates as
its goal input. The agent is considered successful if it manages to navigate close
to an instance of the specified object category and utilizes a special done-action.
In order to solve this task, the agent will need to learn about what the goal object
actually looks like (visual grounding), and make active exploration decisions about
where the agent should actually be looking for such an object.

Scaling end-to-end approaches, which rely on massive amounts of interactions,
has only been proven limited successful in this task reaching a SR of about 13%
(Wijmans et al., 2020, 2022b). Furthermore, it was found that purely end-to-end
learning approaches can greatly overfit datasets (Maksymets et al., 2021). Datasets
typically contain only a limited amount of static goal objects, the introduction of
additional goals in random positions demonstrated to somewhat reduce this over-
fitting issue.

Early attempts at cracking the objectnav task resolved around introducing episodic
semantic maps (Chaplot et al., 2020a) based on a pre-trained object segmentation
and classification module. Learning to construct a semantic map of a novel envi-
ronment allows the agent to exploit semantic priors of the relative arrangement of
previously discovered objects. A different module is then often utilized to select
a long-term goal in the form of a point to reach within the build map. The task of
then actually navigating to the proposed point can be either performed by a classic
planning approach or a policy trained using RL (Chaplot et al., 2020b). Chaplot
et al. (2021) further improved this approach by utilizing the uncertainty of the pre-
trained object detector as a reward signal for a policy utilized for collecting novel
training data for the perception module.

A different end-to-end approach consists of utilizing auxiliary tasks including map
coverage prediction, inverse dynamics models and how much of the goal object is
visible in an observation (Ye et al., 2021), together with an exploration policy,
which is trained to maximize floor coverage. The initial exploration policy is uti-
lized to bootstrap training. However, as this tends to lead to over-exploration, in a
later stage of training this policy is not used anymore.

In computer vision and natural language processing tasks, the availability of large
datasets has proven to be instrumental in training complex models. However, da-
tasets utilized in ObjectNav research typically depend on scans of real-world buil-
dings. Creating and annotating such scans is a costly, and time-consulting enter-
prise, posing practical limitations on the scale of many datasets. Recently approa-
ches (Deitke et al., 2022) which make use of procedurally generated environments
for pre-training have improved the performance on many baseline tasks including
ObjectNav.

2.6. NAVIGATION 53

Dataset Approach Success Rate SPL
MP3D (21 objects) Random 0 0
MP3D Human (Ramrakhya et al., 2022) 0.94 0.43
MP3D (21 objects) DD-PPO (E2E baseline) 0.06 0.02
MP3D (21 objects) THDA (Maksymets et al., 2021) 0.20 0.09
HM3D (6 objects) ByteBOT (Ruiz and Todt, 2021) 0.68 0.37
Gibson PONI (Ramakrishnan et al., 2022) 0.74 0.41

Tabel 2.3: SOTA performance on the ObjectNav task

A competitive approach based on Imitation Learning (IL) has also recently been
proposed. The Habitat-Web dataset (Ramrakhya et al., 2022) contains 70k human
demonstrations. Utilizing these examples allowed an agent to pick up sophisticated
human-like exploration behaviors such as peeking around corners or scanning a
room to get a sense of its contents. Ramakrishnan et al. (2022) proposed to utilize
a supervised learning-based approach centered around the question of where to
look for a specific object type in order to predict long-term goal locations in the
semantic map introduced in Chaplot et al. (2020a).

Table 2.3 gives an overview of some of the mentioned methods and their perfor-
mance on ObjectNav tasks.

2.6.2.4 AreaGoal Navigation

AreaGoal navigation (Anderson et al., 2018; Wu et al., 2018) challenges the agent
to visit a specific region in the environment. In domestic settings, these regions are
often rooms.

Narasimhan et al. (2020) proposed to tackle this task by utilizing a learning-based
system that is capable of outputting a semantic belief map of the current layout.
Through utilizing learned stylistic regularities in houses, this approach is able to
predict the locations of rooms the agent has not yet seen. Through exploring the
environment, the agent is capable of updating its beliefs about the layout of the
environment.

2.6.2.5 Question Answering

An overarching task in EAI is the task of Embodied Question Answering (EQA)
(Das et al., 2018a). In this setting, the agent receives a question formulated in
natural language and is tasked with finding an answer. In order to find an answer
the agent needs to interact with the environment.

PACMAN (Das et al., 2018a) is a hierarchical approach in which the high-level

2.6. NAVIGATION 54

planner selects an action (e.g., move forward), and the low-level controller decides
how many times the action should be executed (e.g., until the end of a corridor
is reached). If the planner selects a stop action, a separate question-answering
module is utilized to answer the question. This approach was trained using IL and
fine-tuned using RL. Adding RL fine-tuning improved the amount of successfully
answered questions. However, consistent with other research (Ye et al., 2021) it
was found that by utilizing RL the agent also often overshoots the target due to
over-exploration.

Das et al. (2018b) further developed the utilization of abstractions in the EQA task.
These abstractions include a separately trained objectnav module and an area-goal
module.

2.6.2.6 Rearrangement

The release of the second version of the Habitat simulator (Szot et al., 2021) also
included the definition of a set of novel benchmarking tasks for EAI. In these
tasks, the agent is required to rearrange the environment. These tasks are proposed
to work towards a mobile robot equipped with a manipulator which could act as an
intelligent home assistant. This assistant could help out with tasks such as tidying
the house, preparing groceries, or setting the dinner table.

In the initial baseline experiments, it was found that current flat RL approaches
are not suitable for solving this kind of task. One of the reasons this was found to
be challenging can be attributed to the complexity of designing reward functions
capable of providing the agent feedback about a set of different sub-tasks such as
navigating, picking up objects, or placing objects in different locations.

A solution based on abstraction (different sub-skills) was proposed (Szot et al.,
2021) as these can be trained using relatively simpler individual reward functi-
ons. However, in this hierarchical approach navigation remains challenging, as the
agent is not provided with the position it should navigate to, but with the position
of a target object. The agent thus also needs to figure out which position to navi-
gate to in order to successfully pick or place a target object. Additionally, hand-off
problems were observed in which the execution of a skill would hinder the execu-
tion of another (e.g., not close enough positioned to a target object, accidentally
closing a drawer, or knocking over an object).

Further research found that scaling training (Wijmans et al., 2022b) solved these
issues. When not limiting navigation actions from manipulator skills (pick and
place) the pick and place skills also learned to navigate early during training, thus
allowing them to correct their position when placed too far from the target object
due to a prior skill execution.

2.6. NAVIGATION 55

Gu et al. (2022) proposed a similar approach in which all skills are allowed to
navigate. It was also demonstrated that specifying goals as regions instead of
points for the navigation skill proved more effective. This approach was the winner
of the first Habitat Rearrangement challenge (Szot et al., 2022) by achieving a SR
of 64% on the easy track, and 43% SR on the regular track. In the easy track all
containers (e.g., drawers and a fridge) are starting open, in the regular track the
object to be rearranged could be in a closed container.

The Habitat-Web dataset (Ramrakhya et al., 2022) contains 12k human demon-
strations of pick and placement tasks. Through the usage of IL a performance of
17.5% SR (9.8% SPL) on new object-receptacle initializations was achieved. Trai-
ning a policy using the same approach but with calculated shortest path examples
the agent only achieves a SR of 1.9% and SPL of 1.8%. These results indicate that
also in this task mimicking human behavior can also assist an agent in generaliza-
tion to unseen settings.

2.6.3 Real-world Learned Navigation

In order to utilize learning-based approaches in real-world settings multiple appro-
aches are currently being actively researched (Levine and Shah, 2023):

A first option consists of deploying a traditional navigation stack, but relying on
machine learning (e.g., computer vision) in order to handle the semantic aspects.
An example of such an approach could consist in utilizing a frontier-based explo-
ration method (Yamauchi, 1997) in order to navigate, and stop the agent once a
vision system detects the object it was searching for.

Learning-based approaches have also been introduced in the mapping problem
(Chaplot et al., 2020a). The learned map can then in turn be utilized in order to
apply geometric planning methods.

However, either assisting in the semantic aspect or the mapping aspect of a clas-
sic navigation approach has its limitations. For example, muddy terrains might
be mapped as navigable on a map, although in practice a robotic platform might
not be able to navigate through the mud. An embodied approach would consist
of directly interacting with the world and learning implicit environmental repre-
sentations obtained directly from sensor inputs. When learning is successful these
representations can go beyond simple occupancy maps but will provide real infor-
mation about affordances and traversability.

Unfortunately, directly applying trial-and-error learning in a real-world environ-
ment is often not possible, due to the large amount of required interactions. When
a simulated version of the environment is available a sim2real approach can be an
alternative option. In this setting, the embodied RL agent can directly be trained

2.6. NAVIGATION 56

in an end-to-end fashion in simulation. If the difference between simulated and
real-world sensors is not too large, the resulting policy can be directly utilized in
the real world. If however, the sim2real gap is too large techniques relying on do-
main randomization (James et al., 2017; Tobin et al., 2017) and domain adaptation
(Patel et al., 2015; James et al., 2019; Rao et al., 2020) can be utilized. A major
issue when relying on a simulator is that one must also take various edge cases into
account. For example, if the desired agent should be capable of navigating in areas
with a lot of highly reflective surfaces such as glass, the simulator should also have
an accurate representation of these surfaces. When in a purely geometric planning
approach one would build a module capable of handling reflective surfaces, the
engineering effort is now shifted towards designing the simulator.

Directly utilizing end-to-end trial-and-error-based learning in the real world would
overcome this issue. However, the required amount of interactions makes this still
an impractical approach.

Alternatively, real-world (human) demonstrations could be obtained and utilized
in order to train the policy directly on real-world sensors and dynamics. This
can be done through utilizing imitation learning (Pomerleau, 1988; Bansal et al.,
2018; Codevilla et al., 2019), directly learning a mapping from states to actions,
or through offline RL (Levine et al., 2020), which offers various forms of explicit
regularization in order to prevent out-of-distribution actions.

3
Hierarchical Reinforcement Learning

The contributions presented in this chapter are based on the publication titled:
”Hierarchical Reinforcement Learning: A Survey and Open Research Challen-
ges”.

3.1 Introduction

As discussed in the previous chapters, RL has been proven to be a powerful me-
thod for solving sequential decision-making problems. RL agents are capable of
learning how to solve a problem from interactions with its environment. In order
to solve the problem, the agent does not need to know the dynamics of the en-
vironment in advance. A successful RL system will efficiently utilize experience
gathered during trial-and-error learning, in order to maximize the reward signal.

Hierarchical Reinforcement Learning (HRL) extends the capabilities of RL, by in-
troducing a divide-and-conquer approach. In this approach, the complex, difficult-
to-solve problem, is abstracted into multiple smaller problems. These abstracted
problems are generally easier to solve and their solutions can be reused to solve
different problems. This approach has previously been successfully utilized (Geor-
gievski and Aiello, 2015; Dean and Lin, 1995; Sacerdoti, 1973) to speed up many
offline planning algorithms where the dynamics of the environment are known in

3.1. INTRODUCTION 58

advance.

This compositionality and the usage of abstractions have been identified (Mc-
Carthy et al., 1955; Lake et al., 2017; Sutton and Barto, 2018) as one of the key
building blocks of AI. Humans intuitively harness compositionality in order to
tackle complex problems (Botvinick et al., 2009; Eckstein and Collins, 2019). For
example, planning a vacation can be a complex endeavor if considered as a whole.
However, when decomposed into multiple smaller tasks (e.g., selecting a hotel,
booking a flight, arranging transportation to the airport) the task becomes more
manageable.

Compositionality can be seen as a way to facilitate lifelong learning (Silver et al.,
2013), learning new concepts, by combining previously learned primitives (Bar-
reto et al., 2019). In addition, the power of compositionality to come up with,
seemingly unlimited new concepts, based on meaningful primitives cannot be un-
derestimated.

HRL aims to achieve compositionality by learning reusable sub-behaviors together
with a composition strategy. While compositionality in HRL can be achieved in
low-dimensional state spaces, deep neural networks (Section 2.4) have been de-
monstrated to be capable of automatically discovering composable representati-
ons, which offer significant opportunities for HRL, to facilitate compositionality
directly using high-dimensional inputs.

Efficiently using such abstractions has proven to make significant contributions to-
wards solving various important open RL problems such as reward-function speci-
fication (Kulkarni et al., 2016a), exploration (Jinnai et al., 2020), sample efficiency
(Nachum et al., 2018b), transfer learning (Bacon et al., 2017), lifelong learning
(Tessler et al., 2017) and interpretability (Beyret et al., 2019).

As previously discussed, an essential part of RL algorithms is that they use feed-
back in order to learn what is good and bad behavior. When feedback in the form
of a reward signal is abundantly available, an agent can learn quickly. Unfortu-
nately, specifying such dense reward signals is a complex challenge (Ng et al.,
1999), and often results in unwanted side effects. An often-seen example of such
a side effect in EAI tasks is over-exploration (Das et al., 2018a; Ye et al., 2021).
Moreover, most control problems naturally come with a sparse reward signal (e.g.,
object grasped, destination reached). A sparse reward formulation makes learning
extremely challenging (Ocana et al., 2023) as there is mostly only information on
what does not work. HRL often utilizes various forms of intrinsic motivation (Sch-
midhuber, 2010) in order to provide additional denser reward signals for individual
abstractions.

A second open challenge in RL we previously discussed, has been how to explore
the environment efficiently (Burda et al., 2018b,a; Pathak et al., 2017; Bellemare
et al., 2016). Recent empirical research (Nachum et al., 2019) demonstrated that

3.1. INTRODUCTION 59

even simple forms of temporally correlating actions improves exploration effici-
ency. In this research, temporally extended exploration is seen as one of the most
important contributions of HRL.

RL systems are also notoriously known for their sample inefficiency. While ef-
ficient use of abstractions seems a promising solution to this long-standing chal-
lenge, increased sample efficiency through HRL is most commonly only realized
when amortizing computation over multiple iterations of very similar problems.
Off-policy learning (Haarnoja et al., 2018b; Wang et al., 2017b; Gu et al., 2017)
is a popular approach towards making RL more sample efficient. HRL algorithms
unfortunately typically still require a more stable on-policy approach.

A third limitation of RL we target in this thesis consists of the focus of RL al-
gorithms on solving only a single problem from scratch each time. However,
abstractions that can be re-used and adapted when solving different tasks, pose
a possible answer to the question of transfer learning in RL (Taylor and Stone,
2011). Drawing inspiration from research done in deep learning on how to trans-
fer visual representations from one task to another (Yosinski et al., 2014; Bengio,
2012), HRL methods have shown to be capable of learning transferable abstrac-
tions within the same problem setting (Hausman et al., 2018). However, how to
transfer abstractions between very different problems remains an open problem.

While the potential of HRL is vast, automatically discovering abstractions is non-
trivial and remains an open research question. A lot of progress has been made
recently, utilizing various forms of temporal and state abstractions. However, so-
lutions currently either heavily depend on expert knowledge, do not scale well, or
are sample inefficient.

The goal of this chapter is to provide a comprehensive understanding of how va-
rious HRL algorithms contribute towards solving the above-described open chal-
lenges in RL. While initial steps in HRL have been previously surveyed (Barto
and Mahadevan, 2003), the capability of deep learning to work with high dimen-
sional data has inspired a whole new set of directions and possibilities in HRL.
For example, the challenge of end-to-end discovering, and sequencing temporally
extended actions, directly from high-dimensional inputs, is a novel direction that
has become possible because of recent breakthroughs in deep learning. While also
briefly covering early research, the focus of this chapter is on these new directions
inspired by deep learning.

The major part of this chapter consists of a survey of three frameworks and their
most common implementations (problem-specific models in Section 3.5, options
in Section 3.6, and the goal-conditional framework in Section 3.7). An overview
of benchmark environments and tasks used in HRL is provided in Section 3.8. An
evaluation of the discussed frameworks and algorithms is displayed in Section 3.9.
In order to spark future research, a list of potential research directions is provided

3.2. ABSTRACTION MECHANISMS 60

in Section 3.10, which inspired the novel approaches outlined in this thesis.

3.2 Abstraction Mechanisms

One of the core mechanisms of HRL is the usage of temporal abstractions. Solving
complex problems often involves reasoning on a hierarchy of multiple time scales.
For example, when driving to work you typically do not start planning about whe-
ther you should steer left or right. You start on a much higher level, by planning
for example what roads to take, and whether you should stop to refuel.

A temporally extended action (sub-behavior), consists of a sequence of primitive
actions and possibly other temporally extended actions. These temporal abstracti-
ons can be utilized by a learning agent in order to make decisions on a higher level
of abstraction. The sequence of actions that make up a temporally extended action
can be fixed, or governed by a policy.

A second form of abstraction that is common in HRL are abstractions imposed on
the state space (Li et al., 2006). It is not feasible to learn the best action in every
possible state in a high-dimensional input space. Instead, we use state abstractions
(e.g., enemy visible on screen?), to reason about what action to take. Approp-
riate state abstractions have been demonstrated to significantly increase learning
performance in RL problems (Konidaris and Barto, 2009a; Diuk et al., 2008).

For example, similar states in terms of transition dynamics and reward function,
measured using the notion of bisimulation (Larsen and Skou, 1991) for MDPs, can
be grouped to build state abstractions (Ferns et al., 2004). These can be used to
transfer an optimal policy from one MDP to a larger one (Castro and Precup, 2010)
and to discover temporal abstractions (Castro and Precup, 2012).

Current deep RL algorithms are capable of learning their own state abstractions
from raw high-dimensional state spaces. These algorithms are for example capa-
ble of detecting doors, and learn that it is beneficial to walk through these doors.
Unfortunately, these learned state representations are often not sufficiently expres-
sive to reason about complex environments and develop long-horizon plans. Such
a plan might for example be to search for a key and return to the location of the
key when confronted with a locked door.

Given abstractions over the state space, and linked temporally extended actions,
the agent can reason on a higher level about the decisions it can make. Instead of
learning a single behavior for controlling the entire raw state space, a hierarchy
of different systems is able to control various abstracted parts of the state space
through temporally extended actions. An example of such a hierarchy is presented
in Figure 3.1.

3.3. HRL ADVANTAGES 61

Agent has key?

Get key

Open the door

No

Yes

State abstraction

Temporal abstractions

Figuur 3.1: An example of the usage of state- and temporal- abstractions in the Monte-
zuma’s Revenge Atari 2600 video game
The agent uses a state abstraction (agent has a key), in order to decide upon
which temporally extended action to activate.

Anders and Andrew (2000) identified the benefit of utilizing different state ab-
stractions for different sub-behaviors. The intuition behind this idea is that when
performing different sub-behaviors, other aspects of the state space become rele-
vant. Ignoring irrelevant features to the sub-behavior allows for the more efficient
exploration, and learning of the different temporal abstractions.

3.3 HRL Advantages

Using both temporally extended actions and state abstractions, HRL is capable of
providing significant improvements in various open RL challenges, such as credit
assignment, exploration, and continual learning.

3.3.1 Credit Assignment

The issue of credit assignment is a long-standing challenge in RL. Credit assign-
ment is tasked with figuring out which action had which impact on the overall
perceived reward. Temporal and state abstractions can greatly increase the sam-
ple efficiency of RL by making credit assignment less challenging. Given a set of
temporal abstractions, the agent is freed from the complexity of having to reason
about which action to take on every individual step. The agent instead activates
temporal abstractions which can run for multiple steps. When performing credit
assignment by learning a value function, this has a profound effect on the effi-
ciency of the value-backups (Sutton et al., 1999; McGovern et al., 1997). While
utilizing primitive actions only, a value backup only goes back one step, thus when
reaching a goal state, only the expected future value of the previously visited state

3.3. HRL ADVANTAGES 62

X1 X12

3

4 2

Value backup Value backup

(a) Using primitive actions (b) With temporal abstractions

Figuur 3.2: Value Backups
(a) using primitive actions, and (b) using temporal abstractions. With temporal
abstractions, an optimal policy can be found using fewer value backups.

gets updated. Using temporal abstractions, this reward gets propagated further
back, allowing faster learning of a value function. This idea is demonstrated in
Figure 3.2.

3.3.2 Structured Exploration

Improved sample efficiency through more structured credit assignment is capable
of solving RL problems that previous flat RL algorithms could not solve. A recent
ablation study (Nachum et al., 2019), empirically demonstrated that the most sig-
nificant contribution of current HRL approaches lies in its capability to explore in
a semantically meaningful and temporally extended fashion (Figure 3.3). Explora-
tion, using only primitive actions often results in the over-exploration of states near
the starting state of the agent. Using temporal abstractions for exploration allows
the agent to explore the environment in a more structural way, which allows the
agent to also explore more difficult-to-reach states. However, the opposite has also
been observed. Given a suboptimal set of sub-behaviors, pathological exploration
can easily worsen learning performance (Jong et al., 2008).

However, the opposite has also been observed. Given a suboptimal set of sub-
behaviors, pathological exploration can easily worsen learning performance (Jong
et al., 2008).

3.3.3 Continual Learning and Adaptation

Problems in RL are most of the time solved from scratch, starting without any prior
knowledge. While finding a learning algorithm, capable of solving problems re-

3.4. HRL CHALLENGES 63

Primitive actions Temporal abstractions

Figuur 3.3: Exploration through primitive actions vs through temporal abstractions
Exploration using only primitive actions, mostly explores states near the star-
ting position of the agent (state visitation counts are represented using a red
gradient). Temporal abstractions can help the agent to explore more distant sta-
tes.

quiring long-term planning, without any priors, is certainly an interesting research
direction. In the short term, the sample efficiency of RL can greatly be improved
by building upon previously learned knowledge (Lake et al., 2017).

A policy learned without any abstractions is very difficult to transfer to a new
problem (e.g., use a set of steering directions to navigate to a different location).
In contrast, once learned, sub-behaviors can be transferred to solve different pro-
blems in similar environments (Tessler et al., 2017; Bacon et al., 2017; Heess et al.,
2016; Schaul et al., 2015). Thus, the cost associated with learning sub-behaviors
should not only be weighted on a single task but should possibly be considered
over multiple tasks.

Tessler et al. (2017) for example presented a lifelong learning RL framework ca-
pable of learning different skills in the complex open-world game of Minecraft
(Johnson et al., 2016). In a second stage, multiple skills are distilled into a single
network in order to efficiently retain knowledge.

The ability of sub-behavior re-use is an important stepping stone towards agents
which are capable of continual learning (Silver et al., 2013). More complex pro-
blems can be solved if an agent is efficiently able to improve upon what it already
has learned from previous problems (Bengio et al., 2009).

3.4 HRL Challenges

Learning algorithms that utilize hierarchical compositions of temporally extended
actions will have to define how these sub-behaviors should be discovered, how
they can be developed, how efficient state abstractions can be learned, and how

3.4. HRL CHALLENGES 64

they can be composed. In this section, we briefly describe these challenges.

3.4.1 Automatic Discovery of Abstractions

Early HRL approaches (Singh, 1992; Mahadevan and Connell, 1992; Maes and
Brooks, 1990) utilized manually defined sub-behaviors. While they demonstra-
ted performance increases by using sub-behaviors, the requirement of manually
defining sub-behaviors heavily limited their scalability.

One of the most important questions of HRL consists of: how can we automatically
discover meaningful sub-behaviors? A lot of empirical research (e.g., Eysenbach
et al. (2019); Nachum et al. (2018b); Vezhnevets et al. (2017); Bacon et al. (2017))
has been conducted on algorithms that are capable of automatically learning mea-
ningful sub-behaviors, from interaction with the environment, without any know-
ledge provided by an external expert, in a sample efficient way. Theoretically, it
has been proven (Jinnai et al., 2019), that finding a small set of sub-behaviors in a
limited number of steps is an NP-hard problem. Abel et al. (2020) studied which
sets of state abstractions and temporal abstractions are capable of preserving the
representation of near-optimal policies. However, this method requires full access
to the underlying MDP.

In low-dimensional environments, a small discrete set of sub-behaviors can greatly
improve the sample efficiency of the learning algorithm. However, in truly com-
plex environments, a large continuous range of sub-behaviors will be required.

The most commonly used techniques to automatically discover temporal abstrac-
tions, either utilize special properties of different states (Machado et al., 2017;
McGovern and Barto, 2001), or correlate trajectories with a sub-behavior random
variable (Eysenbach et al., 2019; Haarnoja et al., 2018a; Nachum et al., 2018b; Ve-
zhnevets et al., 2017). However, the definition of special states or the correlation
between states and random variables often still relies on hand-crafted heuristics.

3.4.2 Policy Development of Abstractions

In order to use temporally extended actions, they need to receive enough suitable
samples from the environment in order to become sufficiently developed. In the
most promising HRL approaches, sub-behaviors emerge and develop policies si-
multaneously (Nachum et al., 2018b; Vezhnevets et al., 2017; Bacon et al., 2017).
This however does not need to be the case. Sub-behaviors can also be discovered
and trained using a staged approach (Tessler et al., 2017; Kulkarni et al., 2016a;
McGovern and Barto, 2001). For example, the state space could be split into a
few equal parts, with a sub-behavior assigned to each part. In a second phase,

3.4. HRL CHALLENGES 65

the sub-behaviors can be developed by, for example, randomly activating them.
However, as the number of sub-behaviors increases, more efficient development
strategies will be required to make sure that all sub-behaviors are sufficiently trai-
ned. If multiple sub-behaviors are generalized by a single parameterized function,
samples can be used to train multiple sub-behaviors at the same time. Similarly,
off-policy methods can be used to simultaneously develop multiple abstractions
(Sutton et al., 1999).

3.4.3 Decomposing Example Trajectories

Often, it is possible to obtain human demonstrations for different control tasks.
HRL can maximize the utility of such demonstrations by decomposing them into
sub-behaviors. Instead of learning a single task from demonstrations, the disco-
vered sub-behaviors can be used as building blocks to solve a range of related
tasks, potentially without the need for additional demonstrations.

In Imitation Learning (IL) (Peng et al., 2018; Ross et al., 2011; Argall et al., 2009;
Bain and Sommut, 1999), the exploration problem of RL is made somewhat less
complex, because the agent is equipped with a set of demonstration trajectories,
which originate from a better than random policy (e.g., a human domain expert).
While IL typically is used to solve a single problem, IL could be used to discover
temporal abstractions, these abstractions might be re-used to solve multiple similar
problems (Le et al., 2018; Fox et al., 2017; Krishnan et al., 2017).

Providing a reward function for a control problem is often a complex issue in
itself (Ng et al., 1999). The idea of Inverse Reinforcement Learning (IRL) (Ho
and Ermon, 2016; Ng and Russell, 2000) is that instead of manually specifying a
reward function an agent should learn this reward function by observing demon-
strations from an extrinsic agent. However, learning a single reward function for
the entire problem is often too coarsely defined, or demonstrations might origi-
nate from a set of different reward functions, instead of one (e.g., when purely
exploring multiple sub-behaviors). A single reward function might also be task-
or environment-specific and does not allow for generalization over multiple pro-
blems. Hierarchical IRL aims to learn a composition of multiple smaller reward
functions, which can in turn be used to train sub-behaviors using trial-and-error
learning techniques (Pan et al., 2018; Krishnan et al., 2016).

3.4.4 Composition

Sub-behaviors alone are not enough to solve HRL problems. They need to be
composed in order to form complex plans. A capable HRL algorithm will need to
be able to select a favorable sub-behavior to use given a state.

3.5. PROBLEM-SPECIFIC MODELS 66

There are two major approaches that are commonly used to learn compositions:

• Bottom-up training: the sub-behaviors are discovered and developed first.
Once they have been sufficiently developed, they are frozen, and a com-
position policy is learned by sampling different sub-behaviors. This is the
most straightforward way, as the higher level does not need to take into ac-
count that the outcome of the selected temporal extended actions might have
changed. Sub-behaviors learned using a bottom-up approach, can often also
be transferred to solve similar problems. However, in the first phase, time
might be spent learning sub-behaviors that the higher level actually does not
need.

• Top-down training: the higher level first selects a subgoal g ∈ S it deems
interesting in order to reach the overall goal. Once selected, the lower level is
trained to reach the proposed subgoal. This approach is often more efficient,
compared to training bottom-up in solving a single control problem. Howe-
ver, it needs to take non-stationary sub-behaviors into account. It is also
often not straightforward to transfer sub-behaviors to different problems.

3.5 Problem-Specific Models

Initial research on HRL agents was focused on proving the benefits of using tem-
poral abstractions in an online RL setting. In order to demonstrate the capabilities
of HRL, highly problem-specific models were proposed. They offered intuitive,
and often interpretable answers on how to model hierarchies of abstractions.

This problem-specific nature is often deemed to be difficult to learn automatically
by a learning agent. Learning parts of problem-specific models often relies on
the idea of information hiding and reward hiding (Dayan and Hinton, 1993). By
either concealing parts of the observed state or reward, no sub-behavior has all
the required information in order to solve the entire task. This forces different
abstractions to focus on different parts of the task.

Problem-specific models however often also heavily rely on external knowledge
provided by an expert, or task-specific structure present in the environment.

The most common problem-specific models are briefly discussed in the following
subsections. A more in-depth survey on some of these frameworks and related
early research has been previously conducted by Barto and Mahadevan (2003).

3.5. PROBLEM-SPECIFIC MODELS 67

3.5.1 Feudal

Feudal Q-learning (Dayan and Hinton, 1993) is an approach, that makes use of a
simple abstraction of the state space on multiple levels. Feudal Q-Learning has
different managers assigned to different regions of the state space. This system
is inspired by medieval society management: the king commands nobles, these
nobles command knights, and so on. In Feudal Q-learning, a hierarchy of learning
modules is constructed. At the top of this hierarchy is a manager, which is in
charge of an abstracted state space, and sets out a task for a single lower-level
worker within this space. The lower-level worker in turn is capable of taking action
within this space. This lower-level worker is rewarded for successfully executing
the received command, independently of the reward of the higher-level. Using
reward-hiding, only the highest level manager uses the extrinsic reward signal to
set out tasks for the level just below it. This approach has also been proven useful
when confronted with large action spaces (Kumar et al., 2017).

While this is a highly interpretable approach, unfortunately, the Feudal model can
only be utilized to solve a specific kind of problem in which the state space can be
neatly divided (e.g., a floor plan).

3.5.2 Hierarchies of Abstract Machines

Parr and Russell (1998a) proposed an approach that composes the behavior of a
HRL agent by utilizing different finite state machines, which are able to invoke
each other. This approach is inspired by software development, in which functions
call each other to manipulate the state of the program.

A machine in a Hierarchies of Abstract Machines (HAM) setting is defined by
a transition function and a start function that is responsible for choosing the ini-
tial action of the machine. The different actions (machine states) each machine
can take consists of: taking a primary action in the environment, calling another
machine as a subroutine, or terminating the machine, and returning control to the
machine that invoked it. The stochastic transition function is responsible for se-
lecting actions depending on the environment state, and the previously executed
action.

A HAM needs to be provided by an expert, it acts as a sketch for the solution,
constraining exploration that needs to be done by the agent. The HAM-Q learning
algorithm was proposed to transform the expert-provided HAM sketch into a po-
licy capable of solving RL problems. This algorithm extends Q-learning (Watkins
and Dayan, 1992), to not only consider the environment state in taking an action
but also include the machine state. While a HAM is a highly interpretable and
reusable model, hand-designing a HAM is often an infeasible task for complex
problems.

3.5. PROBLEM-SPECIFIC MODELS 68

3.5.3 MAXQ

The MAXQ-framework (Ghavamzadeh and Mahadevan, 2001; Dietterich, 2000)
is a framework for representing decomposed value functions. A decomposition
of the value function answers the question: what factors contribute to the overall
expected cumulative future reward? The proposed MAXQ decomposition is hier-
archical: solving the root task solves the entire control problem. MAXQ is able to
model both temporal and spatial abstractions. A MAXQ decomposition consists
of two different types of nodes:

• Max-nodes define different sub-behaviors in the decomposition and are
context-independent

• Q-nodes are used to represent the different actions that are available for each
sub-behavior and are specific to the task at hand.

The distinction between max and Q nodes allows max nodes to be shared by dif-
ferent tasks. For example, in the Taxi benchmark environment (Dietterich, 2000),
the agent needs to pick up, and transport customers to their destinations, a navigate
max node can be used by both a refuel and get-passenger sub-behavior.

Similar to the HAM-Q algorithm, a MAXQ-Q learning algorithm (Dietterich,
2000) has been proposed to learn policies for the different nodes.

A major difference between the HAM-model, and the MAXQ framework is its
ability to handle stochastic environments. While the proposed method of executing
a HAMQ-Q policy hierarchically (committing to sub-behaviors until termination),
an alternative polling executing approach is proposed. In this alternative execution
mode, each level of the hierarchy is evaluated at each time step. This allows the
MAXQ-Q algorithm to operate more efficiently in highly stochastic environments.

The MAXQ-Q learning algorithm provides a way to learn how to use a decom-
posed value function. However, this approach is limited applicable, because the
decomposition needs to be provided by an external expert.

Hengst (2002) proposed a method for automatically decomposing a value func-
tion within the MAXQ framework. Instead of relying on an expert to provide the
decomposition, HEXQ is able to learn a hierarchy from scratch.

In the HEXQ algorithm, a different hierarchical level is considered for each di-
mension of the state space. The construction of the hierarchy starts by observing
which dimension of the state space has the highest change frequency. In order
to determine this, a random policy is used for an arbitrary amount of time steps.
The experience gathered from this random policy is then used by the HEXQ al-
gorithm to build a graph of state transitions. Extra attention is paid to transitions

3.6. OPTIONS 69

not following a stationary distribution. States that exhibit such special transitions
are called exit states. In these cases, the information provided by the current state
dimension is not enough to make a decision and other parts of the hierarchy will
need to decide how to handle these situations. States that are reached using these
exit states are called entry states. In order to build usable state abstractions, the
transition graph can be split into multiple regions. A region is defined, so each exit
state should be reachable from each entry state assigned to the region. A different
MDP can thus be considered for each region.

One limitation of the HEXQ approach is that it only considers a single state di-
mension on each level. The ordering heuristic might not sufficiently be capable of
detecting what state features depend upon each other efficiently. While this appro-
ach works in a lot of simple domains, it might not find good solutions for more
complex control problems with higher dimensional state spaces.

Another approach of automatically learning a MAXQ decomposition is called Va-
riable Influence Structure Analysis (VISA) (Jonsson and Barto, 2006). VISA uses
a Dynamic Bayesian Network (DBN), capable of modeling causal relationships
between actions and state dimensions. Combinations of state dimensions and ac-
tions that cause important value function changes are considered sub-behaviors.

Hierarchy Induction via Models And Trajectories (HI-MAT) (Mehta et al., 2008) is
also capable of discovering a MAXQ-decomposition. HI-MAT differs from VISA
in that it also requires at least one single successful trajectory. Causal and temporal
relationships among actions in this trajectory are analyzed in order to decompose
the trajectory into multiple sub-behaviors. This leads to a decomposition that is
more compact than those typically discovered using VISA.

3.6 Options

The problem-specific models presented in the previous section are difficult to auto-
matically discover because of their non-generic nature, and complex architectures.
The options framework (Sutton et al., 1999) provides an alternative framework to
model temporally extended actions in a more generic way so that automatically
learning sub-behaviors and their composition becomes more feasible in multiple
settings, using the same learning algorithm. However, the ideas introduced by the
reviewed problem-specific frameworks, also remain relevant in the options fra-
mework. This is due to the fact that most problem-specific frameworks can be
represented as options.

In the options framework, the action space of the agent is extended with temporally
extended actions called options. The SMDP formalism is used in order to model
control problems that utilize options. An option is considered to be semi-Markov if

3.6. OPTIONS 70

Policy-over-options
πΩ

Option 1
πω1

Option 2
πω2

Environment

state S, reward R

ac
tio

n
A

Figuur 3.4: The Options Framework
Based on the current state a policy-over-options is consulted in order to decide
which option to activate. The policy of this option will then be used to sample
actions until its termination condition is triggered.

its policy does not only depend on the current state of the MDP but also depends on
the set of observed states and rewards since the option was invoked. This set could
for example be used to terminate an option if it failed to satisfy the termination
condition within a number of steps.

Options represent closed-loop sub-behaviors (Figure 3.4), which are carried out for
multiple timesteps until they trigger their termination condition. Options are con-
sidered closed-loop systems because they adapt their behavior based on the current
state. This is in contrast to open-loop systems, which do not adapt their behavior
once initialized when confronted with a new state. It is often more realistic to mo-
del sub-behaviors as closed-loop systems than using open-loop sub-behaviors. For
example, while driving a car, if we would be committed to an open-loop option,
we would not deviate if we encounter danger, a closed-loop option will alter its
action based on the current state.

Using a well-defined set of options will require the agent to make fewer decisi-
ons when solving problems (Mann and Mannor, 2014; Silver and Ciosek, 2012;
Precup and Sutton, 1997). The usage of options in an RL setting has been shown
to speed up learning. For example, (Tessler et al., 2017; Brunskill and Li, 2014)
demonstrated options as a way to summarize knowledge as an essential building
block in a lifelong-learning setting. Guo et al. (2017) demonstrated the increased
performance of using temporally extended actions using importance sampling.

Various algorithms make use of the options framework, in the remainder of this
section we first discuss the different components of the framework. Additionally,
we review various algorithms capable of automatically discovering options by in-
teracting with the environment, and how a policy-over-options can be found in
order to compose options appropriately.

3.6. OPTIONS 71

3.6.1 Framework

An option can be defined as a tuple ω = (I, π, β):

• I ⊆ A is the initiation set, containing all states in which the option can be
initiated.

• π : S → P (A) is the intra-option policy, determining the action-selection of
the option based on the current state (and optionally the set of states, since
the option was invoked).

• β : S → [0, 1] makes up the termination condition, which determines when
the option will halt its execution.

In Figure 3.5 an example option is represented. In this example, the initiation
set and termination condition are represented as single states, and the intra-option
policy is represented by the arrows. This type of option with a single initiation-
and termination state is often called a point option.

S0

Sg

Figuur 3.5: An example option policy
The option policy takes the agent from the initiation state S0 located in one
room, to the termination state Sg in another room.

3.6.1.1 Initiation Set

The initiation set of an option defines the states in which the option can be initiated.
Different approaches are typically used to define the initiation set. A commonly
used approach defines the initiation set as all states from which the agent is able
to reliably reach the option its termination condition when following the intra-
option policy, within a limited amount of steps. It is also usual to assume that for
all states in which the policy of the option can continue, it can also be initiated.

3.6. OPTIONS 72

For example, (Konidaris and Barto, 2009b; McGovern and Barto, 2001) uses a
logistic regression classifier to build an initiation set. States that were observed up
to 250 time steps before triggering the option termination were labeled as positive
initiation states for the selected option, states further away in the trajectory were
used as negative examples.

An alternative approach consists of defining the initiation set of an option as the
complete state space. Instead of using the initiation set in order to determine which
option to activate, a policy-over-options (Sutton et al., 1999) is used to determine
which option to initiate.

In a continuous state space setting, it does not make sense to use individual states
as the initiation set. Reaching a single specific state in a continuous state space is
very unlikely, so in this case, the initiation set can be defined as a region (Neumann
et al., 2009; Konidaris and Barto, 2009b).

3.6.1.2 Termination Condition

The termination condition decides when an option will halt its execution. Similarly
to the initiation set, a set of termination states is often used. Reaching a state in this
set will cause the option to stop running. Termination states are better known as
subgoal states. Finding good termination states is often a matter of finding states
with special properties (e.g., a well-connected state or states often visited on highly
rewarded trajectories).

The most common termination condition is to end an option when it has reached
a subgoal state. However, this can lead to all kinds of problems. The option could
for example run forever when it is not able to reach the subgoal-state. To solve
this, a limitation of the allowed number of steps taken by the option policy is often
also added to the termination condition.

A termination condition has also been considered when the agent is no longer
active in its initiation set (Şimşek and Barto, 2004). In addition, gradient-based
approaches have been proposed, capable of maximizing long-term return, given a
set of options (Comanici and Precup, 2010) or while simultaneously also learning
the option policies (Bacon et al., 2017).

Similar to the initiation set, if the state space is continuous, the termination con-
dition should be defined as a function, or as a region inside the state space. This
region will decide when the option policy is leaving the state space it was assigned
to by the initiation set.

3.6. OPTIONS 73

3.6.1.3 Intra-Option Policy

If the initiation- and termination-set are specified, the internal policy of the option
can be learned by using any RL method. The intra-option policy can be seen as a
control policy over a region of the state space.

An important question that needs to be addressed when learning intra-option po-
licies from experience, is how these policies should be rewarded. The extrinsic
reward signal is often not suitable in this case, because the overall goal does not
necessarily align with the termination condition of the option. Alternatively, the
intra-option policy could solely be rewarded when triggering its termination con-
dition. However, various denser intrinsic reward signals could also be used. For
example, if the termination condition is based upon a special characteristic of the
environment, this property might serve as an intrinsic reward signal.

Intra-option policy learning can both happen on-policy and off-policy. With on-
policy learning, only the policy of the invoked option is updated. Sutton et al.
(1998) explores off-policy option learning methods that are able to improve the
policy of an option, even if it is currently not active.

3.6.1.4 Policy-over-Options

A policy-over-options π(ω|st) selects an option ω ∈ Ω given a state st. This
additional policy can be useful to select the best option when the current state
belongs to multiple option initiation sets. It can also be used as an alternative to
defining an initiation set for each option.

The most often used execution model is the call-and-return model. This approach
is also often called hierarchical execution. In this model, a policy-over-options
selects an option according to the current state. The agent follows this option until
the agent triggers the termination condition of the active option. After termination,
the agent samples a new option to follow.

An alternative model called the one-step-options model, or also sometimes called
non-hierarchical execution model, queries the policy-over-options on every single
timestep, allowing switching options, even if the option is not fully terminated
yet. For example, Mankowitz et al. (2014) suggests switching options when the
expected total future value of an option other than the current executing option
has become higher. However, options should mostly be able to run for a certain
amount of steps in order to be useful. Harb et al. (2018) incorporated a termination
deliberation cost in order to prevent options switching on each time step.

3.6. OPTIONS 74

When considering a policy-over-options, we can identify different forms of opti-
mality:

• Hierarchical-optimal: a policy that achieves the maximum highest cumu-
lative reward on the entire task.

• Recursive-optimal (Dietterich, 2000): the different sub-behaviors of the
agent are optimal individually.

A policy that is recursive-optimal might not be hierarchical-optimal. It is possible
that there exists a better hierarchical policy, where the policy of a sub-task, might
be locally suboptimal, in order for the overall policy to be optimal. For example,
if a sub-task consists of navigating to the exit of a room, the policy is recursive-
optimal when the agent only fixates on this sub-task. However, a hierarchical-
optimal solution might also take a slight detour to pick up a key or charge its
battery. These diversions negatively impact the performance of the sub-task, but
improve the performance of the overall task.

3.6.2 Option Subgoal Discovery

The most common approach of automatically discovering options is focused on
finding good termination conditions consisting of reaching a single state. These
subgoal states often exhibit special characteristics. For example, a doorway of
an elevator is a special state because it provides access to otherwise impossible-
to-reach areas. This approach also significantly helps efficient exploration. Easy
access to these important states, facilitated by the intra-option policy, will allow
the agent to explore further.

What makes a state a good subgoal? This is a difficult question to answer as
there are a lot of often conflicting interesting properties of states that can be used
to identify subgoals states. In the following section, we review some properties
that have successfully been used to identify useful subgoal states from collected
experience in the environment.

3.6.2.1 Landmark States

A landmark state is a cognitive reference point. It is common for people to or-
ganize spatial information hierarchically using such landmarks. Landmarks used
by humans, in order to come up with complex plans, are often stored in a low-
dimensional representation (e.g., a rough outline of the shape of the Eiffel-tower,
instead of a detailed picture).

3.6. OPTIONS 75

The Hierarchical Distance to Goal (HDG) algorithm (Kaelbling, 1993) is capable
of navigating a complex environment by navigating between landmarks. These
landmarks are cluster centers of regions. These regions need to be specified up-
front. The agent will first transition between landmarks to navigate to the region
which also contains the goal. Once successfully transitioned to the goal region,
primitive actions will be used to navigate to the goal state. In order to efficiently
navigate between landmarks, or within a single region, the amount of steps requi-
red to navigate from one state to another, the distance to goal is estimated.

Landmarks provide an interesting way to navigate between vastly different areas of
the state space. However, because these areas need to be provided by an expert, this
approach does not scale well to large state spaces and does not allow the transfer
of sub-behaviors to different environments.

3.6.2.2 Reinforcement Learning Signal

Digney (1998) used the reinforcement learning signal in order to identify useful
subgoal states. States with a high reinforcement signal gradient are non-typical
states and are considered useful states used in more complex navigation tasks.
This approach is however limited because it is only applicable in environments
with a dense enough reward signal.

3.6.2.3 Bottleneck States

Besides the reinforcement learning signal, Digney (1998) also considered using a
history of the visitation frequencies in order to discover subgoal-states. Bottleneck
states are states that are frequently visited on successful trajectories, but not on
unsuccessful trajectories.

An example of a bottleneck state could consist of a state where the agent picks up
a key or utilizes a door. These states are essential in trajectories that reached the
overall goal, while trajectories of failed attempts might not contain these states.
Bottlenecks discovered near the initial position of the agent are especially interes-
ting, as they greatly benefit the exploration of areas further away from the initial
position.

Automatically discovering bottleneck states can be done by keeping track of the
visitation counts of states in successful trajectories. However, when using this
approach, states near the starting position of the agent will be more often selected
as potential bottleneck states, because more exploration is often done near the
starting position of the agent. To avoid this bias, McGovern and Barto (2001)
suggested only counting the first visits of states over a set of successful trajectories.

3.6. OPTIONS 76

Trajectories are often considered in multiple instances of the same environment
with different goals. For example, Stolle and Precup (2002) proposed instantia-
ting multiple instances of the same environment with different goal states. States
visited on successful trajectories across instances are considered to be bottleneck
states.

McGovern and Barto (2001) described the problem of discovering bottleneck sta-
tes, as an application of multiple-instance learning (Dietterich et al., 1997). Indivi-
dual trajectories are considered bags, when a trajectory is successful it is conside-
red a positive bag, when it is unsuccessful it is considered a negative bag. Diverse
density (Maron and Lozano-Pérez, 1998) was used to discover individual subgoal
states.

Kulkarni et al. (2016b) introduced a method also capable of discovering bottleneck
states in high-dimensional state spaces. The introduced algorithm used a learned
approximate successor map. Such a map represents a state in terms of its expected
future state occupancy, called the successor representation (Dayan, 1993). When
sufficiently developed by following a random policy, a large set of samples from
the successor representation can be used to discover bottleneck states.

Bottleneck states are an interesting way of discovering subgoal states because they
provide easy access to key states in the environment. However, this approach can-
not be utilized in all environments. Bottleneck states often correspond with doors,
hallways, or elevators. However, some environments naturally lack bottleneck sta-
tes (e.g., joint positions of a robot arm).

3.6.2.4 Access States

Access states allow the agent to transition to regions of the state space that are
otherwise difficult to reach. Example access states include: a doorway between
two rooms or an elevator. Access states are natural in navigation tasks, but can
also be found in other state spaces: for example, picking up a screwdriver will
unlock all kinds of attaching possibilities. Access states are similar to bottleneck
states but do not require successful trajectories, which are often difficult to collect.
Instead of relying on the reward signal (bottleneck states), access states rely on a
measurement of novelty.

Relative novelty (Şimşek and Barto, 2004) can be used to identify access states.
Relative novelty considers the novelty of the predecessor states, and the successor
states. Subgoal candidates have a different novelty score than regular states. For
a regular state, the novelty of neighboring states will be more or less the same.
However, for a difficult-to-reach door or elevator state, the novelty of states that
can be reached from this state will be very different. Relative novelty (Şimşek
and Barto, 2004) can be used to identify access states. Relative novelty considers

3.6. OPTIONS 77

the novelty of the predecessor states, and the successor states. Subgoal candidates
have a different novelty score than regular states. For a regular state, the novelty of
neighboring states will be more or less the same. However, for a difficult-to-reach
door or elevator state, the novelty of states that can be reached from this state will
be very different.

Goel and Huber (2003) proposed a similar approach where funnel states are iden-
tified, these states have a significantly larger number of predecessor states that lead
to them, while they only have a limited number of known successor states.

3.6.2.5 Graph Partitioning

The MDP model, represents the RL problem as a graph. Techniques used to parti-
tion graphs in general, have also been utilized to discover options.

The Q-Cut algorithm (Menache et al., 2002), models trajectories utilized by an
agent in a graph structure. The nodes in this graph represent the different states,
edges are concerned with modeling state transitions. A min-cut approach (Waissi,
1994), will try to discover a set of edges that if we would remove them, the graph
would be split into two unconnected graphs. This procedure can be applied itera-
tively, resulting in multiple detached graphs. Detecting such edges in the learned
state-transition graph structure can lead to the discovery of bottleneck states.

Şimşek et al. (2005) introduced a similar approach called L-Cut. This method
partitions local state transition graphs, in order to discover access states that can
be utilized as useful subgoal states. The difference with Q-Cut is that L-Cut does
not rely on the entire transition-graph, but utilizes a local view of the graph, making
it less computationally demanding, and better scalable to larger state spaces.

Machado et al. (2017) demonstrated that a learned representation with Proto-Value
Function (PVF) (Mahadevan, 2005) can be used in order to discover options. By
utilizing the transition matrix of the underlying MDP, PVFs can be obtained. A
PVF tries to capture the topology of the state space, facilitating the structural de-
composition of large state spaces. The options found in the eigen-options frame-
work (Machado et al., 2017) each can be seen as traversing one of the dimensions
found in the learned representation. The intrinsic reward linked to traversing such
a dimension is defined as the eigenpurpose of the option. The intra-option policy
which is derived when following the eigenpurpose is called the eigenbehavior.

Machado et al. (2018) extended the eigen-option framework to also be applicable
when a linear representation is not available by using a successor representation
(Dayan, 1993), to estimate a topology of the state-space. This extension also al-
lows the discovery of eigen-options in stochastic environments and allows disco-
very without the necessity of a handcrafted feature representation. The successor

3.6. OPTIONS 78

representation can be approximated using deep neural networks (Kulkarni et al.,
2016b), which allows eigen-options to be discovered in high-dimensional state
spaces.

3.6.2.6 State Clustering

Similar states can also be grouped using clustering techniques. States that facilitate
navigating between different clusters are natural bottlenecks. Lakshminarayanan
et al. (2016) proposed using a spectral clustering algorithm PCCA+, that is capa-
ble of simultaneously partitioning the state space, and returning connectivity info
between different partitions from sample trajectories.

3.6.2.7 Skill Chaining

Previously described methods for automatically discovering subgoals are often li-
mited to operating only in discrete state spaces. In a continuous space, single states
are often never visited multiple times. Konidaris and Barto (2009b) proposed an
algorithm capable of discovering option-based sub-behaviors in a continuous state
space. Instead of utilizing termination states in the options framework, skill chai-
ning defines termination regions for the different options. Similarly, the initiation
condition is also defined as a region.

Given a termination region, the initiation region of the options can be considered
a classification problem. Given a set of sample trajectories following a learned flat
policy, states that are capable of reaching the termination region within a limited
amount of steps are positively classified.

The first option will have the environment goal as its termination region. Once
the initiation set of this option has been learned, a second option can be learned.
The termination region of this option will be the initiation region of the previously
learned option. This procedure is repeated until a chain of options is discovered
up to the agent’s starting position. A more complex skill tree could be learned
similarly, allowing the discovery of multiple solution paths.

However, in order to build a skill chain or tree, a policy first needs to be trained
which is capable of reaching the end goal, in order to generate meaningful trajec-
tories. Because of the requirement of such a policy, the usefulness of skill chaining
remains limited to the transfer learning case.

3.6. OPTIONS 79

3.6.3 Motion Templates

Motion templates (Neumann et al., 2009) are options that can be parameterized
in order to adapt the behavior of its intra-option policy. This is often useful in
a continuous state space. A motion template could for example be discovered
for throwing a ball. The exhibited force and angle might be parameters of this
template. Learning a single policy for each possible combination of force-angle
would be infeasible. Using motion templates allows the generalization of sub-
behaviors. da Silva et al. (2012) proposed a method for learning motion templates
from experience using classifiers, and non-linear regression models.

3.6.4 Macro-Actions

Another approach for discovering temporally extended actions consists of trying
to discover interesting sequences of actions, called macro-actions. This approach
differs from the options framework, in that macro-actions are often open-loop. The
intra-option policy most commonly consists of a fixed set of actions and does not
depend on the current state.

The STRategic Attentive Writer (STRAW) architecture (Vezhnevets et al., 2016)
is capable of discovering macro-actions as commonly occurring sequences of ac-
tions (multi-step plans) directly from the extrinsic reward signal. Once activated,
STRAW follows the macro-action for a variable number of steps, without updating
it. Instead of the traditional policy, which selects actions one at a time, STRAW
selects sequences of actions and learns when to shift course. The problem thus
becomes finding out when decisions need to be made and finding macro-actions
that an agent can follow between decision points. Attentive writing (Gregor et al.,
2015) is used to determine what part of a plan is relevant to determine further se-
quences of actions. The differentiable of this algorithm makes it possible to learn
when to commit to the current action plan or when to re-evaluate.

An adapted architecture called STRAWe (Vezhnevets et al., 2016) was proposed
with added noise, encouraging exploration.

Macro-actions discovered by STRAW, in a set of Atari benchmark games (Belle-
mare et al., 2013), corresponded to interpretable sub-behaviors such as avoiding
enemies, and navigating between game elements. The commitment plan efficiently
showed a preference for shorter macro-actions when faced with fast-paced games,
or when agility is required (e.g., when directly facing an enemy).

Fine Grained Action Repetition (FiGAR) (Sharma et al., 2017) is similar to STRAW
in that it selects multiple actions based on a single observation. FiGAR however
decides on an action and the number of times it should be repeated. FiGAR works

3.6. OPTIONS 80

as an extension to another RL algorithm. While showing that this method can
improve the performance of an already well-performing agent, a limitation is its
inability to respond to sudden changes while committed to repeating an action.

3.6.5 Using Options in High-Dimensional State-Spaces

Research on option discovery has mostly been focused on low-dimensional state
spaces. However, the options framework has also been demonstrated to be capable
of learning options when using function approximation in high-dimensional state
spaces.

Kulkarni et al. (2016a) studied the construction of option-based hierarchical agents,
given a set of expert-provided termination conditions, in the form of the pixels of
subgoal states. The resulting Hierarchical-DQN (H-DQN) algorithm uses a two-
layered approach, in which the low-level controller uses DQN (Mnih et al., 2015)
in order to learn a different intra-option policy for each of the provided termina-
tion states. A pre-training phase is used first in which sub-behaviors are randomly
activated. This will allow the options with easier-to-reach termination conditions
to become sufficiently developed.

During a second training phase, a higher-level controller learns a composition
of the different sub-behaviors, also using the DQN algorithm, while also jointly
further training the individual sub-behavior policies. Because of the pre-training
phase, the agent is now capable of exploring harder-to-reach subgoal states. This
two-layered approach was able to achieve progress, on hard exploration navigation
tasks, in high-dimensional state spaces, in which previously no progress had been
made.

Tessler et al. (2017) proposed a similar architecture called Hierarchical Deep Rein-
forcement Learning Network (H-DRLN), which utilizes a form of curriculum
learning (Bengio et al., 2009). The agent first learns to solve simpler sub-tasks,
and successfully re-uses this knowledge as sub-behaviors in more complex tasks.
This was demonstrated in the game Minecraft. Different Deep Skill Networks
(DSN) were trained to solve different sub-problems, such as navigation tasks, or
object pick-up tasks. In a second phase, the H-DRLN agent can solve combinati-
ons of slight variations of the sub-problems, in a more sample-efficient way than
DQN (Mnih et al., 2015). Additionally, a form of policy distillation (Rusu et al.,
2015) is proposed in order to merge multiple skills into a single network. This Dis-
tilled Multi-Skill Network requires fewer computing resources than the individual
skill networks.

While this approach is limited because of its heavy dependency on an expert
who needs to design individual problems to train the sub-behaviors, this appro-
ach demonstrates the capability of a hierarchical agent to be capable of transfer-

3.6. OPTIONS 81

ring knowledge between tasks, paving the way for a lifelong learning framework
(Silver et al., 2013).

3.6.6 Option Discovery as Optimization Problem

Previous discussed approaches separated the issue of discovering options and learning
a policy-over-options. This approach of bottom-up learning risks wasting time
learning sub-behaviors that might not be required in order to solve the problem at
hand. Formulating option development and discovery as part of an optimization
problem tasked with optimizing total future reward is an alternative approach that
allows options and a policy-over-options to be learned end-to-end.

The Hierarchical Relative Entropy Policy Search (HiREPs) algorithm (Daniel et al.,
2012) extends the Relative Entropy Policy Search (REPS) algorithm (Peters et al.,
2010) to the hierarchical setting. The REPS algorithm addresses the problem of
maximizing the expected reward of a policy while bounding the information loss
(relative entropy) due to policy updates.

HiREPs uses the same information theoretic regularizer as REPS, but also includes
learning options as a latent variable estimation problem. HiREPs learns options
that are separable in the action space, minimizing overlap. This is achieved by
estimating the probabilities that actions have been sampled by the different opti-
ons, and updating the weight according to these probabilities. This should lead to
options that generate different actions in similar states.

Daniel et al. (2016) proposed a framework capable of inferring option components
from sampled data using expectation maximization. All components of the options
are represented as distributions. HiREPs was utilized in this framework to sample
data.

The Option-Critic (OC) algorithm (Bacon et al., 2017) is an end-to-end frame-
work capable of jointly discovering and developing options without using prior
knowledge. This approach was inspired by the Actor-Critic framework (Sutton,
1984). The actor part in the OC framework consists of multiple intra-option poli-
cies. The critic part is capable of assessing the discounted future value of options
and actions. An option is selected by a policy-over-options, and runs until the
agent triggers the stochastic option termination condition. The gradient of the ter-
mination conditions uses the advantage (Baird, 1993) regarding the future value of
the option, compared to other options. Options that exhibit a high advantage over
other options are updated using this gradient to run longer.

Harb et al. (2018) proposed to add a deliberation cost to this gradient-update, in
order to avoid options collapsing into single-step options. This deliberation can be
interpreted as how much better an option needs to be in order to switch. Unfortu-

3.6. OPTIONS 82

nately, this deliberation parameter needs careful tuning.

Klissarov et al. (2017) introduced the Proximal Policy Option-Critic (PPOC) ar-
chitecture. Extending Option-Critic to become applicable on continuous tasks, by
incorporating the PPO algorithm (Schulman et al., 2017). PPOC uses a stochastic
policy-over-options.

Harutyunyan et al. (2019) proposed the Actor-Critic Termination Critic (ACTC)
which, similarly to Option-Critic, focuses on the termination part of the options.
By concentrating the termination probabilities of options around a small set of
states, higher-quality options in terms of learning performance, and intuitive mea-
ning, can be discovered.

The Option-Critic algorithm is capable of learning options end-to-end, even in
high-dimensional state spaces, without any expert knowledge, or additional intrin-
sic reward structures. Option-Critic has shown similar results to DQN (Mnih et al.,
2015) in the Atari benchmark (Bellemare et al., 2013). While this is an important
stepping stone in further advancing the applicability of the options framework,
additional research is required in order to further stabilize automatic end-to-end
option learning.

3.6.7 Options as a Tool for Meta-Learning

In a meta-learning approach (Wang et al., 2017a; Finn et al., 2017; Duan et al.,
2016b), we search for adaptability. An agent is not trained to solve a single pro-
blem, but rather optimized to quickly solve unseen, similar problems. This method
is often presented as learning to learn. Options learned, using meta-learning tech-
niques, allow options to become less focused on a single problem, and should
facilitate the transfer of options to novel problems.

For example, the Meta Learning Shared Hierarchies (MLSH) (Frans et al., 2018)
algorithm, learns a set of sub-behaviors, by utilizing a distribution of different
tasks. For each specific task, a policy-over-options is learned. Individual options
are optimized in order to learn a good policy-over-options on a new task as quickly
as possible. MLSH uses an incremental approach, in which a single task is sampled
first. In this initial stage, the existing options are challenged as-is to solve this task.
In the second stage, both the intra-option policies and the policy-over-options are
updated jointly. Afterward, a new task is sampled, and the procedure is repeated
until convergence.

HiPPO (Li et al., 2020), similarly focuses on how sub-behaviors can be made more
robust to changes in the environment by utilizing a random runtime of the different
options. HiPPO does not require a complex training scheme and a single task can
be used as the base for a different task.

3.7. GOAL-CONDITIONAL 83

Manager

Sub-behavior

1 0 1 0
Goal vector

Environment

State, reward

Actions

Figuur 3.6: The Goal-conditional Framework

Sohn et al. (2020) proposed a method capable of learning an adaptation policy by
inferring the underlying subtask graph from a limited number of sample trajecto-
ries.

3.7 Goal-Conditional

It has been deemed difficult to propose learning methods for the presented problem-
specific frameworks. The options framework provided a powerful generic langu-
age that spurred the development of various learning algorithms. However, the
biggest disadvantage of the options framework is that it is difficult to scale to sup-
port numerous sub-behaviors. In addition, training options is often inefficient,
because most commonly only one option is trained at the time, no components
are shared between options, and options are often developed independently of the
upstream tasks.

The goal-conditional framework models sub-behaviors differently. In order to sup-
port a large number of sub-behaviors a goal-vector z ∈ Z is utilized to express dif-
ferent sub-behaviors. This goal vector is utilized to communicate a sub-behavior,
activated by a higher-level manager, to a lower-level worker. This idea is illustra-
ted in Figure 3.6. This goal vector can be discrete in order to express a limited
number of abstractions, but it is also possible to use a continuous vector to express
an infinite number of possible abstractions.

In this framework, experience collected pursuing one goal will also be useful for
other related subgoals. This is due to the fact that goal-conditional algorithms
often share common components such as a state representation. This makes goal-
conditional algorithms capable of generalizing sub-behaviors, even for previously

3.7. GOAL-CONDITIONAL 84

unseen states and untested sub-behaviors. Expressing sub-behaviors using a goal
vector, makes it possible to simultaneously learn a large number of sub-behaviors.
Once the temporal abstractions are sufficiently developed, solving RL control pro-
blems in a goal-conditional context becomes a matter of sequencing appropriate
goal vectors. This new problem (π(s) : S → Z) should be considerably less
difficult than solving the original problem (π(s) : S → A).

When designing goal-conditional algorithms, two important questions need to be
addressed. The first question relates to the way goals are represented. Multiple
ways of representing goals have been proposed ranging from utilizing the full state
space (Nachum et al., 2018b) to smaller latent spaces (Haarnoja et al., 2018a;
Vezhnevets et al., 2017). When the dimensionality of the goal space Z becomes too
large, it will be difficult to train sub-behaviors capable of expressing all possible
sub-behaviors, however, when utilizing a smaller goal space than the original state
space Z, some behaviors are, possibly not expressible with the chosen goal-space.

Once a decision has been made on how to represent sub-behaviors, a second major
design decision needs to be made on how to sample various sub-behaviors in order
to facilitate efficient training.

Similar to how options provided a more generic template to model the reviewed
problem-specific frameworks, the goal-conditional framework can also be used to
model options. Thus, ideas on discovering and developing abstractions, introduced
in the previous frameworks, are also relevant in the goal-conditional framework.

In the following subsections, we provide an overview of different proposed goal-
conditional techniques which decompose the state or the reward function or rely
on unsupervised entropy to discover abstractions.

3.7.1 General Value Functions

In the classic RL approach a value function Vπ(st) is often learned to determine
the total future expected reward starting in state st, while following policy π. The
idea of a General Value Function (GVF) (Sutton et al., 2011) is to apply the same
learning ideas used to learn a single value function, to a discrete multitude of
different prediction targets, besides the extrinsic reward signal. Examples of such
targets are, learning how many steps there are before an episodic control problem
terminates, or learning the distance before hitting a wall. Learning different value
functions can be seen as a way to build general knowledge about how different
aspects of the environment can be manipulated. The intuition behind this idea is
that if we know how our environment works, we should be able to easier achieve
goals in this environment. Different value functions can essentially be utilized as
abstractions, allowing the agent to reason on a higher level of abstraction.

3.7. GOAL-CONDITIONAL 85

In order to develop these different value functions, off-policy learning is often
used so that an agent can learn multiple targets simultaneously using the same
experience while not necessarily maximizing for all different targets.

The Horde algorithm (Sutton et al., 2011) is an example, of an algorithm capable of
learning different targets. Horde utilizes a large number of independent sub-agents
called demons. Each demon is responsible for learning a single predictive target
about the world. Each demon has a policy, reward function, termination function
and termination reward function. For the termination function and termination
reward, termination refers to an interruption in the normal flow. A termination
condition for a specific hydration-management value function could for example
be: ran out of water.

Similar to Horde, Bengio et al. (2017) uses an autoencoder (Hinton, 2006; Rumel-
hart et al., 1985) to disentangle various factors of variation in the state space. For
each discovered factor of variation, a different policy is learned that maximizes
change on a single factor of variation.

The Horde architecture should be seen as a non-trivial exercise in knowledge re-
presentation and scalable abstraction learning. However, it only hints at how the
discovered abstractions can be utilized together in order to solve entire RL control
problems.

The Universal Value Function Approximation (UVFA) architecture learns a single
value function V (s, z) where the goal-state z is a parameter. Because learning a
different value function for each state would be infeasible in a high-dimensional
state space, UVFA uses factorization techniques and function approximation in or-
der to develop V (s, z). This architecture can be trained using supervised learning,
by factoring observed values into an embedding for the state, and a separate em-
bedding for the goal state. UVFA has also been demonstrated to work in an RL
setting, by using Horde (Sutton et al., 2011). UVFA allows Horde to generalize to
unseen goal-state predictive targets.

While the UVFA framework is capable of efficiently generalizing navigation to
different subgoal states, it does not provide a way of addressing the issue of which
subgoal should be targeted given the current state, or which subgoal states should
be used to train the Horde, these still need to be provided by an expert. Levy et al.
(2019) developed a learning algorithm that is capable of automatically selecting
subgoal states, by utilizing a multi-level architecture in which each level (besides
the lowest level) outputs subgoal states. By limiting the number of steps the agent
has to reach a subgoal, the agent learns which subgoal states are reachable from
the current state.

Hybrid Reward Architecture (HRA) (Van Seijen et al., 2017) takes as input a de-
composed reward function similar to the MAXQ algorithm (Dietterich, 2000) and
learns a separate value function for each of these functions. Because each part of

3.7. GOAL-CONDITIONAL 86

the reward function only depends on a subset of all features, approximating these
individual value functions becomes more feasible.

A separate agent (and corresponding value function) is assigned to each separate
reward function, similar to the Horde architecture. Each agent can have its own
Q-function, or one Q-function with multiple heads can be learned, so that a shared
state representation can be utilized. The output of the individual value functions is
combined to estimate a single value for each state/action pair, which can be used
to solve the original control problem. However, during training, the agent does use
the individual outputs of the different reward functions.

The original research leading up to the UVFA architecture focused on the devel-
opment of a goal-conditional framework to guide further research. Next to the
question of how multiple predictive targets can be learned from a stream of ex-
perience, also different possible types of auxiliary targets have been studied. For
example, Jaderberg et al. (2017) introduced two types of unsupervised auxiliary
predictive targets: pixel-control and feature-control.

Using pixel control, the agent learns a separate policy that is capable of maximi-
zing observed pixel change in cells of a non-overlapping grid that is placed over
the original state observation. Such a cell in a grid could for example contain a
door, by opening it, the agent will drastically change the pixels of this cell.

Similarly, feature control learns a separate policy that aims to activate neurons
in the network of the behavioral policy. The intuition behind this idea is that,
when sufficiently developed, these neurons should represent some useful features
that impact the policy of the agent. Thus, if the agent learns to manipulate these
neurons, it should be able to change the environment in meaningful ways.

The UNsupervised REinforcement and Auxiliary Learning (UNREAL) architec-
ture (Jaderberg et al., 2017) uses pixel-control and feature-control as auxiliary re-
wards which can be optimized together with an A3C agent (Mnih et al., 2016).

Auxiliary rewards have also been used to drive exploration. For example, the Sche-
duled Auxiliary Control (SAC-X) architecture (Riedmiller et al., 2018) uses auxi-
liary tasks such as minimizing/maximizing the distance between objects, maxi-
mizing velocity, or activating a touch-sensor in order to actively drive scheduled
exploration. They demonstrated that complex robotic manipulation behavior can
be learned from sparse extrinsic reward signals.

Modeling multiple value functions capable of effectively representing different
temporal and state abstractions proves to be an efficient way to integrate expert
knowledge into an RL agent. This method effectively allows the agent to reason
on a higher level of abstraction. However, the often, very domain-specific required
expert knowledge, required to build the architectures, is also the biggest limitation
of this approach.

3.7. GOAL-CONDITIONAL 87

3.7.2 Information Hiding

Information hiding (Dayan and Hinton, 1993) was a popular early approach for
training problem-specific frameworks. However, more recently information hi-
ding has also been used to facilitate training goal-conditional agents. As no single
part of the architecture has access to all available information, different parts need
to collaborate. While the GVF framework focuses on decomposing the reward
function, information hiding focuses on decomposing the state space.

Heess et al. (2016) proposed an algorithm in which the lower-level components
only have access to task-independent proprioceptive information (e.g., joint ang-
les, velocities, or haptic information), the higher-level component has access to
all available information, including exteroceptive observations (e.g., vision and
audio). This approach draws inspiration from biology in which the brain typi-
cally composes plans utilizing exteroceptive observations. While the lower-level
systems like for example the spinal cord, control task-independent sub-behaviors,
which only utilize task-independent proprioceptive information.

In this architecture the high-level policy is recurrent, and the low-level policy uti-
lizes a feedforward network. The high-level module utilizes a modulator control
signal which is updated every k-frames. This signal is used to activate different
sub-behaviors. A pre-training phase is utilized in which the low-level controller
acquires generic locomotion sub-behaviors first, using a shaped reward signal (e.g.,
move in all available directions). Once sub-behaviors have been developed they
are frozen, and a higher-level policy can be trained to modulate sub-behaviors in
order to maximize extrinsic reward.

Using information hiding is similar to providing a decomposed reward function,
an interesting way of incorporating expert knowledge. However, decomposing the
state space has often the additional benefit of being task-agnostic, which should
facilitate the transfer of the learned abstractions.

3.7.3 Unsupervised Learning in HRL

In various RL sequential decision problems, feedback received from the environ-
ment through the reward signal is often very sparse, and denser reward signals are
difficult to construct (Ng et al., 1999). Unsupervised learning is a subfield of ma-
chine learning, concerned with discovering patterns without any feedback signal.
A typical example is clustering data elements in coherent groups.

Unsupervised learning methods have also been proven useful in an RL context.
Unsupervised learning allows the agent to learn sub-behaviors without utilizing
information hiding or the reward signal. For example, a popular unsupervised

3.7. GOAL-CONDITIONAL 88

method is to maximize entropyH(π(·|st)) as an intrinsic reward in addition to the
extrinsic reward r(st, at) (Ziebart et al., 2008; Todorov, 2007):

J(π) = Eτ∼ρπ(τ)

[∑
t

r (st, at) + αH(π(·|st))

]
(3.1)

RL solutions that only optimize for cumulative future expected reward, often risk
finding a policy that is only locally optimal. By optimizing an agent for future
value, while also being as random as possible, the agent becomes less likely to
be stuck in a local optimum, more robust to permutations, and often manages to
explore more efficiently (Haarnoja et al., 2017).

In HRL, acting as random as possible is utilized to find a diverse set of sub-
behaviors. Because this method often results in a large amount of discovered sub-
behaviors, the goal-conditional framework is an ideal candidate to model this kind
of sub-behaviors.

Besides entropy, other forms of unsupervised learning can be utilized to discover
sub-behaviors. For example, Nachum et al. (2018a), considered how well a learned
goal representation is capable of expressing a near-optimal policy as an additional
optimization objective. Another example is Sukhbaatar et al. (2018), which utilizes
unsupervised self-play for learning goal-embeddings.

Florensa et al. (2017) used a Stochastic Neural Network (SNN) (Tang and Sa-
lakhutdinov, 2013; Radford, 1990) combined with an information-theoretic re-
gularizer during a pre-training phase in order to discover diverse sub-behaviors.
SNNs are able to model stochastic processes, by integrating stochastic units in
the computation graph. These stochastic units are used to model a diverse set
of sub-behaviors, while non-stochastic units are used to share information across
sub-behaviors.

The various sub-behaviors can be activated by feeding an additional extra input
to the policy. Different latent codes generate different interpretable sub-behaviors.
After pre-training sub-behaviors, a high-level policy is trained, keeping the weights
of the sub-behaviors frozen. The higher level selects a sub-behavior through the
latent variable and commits to it for a fixed amount of steps. TRPO (Schulman
et al., 2015) is used to train both the manager and the lower level.

The Variational Intrinsic Control (VIC) (Gregor et al., 2016) algorithm tries to
discover as many sub-behaviors as possible, while simultaneously maximizing the
diversity of sub-behaviors. VIC optimizes an empowerment objective (Salge et al.,
2014). Empowerment optimizes sub-behaviors to reach states where the agent
expects to achieve the most control after learning. This is an unsupervised method
for sub-behavior discovery because empowerment is not directly related to the

3.7. GOAL-CONDITIONAL 89

overall intention (maximizing extrinsic reward) of the agent.

E
s0∼µ

[
E

τ∼π(·|s0)
[logPD (c|s0, sT)] +H (G (·|s0))

]
(3.2)

The diversity of VIC sub-behaviors is achieved by maximizing the number of diffe-
rent states an agent can easily reach. This can be measured by the mutual informa-
tion between the set of action choices of a sub-behavior, and the set of termination
states. The intuition used is that we should be able to tell intrinsically different
sub-behaviors apart if we can infer them from final states.

VIC however is difficult to use in a high-dimensional state space, because function
approximation is difficult due to the unstable empowerment intrinsic reward. In
addition, exploration is complex, if a new state is discovered, there is probably
not yet a sub-behavior, which takes the agent to this new state, so inferring what
sub-behavior leads to this state is not yet possible.

Diversity is All You Need (DIAYN) (Eysenbach et al., 2019) also maximizes an
information-theoretic objective using a maximum entropy policy. This objective
is used to create a set of sub-behaviors that are as diverse as possible. The ob-
jective can be interpreted as maximizing the discriminability between different
sub-behaviors. This is achieved by maximizing the mutual information between
all states of a single trajectory, and the sub-behavior. According to DIAYN, a sub-
behavior should control which states the agent visits. Thus, it should be possible
to infer the sub-behaviors from the states visited. The behaviors that emerge in
this way have been shown to represent various sub-behaviors such as walking and
jumping.

E
c∼G

[
E

τ∼π,c

[
T∑

t=0

(logPD (c|st)− logG(c))

]
+ βH(π|c)

]
(3.3)

DIAYN extends upon VIC in order to be applicable in more complex environ-
ments. The distribution of sub-behaviors is fixed in DIAYN rather than learned.
This is done in order to prevent a collapse of diversity. VIC learns the distribution
over sub-behaviors, which leads to oversampling of already diverse sub-behaviors.
Because DIAYN utilizes a uniform distribution, training time is better divided.

Once discovered, sub-behaviors are used for the entire episode. Solving a pro-
blem consists of selecting the right sub-behavior. When presented with a problem,
DIAYN tests all sub-behaviors and picks the one resulting in the largest reward.
Experimentally DIAYN finds sub-behaviors that are able to solve sparse complex
benchmark tasks. It even is able to learn multiple alternative solutions for solving
a single task.

3.7. GOAL-CONDITIONAL 90

Achiam et al. (2018) proposed an algorithm that combined option discovery me-
thods with variational autoencoders (Kingma and Welling, 2014). The result is the
Variational Autoencoding Learning of Options by Reinforcement (VALOR) archi-
tecture. VALOR samples random vectors called contexts from a noise distribution.
These contexts are used as additional input to the policy to form trajectories. Se-
condly, an autoencoder is trained to decode contexts from trajectories. Contexts
should become associated with trajectories as a result of training. The VALOR
approach was able to distinguish between trajectories meaningfully. Curriculum
learning (Bengio et al., 2009) is used, by increasing the number of possible con-
texts, when the performance on the current set of contexts is strong enough.

E
c∼G

[
E

τ∼π,c
[logPD(c|τ)] + βH(π|c)

]
(3.4)

VIC and DIAYN can be considered specific instances of VALOR. VIC, DIAYN,
and VALOR all achieved similar performance (Achiam et al., 2018), however, VA-
LOR is able to qualitatively discover better sub-behaviors because of its trajectory
focus.

The Latent space policies (LSP) (Haarnoja et al., 2018a) architecture is a multi-
level architecture, in which a latent variable of a lower-level layer acts as the action
space for a higher-level layer. The intuition is that a layer should either directly try
to solve the overall problem or make the problem easier to solve for the next layer.
The higher layer can always undo any transformation of the lower layer. This is
possible because each layer has access to the state observation and the usage of
bijective transformations.

Each layer is trained in turn starting from the lowest level, after training a lower
level the weights of this lower level are frozen. Additional layers can then be ite-
ratively trained, using the latent variable of the level below it, as its action space.
Each layer is trained using a maximum entropy intrinsic reward. However, for
more challenging tasks, this approach also allows incorporating prior information,
in the form of a shaping reward. For example, an additional reward for movement
could be used at a lower level, in combination with the entropy intrinsic reward.
This will lead to movement in all directions. It is possible to use a different reward
function for each layer. Training within a layer is done using Soft Actor-Critic
(SAC) (Haarnoja et al., 2018b). This approach achieved the best results when trai-
ned in a bottom-up fashion by pre-training sub-behaviors, and stacking additional
layers on top of the developed sub-behaviors. Training multiple layers, simulta-
neously end-to-end, reduced overall performance.

Unsupervised methods have proven to be capable of discovering diverse sets of
sub-behaviors without any dependency on expert knowledge. However, as the di-
mensionality of the state space increases, purely using information-theoretic objec-
tives often leads to a trivial encoding of the context (Achiam et al., 2018; Vezhne-

3.7. GOAL-CONDITIONAL 91

vets et al., 2017). It remains an open question how information-theoretic methods
can be diverse in more meaningful ways.

3.7.4 End-to-End Algorithms

Unsupervised discovery of sub-behaviors allows goal-conditional algorithms to
discover a wide range of diverse sub-behaviors. While this is especially interesting
in a lifelong learning setting (Silver et al., 2013), finding a solution to a single
control problem might not require a large set of diverse sub-behaviors.

Algorithms such as FeUdal Networks (FuN) (Vezhnevets et al., 2017) and HIerar-
chical Reinforcement learning with Off-policy correction (HIRO) (Nachum et al.,
2018b) are capable of learning diverse sets of sub-behaviors and their composition,
end-to-end, in the function of the extrinsic reward.

FuN (Vezhnevets et al., 2017) is inspired by the Feudal-approach (Dayan and Hin-
ton, 1993), in the sense that a higher-level manager, working at a lower temporal
resolution, selects a subgoal, and a lower-level worker, is tasked to achieve this
subgoal. Differently from the original Feudal approach, FuN does not use re-
ward hiding, and balances intrinsic and extrinsic rewards through an environment-
specific hyperparameter.

The communicated subgoals are defined in a latent space, and they are directional
rather than absolute in nature. It is much more feasible for a worker to move
the agent in a certain direction than to navigate directly to a subgoal state. Thus,
a directional subgoal specification allows a much denser intrinsic reward signal.
It was demonstrated that directions in a latent space allow the representation of
diverse sub-behaviors. The worker can be trained to maximize this intrinsic reward
using any deep RL algorithm. Advantage Actor Critic (A3C) (Mnih et al., 2016)
was used by the authors.

The manager learns to select latent goal directions, directly maximizing the extrin-
sic reward using an approximate transition policy gradient. This form of policy
gradient learning exploits the fact that the behavior demonstrated by the worker
will ultimately align with the goal set. The manager learns to set advantageous
goal directions.

Both the manager and the worker use recurrent networks. The worker uses a
standard LSTM network (Hochreiter and Schmidhuber, 1997) while the mana-
ger uses a novel dilated-LSTM, which efficiently allows the manager to operate at
a lower temporal resolution.

The HIerarchical Reinforcement learning with Off-policy correction (HIRO) (Na-
chum et al., 2018b) architecture takes a similar approach as FuN, in that it commu-

3.8. BENCHMARKS 92

nicates subgoals between layers in a directional fashion. However, HIRO does not
use a latent space to represent the subgoal but is able to actually use the state space
to select different sub-goals. Similarly to FuN, the lower level is densely rewar-
ded for moving toward this subgoal state. Using a low-dimensional latent space in
order to represent sub-behaviors reduces the number of sub-behaviors that can be
expressed. An examination of the impact of the goal representation in terms of the
impact of expected reward has been conducted by Dibya et al. (2019) and Nachum
et al. (2018a).

The HIRO approach focuses on sample efficiency by supporting off-policy learning.
In the case of HIRO, off-policy corrections are used to make up for combinatorial
effects introduced by simultaneously learning a lower-level policy and a high-level
policy. This correction re-labels past experience with a high-level action, in order
to maximize the probability of the past lower-level actions.

A combination of the off-policy correction and a representation of subgoals in the
raw state space experimentally showed significantly increased performance over
FuN (Vezhnevets et al., 2017), and state-of-the-art hierarchical bottom-up appro-
aches (Florensa et al., 2017). However, stabilizing end-to-end goal-conditional
algorithms such as HIRO and FuN remains difficult, and requires additional re-
search.

3.8 Benchmarks

In order to compare the performance of different architectures, various benchmark
environments have been proposed. In order to qualify as a suitable benchmark,
a problem needs to be (Bellemare et al., 2013) varied and interesting enough in
order to claim generality and represent a real-world problem. Ideally, benchmark
tasks are created unrelated to specific algorithms or research directions in order to
avoid experimenter’s bias. In this section, we present a representative subset of
such environments.

3.8.1 Low-Dimensional State Space Environments

A set of exemplar control problems has been heavily used in order to demonstrate
the capabilities of HRL systems. These low-dimensional environments often act
as a first testing ground during experimentation. Because of their limited low-
dimensional state and action spaces, algorithms often converge quickly, which al-
lows fast iteration.

For example, the four-room grid world (Sutton et al., 1999) is a popular bench-

3.8. BENCHMARKS 93

Figuur 3.7: Example four-room grid world
The agent needs to navigate through the different rooms in order to reach a goal
state. Navigation between rooms in this example is done by the yellow and
green sub-behaviors. In order to reach the goal state, the agent also needs to use
primitive actions, which are displayed in gray.

mark task for hierarchical systems. In this environment, the agent needs to na-
vigate to different locations in four rooms connected by narrow hallways. Often
different sub-behaviors are learned to efficiently navigate between different rooms.
An example is presented in Figure 3.7.

Another classic discrete action-space task is the Taxi-domain proposed by Diet-
terich (2000). In this domain, a virtual taxi needs to pick up customers and drop
them off at the right locations. More recently an escape-room (Menashe and Stone,
2019) environment has been proposed in order to test hierarchical agents. The ob-
jectives in these environments are configurable in difficulty. This configurability
allows for a gradual advance to more complex problems than the Taxi-domain,
without taking too big steps.

Classical continuous state space environments such as the Cartpole environment
(Barto et al., 1983), and the Pinball-domain (Konidaris and Barto, 2009b) are often
used to demonstrate algorithms capable of handling a continuous action space.

3.8.2 High-Dimensional State Space Environments

3.8.2.1 Discrete Action Spaces

Video games are an ideal environment for testing HRL algorithms. Gathering large
amounts of data from game environments is in most cases inexpensive, and safe.
Classic well-known games are often used, because they represent various difficult
tasks, and do not suffer from experimenter bias, because they were not explicitly
built as an HRL benchmark task.

3.8. BENCHMARKS 94

A set of Atari games (e.g., Asteroids, Breakout, Pong) (Bellemare et al., 2013)
has been the most widely used benchmark to demonstrate the capabilities of hier-
archical algorithms. Especially Atari 2600 games which are considered hard-
exploration games such as Montezuma’s Revenge, Pitfall and Private Eye are con-
sidered suitable HRL benchmarks, as non-hierarchical methods often struggle to
find optimal policies for these environments. HRL algorithms have made signifi-
cant progress (Vezhnevets et al., 2017; Kulkarni et al., 2016a) on these problems.

While HRL algorithms often score well in some types of games, they are rarely
able to score well in all types of games simultaneously. Generalization over mul-
tiple games remains an ongoing challenge. In order to reduce overfitting, pro-
cedurally generated game environments are often used (Cobbe et al., 2019). By
using generated environments the agent has not seen before, we can test whether
the agent really mastered the problem, or relied on very specific problems of the
environment.

Semi-realistic 3D worlds are also often considered when reporting on the perfor-
mance of HRL algorithms. For example, ViZDoom (Kempka et al., 2016), is based
on the first-person shooter Doom. The DeepMind Lab (Beattie et al., 2016) plat-
form provides various challenging 3D navigation and puzzle-solving tasks.

The open-world game of Minecraft (Johnson et al., 2016) is another environment
often used to demonstrate complex behaviors of various hierarchical systems. Na-
vigating this environment requires both visual cognition of a high-dimensional
environment and planning actions on a higher level of abstraction.

Real-time Strategy (RTS) games have also been used a lot in AI research. Espe-
cially, the StarCraft (II) game, has been heavily used as a platform to demonstrate
the progress of AI systems (Vinyals et al., 2017; Santiago et al., 2013). While
classic Atari games often only have a low branching factor, RTS games typically
exhibit very high branching.

With the introduction of various rearrangement tasks (Section 2.6.2.6) within the
Habitat 2 simulator (Szot et al., 2021), Habitat now supports the development of
hierarchical policies within the framework itself.

3.8.2.2 Continuous Control

In order to demonstrate the capabilities of HRL algorithms in control problems
with continuous action spaces, three major virtual environments are commonly
used: the MuJoCo (Todorov et al., 2012) framework, the DeepMind Control Suite
(Tassa et al., 2018) and the PyBullet simulator (Coumans and Bai, 2016).

In these virtual environments, the agent is tasked with learning the locomotion of

3.9. COMPARATIVE ANALYSIS 95

different bodies. The action space typically consists of the amount of torque the
agent can apply on various motors. The state space is often made up of different
positions in a 3D space. A commonly adopted benchmark in this area is the set of
benchmark tasks defined by Duan et al. (2016a). Especially interesting are the two
tasks which are hierarchical in nature. In these tasks, the agent is required to learn
the locomotion of a body with numerous degrees of freedom, together with navi-
gating various environments. In these control problems, the agent simultaneously
needs to be capable of reasoning where to go in the environment, and how to con-
trol the actuators in order to move at all. This requires the agent to make decisions
on various temporal scales.

3.9 Comparative Analysis

In the following two sections, we provide a comparative analysis. We start this
analysis by summarizing the reviewed frameworks first (Section 3.9.1). In the
second subsection (Section 3.9.2), we go deeper and compare core features of key
HRL algorithms.

3.9.1 Frameworks Summary

In Table 3.1, we provide a short overview of the capabilities and challenges of the
different frameworks.

Problem-specific models demonstrated the capabilities of HRL, but proved to have
only limited application, mainly due to their dependency on expert knowledge.

The options framework provides a generic and comprehensive way to model and
train a limited number of reusable temporal abstractions. This framework allows
various ways to incorporate expert knowledge (e.g., intrinsic reward, termination
condition, or state abstractions), while also being generic enough to support the
automatic development of sub-behaviors.

The goal-conditional framework, in turn, provides an answer on how to efficiently
scale to a larger number of expressible sub-behaviors. Unfortunately, this scala-
bility makes training more unstable, is more difficult to re-use, and produces less
interpretable results. It also remains mainly unclear how to efficiently sample dif-
ferent goal vectors in the goal-conditional framework.

As seen on the timeline, presented in Figure 3.8, problem-specific models were
mostly used in the early days of HRL. The ability of deep neural networks, to
allow RL agents to directly work on high-dimensional state spaces, inspired the

3.9. COMPARATIVE ANALYSIS 96

Problem-Specific Models Options Goal-Conditional

Sub-behaviors

Problem-specific sub-
behaviors that work together
in order to solve a very speci-
fic task.

A more generic system of mo-
dules that work together to
tackle a limited set of similar
sub-problems.

A generic system that is capa-
ble of expressing a wide range
of sub-behaviors.

Capabilities Intuitive way of modeling
hierarchies of sub-behaviors.

- Generic framework capable
of modeling sub-behaviors.
- Transfers well in similar en-
vironments.
- Various learning algorithms
available.

- Generalization of sub-
behaviors.
- Capable of supporting
a large amount of sub-
behaviors.
- Various learning algorithms
available.

Challenges

- Not generally applicable.
- Requires a lot of expert
knowledge.
- Lack of learning algorithms.

- Learning is often sample in-
efficient.
- Difficult to share knowledge
between options.
- Limited scalable: only a few
options at the same time are
feasible.

- Efficient representation of
subgoals.
- How to efficiently sample
goal-vectors during training,
in order to maximize genera-
lization over sub-behaviors.
- Often suffers from instabi-
lity.
- Scaling to more than two le-
vels remains difficult.

Required priors Almost entirely hand-crafted.

Some expert knowledge re-
quired in the form of termina-
tion conditions, and intrinsic
reward signals.

None, however intrinsic re-
ward has been demonstrated
to speed up training (Haarnoja
et al., 2018a).

Interpretability High High, however often due to in-
troduced priors Low, often uses latent-spaces.

Tabel 3.1: Summary table of the reviewed HRL frameworks

3.9. COMPARATIVE ANALYSIS 97

19
92

20
19

HDG*

19
93

Feudal
Macro-actions*

19
97

HAM

19
98

Options framework*
19
99

MAXQ

20
00

Diverse density

20
01

HEXQ

20
02

Macro-Actions*
Q-Cut*
Relative novelty*

20
04

Local graph partitioning*

20
05

VISA

20
06

HI-MAT

20
08

Skill Chaining*

20
09

Motion Templatesθ

Hordeθ

20
11

HiREPS*

20
12

Universal Optionθ

20
14

UVFAθ

20
15

VICθ

20
16

VIMEθ
STRAW*
H-DQN

Unsupervised Auxiliary Tasksθ
MLSH*

20
17

SNNθ
DDO*

Divide-and-Conquer RL*
FuNθ

H-DRLN*
HRAθ

Option-Critic*
HIROθ

20
18

HI-IRL*
DIAYNθ
VALORθ
LSP-SACθ

Problem-specific Goal-conditional

Figuur 3.8: Timeline of common HRL algorithms
The problem-specific models (blue) have started interest in the area, but have
somewhat lost interest. Goal-conditional (θ, red) algorithms are currently the
most common approach, while the options framework (∗, green) has remained
a popular framework throughout the whole HRL history.

rise of a goal-conditional approach. While the options framework has managed to
stay relevant throughout the entire short history of HRL, problem-specific models
somewhat lost their appeal.

It however should be noted, that most problem-specific frameworks can be mo-
deled using the options framework. And similarly, options can be modeled using
a goal-conditional approach. For example, options can be modeled in the goal-
conditional framework, by utilizing a discrete goal vector.

3.9.2 Algorithms

The algorithms discussed in previous sections have addressed important issues
of RL. Currently, no single algorithm is capable of completely satisfying all our
proposed evaluation criteria. In the following subsections, we discuss some trade-
offs that exist among current algorithms.

Unfortunately it is very challenging to compare different HRL algorithms on a
quantitative basis. This is often caused by the wide range of different used ben-
chmark tasks, and the difficulty of reproducing RL results (Engstrom et al., 2020;
Henderson et al., 2017).

3.9. COMPARATIVE ANALYSIS 98

In Tables 3.2–3.4 we qualitatively evaluate our selection of key HRL algorithms
using the following criteria:

• Training method: how is the algorithm trained? Can it be trained end-to-end,
or is a staged pre-training phase required?

• Required priors: how much additional domain knowledge is required, exter-
nal to the gathered experience in the environment?

• Interpretable elements: what parts of the resulting policies can be interpreted
by humans?

• Transferrable policy: are the abstractions proposed by the algorithm trans-
ferable to other problems, or are they task-specific?

• Improvement: what is the main improvement of the algorithm over the pre-
vious state of the art?

3.9.2.1 Training Method

Deep neural networks have proven to be capable of learning task-specific input
features in vision and audio tasks (LeCun et al., 2015). This data-driven approach
outperformed previous approaches that rely on a human expert to design input
features. RL uses this same data-driven approach to end-to-end learn task-specific
input features that will influence the effective behavior of the agent.

One of the goals of HRL is to extend this data-driven approach for RL problems
and to provide a temporal module that can be trained end-to-end. Such an approach
allows sub-behaviors to be discovered solely in function of the reward signal.

Currently, in all frameworks, there have been algorithms proposed that can be trai-
ned end-to-end such as the problem-specific Feudal model (Dayan and Hinton,
1993), Option-Critic (Bacon et al., 2017) in the options framework, and FeUdal
Networks (Vezhnevets et al., 2017) in the goal-conditional setting. Unfortunately,
it remains challenging for current end-to-end algorithms to discover non-trivial
solutions. Solutions often degrade into single-action sub-behaviors, or end up sol-
ving the entire task (Vezhnevets et al., 2017). In order to tackle this issue various
regularizations have been proposed, such as focusing sub-behavior termination on
a small and limited number of states (Harutyunyan et al., 2019), or to add a cost
when switching sub-behaviors (Harb et al., 2018).

Alternative to this end-to-end approach is a staged approach in which sub-behaviors
are developed independently of the extrinsic reward signal, using a separate pre-
training phase. In this approach typically an additional intrinsic objective is used
to develop sub-behaviors. This is the most common approach used when develo-

3.9. COMPARATIVE ANALYSIS 99

ping options. This intrinsic reward signal could for example be positive when the
agent reaches a special termination state (McGovern and Barto, 2001).

In the goal-conditional framework, a staged training approach is commonly used.
Because algorithms using the goal-conditional framework are capable of discove-
ring a large number of sub-behaviors, a more scalable information theoretic objec-
tive is often used as an additional intrinsic reward signal. This could for example
entail a pre-training phase to discover various sub-behaviors leading to a diverse
set of states (Eysenbach et al., 2019; Achiam et al., 2018).

Additionally, a pre-training technique often used, especially when dealing with a
large number of sub-behaviors, is curriculum learning (Bengio et al., 2009). This
technique consists of utilizing a curriculum of different tasks, with increasing dif-
ficulty. By compounding knowledge, agents can learn to solve increasingly more
difficult tasks (Tessler et al., 2017).

While current end-to-end approaches often lead to trivial solutions, staged approa-
ches are often less sample efficient. In a staged approach, environment interaction
is allocated to learning sub-behaviors independently of the extrinsic reward sig-
nal, so useless sub-behaviors in terms of the extrinsic reward signal will also be
developed.

Some algorithms (Haarnoja et al., 2018a) are capable of end-to-end training, but
support pre-training as an optional step.

3.9.2.2 Required Priors

A long-standing trade-off that exists in machine learning, is how much prior know-
ledge we should incorporate into our algorithms. Incorporating prior knowledge
from a domain expert might greatly improve performance, however, it might also
lead to unexpected side effects (Ng et al., 1999). Additionally, the environment
might be so complex, that it is not possible for a domain expert to specify a formal
control policy.

Training agents, using a problem-specific framework, often requires a large amount
of prior information. This often includes the entire hierarchical architecture. Un-
fortunately, hierarchical architectures are often very difficult to be designed by a
human expert.

In the options framework, the amount of required prior information is somewhat
reduced because of the generic nature of the framework. Typical prior informa-
tion, required when using option-based algorithms, is the number of options. This
value is typically found by conducting a hyperparameter search. Additional forms
of prior knowledge that are often required by algorithms that use the option fra-

3.9. COMPARATIVE ANALYSIS 100

mework include: intrinsic reward signals, examples of successful trajectories, or a
curriculum of tasks with different levels of difficulty.

The goal-conditional framework typically does not require any priors, besides the
definition of the goal space. Because this framework is commonly used to disco-
ver a large set of sub-behaviors, it would not be feasible to rely on expert know-
ledge. The goal-conditional framework thus is the framework that most closely
matches the goal of being entirely data-driven. Unfortunately, research has shown
that being completely data-driven often leads to trivial solutions in complex state
spaces (Achiam et al., 2018).

3.9.2.3 Interpretable Elements

One of the benefits of HRL is that a composition of sub-behaviors might be more
transparent than one big policy. In the problem-specific setting, algorithms are
highly interpretable by nature, however, as discussed before, this expressiveness is
often only due to prior expert knowledge.

In the options framework, the sub-behaviors are often interpretable by a human
agent because options tend to terminate in states with special properties such as
doors or elevators. However, the interpretable elements in an options-based appro-
ach, are most often also the elements provided by a human expert.

As the number of sub-behaviors increases, and the amount of utilized expert know-
ledge decreases, it becomes increasingly difficult to make them transpicuous. A
technique that is often used to demonstrate the capacity of an algorithm to disco-
ver meaningful sub-behaviors is to plot a number of sampled trajectories from the
different sub-behaviors. This rollout technique is often used in order to explain
discovered sub-behaviors in the goal-conditional framework.

There however remains a lot of room for further examining the potential of HRL
methods, to make RL interpretable. In order to do this, inspiration might be found
in how convolutional neural networks are often visualized (Zeiler and Fergus,
2014).

3.9.2.4 Transferrable Policy

Because current HRL algorithms are generally less sample efficient than non-
hierarchical algorithms, HRL algorithms are often advertised as being able to
transfer a policy well to similar tasks, while non-hierarchical algorithms often need
to start from scratch for every new task.

The ability of an HRL algorithm, to efficiently solve multiple tasks, is largely

3.9. COMPARATIVE ANALYSIS 101

Algorithm Training
Method Required Priors Interpretable

Elements
Transferrable
Policy Improvement

Feudal-Q End-to-end state space
division None No, problem-

specific solution

More com-
prehensive
exploration than
flat Q-learning

HAM-Q End-to-end HAM Trained HAMs

HAM language
can be used to
transfer know-
ledge

Significant im-
provement over
flat Q-learning

MAXQ-Q End-to-end MAXQ
decomposition

MAXQ
decomposition MAX-nodes

Faster training,
compared to flat
Q-learning

HEXQ Staged None MAXQ
decomposition MAX-nodes

Automatic disco-
very of MAXQ
decompositions

VISA End-to-end DBN model MAXQ
decomposition MAX-nodes

More complex
decomposition
than HEXQ

HI-MAT End-to-end a successful tra-
jectory

MAXQ
decomposition MAX-nodes

More compact
hierarchies than
VISA

Tabel 3.2: Evaluation of problem-specific algorithms

linked to the method used to train it. Algorithms that use a pre-training stage are
better equipped to be used in a multi-tasking setting. This is due to the fact that
the lower levels of the hierarchy are trained independently of the task.

Because this staged approach is a popular training approach in both the problem-
specific framework and the options framework, these frameworks are currently the
most suitable to support an agent with a transferrable policy (e.g., (Frans et al.,
2018; Dietterich, 2000)). In these frameworks, the often pre-trained sub-behaviors
can be re-used to solve different tasks by learning new higher-level controllers.

The algorithms that fit into the goal-conditional framework unfortunately are cur-
rently less capable of transferring their abstractions to new problem settings. This
is often due to the problem-specific design of the goal space. Especially when
trained end-to-end (Nachum et al., 2018b; Vezhnevets et al., 2017; Bacon et al.,
2017), the learned abstractions are fully in function of the problem at hand.

3.9. COMPARATIVE ANALYSIS 102

Algorithm Training Me-
thod Required Priors Interpretable

Elements
Transferrable
Policy Improvement

Diverse den-
sity

Staged
Number of op-
tions, successful
trajectories

Subgoal states Same environ-
ment

Automatic sub-
goal detection
learns faster
compared to
using only primi-
tive actions

h-DQN Staged Subgoals as pixel
masks Subgoals Same environ-

ment

First HRL
approach to hard-
exploration in
high-dimensional
state spaces

HiREPs End-to-end Number of opti-
ons None No, problem-

specific solutions

Improved per-
formance over
non-hierarchical
REPS algorithm

STRAW End-to-end None Macro-actions No, problem-
specific solutions

Improved perfor-
mance in some
Atari games

H-DRLN Staged Task curriculum None
Same environ-
ment, similar
tasks

Demonstrates
building blocks
for lifelong
learning frame-
work

Eigen-
Options

Staged Number of opti-
ons Subgoals Same environ-

ment

Discovered opti-
ons allow better
exploration then
bottleneck-based
options

MLSH Staged Number of opti-
ons None

Transfer possible
to tasks different
from previously
seen tasks

Faster training
performance
when applied on
new tasks

DDO Staged Demonstrations None Solutions are
task-specific

Faster training in
Atari RAM envi-
ronments.

Option-Critic End-to-end Number of opti-
ons

Termination pro-
babilities

Same environ-
ment

First end-to-end
algorithm

Tabel 3.3: Evaluation of option algorithms

3.9. COMPARATIVE ANALYSIS 103

Algorithm Training Me-
thod Required Priors Interpretable

Elements
Transferrable
Policy Improvement

VIC Staged None None Same environ-
ment

Demonstrated
capabilities of
unsupervised
learning in HRL

SNN Staged Proxy reward Sub-behaviors Same environ-
ment

Increased ex-
pressiveness and
multimodality of
sub-behaviors

FuN End-to-end None None Task-specific so-
lutions

Significant im-
provement over
Option-Critic

DIAYN Staged None None Same environ-
ment

Discovers more
diverse sub-
behavior than
VIC

SAC-LSP Staged and End-
to-end

None, however
reward shaping is
supported

None Same environ-
ment

Outperforms pre-
viously proposed
non-hierarchical
algorithms

HIRO End-to-End None None Same environ-
ment

Outperforms
FuN, especially
in sample effici-
ency

VALOR Staged None

None, sub-
behaviors are
encoded by a
latent vector

Similar environ-
ments

Qualitatively bet-
ter sub-behaviors
than DIAYN and
VIC

Tabel 3.4: Evaluation of goal-conditional algorithms

3.10. OPEN RESEARCH CHALLENGES 104

3.10 Open Research Challenges

Our comparative analysis (Section 3.9) demonstrates, that while great progress has
been made in a lot of key areas, there still remain a lot of unanswered questions. In
this section, we list some key open challenges in HRL. In order to further advance
HRL, we also identify possible moves forward.

3.10.1 Top-Down Hierarchical Learning

Currently, most algorithms in HRL work bottom-up. The agent first learns some
sub-behaviors, while exploring the environment. Once these sub-behaviors are
sufficiently developed, an agent learns how to compose these sub-behaviors in
order to solve complex problems.

This approach however is limited, because it wastes time, learning sub-behaviors,
which the agent possibly does not need to solve the task at hand. A top-down
approach, which decomposes the problem first, and learns different sub-behaviors
in function of this decomposition, is more sample efficient. However, this approach
currently tends to lead to unstable learning (Haarnoja et al., 2018a; Vezhnevets
et al., 2017; Bacon et al., 2017). Because the transition function of the higher
level becomes non-stationary, the higher level will need to take into account that
outcomes of sub-behaviors might change, while in a bottom-up approach, the sub-
behaviors are typically frozen after development.

Algorithms capable of dealing with non-stationary transition functions could make
HRL more sample efficient by enabling top-down learning. A model-based appro-
ach could help the agent to test out various subgoals without having to worry about
how to reach each subgoal. However, how to efficiently learn such a model from
experience remains an open question. Other possibilities in order to tackle top-
down learning have been proposed under the form of transition policy gradient
(Vezhnevets et al., 2017), in which the higher-level can be trained without the lo-
wer level, and the usage of off-policy corrections (Levy et al., 2019; Nachum et al.,
2018b). However, additional research in order to stabilize and scale these methods
is required.

3.10.2 Subgoal Representation

An important open problem in the framework of goal-conditional hierarchical
learning is the issue of goal representation. Various forms of representation have
been researched, ranging from the full state space (Nachum et al., 2018b), to more
compact representations (Vezhnevets et al., 2017), learned end-to-end. Using the

3.10. OPEN RESEARCH CHALLENGES 105

full state space will allow all states to be reached by at least a single sub-behavior,
but this approach is difficult to scale. While alternatively, using smaller represen-
tations will reduce the number of different sub-behaviors which can be expres-
sed. Nachum et al. (2018a) examined the relationship between the representation
and its ability to represent an optimal policy as a reward-driven optimization pro-
blem. This resulted in an impressive performance on some hard high-dimensional,
continuous-control tasks.

Another issue regarding representation learning is its ability to generalize over
different environments. An effective goal representation should be capable of ex-
pressing subgoals in multiple similar environments. When drawing inspiration
from human intelligence, we do not plan in the raw state space of the world but
use meaningful abstractions. An optimal goal representation will most likely also
be lower-dimensional than the full state space, and make use of meaningful ab-
stractions. However, how to learn these meaningful state abstractions, only using
interaction gathered from the environment is an open problem.

3.10.3 Lifelong Learning

One of the main promises of HRL is that it should be capable of facilitating the
reuse of sub-behaviors. This re-usability of sub-behaviors should both facilitate
transfer-learning of new tasks and should allow the agent to solve more challenging
issues by extending upon its existing knowledge.

Utilizing sub-behaviors in order to solve similar problems in the same environ-
ment is often experimentally demonstrated in research (Frans et al., 2018; Bacon
et al., 2017). However, the transferability of sub-behaviors in order to tackle simi-
lar problems in different environments is often beyond the current capabilities of
agents. It also remains unclear how sub-behaviors can be utilized in order to extend
and manage knowledge and to become more efficient at solving ever more com-
plex problems, without suffering from catastrophic forgetting (Kirkpatrick et al.,
2017).

The options framework seems a promising direction to handle lifelong learning.
This can be implemented by adapting the options framework to allow knowledge
management so that the agent can make deliberate decisions about which options
to keep, which ones to remove, and which are suitable candidates to be extended.
This idea has been explored before (Tessler et al., 2017; Brunskill and Li, 2014),
however, an automated approach remains beyond current capabilities.

The generalization capabilities of the goal-conditional framework would also be
a great candidate to be facilitated in a lifelong learning context, however how to
incorporate knowledge management in the goal-conditional framework has not
been sufficiently studied yet.

3.10. OPEN RESEARCH CHALLENGES 106

3.10.4 HRL for Exploration

The options framework has received a lot of research attention, and a lot of automa-
tic subgoal-discovery methods have been proposed (Bacon et al., 2017; McGovern
and Barto, 2001). However, these methods suffer from two major limitations. They
often only work in certain types of environments, and they are often very sample
inefficient, requiring an extensive pre-training phase.

Option learning can be made more efficient by, instead of using a long pre-training
phase, to use an incremental exploration approach. After a short exploration phase,
options can be formulated which will allow the agent to jump-start the quest to find
even better options, by exploring the state space, in a more structured way.

Additionally, alternative forms of intrinsic reward signals, which are not specific to
certain environments, such as (episodic) exploration bonuses (Savinov et al., 2019;
Burda et al., 2018a), have not yet been fully researched in the context of automatic
option discovery but could lead to more sample-efficient option-discovery methods
because of their often more dense nature.

The empirical study of Nachum et al. (2019), demonstrated that current HRL algo-
rithms achieve their improved performance on complex tasks, mainly due to tem-
poral exploration (e.g., instead of exploring the outcome of a single random action,
take multiple random actions when exploring). They hint at further researching
temporal exploration, as exploration strategies for both flat and hierarchical RL
agents. An example of such an approach is (Jinnai et al., 2020) which focuses on
using options in order to speed up exploration in high-dimensional state spaces by
discovering underexplored regions of the state space and developing options that
reach those regions.

3.10.5 Increasing Depth

Currently, most HRL approaches (Eysenbach et al., 2019; Nachum et al., 2018b;
Bacon et al., 2017; Vezhnevets et al., 2017), make use of a two-layered approach.
In this approach, a manager chooses what sub-behavior to activate. Sub-behaviors
are then responsible for deciding on primary actions. These two layers work on
different levels of temporal abstraction. This is similar to how small companies
operate: the owner defines the vision of the company, while the staff executes this
vision. However, in order to scale a company, additional management layers are
often introduced, allowing different levels to focus on different levels of business
abstraction. This architecture is also similar to how multi-level convolutional neu-
ral networks are capable of learning complex hierarchies of discovered features.

3.10. OPEN RESEARCH CHALLENGES 107

Algorithms in HRL will also benefit from scaling up to using more than two levels
of temporal abstraction, in order to perform planning on a longer horizon. Existing
research (Levy et al., 2019; Haarnoja et al., 2018a; Fox et al., 2017) hints at the be-
nefits of using multiple levels. However, these approaches have been hindered by
the extra complexities that are induced by having multiple non-stationary transition
functions, when using a top-down approach, and decreased sample inefficiencies
when using bottom-up approaches.

An end-to-end approach, capable of learning multiple levels of temporal abstrac-
tions, in a sample efficient way, without using any expert knowledge, will allow
HRL to tackle problems that require complex long-term planning. However, these
kinds of algorithms are beyond the current capabilities.

3.10.6 Interpretable RL

One way to address AI safety, (Amodei et al., 2016) is to dissect the agent in order
to make sure that it is incapable of executing harmful behavior. Unfortunately,
current RL policies are often completely opaque to researchers. Greydanus et al.
(2018) developed a method in order to assess what parts of the state space an RL
agent considers when taking decisions. This is a useful exploratory instrument
in order to assess whether the agent is not overfitting environmental elements.
However, as it is dependent on the evaluation of policy rollouts, it is non-trivial
to interpret behavior for complex high-dimensional environments (Atrey et al.,
2020). An alternative approach consists of Rupprecht et al. (2020), which utilized
a generative model over the state space in order to generate example states that
adhere to user-specified behaviors.

HRL will be helpful to further advance this relativly under-explored area (Shu
et al., 2018), as a single complex behavior, might be too incomprehensive to safely
deploy in the real world. HRL techniques could potentially be used to develop sets
of sub-behaviors that can be comprehensive by themselves. Alternatively, HRL
algorithms might be used to split an existing policy into multiple smaller, more
comprehensive parts.

3.10.7 Benchmark

As discussed in Section 3.8, a lot of different benchmarks are used today, when
presenting HRL research. Additionally, researchers often have trouble reproducing
presented results (Henderson et al., 2017), due to the complex nature of many RL
algorithms.

3.10. OPEN RESEARCH CHALLENGES 108

This often makes it difficult to assess presented results in terms of their predeces-
sors. A novel benchmark, or a standardized set of tasks using existing benchmark
environments (such as those proposed in (Duan et al., 2016a)), capable of asses-
sing the qualities of algorithms, to learn sub-behaviors, in a sample efficient way,
in order to solve a range of different tasks, will allow better comparability of repor-
ted results. As curriculum learning (Bengio et al., 2009), seems to be an important
element of many HRL approaches, the difficulty of this novel environment should
be tunable. While current benchmark tasks often require a mix of different ca-
pabilities, it might benefit the field to propose tasks, which zone in on a single
capability (e.g., memory or exploration) (Osband et al., 2019).

Additionally, a suite of open-source high-quality baseline implementations of HRL
algorithms, similar to the OpenAI baselines library (Dhariwal et al., 2017), will
allow researchers to benchmark their own algorithms reliably.

3.10.8 Alternative Frameworks

Early models, such as MAXQ and HAM, have somewhat lost interest in the re-
search community due to the lack of automatic learning methods, and their de-
pendence on expert knowledge. Interest has shifted to more generic frameworks,
for which different learning algorithms have been proposed. However, due to this
shift, to more generic frameworks, algorithms have become opaque to humans
again.

It might be interesting to revisit these early models and incorporate knowledge
gained while researching other frameworks, in order to come up with automa-
ted learning algorithms for these methods. It might for example be interesting to
research their ability to handle high-dimensional state and action spaces using ap-
proximation methods. An example of such serendipity is the recent, goal-conditional,
FeUdal Networks architecture (Vezhnevets et al., 2017), which has been inspired
by, Feudal-Q (Dayan and Hinton, 1993), one of the earliest problem-specific fra-
meworks.

Alternatively, novel ways of incorporating expert knowledge in the goal-conditional
framework have emerged. A noteworthy example (Jiang et al., 2019) utilizes the
compositional nature of natural language instructions.

As the options and goal-conditional frameworks also have significant limitations,
these frameworks might not be the final answer on how to model hierarchical
learning agents. Increasing the depth will allow agents to use more levels of
abstraction, but this approach might only scale limitedly. In order to scale to
problems, which require very long-horizon planning, without dense feedback, it
might be required to look at radical alternative approaches, such as representing
sub-behaviors in a graph-structure (Sohn et al., 2020; Shang et al., 2019) or taking

3.11. CONCLUSION 109

into account relations between objects (Zambaldi et al., 2019; Santoro et al., 2017;
Diuk et al., 2008).

3.11 Conclusion

In this chapter of this thesis, the necessary insights to understand the fundamen-
tals of HRL are provided. An overview of the most common frameworks in use
today was provided. For each framework we reviewed algorithms, we deem es-
sential to the framework. Intuitively, HRL is a viable option, to allow RL to tackle
problems, in environments with very delayed, and sparse reward structures. This
intuition is supported by various research conducted on each of the frameworks.
HRL has been able to make significant progress in various RL benchmarks, in
which previously no progress had been made. However, each framework currently
also suffers from its limitations: they are either too dependent on the structure pre-
sent in the environment, not sample efficient, difficult to learn end-to-end without
expert knowledge, or unable to scale and generalize. In order to address the cur-
rent limitations of HRL approaches, we concluded this survey with some ideas on
how to tackle these open challenges. In the next chapter, a novel approach will be
described that works towards solving some of these limitations.

3.11. CONCLUSION 110

4
SETIE: Structured Exploration

Through Instruction Enhancement

The contributions presented in this chapter are based on the publication titled:
”Structured Exploration Through Instruction Enhancement for Object Naviga-
tion”.

4.1 Introduction

Finding objects in unseen environments is a hard navigation task (Section 2.6.2.3).
In order to be successful, an agent needs to be capable of mastering multiple skills:

• The agent needs to be capable to explore the environment in a structured
manner: it should figure out the layout of the previously unseen environ-
ment, keep a memory of past actions, and remember visited regions.

• The agent needs to be capable to understand the instruction: map an instruc-
tion to an actual visual representation.

• The agent needs to be capable to make decisions on multiple abstraction
levels: navigating to the other side of the building versus navigating through
a doorway.

4.1. INTRODUCTION 112

These problems have been studied individually intensively in various settings (Szot
et al., 2021; Weihs et al., 2020; Savva et al., 2019; Chevalier-Boisvert et al., 2019).
However, constructing an agent capable of simultaneously performing these feats,
remains an open challenge. In this chapter, we study how we can build an agent
capable of simultaneously handling long-term planning through abstraction, low-
level locomotion, and basic language grounding.

Current navigation solutions typically utilize a sense-plan-act approach, in which
different modules interact with each other. These solutions however tend to be
brittle, are prone to error propagation, and often require a lot of manual enginee-
ring (Karkus et al., 2021; Mishkin et al., 2019). End-to-end RL systems have
recently been proposed, as an alternative learning-based solution, to handle these
issues (Wijmans et al., 2020). Unfortunately, as empirically demonstrated in Sec-
tion 4.3.2, RL agents are often unable to reason on multiple levels of abstraction,
have difficulties with mapping language instructions, and often explore poorly.

In contrast, the proposed Structured Exploration through Instruction Enhancement
(SETIE) approach allows the agent to reason and explore on multiple levels of
abstraction (e.g., on room-level and actuator-level) through utilizing a hierarchical
approach (Chapter 3). This exploration scheme can be seen as an answer to the
exploration challenge defined in Section 3.10.4. The proposed agent can be trained
using only the reward signal received from the environment and only requires a
simple training curriculum.

In order to work towards solving the challenge of subgoal representation defined
in Section 3.10.2 we introduce instruction enhancements in order to communicate
between the different layers. In this system, the top level is allowed to enhance the
instruction it received from the environment. For example, if the original instruc-
tion is: ”Find the red ball”, the top-level might choose to enhance this instruction
to: ”Find the red ball, in the kitchen”. This allows the top level to plan on a higher
level of abstraction (Which room makes sense to visit next? Where have I already
been?). In turn, the enhanced instruction makes the task more tractable to complete
by the lower level.

Because both traditional and learning-based approaches are still unsolved, we take
one step back from the typically used photo-realistic simulators (Szot et al., 2021;
Savva et al., 2019), and utilize a visually simpler setting, while keeping most of the
navigation and generalization complexities. In this setting, it is demonstrated why
a flat, non-hierarchical RL agent, does not manage to make any progress, and how
the proposed hierarchical approach is capable of exploring the environment in a
more principled way. The generalization capabilities of the agent are demonstrated
as well. These capabilities allow the agent to find previously unseen objects in new
unseen environment configurations.

4.2. APPROACH 113

The contributions of SETIE are three-fold:

• A novel dual-layer hierarchical approach, capable of simultaneously learning
structured room-level exploration and low-level navigation.

• In order to communicate between layers, the idea of instruction enhance-
ment is proposed, allowing loose coupling of layers and generalization to
novel instructions.

• The introduction of a goal assessment module, which is capable of addres-
sing whether the current state satisfies the instruction, and thus allows offloa-
ding language grounding, and integration of prior knowledge in a learning-
based setup.

4.2 Approach

The proposed novel approach consists of three parts:

• The meta-controller πm(zt|ot, gt) which performs high-level planning, by
working on a lower temporal resolution.

• The controller πc(at|ot, gt, zt) which handles low-level navigation.

• The goal assessment module G(ot, gt) → {1, 0} which handles language
grounding.

A visual representation of the architecture is displayed in Figure 4.1.

4.2.1 Meta-controller

The meta-controller πm(zt|ot, gt) is responsible for learning high-level navigation
of the environment solely from partial state observations (through an egocentric
RGB camera). This task consists of two sub-tasks:

1. Discovering the layout of the current environment, determining which rooms
are connected to which other rooms. Commonsense reasoning (the garage
is less likely to be connected to the bathroom) together with a trial-and-error
approach can be used in order to solve this task.

2. Keeping an implicit memory of which rooms have already been visited in
order to explore the environment in a structured manner. Because the meta-
controller operates on a higher level of abstraction, the agent is capable of
performing these tasks using a generic GRU component (Cho et al., 2014)
in its architecture.

4.2. APPROACH 114

Instruction (gt)

Meta-controller

CNNCNNCNN FC GRU

Egocentric RGB
observation (ot)

Find the red box

V

πm

Instruction enhancement zt

+

CNN CNN CNN + FC GRU

V

πc

Embedding GRU

Primitive action at

CNN CNN CNN Goal assessmentFC

Embedding GRU

+
FC

FC

Controller

Goal assessment

Figuur 4.1: An overview of the SETIE architecture.
The meta-controller handles structured exploration between different rooms
from egocentric observations by enhancing the instruction. This output is used
by the controller, in order to return primitive actions (navigation). The goal as-
sessment module is used for language grounding.

4.2. APPROACH 115

The action space of the meta-controller consists of a discrete set of instruction
enhancements. This set of enhancements is provided up-front to the agent. In-
struction enhancements should be defined on a higher level of abstraction, than
the primitive actions utilized by the controller. By introducing this additional level
of abstraction, the agent is able to explore in a structured manner (e.g., room by
room).

The meta-controller does not interact with the environment itself, but can only
influence the behavior of the controller through enhancing the instruction. For
example the extrinsic instruction gt could have been ”Find the green key”, which
the meta-controller can enhance to become ”Find the green key, in the dining
room”.

Within HRL, designing a sub-behavior space Z is a complex challenge (Sec-
tion 3.4.1). Most often this space is tightly coupled between the different levels.
Utilizing language allows decoupling multiple levels. This allows the controller
and meta-controller to be trained independently. Furthermore, language has also
the potential to generalize to unseen instructions (Jiang et al., 2019) and can make
the intention of the agent clear to a human in the loop (Chen et al., 2021).

The meta-controller acts on a lower temporal resolution and is asked to provide a
new instruction enhancement every c timesteps.

As the meta-controller has no direct influence on the environment, but only can act
through the controller, its training needs to take into account the potential unex-
pected behavior of a trained controller. Such quirks might be the over-exploration
of some rooms, while quickly moving through others. Accounting for these ec-
centricities can be done by utilizing a fully trained and frozen controller during
the training of the meta-controller. In this setting, the meta-controller observes
the environment, selects an instruction enhancement, and waits until the controller
has taken c-steps, before sampling a novel enhancement. The reward of the meta-
controller consists of the discounted sum of the extrinsic reward collected during
the usage of the active instruction enhancement:

Rt(st) = 1/c

c∑
t=0

γtrt (ot, gt, at, ot+1) (4.1)

A second option to train the meta-controller consists of assuming a perfectly be-
having controller. In this setting, the simulator will carry out the enhancements,
and move the agent to different rooms while respecting the floor plan. Utilizing
this second approach allows both controller and meta-controller to be trained in
parallel (as there is no dependency). In order to utilize this second training scheme
a different reward function is required. For example, a reward function based on
room coverage can be utilized. In this setting, each instruction enhancement that
takes the agent to a previously unvisited room will lead to a positive reward (0.1),
while other proposed enhancements will result in a negative slack penalty (-0.01).

4.2. APPROACH 116

While in the empirical evaluation of the presented method instruction enhance-
ments consist of rooms to navigate between, other sets of enhancements can be
used in different settings.

4.2.2 Low-level Controller

The controller πc(at|ot, gt, zt) interacts with the environment through its primitive
actions at ∈ A. The controller expects on each timestep an egocentric RGB ob-
servation of the environment ot ∈ O together with a task instruction gt ∈ G and an
instruction enhancement zt ∈ Z provided by the meta-controller. The instruction
informs the agent of its objective (e.g., find the red ball), and the instruction en-
hancement (e.g., in the kitchen) adds additional information on how the instruction
should be carried out. The instruction enhancement will essentially navigate the
agent to different rooms, resulting in episodic exploration of the different rooms in
order to solve the main instruction. Both instruction and enhancement are provided
using simple natural language sentences.

The action-space A of the controller consists of a discrete set of primitive move-
ment steps (move forward, turn left, turn right) and a special done-action. This
special done-action is invoked when the agent perceives itself near the goal object.
Utilizing this action will typically end the episode.

Due to the utilization of instruction enhancements, the low-level controller can be
trained independently of the meta-controller. A straightforward way of training the
controller is to enhance the instructions by utilizing an oracle. When this oracle
provides the most useful enhancement (e.g., which room should the agent visit
next to find the goal) the extrinsic reward signal can be utilized to reward the
agent. For example in the setting of object navigation, controllers can be rewarded
by utilizing the improvement in geodesic distance between the agent and the goal
object.

4.2.3 Goal Assessment Module

To signal that the agent believes it has completed the objective, it needs to use a
special done-action. Utilizing this action will typically end the episode. However,
as empirically demonstrated in Section 4.3.2, incorrect usage of this action is one
of the main failure modes appearing prior to the introduction of a goal assessment
module.

In order to integrate the goal assessment module, the done action is removed from
the action space of the controller. Instead, a query-action is added to this action
space. This novel query action will not terminate the episode (soft termination)

4.3. EMPIRICAL EVALUATION 117

but will query the goal assessment module. If the goal assessment module deems
that the instruction is satisfied, and the agent is close enough to the target object,
the agent will utilize the original done-action.

Essentially, the controller is now able to focus on low-level navigation and consult
an expert (the goal assessment module) in order to handle the language grounding
of the instruction.

In order to allow the agent to find objects it did not see during training, a novel
goal assessment model can be trained independently of the controller and meta-
controller. This is useful, as training a controller and meta-controller is typically
more computationally expensive.

To collect training data for the goal assessment module a random agent can be
used, collecting both examples with goal objects, and observations without any
visible objects. For positive samples, the correct positive class is utilized 50%
of the time, while in the remaining cases, another random possible instruction
is utilized, together with the negative class label. This allows for balancing out
positive and negative labels.

4.3 Empirical Evaluation

4.3.1 Environment Description

In order to demonstrate the effectiveness of the approach, a simulated typical do-
mestic environment is constructed within the MiniWorld framework (Chevalier-
Boisvert, 2018). Two instances are represented in Figure 4.2. The environment
consists of 7 different rooms (garage, storage, bedroom, bathroom, living room,
dining room, and kitchen) together with a corridor that connects some of these
rooms (depending on the instance). Each room has a distinctive look. As not all
rooms are connected, the agent will often need to backtrack to previously visited
points in order to explore the environment.

Throughout the environment, different abstract objects are randomly placed. Ob-
jects are defined by a category and a color. The categories used are box, ball, and
key. In the experiments, there is typically one goal object and multiple distractor
objects. In each task instance, there is only a single object which matches the goal
object description. The task is communicated using language through the template
of Find the [color] [shape]. The following objects are used during training: red
box, green ball, blue box, yellow ball, red key, and green key. There is no asso-
ciation between objects and rooms. While it is definitely also possible to use real
objects, the focus of this study is not on object detection. Through utilizing shapes

4.3. EMPIRICAL EVALUATION 118

Figuur 4.2: Environment used for empirical evaluation of SETIE
Two different instances of the used environment are rendered. Connections
between rooms are randomized (with a holdout set of configurations). The agent
has no access to this top-down map view.

4.3. EMPIRICAL EVALUATION 119

and colors we are able to study whether the agent is capable of grounding these
concepts.

On each timestep, the agent observes an egocentric RGB observation ot of the
environment. The reward function is densely defined and consists of the impro-
vement in the geodesic distance between the agent and the goal object. We use a
slack penalty of 0.01 which is subtracted from the reward on each timestep. When
reaching the goal object we award the agent with a success bonus of 10. This
reward scheme was proposed in (Savva et al., 2019).

rt(st, at, gt) = (−∆geo dist − 0.01) + 10 ∗ 1success (4.2)

Regarding actions, the agent is capable of turning left and right for a fixed amount,
moving a fixed distance forward, and utilizing a special done-action. In order to
successfully complete an episode, the agent needs to use this done-action close to
the goal object.

In each episode, the agent starts in a random position and has no access to its cur-
rent position, the name of the room it is in, or a map of the environment. The
connections between the different rooms are randomly enabled. However, each
room is always accessible, and there are no uncommon connections (e.g., the ba-
throom is never connected to the kitchen). In total this results in 132 different
possible floor plans. A holdout set of 30 floor plans is not utilized during training
but kept solely for evaluation purposes. This holdout set can be used in order to
assess the generalization capabilities of the agent regarding floor plans.

4.3.2 Baselines: why do non-hierarchical approaches fail?

4.3.2.1 With soft-termination

When utilizing a non-hierarchical PPO agent (Schulman et al., 2017) without any
instruction enhancements, and with only a single object (a red box or blue box)
the agent is capable of achieving an average success rate of ∼ 35% after 5 million
interactions with the environment (Figure 4.3). When also introducing the problem
of language grounding, by adding multiple objects to the environment, the agent
has an average success rate of ∼ 20% after 5 million interactions.

4.3.2.2 No soft-termination (full problem setting)

If we also remove the relaxation of soft termination of the environment, we arrive
at the full problem setting. In this setting, when the agent utilizes the done-action

4.3. EMPIRICAL EVALUATION 120

1 2 3 4 5
Timesteps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s r

at
e

single obj, dynamic env
single obj, static env

multiple obj, static env
multiple obj, dynamic env

Figuur 4.3: Training performance of a non-hierarchical PPO agent with soft-termination.
Results are averaged over 3 runs.

incorrectly, the episode is terminated. We analyzed the different failure modes of
the baseline agent in this setting (Figure 4.4):

Success Detection Stuck Timeout
Episode outcome

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Oc
cu

ra
nc

e
ra

te

Dynamic environment
Static environment

Figuur 4.4: Failure modes of the trained non-hierarchical baseline. If the floor plan remains
fixed (static environment), the amount of episodes where the agent gets stuck
decreases, however, this in turn increases goal detection errors.

4.3. EMPIRICAL EVALUATION 121

• Detection: agent used done-action but was in the wrong position.

• Timeout: agent did not manage to find the goal within the allowed amount
of timesteps, the agent did not use the done-action at all.

• Stuck: distance between agent and goal object did not change in the final
10 steps.

When looking at these failure modes we noticed that the main reason for failure in
a static environment setting is related to the detection of goal objects. When also
making the environment dynamic, both local navigation problems (getting stuck),
and planning problems (timeout) start to occur more frequently.

4.3.3 Does enhancing the instruction make the task more trac-
table?

1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

oracle,x-obj dynamic
oracle,x-obj static

oracle,1-obj dynamic
oracle,1-obj static

x-obj, static
x-obj, dynamic

1-obj, dynamic
1-obj, static

Figuur 4.5: Training performance of the controller, in this setting the agent is allowed to use
the done-action multiple times (soft termination). Without information about
which room the agent should move to next (oracle), the agent is unable to learn
a policy in the environment. Results are averaged over 3 runs.

From the previous section, we can conclude that a non-hierarchical agent is not
able to reliably solve the studied task. In order to validate whether enhancing the
instruction will improve the performance, we trained an agent with its instructions
enhanced through the use of an oracle.

The utilized oracle is aware of the shortest path to the goal object in terms of
rooms to visit. Having access to such an oracle outside the training environment

4.3. EMPIRICAL EVALUATION 122

is an unrealistic assumption. The learned meta-controller will, however, take over
the role of this oracle, providing adequate enhancements.

Utilizing an oracle based on the shortest path also alleviates the requirement of a
custom reward function. If the controller is able to correctly interpret and follow
the instruction enhancement, it will also collect the most reward.

As the results plotted in Figure 4.5 indicate, enhancing the instructions allows the
agent to solve most instances of the task both in the setting with a single object
(1-obj) and multiple objects (x-obj). This validates the idea that enhancing the
instruction allows the controller to carry out the low-level control task.

In order to solve the entire task there is still the need to remove soft termination,
and actually train a meta-controller.

4.3.4 What is the impact of soft termination?

In the previous experiments, the controller was trained using soft termination. This
means that the agent is allowed to use the done-action multiple times in an episode.
Normally, this would terminate the episode, however, we found that allowing the
agent to utilize this action multiple times during training significantly increased
the sample efficiency and success rate (Figure 4.6). This can be attributed to the
given that the agent is able to collect more negative examples, without being too
heavily penalized. This training mechanism is especially crucial in settings that
require language grounding (multiple objects). We can allow this constraint due
to our goal assessment module, which will filter out invalid done-actions when
utilizing the entire architecture.

1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Multiple objects

static env
dynamic env

soft terminate, static env
soft terminate, dynamic env

1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Single object

static env
dynamic env

soft terminate, dynamic env
soft terminate, static env

Figuur 4.6: Training performance of the controller, with oracle instruction enhancements.
Allowing soft termination greatly improves sample efficiency. Results are aver-
aged over 3 runs.

4.3. EMPIRICAL EVALUATION 123

0.5 1.0 1.5 2.0 2.5
Timesteps 1e6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

single obj, dynamic env
single obj, static env

multiple obj, dynamic env
multiple obj, static env

Figuur 4.7: Meta-controller training performance. Results are averaged over 3 runs.

4.3.5 Does a trained controller allow the meta-controller to solve
the task?

In Figure 4.7 the results from training a meta-controller in various configurations
are plotted. The meta-controller has no problem exploring the environment when
there is only a single static environment configuration used with a single goal ob-
ject placed in it (SR ∼ 95%). When multiple objects are present in the static
environment setting, performance receives a significant hit (SR ∼ 60%), but the
agent is still able to improve performance.

When the agent needs to manage dynamic instances of environments it starts with
a high success rate and is able to steadily improve (SR ∼ 70%) in the setting
with a single goal object. However, in the setting with both a dynamic environ-
ment configuration and multiple objects, the agent is not able to improve its initial
performance (SR ∼ 45%).

4.3.6 Is the agent capable of exploring in a structured way?

The failure modes of the baseline agent indicated that a lot of episodes (∼ 30%)
failed due to the agent running out of allowed steps. This might indicate that the
baseline agent is not able to explore the environment in a structured manner. In Ta-
ble 4.1 we compare the percentage of the rooms the agent visited. From the results
plotted in this table, we can conclude that the hierarchical approach is capable of
covering a significantly larger proportion of the environment on average.

4.3. EMPIRICAL EVALUATION 124

Agent Objects Environment Room coverage
Hierarchical Single Static 51.0%

Dynamic (holdout) 45.4%
Dynamic (train) 45.5%

Multiple Static 50.2%
Dynamic (holdout) 36.4%
Dynamic (train) 36.7%

Flat (baseline) Static single 27.8%
Dynamic (holdout) 25.8%
Dynamic (train) 26.3%

Multiple Static 12.5%
Dynamic (holdout) 12.6%
Dynamic (train) 12.6%

Tabel 4.1: Average room coverage observed during evaluation runs

Architecture Objects Static Train Test
Flat PPO baseline Single 37%± 3.71 42%± 4.79 44%± 3.76
Hierarchical + GA Single 81%± 5.20 76%± 5.54 75%± 4.67
Flat PPO baseline Multiple 13%± 3.41 15%± 4.47 12%± 2.66
Hierarchical + soft term. Multiple 82%± 6.44 69%± 5.76 67%± 5.27
Hierarchical Multiple 15%± 3.12 18%± 2.81 15%± 3.13
Hierarchical + GA Multiple 52%± 3.06 38%± 4.58 40%± 4.52

Tabel 4.2: Overall performance of the entire architecture. For each setting, 10 runs of each
100 random episodes were used.

4.3.7 How well does the proposed hierarchical architecture per-
form?

In this section, the performance of the architecture is analyzed in its entirety. We
are especially interested in how well the agent is capable of handling unseen envi-
ronment floor plans, and novel objects.

4.3.7.1 Zero-shot transfer to unseen environment configurations

The agent is allowed to utilize 102 different floor plans during training. In order to
validate whether the agent is capable of functioning in an environment it did not
see during training, there is also a test set containing 30 floor plans the agent did
not see during training.

From the results plotted in Table 4.2 we can conclude that the hierarchical appro-

4.3. EMPIRICAL EVALUATION 125

Environment: Static Train Test
Flat PPO Baseline 15%± 1.69 15%± 3.1 14%± 4.21
Hierarchical 17%± 2.54 15%± 2.96 14%± 3.52
Hierarchical + soft term. 78%± 3.75 69%± 2.75 66%± 3.77
Hierarchical + GA 52%± 4.36 39%± 3.7 38%± 4.58

Tabel 4.3: Overall performance of the entire architecture on a holdout set of goal objects.
In each configuration, 10 runs of each 100 random episodes were used.

ach has a high success rate in the static environment. Especially, when there is no
language grounding required.

In the setting with multiple objects, the hierarchical agent is now able to reach a
high success rate when soft termination is allowed. When soft termination is disa-
bled, the goal assessment module is capable of somewhat emulating this improved
performance. However, there still remains room for improvement. When qualitati-
vely looking at the mistakes made by the goal assessment module, we noticed that
it often made mistakes if the goal object was barely visible in the single-passed
RGB observation.

In all cases, the agent was successfully capable of achieving a similar level of
performance in the floor plan holdout set as in the training set.

4.3.7.2 Zero-shot transfer to unseen goal objects

Because the instructions are formulated in natural language, we have an interface
that makes it straightforward to test how well the agent handles combinations of
colors and objects it did not see during training. The goal assessment module
was retrained in order to be capable to detect the novel combinations of colors
and shapes while keeping all original navigation policies (controller and meta-
controller).

Similar to the zero-shot environment transfer experiments, we empirically can va-
lidate from the results in Table 4.3 that the agent is able to successfully find combi-
nations of colors and shapes the agent did not see before without having to re-train
the controller and meta-controller.

4.4. CONCLUSION 126

4.4 Conclusion

In this chapter, the problem of structured exploration in an object navigation setting
is studied. It is demonstrated how the three sub-problems of navigation, high-level
reasoning, and language grounding each contribute to the overall complexity of
object navigation. A hierarchical approach is proposed in order to handle both
low-level navigation and high-level planning. In order to have a loose coupling
between the layers, language is used to enhance the original instruction in a way
that makes it feasible for a low-level controller to partially tackle the overall task.
To handle the third sub-problem of basic language grounding, a goal assessment
module is introduced in order to guide the controller in assessing whether goal
objects have been reached.

The effectiveness of the proposed architecture is empirically demonstrated in a
simulated domestic environment. It is demonstrated that the agent is able to better
handle unseen environment configurations, and unseen goal objects compared to a
non-hierarchical baseline.

The focus of this chapter was on the efficient usage of abstractions. More speci-
fically we proposed a solution to the defined challenges of subgoal representation
(Section 3.10.2) and structured exploration (Section 3.10.4).

The utilized abstractions were provided up-front, and their policies are learned
from scratch. This approach has two major limitations. Firstly, the agent has no
method to extend its set of abstractions with novel abstractions when needed. And
secondly, developing the policy of each abstraction separately is inefficient. In
Chapters 5 to 7 we provide methods that solve these problems (defined in Sec-
tion 3.10.3) by allowing abstractions to be adapted.

5
Language Grounded Task-Adaptation

The contributions presented in this chapter are based on the publication titled
”Language Grounded Task-Adaptation in Reinforcement Learning”.

5.1 Introduction

In the previous chapter, we introduced SETIE, a novel way of solving complex
problems through learned abstractions. In this chapter, however, we focus on how
we can make the learning of such abstractions more sample efficient. Sample
inefficiency within the RL framework is often caused by the reward function spe-
cification. On the one hand, a sparse and delayed reward signal makes it difficult
for the agent to experience any meaningful feedback. On the other hand, designing
tasks with a dense reward signal (reward shaping) is often a complex endeavor, and
regularly exhibits unwanted side effects (Ng et al., 1999).

A recent line of research (Luketina et al., 2019), has proposed methods that al-
low task descriptions to be specified using natural language. A commonly used
approach consists of directly embedding both visual observation and language
instruction in order to train a policy (Hermann et al., 2017; Misra et al., 2017;
Chevalier-Boisvert et al., 2019). Alternatively, (Goyal et al., 2019) uses natural
language reward shaping, by predicting if an action in a trajectory matches a task

5.2. BABYAI ENVIRONMENT 128

Goto the yellow key Pickup the blue box Pickup the green ball Goto the red key

Figuur 5.1: Example episodes in the BabyAI environment
The agent is represented as a red triangle. In each episode, the agent receives
the language instruction displayed on top.

description. Jiang et al. (2019) explores the compositional structure of natural
language in order to learn abstractions capable of generalizing over different sub-
tasks using language instructions. Unfortunately, these methods have proven to
still be very sample inefficient, requiring weeks of training in simulations, in order
to learn relatively simple tasks.

In this chapter, a natural language-guided transfer learning method is introduced.
The proposed method can make RL methods informed by natural language more
sample efficient, requiring less interaction with the environment. This is achieved
by providing a viable way of allowing an agent to efficiently adapt previously
learned knowledge (e.g., in the form of abstractions), to a new previously unseen
task. Current algorithms capable of quickly adapting their policies to solve related
tasks, mostly rely on intensive training using a diverse set of tasks (Hessel et al.,
2019), often guided by a hand-crafted curriculum of increasingly more difficult
and diverse tasks. Our method does not require such extensive training and is
capable of, given a small set of pre-trained policies, to make decisions about which
previously developed policy will adapt best, in order to solve a new previously
unseen task, solely from its task description formulated using natural language.
The novel proposed method can be seen as an approach to make RL more sample
efficient and facilitate lifelong learning through abstraction usage (Section 3.10.3).

5.2 BabyAI Environment

To demonstrate the introduced method, we make use of the BabyAI environment
(Chevalier-Boisvert et al., 2019). This general platform was proposed in order to
study the sample efficiency of grounded language acquisition.

In this environment, the agent is tasked with completing various tasks in a multi-
room 2D grid world. For our experiments, we consider a single room and test
our method on the goto and pickup problems. Some example tasks are plotted
in Figure 5.1. The task the agent is charged with is described using a synthe-

5.3. TASK-ADAPTATION METHOD: SAMPLING APPROACH 129

tic baby language. Instructions used in the transfer experiments follow the same
⟨verb, object color, object⟩ pattern (e.g., pick up the yellow box).

The pixels of the screen, together with this instruction, form the fully observable
state space S. The action space A consists of movement, handling objects, and
opening doors. The agent only receives a sparse success reward upon completing
the entire task.

5.3 Task-Adaptation Method: Sampling Approach

The main idea of the proposed approach is to start with a limited set of pre-trained
parameterized base control policies. These policies can be either used to solve
the task directly, or they can be linked to an abstraction in a hierarchical setup.
Ideally, instead of starting from scratch, we would like to reuse parameters from
a prior policy to jump-start a new task. It is however non-trivial to select such
a policy. Performing this selection intuitively requires a reliable measurement of
task similarity. The measurement of similarity of multiple MDP is an actively
studied topic (Ammar et al., 2014; Wang et al., 2019a; Visús et al., 2021), with
no single clear solution yet. Additionally, it is not certain that the most similar
task will also lead to the best transfer performance. Instead of relying on heuristic
similarity measurements, we instead propose to use a data-driven approach and
directly predict transfer performance from language instructions.

When confronted with a new task, described using language (the transfer instruc-
tion), the best base policy is selected, and the new task is learned more efficiently,
based on the parameters of this base policy. A summary of the proposed method
can be found in Algorithm 1.

Algorithm 1: Summary of the proposed task-adaptation method

1 α: k instructions sampled from the set of possible instructions Z
2 β: p instructions sampled from the set of possible instructions Z
3 foreach instruction i ∈ α do
4 Train base policy πi until convergence
5 foreach instruction j ∈ β do
6 Sample task-adaptation πj

i during n training steps. A new policy
πj is developed starting with the model parameters from base
policy πi.

7 Train the transfer model

5.3. TASK-ADAPTATION METHOD: SAMPLING APPROACH 130

5.3.1 Pre-training Base Control Policies

In the pre-training phase, k base control policies {π0, ..., πk} are trained. A single
base control policy πi(st) determines the action at ∈ A an agent takes, based on
the state st ∈ S the agent resides in. Each base control policy should reliably be
able to perform one instruction i. This task instruction is expressed in language
(e.g., go to the blue ball or pickup the yellow key).

Training base control policies can be done using any RL algorithm, capable of
learning and forgetting new tasks. The amount of pre-trained control policies
should be sufficiently large, but smaller than the entire set of possible instructi-
ons (k ≪ |Z|).

The proposed method can be used with a fixed number of base control policies,
which are trained during a single pre-training phase. Additionally, our method can
also be extended to work in an iterative fashion. In this iterative approach, the agent
starts with a small set of k pre-trained base control policies. When confronted with
a new task, our method determines the best base control policy to facilitate task
adaptation (e.g., πi). After training the new policy πj using the model parameters
from the selected base control policy πi, the resulting policy πj can be added to
the set of base control policies. This will allow the execution of more efficient task
adaptations, as more base control policies become available.

k instructions {z0, ..., zk} are selected in order to train base policies {π0, ..., πk},
from a uniform random distribution. However, an interesting extension to this re-
search might be to select base control policies based on a more advanced selection
criterion, such as maximizing the distance between the task instructions in a prior
language embedding.

5.3.2 Sampling Task-adaptations

The second phase of the proposed method consists of utilizing the developed base
control policies, in order to sample a limited number of task adaptations. A single
task-adaptation sample πj

i consists of taking a fully developed base control policy
πi and using it to perform a new instruction j, different from the one it was trained
on. An example of such a sample would include starting from a policy trained on
an instruction go to the yellow box, and utilize it to perform a different task, such
as pick up the yellow box.

A task adaptation sample is performed by loading the parameters of the base po-
licy as the initial parameters of the new policy. Training can be performed using
any RL algorithm. During this sampling phase the policy does not need to con-
verge. Training only needs to happen for a limited number of n steps. This amount

5.3. TASK-ADAPTATION METHOD: SAMPLING APPROACH 131

Instruction zx Transfer instruction zi Transfer instruction zj Class
Go to the green key Pickup the red ball Go to the yellow box 1
Go to the red ball Pickup the red ball Go to the yellow box 0

Tabel 5.1: Example input dataset, used to train the transfer-model

of required steps is significantly lower than fully developing the policy. After the
sampled task-adaptation has been executed for n steps, we measure the perfor-
mance. This can be done by, for example, calculating the success rate of the agent
satisfying the instruction over the last 100 iterations. For each base control policy,
we randomly select p different tasks from Z to sample task-adaptation.

In summary, in this phase, to develop the dataset, we run k × p task-adaptation
samples (for n training steps). The resulting policies, which are only partially
developed, can be used again in a later phase.

5.3.3 Training the Transfer-model

The final stage of the proposed method consists of training a binary classification
model: f(zx, zi, zj)→ {1, 0}. This model is capable of generalizing the perceived
task-adaptation over unseen adaptations, solely from using the task descriptions,
formulated in natural language.

The input of the proposed model (Figure 5.2) consists of a concatenation of the
sampled transfer instruction zx, combined with the instructions attached to two
candidate base policies (zi and zj). The output of the model consists of a single
binary output. This output is trained to be 1, if the first base policy with instruc-
tion zi will adapt better than the second base policy satisfying instruction zj . An
example dataset is presented in the Table 5.1.

𝑧" Go to the red ball

𝑧# Pickup the red ball

𝑧$ Go to the red key

La
ng

ua
ge

 e
m

be
dd

in
g

vo
ca

b_
si

ze
=1

0,
 e

m
be

dd
in

g_
di

m
=1

Transfer instruction

Instructions 𝑧", 𝑧# linked to
base policies

Go to the red ball

Best adaptation base-policy

Dr
op

ou
t (

p=
0.

2)

Re
lu

:L
in

ea
r(

24
)

Re
lu

:L
in

ea
r(

24
)

Si
gm

oi
d:

Li
ne

ar
(2

4)

Figuur 5.2: Transfer-model architecture
Two instructions linked to prior developed policies are compared in order to
predict the transfer performance on a novel task.

5.4. EMPIRICAL EVALUATION 132

In order to work directly with instructions in language, a language embedding is
used. This embedding is trained end-to-end, and thus is specifically trained to
encode instructions based on their transfer capabilities.

5.3.4 Transfer-model Usage

The resulting transfer-model can be used when the agent is confronted with a new
task description (in language), it currently has no developed policy for. Given a
set of labeled base policies, and the new task description, the various possibilities
can be tested in order to make an assessment of which base policy will result in
the fastest task-adaptation.

5.4 Empirical Evaluation

In order to find out whether patterns can be discovered in task-adaptations using
instructions expressed using natural language, we initially performed a large set
of 636 transfer experiments in the BabyAI environment. In each experiment we
initialized the new policy with the parameters of a prior fully developed policy,
and observed the transfer performance on a new task.

This initial study taught us that complex relations between parts of instructions
exist. For example in Figure 5.3 the importance of the verb in the task description
is presented. When confronted with a novel goto task it is clearly best to also start
from a base task trained on a goto task. While for a novel pickup task, it seems that
also starting from a goto task is slightly the better option. Similarly, Figure 5.4
shows the effect of the color, and Figure 5.5 the effect of the objects.

However, the discovered relationships between task instructions and transfer ca-
pabilities are not straightforward. In some cases the initialization had a positive
effect on the transfer performance, however, in some other studied cases the se-
lected pattern (e.g., start from the same color), performed worse than the average
baseline (take a random prior pre-trained policy).

In the second set of experiments, we examined if our proposed classification model
could uncover the adaptation patterns, and successfully generalize over the sam-
pled task-adaptations. To perform this, we trained different amounts k of randomly
sampled base control policies. While training can be done using any RL algorithm,
we used DQN (Mnih et al., 2015) in our experiments. Training a base control po-
licy is done using at least 1M steps, and ends when the policy achieves a success
rate of at least 95%, measured on the previous 100 episodes.
After developing k different base control policies, for each base control policy

5.4. EMPIRICAL EVALUATION 133

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

goto => goto

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

goto => pickup

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

pickup => goto

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

pickup => pickup

From scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer Transfer

Figuur 5.3: Task adaptation with similar/different task verbs
Comparison of how well different base control policies adapt to new tasks, ba-
sed on whether the verb in the instruction is the same or different. The solid
lines represent the mean, the shading represents the standard deviation. Measu-
red over 636 different transfer tasks.

5.4. EMPIRICAL EVALUATION 134

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

red => red

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e

red => green

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

red => blue

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

red => yellow

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

green => red

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

green => green

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e

green => blue

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

green => yellow

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

blue => red

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

blue => green

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

blue => blue

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e

blue => yellow

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

yellow => red

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

yellow => green

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

yellow => blue

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

yellow => yellow

From scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer Transfer

Figuur 5.4: Task adaptation with similar/different goal object colors
Comparison of how well different base control policies adapt to new tasks, ba-
sed on whether the color in the instruction is the same or different. The solid
lines represent the mean, the shading represents the standard deviation. Measu-
red over 636 different transfer tasks.

5.4. EMPIRICAL EVALUATION 135

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

ball => ball

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

ball => key

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

ball => box

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

key => ball

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

key => key

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

key => box

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

box => ball

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

box => key

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

box => box

From scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer TransferFrom scratch Random transfer Transfer

Figuur 5.5: Task adaptation with similar/different goal objects
Comparison of how well different base control policies adapt to new tasks, ba-
sed on whether the object in the instruction is the same or different. The solid
lines represent the mean, the shading represents the standard deviation. Measu-
red over 636 different transfer tasks.

5.5. CONCLUSION 136

p=8 p=10 p=12 p=14 p=18 p=20
k=8 0.61 ±0.03 0.62 ±0.03 0.61 ±0.05 0.64 ±0.05 0.65 ±0.02 0.66 ±0.03
k=10 0.62 ±0.03 0.62 ±0.05 0.64 ±0.06 0.62 ±0.04 0.66 ±0.03 0.67 ±0.02
k=12 0.67 ±0.02 0.67 ±0.01 0.66 ±0.02 0.67 ±0.02 0.68 ±0.02 0.66 ±0.04
k=14 0.64 ±0.04 0.66 ±0.02 0.67 ±0.03 0.69 ±0.01 0.69 ±0.03 0.68 ±0.01
k=18 0.67 ±0.03 0.68 ±0.02 0.68 ±0.03 0.71 ±0.01 0.70 ±0.02 0.71 ±0.02
k=20 0.69 ±0.01 0.68 ±0.05 0.70 ±0.02 0.69 ±0.04 0.71 ±0.03 0.71 ±0.03

Tabel 5.2: Accuracy of the task-adaptation classifier model. The different rows represent the
various amount of base control policies used during training (k), the columns re-
present the number of task-adaptations (p) sampled for each base control policy.
Results are averaged over 5 runs.

(n=100,000) p adaptations are sampled. The results gathered from these task
adaptations were used to train the transfer model (Adam lr=0.001, 1M steps).

In Table 5.2, we present the performance of our model, using various numbers of
base control policies (k), and different numbers of task-adaptation samples (p). We
measure model accuracy over a holdout-set consisting of all possible expressible
task-adaptations not seen during sampling. This accuracy measures the percentage
that our model selected the best base policy (2M steps).

Our results show that even with a limited number of k base control policies, and p
sampled task-adaptations, a transfer model can be developed. There is still room
for improvement regarding the accuracy of the model, however, the stochastic na-
ture of RL, makes task-transfer inherently noisy.

Nevertheless, efficient task-adaptation realized by the introduced method proves to
be a quintessential building block in lifelong learning settings (Silver et al., 2013).

5.5 Conclusion
In this chapter, we presented a method capable of predicting, given a set of base
control policies, labeled using language, which of these base control policies will
adapt the fastest to a new previously unseen task. In order to make assessments
about task-adaptation, our method uses a for this task specifically trained language
embedding as part of an end-to-end binary classification model.

The results experimentally demonstrate that this approach is capable of assessing
adaptation performance, solely from task descriptions. When confronted with an
expanding set of tasks in a lifelong-learning setting, the proposed method has the
potential to vastly improve sample efficiency.

Similarly, in a hierarchical setup in which abstractions are utilized, it makes a lot
of sense to not start the training process of each abstraction from scratch, but allow
the agent to expand its set of capabilities by adapting what it already knows.

6
Task-Adaptation Through Pre-Trained

Word Embeddings

The contributions presented in this chapter are based on the publication titled ”Pre-
trained Word Embeddings for Goal-conditional Transfer Learning in Reinforce-
ment Learning”.

6.1 Introduction

In order to build complex intelligent systems, an agent needs to be capable of
re-using and adapting previously learned traits. This property is often called the
learning-to-learn (Lake et al., 2017) ability of an agent.

A learning-to-learn approach could allow the agent to become more sample effi-
cient, by allowing the agent to build upon what it already learned in past similar
tasks. However, how to implement a learning-to-learn system in RL has remained
mostly an open question, and is one of the subjects of this thesis. In supervi-
sed machine learning with neural networks, training performance on vision tasks
can be significantly increased by re-using the initial layers of a previously trained
neural network. These initial layers learn to recognize features that are mostly
task-independent (Yosinski et al., 2014). Layers on top of these features learn to
map combinations of the resulting features to the output labels.

6.2. OBJECT NAVIGATION TASK SETTING 138

Similar approaches have been used in RL (Taylor and Stone, 2009). Especially in
deep RL, when working with high-dimensional inputs, it makes a lot of sense to
re-use parts of the (learned) visual pipeline across different tasks (Chaplot et al.,
2016). In the previous chapter, we proposed a method to make transfer decisions
based on the instructions of prior policies and novel tasks.

However, mapping a high-dimensional input to a latent representation is only part
of the RL problem. In RL, the agent also needs to explore the environment in
order to map actions to states. Such an action can consist of performing a single
primitive action, such as take one step forward. However, in Chapter 4 we de-
monstrated that exploration on a higher level of abstraction allows RL approaches
to solve more complex problems. These abstractions utilize multiple primitive
actions when exploring the environment (e.g., walk to the garden).

In this chapter, we demonstrate that prior knowledge of a deep RL agent can be
used as temporal abstractions in order to facilitate transfer learning to a novel pre-
viously unseen task. We do this by utilizing a goal-conditional agent. In this style,
the RL agent receives a combination of the current state and a goal vector as its
input. This is different from the previous chapter in which a policy was developed
for each different task.

Assuming a finite set of possible goals, the goal in a goal-conditional setting is
typically represented using a one-hot encoded vector. In this one-hot goal space,
the distance has no meaning, as the distance between different goals is always the
same.

In this chapter, we continue to express the goal of the agent using language. Howe-
ver, instead of learning an embedding from scratch such as we did in Chapters 4
and 5, we now transform words into numbers by utilizing a task-independent pre-
trained word embedding. This allows the agent to quickly link a new, previously
unseen goal to what it has already learned from past tasks. We experimentally
demonstrate that these kinds of pre-trained word goal embeddings can be used
to transfer knowledge in the form of temporal abstractions in a transfer learning
setting.

6.2 Object Navigation Task Setting

In this chapter, we are concerned with the problem of object navigation (Sec-
tion 2.6.2.3). In a single instance of this problem, the agent is randomly spawned
in a corridor and needs to navigate towards an up-front specified object in the en-
vironment. The episode is considered successful if the agent has positioned itself
near the goal object in a maximum of 500 steps.

6.2. OBJECT NAVIGATION TASK SETTING 139

Figuur 6.1: Top-down layout of the environment used in the experiments
The three rooms (bathroom, kitchen, bedroom) are connected through a long
corridor.

Figuur 6.2: Egocentric RGB observation MiniWorld
An example rendering of the viewpoint the agent receives as part of its state.

6.3. TASK-ADAPTATION METHOD: PRIOR EMBEDDING APPROACH 140

In order to solve this problem, the agent does not have access to a map of the
environment and only needs to rely on RGB sensory input.

For our experiments, we use a custom-designed level in the MiniWorld (Chevalier-
Boisvert, 2018) environment. This is a similar environment as used in Chap-
ter 4. Figure 6.1 shows the layout of the used environment. Figure 6.2 renders
an example observation of the agent.

The designed level mimics a small domestic apartment. Its layout consists of three
rooms connected through a corridor. Each room contains a number of typical
objects in fixed positions:

• Bathroom: shower, bathtub, toilet

• Kitchen: stove, toaster, table, microwave

• Bedroom: bed, wardrobe, nightstand

Objects are represented with spheres and cubes in different arbitrarily chosen co-
lors. For example, in Figure 6.2, the black box represents the table object. We have
chosen this abstract setup in order to be capable of fully focusing on the transfer
behavior without the interference of other complex sub-problems.

We re-use the reward function introduced in Chapter 4. After taking an action, the
agent receives a reward that is equal to the improvement of the distance to the goal
object. A slack penalty of -0.01 is added to the reward, in order to force the agent
to move. A bonus reward of 10 is awarded when reaching the goal object.

6.3 Task-Adaptation Method: Prior Embedding Ap-
proach

6.3.1 Goal-encoding

In order for an RL agent to be capable of executing multiple tasks or abstractions,
the required task can be specified to the agent using a goal vector (Section 3.7). In
our problem setting, this goal vector should correspond with the object the agent
needs to navigate to.

Typically, in order to encode different goals, a discrete one-hot encoding is used.
Unfortunately, when utilizing such a vector, the number of goals should be known
in advance, as it is not straightforward to alter a neural network that depends on
this vector.

6.3. TASK-ADAPTATION METHOD: PRIOR EMBEDDING APPROACH 141

Conv Conv Conv

BedGoal state:

GRU+ FC

Figuur 6.3: Goal-conditional architecture

However, in the lifelong learning setting (Silver et al., 2013) studied in this thesis,
we would like the agent to be capable of learning to navigate to new goals, without
having to explicitly define the number of goals in advance. In order to support this,
we propose encoding goals using a pre-trained word embedding.

Such a model is typically trained (Mikolov et al., 2013) by taking as input a large
corpus of texts and outputs a vector space. Words that appear in similar contexts
are trained to be also close to each other in the output vector space. We reason that
this prior knowledge can be of great use in a multi-task object navigation task and
that goals closer in word vector space will also transfer better between different
RL policies.

The pre-trained model we use (Honnibal and Montani, 2017) is trained on the
OntoNotes 5 (Weischedel et al., 2013) dataset. This dataset contains a large set of
different types of documents and is not linked in any way with our task setting.
The resulting model is capable of expressing a goal description with continuous
vectors of size R300.

6.3.2 Training Architecture

In order to allow our agent to solve object navigation tasks, we use a standard
DRQN architecture (Hausknecht and Stone, 2015). We use the recurrent flavor
(with sequence-length 8) of the DQN algorithm (Mnih et al., 2015) because the
current state does not contain enough information for the agent to successfully na-
vigate the environment. The goal vector is concatenated with the visual perception
part of our architecture. This architecture is displayed in Figure 6.3.

6.3.3 Transfer

In order for our lifelong learning agent to be capable of transferring knowledge
from one task to another task, we utilized the parameters of a prior policy in order
to bootstrap the new policy in Chapter 5.

6.4. EMPIRICAL EVALUATION 142

Within this chapter, we propose an alternative, which consists of adapting the ϵ-
greedy exploration scheme (Watkins, 1989). In this scheme, the agent takes a
random action ϵ percent of the time, instead of greedily following the current po-
licy π. This allows the agent to explore (potentially better) actions, it would nor-
mally not take under the current policy. This ϵ value is typically decayed during
training as the agent becomes more confident in its policy. Taking into account
experiences collected through following a different policy (e.g., a random or prior
policy) requires an off-policy learning algorithm.

We propose to instead of purely taking random exploratory actions in order to navi-
gate to a new goal (e.g., bathtub), to also explore actions that would correspond to
the action the agent would take if it would be provided with a different goal-vector
which the agent already has mastered before (e.g., shower).

However, how can the agent know which goal vector will transfer best to satisfy
the new unseen goal? We propose to solve this question by measuring the cosine
similarity of the unseen goal object and the mastered goal objects in their word
embedding space. As these embeddings are trained to put words that are often
related to each other close to each other in the vector space, we reason that goals
close in this space will most commonly also be located in similar positions in
typical building layouts.

Intuitively using knowledge from a prior object goal allows the agent to use this
knowledge as a form of temporal abstraction, which corresponds to navigating to
the room the object can most likely be found.

It however remains essential that the agent keeps doing enough exploration, espe-
cially in states close to the prior goal object. We propose to introduce a sampling
rate hyperparameter α in order to balance the trade-off between biased sampling
from the prior policy, and random exploration.

In summary, the policy of our agent when tasked with reaching goal z, word em-
beddingM and prior goals ω0...i ∈ Ω consists of the following parts:

• P (1− ϵ): take greedy action π(st, z)

• P (ϵ∗α): sample action from π(s, ω) with w = argmaxw(cos(M(z),M(w))

• P (ϵ ∗ (1− α)): take random action

6.4 Empirical Evaluation

Experiments are terminated after reaching a success rate of 0.95 on the last 100,000
steps (and only minimal exploration ϵ = 0.01 is done). In all experiments, ϵ is

6.4. EMPIRICAL EVALUATION 143

0.5 1.0 1.5 2.0 2.5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e
language
one hot

Figuur 6.4: Comparing one-hot encoding vs language goal-vector
Experiment completed on a set of 4 goals. Results are averaged over 3 runs.

linearly decayed over 1M steps, and we use an experience replay buffer of size
500,000.

6.4.1 Using Language Goal-vector vs One-hot Goal vector

In our first experiment, we examine the impact of the goal vector on the training
performance when training a goal-conditional agent on a set of four different goals.

The results of our experiments presented in Figure 6.4 give an indication that di-
rectly specifying the goal object using the word embedding (R300) has no sig-
nificant negative effect over using a one-hot goal object encoding (R10). There
also seems to be an interesting relation that using the word goal descriptions has
a slightly positive effect on exploration, and using the one-hot encoding seems to
work better when the policy is almost (ϵ = 0.01) completely greedy (after 1M
timesteps).

Using the goal word embedding for our lifelong learning agent is ideal, as we do
not need to specify the amount of possible goal objects upfront. The word goal
embedding allows us to input a large number of goals (the used model has 20k
unique vectors).

6.4. EMPIRICAL EVALUATION 144

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e

10 goals
4 goals
2 goals

Figuur 6.5: Comparing training performance on different sizes of goal object sets
Results are averaged over 3 runs.

6.4.2 Initial Training on Limited Goal Sets

We would like our lifelong agent to be capable of navigating to as many goals
as possible. In order to do so, we could train our agent on a large set of goals.
However, research has demonstrated (Narvekar et al., 2020) that using a carefully
selected task curriculum often leads to better results.

We plotted the results of training our agent using different sizes of goal sets, in
Figure 6.5. These results demonstrate that initial larger sets of goals are signifi-
cantly harder to train. This finding supports our claim that a lifelong learning agent
significantly benefits from first learning a small sub-set of goals, and gradually ex-
panding its capabilities through transfer learning.

6.4.3 Transfer to New Objects Using a Prior Policy

In the final experiment, we allow the agent to transfer knowledge from one goal
object to a different unseen goal object using the transfer mechanism described in
Section 6.3.3.

We start with a policy that has been trained to reliably reach four goal objects in
the environment (shower, toilet, bed and toaster). In this experiment, we test the
transfer capability of our algorithm in order to learn to reach a new goal object
bathtub using a prior sampling rate of α = 0.2. The new policy is randomly
initialized.

6.4. EMPIRICAL EVALUATION 145

shower toilet bed toaster
Prior goal objects

bathtub

wardrobe

nightstand

stove

table

microwave

Ho
ld

ou
t g

oa
l o

bj
ec

t

0.76 0.69 0.5 0.38

0.43 0.37 0.39 0.25

0.4 0.41 0.53 0.31

0.43 0.44 0.42 0.61

0.39 0.36 0.44 0.25

0.4 0.37 0.33 0.67

Figuur 6.6: Cosine similarity of holdout goal objects and prior goal objects in the word
embedding

0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Shower=>Bathtub
Toilet=>Bathtub
Bed=>Bathtub
Toaster=>Bathtub
Bathtub (no prior)

Figuur 6.7: Comparison of using different prior goals in order to learn how to reach a
new unseen goal object (bathtub)
Results are averaged over 3 runs.

6.5. CONCLUSION 146

The results of this experiment, plotted in Figure 6.7, demonstrate that the goal ob-
ject that transfers best to the new unseen goal object (bathtub) is shower, which
is also the goal object that is closest in language space (Figure 6.6). The perfor-
mance when using the second-closest goal (toilet) in language space also performs
similarly.

Unrelated goals such as bed and toaster hinder the agent, steering the agent to the
wrong room (kitchen) and we observe a negative transfer effect compared to just
learning to navigate to the goal without any prior knowledge.

6.5 Conclusion

In this chapter, we presented our preliminary ideas on how language can assist
an RL agent in a lifelong learning setting through the usage of prior knowledge
contained in word embeddings. The work done in this chapter removes the depen-
dency on expensive adaptation sampling (Chapter 5), and serves as the foundation
for the Disagreement Options method developed in the next chapter.

The proposed approach consists of training the agent on small sets of goals, di-
rectly inputting the goal descriptions in natural language. We utilize the similarity
of descriptions of seen and unseen goal objects in language in order to decide how
to transfer existing knowledge to novel tasks. In order to transfer knowledge, we
propose a simple, but effective transfer mechanism. We support the method with
results in a 3D simulated domestic environment.

7
Disagreement Options

The contributions presented in this chapter are based on the publication titled ”Dis-
agreement Options: Task Adaptation Through Temporally Extended Actions”.

7.1 Introduction

Humans acquire a wide range of different skills over a lifetime. We are capable of
solving complex new problems by quickly adapting, and combining these skills.
For example, when learning how to ride a motorbike, balancing skills learned from
riding a bicycle might be re-utilized.

But how do we know which prior skills can be useful when confronted with a
new task? We could use trial-and-error learning, and test which of our prior skills
works best in a new situation. This approach is commonly used in HRL approaches
(Chapter 3).

However, when able to communicate, language is a much more efficient instrument
to communicate how different skills can be transferred, in order to solve new tasks
(Chapters 5 and 6). For example, one could say to someone who is learning how
to ride a motorbike that: riding a motorbike is just like riding a bicycle. Or, in
order to find a new object, one typically can explain how to find it in terms of the

7.2. POLICY TRAINING 148

relation with other objects we already are able to localize: e.g., the microwave is
on top of the fridge.

As discussed before, current RL approaches typically start training from scratch
and offer no solution on how to efficiently extend the capabilities of an agent over
its lifetime (Silver et al., 2013). This is especially an important problem in real-
world embodied systems (e.g., a collaborative robot). In this setting, an agent
typically has no access to large amounts of computing resources and needs to come
up with new solutions in a reasonable timeframe.

In order to work towards real-world embodied systems, capable of quickly adap-
ting their knowledge to novel tasks, inspired by the way humans learn through
communication, we introduce a novel HRL method in this chapter. Our overar-
ching method simultaneously formulates an answer to two important questions:

• Which prior skills are useful when learning how to solve a new task? (also
studied in Chapters 5 and 6)

• How can we solve the trade-off between utilizing prior knowledge, and ac-
quiring new skills by exploring the environment? (also studied in Chapters 4
and 6)

We answer these questions by utilizing pre-trained word embeddings introduced in
Chapter 6 to select source tasks based on their goal descriptions in natural langu-
age. We utilize the disagreement between prior policy action distributions in order
to decide when to exploit the priors, and when to explore novel paths.

Our answers to these two questions allow an agent to use prior knowledge effi-
ciently as temporally extended actions.

7.2 Policy Training

In order to train a policy, we opted to use Sample Efficient Actor-Critic with Expe-
rience Replay (ACER) (Wang et al., 2017b) as it utilizes recent variance reduction
techniques, parallel training, and off-policy updates using an experience replay
buffer. More specifically we choose ACER because of the following properties:

• Focus on sample efficiency through the usage of an experience replay buffer,
which allows the usage of environment experiences multiple times.

• Off-policy updates through importance sampling allows for our adaptation
method to utilize actions sampled from a different distribution (the prior
policies).

7.3. METHOD 149

• The policy directly outputs a distribution over actions which we can compare
with other policies.

In ACER on each training iteration, there is an on-policy update after taking n
rollout steps. Afterward, there are also one or multiple off-policy updates by taking
samples from a replay buffer.

7.3 Method

Our method is concerned with utilizing prior knowledge as temporally extended
actions (options) in order to increase the sample efficiency, the required interacti-
ons with the environment, when learning new tasks.

The approach can be divided into two distinct sub-systems, which each address an
important question. The task similarity system (Section 7.3.1) is concerned with
selecting useful prior knowledge which will be best suited in order to solve the
novel task. For example: would a bicycle riding skill be more useful than a car
driving skill when learning how to ride a motorbike? Once we have selected which
priors we would like to use, the task adaptation phase (Section 7.3.2) is initiated in
order to train a new policy by intelligently reasoning when to utilize prior know-
ledge as temporally extended actions, and when to explore the environment. The
agent assumes the presence of a set of prior policies, we discuss some possibilities
on how to acquire such priors in Section 7.3.3.

The pseudocode of the entire approach is presented in Algorithm 2.

7.3.1 Task Similarity: How to select relevant priors?

The agent is provided with a set of different prior policies {πg1 , ..., πgi}, all ca-
pable of reliably performing one or multiple different tasks {g1, ..., gi}. In order
to decide which prior policies are useful as prior knowledge when learning a new
task, we make use of natural language. The reasoning which we also introduced
in the previous chapter, is that when goal descriptions are close in language space,
they are potentially also close in policy space (Fulda et al., 2017).

More specifically, we use the same pre-trained word embedding from the previous
chapter (Honnibal et al., 2020). This embedding was pre-trained on a set of tasks
that are not tailored to our setting, utilizing the OntoNotes 5 (Weischedel et al.,
2013) dataset. Our embedding is trained (Mikolov et al., 2013) by taking as input
a large corpus of texts and outputs a vector space R300. Words that appear in

7.3. METHOD 150

Algorithm 2: Disagreement Options
M(·): Pre-trained word-embedding
B: disagreement score buffer with max size α
π(st, gt): new policy under training

while agent rollout in progress do
Observe state st and goal gt
x ∼ U(0, 1)
if x < H(π(st, gt))− 0.1 then

Find 2 closest prior policies (πz1, πz2) according to:
zi = argmaxzi(cos(M(gt),M(zi))

Calculate disagreement score:
d1 = DKL(πz1(st, z1)||πz2(st, z2))
d2 = DKL(πz2(st, z2)||πz1(st, z1))
d = min(d1, d2)

Add disagreement score to buffer B

if
∑α

i Bi/α > β then
x ∼ U(0, 1)
if x < 0.5 then

Perform action at ∼ πz1(st, z1)
else

Perform action at ∼ πz2(st, z2)
else

Perform action at ∼ π(st, gt)
Store ⟨st, at, st+1, gt, rt+1⟩ in ACER experience replay buffer

Perform ACER on-policy update
Perform n ACER off-policy updates

7.3. METHOD 151

similar contexts are trained to also be close to each other in the resulting vector
space.

When confronted with a new goal gt, we calculate the cosine similarity of the
resulting vector, after being processed through the word-embedding M(x) with
all labels {z0, ..., zi} attached to the available prior policies {πz0 , ..., πzi}:

zi = argmaxzi(cos(M(gt),M(zi)) (7.1)

We select the two policies whose labels are closest to the new goal in the word-
embedding space as prior knowledge. Our method requires at least two policies
in order to calculate a disagreement between their action distributions in the next
phase. We use the minimum of two prior policies in the rest of this chapter, as prior
knowledge is often expensive to acquire. However, it’s a straightforward extension
to adapt our method to use more priors. The cosine similarity between goal objects
used in our experiments is pictured in Figure 7.1. For example, in an ObjectNav
task, when asked to navigate to a new goal object shower, policies attached to
goals such as bathtub and toilet are most similar in the word-embedding space,
and will be selected (if available) as most potent source tasks.

7.3.2 Task Adaptation: How should we use the prior know-
ledge?

Once we have selected the prior policies which we expect to be most useful, we
can utilize these priors in order to solve the novel task. We treat the selected prior
policies as options (Section 3.6). Thus, the agent now needs to decide when to use
its primitive actions in order to explore, and when to follow the option policies in
order to quickly reach new parts of the state space. This explore/exploit challenge,
is one of the key challenges of RL. While this problem is typically addressed on
the low-level primitive action level, in this chapter we address this problem on a
higher level of abstraction.

This setting requires a delicate balance because when the agent would only fol-
low the temporally extended actions greedily, it would not be capable of learning
anything new. So, ideally, the agent should be capable of assessing when it should
greedily follow the priors, and when it should explore. For example, when we are
trying to locate a toothbrush object in a house, a temporally extended action that
would take the agent to the bathroom is a useful prior. However, once we have
entered the bathroom, the agent should explore within it, in order to extend its
capabilities.

7.3. METHOD 152

sh
ow

er

ba
th

tu
b

to
ile

t

be
d

wa
rd

ro
be

ni
gh

ts
ta

nd

st
ov

e

to
as

te
r

ta
bl

e

m
icr

ow
av

e

po
ta

to

ye
llo

w

shower

bathtub

toilet

bed

wardrobe

nightstand

stove

toaster

table

microwave

potato

yellow

1.0000 0.7559 0.7313 0.5398 0.4289 0.4032 0.4302 0.3287 0.3871 0.4006 0.1394 0.2317

0.7559 1.0000 0.6916 0.4998 0.3479 0.4294 0.4341 0.3751 0.3213 0.3826 0.1245 0.1862

0.7313 0.6916 1.0000 0.5031 0.3733 0.4146 0.4378 0.3256 0.3577 0.3699 0.1820 0.2040

0.5398 0.4998 0.5031 1.0000 0.3894 0.5253 0.4160 0.2494 0.4405 0.3285 0.2533 0.2473

0.4289 0.3479 0.3733 0.3894 1.0000 0.6159 0.3392 0.2521 0.2815 0.2167 0.1345 0.1918

0.4032 0.4294 0.4146 0.5253 0.6159 1.0000 0.3795 0.3112 0.4619 0.2643 0.1600 0.2153

0.4302 0.4341 0.4378 0.4160 0.3392 0.3795 1.0000 0.6051 0.3401 0.6308 0.3130 0.1694

0.3287 0.3751 0.3256 0.2494 0.2521 0.3112 0.6051 1.0000 0.2483 0.6674 0.3340 0.1219

0.3871 0.3213 0.3577 0.4405 0.2815 0.4619 0.3401 0.2483 1.0000 0.2561 0.2806 0.2382

0.4006 0.3826 0.3699 0.3285 0.2167 0.2643 0.6308 0.6674 0.2561 1.0000 0.3848 0.1472

0.1394 0.1245 0.1820 0.2533 0.1345 0.1600 0.3130 0.3340 0.2806 0.3848 1.0000 0.3625

0.2317 0.1862 0.2040 0.2473 0.1918 0.2153 0.1694 0.1219 0.2382 0.1472 0.3625 1.0000

Figuur 7.1: Similarity scores of different goals in the word-embedding space
These scores are used in order to decide what prior knowledge to use.

7.3. METHOD 153

Note that if the agent had access to a sensor that knows in which room the agent
resides, this sensor could be used to steer the termination of the active option. Un-
fortunately, such a sensor is not commonly available, and we propose an alternative
scheme based on the disagreement between priors, to steer option termination.

In order to decide when to use prior knowledge, we utilize the action distributions
of the selected prior policies. Given a state st these prior policies output different
action distributions. We reason that when these distributions align, measured by
the Kullback-Leibler (KL) divergence between them, it is useful to greedily follow
these policies as a temporally extended action. We call this score the disagreement
score.

DKL(πz1(st)||πz2(st)) =
∑
a

πz1(a|st) log
πz1(a|st)
πz2(a|st)

(7.2)

Because the KL divergence is not symmetric, we calculate the disagreement score
as follows:

d = min [DKL(πz1(st)||πz2(st)), DKL(πz2(st)||πz1(st))] (7.3)

By using the minimum we slightly favor utilizing the prior knowledge, which ex-
perimentally yielded the best results.

When the two prior policies diverge on what the action of the agent should be, we
terminate the temporally extended action and let the agent explore by itself. For
example, two policies that pursue a towel and a toothbrush object, will have similar
action distributions up until they reach the bathroom. Upon entering the bathroom
the action distributions diverge because their implicit high-level navigation target
changed from reaching the bathroom to reaching the individual objects.

Because the action distributions of the prior policies can be noisy, we utilize a
moving average of the disagreement scores B acquired over the last α steps. On
each training step, we compare this moving average against a threshold β in order
to decide when to use our prior knowledge, and when to terminate the temporally
extended action:

at =

{
πz1(st), if

∑α
i Bi/α > β

π(st), otherwise
(7.4)

When the prior policies are in agreement, we randomly sample the recommended
best action from one of the prior policies. As their divergence is small, they will
output similar actions, so it does not matter which one to sample from. We take
this action in the environment and use it to update the new policy. In contrast, if

7.3. METHOD 154

there is disagreement, the agent uses the new policy to explore, by sampling an
action from it.

While the disagreement window α and the disagreement threshold β are hyper-
parameters, which potentially are subject to an expensive search in order to get
optimal values, we experimentally demonstrate that approximate optimal values
can be found easily.

Because ACER has an experience replay buffer, and utilizes off-policy training,
after a few iterations, prior knowledge will have found its way into the buffer, and
thus also into the new policy. In order to gradually reduce the dependency on the
priors, we only rely on the priors when the entropy of the action distribution of
the new policy for the current observed stateH(π(st, gt)) is still high. We assume
this distribution entropy lowers as the new policy learns the new task. This is
a realistic assumption in a deterministic environment in which an optimal policy
will converge to assigning almost all probability to a single action given a state.
The entropy measurement is used to gradually reduce the probability of invoking
the temporally extended actions:

I(st) = P (x ∼ U(0, 1)) < H(π(st))− 0.1 (7.5)

We correct this probability with a small factor−0.1 in order to encourage explora-
tion early on in training. Increasing this factor will reduce the usage of the priors.

7.3.3 Prior Policy Acquisition

We assume prior policies are provided a priori to the agent. A lot of different opti-
ons are available to acquire such source policies. One could use any RL algorithm
to train a policy. We especially envision RL methods that maximize entropy to
be potent methods to acquire diverse prior policies. For example, VIC (Gregor
et al., 2016) tries to maximize the number of different states the agent can reach by
maximizing the mutual information between the set of skills and their termination
states.

We also deem it possible to use an imitation learning approach (Ho and Ermon,
2016; Ross et al., 2011) to bootstrap the agent, utilizing policies compiled from
(human) expert demonstrations.

7.4. EMPIRICAL EVALUATION 155

7.4 Empirical Evaluation

This section empirically demonstrates the effectiveness of the introduced method
in two different settings: a simple 3D gridworld and the photo-realistic Habitat
simulator.

(a) MiniWorld environment (b) Habitat environment

Figuur 7.2: Example egocentric RGB states used in the experiments

7.4.1 3D MiniWorld

The setting of our first set of experiments consists of a visually basic 3D world
also used in the empirical evaluation in Chapter 6. In this environment, we simu-
late a domestic apartment setting with three fixed different designated rooms: a
bedroom, a kitchen, and a bathroom. Each room has a visually distinct theme and
has multiple objects in it. The objects are represented using differently colored
cubes in fixed positions. These three rooms are connected by a corridor. The agent
always starts in a random position in this corridor. This setting is implemented as
a custom level in the MiniWorld (Chevalier-Boisvert, 2018) environment.

In each episode, the agent is tasked with finding an object in this environment.
The state space consists only of the egocentric RGB render (e.g., Figure 7.2a).
Additionally, the agent observes a densely defined reward signal, which consists
of the decrease of distance between the agent and the goal object. We also penalize
the agent for slacking by subtracting a negative reward of -0.01 for each step taken.
A positive reward of 10 is rewarded upon reaching a minimum distance to the goal
object. The agent is allowed a maximum of 500 steps to reach the goal.

7.4. EMPIRICAL EVALUATION 156

20 40 60 80 100 120 140
Timesteps 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

su
cc

es
s r

at
e

From scratch
Room sensor
Disagreement Options

(a) New goal object: bathtub, priors: shower, toilet

20 40 60 80 100 120 140
Timesteps 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

su
cc

es
s r

at
e

From scratch
Room sensor
Disagreement Options

(b) New goal object: nightstand, priors: bed, wardrobe

Figuur 7.3: Average success rate of our disagreement agent (green) and our disagree-
ment agent with a room sensor (orange)
We compare with learning the task from scratch (blue). Results are averaged
over 10 runs and utilized window size α = 10 and disagreement threshold
β = 0.1.

7.4. EMPIRICAL EVALUATION 157

Figuur 7.4: Example trajectory of the disagreement agent followed during training
In the green part of the trajectory the agent follows the prior, in the blue part
the agent explores the environment. In this case, the agent has access to a room
sensor and only explores in the room of the goal object.

7.4.1.1 Room Sensor

In order to validate our hypothesis that prior knowledge can be useful to navigate
the agent to the room with the goal object in it, we first equip the agent with a
room sensor. This sensor informs the agent when it is positioned in the corridor,
and thus should follow the prior policies greedily, in order to navigate to the room
containing the goal object. We selected prior policies which were trained on goal
objects that are in the same room as the new goal object. Once inside the correct
room, the agent knows not to follow the prior anymore, but to explore by itself.

When utilizing this room sensor with prior policies capable of navigating to the
shower and toilet goal objects, our results show that the agent almost instantly
(50k training steps) is capable of adapting to reliably reach the new bathtub goal
(Figure 7.3a). Similarly, the agent is capable of quickly learning to navigate to
the nightstand goal object using prior policies capable of reaching the bed and
wardrobe (Figure 7.3b). We plot an example trajectory followed during training
in Figure 7.4. In this trajectory, the usage of prior knowledge that led the agent to
the correct room is plotted in green, while the exploratory part of the trajectory is
plotted in blue.

7.4.1.2 Disagreement Options

However, a room sensor is not something an autonomous agent typically has access
to. In the second set of experiments, we wanted to validate whether the disagree-
ment options provide a similar efficient usage of prior knowledge without such a
sensor. As plotted in Figure 7.3, the agent is capable of efficiently utilizing the
prior knowledge when using the disagreement scheme (α = 10, β = 0.1), starting
with a success rate averaging 60-80%, and quickly getting an average success rate

7.4. EMPIRICAL EVALUATION 158

20 40 60 80 100 120 140
Timesteps 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

su
cc

es
s r

at
e

=0
=0.05
=0.1
=0.5
=1

Figuur 7.5: Ablation study of the disagreement threshold in the MiniWorld environ-
ment
A value of 0 never utilizes the prior knowledge, while a value of 1 does not
explore the environment (when the action distribution entropy is still high at the
beginning of training). Results are averaged over 10 runs. (new goal: bathtub,
priors: shower, toilet)

20 40 60 80 100 120 140
Timesteps 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

su
cc

es
s r

at
e

=1
=3
=10
=20

Figuur 7.6: Average success rate of our disagreement agent in the MiniWorld environ-
ment on the bathtub task
We compare different disagreement window sizes. Longer disagreement win-
dows lead to more stable utilization of the temporally extended actions. Results
are averaged over 10 runs.

7.4. EMPIRICAL EVALUATION 159

(a) Window size α = 1

(b) Window size α = 3

(c) Window size α = 10

Figuur 7.7: Example trajectories of the disagreement agent using different disagree-
ment windows in the MiniWorld environment
Parts of the trajectory marked in green utilized the prior knowledge, in blue
parts the agent explored. In this setting larger disagreement windows lead to
more stable utilization of the prior knowledge.

7.4. EMPIRICAL EVALUATION 160

Figuur 7.8: An example trajectory of the agent in a scan of The Beacon office building.
The red star is the new goal, while the prior goals are marked with a yellow
circle.

of nearly 100%.

We also did an ablation study of our hyperparameters in this setting. In Figure 7.5,
we demonstrate the impact of the disagreement threshold β. When setting the
value too high, the agent does not explore enough, while a too low β value will
only marginally benefit the task adaptation.

Figure 7.6 presents the impact of the disagreement window size α. In this setting,
larger window sizes (α > 3) are more efficient, as smaller window sizes lead to
noisy trajectories, while a larger window size allows the agent to exploit the prior
knowledge more systematically (Figure 7.7).

7.4.2 Photorealistic Simulator

For our second set of experiments, we use the Habitat photorealistic simulator
(Savva et al., 2019) and a 3D scan of our office floor (Section 8.2). This envi-
ronment is considerably more challenging than the MiniWorld environment, both
structurally and visually. We use the same reward setting as in our MiniWorld ex-
periments. Similar to the MiniWorld environment, the agent only has access to a

7.5. DISCUSSION 161

50 100 150 200 250 300
Timesteps 1e3

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
su

cc
es

s r
at

e

From scratch
Disagreement Options

Figuur 7.9: Results of the disagreement agent in the photorealistic Habitat simulator
Disagreement agent (green) (window size α = 10, disagreement threshold β =
0.1) compared to learning the task from scratch. Results are averaged over 10
runs.

visual RGB egocentric observation of the current state. In this setting, the agent
starts in a completely random position and is allowed to take 500 actions in order
to reach a new goal in a fixed position (the main table in the office canteen). In
order to master this novel task, the agent has access to two prior policies which are
capable of navigating to two other goals within the canteen.

The results from using our disagreement options within this environment can be
found in Figure 7.9. While this task is considerably harder in terms of structure
than the MiniWorld tasks, the agent is capable of utilizing the prior knowledge in
order to reach a nearly perfect average success rate on the novel task considerably
faster (150k training steps vs 250k training steps), than if the agent would have to
start from scratch.

7.5 Discussion

Our task-adaptation method is supported by the assumption that goals that are
close in language space should also be close in policy space. However, this might
not always be the case. If the agent selects prior goals which are physically located
nowhere near the new goal, but in different locations, our method will not hinder
progress as the priors will always disagree, and thus the agent will not use the
priors. If however, the wrong priors do agree on the next action, the agent will be
steered in the wrong direction, and learning will be slower. In these settings, the

7.6. CONCLUSION 162

disagreement threshold could be lowered.

In our experiments, we utilized a deterministic environment. If the environment
is completely stochastic (e.g., all objects are randomly placed in random rooms)
our method would not be able to utilize prior knowledge. However, if objects are
placed in random positions, but always in the same rooms, our adaptation method
would still be capable of adapting, and could even benefit from the learned ability
of the priors to explore a certain room.

7.6 Conclusion

In this chapter, through building upon the research presented in Chapters 5 and 6,
a novel overarching method was introduced to transfer prior knowledge from prior
tasks to a new task through temporally extended actions. We do this by selecting
prior knowledge based on cosine similarity in a prior word-embedding space. In
order to decide when to utilize the selected prior knowledge, and when to explore
our environment, we rely on the disagreement between action distributions of the
selected priors.

We demonstrate the effectiveness of our method in a visually simple 3D MiniWorld
and a photorealistic simulator. We also hint at how our method might be used in
the real world to expand the capabilities of a real-world embodied agent.

Because our method only relies on goals formulated in natural language and ego-
centric visual observations, we can also potentially use our method in a real-world
setting. In this setting we let the agent solve different tasks in simulation, and
through sim2real techniques, utilize them in the real world. When confronted with
a new task in the real world, the agent could use the prior knowledge gathered in
simulation to solve the novel task considerably faster in the real world.

It is often not possible to define a dense reward signal in the real world. The use of
prior knowledge allows our agent to efficiently reach states closer to the goal object
and thus increases the chance of the agent obtaining positive learning signals. This
allows us to believe that it might be possible to learn only from sparse reward
signals, which are more obtainable in real-world scenarios. In the final chapters
of this thesis, we will lay the foundation for utilizing the developed approaches in
such real-world scenarios.

8
Real-World PointGoal Navigation

The contributions presented in this chapter are based on the publication titled ”A
Multimodal AI Approach for Intuitively Instructable Autonomous Systems: A Case
Study of an Autonomous Off-Highway Vehicle”.

8.1 Introduction

The work presented so far focussed on making RL approaches more sample ef-
ficient through utilizing abstractions and allowing these abstractions to quickly
adapt. Unfortunately, the introduced approaches are still too sample inefficient in
order for them to be trained directly in a real-world environment.

In this chapter, we present two alternative approaches in order to use RL approa-
ches in real-world environments. The first approach makes use of a simulator to
train the policy. The second approach utilizes a digital twin in order to perform
PointGoal navigation in the real world.

8.2. SIM2REAL: THE BEACON OFFICE SIMULATOR 164

Figuur 8.1: Example RGB and depth observations obtained in the real world (top row),
and in simulation (bottom row)
While the state looks similar to a human observer, possibly due to noise and
different lighting conditions, a trained agent takes different actions depending
on which type of observations it receives (right bar plots).

8.2 Sim2Real: The Beacon Office Simulator

In order to train RL in a real-world setting, issues such as safety considerations
and automatic resets should be considered (Dulac-Arnold et al., 2019; Zhu et al.,
2020).

Instead of directly training on real-world high-dimensional observations a sim2real
approach has also been researched intensively. In this approach, the RL agent is
trained in a simulated environment, and the resulting policy is then directly utilized
in a real-world environment.

The sim2real approach is however plagued with two major issues. The first issue
consists of the fact that it is difficult to simulate sensors realistically. Real-world
sensors are often subject to noise, while their simulated counterparts are not. Si-
milarly, simulated physics is often different from those exhibited in the real world.
While most simulators have perfect actuation, real wheels exhibit issues such as
wheel slippage.

The gap between real-world sensors (Figure 8.1) and their simulated counterparts
can somewhat be mitigated by also simulating their noise behaviors. However, a
second issue that has often been observed is the overfitting of the learned agent to
the simulator (Truong et al., 2022). This is especially a problem if the simulator
contains bugs that the agent could exploit. An example of such a discovered bug is
wall sliding (Kadian et al., 2019). In this case, the simulated agent slightly moves

8.3. DIGITAL TWIN 165

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

Depth sensor

Figuur 8.2: Baseline training performance of a DD-PPO (Wijmans et al., 2020) agent in the
Beacon environment

to the left or right when colliding with an obstacle. A navigation policy could then
be obtained by deliberately colliding with walls in order to find an opening in a
narrow corridor without utilizing any visual sensor information.

In order to study these phenomena a 3D scan of the office building of the IDLab
research group (called The Beacon) was made. Having easy access to both the
real version and the simulated version of the same environment allows researchers
and students to work in short feedback loops. This environment has already been
successfully utilized in order to complete PointGoal, ObjectGoal, and AreaGoal
tasks.

The scan was made using a special Matterport Pro2 camera. This scan was then
compiled in order to become a scene in the Habitat (Savva et al., 2019) simulator.

8.2.1 Training

As a baseline a DD-PPO agent (Wijmans et al., 2020) was trained for 1B steps
using 4 workers on the PointGoal task (Section 2.6.2.1). Training this model ta-
kes about 26 hours using a Tesla V100 GPU. The performance observed during
training is plotted in Figure 8.2

8.3. DIGITAL TWIN 166

Figuur 8.3: Digital twin interface
The planned trajectory is displayed on the top left. The RGB observation of the
digital twin is visible on the bottom left.

8.3 Digital Twin

As discussed before in this thesis, RL is too sample inefficient to be directly trained
in real-world environments. A common approach is to instead train in simulation,
and deploy the resulting policy in the real world. This approach is however not
always viable if simulated sensor observations differ too much from their real-
world counterparts.

In this section, we propose an alternative to this sim2real approach. The presented
solution consists of utilizing a digital twin. A digital twin is a digital representa-
tion of a real-world concept. In this section, we utilize a digital twin of a tractor
that is kept in sync with its real-world counterpart. The main input from the real
world was the signal from the Global Navigation Satellite System (GNSS) recei-
ver (Septentrio AsteRx-U) on the tractor, which was then mapped to the digital
twin coordinates system. The GNSS had a dual antenna setup which could then
provide the heading of the platform as well. Using a cloud-based service, updates
were provided in real-time to the digital twin environment to exactly position the
simulated tractor as the real-world counterpart. The output from the simulator was
the suggested trajectory to the goal pose.

A digital twin of the environment was constructed through constructing a 3D scan
of the testing ground. Through utilizing a digital twin the sensors utilized during
training, and the actual deployment of the policy are the same, so the sim2real gap
is avoided. In order to test this approach a PointGoal navigation agent was trained
and deployed (Figure 8.3).

8.3. DIGITAL TWIN 167

Figuur 8.4: DD-PPO Architecture

8.3.1 Architecture and Training

The presented RL approach makes use of the Decentralized Distributed Proximal
Policy Optimization (DD-PPO) architecture (Wijmans et al., 2020). The RL ap-
proach is able to map high-dimensional inputs to discrete actions. The DD-PPO
model consists of a visual pipeline, for which in our case we use a ResNet18 (He
et al., 2016).

The resulting learned visual representation is concatenated together with a trans-
formation applied on the output of the GNSS sensor. This output is then passed
onto a recurring policy consisting of 2 LSTM (Hochreiter and Schmidhuber, 1997)
layers. The final outputs of the model consist of a state value estimation and an ac-
tion distribution from which actions (move forward, turn left, turn right, and done)
can be sampled. The done action should be executed by the agent when positioned
less than 2 meters from the goal position. As inputs for the model, we tested a
single depth camera, a single RGB camera, or a combination of both RGB and
depth. We use these sensors as they are cheap and widely available. The camera is
positioned on the front of the AGV.

To train the agent we use the improvement in geodesic distance between the agent
and the goal position as a dense reward signal. A slack penalty of -0.01 is sub-
tracted on each step, and a termination bonus of 2.5 is awarded upon successfully
utilizing the done action. We train the agent entirely in the Habitat simulator (Sa-
vva et al., 2019) where a photorealistic scan of the environment is used. This
allows the agent to interact with the terrain safely. While in this case, we trained
the agent to specifically work on a single environment, DD-PPO also allows gene-
ralization to unseen environments, given enough different training environments
and training samples.

8.3. DIGITAL TWIN 168

Sensors Success Rate SPL Avg. Collisions
Blind 0.9194 0.7294 4.3548
RGB 1.0 0.9454 0.4355
Depth 1.0 0.8882 0.1129
Depth+RGB 1.0 0.9272 0.5161

Tabel 8.1: Evaluation results of the trained policy

8.3.2 Empirical Evaluation in Simulation

Figure 8.5 shows the required number of interactions with the environment. These
results indicate that in this setting the agent relies mostly on the GNSS sensor,
as the blind agent performs reasonably (60% success rate after 5M training inter-
actions). However, by adding either a depth or RGB sensor the agent achieves
near-perfect navigation capabilities on the training set after 5M interactions with
the simulated environment.

To further evaluate the navigation capabilities of the agent, we created a holdout
dataset. This holdout dataset contains goal positions the agent did not see during
training. Table 8.1 contains the results of 100 tested episodes. In this table, the
success rate indicates the number of episodes the agent could complete succes-
sfully. The Shortest-Path Length (SPL) measurement measures binary successes
Si but also considers the length of the path pi taken, and the shortest path li over
N episodes.

SPL =
1

N

N∑
i=1

Si
li

max (pi, li)
(8.1)

Using no sensors at all (blind), the agent is already able to achieve a strong base-
line, however at the cost of often colliding with the environment. Utilizing RGB
or a depth camera in this setting has a similar performance. However, using only
the depth sensor results in longer paths, but also fewer collisions.

8.3.3 Empirical Evaluation in the Real World

In order to evaluate the applicability of the proposed method we also conducted
real-world experiments. In these experiments, a reachable goal position was sam-
pled, and the tractor started from a random position in each episode. To guarantee
the safety of involved humans and equipment we opted to utilize a human-in-the-
loop setup. Within this setup, the output of the policy (Figure 8.3) was displayed
to a human driver, which carried out the actions manually.

8.4. CONCLUSION 169

0 1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e

Depth
RGB
RGB+Depth
Blind

Figuur 8.5: Training performance of the PointGoal agent
The blind agent can perform basic navigation by relying on the GNSS sensor,
however, to further improve to near-perfect results an additional RGB of depth
sensor is required to detect and avoid collisions

8.4 Conclusion

In this chapter, two approaches were presented in order to execute PointGoal navi-
gation tasks in real-world environments. In order to attempt a sim2real approach,
a simulated version of an office building was constructed. This simulated version
can be utilized to test various RL approaches on different navigation tasks. We de-
monstrated the possibility of training a PointGoal agent within this environment.
Ideally, one would be able to directly utilize the in-simulation trained agent in the
real world. We, however, noticed that due to small differences, and sources of
noise, this is not straightforward.

In order to avoid these issues a second alternative approach was also proposed. In
this approach, a digital twin of the agent is utilized which is kept constantly in sync
with its real-world counterpart. The state of the digital twin can then be utilized in
order to infer actions from the learned policy. This approach was both empirically
evaluated in a hold-out region of the simulator, and the real world.

8.4. CONCLUSION 170

9
Directed Learned Exploration

The contributions presented in this chapter are based on the publications titled
”A Multi-modal AI Approach For AGVs: A Case Study On Warehouse Automated
Inventory”, and ”Directed Real-World Learned Exploration”.

9.1 Introduction

AGVs have started to emerge in various industry settings. These vehicles are often
utilized to transport various goods from one place to another. In order to perform
these tasks, they often rely on navigation systems that are based on markings on
the floor or rely on waypoints outlined in static prior maps (Gul et al., 2019; Mos-
hayedi et al., 2021). These systems, however, often rely on highly accurate sensors
and dynamics models, require intensive prior configuration, are not able to handle
dynamic environments well, and lack robustness (Cadena et al., 2016).

Besides these limitations, it is also often yet unclear how to move beyond pure
transportation tasks. For example, if one wants an AGV to find a certain object
in the environment (Section 2.6.2.3), heuristic modules which are prone to error
propagation, are often required in order to go from object class input to a specific
set of navigation world coordinates (Section 2.6.1).

9.1. INTRODUCTION 172

Real-world AGV

AGV Simulator

Task Module

Actuation

RL Agent

Figuur 9.1: Directed Exploration approach
An RL agent is trained in simulation. As the introduced state representation
(middle) can be either obtained from the simulator or real-world sensors, the
trained policy can be directly used on a real-world AGV platform. In order to
direct the exploration, a separate task module is utilized.

In this thesis, we have used RL as an end-to-end learning-based alternative naviga-
tion approach in which high-dimensional inputs can be directly utilized in order to
output low-level actuation control actions. RL utilizes trial-and-error learning to
allow the agent to come up with a policy and task-oriented state representation so-
lely from a reward signal, provided during training. In this manner, RL is capable
of implicitly learning the agent affordances and world dynamics, without requiring
explicit access to them.

In this chapter, a novel RL approach is presented which goes beyond pure navi-
gation, allowing an AGV to perform various directed exploration (Thrun, 1992)
tasks. Such tasks require the agent to actively explore a previously unseen envi-
ronment in an intelligent (directed) manner. Examples of such tasks might consist
of patrolling, searching a specific object, or counting warehouse inventory.

In order to make it feasible to utilize an RL based directed exploration approach in
a real-world environment, we propose a novel method for training a directed ex-
ploration policy in simulation, which can then be utilized for various downstream
real-world exploration tasks, without expensive retraining. Training in a simula-
ted environment allows running multiple environment instances in parallel, allows
executing actions safely, and at a much higher frequency than would be possible
in the real world.

However, as we demonstrated in Chapter 8, when simulating sensors, inconsisten-
cies between simulated sensors and their real-world counterparts are often unavoi-
dable (sim2real gap). In order to minimize this gap, a LiDAR-based state represen-
tation is introduced. We demonstrate that this approach is robust to sensor noise,
and thus qualified to bridge the sim2real gap. While LiDAR-based simulations are
often very compute intensive (Hanke et al., 2017), the presented approach is less
compute-intensive, supporting above real-time simulation.

9.2. DIRECTED EXPLORATION METHOD 173

Similar to the system of instruction enhancements (Chapter 4), the introduced ap-
proach of directed exploration offers a loose coupling between the exploration
navigation policy and a task module. This loose coupling allows the re-usage of
a trained navigation policy in order to perform multiple tasks, without re-training
the navigation policy. We demonstrate how a separately supervised trained task
module steers the RL policy in order to reduce the uncertainty of its predictions by
actively navigating towards better observations.

The presented framework can be applied to a wide range of applications. For the
evaluation of the framework, the task of automated warehouse inventory will serve
as a use case. In this use case, the uncertainty of an inventory box counter will be
utilized in order to direct the exploration.

The contributions of the work outlined in this chapter are the following:

• A novel approach to make learned RL exploration directed through integra-
tion with a separately trained task-specific module.

• An embodied training approach capable of (1) learning AGV affordances
end-to-end, and (2) balancing directed and more generic exploration.

• A novel representation based on LiDAR point clouds that is able to robustly
bridge the sim2real gap between training in simulation and real-world usage.

• A warehouse simulator with procedurally generated warehouse layouts, that
can be utilized to further build upon the presented work.

9.2 Directed Exploration Method

9.2.1 Observation Representation

In order to efficiently explore a previously unseen environment, the agent needs
a representation of this environment in order to sample an appropriate action. In
prior work, depth cameras and RGB cameras have been utilized (Chen et al., 2019;
Chaplot et al., 2020b; Burda et al., 2018a; Chaplot et al., 2021) to carry out explo-
ration tasks. However, these sensors are plagued by a large sim2real gap and are
often noisy and dependent on environmental conditions (e.g., lighting). A LiDAR
sensor is a commonly used environment invariant and less noisy sensor in navi-
gation tasks. The output of a LiDAR is typically represented utilizing a 3D point
cloud consisting of coordinates on which the laser encountered an obstacle.

Our method, however, does not require a 3D representation as an egocentric 2D
map-like representation is sufficient in order to perform 2D navigation. In order
to obtain this 2D representation, the 3D point cloud is projected onto a 2D plane

9.2. DIRECTED EXPLORATION METHOD 174

by flattening the height dimension. Points that are too close, or too far in distance
are also ignored in order to mimic the minimum and maximum range of a real-
world sensor. While this resembles a laser scan representation, by flattening a 3D
representation possible voids in the laser scan due to local holes are avoided.

Additionally, a second input channel containing the local past trajectory of the
agent is used in order for the agent to avoid visiting the same place multiple times.

9.2.2 Directed Exploration

In order to direct the exploration behavior of the agent, the proposed architecture
allows an additional flattened point cloud map as input. This point cloud should
mark regions that have been classified by a separate task module as interesting,
and require further exploration. An object detector could for example communi-
cate points of which it has only a low certainty about its classification accuracy.
Navigating the AGV close to these points could allow the object detector to im-
prove its classification results by actively obtaining better viewpoints.

When the task module becomes certain of its prediction (e.g., the classification
probability becomes higher than a pre-defined threshold) the points are removed
from the directed exploration point cloud.

9.2.3 Policy Architecture

In the presented approach the agent has a visual pipeline that consists of an ego-
centric local map with obstacles, an egocentric local directed exploration map, and
an egocentric local map with the past trajectory of the agent. This visual pipeline
is processed by three Convolutional Neural Network (CNN) layers.

In turn, this output is concatenated with a boolean variable which indicates if the
safety scanner of the AGV is active in the current state. This safety scanner is an
independent system that prevents physical damage due to collisions. This input
can be utilized by the policy to maneuver away from obstacles invisible to the
visual pipeline. The safety scanner is simulated by checking if the result position
of an action would cause a collision before actually moving the simulated AGV.

This concatenated output is then utilized to output a distribution over the discrete
set of actions. This distribution of actions can be utilized to stochastically sample
actions, leaving room for the exploration of novel strategies. The full architecture
is displayed in Figure 9.2.

9.2. DIRECTED EXPLORATION METHOD 175

Lidar

Simulator
Pointcloud

Environment
representation

module

Pointcloud

Task Module

Simulator

Task representation
module

CNN CNN CNN ActionPast trajectory

Simulator

AGV (IMU +
beacons)

Safety state

Simulator

AGV (IMU +
beacons)

FC FC

Egocentric local
map with
obstacles

Egocentric local
map with past

trajectory

Egocentric local
directed

exploration map

Figuur 9.2: Directed exploration agent architecture
An overview of the architecture of the navigation module. The different inputs
are either coming from a real AGV or the simulator. These inputs are processed
into an egocentric 3-channel image. Together with the safety state, this can be
utilized to directly output actions.

9.2.4 Action Specification

While an RL policy could directly output a continuous value for the steering angle
θ and forward velocity V , this is generally regarded as a more demanding setting
(Hasselt, 2012). Action discretization has been proposed as a viable less challen-
ging alternative (Marchesini and Farinelli, 2020). We have chosen in our approach
to discretize the possible actions into 15 discrete actions:

• Small step forward V=0.3m/s

• Reverse straight V=0.3m/s

• Large step forward V=0.5m/s

• Small δ=0.17rad/s, medium δ=0.4rad/s, large δ=0.7rad/s turn left/right

• Small δ=0.17rad/s, medium δ=0.4rad/s, large δ=0.7rad/s reverse turn
left/right

These steering angles and velocities have been obtained from human demonstra-
tions collected utilizing a real-world AGV. Actions are executed at 0.5Hz in both
the real world and the simulator.

9.3. WAREHOUSE SIMULATOR 176

9.2.5 Training

In order to train the agent, the PPO algorithm (Schulman et al., 2017) is utilized.
As the reward function, the agent is provided with a small slack penalty of -0.01,
which prevents the agent from slacking off. In order to study the problem of ex-
ploration, three different options for the second term of the reward function are
studied:

• Directed: receive a 0.5 reward when positioning the AGV near an area mar-
ked for exploration in the directed exploration point cloud input.

• Floor coverage: the environment is divided into a virtual grid with tiles of
each 1m2. When visiting a new tile the agent receives a positive reward of
0.1.

• Combined: in this setting the agent receives both 0.1 for visiting a new tile
in the virtual grid, and 0.5 for positioning near areas marked for exploration.

A collision penalty of 0.05 is deducted upon a collision with an obstacle. The
different values utilized in the proposed reward functions are obtained through
hyperparameter searches.

The agent should be able to function in an environment it did not see before. In
order to achieve this behavior the simulated environment is procedurally generated
during training. In order to provide the agent with enough instances of seen/unseen
trajectories the environment is reset after a fixed amount of 500 steps. In each
episode, a variable amount of box obstacles are added in different sizes in order to
extend the dynamic navigation capabilities of the agent. Through the introduction
of these random obstacles, the agent will be able to handle cluttered real-world
environments. The agent is spawned in a random starting position in each episode.
A top-down view of an episode can be seen in Figure 9.3. This view is not available
to the agent.

9.3 Warehouse Simulator

The simulator was built on top of the MiniWorld environment (Chevalier-Boisvert,
2018). It was modified in order to support our customized egocentric point cloud-
based representation.

9.3. WAREHOUSE SIMULATOR 177

Figuur 9.3: Top-down view of the simulator
A top-down view of the simulator is plotted. Racks are plotted in white or
red squares depending on whether the agent (yellow rectangle) has explored
near them. Through the environment obstacle square boxes of various sizes are
added randomly. The agent has no access to this ground truth map.

9.3.1 Layout

The goal of our simulator is to allow the agent to learn how to navigate in typical
warehouse settings. We consider a typical warehouse setting in which multiple
rows of racks are placed.

In each episode, the environment is procedurally generated using horizontal racks,
vertical racks, or empty spaces. An example containing two sets of horizontal
racks is displayed in Figure 9.3. Additional possible layouts are displayed in Fi-
gure 9.4.

9.3.2 Lidar Simulation

When using the real LiDAR, the local point cloud can be utilized directly. In the
simulator, a ray casting approach is utilized in order to obtain the same represen-
tation (as plotted in Figure 9.1).

The proposed observation representation is not only an efficient way of repre-
senting the environment in navigation tasks, but it is also a representation that is
computationally inexpensive to simulate. This is currently an essential property
when choosing an RL-based approach. As RL-based navigation approaches often

9.3. WAREHOUSE SIMULATOR 178

Figuur 9.4: Top-down view of multiple warehouse layouts

9.4. CASE STUDY: WAREHOUSE INVENTORY TASK MODULE 179

require large amounts of interactions with the environment (Wijmans et al., 2020).

Through utilizing 8 environments in parallel, an average of 250 actions can be
executed and evaluated each second on a modest GPU-enabled system (Intel Core
i7-9700, Nvidia GTX1060). The real-world AGV in contrast only operates at 0.5
actions per second (on purpose).

9.3.3 Simulated Vehicle Dynamics

While prior work in sim2real and RL has mainly focused on differential drive,
the introduced simulator supports Ackerman steering, which is more complex to
simulate, but allows the method to be deployed on a wider range of platforms. In
order to simulate the movement of the AGV in the simulator, a kinematic bicycle
model is utilized, which allows calculating the position of the AGV according to
the following set of equations:

ẋ(t) = V (t) cos θ(t)

ẏ(t) = V (t) sin θ(t)

θ̇(t) =
V (t) tan δ(t)

l − a tan δ(t)

(9.1)

In this equation, V is the forward velocity, θ represents the yaw angle and δ re-
presents the steering angle. The vehicle specific l is the distance between the front
and rear wheels, and a is the lateral distance of the front wheels with respect to the
longitudinal center-line. Prior research (Polack et al., 2017) has demonstrated that
this type of model can be successfully utilized to produce consistent and feasible
trajectories given a limited lateral acceleration. Through embodied trial and error
the agent is capable of learning navigational affordances (e.g., can I steer into this
narrow corridor from this position).

9.4 Case Study: Warehouse Inventory Task Module

Industrial warehouses are dynamic environments where different assets are chan-
ging continuously over time. Automating warehouse management, such as in-
ventory analysis, enables faster operations and fewer errors. There are two main
challenges: having a good inventory detector and avoiding counting the same in-
ventory item multiple times.

There are several commercial solutions for automated inventory which are ba-
sed on having unique identifiers per detected object. In other cases, there is a

9.4. CASE STUDY: WAREHOUSE INVENTORY TASK MODULE 180

Figuur 9.5: Visualization of the real-world setup
In the current state, the task module has counted 25 boxes but is uncertain about
the object displayed in front of it (orange dashed circle). The navigation policy
is instructed to explore the uncertain object (yellow line in the observation re-
presentation) by navigating towards it (yellow arrow). The agent does not have
access to the warehouse camera and the 3D environment representation, those
are included only for visualization purposes.

predefined route where objects are never re-visited relying on a 2D Multi-Object
Tracking (MOT) (Zhang et al., 2021; Du et al., 2022; Cao et al., 2022) that gives
unique identifiers between frames. The fusion of LiDAR and camera data for 3D
detection (Xu et al., 2018; Mahmoud and Waslander, 2021) and tracking (Zhong
et al., 2021) normally relies on annotations for both image and LiDAR data. In
contrast, the proposed approach only requires image annotation, which makes it
also feasible to incorporate existing datasets.

Directed exploration helps to solve the first challenge, by providing the inven-
tory detector with the capability of actively obtaining better observations through
navigation, thus reducing its uncertainty. The second challenge is addressed by
constructing a 3D inventory map in world coordinates by combining past detec-
tions. The navigation policy will also autonomously steer the AGV to previously
unvisited regions in the warehouse in order to allow the 3D inventory map to be
fully constructed, and thus allow all boxes to become accounted for.

In Figure 9.5 the entire setup is displayed while executing the inventory task. The
principal block is the 3D inventory map creator, which takes the vehicle position,
bounding box detections, and per-pixel depth information (aligned with bounding
boxes) and provides the detected object’s 3D location and size, as well as a point
cloud with the uncertain detection areas. The architecture of the perception module
is plotted in Figure 9.6.

9.4. CASE STUDY: WAREHOUSE INVENTORY TASK MODULE 181

Detector
RGB

bounding
boxes

Tracker

bounding
boxes with ID

3D map
creator uncertainty

pointcloud

3D
volumes

vehicle location in world coordinates

Depth projection
pixel depthlidar pointcloud

Figuur 9.6: Perception module architecture
Main inputs, outputs, and building blocks of the perception module utilized in
the warehouse inventory use case.

9.4.1 Inventory Detection

The detector uses only RGB camera data for classification purposes. LiDAR in-
formation is utilized to get and merge the 3D locations of inventory items. A fused
approach where LiDAR is also used for detection would require 3D annotations
as well. Because these kinds of industrial datasets are not publicly available, and
labeling point clouds is an effort that makes the application infeasible in real cases,
only RGB annotations were utilized for training the inventory detector. The tracker
hands out consistent identifiers to the detections of the same objects in consecutive
frames.

In order to run in real-time, the YoloV7 object detector (Wang et al., 2022) was se-
lected. Starting from a pre-trained version on the COCO dataset (Lin et al., 2014),
4 videos recorded in the testing warehouse have also been annotated in order to
fine-tune the object detector. Around 1500 frames were annotated. The detector is
trained to learn only the ”box”class. When evaluated upon short recorded trajecto-
ries a precision of 89%, and a recall of 85% could be observed. This was however
without any directed exploration, which should further improve the observed recall
and precision of the model.

9.4.2 Object Tracker

In order to track objects, BYTETrack (Zhang et al., 2021) is utilized, which is a
multi-object tracker based on spatial information. It implements a Kalman filter
with a constant speed model for the bounding box detection’s position and size
and provides two loops where old tracks are matched with new detections, one for
high-confidence detections and a second for low-confidence ones. Tracking pro-
vides unique identifiers across frames but does not solve the problem of tracking

9.4. CASE STUDY: WAREHOUSE INVENTORY TASK MODULE 182

objects when they re-enter the camera field of view. This is addressed in the 3D
map creator.

9.4.3 Object Positions

Although an RGBD camera would already provide per-pixel depth information,
after some testing with several depth cameras (Intel Realsense D435, Stereolabs
ZED Mini) it was found that the depth accuracy was not high enough, so a 3D
LiDAR mounted next to the camera was used instead. The point cloud from the
LiDAR is projected on the camera plane, with some radial inflation for closer
points to have a richer depth image.

9.4.4 3D Map Creator

This module iterates over the bounding boxes and merges them with the previous
map, taking into account the vehicle location. The map contains for each detected
box the identifier, confidence, point cloud, centroid, and cuboid size. It also dif-
ferentiates between certain and uncertain detections. For each detected bounding
box, there are two reasons to consider it uncertain:

• Uncertainty in the detector output: If the confidence score provided by the
detector is below a certain threshold, then the corresponding object is mar-
ked as uncertain.

• Uncertainty in the object location: Using the domain knowledge that boxes
have a flat surface, a sample consensus algorithm to fit a plane is computed.
In case there are not enough inliers to the plane model, the plane is too far
away, or the plane is not seen frontally, then the corresponding object is
marked as uncertain.

In the case of certain detections, they need to be merged into the map. There are
two possibilities:

• The identifier of the current detection being merged into the map is already
the map. In that case, an overlapping comparison is done with all the other
detections already on the map, and if there is sufficient overlapping, they
are merged. Otherwise, it is merged with the map object with the shared
identifier.

• The current detection is not on the map. The same overlapping test is done
as in the case above. If there is not enough overlapping it is a new detection

9.5. EMPIRICAL EVALUATION IN SIMULATION 183

0 1 2 3 4 5
Training timesteps 1e7

0.02

0.04

0.06

0.08

0.10

0.12

0.14

%
 o

f f
lo

or
 c

ov
er

ed

Coverage

0 1 2 3 4 5
Training timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

%
 o

f i
nt

er
es

tin
g

ar
ea

 v
isi

te
d

Interesting areas visited

0 1 2 3 4 5
Training timesteps 1e7

20

40

60

80

Am
ou

nt

Collisions
Coverage reward
Directed reward
Combined reward

Figuur 9.7: Training performance in simulation
Utilizing a coverage-based reward does allow the agent to maximize its co-
verage, however, it fails to navigate the agent to areas of interest. Utilizing a
guiding reward signal allows navigating to the specific regions of interest. A
combination of both reward signals has a slightly worse performance for both
metrics.

and a new object is initialized in the map. Otherwise, if the overlapping is
above the minimum threshold, the new detection is merged into the matched
object in the map.

9.5 Empirical Evaluation in Simulation

9.5.1 Training in Simulation

When solely optimizing for coverage, the agent chooses to stay far away from
obstacles and avoids going into narrow corridors. Going into narrow corridors has
a higher chance of getting stuck, or colliding. The agent has learned to avoid these
situations because they lead to a negative reward.

In contrast, when training by specifically utilizing a reward signal encouraging
directed exploration, the overall floor coverage of the agent is reduced, but it ma-
nages to reach a significant amount of the specified areas of interest within the
allocated 500 timesteps. The combination of both reward signals performs best
in terms of directional exploration (as measured by the visited marked areas). Fi-
gure 9.7 shows the performance during training utilizing the different proposed
reward signals.

9.5. EMPIRICAL EVALUATION IN SIMULATION 184

9.5.2 Evaluation in Simulation

In order to evaluate the performance of the presented approach in simulation, re-
sults are collected on a set of 100 fixed warehouse configurations (floor plan, obsta-
cles, starting position) in order to make sure that all runs are equally complex. Each
episode is allowed to run for a maximum of 2000 steps, which should be enough
for an optimal agent to fully complete the task.

Obstacles Coverage Directed Combined
0 C=0.46 C=0.14 C=0.18

V=0 V=0.78 V=0.91
5 C=0.34 C=0.11 C=0.15

V=0 V=0.63 V=0.78
10 C=0.27 C=0.09 C=0.14

V=0 V=0.51 V=0.68

Tabel 9.1: Influence of obstacles

When looking at the number of obstacles (Table 9.1) it is clear that the coverage
(C) is heavily influenced by the navigational complexity of the environment. The
percentage of visited areas (V) marked as interesting does however not remarkably
decreases when making the environment more challenging.

In the simulated warehouse, the combined reward signal achieves better results
overall in terms of directed exploration results. With no obstacles, the agent is
able to visit on average 91% of the areas marked as interesting. While the agent
trained using only the directed exploration reward signal is able to visit 78% of the
marked areas. The coverage part of the reward signal allows the agent to efficiently
navigate in parts of the environment with no areas marked as interesting.

9.5.3 Robustness to Noise

During training, the navigation policies are trained with perfect sensors. As real-
world sensors are often far from perfect and are often subject to various kinds of
noise, it is important that the navigation policy is able to withstand some amounts
of noise added to the sensor observations.

In Table 9.2, the results are plotted when only keeping a certain percentage of
the points observed through the LiDAR. This essentially simulates how well the
approach can work with a less expensive lower resolution LiDAR. Keeping 0% of
the points essentially makes the agent blind.

While this blind agent is not able to cover or explore the environment, the trained

9.5. EMPIRICAL EVALUATION IN SIMULATION 185

Coverage Directed Combined
100% C=0.37 C=0.13 C=0.13

V=0.0 V=0.71 V=0.72
50% C=0.38 C=0.12 C=0.13

V=0.0 V=0.68 V=0.73
10% C=0.27 C=0.08 C=0.09

V=0.0 V=0.50 V=0.51
1% C=0.06 C=0.05 C=0.17

V=0.0 V=0.2 V=0.17
0% C=0.03 C=0.01 C=0.04

V=0.0 V=0.02 V=0.05

Tabel 9.2: Points sampling (with 3 obstacles)

agents are able to take a significant hit in terms of the number of points coming
from the LiDAR input.

Limiting the resolution is however only one source of a potential mismatch bet-
ween the simulator and the real world. It is also possible that due to a non-perfect
accuracy obstacles are detected which in fact are no obstacles, or it could be that
obstacles are not detected. In order to simulate these possibilities, and to test the
robustness of the trained agents, various amounts of salt&pepper noise are added
to the input maps.

Coverage Directed Combined
p=0 C=0.37 C=0.13 C=0.13

V=0.00 V=0.71 V=0.72
p=0.001 C=0.34 C=0.16 C=0.13

V=0.00 V=0.76 V=0.73
p=0.005 C=0.37 C=0.16 C=0.14

vis=0.00 V=0.76 V=0.77
p=0.01 C=0.35 C=0.17 C=0.14

V=0.00 V=0.81 V=0.71
p=0.1 C=0.21 C=0.16 C=0.15

V=0.00 V=0.56 V=0.61
p=0.5 C=0.04 C=0.07 C=0.10

V=0.00 V=0.16 V=0.19

Tabel 9.3: Salt&Pepper noise (with 3 obstacles)

From Table 9.3 it can be concluded that while degrading the accuracy of the obser-
vations has a significant impact on the performance, the agent is still able to carry
out its task with noisy sensors.

9.6. REAL-WORLD EVALUATION 186

9.5.4 Ablation Study: Trajectory Information

The requirement of adding the past trajectory as input to the agent is an expen-
sive one in the real-world setup, as accurate indoor localization is a challenging
problem, often requiring expensive hardware setups.

Coverage Directed Combined
Enabled C=0.37 C=0.13 C=0.13

V=0.00 V=0.71 V=0.72
Disabled C=0.22 C=0.12 C=0.10

V=0.00 V=0.69 V=0.63

Tabel 9.4: Influence of Trajectory Information (with 3 obstacles)

As seen in Table 9.4, removing the past trajectory does have a big impact on the
performance of all three studied agents both in terms of coverage and in terms of
interesting areas visited.

9.6 Real-world Evaluation

9.6.1 Setup

An open experimental platform has been built on top of a standard Still forklift
(Figure 9.8). Localization is provided by a commercial system with reflector land-
marks with known positions across the warehouse. An Ouster OS1 LiDAR with 64
vertical layers has been used. It has a vertical field of view of 45° and a maximum
range of 120m. A Zed mini camera is used for inventory detection. The layout and
contents of the warehouse have been kept consistent throughout the evaluation.
The AGV was started consistently in different positions throughout the evaluation.

9.6.2 Real-world Performance

In order to evaluate the performance of the approach in a real-world warehouse,
5 positions were selected to run the different trained policies for as long as they
made noticeable progress and kept moving. The average results of these 15 runs
are presented in Table 9.5. The different trajectories taken by the AGV in each
scenario are plotted in Figure 9.9.

In the simulated warehouse, the directed exploration capabilities were evaluated by
recording if the AGV would position itself close to the objects marked as interes-

9.6. REAL-WORLD EVALUATION 187

Figuur 9.8: Real-world AGV setup
A modified forklift was utilized in order to conduct real-world experiments.

Combined
Coverage
Directed

Figuur 9.9: Trajectories taken by the different policies during real-world evaluation
The points marked with stars are the fixed starting positions.

9.7. CONCLUSION 188

Coverage Directed Combined
Average steps taken 160.4 142.6 106.6
Average coverage 44m2 33m2 21m2

Average reduced uncertainty 26.67 19.67 18.33
Rel. reduced uncertainty 0.61 0.60 0.87

Tabel 9.5: Real world evaluation

ting. In the real-world setting, the directed exploration capabilities are evaluated
by recording the reduction in uncertainty of the task module. Concretely, in each
run, we track how many objects were marked as certain after they were first mar-
ked as uncertain (due to the prediction probability being lower than the specified
threshold).

While this is only a small-scale evaluation done in a highly realistic but complex
environment filled with obstacles and small passages, some conclusions can be
drawn. For example, unsurprisingly, the coverage agent is on average able to co-
ver the largest area of the warehouse. However, by covering a larger area of the
warehouse, this agent is also able to achieve the highest absolute uncertainty re-
duction scores.

When looking at agents which also take the uncertainty of the task module into
account (directed, combined) we see that they take radically different trajecto-
ries (Figure 9.9). We noticed that these agents often propose more difficult paths,
which led to lower floor coverage scores. If we however take efficiency into ac-
count the combined agent is able to reduce the most uncertainty per square meter
coverage.

9.7 Conclusion

In this chapter, we demonstrated how deep RL can be utilized to perform real-
world directed exploration of an unseen environment, relying on egocentric obser-
vations coming from a LiDAR sensor, and through training in simulation.

The proposed framework can be utilized in a wide range of different tasks wit-
hout having to retrain the exploration policy. This was made possible due to the
abstract interface introduced between a task-specific module and the navigation
policy. As an example, the task of inventory management is studied. Within this
study, a supervised trained model was utilized to detect pieces of the inventory.
The uncertainty of this model was utilized to steer the exploration behavior of the
agent. The novel method is empirically evaluated both in simulation and through
utilizing a real-world AGV.

10
Conclusions and Future Perspective

10.1 Review of Problem Statement

Within this thesis, we worked towards extending the capabilities of (real-world)
RL approaches by allowing them to make efficient use of abstractions, and to al-
low existing policies to be adapted. Each of the solutions proposed in this thesis
addresses one of the problem statements presented in Section 1.2 as follows:

10.1.1 Towards Human-like Learning

Human intelligence has been a long-lasting source of inspiration for the develop-
ment of novel AI techniques. The inner workings of human intelligence are howe-
ver still largely unknown and are still being intensely studied. We do however can
clearly identify some common manifesting properties, which might be useful as
sources of inspiration when building AI systems.

In the problem statement of this thesis, we proposed to focus on examining how we
can harness compositionality and how we can implement learning-to-learn mecha-
nisms. As both topics are still heavily studied in RL, we proposed a few practical
solutions within this dissertation:

10.1. REVIEW OF PROBLEM STATEMENT 190

• Harness compositionality: complex problems are often solved by brea-
king them down into multiple smaller components. For example, when con-
structing a house, one needs a myriad of different skills and technical plans.
An electrician will be in charge of wiring the house, while a bricklayer will
raise the walls. In order to make sure that the electrical does not start wiring
before there are any walls yet, we often also employ an architect who might
not be aware of every brick and wire, but who is managing the big picture.

This approach is in sharp contrast to how RL systems are currently trained.
RL systems typically operate only on one level of abstraction. This often
results in enormous search spaces which are difficult to explore. As there
was already a vast body of research on the usage of abstractions we started
our search on how to harness compositionality by conducting a survey of the
literature. The resulting survey was one of the first surveys on HRL which
takes both classic methods and novel deep learning-based approaches into
account. In addition to a comparative analysis of the major frameworks and
approaches we also introduced a set of open challenges.

Within this thesis, we proposed novel methods which addressed some of
these challenges. For example, we addressed subgoal representation through
either using language between different layers of a hierarchical approach (in-
struction enhancement), and we proposed a directional exploration approach
in which a separately trained module is able to influence the behavior of a
learned exploration policy. We additionally focussed on the formulated chal-
lenge of utilizing abstractions for exploration in both the novel SETIE and
Disagreement Options framework. Within both these frameworks we either
demonstrated progress on tasks on which regular flat approaches were not
able to make any progress, or we were able to improve upon the sample ef-
ficiency of existing methods. In both cases, compositionality was utilized
in order to discover useful modules, and combine these modules in order to
develop complex strategies.

• Learning-to-learn: one of the challenges which also emerged when con-
ducting our survey on the usage of abstractions within RL was the issue of
lifelong learning. While AI systems in general, are often already able to
outperform humans in various tasks, they often require comparatively larger
amounts of training to do so. This is often caused by the fact that RL systems
are typically initialized from scratch, while humans have a vast body of prior
knowledge to source from. Within this thesis, we worked on developing va-
rious methods which allow an RL policy to adapt prior knowledge, in order
to bootstrap novel tasks. In order to facilitate this we demonstrated that the
usage of language is an efficient way to assess which prior skills are useful
when confronted with a novel task. This was done through either sampling
task adaptations, or through the integration with a pre-trained word embed-
ding. Through being able to adapt prior knowledge the proposed methods
were able to improve the sample complexity of various navigation tasks.

10.1. REVIEW OF PROBLEM STATEMENT 191

10.1.2 Efficiently Obtaining the Right Experiences

The second open problem on which this thesis focused, revolved around the ques-
tion of how a learning system can obtain its own learning experiences efficiently.
In order to further advance this longstanding issue, multiple sub-problems were
identified and studied:

• Environment representations: in navigation problems the usage of maps
has been a common approach to representing the environment to the agent.
Such map-based representations often depend on human-designed heuris-
tics. While in practice they are often very able to move an agent from point
A to point B in a static environment, they also have their limitations. The re-
presentation might not give the agent the best view of its actual affordances.
And due to its geometric-based approach, the agent is also often not able to
utilize semantic clues or perform semantic tasks.

In this thesis, we fully adopted an end-to-end learned representation appro-
ach in simulated environments. Instead of relying on heuristics the proposed
methods are able to craft their own task-driven representations of the world,
through trial-and-error learning. We were able to demonstrate that in a lot
of cases, an agent only equipped with an egocentric RGB camera, and no
map or position information is perfectly able to navigate seen and unseen
environments by relying on learned state representations.

However, one major limitation of end-to-end learned representations, is that
they often overfit the sensors, and are hard to transfer to different sensors
(e.g., a real-world camera). In order to alleviate this issue and work towards
real-world RL deployments, we proposed a digital twin-based approach that
does not suffer from this problem. Through this digital twin, we were able
to, deploy a PointGoal policy trained in simulation, on a real-world tractor.
We also introduced a LiDAR-based representation which is both not com-
putationally demanding to simulate and robust to noise. In this setting, we
trained an agent in a novel warehouse simulator and were able to deploy the
trained model in a real-world warehouse.

• Exploration scheme: While it is clear that RL is heavily dependent on an
efficient exploration scheme, what such a scheme might actually look like
is less clear. In the survey conducted on the usage of abstraction within RL,
we concluded that high-level exploration is one of the main benefits of HRL.
This was validated in the SETIE approach, in which high-level exploration
makes tasks possible, on which low-level only exploration methods could
not make any signification progress. We also introduced a second novel
approach, which is capable of exploring through the usage of prior policies.
The Disagreement Options approach is both able to exploit prior knowledge,
use it as temporal abstractions, and explore new solutions.

10.2. REVIEW OF HYPOTHESIS AND RESEARCH QUESTIONS 192

• Sample complexity: humans often only need a single experience in order to
learn something (e.g., touching a hot surface). This is again in sharp contrast
to how current RL approaches experience the world. Within the presented
research we have demonstrated that the sample efficiency of RL approaches
can be greatly improved through the introduction of multiple levels of ab-
straction. Through the introduction of the SETIE approach we were able to
demonstrate that an agent is able to learn more efficiently by reasoning both
simultaneously on a floor plan level and a low-level actuator level. However,
the bigger impact on sample complexity in this thesis can be situated in the
work conducted on allowing an agent to adapt its prior knowledge in order
to solve novel tasks. We demonstrated that in this context task descripti-
ons formatted in language are an excellent way to predict sample efficient
transfer capabilities.

10.2 Review of Hypothesis and Research Questions

In this thesis the following hypothesis was formulated: in order to extend the real-
world potential of RL approaches, they need to become more sample efficient.
This can be done by introducing compositionality through learning with abstrac-
tions, and by allowing the agent to efficiently adapt abstracted prior knowledge
obtained in the past.

To validate this hypothesis research questions were formulated which through the
previously presented research and experiments we are now able to answer:

1. What are the various approaches in which abstractions are currently
utilized in RL? What problems still need to be solved in order to al-
low efficient usage of abstractions? Current approach can be classified
into three distinct groups: problem-specific methods, options, and goal-
conditional approaches. The current open challenges in this field revolve
around top-down hierarchical learning, subgoal representation, lifelong learning,
high-level exploration, working on more than two levels of abstraction, ma-
king RL interpretable, the development of a clear benchmark, and the devel-
opment of alternative frameworks.

2. Can a learned hierarchical approach extend the capabilities of semantic
navigation agents? Through learning both a high-level planner and a low-
level controller we were able to demonstrate an agent capable of performing
tasks in which prior flat methods did not make any progress in an ObjectGoal
setting.

10.3. FUTURE PERSPECTIVE 193

3. How can a policy trained with a single task in mind select prior know-
ledge in order to perform another related task efficiently? We found that
there are multiple options available in order to select prior knowledge. The
first method we found effective resolves around sampling task adaptations,
and uses supervised learning in order to learn a predictive model based on
the task descriptions formulated in language. The second effective method
we proposed and studied utilized a pre-trained word embedding in order to
select relevant prior knowledge.

4. How can the selected prior knowledge be utilized efficiently when sol-
ving novel tasks? In order to actually use a prior policy we introduced a
method that calculates a disagreement score between the action distributions
of multiple priors. Through doing this, we managed to use prior policies as
temporal abstractions, capable of reducing the sample complexity of novel
tasks significantly.

5. How can an RL approach be utilized in the real world when taking into
account current sample complexity limitations? While typically current
RL approaches are trained in simulation, it is not completely clear yet how to
utilize them on different real-world platforms. We developed two methods
in order to actually perform this task. The first method we found to be capa-
ble of operating real-world hardware resolved around the usage of a digital
twin. The second method utilized a novel LiDAR-based representation, of
which we demonstrated its excellent capabilities of both training a policy in
a simulated environment and actually using it in the real world.

10.3 Future perspective

The work presented in this thesis advanced the state of RL by both harnessing
compositionality and the introduction of learning-to-learn abilities in RL agents.
We often looked at human intelligence as a high-level source of inspiration. There
have, however, been identified more threats linked to human intelligence than the
ones we have taken as inspiration (Lake et al., 2017) which are currently not yet
fully understood, and implemented into AI algorithms. A first line of future work
could consist of researching how the introduced algorithms could be extended to
assist in building causal models of the world, explicitly focussing on explanation
and understanding. HRL might be an excellent explainable AI solution in this set-
ting, as a flat RL policy is often opaque, a policy based on high-level abstractions
will open up the black box. Especially if the hierarchical system makes use of
human-interpretable language as its interface for communicating between layers.

The proposed algorithms in this thesis focus on adapting policies in order to solve
novel tasks. This is possible because policies capable of solving related tasks will

10.3. FUTURE PERSPECTIVE 194

require a similar understanding of the environment. A future research direction
could be to make these common representations and common theories of world
dynamics explicit. Making them explicit could allow novel agents to be trained
to utilize this start-up software. While it has remained a longstanding open ques-
tion how such start-up software should be implemented, there recently has been a
surge in the development of large pre-trained so-called foundation models. These
enormous models are trained in a self-supervised fashion and have demonstrated
to be capable of capturing large amounts of commonsense knowledge. Both large
language models (Devlin et al., 2019; Radford et al., 2019), vision models (Rom-
bach et al., 2022) and even multimodal models (Zeng et al., 2022; Driess et al.,
2023) have been introduced. In the presented work we utilized word embeddings
as start-up software, which can be seen as the precursor of these large language
models. An interesting future perspective might be to study how well these large
language models are capable of working with abstractions (e.g., composing com-
monsense plans), and how they can be utilized to adapt policies to unseen tasks
and situations.

The presented task-adaptation approaches started from the hypothesis, that in order
to solve an unseen task, existing knowledge is available to be adapted. This might
not always be the case, we could envision an additional layer constructed on top
of our approaches that handles the questions of whether existing useful priors are
available, and whether it would make sense to follow an adaptation strategy or
start training from scratch. Additionally, we currently have not yet studied how to
efficiently handle the scaling of sets with individual policies, or how to efficiently
extend the capabilities of a goal-conditional agent.

We started this thesis with a thorough review of the usage of abstractions within
the RL framework. We did this in order to come up with a list of open research
challenges within this domain. While we have tackled some of these challenges
within this thesis, there still remain the issues of increasing the depth level of
hierarchical systems, and the search for learning algorithms developed on top of
alternative frameworks.

In the experimental environments utilized in this thesis, the agent was always the
sole presence. This is in sharp contrast to how humans experience the world.
This observation raises both challenges and opportunities. The main challenge
will consist of making the agent able to cooperate socially with other agents both
human and non-human. Reasoning on a higher level of abstraction might also
help here to intuitively understand what other agents are up to. However, keeping
track of what other agents tried through observation or communication could be
a valuable source of additional information in order to adapt our behavior. For
example, when it is freezing outside seeing someone else fall on the sidewalk
might adapt your walking behavior to be more careful. This unfortunate agent
who fell could help prevent further accidents by communicating that the sidewalks
are in bad shape to other agents.

10.4. CONCLUSION 195

This thesis proposed some approaches in order to utilize trained RL policies in
real-world environments. There are still some issues that need to be ironed out in
order to obtain a reliable and widely applicable platform. However, once such a
platform becomes available the proposed adaptation methods can potentially also
be extended to be capable of operating in a real-world environment. The proposed
methods could potentially be utilized to adapt to real sensor observations or to
adapt to novel tasks through limited high-level structured exploration. We also
envision that the usage of cheaper depth cameras (instead of an expensive LiDAR-
based setup) could greatly improve the use cases of RL approaches.

While the methods developed in this thesis relied on online RL, there has recently
also been a lot of work done on training embodied systems in an offline dataset-
based approach. While we discussed in this thesis that such dataset approaches
might not be well suited for embodied navigation settings, the development of va-
rious offline RL techniques has been somewhat able to overcome these limitations.
Distilling abstractions, and learning how to adapt through the usage of real-world
datasets has definitely become an interesting future perspective for learning-based
navigation systems.

10.4 Conclusion

This dissertation focussed on navigation problems by utilizing the embodiment
hypothesis, represented as an RL problem. As RL still requires a lot of interaction
with its environment it is still impractical to train an agent directly in real-world
settings. It might even be intractable to obtain a satisfying policy using current RL
approaches due to the sheer amount of required interactions.

To make RL more sample efficient this thesis proposes to utilize abstractions that
can be quickly adapted in order to learn new tasks. In Chapter 3 a survey was
conducted on the current approaches of utilizing abstractions in RL settings. This
resulted in a taxonomy of methods, a comparative analysis of them, and a list of
open challenges.

Inspired by these insights a novel hierarchical approach was presented in Chap-
ter 4. Through structured exploration, an approach was developed capable of lo-
calizing objects in procedurally generated environments.

In order to allow the developed abstractions to adapt to novel related tasks Chap-
ter 5 of this thesis introduced novel methods to perform task adaptation based on
the description of tasks formatted using language. Chapter 5 introduced a super-
vised learning method based on sampling task adaptations. Chapter 6 proposes an
alternative for this sampling method, by relying on a pre-trained word embedding.
As selecting prior knowledge is only part of the adaptation problem, Chapter 7

10.4. CONCLUSION 196

introduces Disagreement Options, which also proposes a novel method for perfor-
ming the adaptation itself.

The final part of this thesis revolved around introducing existing RL methods in
real-world environments. In order to study the complexities of this problem a novel
sim2real environment was introduced. As a first step towards real-world RL, a di-
gital twin-based approach was also proposed in Chapter 8. This approach allowed
performing PointGoal navigation utilizing a real tractor. Chapter 9 goes a step fur-
ther and proposes a method in order to perform directed exploration in previously
unseen environments without any priors such as a map of the environment.

Bibliografie

Abel, D., Umbanhowar, N., Khetarpal, K., Arumugam, D., Precup, D., and Litt-
man, M. L. (2020). Value Preserving State-Action Abstractions. In Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Sta-
tistics, page 24. 64

Achiam, J., Edwards, H., Amodei, D., and Abbeel, P. (2018). Variational option
discovery algorithms. arXiv preprint arXiv:1807.10299. 90, 99, 100

Ammar, H. B., Eaton, E., Taylor, M. E., Mocanu, D., Driessens, K., Weiss, G.,
and Tuyls, K. (2014). An automated measure of MDP similarity for transfer in
reinforcement learning. In AAAI14. 129

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D.
(2016). Concrete problems in ai safety. arXiv preprint arXiv:1606.06565. 47,
107

Anders, J. and Andrew, G. B. (2000). Automated state abstraction for options
using the u-tree algorithm. In NIPS00. 60

Anderson, P., Chang, A., Chaplot, D. S., Dosovitskiy, A., Gupta, S., Koltun, V.,
Kosecka, J., Malik, J., Mottaghi, R., Savva, M., and Zamir, A. R. (2018). On
Evaluation of Embodied Navigation Agents. arXiv preprint arXiv:1807.06757.
50, 52, 53

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh,
D. (2015). VQA: Visual Question Answering. In ICCV15. 20, 44

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of
robot learning from demonstration. Robotics and Autonomous Systems, 57(5).
65

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017).
Deep Reinforcement Learning: A Brief Survey. IEEE Signal Processing Maga-
zine, 34(6). 46

Atrey, A., Clary, K., and Jensen, D. (2020). Exploratory Not Explanatory: Coun-
terfactual Analysis of Saliency Maps for Deep Reinforcement Learning. In
ICLR20. 107

BIBLIOGRAFIE 198

Bacon, P.-L., Harb, J., and Precup, D. (2017). The option-critic architecture. In
AAAI17. 58, 63, 64, 72, 81, 98, 101, 104, 105, 106

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, D.,
and Blundell, C. (2020). Agent57: Outperforming the Atari Human Benchmark.
arXiv preprint arXiv:2003.13350. 47

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by
Jointly Learning to Align and Translate. In ICLR15. 45

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y. (2016). End-
to-End Attention-based Large Vocabulary Speech Recognition. arXiv preprint
arXiv:1508.04395. 44

Bain, M. and Sommut, C. (1999). A framework for behavioural cloning. Machine
intelligence, 15(15):103. 65

Baird, L. C. (1993). Advantage updating. 81

Bansal, M., Krizhevsky, A., and Ogale, A. (2018). ChauffeurNet: Learning to
Drive by Imitating the Best and Synthesizing the Worst. arXiv preprint ar-
Xiv:1812.03079. 56

Barreto, A., Borsa, D., Hou, S., Comanici, G., Aygün, E., Hamel, P., Toyama, D.,
hunt, J., Mourad, S., Silver, D., and Precup, D. (2019). The option keyboard:
Combining skills in reinforcement learning. In NeurIPS19. 58

Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical reinfor-
cement learning. Discrete event dynamic systems, 13(1-2):41–77. 59, 66

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE transactions
on systems, man, and cybernetics, 5:834–846. 93

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H.,
Lefrancq, A., Green, S., Valdés, V., Sadik, A., et al. (2016). Deepmind lab.
arXiv preprint arXiv:1612.03801. 94

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C., Moitra,
S., Ponda, S. S., and Wang, Z. (2020). Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82. 24, 47

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective
on Reinforcement Learning. In ICML17. 40, 47

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47. 46, 79, 82, 92, 94

BIBLIOGRAFIE 199

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos,
R. (2016). Unifying Count-Based Exploration and Intrinsic Motivation. In
NIPS16. 40, 58

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the
National Academy of Sciences of the United States of America, 38(8):716. 38,
42

Bengio, E., Thomas, V., Pineau, J., Precup, D., and Bengio, Y. (2017). Indepen-
dently controllable features. arXiv preprint arXiv:1703.07718. 85

Bengio, Y. (2012). Deep learning of representations for unsupervised and trans-
fer learning. In Proceedings of ICML workshop on unsupervised and transfer
learning, pages 17–36. 59

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum
Learning. In ICML09. 63, 80, 90, 99, 108

Beyret, B., Shafti, A., and Faisal, A. A. (2019). Dot-to-Dot: Explainable Hier-
archical Reinforcement Learning for Robotic Manipulation. In IROS19, pages
5014–5019. 58

Botvinick, M. M., Niv, Y., and Barto, A. G. (2009). Hierarchically organized be-
havior and its neural foundations: A reinforcement learning perspective. Cog-
nition, 113(3):262–280. 58

Bradtke, S. J. and Duff, M. O. (1995). Reinforcement learning methods for
continuous-time markov decision problems. In NIPS95, pages 393–400. 38

Bresson, G., Alsayed, Z., Yu, L., and Glaser, S. (2017). Simultaneous Localiza-
tion and Mapping: A Survey of Current Trends in Autonomous Driving. IEEE
Transactions on Intelligent Vehicles, 2(3):194–220. 49

Brunskill, E. and Li, L. (2014). Pac-inspired option discovery in lifelong reinfor-
cement learning. In ICML14, pages 316–324. 70, 105

Bujanca, M., Shi, X., Spear, M., Zhao, P., Lennox, B., and Luján, M. (2021).
Robust SLAM Systems: Are We There Yet? In IROS21. 49

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A.
(2018a). Large-Scale Study of Curiosity-Driven Learning. In ICLR18. 40, 58,
106, 173

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018b). Exploration by
Random Network Distillation. arXiv preprint arXiv:1810.12894. 40, 58

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.,
and Leonard, J. J. (2016). Past, Present, and Future of Simultaneous Localiza-
tion and Mapping: Toward the Robust-Perception Age. IEEE Transactions on
Robotics, 32(6):1309–1332. 171

BIBLIOGRAFIE 200

Cao, J., Weng, X., Khirodkar, R., Pang, J., and Kitani, K. (2022). Observation-
Centric SORT: Rethinking SORT for Robust Multi-Object Tracking. arXiv pre-
print arXiv:2203.14360. 180

Castro, P. S. and Precup, D. (2010). Using bisimulation for policy transfer in mdps.
In AAAI10. 60

Castro, P. S. and Precup, D. (2012). Automatic Construction of Temporally Ex-
tended Actions for MDPs Using Bisimulation Metrics. In Recent Advances
in Reinforcement Learning, volume 7188, pages 140–152, Berlin, Heidelberg.
Springer Berlin Heidelberg. Series Title: Lecture Notes in Computer Science.
60

Chaplot, D. S., Dalal, M., Gupta, S., Malik, J., and Salakhutdinov, R. (2021).
SEAL: Self-supervised Embodied Active Learning using Exploration and 3D
Consistency. In NeurIPS21. 52, 173

Chaplot, D. S., Gandhi, D., Gupta, A., and Salakhutdinov, R. (2020a). Object Goal
Navigation using Goal-Oriented Semantic Exploration. In NeurIPS20. 52, 53,
55

Chaplot, D. S., Gandhi, D., Gupta, S., Gupta, A., and Salakhutdinov, R. (2020b).
Learning to Explore using Active Neural SLAM. In ICLR20. 52, 173

Chaplot, D. S., Sathyendra, K. M., Lample, G., and Salakhutdinov, R. (2016).
Transfer Deep Reinforcement Learning in 3D Environments: An Empirical
Study. In NIPS Deep Reinforcemente Leaning Workshop 2016. 138

Chen, T., Gupta, S., and Gupta, A. (2019). Learning Exploration Policies for
Navigation. In ICLR19. 173

Chen, V., Gupta, A., and Marino, K. (2021). Ask Your Humans: Using Human
Instructions to Improve Generalization in Reinforcement Learning. In ICLR21.
115

Chevalier-Boisvert, M. (2018). gym-miniworld environment for openai gym.
https://github.com/maximecb/gym-miniworld. 117, 140, 155, 176

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems, L., Saharia, C.,
Nguyen, T. H., and Bengio, Y. (2019). BabyAI: First Steps Towards Groun-
ded Language Learning With a Human In the Loop. In ICLR19. 112, 127,
128

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. In EMNLP14. 45, 113

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2019). Quantifying
generalization in reinforcement learning. In ICML19. 94

https://github.com/maximecb/gym-miniworld

BIBLIOGRAFIE 201

Codevilla, F., Santana, E., Lopez, A., and Gaidon, A. (2019). Exploring the Li-
mitations of Behavior Cloning for Autonomous Driving. In ICCV19. 56

Comanici, G. and Precup, D. (2010). Optimal Policy Switching Algorithms for
Reinforcement Learning. In AAMAS10. 72

Coumans, E. and Bai, Y. (2016). Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org. 94

Cuayáhuitl, H., Renals, S., Lemon, O., and Shimodaira, H. (2010). Evaluation of a
hierarchical reinforcement learning spoken dialogue system. Computer Speech
& Language, 24(2):395–429. 47

da Silva, B. C., Konidaris, G., and Barto, A. G. (2012). Learning parameterized
skills. In ICML12. 79

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018a). Implicit Quantile
Networks for Distributional Reinforcement Learning. In ICML18. 40, 47

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018b). Implicit Quantile
Networks for Distributional Reinforcement Learning. In ICML18. 47

Damien, E., Pierre, G., and Louis, W. (2005). Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6. 44

Daniel, C., Neumann, G., and Peters, J. (2012). Hierarchical relative entropy po-
licy search. In Artificial Intelligence and Statistics, pages 273–281. 81

Daniel, C., Van Hoof, H., Peters, J., and Neumann, G. (2016). Probabilistic in-
ference for determining options in reinforcement learning. Machine Learning,
104(2-3):337–357. 81

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2018a). Embo-
died Question Answering. In CVPR18, page 20. 53, 58

Das, A., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2018b). Neural Mo-
dular Control for Embodied Question Answering. In Proceedings of The 2nd
Conference on Robot Learning. 54

Dasari, S., Ebert, F., Tian, S., Nair, S., Bucher, B., Schmeckpeper, K., Singh, S.,
Levine, S., and Finn, C. (2019). RoboNet: Large-Scale Multi-Robot Learning.
arXiv preprint arXiv:1910.11215. 23

Dayan, P. (1993). Improving generalization for temporal difference learning: The
successor representation. Neural Computation, 5:613–624. 76, 77

Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learning. In NIPS93.
66, 67, 87, 91, 98, 108

http://pybullet.org

BIBLIOGRAFIE 202

Dean, T. and Lin, S.-H. (1995). Decomposition techniques for planning in sto-
chastic domains. In IJCAI95. 57

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds,
T., Hafner, R., Abdolmaleki, A., de las Casas, D., Donner, C., Fritz, L., Galperti,
C., Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-
M., Noury, S., Pesamosca, F., Pfau, D., Sauter, O., Sommariva, C., Coda, S.,
Duval, B., Fasoli, A., Kohli, P., Kavukcuoglu, K., Hassabis, D., and Riedmiller,
M. (2022). Magnetic control of tokamak plasmas through deep reinforcement
learning. Nature, 602(7897):414–419. 24, 47

Deitke, M., VanderBilt, E., Herrasti, A., Weihs, L., Salvador, J., Ehsani, K., Han,
W., Kolve, E., Farhadi, A., Kembhavi, A., and Mottaghi, R. (2022). ProcTHOR:
Large-Scale Embodied AI Using Procedural Generation. In NeurIPS22. 52

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In CVPR09. 20

Desai, S. S. and Lee, S. (2021). Auxiliary Tasks for Efficient Learning of Point-
Goal Navigation. In WACV21. 50

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), page 16. 44, 194

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A.,
Schulman, J., Sidor, S., Wu, Y., and Zhokhov, P. (2017). Openai baselines.
https://github.com/openai/baselines. 108

Dibya, G., Abhishek, G., and Sergey, L. (2019). Learning actionable representati-
ons with goal-conditioned policies. In ICLR19. 92

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the maxq value
function decomposition. Journal of Artificial Intelligence Research, 13. 68, 74,
85, 93, 101

Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. (1997). Solving the multi-
ple instance problem with axis-parallel rectangles. Artificial intelligence, 89(1-
2):31–71. 76

Digney, B. L. (1998). Learning hierarchical control structures for multiple tasks
and changing environments. In Proceedings of the fifth international conference
on simulation of adaptive behavior on From animals to animats, volume 5. 75

Diuk, C., Cohen, A., and Littman, M. L. (2008). An object-oriented representation
for efficient reinforcement learning. In ICML08. 44, 60, 109

https://github.com/openai/baselines

BIBLIOGRAFIE 203

Diuk, C., Cohen, A., and Littman, M. L. (2009). An Object-Oriented Represen-
tation for Efficient Reinforcement Learning. PhD thesis, ACM Press, Helsinki,
Finland. 21

Donahue, J. and Simonyan, K. (2019). Large Scale Adversarial Representation
Learning. arXiv preprint arXiv:1907.02544. 44, 46

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthi-
ner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and
Houlsby, N. (2021). An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In ICLR21. 44, 45

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural
computation, 12(1):219–245. 48

Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowdhery, A., Ichter, B., Wahid,
A., Tompson, J., Vuong, Q., Yu, T., Huang, W., Chebotar, Y., Sermanet, P.,
Duckworth, D., Levine, S., Vanhoucke, V., Hausman, K., Toussaint, M., Greff,
K., Zeng, A., Mordatch, I., and Florence, P. (2023). PaLM-E: An Embodied
Multimodal Language Model. arXiv preprint arXiv:2303.03378. 44, 194

Du, Y., Song, Y., Yang, B., and Zhao, Y. (2022). StrongSORT: Make DeepSORT
Great Again. 180

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016a). Bench-
marking deep reinforcement learning for continuous control. In ICML16. 95,
108

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel,
P. (2016b). RL$2̂$: Fast Reinforcement Learning via Slow Reinforcement
Learning. arXiv preprint arXiv:1611.02779. 82

Dulac-Arnold, G., Mankowitz, D., and Hester, T. (2019). Challenges of Real-
World Reinforcement Learning. In Reinforcement Learning for Real Life
(RL4RealLife) Workshop in the 36 Th International Conference on Machine
Learning, page 14. 25, 164

Eckstein, M. K. and Collins, A. G. E. (2019). Computational evidence for hierar-
chically structured reinforcement learning in humans. Proceedings of the Nati-
onal Academy of Sciences, 117:29381 – 29389. 58

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and
Madry, A. (2020). Implementation matters in deep rl: A case study on ppo and
trpo. In ICLR20. 97

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2019). Diversity is All You
Need: Learning Skills without a Reward Function. In ICLR19. 64, 89, 99, 106

BIBLIOGRAFIE 204

Ferns, N., Panangaden, P., and Precup, D. (2004). Metrics for finite markov deci-
sion processes. In UAI04. 60

Finn, C., Abbeel, P., and Levine, S. (2017). Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks. In ICML17. 82

Florensa, C., Duan, Y., and Abbeel, P. (2017). Stochastic neural networks for
hierarchical reinforcement learning. In ICLR17. 88, 92

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V.,
Munos, R., Hassabis, D., Pietquin, O., Blundell, C., and Legg, S. (2018). Noisy
Networks for Exploration. In ICLR18. 40

Fox, R., Krishnan, S., Stoica, I., and Goldberg, K. (2017). Multi-level discovery
of deep options. arXiv preprint arXiv:1703.08294. 65, 107

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., Pineau, J., et al.
(2018). An introduction to deep reinforcement learning. Foundations and
Trends® in Machine Learning, 11(3-4):219–354. 46

François-Lavet, V., Taralla, D., Ernst, D., and Fonteneau, R. (2016). Deep rein-
forcement learning solutions for energy microgrids management. In European
Workshop on Reinforcement Learning (EWRL 2016). 47

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman, J. (2018). Meta learning
shared hierarchies. In ICLR18. 82, 101, 105

Fu, J., Kumar, A., Soh, M., and Levine, S. (2019). Diagnosing Bottlenecks in
Deep Q-learning Algorithms. In ICML19. 23

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-Policy Deep Reinforcement
Learning without Exploration. In ICML19. 23

Fulda, N., Ricks, D., Murdoch, B., and Wingate, D. (2017). What can you do with
a rock? Affordance extraction via word embeddings. In IJCAI17. 149

Garcı́a, J., Fern, and o Fernández (2015). A comprehensive survey on safe reinfor-
cement learning. Journal of Machine Learning Research, 16(42):1437–1480.
48

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A Neural Algorithm of Artistic
Style. arXiv preprint arXiv:1508.06576. 44

Georgievski, I. and Aiello, M. (2015). Htn planning: Overview, comparison, and
beyond. Artificial Intelligence, 222:124–156. 57

Ghavamzadeh, M. and Mahadevan, S. (2001). Continuous-time hierarchical rein-
forcement learning. In ICML01. 68

Girshick, R. (2015). Fast R-CNN. In ICCV15. 44

BIBLIOGRAFIE 205

Giunchiglia, F. and Walsh, T. (1992). A theory of abstraction. Artificial Intelli-
gence, 57(2-3):323–389. 26

Goel, S. and Huber, M. (2003). Subgoal discovery for hierarchical reinforcement
learning using learned policies. In FLAIRS Conference. 77

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. In NIPS14.
46

Goyal, P., Niekum, S., and Mooney, R. J. (2019). Using Natural Language for
Reward Shaping in Reinforcement Learning. In IJCAI19. 127

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and Parikh, D. (2017). Making
the V in VQA Matter: Elevating the Role of Image Understanding in Visual
Question Answering. In CVPR17. 21

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and Wierstra, D. (2015).
Draw: A recurrent neural network for image generation. In ICML15. 79

Gregor, K., Rezende, D. J., and Wierstra, D. (2016). Variational intrinsic control.
arXiv preprint arXiv:1611.07507. 88, 154

Greydanus, S., Koul, A., Dodge, J., and Fern, A. (2018). Visualizing and Under-
standing Atari Agents. In ICML18. 107

Gu, J., Chaplot, D. S., Su, H., and Malik, J. (2022). Multi-skill Mobile Manipula-
tion for Object Rearrangement. arXiv preprint arXiv:2209.02778. 54

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and Levine, S. (2017). Q-Prop:
Sample-Efficient Policy Gradient with An Off-Policy Critic. In ICLR17. 59

Gul, F., Rahiman, W., and Alhady, S. S. N. (2019). A comprehensive study for
robot navigation techniques. Cogent Engineering, 6(1):1632046. 171

Guo, Z., Thomas, P. S., and Brunskill, E. (2017). Using options and covariance
testing for long horizon off-policy policy evaluation. In NIPS17. 70

Haarnoja, T., Hartikainen, K., Abbeel, P., and Levine, S. (2018a). Latent space
policies for hierarchical reinforcement learning. In ICML18. 64, 84, 90, 96, 99,
104, 107

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement Learning
with Deep Energy-Based Policies. In ICML17. 88

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018b). Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor.
In ICML18. 59, 90

BIBLIOGRAFIE 206

Hahn, M., Chaplot, D., Tulsiani, S., Mukadam, M., Rehg, J. M., and Gupta, A.
(2021). No RL, No Simulation: Learning to Navigate without Navigating. In
NeurIPS21. 51

Hanke, T., Schaermann, A., Geiger, M., Weiler, K., Hirsenkorn, N., Rauch, A.,
Schneider, S.-A., and Biebl, E. (2017). Generation and validation of virtual
point cloud data for automated driving systems. In 2017 IEEE 20th Internatio-
nal Conference on Intelligent Transportation Systems (ITSC), pages 1–6. 172

Harb, J., Bacon, P.-L., Klissarov, M., and Precup, D. (2018). When waiting is not
an option: Learning options with a deliberation cost. In AAAI18. 73, 81, 98

Harutyunyan, A., Dabney, W., Borsa, D., Heess, N., Munos, R., and Precup, D.
(2019). The termination critic. In The 22nd International Conference on Artifi-
cial Intelligence and Statistics, pages 2231–2240. 82, 98

Hasselt, H. V. (2012). Reinforcement learning in continuous state and action spa-
ces. In Reinforcement learning, pages 207–251. Springer. 175

Hausknecht, M. and Stone, P. (2015). Deep Recurrent Q-Learning for Partially
Observable MDPs. In AAAI Fall Symposia 2015. 45, 141

Hauskrecht, M. (2000). Value-Function Approximations for Partially Observable
Markov Decision Processes. Journal of Artificial Intelligence Research, 13:33–
94. 37

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and Riedmiller, M. (2018).
Learning an Embedding Space for Transferable Robot Skills. In ICLR18. 59

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image
Recognition. In CVPR16. 44, 167

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller, M., and Silver, D.
(2016). Learning and transfer of modulated locomotor controllers. arXiv pre-
print arXiv:1610.05182. 63, 87

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger,
D. (2017). Deep Reinforcement Learning that Matters. arXiv preprint ar-
Xiv:1709.06560. 97, 107

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with hexq. In
ICML02. 68

Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner, R., Soyer, H., Szepesvari,
D., Czarnecki, W. M., Jaderberg, M., Teplyashin, D., et al. (2017). Grounded
language learning in a simulated 3d world. arXiv preprint arXiv:1706.06551.
127

BIBLIOGRAFIE 207

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., and Silver, D. (2018). Rainbow: Combining
improvements in deep reinforcement learning. In AAAI18. 47

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., and van Hasselt,
H. (2019). Multi-task Deep Reinforcement Learning with PopArt. In AAAI19.
128

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T., and Kingsbury, B. (2012). Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared Views of
Four Research Groups. IEEE Signal Processing Magazine, 29(6). 26, 44

Hinton, G. E. (2006). Reducing the Dimensionality of Data with Neural Networks.
Science, 313(5786). 85

Ho, J. and Ermon, S. (2016). Generative Adversarial Imitation Learning. In
NIPS16. 65, 154

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8):1735–1780. 45, 91, 167

Honnibal, M. and Montani, I. (2017). spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental par-
sing. 141

Honnibal, M., Montani, I., Van Landeghem, S., and Boyd, A. (2020). spaCy:
Industrial-strength Natural Language Processing in Python. 149

Houthooft, R., Chen, X., Chen, X., Duan, Y., Schulman, J., Turck, F. D., and
Abbeel, P. (2016). VIME: Variational Information Maximizing Exploration. In
NIPS16. 40

Howard, R. A. (1960). Dynamic programming and markov processes. John Wiley.
35

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., and Levine, S. (2021).
How to Train Your Robot with Deep Reinforcement Learning; Lessons We’ve
Learned. The International Journal of Robotics Research. 25

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castañeda,
A. G., Beattie, C., Rabinowitz, N. C., Morcos, A. S., Ruderman, A., et al.
(2019). Human-level performance in 3d multiplayer games with population-
based reinforcement learning. Science, 364(6443):859–865. 47

Jaderberg, M., Mnih, V., Czarnecki, Wojciech, M., Schaul, T., Leibo, J. Z., Silver,
D., and Kavukcuoglu, K. (2017). Reinforcement learning with unsupervised
auxiliary tasks. In ICLR17. 86

BIBLIOGRAFIE 208

James, S., Davison, A. J., and Johns, E. (2017). Transferring End-to-End Vi-
suomotor Control from Simulation to Real World for a Multi-Stage Task. In
Conference on Robot Learning. 56

James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D., Irpan, A., Ibarz, J.,
Levine, S., Hadsell, R., and Bousmalis, K. (2019). Sim-To-Real via Sim-To-
Sim: Data-Efficient Robotic Grasping via Randomized-To-Canonical Adapta-
tion Networks. In CVPR19. 56

Jiang, Y., Gu, S., Murphy, K., and Finn, C. (2019). Language as an Abstraction
for Hierarchical Deep Reinforcement Learning. In NeurIPS19. 108, 115, 128

Jinnai, Y., Abel, D., Hershkowitz, D. E., Littman, M. L., and Konidaris, G. (2019).
Finding Options that Minimize Planning Time. In ICML19. 64

Jinnai, Y., Park, J. W., Machado, M. C., and Konidaris, G. (2020). Exploration in
Reinforcement Learning with Deep Covering Options. In ICLR20. 58, 106

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. (2016). The malmo plat-
form for artificial intelligence experimentation. In IJCAI16. 63, 94

Jong, N. K., Hester, T., and Stone, P. (2008). The utility of temporal abstraction in
reinforcement learning. In AAMAS08. 62

Jonsson, A. and Barto, A. G. (2006). Causal graph based decomposition of facto-
red mdps. Journal of Machine Learning Research, 7. 69

Justesen, N., Bontrager, P., Togelius, J., and Risi, S. (2019). Deep learning for
video game playing. IEEE Transactions on Games. 46

Kadian, A., Truong, J., Gokaslan, A., Clegg, A., Wijmans, E., Lee, S., Savva, M.,
Chernova, S., and Batra, D. (2019). Are We Making Real Progress in Simulated
Environments? Measuring the Sim2Real Gap in Embodied Visual Navigation.
arXiv preprint arXiv:1912.06321 [cs]. 164

Kadian, A., Truong, J., Gokaslan, A., Clegg, A., Wijmans, E., Lee, S., Savva, M.,
Chernova, S., and Batra, D. (2020). Sim2Real Predictivity: Does Evaluation in
Simulation Predict Real-World Performance? IEEE Robotics and Automation
Letters, 5(4):6670–6677. 50

Kaelbling, L. P. (1993). Hierarchical learning in stochastic domains: Preliminary
results. In ICML93. 75

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting
in partially observable stochastic domains. Artificial intelligence, 101(1-2):99–
134. 37

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D.,
Holly, E., Kalakrishnan, M., Vanhoucke, V., and Levine, S. (2018). QT-Opt:
Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipula-
tion. arXiv preprint arXiv:1806.10293. 47

BIBLIOGRAFIE 209

Kamilaris, A. and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A
survey. Computers and electronics in agriculture, 147:70–90. 44

Karkus, P., Cai, S., and Hsu, D. (2021). Differentiable slam-net: Learning particle
slam for visual navigation. In CVPR21. 112

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for genera-
ting image descriptions. In CVPR15. 44

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W. (2016).
Vizdoom: A doom-based ai research platform for visual reinforcement learning.
In 2016 IEEE Conference on Computational Intelligence and Games (CIG),
pages 1–8. IEEE. 94

Khandelwal, A., Weihs, L., Mottaghi, R., and Kembhavi, A. (2022). Simple but
Effective: CLIP Embeddings for Embodied AI. In CVPR22. 50

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In
ICLR14. 45, 90

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness, J., Desjardins, G., Rusu,
A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis,
D., Clopath, C., Kumaran, D., and Hadsell, R. (2017). Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences
of the United States of America, 114. 105

Klissarov, M., Bacon, P.-L., Harb, J., and Precup, D. (2017). Learnings options
end-to-end for continuous action tasks. In Hierarchical Reinforcement Learning
Workshop (NIPS17). 82

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11). 47

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In NIPS00. 43

Konidaris, G. and Barto, A. G. (2009a). Efficient skill learning using abstraction
selection. In IJCAI09. 60

Konidaris, G. and Barto, A. G. (2009b). Skill discovery in continuous reinforce-
ment learning domains using skill chaining. In NIPS09. 72, 78, 93

Krishnan, S., Fox, R., Stoica, I., and Goldberg, K. Y. (2017). Ddco: Discovery of
deep continuous options for robot learning from demonstrations. In Conference
on Robot Learning. 65

Krishnan, S., Garg, A., Liaw, R., Miller, L., Pokorny, F. T., and Goldberg, K.
(2016). Hirl: Hierarchical inverse reinforcement learning for long-horizon tasks
with delayed rewards. arXiv preprint arXiv:1604.06508. 65

BIBLIOGRAFIE 210

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification
with deep convolutional neural networks. In Communications of the ACM, vo-
lume 60. 26, 44

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. B. (2016a). Hier-
archical deep reinforcement learning: Integrating temporal abstraction and in-
trinsic motivation. In NIPS16. 58, 64, 80, 94

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016b). Deep suc-
cessor reinforcement learning. arXiv preprint arXiv:1606.02396. 76, 78

Kumar, A., Swersky, K., and Hinton, G. (2017). Feudal Learning for Large Dis-
crete Action Spaces with Recursive Substructure. In HRL@NIPS 2017. 67

Kumar, A., Tucker, G., Fu, J., and Levine, S. (2019). Stabilizing Off-Policy Q-
Learning via Bootstrapping Error Reduction. In NeurIPS19, page 11. 23

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Buil-
ding machines that learn and think like people. Behavioral and Brain Sciences,
40. 22, 58, 63, 137, 193

Lakshminarayanan, A. S., Krishnamurthy, R., Kumar, P., and Ravindran, B.
(2016). Option discovery in hierarchical reinforcement learning using spatio-
temporal clustering. arXiv preprint arXiv:1605.05359. 78

Larsen, K. G. and Skou, A. (1991). Bisimulation through probabilistic testing.
Information and computation, 94(1):1–28. 60

Lazaric, A. and Restelli, M. (2011). Transfer from Multiple MDPs. In NIPS11. 29

Le, H. M., Jiang, N., Agarwal, A., Dudı́k, M., Yue, Y., and Daumé, H. (2018).
Hierarchical imitation and reinforcement learning. In ICML18. 65

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444. 20, 26, 44, 98

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.
45

Lee, S. Y., Choi, S., and Chung, S.-Y. (2019). Sample-Efficient Deep Reinforce-
ment Learning via Episodic Backward Update. In NeurIPS19. 47

Legg, S. and Hutter, M. (2007). A Collection of Definitions of Intelligence. Fron-
tiers in Artificial Intelligence and applications, 157. 20

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016a). End-to-End Training of
Deep Visuomotor Policies. The Journal of Machine Learning Research. 47

BIBLIOGRAFIE 211

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline Reinforcement
Learning: Tutorial, Review, and Perspectives on Open Problems. arXiv pre-
print arXiv:2005.01643. 56

Levine, S., Pastor, P., Krizhevsky, A., and Quillen, D. (2016b). Learning Hand-
Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale
Data Collection. The International Journal of Robotics Research, 37. 47

Levine, S. and Shah, D. (2023). Learning robotic navigation from experience:
Principles, methods and recent results. Philosophical Transactions of the Royal
Society B: Biological Sciences, 378(1869):20210447. 23, 55

Levy, A., Platt, R., and Saenko, K. (2019). Hierarchical reinforcement learning
with hindsight. In ICLR19. 85, 104, 107

Li, A. C., Florensa, C., Clavera, I., and Abbeel, P. (2020). Sub-policy Adaptation
for Hierarchical Reinforcement Learning. In ICLR20. 82

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a Unified Theory of State
Abstraction for MDPs. In ISAIM2016, page 10. 60

Li, Y. (2017). Deep Reinforcement Learning: An Overview. arXiv preprint ar-
Xiv:1701.07274. 46

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. (2016). Continuous control with deep reinforcement learning. In
ICLR16. 47

Lin, K., Zhao, R., Xu, Z., and Zhou, J. (2018). Efficient large-scale fleet ma-
nagement via multi-agent deep reinforcement learning. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1774–1783. 47

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine learning, 8(3-4):293–321. 47

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In
ECCV14. 20, 181

Lin, Y., McPhee, J., and Azad, N. L. (2021). Comparison of Deep Reinforce-
ment Learning and Model Predictive Control for Adaptive Cruise Control. IEEE
Transactions on Intelligent Vehicles, 6(2):221–231. 49

Litjens, G. J. S., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,
M., van der Laak, J., van Ginneken, B., and Sánchez, C. I. (2017). A survey on
deep learning in medical image analysis. Medical image analysis, 42:60–88. 44

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. (2020). Reset-Free Lifelong
Learning with Skill-Space Planning. In ICLR21. 48

BIBLIOGRAFIE 212

Luketina, J., Nardelli, N., Farquhar, G., Foerster, J., Andreas, J., Grefenstette, E.,
Whiteson, S., and Rocktäschel, T. (2019). A Survey of Reinforcement Learning
Informed by Natural Language. In IJCAI19. 46, 127

Machado, M. C., Bellemare, M. G., and Bowling, M. H. (2017). A laplacian
framework for option discovery in reinforcement learning. In ICML17. 64, 77

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro, G., and Campbell,
M. (2018). Eigenoption discovery through the deep successor representation. In
ICLR18. 77

Maes, P. and Brooks, R. A. (1990). Learning to coordinate behaviors. In AAAI90.
64

Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, al-
gorithms, and empirical results. Recent advances in reinforcement Learning,
pages 159–195. 36

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement
learning. In ICML05. 77

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior-based
robots using reinforcement learning. Artificial Intelligence, 55(2-3):311–365.
64

Mahadevan, S., Das, T. K., and Gosavi, A. (1997). Self-improving factory simula-
tion using continuous-time average-reward reinforcement learning. In ICML97.
38

Mahmood, A. R., Korenkevych, D., Vasan, G., Ma, W., and Bergstra, J. (2018).
Benchmarking Reinforcement Learning Algorithms on Real-World Robots. In
CoRL18. 47

Mahmoud, A. and Waslander, S. L. (2021). Sequential fusion via bounding box
and motion pointpainting for 3d objection detection. In 2021 18th Conference
on Robots and Vision (CRV), pages 9–16. 180

Maksymets, O., Cartillier, V., Gokaslan, A., Wijmans, E., Galuba, W., Lee, S.,
and Batra, D. (2021). THDA: Treasure Hunt Data Augmentation for Semantic
Navigation. In ICCV21. 52, 53

Mandel, T., Liu, Y.-E., Levine, S., Brunskill, E., and Popovic, Z. (2014). Offline
Policy Evaluation Across Representations with Applications to Educational Ga-
mes. In AAMAS14. 47

Mankowitz, D. J., Mann, T. A., and Mannor, S. (2014). Time regularized interrup-
ting options. In ICML14. 73

Mann, T. A. and Mannor, S. (2014). Scaling up approximate value iteration with
options: Better policies with fewer iterations. In ICML14. 70

BIBLIOGRAFIE 213

Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016). Resource mana-
gement with deep reinforcement learning. In Proceedings of the 15th ACM
workshop on hot topics in networks, pages 50–56. 47

Marchesini, E. and Farinelli, A. (2020). Discrete deep reinforcement learning for
mapless navigation. ICRA20. 175

Maron, O. and Lozano-Pérez, T. (1998). A framework for multiple-instance
learning. In NIPS98. 76

McCarthy, J., Minsky, M., and Rochester, N. (1955). A proposal for the dartmouth
summer research project on artificial intelligence. 20, 26, 58

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in rein-
forcement learning using diverse density. In ICML01. 64, 72, 75, 76, 99, 106

McGovern, A., Sutton, R. S., and Fagg, A. H. (1997). Roles of macro-actions in
accelerating reinforcement learning. In Grace Hopper celebration of women in
computing, volume 1317. 61

Mehta, N., Ray, S., Tadepalli, P., and Dietterich, T. G. (2008). Automatic discovery
and transfer of maxq hierarchies. In ICML08. 69

Menache, I., Mannor, S., and Shimkin, N. (2002). Q-cut - dynamic discovery of
sub-goals in reinforcement learning. In ECML02. 77

Menashe, J. and Stone, P. (2019). Escape room: A configurable testbed for hierar-
chical reinforcement learning. In AAMAS19. 93

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation of
Word Representations in Vector Space. In ICLR Workshop. 141, 149

Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q. V., and Dean, J. (2018).
A hierarchical model for device placement. In ICLR18. 47

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori, E., Wang, S., Lee,
Y.-J., Johnson, E., Pathak, O., Bae, S., Nazi, A., Pak, J., Tong, A., Srinivasa, K.,
Hang, W., Tuncer, E., Babu, A., Le, Q. V., Laudon, J., Ho, R., Carpenter, R.,
and Dean, J. (2020). Chip Placement with Deep Reinforcement Learning. arXiv
preprint arXiv:2004.10746. 24

Mishkin, D., Dosovitskiy, A., and Koltun, V. (2019). Benchmarking Classic
and Learned Navigation in Complex 3D Environments. arXiv preprint ar-
Xiv:1901.10915. 21, 49, 112

Misra, D., Langford, J., and Artzi, Y. (2017). Mapping instructions and vi-
sual observations to actions with reinforcement learning. arXiv preprint ar-
Xiv:1704.08795. 127

BIBLIOGRAFIE 214

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D.,
and Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement
Learning. In ICML16. 45, 86, 91

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540).
24, 46, 80, 82, 132, 141

Mo, K., Li, H., Lin, Z., and Lee, J.-Y. (2018). The AdobeIndoorNav Dataset:
Towards Deep Reinforcement Learning based Real-world Indoor Robot Visual
Navigation. arXiv preprint arXiv:1802.08824. 23

Moshayedi, A. J., Xu, G., Liao, L., and Kolahdooz, A. (2021). Gentle survey on
mir industrial service robots: Review & design. J. Mod. Process. Manuf. Prod,
10(1):31–50. 171

Nachum, O., Gu, S., Lee, H., and Levine, S. (2018a). Near-optimal representation
learning for hierarchical reinforcement learning. In NeurIPS18. 88, 92, 105

Nachum, O., Gu, S. S., Lee, H., and Levine, S. (2018b). Data-efficient hierarchical
reinforcement learning. In NeurIPS18. 58, 64, 84, 91, 101, 104, 106

Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and Levine, S. (2019). Why
Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning? arXiv
preprint arXiv:1909.10618. 58, 62, 106

Narasimhan, M., Wijmans, E., Chen, X., Darrell, T., Batra, D., Parikh, D., and
Singh, A. (2020). Seeing the Un-Scene: Learning Amodal Semantic Maps for
Room Navigation. In ECCV20. 53

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M. E., and Stone, P.
(2020). Curriculum Learning for Reinforcement Learning Domains: A Frame-
work and Survey. arXiv preprint arXiv:2003.04960. 144

Neumann, G., Maass, W., and Peters, J. (2009). Learning complex motions by
sequencing simpler motion templates. In ICML09. 72, 79

Ng, A. Y., Harada, D., and Russell, S. J. (1999). Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML99. 25, 58,
65, 87, 99, 127

Ng, A. Y., Kim, H. J., Jordan, M. I., and Sastry, S. (2003). Autonomous Helicopter
Flight via Reinforcement Learning. In NIPS03. 47

Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse reinforcement learning.
In ICML00. 65

BIBLIOGRAFIE 215

Ocana, J. M. C., Capobianco, R., and Nardi, D. (2023). An Overview of Environ-
mental Features that Impact Deep Reinforcement Learning in Sparse-Reward
Domains. Journal of Artificial Intelligence Research, 76:1181–1218. 58

OpenAI (2018). Openai five. https://blog.openai.com/openai-five/. 47

OpenAI (2019a). Dota 2 with Large Scale Deep Reinforcement Learning. arXiv
preprint arXiv:1912.06680. 24, 47

OpenAI (2019b). Learning Dexterous In-Hand Manipulation. arXiv preprint ar-
Xiv:1808.00177. 24, 47

Ormrod, J. E. (1999). Human learning. Merrill Upper Saddle River, NJ. 24

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., McKin-
ney, K., Lattimore, T., Szepezvari, C., Singh, S., Van Roy, B., Sutton, R., Silver,
D., and Van Hasselt, H. (2019). Behaviour Suite for Reinforcement Learning.
arXiv preprint arXiv:1908.03568. 108

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang,
C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller,
L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., and Lowe, R.
(2022). Training language models to follow instructions with human feedback.
In NeurIPS22. 44

Pan, X., Ohn-Bar, E., Rhinehart, N., Xu, Y., Shen, Y., and Kitani, K. M.
(2018). Human-interactive subgoal supervision for efficient inverse reinforce-
ment learning. In AAMAS18. 65

Pan, X., You, Y., Wang, Z., and Lu, C. (2017). Virtual to real reinforcement
learning for autonomous driving. arXiv preprint arXiv:1704.03952. 47

Parr, R. and Russell, S. J. (1998a). Reinforcement learning with hierarchies of
machines. In NIPS98. 67

Parr, R. E. and Russell, S. (1998b). Hierarchical control and learning for Markov
decision processes. University of California, Berkeley Berkeley, CA. 38

Partsey, R., Wijmans, E., Yokoyama, N., Dobosevych, O., Batra, D., and Maksy-
mets, O. (2022). Is Mapping Necessary for Realistic PointGoal Navigation? In
CVPR2022. 23, 50

Pashenkova, E., Rish, I., and Dechter, R. (1996). Value iteration and policy itera-
tion algorithms for markov decision problem. In AAAI’96: Workshop on Struc-
tural Issues in Planning and Temporal Reasoning. 39

Patel, V. M., Gopalan, R., Li, R., and Chellappa, R. (2015). Visual Domain
Adaptation: A survey of recent advances. IEEE Signal Processing Magazine,
32(3):53–69. 56

https://blog.openai.com/openai-five/

BIBLIOGRAFIE 216

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven
Exploration by Self-supervised Prediction. In ICML17. 58

Peng, X. B., Abbeel, P., Levine, S., and van de Panne, M. (2018). DeepMimic:
Example-guided deep reinforcement learning of physics-based character skills.
ACM Transactions on Graphics, 37(4). 65

Peters, J., Mülling, K., and Altun, Y. (2010). Relative entropy policy search. In
AAAI. Atlanta. 81

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., As-
four, T., Abbeel, P., and Andrychowicz, M. (2018). Parameter Space Noise for
Exploration. In ICLR18. 40

Polack, P., Altché, F., d’Andréa Novel, B., and de La Fortelle, A. (2017). The
kinematic bicycle model: A consistent model for planning feasible trajectories
for autonomous vehicles? In 2017 IEEE intelligent vehicles symposium (IV),
pages 812–818. IEEE. 179

Pomerleau, D. A. (1988). ALVINN: An Autonomous Land Vehicle in a Neural
Network. In NIPS88. 56

Precup, D. and Sutton, R. S. (1997). Multi-time models for temporally abstract
planning. In NIPS97. 70

Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc. New York, NY, USA. 35

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks. arXiv
preprint arXiv:1511.06434. 44

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).
Language Models are Unsupervised Multitask Learners. Technical report, Ope-
nAI. 44, 194

Radford, N. (1990). Learning stochastic feedforward networks. Department of
Computer Science University of Toronto, 64(9). 88

Rajendran, J., Srinivas, A., Khapra, M. M., Prasanna, P., and Ravindran, B. (2017).
Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Transfer
from multiple sources in the same domain. In ICLR17. 29

Ramakrishnan, S. K., Chaplot, D. S., Al-Halah, Z., Malik, J., and Grauman, K.
(2022). PONI: Potential Functions for ObjectGoal Navigation with Interaction-
free Learning. In CVPR22. 53

BIBLIOGRAFIE 217

Ramakrishnan, S. K., Gokaslan, A., Wijmans, E., Maksymets, O., Clegg, A.,
Turner, J., Undersander, E., Galuba, W., Westbury, A., Chang, A. X., Savva,
M., Zhao, Y., and Batra, D. (2021). Habitat-Matterport 3D Dataset (HM3D):
1000 Large-scale 3D Environments for Embodied AI. arXiv preprint ar-
Xiv:2109.08238. 51

Ramrakhya, R., Undersander, E., Batra, D., and Das, A. (2022). Habitat-Web:
Learning Embodied Object-Search Strategies from Human Demonstrations at
Scale. In CVPR22. 21, 53, 55

Ramstedt, S. and Pal, C. (2019). Real-time reinforcement learning. In NeurIPS19,
pages 3073–3082. 48

Rao, K., Harris, C., Irpan, A., Levine, S., Ibarz, J., and Khansari, M. (2020). RL-
CycleGAN: Reinforcement Learning Aware Simulation-to-Real. In CVPR20.
56

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You Only Look
Once: Unified, Real-Time Object Detection. In CVPR16. 44

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron,
G., Gimenez, M., Sulsky, Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J.,
Razavi, A., Edwards, A., Heess, N., Chen, Y., Hadsell, R., Vinyals, O., Bordbar,
M., and de Freitas, N. (2022). A Generalist Agent. Transactions on Machine
Learning Research. 21

Riedmiller, M. A., Hafner, R., Lampe, T., Neunert, M., Degrave, J., de Wiele,
T. V., Mnih, V., Heess, N., and Springenberg, J. T. (2018). Learning by playing
- solving sparse reward tasks from scratch. In ICML18. 86

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-
Resolution Image Synthesis with Latent Diffusion Models. In CVPR22. 44,
194

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and
structured prediction to no-regret online learning. In Gordon, G., Dunson, D.,
and Dudı́k, M., editors, Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine
Learning Research, pages 627–635, Fort Lauderdale, FL, USA. PMLR. 65, 154

Rubio, F., Valero, F., and Llopis-Albert, C. (2019). A review of mobile ro-
bots: Concepts, methods, theoretical framework, and applications. International
Journal of Advanced Robotic Systems, 16(2). 48

Ruiz, D. V. and Todt, E. (2021). BEyond observation: An approach for ObjectNav.
In 2th Embodied AI Workshop at CVPR 2021. 53

BIBLIOGRAFIE 218

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal
representations by error propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science. 46, 85

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist
systems. Technical Report CUED/F-INFENG-TR 166, Cambridge University.
41

Rupprecht, C., Ibrahim, C., and Pal, C. J. (2020). Finding and Visualizing Weak-
nesses of Deep Reinforcement Learning Agents. In ICLR20. 107

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pas-
canu, R., Mnih, V., Kavukcuoglu, K., and Hadsell, R. (2015). Policy distillation.
arXiv preprint arXiv:1511.06295. 80

Sacerdoti, E. D. (1973). Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5. 57

Sainath, T. N., Mohamed, A.-r., Kingsbury, B., and Ramabhadran, B. (2013). Deep
convolutional neural networks for LVCSR. In 2013 IEEE International Confe-
rence on Acoustics, Speech and Signal Processing. 44

Salge, C., Glackin, C., and Polani, D. (2014). Empowerment–an introduction. In
Guided Self-Organization: Inception, pages 67–114. Springer. 88

Santiago, O., Gabriel, S., Alberto, U., Florian, R., David, C., and Mike, P. (2013).
A survey of real-time strategy game ai research and competition in starcraft.
IEEE Transactions on Computational Intelligence and AI in games, 5(4). 94

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia,
P., and Lillicrap, T. (2017). A simple neural network module for relational
reasoning. In NIPS17. 109

Savinov, N., Raichuk, A., Vincent, D., Marinier, R., Pollefeys, M., Lillicrap, T.,
and Gelly, S. (2019). Episodic curiosity through reachability. In ICLR19. 106

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub,
J., Liu, J., Koltun, V., Malik, J., Parikh, D., and Batra, D. (2019). Habitat: A
Platform for Embodied AI Research. In ICCV19. 51, 112, 119, 160, 165, 167

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function
approximators. In ICML15. 63

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized Experience
Replay. In ICLR16. 47

Schmidhuber, J. (2010). Formal Theory of Creativity, Fun, and Intrinsic Moti-
vation (1990–2010). IEEE Transactions on Autonomous Mental Development,
2(3). 58

BIBLIOGRAFIE 219

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61. 20, 44

Schneider, S., Baevski, A., Collobert, R., and Auli, M. (2019). wav2vec: Unsu-
pervised pre-training for speech recognition. arXiv preprint arXiv:1904.05862.
44

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. (2015). Trust
region policy optimization. In ICML15. 47, 88

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347. 47, 82,
119, 176

Shang, W., Trott, A., Zheng, S., Xiong, C., and Socher, R. (2019). Learning
world graphs to accelerate hierarchical reinforcement learning. arXiv preprint
arXiv:1907.00664. 108

Sharma, S., Lakshminarayanan, A. S., and Ravindran, B. (2017). Learning to re-
peat: Fine grained action repetition for deep reinforcement learning. In ICLR17.
79

Shu, T., Xiong, C., and Socher, R. (2018). Hierarchical and Interpretable Skill
Acquisition in Multi-task Reinforcement Learning. In ICLR18. 107

Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D. (2011). Introduction to au-
tonomous mobile robots. MIT press. 48

Silver, D. and Ciosek, K. (2012). Compositional planning using optimal option
models. In ICML12. 70

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks and tree search. Nature,
529(7587). 24, 47

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassa-
bis, D. (2018). A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419). 26

Silver, D. L., Yang, Q., and Li, L. (2013). Lifelong machine learning systems:
Beyond learning algorithms. In AAAI Spring Symposium: Lifelong Machine
Learning, volume 13. 58, 63, 81, 91, 136, 141, 148

Simm, G. N. C., Pinsler, R., and Hernández-Lobato, J. M. (2020). Reinforcement
Learning for Molecular Design Guided by Quantum Mechanics. In ICML20.
24

BIBLIOGRAFIE 220

Şimşek, Ö. and Barto, A. G. (2004). Using relative novelty to identify useful
temporal abstractions in reinforcement learning. In ICML04. 72, 76

Şimşek, Ö., Wolfe, A. P., and Barto, A. G. (2005). Identifying useful subgoals in
reinforcement learning by local graph partitioning. In ICML05. 77

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental
sequential tasks. Machine Learning, 8(3-4). 64

Smith, L. and Gasser, M. (2005). The Development of Embodied Cognition: Six
Lessons from Babies. Artificial Life, 11(1-2):13–29. 24

Smith, R. C. and Cheeseman, P. (1986). On the representation and estimation of
spatial uncertainty. The international journal of Robotics Research, 5(4):56–68.
49

Sohn, S., Woo, H., Choi, J., and Lee, H. (2020). Meta Reinforcement Learning
with Autonomous Inference of Subtask Dependencies. In ICLR20. 82, 108

Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning.
In International Symposium on abstraction, reformulation, and approximation,
pages 212–223. 76

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman, M. L. (2006). PAC
model-free reinforcement learning. In ICML06. 47

Sukhbaatar, S., Denton, E., Szlam, A., and Fergus, R. (2018). Learning goal em-
beddings via self-play for hierarchical reinforcement learning. arXiv preprint
arXiv:1811.09083. 88

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning
with Neural Networks. In NIPS14, volume 27. 26, 44

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning.
PhD thesis, University of Massachusetts Amherst. AAI8410337. 81

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44. 47

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass.
24, 40, 46, 58

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy
Gradient Methods for Reinforcement Learning with Function Approximation.
In NIPS00. 43

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Pre-
cup, D. (2011). Horde: A scalable real-time architecture for learning knowledge
from unsupervised sensorimotor interaction. In AAMAS11. 84, 85

BIBLIOGRAFIE 221

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial In-
telligence, 112(1-2):181–211. 61, 65, 69, 72, 92

Sutton, R. S., Precup, D., and Singh, S. P. (1998). Intra-option learning about
temporally abstract actions. In ICLR98. 73

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. (2016). Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning. arXiv
preprint arXiv:1602.07261. 44

Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions.
In CVPR15. 44

Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre,
N., Mukadam, M., Chaplot, D., Maksymets, O., Gokaslan, A., Vondrus, V.,
Dharur, S., Meier, F., Galuba, W., Chang, A., Kira, Z., Koltun, V., Malik, J.,
Savva, M., and Batra, D. (2021). Habitat 2.0: Training Home Assistants to
Rearrange their Habitat. In NeurIPS21. 54, 94, 112

Szot, A., Yadav, K., Clegg, A., Berges, V.-P., Gokaslan, A., Chang, A., Savva, M.,
Kira, Z., and Batra, D. (2022). Habitat rearrangement challenge 2022. https:
//aihabitat.org/challenge/rearrange 2022. 55

Tang, Y. and Salakhutdinov, R. R. (2013). Learning stochastic feedforward neural
networks. In NIPS13. 88

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., de Las Casas, D., Budden,
D., Abdolmaleki, A., Merel, J., Lefrancq, A., Lillicrap, T., and Riedmiller, M.
(2018). DeepMind control suite. arXiv preprint arXiv:1504.04804. 94

Taylor, M. E. and Stone, P. (2009). Transfer Learning for Reinforcement Learning
Domains: A Survey. Journal of Machine Learning Research, 10. 29, 138

Taylor, M. E. and Stone, P. (2011). An Introduction to Intertask Transfer for Rein-
forcement Learning. AI Magazine, 32(1). 59

Tessler, C., Givony, S., Zahavy, T., Mankowitz, D. J., and Mannor, S. (2017). A
deep hierarchical approach to lifelong learning in minecraft. In AAAI17. 58, 63,
64, 70, 80, 99, 105

Thrun, S. (1992). Efficient exploration in reinforcement learning. Technical Report
CMU-CS-92-102, Carnegie Mellon University, Pittsburgh, PA. 172

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017).
Domain randomization for transferring deep neural networks from simulation
to the real world. In IROS17. 56

https://aihabitat.org/challenge/rearrange_2022
https://aihabitat.org/challenge/rearrange_2022

BIBLIOGRAFIE 222

Todorov, E. (2007). Linearly-solvable markov decision problems. In NIPS07. 88

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-
based control. IROS12. 94

Truong, J., Rudolph, M., Yokoyama, N., Chernova, S., Batra, D., and Rai, A.
(2022). Rethinking Sim2Real: Lower Fidelity Simulation Leads to Higher
Sim2Real Transfer in Navigation. In Conference on Robot Learning 2022. 164

Tsitsiklis, J. N. and Van Roy, B. (1996). Analysis of temporal-diffference learning
with function approximation. In NIPS96. 46

Turing, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE.
Mind, LIX(236):433–460. 20

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves,
A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). WaveNet: A
Generative Model for Raw Audio. In SSW16. 44

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., and Modayil, J.
(2018). Deep Reinforcement Learning and the Deadly Triad. arXiv preprint
arXiv:1812.02648. 46

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep Reinforcement Learning
with Double Q-learning. In AAAI16. 47

Van Seijen, H., Fatemi, M., Romoff, J., Laroche, R., Barnes, T., and Tsang, J.
(2017). Hybrid reward architecture for reinforcement learning. In NIPS17. 85

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I. (2017). Attention is All you Need. In NIPS17. 45

Vezhnevets, A., Mnih, V., Agapiou, J., Osindero, S., Graves, A., Vinyals, O., and
Kavukcuoglu, K. (2016). Strategic attentive writer for learning macro-actions.
In NIPS16. 79

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D.,
and Kavukcuoglu, K. (2017). FeUdal Networks for Hierarchical Reinforcement
Learning. In ICML17. 64, 84, 90, 91, 92, 94, 98, 101, 104, 106, 108

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss,
M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V., Budden, D., Sulsky,
Y., Molloy, J., Paine, T. L., Gulcehre, C., Wang, Z., Pfaff, T., Wu, Y., Ring, R.,
Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T.,
Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver, D. (2019). Grandmaster
level in StarCraft II using multi-agent reinforcement learning. Nature. 24, 26,
47

BIBLIOGRAFIE 223

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo,
M., Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., et al. (2017).
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint ar-
Xiv:1708.04782. 94

Visús, A., Garcı́a, J., and Fernández, F. (2021). A taxonomy of similarity metrics
for markov decision processes. arXiv preprint arXiv:2103.04706. 129

Waissi, G. R. (1994). Network Flows: Theory, Algorithms, and Applications.
JSTOR. 77

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022). YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv
preprint arXiv:2207.02696. 181

Wang, H., Dong, S., and Shao, L. (2019a). Measuring structural similarities in
finite mdps. In IJCAI19. 129

Wang, H., Zariphopoulou, T., and Zhou, X. Y. (2020). Reinforcement learning in
continuous time and space: A stochastic control approach. Journal of Machine
Learning Research, 21(198):1–34. 48

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R.,
Blundell, C., Kumaran, D., and Botvinick, M. (2017a). Learning to reinforce-
ment learn. arXiv preprint arXiv:1611.05763. 82

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de
Freitas, N. (2017b). Sample Efficient Actor-Critic with Experience Replay. In
ICLR17. 47, 59, 148

Wang, Z., Dai, Z., Poczos, B., and Carbonell, J. (2019b). Characterizing and
Avoiding Negative Transfer. In CVPR19. 29

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N.
(2016). Dueling Network Architectures for Deep Reinforcement Learning. In
ICML16. 47

Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., and Cao, Y. (2022). SimVLM:
Simple Visual Language Model Pretraining with Weak Supervision. In ICLR22.
44

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4). 41, 67

Watkins, C. J. C. H. (1989). Learning from delayed rewards. 142

Weihs, L., Salvador, J., Kotar, K., Jain, U., Zeng, K.-H., Mottaghi, R., and Kemb-
havi, A. (2020). AllenAct: A Framework for Embodied AI Research. In
CoRR2020. 112

BIBLIOGRAFIE 224

Weischedel, R., Palmer, M., Marcus, M., Hovy, E., Pradhan, S., Ramshaw, L.,
Xue, N., Taylor, A., Kaufman, J., Franchini, M., El-Bachouti, M., Belvin, R.,
and Houston, A. (2013). OntoNotes: A Large Training Corpus for Enhanced
Processing. 141, 149

Wijmans, E., Essa, I., and Batra, D. (2022a). How to Train PointGoal Navigation
Agents on a (Sample and Compute) Budget. In AAMAS22. 50

Wijmans, E., Essa, I., and Batra, D. (2022b). VER: Scaling On-Policy RL Leads
to the Emergence of Navigation in Embodied Rearrangement. In NeurIPS22.
26, 50, 52, 54

Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D., Savva, M., and
Batra, D. (2020). DD-PPO: Learning Near-Perfect PointGoal Navigators from
2.5 Billion Frames. In ICLR20. 50, 51, 52, 112, 165, 167, 179

Wijmans, E., Savva, M., Essa, I., Lee, S., Morcos, A. S., and Batra, D. (2023).
Emergence of Maps in the Memories of Blind Navigation Agents. In ICLR23.
23

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine learning, 8(3-4). 43

Wu, Y., Wu, Y., Gkioxari, G., and Tian, Y. (2018). Building Generalizable Agents
with a Realistic and Rich 3D Environment. arXiv preprint arXiv:1801.02209.
53

Xu, D., Anguelov, D., and Jain, A. (2018). Pointfusion: Deep sensor fusion for 3d
bounding box estimation. In CVPR18. 180

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration.
In Proceedings 1997 IEEE International Symposium on Computational Intel-
ligence in Robotics and Automation CIRA’97. ’Towards New Computational
Principles for Robotics and Automation’, pages 146–151. 55

Ye, J., Batra, D., Das, A., and Wijmans, E. (2021). Auxiliary Tasks and Explora-
tion Enable ObjectNav. arXiv preprint arXiv:2104.04112. 52, 54, 58

Ye, J., Batra, D., Wijmans, E., and Das, A. (2020). Auxiliary Tasks Speed Up
Learning PointGoal Navigation. arXiv preprint arXiv:2007.04561. 50

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? In NIPS14. 59, 137

Yu, Y. (2018). Towards sample efficient reinforcement learning. In IJCAI18. 47

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., Tuyls, K.,
Reichert, D., Lillicrap, T., Lockhart, E., Shanahan, M., Langston, V., Pascanu,
R., Botvinick, M., Vinyals, O., and Battaglia, P. (2019). Deep reinforcement
learning with relational inductive biases. In ICLR19. 109

BIBLIOGRAFIE 225

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional
networks. In ECCV14. 100

Zeng, A., Attarian, M., Ichter, B., Choromanski, K., Wong, A., Welker, S., Tom-
bari, F., Purohit, A., Ryoo, M., Sindhwani, V., Lee, J., Vanhoucke, V., and
Florence, P. (2022). Socratic Models: Composing Zero-Shot Multimodal Rea-
soning with Language. arXiv preprint arXiv:2204.00598. 194

Zhang, J., Hao, B., Chen, B., Li, C., Chen, H., and Sun, J. (2019). Hierarchi-
cal reinforcement learning for course recommendation in moocs. In AAAI19,
volume 33, pages 435–442. 47

Zhang, S. and Sutton, R. S. (2017). A deeper look at experience replay. arXiv
preprint arXib:1712.01275. 47

Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu, W., and Wang, X.
(2021). Bytetrack: Multi-object tracking by associating every detection box.
arXiv preprint arXiv:2110.06864. 180, 181

Zhao, X., Agrawal, H., Batra, D., and Schwing, A. (2021). The Surprising Effecti-
veness of Visual Odometry Techniques for Embodied PointGoal Navigation. In
ICCV2021. 50, 51

Zhong, H., Wang, H., Wu, Z., Zhang, C., Zheng, Y., and Tang, T. (2021). A
survey of lidar and camera fusion enhancement. Procedia Computer Science,
183:579–588. Proceedings of the 10th International Conference of Information
and Communication Technology. 180

Zhu, H., Yu, J., Gupta, A., Shah, D., Hartikainen, K., Singh, A., Kumar, V.,
and Levine, S. (2020). The Ingredients of Real-World Robotic Reinforcement
Learning. In ICLR20. 25, 48, 164

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and Farhadi, A.
(2017). Target-driven visual navigation in indoor scenes using deep reinforce-
ment learning. In ICRA17. 51

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum
entropy inverse reinforcement learning. In AAAI08. 88

	Front page
	Information page
	Acknowledgments
	Samenvatting
	Summary
	Introduction
	Context
	Problem Statement
	Hypothesis
	Research Questions
	Research Contributions
	List of Publications
	Outline

	Preliminaries
	Markov Decision Processes
	Dynamic Programming
	Reinforcement Learning
	Deep Learning
	Deep Reinforcement Learning
	Navigation

	Hierarchical Reinforcement Learning
	Introduction
	Abstraction Mechanisms
	HRL Advantages
	HRL Challenges
	Problem-Specific Models
	Options
	Goal-Conditional
	Benchmarks
	Comparative Analysis
	Open Research Challenges
	Conclusion

	SETIE: Structured Exploration Through Instruction Enhancement
	Introduction
	Approach
	Empirical Evaluation
	Conclusion

	Language Grounded Task-Adaptation
	Introduction
	BabyAI Environment
	Task-Adaptation Method: Sampling Approach
	Empirical Evaluation
	Conclusion

	Task-Adaptation Through Pre-Trained Word Embeddings
	Introduction
	Object Navigation Task Setting
	Task-Adaptation Method: Prior Embedding Approach
	Empirical Evaluation
	Conclusion

	Disagreement Options
	Introduction
	Policy Training
	Method
	Empirical Evaluation
	Discussion
	Conclusion

	Real-World PointGoal Navigation
	Introduction
	Sim2Real: The Beacon Office Simulator
	Digital Twin
	Conclusion

	Directed Learned Exploration
	Introduction
	Directed Exploration Method
	Warehouse Simulator
	Case Study: Warehouse Inventory Task Module
	Empirical Evaluation in Simulation
	Real-world Evaluation
	Conclusion

	Conclusions and Future Perspective
	Review of Problem Statement
	Review of Hypothesis and Research Questions
	Future perspective
	Conclusion

	References

