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Recently, Gao et al.1 introduced a combination of meta-learning and the neural Turing machine
to tackle a very important but yet unsolved problem in immunology: the TCR–epitope binding
prediction challenge for novel epitopes. All high-performing machine learning models can have
problems when deployed in a real-world setting if the data used to train and test the model
contains biases. In this article, we describe how the technique used to create negative data for
the TCR–epitope interaction prediction task can lead to a strong bias and makes that the
performance drops to random when tested in a more realistic scenario.

Unexpected or unknown biases within machine learning datasets are a common issue that has
hindered many well-designed approaches from translating to real-world applications, despite
seemingly generalizable performance achieved during model development and evaluation. A
well-known example of this issue is a classifier that was trained to identify malignant skin
lesions, but ended up relying on the presence of a measuring ruler in the images due to the bias
present in the training data2. However, the presence of data bias is not always obvious. Multiple
cases have been reported where specific demographics, such as gender, skin type, ethnicity, or
socio-economic status, were underrepresented in the data, leading to unexpected performance
differences between different subpopulations and potentially delaying access to care3. Indeed,
as algorithmic approaches become increasingly more advanced and datasets grow larger and
are necessarily compiled using less curation, these issues are becoming more and more
commonplace. Even small biases within a dataset often suffice for a machine learning model to
overfit on bogus data characteristics and drive its predictive behavior. Crucially, if the same bias
persists in any held-out test data, this issue will remain undetected. One such bias, as will be
described in this article, is caused by a confounding factor linked to the input data and prediction
label, causing shortcut learning4–6.

The T-cell epitope prediction challenge, as recently tackled by Gao et al.1, involves
computationally identifying the target epitope of T-cells using their T-cell receptor (TCR)
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sequence. T-cells are a critical part of the adaptive immune system, as they recognize intruders
from self, induce immune responses, and retain memory. When antigen-presenting cells display
short peptides (called epitopes) from pathogens or malignant cells, such as cancer cells, on
their cell surface, this TCR is able to bind with them in a specific manner, upon which the T-cell
will be activated and the immune response will be triggered.

If we would be able to annotate TCR sequences with their targets, this would unlock myriad
applications, ranging from vaccine design and cancer treatments to diagnostics. However, the
number of possible TCR sequences is incredibly large, with a conservative estimate in the
range of 1015 unique sequences7. Consequently, the epitope targets of the vast majority of TCRs
are unknown. On the other hand, it is known that the specificity of a T-cell is fully driven by its
TCR and its static co-receptors8. Therefore, the entire recognition event must be encoded within
the TCR sequence and is seemingly a straight-forward prediction problem where the right TCR
has to be matched with the right target.

Several methods have shown significant potential in extrapolating from a set of TCRs known to
bind a specific epitope, to other TCRs targeting the same epitope9. However, the number of
epitopes with known TCRs is counted in the hundreds, which is just a drop in the ocean of
possible TCR targets. Therefore, zero-shot TCR–epitope annotation—i.e. predicting
TCR–epitope binding for novel, unseen epitopes—is currently seen as the ‘holy grail’ of
immunology7. This requires machine learning methods to actually learn the underlying
recognition code of the TCRs, which has turned out to be a substantially harder problem. We
can define the unseen epitope–TCR prediction task as: predict the probability that a given TCR
sequence will recognize a given epitope sequence, with the condition that the epitope sequence
was not yet seen by the prediction model.

An important issue that complicates this challenge is the lack of high-quality negative data.
While the experimental methods to determine TCR–epitope pairs have a high specificity, they
are hindered by a low sensitivity with a high false negative rate10. As a result, the number of true
negative pairs in TCR–epitope databases is a small fraction of the known positive pairs.
Consequently, this is often dealt with as a positive and unlabeled data learning problem,11 where
presumed non-positive instances are generated by artificially pairing TCR and epitope
sequences as a stand-in for true negative data.

There are two approaches commonly used for generating negative data in the context of
TCR–epitope annotation (Fig. 1). The first is shuffling the known positive pairs, where each TCR
is matched with an epitope to create random combinations that differ from those in the positive
data. This relies on the principle that a TCR known to be specific for one epitope is unlikely to
be specific for another unrelated epitope. However, because of the limited number of epitopes
with known TCRs, it is complex to design a held-out negative dataset using this approach. The
second strategy, applied by Gao et al.1, is using background TCR data. In this case, epitopes
from known positive samples are paired with random TCRs from a background set, which is
often obtained from a broad sequencing experiment without epitope specificity. These strategies
for generating negative data are a poor approximation of the real-world scenario, as they both



have the potential to create false negative pairs. For the first strategy, this can be caused by
cross-reactive TCRs, which bind to more than one epitope. For the second strategy, the
background TCRs might bind the epitope it is paired with, which is a substantial risk as many
epitopes with known TCRs are immunodominant with prevalent high frequency clones.
Irrespective of how the training dataset is generated, any model claiming to capture
TCR–epitope recognition rules should be performant on test data generated by either strategy,
otherwise it could be guilty of shortcut learning6.

Indeed, multiple studies have shown that shortcut learning is an inherent risk with the second
approach. It introduces an artificial confounding factor between the TCR sequence and the
prediction label because positive and negative samples have TCR sequences drawn from a
different background distribution, irrespective of the target epitope4,5. One study used a decoy
dataset that removed any chance of true binding12. When generating negatives with the second
strategy, a performance better than random was achieved for the decoys, demonstrating that
the background TCR data contained a bias that caused a difference between positive and
negative CDR3 sequences independent of the paired epitope. Similarly, a second study showed
that using a background data set to generate negatives leads to sequence memorization and
making predictions only based on the CDR3 sequence, without considering the epitope13. The
cause of these problems is that the negative pairs and positive pairs are derived from different
experiments, performed by different labs, and often even in a different part of the world with
different subject ethnicities. Any high-performance machine learning method will exploit this
dataset shortcut and utilize it to differentiate between positive and negative samples, and
consequently suffer from unexpected generalization failures6.

Figure 1. Schematic overview of the two approaches commonly used for generating
negative TCR–epitope data. When generating negatives by shuffling (left), the same epitopes
and TCR are reused but each TCR is paired with a different epitope. When generating
negatives from a background dataset (right), new TCR sequences are paired with the epitopes.



To determine the potential impact of the negative set, we first tested the zero-shot predictions of
PanPep using five-fold cross-validation with data generated using the shuffled epitope approach
instead of the background TCR approach12. PanPep achieved an area under the receiver
operating characteristic curve (ROC-AUC) of 54.1% ± 6.4% (mean ± standard deviation) (Fig.
2a), similar to the previously reported ROC-AUC of 54.1% ± 1.9% on this dataset12. Note,
however, that we did not filter the data to exclude samples or epitope sequences already
present in the PanPep training data. Consequently, 57.7% of the positive test samples were part
of PanPeps training data and only 3.1% of the test samples had an epitope not seen during
training (see Supplementary Material). As such, although this should have been a relatively
easy test, the performance on data with negatives generated by shuffling significantly
underperforms the zero-shot ROC-AUC of 70.8% reported originally.

Second, we tested PanPep in a true zero-shot setting by using the PanPep zero-shot positive
data and generating negative data by shuffling the TCR sequences of these samples. The result
is a test dataset that does not contain any samples and epitope sequences already included in
the training dataset. On this test dataset, PanPep achieves a ROC-AUC of 49.2% (Fig. 2b),
failing to make predictions better than random.

Figure 2. ROC curves of PanPep tested on shuffled negative data. (a) Mean ROC curve
and standard deviation of PanPep from five-fold cross-validation with data generated through
the shuffled epitope approach. The data was not filtered to exclude samples or epitope
sequences already present in the PanPep training data. (b) ROC curve of PanPep on zero-shot
data with negatives generated by shuffling.

A lack of unbiased labeled data is not unique to the TCR–epitope prediction problem. Similar
issues exist within many other fields, such as for anomaly detection, where rare events by
definition only occur infrequently14, and for a broadly used benchmarking dataset of
protein–ligand binding prediction that contains a bias in the negative data which makes it easy
to distinguish between decoys and binding pairs15.



In conclusion, biased data can and will lead to inaccurate and untrustworthy predictions for any
machine learning task. This is also the case for TCR–epitope prediction tools trained on biased
negative data, where unrealistic performances are achieved due to shortcut learning, which
would not occur in a more realistic setting. Given the potential advances in healthcare that
would arise from accurate TCR–epitope binding prediction tools, we argue that more effort
needs to go towards this problem. More data and an unbiased benchmarking dataset are a
necessary next step towards prediction models that are reliable in real-world scenarios.
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