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Abstract
Aim: Artificial intelligence (AI) and machine learning (ML) are important areas of computer science that have recently attracted attention for their

application to medicine. However, as techniques continue to advance and become more complex, it is increasingly challenging for clinicians to stay

abreast of the latest research. This overview aims to translate research concepts and potential concerns to healthcare professionals interested in

applying AI and ML to resuscitation research but who are not experts in the field.

Main text: We present various research including prediction models using structured and unstructured data, exploring treatment heterogeneity, rein-

forcement learning, language processing, and large-scale language models. These studies potentially offer valuable insights for optimizing treatment

strategies and clinical workflows. However, implementing AI and ML in clinical settings presents its own set of challenges. The availability of high-

quality and reliable data is crucial for developing accurate ML models. A rigorous validation process and the integration of ML into clinical practice is

essential for practical implementation. We furthermore highlight the potential risks associated with self-fulfilling prophecies and feedback loops,

emphasizing the importance of transparency, interpretability, and trustworthiness in AI and ML models. These issues need to be addressed in order

to establish reliable and trustworthy AI and ML models.

Conclusion: In this article, we overview concepts and examples of AI and ML research in the resuscitation field. Moving forward, appropriate under-

standing of ML and collaboration with relevant experts will be essential for researchers and clinicians to overcome the challenges and harness the full

potential of AI and ML in resuscitation.

Keywords: Prediction model, Natural language processing, Heterogeneity, Self-fulfilling prophecy, Feedback loop, Large language model,
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Introduction

Artificial intelligence (AI) and Machine learning (ML) are important

areas of computer science that have recently attracted attention for

their combined application to medicine. AI refers to technology in

which computer systems have the ability to think and learn like

humans and to automatically perform tasks that humans would nor-

mally perform such as cognition driven decision-making.1 ML is used

to develop algorithms and models that can learn from and make pre-

dictions or recommend decisions based on large datasets.1 In resus-

citation medicine, AI and ML hold the potential to revolutionize

patient care by providing decision support and optimizing treatment
strategies. However, as techniques continue to advance and

become more complex, it is increasingly challenging for clinicians

to stay abreast of the latest research involving AI and ML techniques

in the resuscitation field.

This review aims to introduce recent AI and ML research to

healthcare professionals interested in applying ML to resuscitation

research but who are not experts in the field. We reviewed the rele-

vant literatures searched as described in the Supplementary file to

introduce prediction models, natural language processing (including

large language models, LLM), consideration of treatment hetero-

geneity, and optimization of medical practice and resource manage-

ment by reinforcement learning. We also discuss the limitations and

challenges of implementing AI and ML tools in actual clinical settings.
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We aim to facilitate discussion on the potential for further research

and enhance communication between clinicians, resuscitation

researchers and AI and ML experts.

Prediction models

The most common use of ML is predictive modeling.1 Prediction

models (also known as supervised learning) are commonly used to

predict a patient’s diagnosis or outcomes based on clinical data.

For example, ML models can be helpful to diagnose, estimate the

severity in triage, and understand the risk of complications in

decision-making for surgery, which can allow us to develop more

appropriate treatment plans and potentially improve patient progno-

sis in a more objective manner.2–4 This type of prediction model

may also be applied to adjust for severity when considering the qual-

ity of care and assuming the counterfactual scenario (such as if a

certain treatment was not performed with the resulting outcome)

when discussing causal inference.5,6

Prediction models may incorporate a wide array of data including

structured data such as demographic information, clinical variables,

biomarkers, and blood test results, and also unstructured data such

as images and bio-signals like electrocardiograms (EEG) and elec-

troencephalograms (EEG), to predict outcomes (Fig. 1). We intro-

duce some examples of research on prediction models based on

the type of data.

Prediction models using structured data

Structured data is one of the most common sources of data for ML

models in resuscitation research.7,8 This type of data is typically pre-

sented in a tabular format with clear rows and columns, representing

patients and their respective features or attributes. These may

include demographic information, medical history, vital signs, labora-

tory test results, and more. For out-of-hospital cardiac arrest (OHCA)

research, the Utstein format is established worldwide as a standard-

ized data format. This enables us to easily develop ML models

applied to the data.9,10 One of the primary uses of ML with tabular

data in resuscitation research are predictive models to estimate the

likelihood of outcomes such as return of spontaneous circulation

(ROSC), survival, or neurological recovery after cardiac arrest.7,8,11

In another example, tabular data was also used to develop early

warning systems (EWS) that predict the risk of cardiac arrest or other

serious adverse events among patients admitted to hospital.12–14

These systems use ML models to analyze various data such as heart

rate, blood pressure, respiratory rate, oxygen saturation, tempera-
Fig. 1 – The concept of prediction models applied to

predict mortality A prediction model is one type of ML

developed to predict the outcome. Various patterns of

clinical information can be utilized to develop

prediction models.
ture, and laboratory data, to identify patterns that may suggest a

patient’s condition is deteriorating. As a result, EWS can alert health-

care providers to intervene before a cardiac arrest occurs.14 Further,

these predictions are also valuable to estimate demand for bed

capacity and to appropriately allocate medical resources.15 Some

of these ML models are implemented in electronic medical record

systems or as applications on tablets or smartphones, which auto-

matically input the data into the model and output the calculated

results, improving user availability and accessibility.14,15

Prediction models using unstructured data

Images and bio-signals (EEG, and ECG)

ML has been increasingly utilized in resuscitation research to

enhance diagnostic and prognostic accuracy in unstructured data

such as various imaging modalities, including CT scans, EEG, and

ECG. For example, there are some researchers developing ML mod-

els to predict neurological outcomes using head CT images16–18 and

EEG,19–21 potentially leading to more accurate and timely diagnoses.

Similarly, ML models have been employed to analyze ECG data,

enabling the prediction of critical events such as in-hospital cardiac

arrest, ventricular arrhythmia, sudden cardiac death, and the suc-

cess of defibrillation during resuscitation.22–26 These applications

of ML models using medical imaging and bio-signals are expected

to contribute to facilitating early detection, improving predictive accu-

racy, and ultimately enhancing more appropriate resuscitation, emer-

gency, or intensive care.

Exploring sub-phenotypes and treatment
heterogeneity

ML is also used to explore sub-phenotypes, an emerging concept in

precision medicine. (Fig. 2) Sub-phenotypes are distinct subgroups

within a disease or condition characterized by different clinical fea-

tures such as disease progression, outcomes, and underlying biolog-

ical mechanisms.27,28 Whereas phenotypes represent categories of

patients with common features such as a specific syndrome, e.g.,

sepsis or acute respiratory distress syndrome,27,28 sub-phenotype

is particularly relevant when discussing subgroups with heterogene-

ity on treatment effect.27 Heterogeneity on treatment effect refers to

the variation in how different individuals or groups respond to the

same treatment.5 It means that not all patients respond to treatments

in the same way due to various factors such as genetic differences,

lifestyle factors, pre-existing health conditions, and more.5 Under-

standing the concept of sub-phenotypes and the complexities of

treatment effect heterogeneity are anticipated to advance the devel-

opment of personalized medicine, moving beyond the conventional

’one-size-fits-all’ treatment approach. For example, some research

in the resuscitation context suggests the hypothesis that sub-

phenotypes exhibit heterogeneity of effect of targeted temperature

management, such as some subgroups may have the potential ben-

efit of hypothermia (e.g., at 33 ), while others may not.29,30 For

exploring such treatment heterogeneity, ML such as “clustering” or

“causal machine learning” are utilized in some research.31,32

Clustering

Clustering is a type of unsupervised machine learning that can be

used to identify subgroups who share similar clinical characteristics

and explore treatment heterogeneity or novel association between

the subgroups and events, using data such as patients’ characteris-



Fig. 2 – The concept of clustering and sub-phenotypes Phenotypes (e.g., sepsis, acute respiratory distress

syndrome) are categorized by clustering to sub-phenotypes with different clinical features and the heterogeneous

response to the treatment.

R E S U S C I T A T I O N P L U S 1 5 ( 2 0 2 3 ) 1 0 0 4 3 5 3
tics, biomarker values, and genomic data (Fig. 2).31,33 One of the

strengths of clustering is its ability to manage data complexity and

discover hidden patterns, making the data easier to understand

and visualize. Previously, this clustering analysis was used in

research exploring novel sub-phenotypes among patients with vari-

ous patterns in emergency medicine and critical care such as sepsis,

ARDS, trauma, and cardiac arrest.27,28,34–39

For instance, various clinical patterns in coagulopathy among

patients with severe head trauma are associated with different out-

comes.38 There are also subgroups among OHCA patients with dif-

ferent clinical outcomes when treated with ECPR.39 Some research

suggests the effect of early goal-directed treatment or the effect of

drugs on coagulopathy are different among subgroups in sepsis.36,37

This technique is also utilized to summarize the risk factors as a sub-

group. One example is the subgroups with environmental features

characterized by environmental parameters such as temperature,

wind speed, and air pollution are suggested to be associated with

the occurrence of acute myocardial infarction or acute ischemic

stroke.40,41

Causal machine learning

Causal machine learning is an ML approach to investigate causal

inference, which is particularly valuable in assessing heterogeneity

in treatment effects (Fig. 3).5,42,43 Causal forest, one approach within

causal machine learning based on the random forest, works by split-

ting the data into different subgroups and assessing the treatment

effect within each subgroup by handling the no-linear and/or hi-

dimensional data.5,42,43 For example in critical care fields, the causal

forest was used on data from an RCT about the effect of using a bou-

gie during intubation.44 This RCT found that using a bougie did not

increase the incidence of successful intubation on the first attempt

in all critically ill adults; however, the causal forest analysis sug-

gested some individuals who had the potential benefit of using a

bougie.

The application of machine learning using genetic and molecular

data (omics data) to treatment heterogeneity and precision medicine

is also expected to result in a more personalized approach to health-

care such as investigating the heterogeneity of the treatment

response or adverse events of drugs among patients with certain

genetic features.45,46 Although this type of research is mainly

focused on the oncology field because the drugs are commonly
targeted to specific genetic features,47,48 there will be an increasing

number of studies on treatment heterogeneity and pharmacoge-

nomics in the resuscitation field.

Reinforcement learning to optimize treatment

Reinforcement learning is a type of machine learning that autono-

mously chooses actions to maximize rewards obtained from the

given environment. The system learns through trial and error to

select actions that lead to the highest possible reward. Reinforce-

ment learning has broad applications and is particularly useful for

complex tasks, such as games, autonomous driving, robotics, and

logistics.49 For example, in 2015, AlphaGo, an AI developed using

reinforcement learning, famously defeated a world champion Go

player.50

In the field of medicine and healthcare, reinforcement learning

has potential applications in optimizing treatment strategies.

(Fig. 4) For example, one notable example of using reinforcement

learning, in the context of intensive care, is the development of an

“AI Clinician“ for sepsis treatment in managing fluids and vasopres-

sors.51 This AI system analyzed two ICU databases and learned opti-

mal treatment strategies by examining numerous treatment

decisions to maximize the expected survival outcome. As a result,

this AI model could select the optimal treatment strategy which

showed the lowest mortality rates. Another model using reinforce-

ment learning suggested personalized optimization of mechanical

ventilation in patients staying at cardiovascular ICUs.52 In other

examples, some reinforcement learning programs were suggested

to investigate the optimal dose of sedative agents in general anes-

thesia.53 Although there are few published research using reinforce-

ment learning in the resuscitation field, it has potential for future

studies.

Natural language processing

Natural language processing (NLP) is a subset of ML technology that

enables computers to analyze the language that humans usually use

in daily life. This technology is prevalent in our modern lives with

applications using voice recognition such as voice assistant



Fig. 3 – The concept of treatment heterogeneity (Left) Assuming that the difference between outcomes when

treatment is performed and when it is not, is the same in each patient: treatment effect is homogenous between

individual patients. (Right) Assuming that the difference between outcomes when treatment is performed and when

it is not, is different in each patient: treatment effect is heterogenous between individual patients.

Fig. 4 – The concept of reinforcement learning in medical research. Patient status is changed to a different status by

the action, and consequently, the reward is obtained based on the status. Reinforcement learning can find the best

strategy to maximize the rewards based on many trials.
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programs like Apple’s Siri or Google Assistant and using text like

chatbots or language translation tools.

In the field of research in resuscitation, NLP models are being uti-

lized in innovative ways. One notable example of using voice data is

ML programs to help recognize cardiac arrest and support initiating

bystander-CPR during emergency calls to the dispatch center

(Fig. 5).54,55 These programs can analyze the caller’s words during

an emergency call and estimate the probability of the patient being

in cardiac arrest. This kind of program has also been applied in

research to detect other emergencies such as severe trauma after

road trauma and stroke.56,57 Additionally, NLP voice recognition

technology offers practical benefits for paramedics in the field. Para-

medics can use voice commands to create prehospital records

thereby reducing the need for manual data entry and enabling them

to focus more on patient care.58 These programs have the potential
to enable faster and more accurate deployment of emergency med-

ical services, which can improve patient outcomes.

NLP technology can also be utilized to analyze clinical data from

the free text in medical records such as medical history or physical

findings.59 Algorithms can be developed to predict emergency condi-

tions such as in-hospital cardiac arrest or give decision support on

the appropriate disposition of patients at the emergency depart-

ment.59–63 This technique can also be used to accurately predict

neurological outcomes such as a modified Rankin scale by analyzing

free text data in clinical notes.64 Additionally, chatbot tools using NLP

have also been developed in the resuscitation research fields. One

example is a preliminary chatbot to guide users on how to perform

bystander CPR.62 In summary, NLP-applied research using voice

or text is increasing and they can analyze communication or medical

records to predict events and be a guide to action in resuscitation.



Fig. 5 – Example of Natural Language Processing for Activating Bystander CPR NLP: Natural Language Processing,

CPR: Cardiopulmonary resuscitation In the emergency call dispatch center, the application utilizes natural

language processing (NLP) to analyze the caller’s words, aiding the dispatcher in identifying potential cases of

cardiac arrest.54
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Large language model (LLM) is one domain of research in NLP

fields that can understand and generate natural language used by

humans. Typically, by learning patterns from large amounts of textual

data, these models can generate answers to new questions, or pro-

duce text to accomplish specific tasks such as translation or revising

the text. Recently, the GPT-3 and GPT-4 developed by OpenAI have

attracted a lot of attention for their wide adaptability and flexibility.65 If

you enter the prompt “What should we do if we encounter a patient

who has suddenly collapsed?” into the application, the application

can provide plausible answers as if they are provided by a healthcare

professional. (However, it should be noted that these answers may

be incorrect.) One representative example of using LLM is that the

LLM can pass the medical licensing examination without any addi-

tional training data.66,67 Further, some research indicated that LLM

can provide quality and empathetic responses to patient ques-

tions.68,69 Further, the LLM is also expected to summarize the clinical

information from medical records like a professional or perform the

systematic review instead of humans.70,71 Although research in the

resuscitation field has not yet been published, it is expected to

develop in the future. In contrast, this LLM has also caused various

controversial issues, such as the accuracy, validity, and responsibil-

ity of the generated sentences and ethical issues that may arise

(more detail is discussed in the next paragraph).65 Although several

concerns, LLM has great potential to improve the burden on health-

care providers, especially in terms of decision-making, documenta-

tion, and summarizing medical information.

Challenges for AI and ML in resuscitation
research and implementation

Despite the extensive research conducted, actual implementation of

AI and ML in the clinical setting remains limited, though some prac-

tices have implemented AI and ML-based algorithms in resuscitation

and intensive care.14,15,54,72,73 Widespread adoption may be slow

due to several concerns and limitations.74 Here we give an overview

of the most important challenges and barriers that prevent proper

implementation.

Data quality and availability

AI and ML algorithms heavily depend on the quality of data they are

trained on. If the data is unreliable, missing, incomplete, or biased,

the model’s predictions or performance can be inaccurate or even
harmful. A prediction model may simply be biased because of the

original data it is trained on, reflecting the existing bias as is. For

example, an AI model may reflect historical disparities in healthcare

access and outcomes, and inadvertently perpetuate these biases by

recommending differential treatment based on factors such as race,

gender, age, or socioeconomic status.75,76 It is therefore essential

that the training data is diverse and representative of the patient pop-

ulation. However, in the actual scene of resuscitation, obtaining com-

prehensive and diverse datasets can be challenging. Clinical

situations can change drastically in a short time, making it difficult

to comprehensively collect data in a timely manner, such as in a

resource-limited environment like the prehospital setting or a

crowded emergency department.77,78 Furthermore, in many settings

of resuscitation, clinical data is still being recorded using paper and

pen, and some backend data entry process is needed to integrate

the data into electronic medical records for it to be utilized for ML

application.79 Yet, ensuring the availability of comprehensive and

representative data is crucial to develop accurate and generalizable

models.
Validation process to verify the reproducibility

Once ML models have been developed, they should be reproduca-

ble.80 Previously, it has been reported that many prediction models

have a high risk of bias, especially due to the lack of the validation

process to confirm the reproducibility of the models using different

datasets.80–83 One of the problems to validate the ML and AI models

using different datasets is the difficulty in obtaining different data

from the original data with consistent format and definition of the vari-

ables. In the resuscitation fields, the Utstein format is broadly

accepted as a universal data-collecting standard mainly in pre-

hospital settings; however, some of the in-hospital data have not

yet been standardized (e.g., some variables in the emergency

department or intensive care unit have still not been strictly

defined).10

Another concern is inappropriate reporting of the originally devel-

oped models.83 Reproducibility can be difficult to ascertain as details

of the models are not reported.83 Furthermore, validation study risks

selective reporting bias, meaning that validation studies reporting

models with poor performance are less likely to get published.81

Yet, ensuring robustness in AI and ML models, including their relia-

bility and reproducibility, is essential to prevent or minimize unin-

tended harm.
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Generalizability and clinical integration

Verifying the Generalizability is also essential to validate the AI and

ML models prior to clinical application. Again, ML models depend on

data, and if the model too strongly fits certain features of the data

(“overfitting”), the results may not be generalizable to the different

population without those features. Resuscitation practices vary

across different healthcare settings, geopolitical contexts, and

patient populations.84–87 AI models developed in one context may

not generalize well when traveling to other settings. Ensuring the

generalizability and applicability the models to diverse populations,

different clinical protocols and resource-constrained environments

is essential for their widespread application.87

Additionally, other practical barriers exist to implementing AI and

ML in clinical settings. It includes not only regulatory approval but

also integration into clinical workflows. Moreover, the adoption of

ML models necessitates clear benefits in routine clinical practice,

such as improving patients’ outcomes and reducing workload or

costs. However, few randomized controlled trials (RCTs) have

shown the actual benefit of ML models in clinical settings.42,80 If inte-

gration of ML models into general clinical workflows does not yield

clear benefits for clinicians, patients, or other stakeholders, no one

would use these models. The actual benefit of ML tools in clinical set-

tings compared to existing clinical workflows need to be demon-

strated in research before widespread adoption will follow.

Self-fulfilling prophecies and feedback loops

Another important issue to be focused on in the resuscitation field is

the risk of hidden false positive bias by self-fulfilling prophecy and

feedback loop when predicting the prognosis of cardiac arrest

patients.88,89 A self-fulfilling prophecy is a prediction that influences

people’s beliefs and behavior through which the prediction is then

realized.90 In resuscitation, if clinicians expect that a particular

patient may not survive despite the best treatment, the expectation

could influence their decision to forego further treatment, allowing

the patient’s death, thereby fulfilling the initial prediction (self-

fulfilling prophecy). This becomes especially problematic if the initial

prediction was incorrect (a false-positive), which could result in the

patient not receiving the potentially beneficial care. While these

issues have existed even before AI and ML are developed (because

predictions of clinicians are sometimes inaccurate),91 there is grow-

ing concern that AI and ML might amplify the bias due to self-fulfilling

feedback loops (Fig. 6). If a model trained on biased data is applied

to guide clinical decision-making, and the new data influenced by the

model’s results are then used as input data again to “improve” the

model, there is a risk that the initial biases will be reinforced and

amplified. To illustrate, if a prediction model is developed using data

from a hospital where resuscitation efforts were consistently termi-

nated early for OHCA patients aged over 70 years old during a speci-

fic period due to temporary limitation of resources (such as limitation

of intensive care during the COVID-19 pandemic), the model may

inevitably predict the lower probability of survival for similar patients

than is accurate. This prediction merely reflects the flawed input data

itself rather than the truth under ideal circumstances. Yet, if clinicians

perceive this prediction as “accurate” and terminate resuscitation

efforts based on such false positives, no one will notice the missed

opportunities for successful resuscitation of OHCA patients over

70 years, since the outcome confirms the prediction.88 If new models

are then trained based on the confirmed biased data, it can further

amplify the biased prediction and inappropriate withdrawal rates. In
essence, past mistakes lead to new self-fulfilling prophecies, rein-

forcing predictions that generate inappropriate clinical judgments,

creating a vicious cycle; an automated feedback loop of self-

fulfilling poor outcomes for future cardiac arrest patients.88 Further-

more, the lack of error signals due to confirmative outcomes com-

bined with the lack of interpretability of ML models greatly hinders

clinicians from recognizing such biased predictive feedback loops.

Catching false positives retrospectively is near to impossible, since

this would require counterfactual data. Clinical guidelines suggest

the need for a multi-modal approach to predict the outcome of car-

diac arrest patients to minimize the potential harm of false-positive

of predictions.92 When advanced AI models are developed, clinicians

must remain aware of the risk for amplified bias through self-fulfilling

prophecies and feedback loops.

Transparency, Interpretability, and trust

A key challenge when applying AI and ML to the actual resuscitation

scene is the interpretability of and trust in ML models.80–82 ML mod-

els are often described as a ’black box’ due to the complexity of the

models that generate the results. This lack of transparency can hin-

der clinicians’ or patients’ trust towards ML models. One example is,

as mentioned above, an ML model was developed to detect potential

cardiac arrest cases using the voice data of emergency calls at the

dispatch center.54 The retrospective observational study using the

voice recordings indicated that the ML model outperformed human

dispatchers.77 However, the RCT comparing the dispatcher assisted

by the ML model to those without such assistance, did not demon-

strate any improvement in the performance to recognize the cardiac

arrest cases.54 One of the potential mechanisms of this result sug-

gested by the research team was that the dispatcher could not

understand the ML model’s decision-making process and the dis-

patcher possibly did not trust the alert from the ML program.93 Had

the advice come from human experts instead of the ML model, the

dispatchers might have asked the rationale why and how they con-

cluded, considered accepting (or rejecting) their suggestion, and

thereby improved their performance to recognize the cardiac arrest

case. As such, achieving interpretability and trust in ML models

may be essential to successfully implement AI and ML into real-

world clinical practice.

Regulatory and legal challenges

While proper data collection and management is an essential prereq-

uisite for developing and applying ML models to clinical settings,

such data collection and management must of course respect pri-

vacy and comply with the law.94 Furthermore, liability and responsi-

bility frameworks need to be developed and implemented for AI-

driven and ML-based resuscitation interventions, in order to ensure

accountability and patient safety. As seen in this article, AI and ML

can raise several ethical concerns when it is applied to the actual

medical system and care, although the ethical concerns far exceed

the ones we mention here. Generally speaking, the Ethics Guideline

for Trustworthy AI suggested seven key requirements including

human agency and oversight, technical robustness and safety, pri-

vacy and data governance, transparency, diversity, non-

discrimination and fairness, environmental and societal well-being,

and, accountability.94 While we have selected several significant

issues particular to resuscitation, these ethical principles should be

addressed across all AI applications in medicine, regardless of the

specialty. Indeed, many non-profit institutions, regulatory, and gov-



Fig. 6 – Concept of self-fulfilling prophecy and its feedback loop. A patient who could be saved is mistakenly

assessed, due to a false positive, as having a “Very low possibility to survive”. Such a prognosis can inform the

decision to withdraw treatment. As a result, the initial prediction “Very low possibility to survive” is self-realized,

thereby showing as a true positive. If this faulty and biased data is utilized to develop or improve the ML models, it

reproduces and amplifies the false positive predictions. This leads to further harm in that more viable patients lose

the opportunity to be treated. If this new data gets used in its turn to further develop the model, it leads to a vicious

cycle of harm.
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ernmental bodies across the world are currently collaborating to

ensure (inter)national laws that better protect citizens from the

rapidly increasing impacts of AI and ML-driven models.
Conclusion

In this article, we introduce and illustrate important concepts within AI

and ML research in the resuscitation field. The application of AI and

ML in resuscitation research holds significant potential to revolution-

ize the field by improving prediction, supporting decision-making, and

developing personalized treatment strategies. However, various lim-

itations and ethical concerns must be addressed to ensure the

responsible and effective implementation of these technologies in

actual clinical practice. As more high-quality data becomes available,

it is expected that AI-driven models and ML-based algorithms will

play an increasingly important role in resuscitation research and

practice. Moving forward, it will be essential for researchers, com-

puter scientists, clinicians, ethicists, policymakers, and other stake-

holders to work together to overcome the challenges and harness

the full potential of AI and ML in resuscitation, ultimately leading to

better patient outcomes and more efficient healthcare systems.
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