
This item is the archived peer-reviewed author-version of:

Model consistency as a heuristic for eventual correctness

Reference:
David Istvan, Vangheluwe Hans, Syriani Eugene.- Model consistency as a heuristic for eventual correctness

Journal of Computer Languages - ISSN 2665-9182 - 76(2023), 101223

Full text (Publisher's DOI): https://doi.org/10.1016/J.COLA.2023.101223

To cite this reference: https://hdl.handle.net/10067/1992120151162165141

Institutional repository IRUA

Model consistency as a heuristic for eventual correctness

Istvan David
a,∗

, Eugene Syriani
a
, Hans Vangheluwe

b,c

a
DIRO, Université de Montréal, Canada

b
University of Antwerp, Belgium

c
Flanders Make, Belgium

Abstract

Inconsistencies between stakeholders’ views pose a severe challenge in the engineering of complex systems.
The past decades have seen a vast number of sophisticated inconsistency management techniques being
developed. These techniques build on the common idea of “managing consistency instead of removing
inconsistency”, as put forward by Finkelstein. While it is clear what and how to do about inconsistencies,
it is less clear why inconsistency is particularly useful. After all, it is the correctness of the system that
should matter, as correctness is the end-user-facing quality of the product. In this paper, we analyze this
question by investigating the relationship between (in)consistency and (in)correctness. We formally prove
that, contrary to intuition, consistency does not imply correctness. However, consistency is still a good
heuristic for eventual correctness. We elaborate on the consequences of this assertion and provide pointers
as to how to make use of it in the next generation of inconsistency management techniques.

Keywords: model consistency, heuristics, correctness, model-based systems engineering, collaborative
modeling

1. Introduction

Properly managing inconsistencies—that is, sit-
uations when two or more statements can be made
that are not jointly satisfiable [1]—has been a grand
challenge in software and systems engineering for5

decades. This challenge is vastly exacerbated in
the engineering of heterogeneous systems which re-
quires a coordinated interplay among stakeholders
of disparate domains. In such settings, the lack of
common vocabulary and modeling languages ren-10

ders the detection of inconsistencies a particularly
challenging task. The inappropriate management
of inconsistencies, in turn, leads to incorrect prod-
ucts, potentially resulting in costly and even catas-
trophic results [2]. In this context, inconsistencies15

at any point of the engineering process indicate po-
tential risks to the correctness, and great effort is in-
vested into their resolution. Typically, inconsisten-
cies are considered parts of the verification and val-
idation (V&V) process of systems engineering [3].20

∗Corresponding author
Email address: istvan.david@umontreal.ca (Istvan

David)

The extended time between the introduction of in-
consistencies and V&V activities adversely affects
the cost factors of repairing inconsistencies.

As put forward by Finkelstein [4] over twenty
years ago: «Rather than thinking about removing25

inconsistency we need to think about “managing
consistency”». Promoting inconsistency as a first-
class notion in distributed engineering settings facil-
itates explicit reasoning about the nature, causes,
and implications of inconsistency before deciding30

how to treat them. This is contrary to simply re-
moving inconsistency as close to the source and as
soon as possible. There are obvious benefits to such
a mindset, as evidenced by the numerous techniques
of inconsistency tolerance, analysis, and the wide35

array of holistic management techniques [5, 6, 7].

While the body of knowledge on inconsistency
management is clear about what and how to do
about inconsistencies, it is not entirely clear why
inconsistency is particularly useful. After all, what40

matters is the correctness of the product to be de-
livered. It is correctness that has to be ensured, and
it is the lack of correctness that makes the end-user
question the quality of the product.

Preprint submitted to Journal of Computer Languages January 19, 2023

In this paper, we investigate the relationship be-45

tween (in)consistency and (in)correctness and shed
light on why and how the notion of inconsistency
should be used to create more efficient engineer-
ing processes while still converging to an eventu-
ally correct product. We show that consistency50

does not imply correctness, that is, consistent
models can still produce incorrect results. Rather,
consistency—for the better or worse—is a mere
heuristic to eventual correctness. We provide
formal proof of both of these assertions and dis-55

cuss their implications. We conclude that over-
committing to retaining consistency in the hope to
ensure eventual correctness needlessly impairs the
performance of the underlying engineering process.
Our observations provide formal validation of the60

above-quoted proposition by Finkelstein [4].
The rest of this paper is structured as follows.

In Section 2, we present the running example we
use throughout the paper for demonstration pur-
poses. In Section 3, we give a brief overview of65

the background relevant to our work. In Section 4,
we formalize the concepts of correctness and consis-
tency in terms of ontological properties and prove
that consistency does not imply correctness. In Sec-
tion 5, we map the formal concepts of correctness70

and consistency onto the definition of heuristics by
Romanycia and Pelletier [8] and show that consis-
tency is indeed a heuristic to eventual correctness.
In Section 6, we discuss some of the consequences
and results of our formal framework. Finally, in75

Section 7, we draw the conclusions and identify po-
tential future directions.

2. Running example

To illustrate our points throughout this paper,
we rely on the running example of an industrial80

line follower robot.
Line follower robots [9] are autonomous vehicles

that move along a line, typically drawn on the floor.
Line follower robots are frequently used in industry
settings, especially in plants and production facili-85

ties, to carry heavy or dangerous payloads between
two locations. In our example, the robot has two
movement modes: (i) move ahead and (ii) change
direction by rotating on omnidirectional wheels.
The engineers of the robot are required to build a90

safe robot, which entails three required properties.

Motion safety. The robot will typically carry large
amounts of payloads on it, with a high center

rotate_enabled

ahead_action

ctrlahead_enabled

rotate_action

r_starta_start

a_end r_end

(a)

[0, 1, 0, 0, 1] [1, 0, 0, 1, 0]

[1, 0, 1, 0, 1]

a_start r_start

r_enda_end

default

moving_ahead rotating

(b)

Figure 1: Petri net model of the robot and its reachability
graph as viewed by the safety engineers.

of gravity. Executing the two movement modes
simultaneously might render the payload un-95

stable. Thus, the engineers must ensure that
the two movement modes are not executed si-
multaneously.

Mission safety. The robot alternates between the
two motion modes automatically, according to100

the line it follows. If the robot gets stuck in one
motion mode, it may abandon the line, result-
ing in hazardous and costly situations. Thus,
the engineers must ensure that the robot can-
not get stuck in one motion mode.105

Interface safety. Superfluous states in the robot’s
state space allow for later design phases to in-
troduce unwanted behavior and jeopardize the
integrity of the behavioral model of the robot.
Thus, the engineers must ensure that only the110

required functionality is present in the models
of the robot.

Modeling and analysis. The engineers decide to use
Petri nets [10] to model the behavior of the robot
and check the three required properties. They115

model the behavior of the robot as shown in Fig-
ure 1a. The ahead_enabled and rotate_enabled
states of the net denote the states of the robot in
which it can perform the ahead and rotate mov-
ing modes, respectively. The ahead_action and ro-120

tate_action states denote the states of the robot in

2

which it moves ahead and rotates, respectively. The
ctrl state controls which action is performed by al-
lowing the firing of the a_start ("start ahead move-
ment") and r_start ("start rotate movement")125

transitions. A marking of the Petri net is the dis-
tribution of its tokens in its states. The marking
is given by the vector in which the nth element de-
notes the number of tokens in nth state of the Petri
net. The initial marking in Figure 1a is [1, 0, 1, 0,130

1], modeling the default configuration of the robot
in which both move modes are enabled (i.e., the
controller can activate any of them).

To be able to express the three required proper-
ties, the engineers construct the reachability graph135

of the Petri net, as shown in Figure 1b. The reach-
ability graph of a Petri net is a directed graph
G = (V,E) in which each vertex v ∈ V repre-
sents a marking of the Petri net, and each edge
e ∈ E represents a transition between two mark-140

ings [10]. The marking in vertex v is stored in a
vector [v1, v2...vn] with each element of the vector
corresponding to one particular place of the Petri
net and representing its current marking. For ex-
ample, in Figure 1b, the default state represents the145

default marking of the Petri net in Figure 1a. Fir-
ing transition a_start brings the marking [1, 0, 1, 0,
1]—i.e., the default state of the robot—to marking
[0, 1, 0, 0, 1]—i.e., the moving_ahead state of the
robot. For convenience, we refer to the marking of150

place i as the ith element of v and denote it as v[i].
For example, in Figure 1b, moving_ahead[2] = 1

and moving_ahead[4] = 0. This allows us to ex-
press properties about the state of the robot in an
algebraic way.155

Following this formalization, the properties are
formulated as follows.

p1 – motion is safe. This property is expressed as
the inability to exhibit the ahead_action and
rotate_action states simultaneously. That is,160

there must not exist any vertex in the reacha-
bility graph R that encodes a marking in which
the second and fourth places are both marked.
Formally, ∄v ∈ V (R) ∶ v[2] + v[4] > 1, where
V(R) denotes the set of vertices of reachability165

graph R.

p2 – mission is safe This property is expressed by
the lack of deadlock in the Petri net. A Petri
net is deadlocking if it exhibits a state in which
no transitions can fire. The reachability graph170

encodes such states as a vertex without an out-

rotate_enabled

ahead_action

ctrlahead_enabled

rotate_action

r_starta_start

a_end r_end

(a)

[0, 1, 0, 0, 0]

[1, 0, 1, 0, 0]

a_start r_start

r_enda_end

default

moving_ahead rotating

(b)

Figure 2: Petri net model of the robot and its reachability
graph as viewed by the configuration engineer.

going edge. Thus, the property is formally ex-
pressed as ∀vi ∈ V (R)∃vj ∈ V (R), vi ≠ vj ∶
(vi, vj) ∈ E(R), where V(R) and E(R) de-
note the set of vertices and edges of reachabil-175

ity graph R, respectively; and (vi, vj) ∈ E(R)
denotes an edge between vertices vi and vj .

p3 – interface is safe. This property is expressed
by the lack of places in the Petri net that are
never marked. Such places can be identified by180

checking whether there exists at least one state
in the reachability graph in which the place is
marked. If there is no such state, the place
is indeed never marked. Thus, the property is
formally expressed as ∀i ∈ N, 1 ≤ i ≤ ∣S(P)∣ ∶185

∃v ∈ V (R) ∶ v[i] > 0, where S(P) denotes the
set of places of Petri net P and V(R) denotes
the set of vertices of reachability graph R.

Inconsistencies. The configuration engineer work-
ing in parallel with the safety engineers changes the190

default configuration of the robot. In the new con-
figuration, only the ahead movement mode is en-
abled. The resulting Petri net and its reachability
graph are shown in Figure 2.

The new model does not satisfy p2 – as states195

rotate_enabled and rotate_action can never be
marked; and p3 – as these states are superfluous in
the model. At this point, the model of the config-
uration engineer in Figure 2 and the model of the

3

safety engineers in Figure 1 are inconsistent with200

each other with respect to properties p2 and p3.
In Sections 3-4 we elaborate on these inconsisten-

cies in detail.

3. Background and related work

In this section, we overview the background of205

our work. We discuss the notion of inconsistency
are the typical techniques to manage its undesired
effects (Section 3.1). Then, we discuss the notion of
ontological property which is the basis of reasoning
about inconsistencies in our work (Section 3.2). Fi-210

nally, we briefly overview model-driven engineering
(MDE), a domain particularly vulnerable to incon-
sistencies (Section 3.3).

3.1. Inconsistencies and their management

Inconsistency is a state in which elements of dif-215

ferent models make assertions that are not jointly
satisfiable [1]. Manipulating models in multi-view
and multi-paradigm settings naturally causes incon-
sistencies in models due to the overlap between the
shared concerns of stakeholders, and the resulting220

overlap between their views and models [11]. As one
view changes a shared element, the change has to be
propagated to the other views that share the same
element, otherwise, an inconsistency will occur [12].
These shared elements are not necessarily of syn-225

tactic nature. Often, they can only be observed in
the semantic domain of the union of models as the
ontological properties of the system—especially in
multi-domain settings where different stakeholders
operate with vastly different languages [13]. In the230

running example, such ontological properties are
the three safety properties of the system. They are
not expressed syntactically at the level of Petri nets,
but rather, as structural properties of the reacha-
bility graph.235

The two main types of inconsistency manage-
ment approaches are prevention and the allow-and-
resolve. Prevention aims to avoid inconsistent sit-
uation altogether. The applicability of preven-240

tive techniques has been demonstrated in the engi-
neering of complex heterogeneous settings, e.g., by
means of design contracts and ontological reason-
ing [14]. Lately, preventive techniques have been
proven effective in real-time collaborative modeling245

settings as well [15]. Furthermore, preventive in-
consistency management techniques have been well-
researched in database systems [16] previously. A

more permissive approach to managing inconsisten-
cies is allowing them to emerge, and treating incon-250

sistencies with the subsequent activities of detection
and resolution [17].

Various forms of graph-based reasoning are a nat-
ural choice for inconsistency detection and reso-
lution in MDE, where models typically adhere to255

graph semantics. Correspondence models are often
used to relate elements of two or more models. Once
a correspondence model is established, inconsisten-
cies between the two graphs can be detected and in
more advanced scenarios, repair actions can be put260

in place as well. The utility of correspondence mod-
els has been demonstrated in multi-disciplinary set-
tings [18, 19]. Triple Graph Grammars (TGG) [20]
improve on correspondence models by supporting
bi-directional synchronization, with the possibility265

of incremental model updates [21]. TGG have seen
success in cross-domain consistency management as
well [22]. Such techniques are important enablers in
the development of multi-disciplinary engineering
tools [23, 24]. Fully automated model synchroniza-270

tion is not always feasible and human involvement
is required. In such cases, the human stakeholder
can be assisted by automatically generated editing
hints [25] or quick-fixes [26]. Rule-based approaches
are often used in combination with correspondence275

models [27] with the added benefit of utilizing rule
engines [28], declarative languages [29, 30], and
logic solvers [31, 32] to automate detection and syn-
chronization. Design-space exploration (DSE) has
been used as a more complex form of rule-based280

model repair, in which optimal sequences of model
repair actions are identified by smart search heuris-
tics [33].

In some cases, additional inconsistency tolerance
techniques are employed between detection and res-285

olution. Inconsistencies might be transient by na-
ture, i.e., can get resolved naturally as the engi-
neering process evolves. Equipping inconsistencies
with state [5] and representing models as a sequence
of operations [29] are the most typical approaches.290

The benefits of temporal inconsistency tolerance
in MVM have been demonstrated by Easterbrook
et al. [6]. Tolerating inconsistencies decouples the
viewpoints and introduces flexibility in the design
process as deciding upon when to resolve inconsis-295

tencies is the responsibility of the owner of the view.
While the state of the art of inconsistency man-

agement is substantial, the vast majority of ap-
proaches operate at the level of syntax. This is es-
pecially clear in graph-based approaches, in which300

4

the basis of reasoning is the abstract syntax. In con-
trast, semantic approaches rely on the assumption
that inconsistencies may not surface at the level
of syntax in time and therefore, treating them at
level of syntax might not be feasible. Therefore,305

the semantics—the “meaning”—of models needs to
be externalized and promoted to a first-class citi-
zen. This is typically achieved by employing various
forms of ontologies [34]. Ontologies are structured
and organized representations of domain knowledge310

and enable reasoning over multiple domains. As a
consequence, ontologies are especially useful in mul-
tidisciplinary settings [35]. Tagging model elements
with their domain-specific interpretation has been
suggested by Spanoudakis et al. [1] to enrich mod-315

els with semantic elements and establish an ontol-
ogy for the engineering endeavor. By that, overlaps
across domain concepts can be detected irrespective
of the (modeling) language in which they are pri-
marily expressed. More advanced approaches au-320

tomate the extraction of ontological concepts, e.g.,
Bayesian inference [3]. Once an ontology is estab-
lished, automated reasoners can be used to detect
inconsistencies [14].

3.2. Ontological properties325

The imprecise or vague semantics of modeling
languages are often to blame for unnoticed overlaps
between concerns [36]. Ensuing inconsistency often
does not manifest at the level of syntax, but remains
hidden in the semantic domain [37]. In the running330

example, the inconsistency between the configura-
tion engineer and the safety engineers remains hid-
den at the level of the Petri net models. The actual
inconsistency is discovered only when investigating
the meaning of the two Petri nets, e.g., by trans-335

lating them to their respective reachability graphs.
In practical scenarios, checking a property often re-
quires more costly property checks, e.g., building
a physical prototype of the system and testing its
behavior under realistic physical conditions.340

Apparently, detecting inconsistencies at the level
of syntax might not be sufficient and often, the
management of inconsistencies must be approached
at the level of semantic properties.

The term property is vastly overloaded already345

in computer science. UML
1

considers properties
a mere named “structural feature”. Some object-
oriented languages (such as C#) consider class

1
https://www.omg.org/spec/UML/2.5.1

members with a purpose between an attribute (or

field) and a method a property.
2

In our terms, a350

property is a descriptor of a materialized object or
concept that can be used to classify the said object
or concept into ontological classes. In the running
example, p1 can be used to classify line follower
robots into the safe and not safe classes. It is then355

expected, that two objects in the same class are
similar in terms of the classifying property[14]. For
example, a company might be interested in acquir-
ing only safe line followers; but it does not matter
which specific instance they acquire as long as the360

instances belong to the same class of safe line fol-
lowers.

Throughout the paper, we maintain the view that
properties are strictly categorical (i.e., they concern
what something is like in their materialized self),365

and every dispositional property (i.e., what some-
thing can be or what abilities something possesses)
can be reduced to categorical ones [38, 39]. That is,
classifying an object by a property does not require
a disposition to decide whether the property holds,370

but rather, properties are unconditional within a
specific validity frame [40]. For example, the safety
properties in the running example are all categori-
cal properties of the system, because their satisfac-
tion does not depend on any specific disposition—375

cf. "the system is safe when the weather is sunny".
Should there exist a safety property related to the
weather, that property can be turned into a cate-
gorical property by extending the validity frame of
the model to entail additional physical conditions,380

such as temperature and precipitation, and positing
the property in this new validity frame. This con-
vention allows for describing properties in linguistic
terms and evaluating the belonging of an object to
a specific ontological class by a function that maps385

to a Boolean algebra.

3.3. Model-driven engineering

Model-Driven Engineering (MDE) [41] advocates
modeling the system before it gets realized. This
way, the relevant properties of the eventual system390

can be computed beforehand, allowing for improved
design quality.

MDE aims to leverage the mechanism of abstrac-
tion to provide succinct representations of the un-
derlying phenomena. Models are typically devel-395

2
https://docs.microsoft.com/en-us/dotnet/csharp/

language-reference/

5

oped by means of general-purpose modeling lan-
guages (such as UML [42]) or domain-specific mod-
eling languages (DSL) [43]. Models are used for
the validation and verification of specific proper-
ties, such as safety, security, and performance be-400

fore the system is assembled. Specifically, this as-
sembly step is largely automated by code genera-
tion [44]. Recent improvements in MDE, such as
low-code [45] and no-code platforms [46] can even
generate the full code base from models.405

Due to the complexity of nowadays engineered
systems, their modeling is not an individual en-
deavor anymore but rather, a collaborative effort
by multiple stakeholders [47, 48]. Such collabora-
tive endeavors typically involve stakeholders from410

vastly different domains, who approach the mod-
eled system from their own viewpoints. Multi-view
modeling (MVM) advocates decomposing models
into multiple views that are concerned with specific
aspects of the system [49]. The ISO/IEC/IEEE415

42010:2011 standard [50] defines a view as a set of
concerns of specific stakeholders and viewpoints as
the specification of conventions utilized to construct
a view. This standard has been heavily relied on in
MDE [51]. In the running example, the safety view420

supports a select group of stakeholders to reason
about the safety properties of the system. This view
includes three specific concerns of safety (motion,
mission, interface), and defines methods to reason
about these concerns (Petri nets and their prop-425

erties). Another view could be, for example, the
performance view. Such a view could be concerned
with the behavioral characteristics of the line fol-
lower and could be supported with stochastic Petri
net models (Petri nets augmented with statistical430

distributions on their transitions).
MVM has been shown to be an effective approach

in several complex domains, such as cyber-physical
systems [52]. Views can belong to different do-
mains, i.e., they may represent various aspects of435

the single underlying model in different formalisms
and on different levels of abstraction. The usage
of multiple views fosters collaboration among mul-
tiple stakeholders. However, they introduce the
threat of stakeholder views diverging and becom-440

ing inconsistent [53]. By the classification of Cor-
ley et al. [54], inconsistencies in MVM settings can
manifest between views or between models to which
the views correspond. The synchronization of views
has been traditionally approached using correspon-445

dence models, such as pivot models [23] and bi-
directional model transformations by triple-graph

grammars [20]. This paper provides a general for-
mal framework to reason about consistency and cor-
rectness in MVM settings.450

4. Correctness and consistency

In this section, we provide a formal definition of
correctness and consistency, in terms of ontological
properties. Our formal system relies on first-order
logic. However, as remarked at multiple points,455

extensions, such as intuitionistic logic [55] and de-
scription logic [7] often allow for different interpre-
tations of correctness and consistency.

As outlined in Section 3, requirements are used
to obtain the properties the final product must sat-460

isfy. From this point on, we assume an appropriate
mapping from requirements to the properties and
approach the problem of (in)consistency manage-
ment in terms of properties only. To do so, we will
use the concepts shown in Figure 3.465

Figure 3: The relationship between properties and design
models.

4.1. Preliminaries

Let P denote the set of properties a system must
satisfy in order to consider it correct. For our pur-
poses, we consider two design artifacts, di, dj ∈ D.
Preq(di) ⊂ P and Preq(dj) ⊂ P denote the sub-470

sets of properties required to be satisfied by design
artifacts di and dj , respectively.

4.1.1. Design and completeness

Definition 1 (Design) The collection of design
artifacts (dn)n∈N models is said to be design D.475

That is, D = ⋃ dn.

6

The design, sometimes called the virtual product
or the single underlying model (SUM) [56], is the
overall abstract representation of the eventual sys-480

tem. In this work, we assume an ideal assembly
process that translates the design to the eventual
system and consider any correctness-related issues
in this assembly process out of the scope. This al-
lows us to treat the design as the faithful proxy of485

the eventual product and to investigate the correct-
ness of the eventual system by the correctness of the
design. We make no assumptions about the overlap
between the design artifacts.

Example. The design of the system in the running490

example (Section 2) is the collection of design arti-
facts in Figure 1a and Figure 2a, i.e., the two Petri
nets.

Definition 2 (Complete design) De-
sign D = ⋃ dn is said to be complete iff495

P \⋃{1..n} Preq(dn) ≡ ∅.

That is, there are no properties of the system
that are not required to be satisfied by at least one
design artifact. Only by a complete design can one500

prove the correctness of the system. This definition
is not to be confused with Gödel’s notion of syn-
tactic and semantic (in)completeness of formal sys-
tems [57] that are concerned with provability. Our
definition is a mere reflection on the quality of the505

design and whether it addresses every stakeholder
concern—i.e., required property.

Example. The design in the running example is
considered a complete design by Definition 2, be-
cause properties p1, p2, and p3 are all required to510

be satisfied by at least one design artifact. In fact,
each of these properties are required to be satisfied
both by the safety design (i.e., the Petri net in Fig-
ure 1a) and by the configuration design (i.e., the
Petri net in Figure 2a).515

Corollary 1. ∀p ∈ P ∃d ∈ D ∶ p ∈ Preq(d).

That is, for every property p ∈ P exists at least
one design artifact d ∈ D of which p is a required
property.

Example. In the running example, properties p1,520

p2, and p3 are required properties of both the safety
and the configuration design artifacts (shown in
Figure 1a and Figure 2a, respectively).

Requirements management tools, such as Ra-
tional DOORS [58] and the IBM Engineering525

Requirements Quality Assistant [59] leverage this
proposition when checking for completeness and
calculating various completeness metrics.

Hereinafter in this paper, we consider a complete530

design. This allows us to assume that the correct-
ness of the eventual system is equivalent to the cor-
rectness of the models.

4.1.2. Satisfaction of properties

Definition 3 (Satisfaction of a property) A535

design artifact d ∈ D is said to satisfy a property
p ∈ P iff JdK ⊨ p, where J⋅K denotes the semantics.

We assume that the satisfaction of a property
per Definition 3 maps to the Boolean field, i.e., ⊨∶
D × P → B, where ∀b ∈ B ∶ ¬¬b = b (excluded540

middle).

4.1.3. Satisfied and not satisfied properties

Let Psat(d) ⊆ Preq(d) and Punsat(d) ⊆ Preq(d)
denote the satisfied and not satisfied required prop-
erties of d, respectively.545

Definition 4 (Satisfied properties of design
artifacts) ∀p ∈ Psat(d) ⊆ Preq ∶ JdK ⊨ p. That
is, every property p ∈ Psat(d) is satisfied by design
artifact d.

Example. In the running example, property p1 is550

satisfied by both the safety design artifact ds in
Figure 1a and the configuration design artifact dc in
Figure 2a, as the invariant specified in the definition
of the property ∄v ∈ V (R) ∶ v[2] + v[4] > 1 holds
in both cases. Thus, JdsK ⊨ p1 and JdcK ⊨ p1.555

Definition 5 (Not satisfied properties of de-
sign artifacts) ∀p ∈ Punsat(d) ∶ JdK ⊭ p. That
is, every property p ∈ Punsat(d) is not satisfied by
design artifact d.

Example. In the running example, property560

p2 is not satisfied by the configuration de-
sign artifact dc in Figure 2a, as the invari-
ant specified in the definition of the property
∀vi ∈ V (R)∃vj ∈ V (R), vi ≠ vj ∶ (vi, vj) ∈ E(R)
does not hold. Similarly, property p3 is565

not satisfied by dc either, as the invariant
specified in the definition of the property
∀i ∈ N, 1 ≤ i ≤ ∣S(P)∣ ∶ ∃v ∈ V (R) ∶ v[i] > 0 does

7

not hold. Thus, JdcK ⊭ p2 and JdcK ⊭ p3.
570

Some key properties of property satisfaction in-
clude completeness and unambiguity.

Definition 6 (Completeness of property sat-
isfaction) Preq(d) ≡ Psat(d)⋃Punsat(d).

That is, every required property of d ∈ D is either575

satisfied or not satisfied by d.

Definition 7 (Unambiguity of property satis-
faction) Psat(d)⋂Punsat(d) ≡ ∅.

That is, a property cannot be satisfied and not
satisfied by d ∈ D simultaneously.580

Hereinafter, we consider complete and unambigu-
ous property satisfaction of design artifacts.

4.2. Correctness

Definition 8 (Correctness of a design arti-
fact) Design artifact d is said to be correct with585

respect to its set of required properties Preq(d) iff
∀p ∈ Preq(d) ∶ JdK ⊨ p.
We use the notation ρ(d) to denote the correctness
of a design artifact.

Example. In the running example, the safety de-590

sign artifact in Figure 1a, here denoted as ds is a
correct design artifact because it satisfies every re-
quired property. However, the configuration design
artifact in Figure 2a is incorrect, as it does not sat-
isfy properties p2 and p3.595

We extend Definition 8 to the overall design. We
consider a design correct if and only if it meets all
the requirements. If at least one requirement is not
met, the design is considered an incorrect product.

Definition 9 (Correctness of a design) De-600

sign D is said to be correct with respect to its
set of required properties ⋃{1..n} Preq(dn) iff ∀p ∈

⋃{1..n} Preq(dn)∀d ∈ D ∶ p ∈ Preq(d) ⇒ JdK ⊨ p.

We use the notation ρ(D) to denote the correctness
of a design and we assume ρ ∶ D × P → B, i.e., it605

evaluates to boolean.

That is, the overall design is correct if every de-
sign artifact satisfies its required properties.

Example. In the running example, the overall de-
sign is composed of the design artifacts in Figure 1a610

and Figure 2a, here denoted by ds and dc, respec-
tively. While ds satisfies every required property,
dc does not (see the example under Definition 8)
and therefore, the overall design is incorrect.

4.3. Consistency615

Consistency is inextricably linked to (i) at least
two assertions that disagree about (ii) a property.
Thus, we formalize consistency as follows.

Definition 10 (Consistency of two design ar-
tifacts w.r.t. a property) Design artifacts620

di, dj ∈ D are said to be consistent w.r.t to p ∈

P
′
≡ Preq(di) ⋂ Preq(dj) iff JdiK ⊨ p ⇔ JdjK ⊨ p.

If it is needed, we use the notation σp(di, dj) to de-
note the mutual consistency of design artifacts per
property p and we assume σ ∶ D×D×P → B, i.e.,625

it evaluates to boolean.

Example. In the running example, the safety model
and the configuration model are consistent with re-
spect to p1, as they both satisfy it.

The above definition can be generalized to the set630

of overlapping properties P
′
.

Definition 11 (Consistency of two design ar-
tifacts w.r.t. a set of properties) Design ar-
tifacts di, dj ∈ D are said to be consistent w.r.t to

the set of properties P
′
≡ Preq(di) ⋂ Preq(dj) iff635

∀p ∈ P
′
∶ JdiK ⊨ p ⇔ JdjK ⊨ p.

If it is needed, we use the notation σ
∗
P (di, dj) to

denote the mutual consistency of design artifacts
per the set of properties P . Again, we assume
σ
∗
∶ D ×D × P → B, i.e., it evaluates to boolean.640

That is, two design artifacts are said to be con-
sistent with respect to a set of properties if they
satisfy exactly the same properties of the set. Due
to Definition 7, either both design artifacts satisfy
the property or jointly do not satisfy it. An incon-645

sistency arises when exactly one of the two artifacts
satisfies the property.

It is easy to see that Definition 10 is a special
case of Definition 11 with P

′
= {p}.

4.4. Consistency ⇒ correctness?650

Table 1 shows how the satisfaction and dis-
satisfaction of the required properties p ∈

Preq(di)⋂Preq(dj) by two design artifacts di and
dj can lead to their (in)consistency, and the
(in)correctness of the overall design D = {di, dj}.655

Table 1 yields four cases we investigate below.

8

Table 1: Consistency does not imply correctness.

JdiK ⊨ p JdjK ⊨ p σp(di, dj) ρ(D)

(1) ✓ ✓ ✓ ?
(2) ✓ × × ×
(3) × ✓ × ×
(4) × × ✓ ×

Inconsistent and incorrect (Cases 2-3). If di satis-
fies p and dj does not (case 2), or the other way
around (case 3), the two design artifacts are incon-
sistent w.r.t p. This also means that there is at least660

one required property p ∈ P
′
that is not satisfied by

dj (case 2) or di (case 3), and therefore, the overall
design D is in an incorrect state.

Consistent and potentially correct (Case 1). If both
di and dj satisfy p, they are consistent as per Def-665

inition 10. This, however, does not guarantee cor-
rectness, unless Preq(dj) \ P

′
≡ ∅ ≡ Preq(dj) \ P

′
,

i.e., if Preq(di) ≡ Preq(dj). Apart from this cor-
ner case, in which the two design artifacts have to
satisfy exactly the same set of properties, neither670

correctness or incorrectness can be proved from the
premise JdiK ⊨ p ∧ JdjK ⊨ p. The proof is trivial

as from Preq(di) \P
′
≢ ∅ it follows that a property

p ∈ Preq(di) \P
′
may exist such that JdjK ⊭ p, ren-

dering design D incorrect. However, this is still the675

only case that can lead to a correct product.

Consistent but incorrect (Case 4). Perhaps the
most interesting case is the last one. If di and
dj both do not satisfy p, they are still considered
consistent. This follows from Definition 10. How-680

ever, both design artifacts are incorrect, and con-
sequently, design D is incorrect. In this case, even
though the models seem to be consistent, at the end
of the development process, the resulting product
will be incorrect.685

Example. In the context of the running example,
consider now a configuration model M2 which is
similar to M1 shown in Figure 2, except let the ini-
tial marking of M2 be [0, 0, 1, 0, 1]. That is, only
the rotate motion mode is enabled by default, the690

ahead motion mode is not. M2 would not satisfy p2
and p3, due to the reasons M1 does not satisfy them
(explained in Section 2). The not satisfied proper-
ties would render both models incorrect. However,
the two models would be consistent with each other695

with respect to p2 and p3 (Case 4), and also with
respect to p1 (Case 1).

4.5. Consequences

The following conclusions can be drawn from Ta-
ble 1.700

Theorem 1. Consistency is a necessary but not
sufficient requirement for correctness.

Formally:

ρ(D) ⇒ σ(di, dj) (necessity);

σ(di, dj) /⇒ ρ(D) (insufficiency).

We use Lemma 1 to prove Theorem 1.

Lemma 1. Logical implication evaluates to false iff
the antecedent is true and the consequent is false,
i.e., true → false.705

Proof 1. To prove ρ(D) ⇒ σ(di, dj) (necessity),
we remark that there is only one case in Table 1
where ρ(D) can be true, and that is case (1). How-
ever, the σ(di, dj) relationship, in this case, is true,
and with a true consequent, the implication cannot710

be false.
To prove σ(di, dj) /⇒ ρ(D) (sufficiency), it is
enough to show that there is at least one case in
Table 1 where the antecedent is true and the conse-
quent is false. Case (4) is such a case. □715

Theorem 2. Inconsistency is a sufficient re-
quirement for incorrectness.

Formally:

¬σ(di, dj) ⇒ ¬ρ(D).

For the proof, we use Lemma 2.

Lemma 2. ¬X ∨ Y ⊢ X → Y .

Proof 2. Due to Lemma 2, ¬¬σ(di, dj)∨¬ρ(D) ⊢
¬σ(di, dj) ⇒ ¬ρ(D). Due to Definition 7,720

σ(di, dj)∨¬ρ(D) ⊢ ¬¬σ(di, dj)∨¬ρ(D). We now
show that σ(di, dj) ∨ ¬ρ(D) always holds.
From Definition 10, it follows that if either JdiK ⊨

p ∧ JdjK ⊨ p (Case 1 in Table 1) holds or JdiK ⊭

p ∧ JdjK ⊭ p (Case 4) holds, σ(di, dj) holds and725

consequently, σ(di, dj) ∨ ¬ρ(D) holds.
From Definition 8, it follows that if either JdiK ⊨

p ∧ JdjK ⊭ p (Case 2) holds or JdiK ⊭ p ∧ JdjK ⊨

p (Case 3) holds, ¬ρ(D) holds and consequently,
σ(di, dj) ∨ ¬ρ(D) holds. □730

9

5. Consistency as a heuristic to correctness

While consistency does not imply correctness, it
is still useful to think of consistency as a heuristic
to correctness.

5.1. A definition of heuristic735

Romanycia and Pelletier [8] define a heuristic as
«any device, be it a program, rule, piece of knowl-
edge, etc., which one is not entirely confident will be
useful in providing a practical solution, but which
one has reason to believe will be useful, and which is740

added to a problem-solving system in expectation
that on average the performance will improve».

In this context, consistency is the device that,
when added to the one problem-solving system, i.e.,
the engineering process, might be useful in achiev-745

ing a practical solution, i.e. a correct system.
On the one hand, one has a reason to believe con-

sistency will be useful in achieving correctness, be-
cause Theorem 2 states that the lack of consistency
surely results in incorrectness. On the other hand,
one cannot be entirely confident consistency will be
useful in achieving the desired correctness, because,
as Theorem 1 states, consistency alone is not a suffi-
cient requirement for correctness. Formal evidence
follows from the conditional probability of correct-
ness under the condition of consistency. Based on
Table 1:

0 <P (ρ(D) ∣ ∃σ(di, dj)) ≤ 1, however (1)

P (ρ(D) ∣ ∄σ(di, dj)) = 0 (2)

Equation 1 corresponds to cases described either
by row 1 or 4 in Table 1. Since row 1 may yield
a correct design (the ρ(D) column is not false or
true), the probability of a correct design is greater750

than 0. The probability of correct design is still
strictly less than 1, due to row 4 in Table 1 cer-
tainly yielding an incorrect design. In contrast,
Equation 2, corresponding to cases in rows 2 and 3
in Table 1, shows that the probability of arriving at755

a correct product in inconsistent cases is 0.

5.2. Leveraging consistency as a heuristic

Treating consistency as a heuristic to correctness
motivates and justifies putting regular consistency
checks in place. Consistency checks, although often760

limited in effectiveness [60], are less costly to imple-
ment than correctness checks. Upon detecting in-
consistencies among design artifacts, incorrectness

can be assumed and proper mechanisms can be trig-
gered. Since repair costs tend to increase sharply765

when incorrectness is addressed at later stages of
a project [61, 62], the lower cost of occasional or
even regular consistency checks is justified. Thus,
by adding consistency to the problem-solving sys-
tem, i.e., the engineering process, the performance770

of the engineering process is expected to improve
on account of eliminating lingering errors early on
and allowing for better economic outlooks.

5.3. Admissible and consistent heuristics

Admissibility and consistency are two key prop-775

erties of heuristics.
A heuristic is said to be admissible if it never

overestimates the goal. In our context, consistency
is an admissible heuristic to correctness if it never
overestimates the degree of correctness. Indeed, the780

admissibility of consistency as a heuristic to correct-
ness follows from Theorem 1 as even a fully consis-
tent design does not guarantee a correct design.

A heuristic is said to be consistent if it exhibits
the trait of monotonicity. That is, by continuously785

improving consistency, correctness improves contin-
uously as well. Unfortunately, since consistency is
no guarantee of correctness, consistency is typically
not a consistent heuristic to correctness. This fol-
lows from Theorem 1: even if consistency is fully790

restored, the system may remain in an incorrect
state.

Thus, it can be concluded, that consistency is an
admissible but not consistent heuristic to correct-
ness. The benefit of consistency being admissible795

is that it can serve as a lower bound estimation of
the effort needed to restore correctness. This al-
lows defining quality gates that are operationalized
through consistency metrics as thresholds. In the
following, we show two of such consistency metrics.800

5.4. Some examples

Here, we provide some typical examples of con-
sistency models and metrics.

Heuristic 1: Number of inconsistent properties.
The number of inconsistent properties is an admis-
sible heuristic h to the correctness of the design.
Formally, following the notations in Figure 3:

h(D) = ∣(Psat(di)⊖ Psat(dj))⋂P
′∣,

where ⊖ denotes the symmetric difference of two
sets and P

′
≡ Preq(di) ⋂ Preq(dj). This follows805

10

from the fact that an inconsistent property im-
plies incorrectness (per Theorem 2) and therefore,
restoring correctness takes at least as many steps
as restoring the consistency of the properties. In
practical terms, however, restoring correctness usu-810

ally takes more steps, e.g., due to the challenges of
resolution scheduling [63, 64].

This heuristic can be used as a lower bound esti-
mation of the effort needed to restore correctness,
and repair actions can be triggered after the heuris-815

tic crosses a predetermined threshold.

Heuristic 2: Trace distance of views. Heuristic 1
is based on counting binary satisfaction relation-
ships: the heuristic is the sum of the number of
inconsistent properties. Richer basis of reasoning
and a more precise lower bound can be provided by
quantified consistency measures, e.g., based on be-
havioral similarity [65] or domain-specific distance
metrics [66]. Following our previous work [65], the
trace distance of two properties p1 and p2 over a
time window of length λ can be defined as

h(D) = δλ(p1, p2) =
λ−1

∑
i=0

δ(p1(i), p2(i)),

where p(i) denotes the ith observation of p.
Such a heuristic estimates incorrectness in a

quantified fashion and gives hints about how hard it
may be to restore correctness. In contrast, Heuris-820

tic 1 only gives hints about how many steps it may
take to restore correctness, but not about the sever-
ity of those steps. Therefore, heuristics based on
quantified (in)consistency metrics allow for better
decisions as of when to execute repair actions. Fur-825

thermore, the temporal dynamics of Heuristic 2 also
allow for tolerating inconsistencies as discussed in
previous work [65]. Tolerance of inconsistencies, in
turn, allows for engineering processes to temporar-
ily deviate from overall correctness and incorporate830

such temporal deviations into the overall engineer-
ing endeavor.

6. Discussion

We now discuss some implications of Section 4,
especially Theorem 1 and Theorem 2. Some impor-835

tant tooling aspects have been described previously
by Finkelstein [4]. Here, we focus on the conceptual
aspects of inconsistency management and their im-
plied language aspects.

6.1. When and how to use these results?840

The most important takeaway of this paper is
that promoting (in)consistency to a first-class citi-
zen in engineering processes allows for better man-
agement of (in)correctness. Although consistency
does not imply correctness, it is still an admissible845

heuristic for it and as such, it allows for putting
proper quality checks and repair actions in place.
This result is best used in engineering processes
in which V&V activities are particularly resource-
intensive and costly, such as the engineering of850

mechatronic and cyber-physical systems. While the
costs of regular correctness checks often cannot be
justified in such settings, consistency-based quality
checks offer a viable alternative. Such techniques
can be used at various points of the systems or soft-855

ware engineering process. Perhaps the best exam-
ple is the V-model [67], in which artifacts of the
design phase are used in the system construction
phase as well, allowing for consistency checks to
be put in place throughout the entirety of the pro-860

cess. Its derivations, such as the Y-model [68] rely
on automated correspondence between design and
construction, further improving the utility of con-
sistency checks along the process. Therefore, we
advocate experts and business stakeholders, espe-865

cially of such complex domains to incorporate reg-
ular and frequent consistency checks and correlate
their results with the correctness of the system.

As shown in Heuristic 2 in Section 5.4, toler-
ance is a powerful enabler to better scaling engi-870

neering processes. However, tolerance is the most
overlooked aspect of inconsistency management [13]
and its support should improve by a large margin
in the next generation of inconsistency management
frameworks. We argue that tolerance is implicitly875

present in current inconsistency frameworks, as de-
ciding about when to carry out a repair action in-
herently encodes some level of tolerance. By treat-
ing inconsistency as a first-class citizen, its toler-
ance aspect becomes more feasible to reason about880

and the enactment of inconsistency treatments can
be further optimized [69]. Recent trends in model-
driven software engineering, such as blended mod-
eling [70] have highlighted the need for such tech-
niques. Therefore, we recommend prospective re-885

searchers focus their attention on the various mod-
els and tooling aspects of inconsistency tolerance,
especially in relation to system correctness.

11

6.2. Language requirements
To fully leverage the potential of promoting in-890

consistency to a first-class citizen, modeling and
programming languages need to embrace this idea
as well.

At the syntactic level, language features can be
introduced that are suitable for expressing con-895

sistency rules. Such ideas have been explored
in contract-based design [71], most notably in
languages such as Eiffel [72] and the FOCUS
method [73], with each of the approaches rooted
in Hoare’s axiomatic basis for computer program-900

ming [74]. However, such techniques are still spo-
radically used. Most languages provide contract-
like features, such as assertions in Java and Python,
but these elements are optional and cannot capture
complex consistency rules. Additional syntactic fa-905

cilities can be introduced to define tolerance rules
and resolution procedures. However, these lan-
guages have to work at different meta-levels of the
linguistic stack, and their usability would challenge
current systems engineering methodologies. For ex-910

ample, it is not clear who should be responsible for
capturing such consistency constraints. Due to the
most concerning inconsistencies being situated in
overlaps of views [11], it is also far from given that
complex consistency rules can be fully understood915

and mapped by just one stakeholder.
Semantic techniques offer solutions to this prob-

lem. Thus, languages need to improve at this level
as well. Ontologies [75] collect and organize con-
cepts and allow for expressing relationships among920

them and properties in terms of description logic.
Due to their domain-agnostic nature, ontologies
are especially suitable for capturing complex con-
cepts that give rise to inconsistencies in the overlaps
of domain-specific views [11]. The integration of925

language engineering and ontology engineering has
been first discussed by Kühne [76] in the context of
separating the notion of linguistic and ontological
conformance in multi-level modeling. Multi-layer
ontologies allow for reusing general knowledge (e.g.,930

laws of physics) and gradually augmenting those
with more domain-specific knowledge (e.g., laws of
mechanical engineering, laws of electrical engineer-
ing), while still allowing for identifying related con-
cepts in different domains (e.g., an "engine" in the935

mechanical domain describes the same real concept
as the "motor" in the electrical domain, w.r.t. a set
of properties that, in turn, constitute the overlap
between views). Lifting properties to the syntactic
level has been shown to be an effective technique in940

the design of complex heterogeneous systems [77].
Such ontological facilities must remain hidden be-
hind the syntax of languages and the related mecha-
nisms (such as consistency checks) should be opera-
tionalized in the background, preferably without re-945

quiring human input or interaction. Given the com-
putational complexity of such mechanisms, incre-
mental linguistic structures are needed that ensure
a swift evaluation of inconsistencies upon changes
in the model or program.950

6.3. Alternative formal frameworks

Throughout this paper, we have relied on first-
order logic (FOL). However, other frameworks can
be considered as the formal underpinning to incon-
sistency management, each with different benefits955

and challenges.
Description logic is a provable subset of FOL.

While satisfiability is undecidable in FOL [78], de-
scription logic provides inference mechanisms that
are decidable. The increased provability comes at960

the cost of expressiveness: the expressive power
of description logic is situated between those of
FOL and propositional logic. Still, this trade-
off is often beneficial in consistency problems,
as demonstrated, e.g., by Van der Straeten et965

al. [7] who define a subconcept-superconcept clas-
sification mechanism that is decidable and com-
plete. A particularly useful feature of descrip-
tion logic is the distinction between statements
on concept hierarchy—captured in terminological970

boxes (TBox)—and statements on relationships be-
tween concepts and individuals—captured in asser-
tion boxes (ABox). This distinction enables the
reasoner to be operationalized only on TBoxes (typ-
ically for classification reasoning), only on ABoxes975

(typically for instance reasoning), or both. The
separation of terms also allows treating the inher-
ent complexity of TBoxes separately and reusing
TBox information with different ABoxes. An ad-
ditional benefit of description logic is the lack of980

unique name assumption that allows for concepts
with different names to be equivalent by inference.
This aligns very well with stakeholders that possess
different vocabularies, such as the ones in the engi-
neering of complex heterogeneous systems. Finally,985

description logic assumes an open world, i.e., it does
not assume the excluded middle (see Definition 3).
While this property improves expressive power, it
also increases the complexity of reasoning.

Modal logic encompasses multiple logic frame-990

works with the common trait of being able to distin-

12

guish between necessity and possibility. By unary
modal operators ◇p – possibility, and □p – ne-
cessity, modal logic improves the expressiveness of
first-order logic. This allows for the useful distinc-995

tion between knowing p and p being true. Many
inconsistency cases can be traced back to the lack
of knowledge, e.g., due to miscommunication and
misaligned vocabularies. The ability to explicitly
denote awareness of axioms even without the abil-1000

ity to evaluate them improves the understanding
of how knowledge is accessible to stakeholders [79]
and as a consequence, improves the robustness of
the engineering setting [80]. Furthermore, modal
logic, and specifically, dynamic epistemic logic [81]1005

naturally promotes the evolution of the knowledge
base as new axioms are encountered [82]. This
is a substantial improvement over first-order logic
that aligns logic-based reasoning with realistic en-
gineering settings better. However, the improved1010

expressiveness comes at the price of computational
complexity. Due to this complexity, modal logic,
especially temporal logic frameworks—such as lin-
ear temporal logic (LTL) [83] and computation tree
logic (CTL) [84]—are primarily used in verifica-1015

tion, i.e., in proving correctness. We foresee future
research focusing on extending modal logic to in-
consistency management based on the vast body of
knowledge available on verification.

Intuitionistic logic. Although its discourse is1020

largely missing from inconsistency management, in-
tuitionistic logic [55] aligns well with our under-
standing of knowledge in engineering processes. In-
tuitionistic logic rejects the excluded middle of clas-
sical logic, i.e., does not assume that ¬¬p = p. In1025

classical logic, such as first-order logic, if a proof
exists that p is true, the interpretation of ¬p is am-
biguous. Both the interpretation of "there is no
proof of p" and the interpretation of "there is proof
of not-p" are acceptable. To properly distinguish1030

between the two cases, intuitionistic logic only ac-
cepts assertions as true that can be proved as such.
That is, p being provably true does not automati-
cally imply not-p being false. Rather, not-p has to
be proven on its own right, i.e., not-p has to evalu-1035

ate to true.
This distinction cleans up the semantics of nega-

tion and works well with modal propositions, in
which often one only knows p, but cannot decide
its truth value. Similarly, in inconsistency man-1040

agement, it is often the case that "provably con-
sistent" does not imply "not inconsistent". In our
formal framework, we defined consistency of mod-

els with respect to a set of properties. In intuition-
istic logic, even if a proof of consistency exists, one1045

cannot be entirely sure that two models are not in-
consistent w.r.t. another set of properties. This, in
turn, aligns well with dynamic epistemic logic [81]
and forces the user of the framework to maintain
an open world assumption: since the set of axioms1050

is subject to change, all that current provability of
consistency buys is ◇p (possibly consistent), but
not □p (necessary consistent). Again, the improved
expressiveness comes at the price of computational
complexity. The lack of excluded middle eradicates1055

the mechanism of proof by contradiction from the
formal framework, and by extension, widely used
reasoning and explanation techniques such as the
generation of counterexamples are unavailable.

Summary. A frequent criticism against inconsis-1060

tency management frameworks tapping into the se-
mantic domain of models is their cumbersome us-
ability and limited applicability [60]. The frame-
works presented in this section provide substan-
tially increased expressiveness to describe sophis-1065

ticated consistency mechanisms and by that, they
can contribute to the better applicability of the next
generation of inconsistency management frame-
works. However, as emphasized, with the improved
expressiveness, reasoning mechanisms become more1070

computationally demanding as well. We advocate
future research focusing on (i) the trade-off between
expressiveness and computational complexity, and
(ii) multi-paradigm methods in which different for-
mal frameworks can be used to underpin inconsis-1075

tency management systems.

7. Conclusion

In this paper, we have validated the generally ac-
cepted philosophy of consistency management, that
instead of simply removing consistency from an en-1080

gineering process, one should reason about properly
managing inconsistency. We have shown formal
proofs of consistency being an insufficient indicator
of eventual correctness, and inconsistency being a
sufficient indicator of eventual incorrectness. We1085

have drawn the conclusion that over-committing to
consistency might not be the best strategy in terms
of costs and the end-to-end performance of the un-
derlying engineering process. We suggested future
directions to researchers of the topic, tool builders,1090

and language engineers.

13

Future work will focus on the modalities of the
presented formal framework under open-world and
closed-world assumptions [85] and gaining a better
understanding of modeling under uncertainty [86].1095

References

[1] G. Spanoudakis, A. Zisman, Inconsistency management
in software engineering: Survey and open research is-
sues, in: Handbook of Software Engineering and Knowl-
edge Engineering: Volume I: Fundamentals, World Sci-1100

entific, 2001, pp. 329–380.
[2] R. Lloyd, C. I. S. Writer, Metric mishap caused loss of

nasa orbiter, CNN Interactive (1999).
[3] S. J. Herzig, C. J. Paredis, A conceptual basis for in-

consistency management in model-based systems engi-1105

neering, Procedia CIRP 21 (2014) 52–57, 24th CIRP
Design Conference.

[4] A. Finkelstein, A foolish consistency: Technical chal-
lenges in consistency management, in: Database and
Expert Systems Applications, 11th International Con-1110

ference, DEXA 2000, Vol. 1873 of LNCS, Springer,
2000, pp. 1–5.

[5] R. Balzer, Tolerating inconsistency, in: Proceedings of
the 13th International Conference on Software Engi-
neering, IEEE Computer Society / ACM Press, 1991,1115

pp. 158–165.
[6] S. Easterbrook, A. Finkelstein, J. Kramer, B. Nuseibeh,

Coordinating distributed viewpoints: the anatomy of a
consistency check, Concurrent Engineering 2 (3) (1994)
209–222.1120

[7] R. Van Der Straeten, T. Mens, J. Simmonds, V. Jon-
ckers, Using description logic to maintain consistency
between UML models, in: «UML» 2003 - The Unified
Modeling Language, Modeling Languages and Applica-
tions, 6th International Conference, Vol. 2863 of LNCS,1125

Springer, 2003, pp. 326–340.
[8] M. H. Romanycia, F. J. Pelletier, What is a heuristic?,

Computational Intelligence 1 (1) (1985) 47–58.
[9] S. Sedhumadhavan, E. Niranjana, An analysis of path

planning for autonomous motorized robots, Interna-1130

tional Journal of Advance Research, Ideas and Inno-
vations in Tech6nology 3 (6) (2017) 1234–1257.

[10] W. Reisig, Petri Nets: An Introduction, Vol. 4 of
EATCS Monographs on Theoretical Computer Science,
Springer, 1985.1135

[11] J. Reineke, S. Tripakis, Basic problems in multi-view
modeling, in: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 20th International Con-
ference, TACAS 2014, Vol. 8413 of LNCS, Springer,
2014, pp. 217–232.1140

[12] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer,
B. Nuseibeh, Inconsistency handling in multiperspec-
tive specifications, IEEE Transactions on Software En-
gineering 20 (8) (1994) 569–578.

[13] W. Torres, M. G. J. van den Brand, A. Serebrenik, A1145

systematic literature review of cross-domain model con-
sistency checking by model management tools, Softw.
Syst. Model. 20 (3) (2021) 897–916.

[14] K. Vanherpen, et al., Ontological reasoning for consis-
tency in the design of cyber-physical systems, in: 1st1150

International Workshop on Cyber-Physical Production
Systems, CPPS@CPSWeek 2016, IEEE Computer So-
ciety, 2016, pp. 1–8.

[15] I. David, E. Syriani, Real-time collaborative multi-level
modeling by conflict-free replicated data types, Soft-1155

ware & Systems Modeling (2022).
[16] P. R. Johnson, R. Thomas, Maintenance of duplicate

databases, RFC 677 (1975) 1–10.
[17] I. David, A Foundation for Inconsistency Management

in Model-Based Systems Engineering, Ph.D. thesis,1160

University of Antwerp, Belgium (7 2019).
[18] A. Qamar, J. Wikander, C. During, A mechatronic de-

sign infrastructure integrating heterogeneous models,
in: 2011 IEEE International Conference on Mechatron-
ics, IEEE, 2011, pp. 212–217.1165

[19] A. Bhave, B. H. Krogh, D. Garlan, B. R. Schmerl,
View consistency in architectures for cyber-physical sys-
tems, in: 2011 IEEE/ACM International Conference on
Cyber-Physical Systems, ICCPS 2011, IEEE, 2011, pp.
151–160.1170

[20] A. Schürr, Specification of graph translators with triple
graph grammars, in: Graph-Theoretic Concepts in
Computer Science, 20th International Workshop, WG
’94, Vol. 903 of LNCS, Springer, 1994, pp. 151–163.

[21] H. Giese, S. Hildebrandt, Incremental model synchro-1175

nization for multiple updates, in: Proceedings of the
Third International Workshop on Graph and Model
Transformations, ACM, 2008, pp. 1–8.

[22] J. Gausemeier, W. Schäfer, J. Greenyer, S. Kahl,
S. Pook, J. Rieke, Management of cross-domain model1180

consistency during the development of advanced mecha-
tronic systems, in: DS 58-6: Proceedings of ICED 09,
the 17th International Conference on Engineering De-
sign, Vol. 6, Design Methods and Tools (pt. 2), Palo
Alto, CA, USA, 24.-27.08. 2009, 2009.1185

[23] A. A. Shah, A. A. Kerzhner, D. Schaefer, C. J. J. Pare-
dis, Multi-view modeling to support embedded systems
engineering in sysml, in: Graph Transformations and
Model-Driven Engineering - Essays Dedicated to Man-
fred Nagl on the Occasion of his 65th Birthday, Vol.1190

5765 of LNCS, Springer, 2010, pp. 580–601.
[24] A. Egyed, Automatically detecting and tracking incon-

sistencies in software design models, IEEE Trans. Soft-
ware Eng. 37 (2) (2011) 188–204. doi:10.1109/TSE.

2010.38.1195

[25] A. Hessellund, K. Czarnecki, A. Wasowski, Guided
development with multiple domain-specific languages,
in: Model Driven Engineering Languages and Sys-
tems, 10th International Conference, MoDELS 2007,
Vol. 4735 of LNCS, Springer, 2007, pp. 46–60.1200

[26] Á. Hegedüs, Á. Horváth, I. Ráth, M. C. Branco,
D. Varró, Quick fix generation for dsmls, in: 2011
IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2011, Pittsburgh, PA,
USA, September 18-22, 2011, IEEE, 2011, pp. 17–24.1205

doi:10.1109/VLHCC.2011.6070373.
[27] S. M. Becker, A. Körtgen, Integration tools for con-

sistency management between design documents in de-
velopment processes, in: Graph Transformations and
Model-Driven Engineering - Essays Dedicated to Man-1210

fred Nagl on the Occasion of his 65th Birthday, Vol.
5765 of LNCS, Springer, 2010, pp. 683–718.

[28] Y. Xue, B. Feng, Checking validity of topic maps with
drools, in: The 2nd International Conference on In-
formation Science and Engineering, 2010, pp. 174–177.1215

doi:10.1109/ICISE.2010.5689569.
[29] X. Blanc, I. Mounier, A. Mougenot, T. Mens, Detect-

ing model inconsistency through operation-based model

14

construction, in: 30th International Conference on Soft-
ware Engineering (ICSE 2008), ACM, 2008, pp. 511–1220

520.
[30] J. Le Noir, O. Delande, D. Exertier, M. A. A. da Silva,

X. Blanc, Operation based model representation: Expe-
riences on inconsistency detection, in: Modelling Foun-
dations and Applications - 7th European Conference,1225

ECMFA 2011, Vol. 6698 of LNCS, Springer, 2011, pp.
85–96.

[31] C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, G. Bot-
terweck, Consistency checking for the evolution of
cardinality-based feature models, in: 18th International1230

Software Product Line Conference, SPLC ’14, ACM,
2014, pp. 122–131.

[32] A. Rauzy, Y. Dutuit, Exact and truncated computa-
tions of prime implicants of coherent and non-coherent
fault trees within aralia, Reliability Engineering & Sys-1235

tem Safety 58 (2) (1997) 127–144, eSREL ’95. doi:

https://doi.org/10.1016/S0951-8320(97)00034-3.
[33] I. David, J. Denil, K. Gadeyne, H. Vangheluwe,

Engineering Process Transformation to Manage
(In)consistency, in: Proceedings of the 1st Interna-1240

tional Workshop on Collaborative Modelling in MDE
(COMMitMDE 2016) co-located with ACM/IEEE 19th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2016), Vol. 1717 of
CEUR Workshop Proceedings, CEUR-WS.org, 2016,1245

pp. 7–16.
[34] N. Guarino, D. Oberle, S. Staab, What is an ontology?,

in: Handbook on ontologies, Springer, 2009, pp. 1–17.
[35] P. Hehenberger, A. Egyed, K. Zeman, Consistency

checking of mechatronic design models, in: ASME1250

2010 International Design Engineering Technical Con-
ferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers,
2010, pp. 1141–1148.

[36] Z. Huzar, L. Kuzniarz, G. Reggio, J. Sourrouille,1255

Consistency problems in UML-based software develop-
ment, in: UML Modeling Languages and Applications,
«UML» 2004 Satellite Activities, Vol. 3297 of LNCS,
Springer, 2004, pp. 1–12.

[37] D. Harel, B. Rumpe, Meaningful Modeling: What’s the1260

Semantics of "Semantics"?, Computer 37 (10) (2004)
64–72.

[38] D. M. Armstrong, The causal theory of properties:
Properties according to shoemaker, ellis, and others,
Philosophical Topics 26 (1/2) (1999) 25–37.1265

[39] J. Schaffer, Quiddistic knowledge, Philosophical Studies
123 (1) (2005) 1–32.

[40] B. P. Zeigler, Theory of Modeling and Simulation, John
Wiley, 1976.

[41] D. C. Schmidt, Model-driven engineering, Computer-1270

IEEE Computer Society 39 (2) (2006) 25.
[42] M. Fowler, UML distilled: a brief guide to the stan-

dard object modeling language, Addison-Wesley Pro-
fessional, 2004.

[43] M. Fowler, Domain-specific languages, Pearson Educa-1275

tion, 2010.
[44] J. Herrington, Code generation in action, Manning

Publications Co., 2003.
[45] J. Cabot, Positioning of the low-code movement within

the field of model-driven engineering, in: Proceed-1280

ings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems:
Companion Proceedings, 2020, pp. 1–3.

[46] T. C. Lethbridge, Low-code is often high-code, so
we must design low-code platforms to enable proper1285

software engineering, in: International Symposium on
Leveraging Applications of Formal Methods, Springer,
2021, pp. 202–212.

[47] I. David, K. Aslam, S. Faridmoayer, I. Malavolta,
E. Syriani, P. Lago, Collaborative model-driven soft-1290

ware engineering: A systematic update, in: 24th Inter-
national Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 2021, Fukuoka, Japan,
October 10-15, 2021, IEEE, 2021, pp. 273–284.

[48] I. David, K. Aslam, I. Malavolta, P. Lago, Collabora-1295

tive Model-Driven Software Engineering – A Survey of
Practices and Needs in Industry, Journal of Systems
and Software (2022).

[49] R. von Hanxleden, E. A. Lee, C. Motika, H. Fuhrmann,
Multi-view Modeling and Pragmatics in 2020 – Posi-1300

tion Paper on Designing Complex Cyber-Physical Sys-
tems, in: Large-Scale Complex IT Systems. Develop-
ment, Operation and Management, LNCS.

[50] ISO/IEC/IEEE, Systems and software engineering – ar-
chitecture description, ISO/IEC/IEEE 42010:2011(E)1305

(Revision of ISO/IEC 42010:2007 and IEEE Std 1471-
2000) (2011) 1–46.

[51] D. Broman, E. A. Lee, S. Tripakis, M. Törngren, View-
points, formalisms, languages, and tools Cyber-Physical
Systems, in: Proceedings of the 6th International Work-1310

shop on Multi-Paradigm Modeling, MPM@MoDELS
2012, ACM, 2012, pp. 49–54.

[52] L. Zhang, Multi-view approach for modeling aerospace
cyber-physical systems, in: 2013 IEEE International
Conference on Green Computing and Communica-1315

tions (GreenCom) and IEEE Internet of Things
(iThings) and IEEE Cyber, Physical and Social Com-
puting (CPSCom), Beijing, China, August 20-23,
2013, IEEE, 2013, pp. 1319–1324. doi:10.1109/

GreenCom-iThings-CPSCom.2013.229.1320

[53] D. Bork, A development method for the conceptual
design of multi-view modeling tools with an emphasis
on consistency requirements, Ph.D. thesis, University
of Bamberg (2015).
URL https://opus4.kobv.de/opus4-bamberg/1325

frontdoor/index/index/docId/44613

[54] J. Corley, E. Syriani, H. Ergin, S. Van Mierlo, Mod-
ern Software Engineering Methodologies for Mobile and
Cloud Environments, no. 7, IGI Global, 2016, book sec-
tion Cloud-based Multi-View Modeling Environments,1330

pp. 120–139.
[55] D. van Dalen, Intuitionistic logic, in: Handbook of

philosophical logic, Springer, 1986, pp. 225–339.
[56] C. Atkinson, D. Draheim, Cloud-aided software engi-

neering: evolving viable software systems through a web1335

of views, in: Software engineering frameworks for the
cloud computing paradigm, Springer, 2013, pp. 255–
281.

[57] T. Franzén, Gödel’s theorem: an incomplete guide to
its use and abuse, AK Peters/CRC Press, 2005.1340

[58] E. Hull, K. Jackson, J. Dick, Doors: a tool to manage
requirements, in: Requirements engineering, Springer,
2002, pp. 187–204.

[59] A. Post, T. Fuhr, Case study: How well can ibm’s"
requirements quality assistant" review automotive re-1345

quirements?, in: REFSQ Workshops, 2021.
[60] R. Jongeling, F. Ciccozzi, J. Carlson, A. Cicchetti, Con-

sistency management in industrial continuous model-

15

based development settings: a reality check, Software
and Systems Modeling (2022) 1–20.1350

[61] G. Tassey, The economic impacts of inadequate in-
frastructure for software testing, National Institute of
Standards and Technology (2002).
URL https://www.nist.gov/system/files/

documents/director/planning/report02-3.pdf1355

[62] K. Beck, Extreme programming explained: embrace
change, addison-wesley professional, 2000.

[63] T. Mens, G. Taentzer, O. Runge, Detecting struc-
tural refactoring conflicts using critical pair analy-
sis, in: Proceedings of the Workshop on Software1360

Evolution through Transformations: Model-based vs.
Implementation-level Solutions, SETra@ICGT 2004,
Rome, Italy, October 2, 2004, Vol. 127 of Electronic
Notes in Theoretical Computer Science, Elsevier, 2004,
pp. 113–128. doi:10.1016/j.entcs.2004.08.038.1365

[64] H. Liu, Z. Ma, W. Shao, Z. Niu, Schedule of bad
smell detection and resolution: A new way to save ef-
fort, IEEE Trans. Software Eng. 38 (1) (2012) 220–235.
doi:10.1109/TSE.2011.9.

[65] I. David, E. Syriani, C. Verbrugge, D. Buchs, D. Blouin,1370

A. Cicchetti, K. Vanherpen, Towards inconsistency tol-
erance by quantification of semantic inconsistencies, in:
Proceedings of the 1st International Workshop on Col-
laborative Modelling in MDE (COMMitMDE 2016),
Vol. 1717 of CEUR Workshop Proceedings, CEUR-1375

WS.org, 2016, pp. 35–44.
[66] E. Syriani, R. Bill, M. Wimmer, Domain-specific model

distance measures., J. Object Technol. 18 (3) (2019)
3–1.

[67] S. Balaji, M. S. Murugaiyan, Waterfall vs. v-model vs.1380

agile: A comparative study on sdlc, International Jour-
nal of Information Technology and Business Manage-
ment 2 (1) (2012) 26–30.

[68] L. F. Capretz, Y: New component-based software life
cycle model, Journal of Computer Science, Science 1 (1)1385

(2005) 76.
[69] I. David, B. Meyers, K. Vanherpen, Y. V. Tendeloo,

K. Berx, H. Vangheluwe, Modeling and enactment sup-
port for early detection of inconsistencies in engineering
processes, in: Proceedings of MODELS 2017 Satellite1390

Event: Workshops co-located with ACM/IEEE 20th In-
ternational Conference on Model Driven Engineering
Languages and Systems (MODELS 2017), Vol. 2019
of CEUR Workshop Proceedings, CEUR-WS.org, 2017,
pp. 145–154.1395

[70] I. David, M. Latifaj, J. Pietron, W. Zhang, F. Ciccozzi,
I. Malavolta, A. Raschke, J.-P. Steghöfer, R. Hebig,
Blended Modeling in Commercial and Open-source
Model-Driven Software Engineering Tools: A System-
atic Study, Software & Systems Modeling (2022). doi:1400

10.1007/s10270-022-01010-3.
[71] A. L. Sangiovanni-Vincentelli, W. Damm, R. Passerone,

Taming dr. frankenstein: Contract-based design for
cyber-physical systems, Eur. J. Control 18 (3) (2012)
217–238.1405

[72] B. Meyer, Eiffel: A language and environment for soft-
ware engineering, J. Syst. Softw. 8 (3) (1988) 199–246.

[73] M. Broy, K. Stølen, Specification and Development
of Interactive Systems - Focus on Streams, Interfaces,
and Refinement, Monographs in Computer Science,1410

Springer, 2001.
[74] C. A. R. Hoare, An axiomatic basis for computer pro-

gramming, Commun. ACM 12 (10) (1969) 576–580.

[75] S. Grimm, A. Abecker, J. Völker, R. Studer, Ontologies
and the semantic web, in: Handbook of Semantic Web1415

Technologies, Springer, 2011, pp. 507–579.
[76] T. Kühne, Matters of (meta-)modeling, Softw. Syst.

Model. 5 (4) (2006) 369–385.
[77] I. David, J. Denil, H. Vangheluwe, Process-oriented

Inconsistency Management in Collaborative Systems1420

Modeling, in: J. Machado, L. Mendes Gomes,
H. Guerra, A. Abelha (Eds.), 16th International Indus-
trial Simulation Conference 2018, ISC 2018, Eurosis,
2018, pp. 54–61.

[78] R. M. Smullyan, First-order logic, Courier Corporation,1425

1995.
[79] A. Fraga, J. L. Morillo, G. Génova, Towards a method-

ology for knowledge reuse based on semantic reposito-
ries, Inf. Syst. Frontiers 21 (1) (2019) 5–25.

[80] A. Fraga, J. L. Morillo, L. Alonso, J. M. Fuentes,1430

Ontology-assisted systems engineering process with fo-
cus in the requirements engineering process, in: Com-
plex Systems Design & Management, Proceedings of
the Fifth International Conference on Complex Systems
Design & Management CSD&M 2014, Springer, 2014,1435

pp. 149–161.
[81] H. Van Ditmarsch, W. van der Hoek, J. Y. Halpern,

B. Kooi, Handbook of epistemic logic, College Publica-
tions, 2015.

[82] H. Kannan, Formal reasoning of knowledge in systems1440

engineering through epistemic modal logic, Syst. Eng.
24 (1) (2021) 3–16.

[83] M. Y. Vardi, An automata-theoretic approach to linear
temporal logic, in: F. Moller, G. M. Birtwistle (Eds.),
Logics for Concurrency - Structure versus Automata1445

(8th Banff Higher Order Workshop, Banff, Canada, Au-
gust 27 - September 3, 1995, Proceedings), Vol. 1043 of
LNCS, Springer, 1995, pp. 238–266.

[84] M. Reynolds, An axiomatization of full computation
tree logic, J. Symb. Log. 66 (3) (2001) 1011–1057.1450

[85] A. Motro, Integrity = validity + completeness, ACM
Trans. Database Syst. 14 (4) (1989) 480–502.

[86] M. Famelis, R. Salay, M. Chechik, Partial models: To-
wards modeling and reasoning with uncertainty, in:
34th International Conference on Software Engineering,1455

ICSE, IEEE Computer Society, 2012, pp. 573–583.

16

	Introduction
	Running example
	Background and related work
	Inconsistencies and their management
	Ontological properties
	Model-driven engineering

	Correctness and consistency
	Preliminaries
	Design and completeness
	Satisfaction of properties
	Satisfied and not satisfied properties

	Correctness
	Consistency
	Consistency correctness?
	Consequences

	Consistency as a heuristic to correctness
	A definition of heuristic
	Leveraging consistency as a heuristic
	Admissible and consistent heuristics
	Some examples

	Discussion
	When and how to use these results?
	Language requirements
	Alternative formal frameworks

	Conclusion

