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ABSTRACT 66 

Background: Wastewater-based epidemiology (WBE) has been implemented to monitor surges of 67 

COVID-19. Yet, multiple factors impede the usefulness of WBE and quantitative adjustment may be 68 

required.  69 

Aim: We aimed to model the relationship between WBE data and incident COVID-19 cases, while 70 

adjusting for confounders and autocorrelation. 71 

Methods: This nationwide WBE study includes data from 40 wastewater treatment plants (WWTPs) in 72 

Belgium (02/2021-06/2022). We applied ARIMA-based modelling to assess the effect of daily flow 73 

rate, pepper mild mottle virus (PMMoV) concentration, a measure of human faeces in wastewater, and 74 

variants (alpha, delta, and omicron strains) on SARS-CoV-2 RNA levels in wastewater. Secondly, 75 

adjusted WBE metrics at different lag times were used to predict incident COVID-19 cases. Model 76 

selection was based on AICc minimization. 77 

Results: In 33/40 WWTPs, RNA levels were best explained by incident cases, flow rate, and PMMoV. 78 

Flow rate and PMMoV were associated with -13.0% (95% prediction interval: -26.1 to +0.2%) and 79 

+13.0% (95% prediction interval: +5.1 to +21.0 %) change in RNA levels per SD increase, respectively. 80 

In 38/40 WWTPs, variants did not explain variability in RNA levels independent of cases. Furthermore, 81 

our study shows that RNA levels can lead incident cases by at least one week in 15/40 WWTPs. The 82 

median population size of leading WWTPs was 85.1% larger than that of non-leading WWTPs. In 17/40 83 

WWTPs, however, RNA levels did not lead or explain incident cases in addition to autocorrelation. 84 

Conclusion: This study provides quantitative insights into key determinants of WBE, including the 85 

effects of wastewater flow rate, PMMoV, and variants. Substantial inter-WWTP variability was 86 

observed in terms of explaining incident cases. These findings are of practical importance to WBE 87 

practitioners and show that the early-warning potential of WBE is WWTP-specific and needs validation. 88 

 89 

Keywords: wastewater surveillance; COVID-19; ARIMA; PMMoV; flow rate 90 

Abstract word count: 288  91 
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MAIN TEXT 92 

1 Introduction 93 

Accurate monitoring of community-wide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-94 

2) spread is vital to estimate and reduce the societal impact of coronavirus disease (COVID-19). To this 95 

end, individual clinical testing has been used extensively to diagnose COVID-19 infections and impose 96 

quarantine measures (Vandenberg et al., 2021). Yet it is costly and has a tendency to be biased towards 97 

symptomatic infections due to ineffective detection of asymptomatic cases (Girum et al., 2020). Hence, 98 

for epidemiological monitoring, wastewater-based epidemiology (WBE) of SARS-CoV-2 has been 99 

implemented as a complementary surveillance tool (Agrawal et al., 2021; Janssens et al., 2022; Rainey 100 

et al., 2022; Rector et al., 2023). WBE is a method that enables detection of faecally and urinary excreted 101 

SARS-CoV-2 genes in influent wastewater to monitor viral surges (Anand et al., 2021; Anand et al., 102 

2022; Cevik et al., 2021; Park et al., 2021) and has an early-warning potential (Mao et al., 2020; Shah 103 

et al., 2022). Additional advantages of WBE to clinical testing are its capability to detect both 104 

symptomatic and asymptomatic infections (Parasa et al., 2020), to provide more inclusive, privacy-105 

friendly, and population-wide estimates, and allow more targeted clinical testing (Amman et al., 2022). 106 

Nonetheless, the potential of WBE remains limited due to important variability in WBE estimates caused 107 

by the complexity of influent wastewater samples, external factors such rainfall and chlorination, and 108 

heterogeneity of wastewater treatment plants (WWTPs) and sewer networks. Hence, a myriad of factors 109 

affect the measured viral gene concentrations, including wastewater dilution, wastewater composition, 110 

and population factors such as variability in viral shedding and uncertainty in the size of the underlying 111 

population represented in a given wastewater sample (Bertels et al., 2022; Li et al., 2023). Therefore, 112 

the true number of viral RNA copies per resident remains unknown. 113 

Adjusting for those key determinants, including flow rate, wastewater faecal strength, and population 114 

size, have been proposed to improve the utility of WBE estimates (Bertels et al., 2022). Yet, there is 115 

little research assessing the quantitative effects of these phenomena on viral concentrations in 116 

wastewater (Vallejo et al., 2022), which is critical to decide how to adjust for these factors. Although 117 

WBE estimates can be highly correlated to clinical cases of COVID-19 (D'Aoust et al., 2021; Vallejo et 118 

al., 2022; Westhaus et al., 2021), to the best of our knowledge there has been no study to date which 119 

optimizes the wastewater metric by adjusting for those factors to quantitatively model COVID-19 cases. 120 

In this nationwide WBE study, wastewater was sampled twice weekly over more than one year 121 

(02/2021-06/2022) at 40 WWTPs in Belgium covering more than five million inhabitants. We aimed (i) 122 

to model the effect of flow rate, human faecal loads, and variants (alpha, delta, and omicron strains) on 123 

wastewater SARS-CoV-2 RNA levels and (ii) to optimize wastewater metrics to explain incident 124 

COVID-19 cases. Our study shows that wastewater flow rate and population dynamics, but not variants, 125 
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consistently explain RNA levels independent of cases. We provide meta-analysed effect sizes and 126 

prediction intervals, allowing other researchers to adjust RNA levels independent from incident cases. 127 

Furthermore, we show that WBE can lead clinical epidemiology by one week, but only in a minority of 128 

WWTPs due to substantial inter-WWTP variability. Lastly, we found that in some WWTPs RNA levels 129 

were not informative for incident cases in addition to autocorrelation of cases.   130 
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2 Material and methods 131 

2.1 Data description 132 

2.1.1 Wastewater data 133 

Influent wastewater samples were collected at 40 Belgian wastewater treatment plants (WWTPs) 134 

covering approximately 5 million inhabitants, which represents 43% of the Belgian population (Figure 135 

1 and Table S1). In the context of national wastewater surveillance, 24h samples are collected twice a 136 

week on Monday and Wednesday. Results from 15 February 2021 to 8 June 2022 were used in this 137 

study. During this period, quantitative SARS-CoV-2 RNA concentrations were obtained using a 138 

consistent protocol. Nucleocapsid 1 (N1), nucleocapsid 2 (N2) and envelope (E) RNA copies of SARS-139 

CoV-2 were used as markers of viral presence in wastewater. Wastewater analyses were performed by 140 

Sciensano (Belgian public health institution), by the University of Antwerp and by E-BIOM (spin-off 141 

from the University of Namur) (Table S1), using the methods from  Boogaerts et al. (2021 and Coupeau 142 

et al. (2020. A detailed overview of the sample collection, concentration, extraction, and PCR-based 143 

quantification is presented in the Supplementary File. 144 

In each of the WWTPs, the covered population size was defined as the census-based domestic inhabitant 145 

equivalent, normalised by the geographical catchment area (Table S1) and the flow rate was measured 146 

by flowmeter as the daily incoming flow rate divided by 24h (m³/h). Pepper mild mottle virus (PMMoV) 147 

RNA copy concentration, as indicator of human faeces in wastewater, was measured during the same 148 

period and used as a proxy for the number of people present in a catchment area. PMMoV is an 149 

extremely stable plant virus that infects plants from the Capsicum genus (pepper-containing food 150 

products) and shows widespread abundance in human stool and wastewater, without strong seasonal 151 

fluctuation (Rosario et al., 2009; Zhang et al., 2006). 152 

2.1.2 Epidemiological data 153 

The number of incident COVID-19 cases for a given WWTP was defined as the total daily number of 154 

positive COVID-19 PCR tests at the corresponding municipality normalised by the fraction of the 155 

covered municipality inhabitant equivalent by the WWTP catchment area.  156 

The spread of SARS-CoV-2 has been characterised by several variants. As these variants could have an 157 

impact on the link between the epidemiological situation and the evolution of the viral concentrations 158 

in wastewater, they need to be accounted for. Data on variants circulating in the Belgian population were 159 

provided by the COVID-19 Genomics Belgium Consortium (Cuypers et al., 2022). During the period 160 

considered in this study, a variant was defined as dominant when its proportion was equal to or higher 161 

than 50%. Hence, the period under study has been divided into three subcategories depending on which 162 

variant was dominant: from 15 February 2021 to 14 June 2021, Alpha was dominant; from 21 June 2021 163 
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to 12 December 2021, Delta was dominant and from 27 December 2021 to 8 June 2022, Omicron was 164 

dominant.  165 

2.1.3 Data sources, missing data and data transformation 166 

All data sources are reported in the Supplementary File. For both the SARS-CoV-2 and the PMMoV 167 

RNA concentrations, concentration replicates below the limit of quantification (LOQ) of 20 copies/mL 168 

were coded as half of the LOQ (10 copies/mL) and negative replicates were coded as 1 copy/mL to 169 

allow for logarithmic transformation (Ma, 2020). To explore the link between the epidemiological 170 

situation and the viral concentrations in wastewater, additional wastewater metrics have been defined: 171 

(i) the PMMoV mass load (copies/day) is defined as the PMMoV concentration (copies/mL) x flow rate 172 

(mL/day); (ii) the viral mass load (copies/day) is defined as the SARS-CoV-2 RNA concentration 173 

(copies/mL) x flow rate (mL/day) and the viral to PMMoV ratio (-) is defined as the SARS-CoV-2 RNA 174 

concentration (copies/mL) / PMMoV concentration (copies/mL). Finally, both the viral concentration 175 

and the viral mass load were logged as +1. Missing wastewater data (1.3%) was replaced by an estimate 176 

obtained through time-dependent linear interpolation. Missing data and negative results for each 177 

treatment plant were listed in Table S2. 178 

179 

Figure 1. Map of Belgium with the location and coverage of 44 WWTPs used in the national wastewater 180 

surveillance program (Janssens et al., 2022) and municipality population density. Catchment areas are 181 

indicated by yellow surface colour. Four WWTPs were excluded from this analysis due to no available 182 

data (WWTP of Boom (nr. 9)) or shorter data coverage (WWTP of Liège Grosses Battes (nr. 25), 183 
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Soumagne (nr. 39), and Wegnez (nr. 44)) due to flooding events in July 2021. The numerical population 184 

size coverage of each WWTP is shown in Table S1. (Color print.) 185 

 186 

2.2 Statistical analysis 187 

2.2.1 Modelling wastewater SARS-CoV-2 RNA levels 188 

Non-seasonal autoregressive integrated moving average (ARIMA) models and dynamic regression were 189 

applied to model SARS-CoV-2 RNA concentrations (Hyndman and Athanasopoulos, 2021). Briefly, 190 

ARIMA models are a type of time series models which describe autocorrelation. Dynamic regression 191 

models are (multiple) regression models extended with ARIMA. Dynamic regression models used in 192 

this study have a similar coefficient interpretation as standard regression but allow integrating the 193 

autocorrelation structure of the data. A comprehensive discussion of these model types is presented in 194 

the Supplementary File.  195 

The logarithm (log10) of wastewater SARS-CoV-2 RNA concentration, defined as the average 196 

concentration of N1-, N2-, and E-gene RNA copies, was modelled. For every WWTP, an ARIMA model 197 

and 8 dynamic regression models were fitted. Dynamic regression models were adjusted for 198 

log10(COVID-19 cases) and with combinations of the following predictors (Table S3): (i) daily flow rate 199 

(m3/h), (ii) PMMoV concentration (copies/L) or PMMoV mass load (copies/day), and (iii) dichotomous 200 

predictors of SARS-CoV-2 variants (alpha, delta, and omicron strains), based on 50% or higher 201 

prevalence of sequenced clinical samples. 202 

2.2.2 Modelling incident COVID-19 cases 203 

Incident log10(cases) were modelled by an ARIMA model and dynamic regression models, which 204 

included one of the following wastewater metric combinations: viral concentrations (copies/mL), viral 205 

mass load (copies/day), viral to PMMoV ratio (-), or viral mass load and viral to PMMoV ratio. Each of 206 

the four combinations was tested with the wastewater metrics lagged up to 2 weeks (i.e., up to 4 distinct 207 

sampling dates). This resulted in 16 dynamic regression models. All the dynamic regression models 208 

used the dichotomous predictors of the variants as a covariate. An exhaustive list of the considered 209 

models is presented in Table S4. 210 

2.2.3 Model selection and meta-analysis 211 

The optimal ARIMA specification of the models was set in a data-driven way by non-stepwise corrected 212 

Akaike Information Criterion (AICc) minimization, and with a first order of differencing (d = 1) to 213 

account for non-stationarity (Hyndman and Athanasopoulos, 2021; Kwiatkowski et al., 1992). Once the 214 

optimal ARIMA specification was obtained for each of the proposed model structures, the best model 215 

for a given WWTP was selected based on AICc scores, as a measure of predictive accuracy. The most 216 

selected RNA model was fitted on all WWTPs, and effect sizes were meta-analysed by a random-effects 217 
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model using inverse-variance weighting. The root-mean-square error (RMSE), a goodness-of-fit 218 

indicator, of the selected model was compared to a standard multiple regression model based on 219 

backward stepwise selection. All analyses were performed in R 4.0.5 (Vienna, Austria) using the 220 

forecast package for the ARIMA models and all data visualization was done with the ggplot2 package 221 

(Hyndman et al., 2022; Hyndman and Khandakar, 2008; R Core Team, 2022; Wickham, 2016). 222 
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3 Results 223 

3.1 Determinants of SARS-CoV-2 RNA levels in wastewater 224 

In 33/40 WWTPs a dynamic regression model of log10(cases), wastewater flow rate and PMMoV 225 

concentration was selected as the most accurate model to explain wastewater SARS-CoV-2 RNA levels 226 

(Table S5). This model was applied on all WWTPs and effect sizes were meta-analysed. One standard 227 

deviation (SD) increase in flow rate was associated with 13.0% (95% prediction interval (95%PI): -26.2 228 

to +0.2%) decrease in RNA levels, independent of cases and PMMoV (Figure 2). Reversely, one SD 229 

increase in PMMoV levels was associated with 13.0% (95%PI: +5.1 to +21.0%) increase in RNA levels, 230 

independent of cases and flow rate (Figure 2). The removal of flow rate, PMMoV, or both variables 231 

from this model significantly reduces the predictive accuracy (median ∆AICc: +10.9, +12.8, and +27.5, 232 

respectively, Table S6). Independent of flow rate and PMMoV, a 10.0% increase in incident cases was 233 

associated with 4.5% (95%PI: +1.0 to 8.0%) increase in RNA levels. Overall, the best models explained 234 

on average 64.7% (R2, SD = 10.4%) of the variation in RNA levels. Detailed meta-analyses for flow 235 

rate and PMMoV are presented in the Supplementary File (Figures S1-2).  236 

 237 

Figure 2. Meta-analysis of the independent effect of flow rate and pepper mild mottle virus 238 

(PMMoV) on SARS-CoV-2 RNA levels in wastewater, adjusted for incident cases. Effect sizes are 239 

expressed as percentage change in RNA level per one standard deviation increase in flow rate and 240 

PMMoV, respectively. 241 

 242 

In 35/40 WWTPs, increasing flow rate was associated with a statistically significant drop in wastewater 243 

RNA levels, independent of cases and PMMoV. Exceptions were the WWTPs of Houthalen Centrum, 244 

Marchienne-au-Pont, Vallée du Hain (l'Orchis), Montignies-sur-Sambre and Wasmuel (Figure S1). In 245 

the latter WWTP, a nominal positive trend was observed (+4.7% (95%CI: -2.2 to +11.5%)). The optimal 246 

model for this WWTP did not include additive flow rate adjustment, although implicitly included 247 
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through correction for PMMoV mass load (copies/day). The WWTP of Wasmuel was the 8th largest 248 

catchment area in terms of covered population size in this study and showed the lowest normalised 249 

standard deviation (NSD) of flow rate (0.21) and the second smallest NSD of PMMoV (0.55). 250 

In 36/40 WWTPs, increasing PMMoV was associated with a statistically significant increase in RNA 251 

levels, adjusted for cases and flow. Exceptions were the WWTPs of Tessenderlo, Turnhout, Hasselt, and 252 

Mouscron-versant-Espierres (Figure S2). In the former three WWTPs, no SARS-CoV-2 RNA was 253 

detected (i.e., RNA concentration below the limit of detection) for a substantial number of dates (Table 254 

S2). In the latter WWTP (Mouscron-versant-Espierres), wastewater was collected from both the Belgian 255 

(~21,200 IE) and France (~120,000 IE) population. Collection of French wastewater represented a 256 

substantial flow which was not covered in the clinical testing surveillance. Three out of five of the most 257 

impacted treatment plants included large student campuses (UC Louvain (Basse-Wavre), University of 258 

Liège (Liège Oupeye), and KU Leuven (Leuven)). 259 

Lastly, an intercept for dominant variants improved the model accuracy only in 2/40 WWTPs 260 

(Destelbergen and Marchienne-au-Pont). In those two WWTPs, RNA levels of SARS-CoV-2 were 71% 261 

lower during the delta wave (B.1.617.2 strain) and 69% lower during the omicron waves (BA.1, BA.2, 262 

BA.2.75, BA.2+L452X, and BA.4 strains) compared to the period when the alpha variant (B.1.1.7) was 263 

dominant for a given number of cases, and adjusted for flow rate and PMMoV levels.  264 

In 38/40 WWTPs, the selected dynamic regression model showed a lower RMSE value than the optimal 265 

standard multiple regression model. Overall, the average RMSE difference of dynamic regression 266 

models was 3.9 times lower than those of standard multiple regression models (Table S9). 267 

 268 

3.2 Wastewater-based surveillance data to model incident COVID-19 cases 269 

3.2.1 Optimal wastewater metric to link incident COVID-19 cases 270 

In 28/40 WWTPs, the optimal model for incident COVID-19 cases included wastewater-based 271 

surveillance data. In the remaining 12/40 WWTPs, a standard ARIMA model, which does not include 272 

wastewater information, outperformed dynamic regression models in terms of predictive accuracy 273 

(Table 1a).  274 

Of the 28 models that included a WBE metric, a flow-adjusted viral mass load was included in 15/28 275 

WWTPs (Table 1a), while a viral-to-PMMoV gene ratio was included in 8/28 WWTPs. Overall, the 276 

flow-adjusted mass load was selected in larger WWTPs (87,633 (IQR = 102,225) vs 78,290 (IQR = 277 

68,030) IE) while viral-to-PMMoV gene ratio was selected in smaller WWTPs (67,077 (IQR = 63,443) 278 

vs 82,082 (IQR = 92,296) IE) in terms of population coverage. 279 
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An unadjusted and unlagged viral concentration was selected in 2 of the 28 WWTPs (WWTPs of 280 

Aartselaar and Tessenderlo). These WWTPs were modestly sized WWTPs (68,031 and 55,546 vs 281 

82,156 (IQR = 85,479) IE) and showed large variability in log(RNA) levels (0.46 and 0.82 vs 0.29 (IQR 282 

= 0.12) NSD) and in PMMoV mass load (1.31 and 1.10 vs 0.76 (IQR = 0.29) NSD). 283 

Table 1. Optimal models to link wastewater data with incident COVID-19 cases. 284 

A) Optimal wastewater metric (n = 40) 

WWTPs (n) Metric 

12/40 No wastewater metric* 

7/40 Unadjusted viral concentration 

13/40 Viral mass load 

6/40 Viral-to-PMMoV ratio 

2/40 Viral mass load + viral-to-PMMoV ratio 

B) Optimal lag time of wastewater metric (n = 28) 

WWTPs (n) Lag time 

5/28 Unlagged wastewater metric 

8/28 1-sample leading wastewater metric 

10/28 2-sample leading wastewater metric (1 week) 

3/28 3-sample leading wastewater metric 

2/28 4-sample leading wastewater metric (2 weeks) 

Viral concentration = SARS-CoV-2 RNA copies/mL; viral mass load = flow-adjusted SARS-CoV-2 285 

RNA copies per day; viral-to-PMMoV ratio = SARS-CoV-2 gene copies per PMMoV gene copy. 286 

*Dynamic regression models with ARIMA-modelled errors were applied, except when no wastewater 287 

metric was included (standard ARIMA). Dynamic regression models adjusted for dominance of alpha, 288 

delta, or omicron variants (dichotomously coded (0/1) depending on dominant prevalence (≥ 50% of 289 

samples)). 290 

 291 

3.2.2 Early-warning potential of wastewater metric 292 

Among the 28 catchment areas, a leading wastewater indicator of at least one week showed the best 293 

predictive accuracy in 15/28 WWTPs, with the one-week leading indicator being selected in most 294 

(10/28) treatment plants (Table 1b, Table S7). The median covered population size in leading WWTPs 295 

was 85.1% larger than in those where a non-leading wastewater indicator was selected (102,800 (IQR 296 

66,735) vs 55,546 (IQR = 33,891) IE). The coefficients of all 28 models are presented in Table S8. A 297 

sensitivity analysis using correlation coefficients (Table S7) showed similar results in 12/28 WWTPs, a 298 

more pronounced lead time in 8/28 WWTPs, and a less pronounced lead time in 8/28 WWTPs. Figure 299 

3 illustrates the optimal model (1-week leading viral mass load) at the largest WWTP (Brussels-North, 300 

1,045,900 IE) to explain incident cases of COVID-19. 301 
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302 

Figure 3. Logarithm of incident COVID-19 cases (blue) at the largest WWTP (Brussels-North, covering 303 

approximately one million inhabitants) and predicted incident cases based on a model including the one-304 

week leading viral mass load (RNA copies/day) (red). Model diagnostics are presented in Figure S3. 305 

(Color print.)  306 
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4 Discussion 307 

This nationwide study modelled the relationship between wastewater-based SARS-CoV-2 RNA levels 308 

and incident COVID-19 cases, covering approximately 5 million Belgian inhabitants for more than one 309 

year. This is the first study to show the relative effect size of wastewater flow rate and PMMoV 310 

concentrations on SARS-CoV-2 RNA levels in wastewater, while accounting for autocorrelation. 311 

Secondly, SARS-CoV-2 variants did not explain variability of RNA levels for a given number of cases 312 

in the large majority of WWTPs (38/40). Furthermore, different WBE metrics were tested at different 313 

lag times for subsequent use in monitoring COVID-19 epidemiology. This study confirms that WBE 314 

data can lead incident cases by at least one week but only in a minority of WWTPs (15/40). In 17/40 315 

WWTPs, different wastewater metrics did not lead or explain incident cases in addition to 316 

autocorrelation. Future studies should therefore validate the early-warning potential of WWTPs and 317 

investigate whether WBE adds beyond autocorrelation to support the additional efforts/costs of 318 

determining RNA levels at these areas/WWTPs for predicting incident cases. 319 

This analysis showed that increasing daily flow rate reduces RNA levels by on average -13.0% per SD 320 

increase, independent of incident cases and PMMoV (e.g., dilution by rainfall and other sources 321 

including industrial water and drain water). Flow-adjusted viral mass loads approach viral dynamics 322 

more accurately, which was demonstrated through its empirical support in our incident case models. 323 

Viral mass loads were mainly selected in WWTPs serving larger populations. 324 

Secondly, our results validate that PMMoV is a key contributor to RNA variability, independent of cases 325 

and flow. Higher PMMoV levels were associated with increasing viral RNA levels and may serve as a 326 

proxy for the number of persons contributing to a wastewater sample. This is reinforced by the 327 

observation that the PMMoV was not selected in the station of Mouscron-versant-Espierres, where the 328 

cases are not truly linked with the represented population. Also, PMMoV may be used as a normalization 329 

standard for additional variability which is not explicitly defined in the models. Unmeasured phenomena 330 

such as RNA adsorption, aqueous-solid phase distribution and degradation may be implicitly modelled, 331 

partly, by normalizing for PMMoV. RNA of SARS-CoV-2 will likely be affected in similar ways as 332 

PMMoV RNA due to their common physicochemical properties of RNA including molecule size and 333 

stability, overall negative charge, and as substrates of RNases. The ratio of viral-to-PMMoV gene copies 334 

improved case models in about one in five WWTPs. A lower number of inhabitants was covered in these 335 

WWTPs, presumably increasing the relevance of relative changes in population size. In contrast, 336 

PMMoV levels did not associate with viral RNA levels in five smaller WWTPs in which the dynamic 337 

of the viral evolution was not connected with the true underlying population due to for example zero-338 

inflation of the viral concentrations. To allow more model flexibility, one may need a normalization 339 

marker for in-sewage factors and a different marker to account for the underlying population size and 340 

dynamics of a catchment area (e.g., mobility data from telecom providers). 341 
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In 38/40 WWTPs, additively correcting for the dominant SARS-CoV-2 strain did not improve model  342 

predictive accuracy for RNA levels. Hence, faecal shedding kinetics of SARS-CoV-2 variants were 343 

likely stable over time. This suggests that increasing infectiousness of variants may be caused by 344 

increased infectiousness of viral particles and/or selective respiratory shedding but was not associated 345 

with increased faecal shedding. In the two WWTPs with an informative variant term, less RNA was 346 

detected for a given number cases in the delta and omicron waves compared to the alpha wave. 347 

Importantly, shedding kinetics may be affected by increasing immunity among the population over time 348 

(Puhach et al., 2022). 349 

Finally, this study demonstrates that, although different WWTPs share common dynamical 350 

characteristics, every WWTP has its particular dynamic in time as demonstrated by the amplitude of the 351 

measured effect sizes within the same model structure, this for both the flow rate and the PMMoV 352 

concentrations. The diversity of dynamics unravelled in this study thus shows that care must be taken 353 

when comparing RNA levels measured at different WWTP and that aggregation of quantitative data in 354 

a fixed effect model should be avoided. Aggregation and comparison are still possible but should be 355 

paired with a normalization process and/or using indicators (3). Also, additional factors which were not 356 

accounted for in this study, including the organic load and the number of solid particles in sewage, 357 

wastewater pH, and water chlorination will contribute to the remaining unexplained variability (~ 35%) 358 

(Bertels et al., 2022; Li et al., 2021). 359 

The main strengths of this study were the nationwide population scale, the large number and 360 

heterogeneity of WWTPs, the long duration (> 1 year), and the high resolution of the data (twice-weekly 361 

sampling). Secondly, this study was performed during a period with the highest frequency of diagnostic 362 

COVID-19 tests in Belgium (Sciensano, 2023). Lastly, through ARIMA-based modelling, we accounted 363 

for autocorrelation enabling in-depth inferences of effect sizes. The added value of dynamic regression 364 

models was corroborated by its superior accuracy compared to standard multiple regression models in 365 

this context. 366 

Limitations 367 

A main limitation is the potential of model misspecification due to additional factors influencing RNA 368 

levels in wastewater and the true number of incident cases. Some of these factors are challenging to 369 

quantify (RNA degradation and testing strategy bias during the study period). Another main limitation 370 

is the uncertainty of the underlying population size. Capturing population dynamics may require other 371 

more accurate ways, for example through mobile data records or other big data sources (Deville et al., 372 

2014). However, PMMoV showed to be of added value to tackle both the issue of standardization and 373 

population dynamics. Thirdly, vaccination coverage was not included in this analysis, which may have 374 

a profound effect on viral shedding (Puhach et al., 2022). As the effect of vaccination is time-dependent, 375 

we assume that it is implicitly accounted for through ARIMA-modelling of the residuals. However, its 376 
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effects cannot be quantitatively deduced from this study. Fourthly, variant strains were based on clinical 377 

samples and not on wastewater detection of variants. Finally, we used unevenly spaced time series which 378 

complicates the interpretation of lag times. 379 

 380 

Future work should adjust for population dynamics, consider inter-WWTP variability, and may 381 

overcome some of the limitations of this research by using additional quantitative data sources such as 382 

vaccination coverage and mobility data, and by considering other epidemiological outcomes such as 383 

hospitalizations. Additionally, future studies should investigate spatiotemporal variation in the lead 384 

time, including the effect of seasonality, variant strains, and changes in shedding kinetics. 385 

 386 

5 Conclusions 387 

This study provides quantitative insights into the effect of key determinants to reduce unexplained 388 

variability of wastewater-based epidemiology (WBE). Adjusting for daily flow rate and PMMoV 389 

(population dynamics), but not variants, substantially improves COVID-19 modelling by WBE. 390 

Secondly, our findings show that WBE can lead individual clinical testing by one week, yet important 391 

heterogeneity between catchment areas was observed. This shows that the early-warning potential of 392 

WBE needs to be validated on a WWTP-specific level.  393 
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