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Abstract
1.	 Studies of infectious disease ecology would benefit greatly from knowing 

when individuals were infected, but estimating this time of infection can be 
challenging, especially in wildlife. Time of infection can be estimated from vari-
ous types of data, with antibody-level data being one of the most promising 
sources of information. The use of antibody levels to back-calculate infection 
time requires the development of a host-pathogen system-specific model of 
antibody dynamics, and a leading challenge in such quantitative serology ap-
proaches is how to model antibody dynamics in the absence of experimental 
infection data.

2.	 We present a way to model antibody dynamics in a Bayesian framework that 
facilitates the incorporation of all available information about potential infection 
times and apply the model to estimate infection times of Channel Island foxes 
infected with Leptospira interrogans.

3.	 Using simulated data, we show that the approach works well across a broad range 
of parameter settings and can lead to major improvements in infection time es-
timates that depend on system characteristics such as antibody decay rate and 
variation in peak antibody levels after exposure. When applied to field data we 
saw reductions up to 83% in the window of possible infection times.

4.	 The method substantially simplifies the challenge of modelling antibody dynamics 
in the absence of individuals with known infection times, opens up new opportu-
nities in wildlife disease ecology and can even be applied to cross-sectional data 
once the model is trained.

K E Y W O R D S
antibody decay, bayesian dynamic model, disease ecology, incidence, quantitative serology, 
time of infection, transmission dynamics, wildlife disease
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1  |  INTRODUC TION

Knowing when individuals got infected with a pathogen can dra-
matically boost insights into infectious disease biology, at both 
population and within-host scales (Handel & Rohani,  2015; Pepin 
et al., 2017). This knowledge allows estimation of incidence and force 
of infection, fundamental quantities for understanding and model-
ling transmission dynamics (Heisey et al.,  2006; Held et al.,  2019; 
Hens et al.,  2010) and developing mitigation strategies (Caley & 
Hone, 2004; Weitz et al., 2020).

Individual infection times are relevant to a broad range of 
pathogen-related factors, including interpreting timelines of clinical 
disease (Hawley et al.,  2011), vaccine efficacy (Antia et al.,  2018), 
infection risk factors (Borremans et al.,  2011; Pepin et al.,  2019), 
pathogen spillover (Smith et al., 2014), effects of disease on wild-
life health and survival (Tersago et al., 2012), host immunity (Epstein 
et al.,  2013) and tracing infection sources (Craft,  2015). However, 
even though a variety of data can theoretically be used to estimate 
infection time (e.g. clinical disease signs, antibody concentration, 
outbreak seasonality, contact tracing), there are significant chal-
lenges that limit the widespread adoption of time-of-infection ap-
proaches, particularly in wildlife.

Key challenges include incorporating individual variation in re-
sponse to infection (Simonsen et al., 2009; Teunis et al., 2002), inte-
grating different data sources (Borremans et al., 2016), dealing with 
interval-censored data (Wilber et al.,  2020), modelling the anam-
nestic response to reinfection (Pothin et al., 2016) and dealing with 
antibody cross-reactivity. A currently unresolved major challenge 
is how to model the dynamics of biomarkers such as antibodies or 
pathogen DNA/RNA when there are no individuals with a known 
infection time, such as a group of animals infected experimentally 
and tracked longitudinally; this challenge is particularly common in 
wildlife studies.

Models of biomarker dynamics constitute the foundation of most 
time-of-infection estimation methods (Brookmeyer & Gail,  1988; 
Gilbert et al., 2013; Teunis et al., 2016) and are central to the rap-
idly expanding field of quantitative serology (Boni et al., 2019; Hay 
et al.,  2020; Pepin et al.,  2017; Teunis et al.,  2012). The presence 
and concentration of biomarkers can contain information about 
whether and when an individual has been infected (Borremans 
et al., 2016), the degree of immunity (Röltgen et al., 2021), infection 
severity (Vaughn et al., 2000), and whether and for how long they 
are infectious (Hardestam et al., 2008; Prager et al., 2020). Crucially, 
a biomarker can be used for such purposes only after its relevant 
properties have been quantified and when a model exists of how its 
presence or concentration correlates with the information of inter-
est (e.g. time since infection).

Antibody dynamics can be a particularly rich source of informa-
tion about the time of infection. Following infection, antibody lev-
els decline after reaching a peak level sometime after infection, and 
this decay tends to follow a particular functional form, with a char-
acteristic decay rate, specific to a host-pathogen system and anti-
body type. When this functional form and rate are known, antibody 

levels measured at some later point can potentially be used to de-
termine how long ago an individual was infected (Boni et al., 2019; 
Hay et al.,  2020; Teunis et al.,  2012). This, in turn, opens up the 
possibility to improve estimates of incidence in the population (Hay 
et al., 2020; Pepin et al., 2017; Wilber et al., 2020) and perhaps to 
estimate whether and for how much longer an individual is immune 
to reinfection (Borremans et al., 2015). Notably, R package serosolver 
(Hay et al.,  2020) provides a range of functions to infer infection 
histories based on antibody dynamics and offers a framework that 
is able to account for cross-reactivity and antibody boosting follow-
ing re-exposure. The models in this package are powerful, but their 
usefulness depends on how well the underlying antibody dynamic 
model can be estimated.

Antibody dynamic models typically follow a general pattern: an 
increasing phase (often ignored because it is short), a peak level and 
a decay phase (Teunis et al., 2016). Quantifying this pattern and its 
associated parameters requires specific data. The optimal situation 
for parameter estimation is to have experimental data with known 
infection times for multiple individuals that are sampled longitudi-
nally until antibodies are no longer detectable. For example, exper-
imental infection of the African rodent Mastomys natalensis with an 
arenavirus, followed by frequent sampling for the entire lifetime, 
enabled the development of an antibody dynamic model that could 
then be used to estimate infection times of wild rodents based on a 
limited number of samples (Borremans et al., 2015, 2016). Similarly, 
experimental data on influenza A in snow geese and mallards have 
been used to model the antibody response following infection and 
subsequently estimate infection times and force of infection (Pepin 
et al., 2017).

Unfortunately, in most wildlife disease studies such experimen-
tal data are not feasible to collect, and infection times in the field 
are unknown. This is particularly problematic when periods between 
sampling are long and sample sizes are small (Gilbert et al., 2013). 
This has been a major reason that quantitative serology meth-
ods have not yet been widely adopted in wildlife disease ecology 
(Gilbert et al., 2013). Instead, a standard approach to determining 
infection time has been to take the midpoint between the interval 
bounded by the last antibody-negative and the first positive samples 
(Begon et al., 2009; van den Bergh et al., 2019) or to consider this 
interval as a uniform probability distribution for infection (i.e. any 
time is equally possible). Intervals of multiple months or even years 
are common in wildlife systems, leading to potentially large errors 
surrounding the time of infection estimates, especially when a uni-
form distribution between sampling times is assumed. This offers 
opportunities for improvement, as quantitative serology models that 
improve on these interval-censored uniform distributions have the 
potential to provide better estimates of infection time, which could 
dramatically improve related estimates of epidemiological quantities 
such as incidence.

Here, we present a general approach for modelling antibody dy-
namics when sampling is sparse and infection times are unknown 
(Figure  1). The approach uses hierarchical Bayesian MCMC infer-
ence to integrate different sources of information about model 
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parameters, with full consideration and propagation of uncertainty, 
and accounting for population heterogeneity in antibody decay char-
acteristics. Additionally, we show how the simultaneous integration 
of the dynamics of additional biomarkers can improve parameter 
fitting and infection time estimation. We apply this approach to 
island foxes Urocyon littoralis infected with Leptospira interrogans 
serovar Pomona, using standard non-experimental field data only. 
The framework provides a way to estimate infection times by mod-
elling biomarker dynamics even in the absence of experimental data, 
which we hope will stimulate more widespread use of quantitative 
serology in disease ecology.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

Serum samples from island foxes were collected on Santa Rosa 
Island (California, USA) as part of a reintroduction and monitoring 
program (Coonan et al., 2015). Sampling was done annually between 
July and February, from 2004 through 2019. Foxes were trapped 
using Tomahawk Live Traps (Tomahawk, WI, USA). Passive inte-
grated transponder (PIT) tags were used for identification. Foxes 

were weighed, aged and assessed for body condition. Samples were 
collected during capture, taking up to 10 mL of blood. Blood was kept 
cold until centrifuging 3–5 h later, after which serum samples were 
frozen. Samples were tested for antibodies against Leptospira using 
microscopic agglutination testing (MAT). Samples prior to 2016 were 
tested at the Centers for Disease Control (CDC; Atlanta, Georgia, 
USA), and later, the samples were tested at the Animal Health 
Diagnostic Center (Ithaca, New York, USA). The samples were ti-
trated to endpoint titre against serovar Pomona. Samples tested at 
CDC before 2013 were also titrated to endpoint titre for serovar 
Autumnalis. Antibody levels were log-transformed so that each unit 
change corresponds with a two-fold dilution step (log2

(

dilution

100

)

+ 1 ). 
All trapping and sampling were done by the National Park Service 
under USFWS permit TE-08267-2. More details can be found in 
(Coonan, 2010).

We used antibody levels against Leptospira interrogans serovars 
Pomona and Autumnalis for antibody decay modelling and peak an-
tibody time estimation. While the study population is known to be 
infected with serovar Pomona (Mummah, 2021), antibodies show a 
strong MAT signal for both serovar Pomona and serovar Autumnalis 
due to cross-reactivity (Levett,  2003). We leveraged both data 
sources to improve model parameter fitting and infection time 
estimation.

F I G U R E  1  Hierarchical Bayesian modelling of biomarker data to estimate infection times. Bayesian inference offers a framework to use 
multiple sources of information to construct biomarker models and estimate individual time of infection. Panel (a) illustrates observed log2 
antibody level data (circled numbers) for two individuals that are used to estimate model parameters � (peak antibody level) and � (decay 
rate), with the ultimate goal of estimating the time of infection for each individual i (which is determined by the peak antibody time �i, 
measured relative to the time of the first positive sample) Dotted lines show possible unobserved antibody trajectories. Intervals between 
the last negative and first positive samples can be used as prior information to bound possible peak antibody times �i (Panel b: posterior 
probabilities indicating the most likely peak antibody times). Model parameters can be estimated at the individual level (� i and �i), while 
simultaneously estimating the mean and variation of these parameters at the population level (�0, ��0, �0, ��0) in a hierarchical way (c). When 
available (not in our study), other types of information can be used to improve estimates of the different model parameters, for example, 
seasonal fluctuations in infection risk provide information about �i (d), while age-dependent infection risk (e) or a continuous covariate such 
as body weight (f) can provide information about � i or �i.
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2.2  |  Candidate models

Prior to model fitting, candidate models of antibody decay had to be 
chosen. Aspects to keep in mind when selecting candidate models are 
the possible shapes a function can have and the number of unknown 
function parameters. A model with more parameters has increased flex-
ibility, but this can increase the risk of overfitting and reduce the model's 
ability to predict new data (Bolker, 2008). Several functions have been 
used to model antibody decay, with the single (constant decay rate) 
and double (gradually decreasing decay rate) exponential functions 
being the most common (Boni et al., 2019; Teunis et al., 2016). When 
initial decay is significantly faster than later decay, alternatives such as 
a power function can be used (Teunis et al., 2016). When empirical an-
tibody kinetics do not resemble existing functions, a flexible function 
such as a smoothed spline can be used (Borremans et al., 2016). Note 
that it is useful to consider and compare multiple models, as this will 
reduce the chances of relying on a misspecified model that results in 
false confidence in parameter estimates. Even though Bayesian models 
offer the advantage of providing a full posterior distribution that al-
lows proper quantification of estimation uncertainty, it is nevertheless 
important to choose the underlying models wisely.

Based on initial data exploration we selected three candidate 
functions. Single exponential: �i,t = � ie

−�i(t+�i) ; double exponential: 
log

(

�i,t

)

= log
(

� i
)

e−�i(t+�i); power: log(�i,t

)

=
1

1− ri
log

(

� i
(1−ri) −

(

1 − ri
)

�i
(

t + �i
)

)

; 
where �i,t is the observed antibody level of individual i sampled at time t. 
Here, t is defined as the time since an individual's first positive sample and 
�i is the time of peak antibody level relative to the first observed positive 
sample of individual i (i.e. the number of days between an individual's esti-
mated time of peak antibody level and its first observed positive sample). 
� i and �i are the peak antibody level and antibody decay rate of individ-
ual i. ri and �i are the shape and scale parameters of the power function. 
Functions were fitted separately to Pomona and Autumnalis, not consid-
ering mixed functions (e.g. a single exponential for Pomona and a double 
exponential for Autumnalis) based on the assumption that serovars have 
the same underlying decay process.

Note that we did not attempt to model the initial period during 
which antibody levels increase, which is a limitation imposed by the 
low temporal resolution of our data relative to the duration of the 
increase period, which is not well known but is likely somewhere 
between 1 and 4 weeks (Langston & Heuter,  2003; Levett,  2001). 
When data do allow quantification of the increase period, the in-
crease and decrease phases are typically modelled as two differ-
ent functions connected at the peak antibody level time (de Graaf 
et al., 2014; Teunis et al., 2016).

2.3  |  Model fitting

Model fitting was done using Bayesian MCMC as implemented in 
rJAGS (Plummer, 2019). A log-normal error distribution was assumed 
for antibody levels. Six parallel chains were run for 60,000 iterations 
(10,000 burn-in), assessing chain convergence visually and with the 
Gelman-Rubin convergence diagnostic (Brooks & Gelman, 1998).

A major advantage of a Bayesian approach is that it allows 
the explicit incorporation of additional information about pa-
rameters through prior distributions. We used informative pri-
ors for the time of infection (i.e. peak antibody level time �i) and 
peak antibody level � i, as described below. We further aimed to 
capture the biological variation in model parameters across the 
population, to derive both individual and population-level esti-
mates. This was possible by making the model hierarchical, where 
the population-level parameters (hyperparameters) were esti-
mated explicitly, and the individual-level parameters were drawn 
from these population-level distributions (Gelman & Hill,  2007). 
Individual-level parameters were modelled using prior distribu-
tions log

(

� i
)

∼
(

�0, ��0

)

, �i ∼
(

�0, ��0

)

, log
(

ri
)

∼
(

r0, �r0

)

 and 
log

(

vi
)

∼ 
(

v0, �v0

)

, where �0, ��0
, �0, ��0

, r0 and �r0 are the hyperpa-
rameters of the model: population-level means and standard de-
viations (SD) of peak antibody level (mean �0, SD ��0

), exponential 
decay rate (mean �0, SD ��0

) and power function shape (mean r0, SD 
�r0

) and scale (mean v0, SD �v0). Each of these hyperparameters had 
its own prior distribution (Table S1). Note that when parameters 
need to be constrained (e.g. �0 ≥ 1), this must either be modelled 
using an appropriate prior distribution, or iterations with impos-
sible samples must be removed from the posterior distributions.

Parameter estimation and model performance can be improved 
by combining data from multiple biomarkers or other covariates 
such as age, incidence seasonality or other infection risk factors 
(Borremans et al., 2016). As an example, we implemented an addi-
tional biomarker: antibody levels against serovar Autumnalis. This 
was possible using a joint-likelihood approach (Isaac et al.,  2020). 
This is a simple extension of single-biomarker fitting, where two 
separate models (for Pomona and Autumnalis) are fitted simultane-
ously, with distinct values allowed for all parameters except the peak 
antibody time �i, which becomes a shared parameter. This approach 
increases the likelihood of accepting parameter values that are sup-
ported by the different biomarker datasets and can result in more 
precise posterior estimates for �i. Last, to account for the correlated 
Pomona and Autumnalis antibody levels a multivariate normal distri-
bution for both peak antibody parameters was used.

Because samples were processed at two different labs an addi-
tive lab effect parameter was added to the model. This allows for 
antibody levels of the labs to differ systematically.

The JAGS code used for model fitting has been provided as 
Supporting Information and in the Rmarkdown code. Posterior 95% 
credible intervals (CrI) were calculated as highest density inter-
vals using the function ‘dens’ of R package HDInterval (Meredith & 
Kruschke, 2018).

2.4  |  Prior distribution of peak antibody time

Peak antibody time �i was bounded by the interval between the 
most recent negative sample (negative test or birth date) and the 
first positive sample (the infection window). This information was 
incorporated as a uniform prior distribution for �i with minimum 
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�min and maximum 0. Alternative data to inform �i could be average 
lifespan, known seasonality in infection risk, onset of clinical signs 
of disease, or any other variable that provides information about 
the possible infection time. The probability distribution translat-
ing this information to a prior distribution can assume any shape 
and is not restricted to a uniform distribution as used here for the 
bounded infection window. We emphasize again that peak anti-
body time �i is used as a proxy for time of infection, since the time 
resolution of the dataset makes it highly unlikely that sufficient 
samples were taken in the period between infection and peak an-
tibody time.

2.5  |  Prior distribution of peak antibody level

Another source of information that was used to improve model fit-
ting is the distribution of peak antibody levels of recently infected 
foxes, which informs the population-level mean �0 and standard 
deviation ��0

. This prior distribution was chosen by selecting a sub-
set of foxes with relatively short infection windows, balancing the 
trade-off between sample size, which must be sufficiently large to 
provide a useful distribution, and recent infection time. We chose a 
maximum time of 250 days between the first positive and last neg-
ative sample as “recently infected”. Although this was still a large 
window, this was a limitation resulting from the study's sampling 
frequency, which provides an opportunity to illustrate the strength 
of the approach under realistic field conditions. This resulted in 54 
foxes that could be used to inform the prior distribution. Normal dis-
tributions were fitted to the frequency distribution of the antibody 
levels of the first positive samples. Fitted means were increased 
slightly to account for antibody decay within the 250-day window, 
as were standard deviations to allow for additional uncertainty, re-
sulting in prior distributions with mean 7 and sd 2.5 log2 dilutions 
for serovar Pomona and mean 7.5 and sd 3 log2 dilutions for serovar 
Autumnalis. Normal distributions were fitted using the fitdistr func-
tion in R package MASS (Venables & Ripley, 2002). More details are 
provided in Supporting Information  (Section 1). Note that the fact 
that this subset of individuals is used for informing a prior as well as 
being included in the model technically means that these data are 
being used twice to estimate peak antibody level. For this reason, 
the standard deviation of the prior distribution was deliberately cho-
sen to be larger, which minimizes this effect. This is a way to allow 
this subset of individuals, which is known to provide better informa-
tion about peak antibody level than the rest of the dataset, to weigh 
slightly more heavily on the estimation of peak antibody level. As 
shown in Supporting Information (Section 2), the shape of the prior 
has a very limited influence on parameter estimates. In addition, we 
tested whether this approach affected the model estimates by using 
the same procedure for everything, except the prior distribution of 
peak antibody level was selected using only the 10 animals that had 
the shortest time between last negative and first positive, and then 
those 10 animals were withheld from all model fitting. This resulted 
in nearly identical parameter estimates (results not included).

2.6  |  Data for model fitting

Model fitting was done using 1381 data points from 305 foxes that 
had at least two positive samples preceded by a negative one (or a 
known birth date) that determines the infection window. Because 
the antibody model does not accommodate secondary increases 
in antibody level, samples that exhibited signs of possible antibody 
boosting (possibly due to re-exposure to the pathogen, not neces-
sarily leading to infection), defined here as an antibody level increase 
≥2 log2 units between samples, were removed from the dataset 
together with all samples from that individual that were taken af-
terwards. This occurred in 2 out of the 305 foxes, resulting in the 
removal of 4 data points.

2.7  |  Model comparison

Model fits were compared using the leave-one-out cross-validation 
information criterion LOOIC (Vehtari et al., 2017) using R package 
loo (Vehtari et al., 2020), where lower values indicate a better fit. 
Additionally, we used three measures of the degree to which a model 
improves the estimation of peak antibody time �i relative to the uni-
form prior infection window. The first is “% infection window re-
duction” which is the percentage by which the size of the infection 
window was reduced in the posterior distribution compared to the 
original uniform window size, for credible intervals of 95% (a com-
monly used interval) and 50% (a better representation of the most 
concentrated area of the posterior). For example, if the original win-
dow size is 250 days, and the model generates a posterior distribu-
tion of �i for which the 95% CrI ranges from 200 to 20 days prior, 
the % reduction would be 100 −

(

200− 20

250∗0.95

)

∗100 = 24%. If the 50% 
CrI of the posterior ranges from 110 to 75 days prior, the % reduc-
tion would be 100 −

(

140− 65

250∗0.5

)

∗100 = 40%. While these measures 
are useful because they are easy to interpret, they do not consider 
that probabilities within the credible intervals are not equal, and 
some �i will have a higher probability than others. To capture this, 
we used relative entropy (or Kullback–Leibler divergence; Kullback 
& Leibler, 1951) as a third measure. Relative entropy (units = “bits”) 
quantifies the difference in information content between two distri-
butions, which in this case are the uniform prior distribution (infec-
tion window) and the posterior distribution of �i. Relative entropy 
DKL(P ∣ ∣ Q) =

∑

xP(x)log2
P(x)

Q(x)
, where P(x) and Q(x) are the posterior 

and prior distributions defined over the same range of values x 
(Burnham & Anderson, 2002). The values of x are individual-specific 
and adopt every possible value of �i as determined by the uniform 
prior infection window. A higher value corresponds with more in-
formation in the posterior relative to the uniform prior. For refer-
ence, given a uniform prior (original infection window) of 250 days, 
a posterior normally distributed around a mean of 100 days with a 
standard deviation of 20 would result in a relative entropy value of 
1.6 bits, compared to 0.8 bits if the standard deviation is 35; that 
is, a higher relative entropy value indicates a greater reduction in 
uncertainty about estimated infection time.
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2.8  |  Simulation study

To assess model behaviour to different assumptions and conditions, 
we simulated data mimicking the real dataset. Antibody levels were 
simulated for 75 individuals, randomly sampling log peak antibody 
level and decay rate from normal distributions and drawing two to 
five samples (up to 2000 days after peak antibody level). Random 
noise was added to antibody levels to simulate real variation. The 
peak antibody sample was excluded from the simulated dataset, 
again to mimic reality. Parameter estimation was done for multiple 
simulated datasets that were generated using a range of standard 
deviations for peak antibody level and decay rate. We then tested 
how different combinations of peak antibody level variation and 
decay rate affect model performance, as faster decay and/or smaller 
variation in peak antibody level may constrain the possible peak an-
tibody time window, which in turn would affect the precision of the 
peak antibody time �i estimates. Simulation details and results are 
provided in Supporting Information (Section 2).

2.9  |  Additional supplementary analyses

Some analyses were performed to provide additional information 
and context and are only shown in Supporting Information Section 5 
shows tested correlations between peak antibody level and a num-
ber of covariates; Section 6 shows the correlation between serovars 
Pomona and Autumnalis and Section 7 shows peak antibody level 
estimates for individuals without a prior negative sample and when 
using only the first positive sample for each individual.

2.10  |  Software

All data preparation, analysis and plotting were done in R (R 
Core Team,  2019) using packages ggplot2 (Wickham,  2016), 
rjags (Plummer,  2019), ggridges (Wilke,  2020), dplyr (Wickham 
et al., 2019), patchwork (Pedersen, 2019), loo (Vehtari et al., 2020), 
R2OpenBUGS (Sturtz et al.,  2005) and HDInterval (Meredith & 
Kruschke, 2018).

3  |  RESULTS

3.1  |  Model fits to antibody decay data

Of the three candidate models (single exponential, double expo-
nential, power) the best fits were observed for the two that allow 
faster initial decay that slows with time since peak antibody level 
(double exponential and power), for both serovar Pomona and 
Autumnalis (Figure  2a). The double exponential model had the 
lowest LOOIC value (single exponential = 5933, double exponen-
tial = 4705, power = 5757). All models were fit to the dataset includ-
ing both serovar Pomona and Autumnalis, resulting in one overall 
LOOIC value but separate parameter estimates for each serovar. 
Results are shown for the double exponential model only. The fitted 
double exponential functions for Pomona and Autumnalis are shown 
in Figure 2b with the observed data after adjusting time (x-axis) for 
each individual based on the estimated peak antibody time �i. The 
mode was used as the posterior estimate for �i to accommodate the 
skewed posterior distribution.

3.2  |  Posterior estimates of decay 
model parameters

The population-level posterior means of the peak antibody level dis-
tribution parameters for serovar Pomona were 6.89 log2 units (95% 
CrI 6.61 to 7.15) for the mean and 2.00 log2 units (95% CrI 1.79 to 
2.24) for the standard deviation. The estimated peak antibody level 
distribution for serovar Autumnalis was slightly higher, with a mean 
of 7.45 log2 units (95% CrI 7.11 to 7.88) and standard deviation of 
2.08 log2 units (95% CrI 1.81 to 2.35; Figure 3a).

The population-level distribution of the decay rate parameter 
for serovar Pomona had a mean of 0.00086 log2 units/day (95% CrI 
0.00079 to 0.00093) and standard deviation of 0.00035 log2 units/
day (95% CrI 0.00028 to 0.00042). For serovar Autumnalis the mean 
was 0.00069 log2 units/day (95% CrI 0.00061 to 0.00078) and the 
standard deviation was 0.00028 log2 units/day (95% CrI 0.00021 
to 0.00037; Figure  3b). There was no statistically meaningful cor-
relation between individual peak antibody level and decay rate 

F I G U R E  2  Candidate functions fitted 
to observed data. (a) Fitted functions for 
the three candidate models, using the 
posterior means for serovar Pomona peak 
antibody level and decay rate. (b) Fitted 
double exponential functions for serovars 
Pomona and Autumnalis, overlaid on 
observed data for 307 individuals after 
changing time since first positive sample 
to estimated time since peak antibody 
level.
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(posterior mean of the fitted regression coefficient � in �i = ��i: 90, 
95% CrI −456 to 646; Figure 3c).

The mean percentage by which the individual prior infection 
windows were reduced after model fitting (using 50% credible inter-
vals of the posterior distribution) was 22.1% (±1.1 SE, range 2.5% to 
83.2%) for the model that includes both serovars (with nearly iden-
tical results for the model using serovar Pomona only). When using 
95% credible intervals, mean window size reduction for the model 
including both serovars was 6.1% (±0.5 SE, range 0.5% to 64.8%) for 
the model that includes both serovars (with nearly identical results 
for the model using serovar Pomona only). Mean relative entropy 
values were 0.100 bits (±0.011 SE, range 0.006 to 1.185) and 0.107 
bits (±0.014 SE, range 0.006 to 1.691).

3.3  |  Correlates of model precision

We observed strong individual variation in how much information 
the model was able to provide about peak antibody time �i, with re-
ductions in infection window size ranging from 2.5% to 83.2% (or 
0.5% to 64.8% using a 95% credible interval), and relative entropy 
values from 0.006 to 1.185 bits. To explore the factors underly-
ing this variation, we tested the correlation between window size 
reduction (using the 95% CrI, which is highly correlated with the 
50% CrI) and a number of variables: prior infection window size, 
number of samples, time range covered by the samples, estimated 
peak antibody level and estimated decay rate for serovar Pomona. 
Correlations were tested using linear models with a log-transformed 
infection window reduction outcome variable. Greater improve-
ments were observed when the prior infection window was larger 
(effect size (rel. change) = 1.28, 95% CrI 1.17–1.40), when the esti-
mated decay rate was higher (effect size (rel. change) = 1.47, 95% CrI 
1.36–1.59) and when the estimated peak antibody level was higher 
(effect size (rel. change) = 1.13, 95% CrI 1.04–1.24). Model compari-
son using LOOIC showed the best fit for a regression model includ-
ing a combination of decay rate, peak antibody level and infection 

window size, with decay rate occurring in all top models (Supporting 
Information Section 3). In short, more information is gained when 
the early antibody levels are high (leading to high estimates of peak 
titre, and rapid decay) and when the possible infection window is 
long (meaning there is more room for improvement). This is illus-
trated in Figure 4, which shows the detailed output for two different 
individuals, while Figure 5 shows the posterior distributions of �i for 
each individual.

3.4  |  Simulation study

The models fitted to simulated data were able to accurately esti-
mate the population-level parameters (�0, ��0

, �0 and ��0
; Figure S2) 

across a broad range of assumptions about peak antibody level mean 
and standard deviation, showing that the modelling approach works 
well. The estimation of parameter values at the individual level was 
good overall, but performance declined with more extreme values 
of the “true” individual peak antibody level (i.e. when the real sim-
ulated level was much lower or higher than the population mean; 
Figures S3–S6).

Of broader relevance to biomarker dynamics in general, we 
found that model performance was strongly dependent on both 
decay rate and variation in peak antibody level (��0

). Infection win-
dow reduction increased strongly with decay rate and correlated 
negatively with peak antibody level variation (Table  1). Figure  S8 
illustrates how estimates of peak antibody time �i will be more ac-
curate with faster decay and/or smaller variation in peak antibody 
values in the population.

4  |  DISCUSSION

One of the outstanding challenges in quantitative serology is how 
to estimate the time of infection from antibody levels in the absence 
of experimental data (Borremans et al., 2016; Pepin et al., 2017). By 

F I G U R E  3  Estimated population-level distributions of peak antibody level (a) and decay rate (b), for serovars Pomona and Autumnalis. 
Bold lines are the distributions based on the posterior means of the mean and the standard deviation of each parameter. Thin lines are drawn 
from a random selection of 200 MCMC iterations, to show the magnitude of the variation around the posterior mean values. Panel (c) shows 
posterior samples for peak antibody level and decay rate, with colours depicting the density of points.
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integrating data from different sources using a Bayesian approach, 
we were able to estimate the time of infection and model antibody 
decay despite highly imprecise knowledge about when individuals 
were infected. Two key sources of prior information were used in 
the model. The first is information about possible peak antibody 
levels provided by a subset of foxes known to have been infected 
relatively recently. The second is the infection window, an interval 
that bounds each individual's possible times at which antibody levels 
must have peaked, defined by a negative sample preceding the first 
positive one. Additionally, the Bayesian approach enabled leverag-
ing data from multiple biomarkers, in this case, antibody level data 
on Leptospira interrogans serovar Autumnalis in addition to serovar 
Pomona.

Model fit statistics showed a clear preference for the two mod-
els in which antibody decay decelerates with time, and of those the 
more parsimonious double exponential model received the highest 
level of support. Using the posterior means for the double expo-
nential model, the decelerating decay when starting at a Pomona 
antibody dilution 1:6400 would translate to 198 days to decay to 
1:3200, 431 days to 1:1600 and 2495 days to 1:100. Initially rapid 
antibody decay followed by a slow phase seems to be relatively 
common and has for example been observed for leptospirosis in 
California sea lions (Prager et al., 2020), Bordetella pertussis in hu-
mans (Teunis et al.,  2016) and arenavirus in multimammate mice 
(Borremans et al., 2015). This phenomenon may be a consequence 
of the heterogeneous dynamics of antibodies produced at different 

sites and different cell populations in the body, at different rates 
and driven by different mechanisms (Andraud et al.,  2012; Teunis 
et al., 2016; Traggiai et al., 2003).

There was a strong correlation between antibodies against se-
rovars Pomona and Autumnalis, which was particularly strong for 
peak antibody levels. This meant that the information gained by the 
addition of data on serovar Autumnalis was limited, as that informa-
tion was for the most part already provided by serovar Pomona. We 
indeed found that the reduction in infection window size achieved 
using our model was not much better when integrating data on both 
serovars versus only using serovar Pomona. This is a useful general 
insight into what to expect when considering incorporating multi-
ple biomarkers for quantitative serology, and suggests that a use-
ful strategy would be to prioritize biomarkers that do not correlate 
strongly. For instance, combining antibody data with data on the 
presence of a pathogen (or its genetic material) is likely to be much 
more informative than data on an antibody exhibiting the same dy-
namics, as shown for arenavirus infection in the rodent Mastomys 
natalensis (Borremans et al., 2016), hantavirus in Peromyscus sp. mice 
(Abbott et al., 1999) and influenza A in swine (Strelioff et al., 2013). 
Alternatively, biomarkers that reflect the state of disease (e.g. renal 
health) can add useful information (Prager et al., 2020).

The degree to which the model was able to improve individual 
infection windows correlated strongly with a number of individual 
variables. The model yielded greater reductions in infection window 
with higher decay rate, higher peak antibody level and greater size 

F I G U R E  4  Posterior results for two individual foxes with low (a) and high (b) gain in information about peak antibody time �. Left: 
posterior distribution of �, the time between the first positive sample and the estimated peak antibody time, with maximum density (bold 
line) and credible intervals (95% = dotted line, 50% = dashed line). Center: posterior density for peak antibody level. Right: fitted functions 
using posterior estimates (bold lines) overlaid on 200 randomly selected iterations to show the distribution; black points are the observed 
samples.
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F I G U R E  5  Posterior densities of peak antibody time � for all foxes. Densities were plotted along the y-axis to enable showing all 
individuals, ordered along the x-axis by prior infection window size (full posterior density = blue, density within 95% CrI = red, density within 
50% CrI = yellow). Note that the y-axis ranges increase from the top to bottom plots.
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of the prior infection window size. The latter can be explained by the 
fact that when the prior infection window is longer, larger improve-
ments are possible. Higher decay rates on the other hand mean that 
the information conveyed by antibody levels will be more localized 
in time, thus resulting in better estimates of peak antibody time 
(Table 1 and Figure S8). The effect of a higher level of peak antibody 
results from the fact that decay is faster at higher levels. Last, both 
the data and the simulations showed that a broader distribution of 
possible peak antibody levels directly translates into a broader dis-
tribution of possible peak antibody times, which means that lower 
individual variation will result in better estimates of the time of in-
fection (Table  1). It is important to note that while these correla-
tions exist in theory, they will only provide an advantage in practice 
if sufficient data are available, at sufficiently short sampling intervals 
relative to the decay rate, to accurately capture the antibody decay 
parameters. This means that in situations where a high decay rate is 
expected, the frequency of sampling should ideally be high enough 
to capture the rapid change in antibody levels. If this is not the case, 
the decay rate parameter will be estimated with a larger degree of 
uncertainty, leading in turn to more uncertain estimates of the in-
fection window. For determining an optimal sampling strategy prior 
to a study, a simulation study is recommended (Blaizot et al., 2019).

These characteristics related to model performance are intrin-
sic to a pathogen-host system and will determine the upper level 
of performance of any model. For our system, the model yielded 
reductions in infection window size ranging from small (2.5% using 
50% credible intervals) to impressive (83%); these reductions were 
obtained despite the relatively slow decay of antibodies against L. 
interrogans serovar Pomona in island foxes as well as considerable 
variation in peak antibody level. Indeed, the estimated decay rate of 
0.0009 log2 units/day results in a window of 320 days between anti-
body levels 8 and 6 log2 units (assuming a peak level of 11). For com-
parison, decay rates of 0.005 and 0.01 log2 units/day would result in 
windows of 58 and 29 days, respectively. This means that for other 
systems such as L. interrogans serovar Pomona infection in California 
sea lions Zalophus californianus where antibody decay can be as fast 

as 0.058 (Prager et al.,  2020), a similar model would be expected 
to yield considerably more precise estimates of peak antibody time.

Correct inference about the antibody model dynamic parame-
ters and estimated time of infection depends on the choice of candi-
date models of antibody decay. While the fit of different candidate 
models to the available data can be compared so that the best-fitting 
model can be selected, ultimately if all candidate models are highly 
misspecified this can lead to false confidence in infection times. As 
for any mode, it is therefore important to choose candidate models 
carefully, based on existing literature, data and expert knowledge. 
For example, if antibody decay is much faster in the first weeks after 
infection than in later periods, but none of the candidate models 
allow for a varying decay rate, the resulting confidence in infection 
times might be incorrect.

Quantitative serology is a growing field with major potential 
(Gilbert et al., 2013; Held et al., 2019; Pepin et al., 2017; Teunis 
et al., 2012; Wilber et al., 2020), but its broad adoption has been 
relatively limited due to a number of outstanding challenges. Here, 
we provided a complete approach to constructing biomarker mod-
els entirely from field data with sparse sampling points and un-
known infection times, using a hierarchical Bayesian framework 
that can leverage multiple sources of information and multiple 
data types (Figure  1). This addresses a major challenge in quan-
titative serology and time-of-infection estimation that has been 
one of the key barriers to application to wildlife systems. Within 
the context of the broader field of quantitative serology the ap-
proach can facilitate the adoption in wildlife pathogen systems of 
methods developed for human pathogens. For example, combin-
ing our approach with the powerful methods provided in the sero-
solver R package (Hay et al., 2020) could result in a new toolkit for 
estimating individual infection history and attack rate in wildlife 
systems where antibody kinetics have been challenging to model. 
The package further includes models to deal with antibody boost-
ing follow re-exposure, and exposure to multiple strains that can 
cause antibody cross-reactivity, which can both be important in 
wildlife systems.

In conclusion, this work opens new frontiers for quantitative 
analysis of infectious disease dynamics, including incidence re-
construction with proper error propagation, anamnestic immune 
response following re-exposure (boosting), dealing with antibody 
cross-reactivity, integration of infection time estimation and trans-
mission modelling, and software development for easy integration 
of data sources and incidence reconstruction. The hierarchical 
structure of the model further provides a natural way to extend it 
to estimate correlates of infection and biomarker dynamics at the 
population level and the within-host level.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Antibody levels for a subset of individual foxes that tested 
negative within at most 250 days (left: serovar Pomona, right: serovar 
Autumnalis). Fitted distributions are shown in teal, and distributions 
used as priors are shown in orange.
Figure S2. Posterior estimates of peak antibody level for different 
prior distributions. True = generated distributions with means 
7 (SD 1) and 7.8 (SD 1) for serovars Pomona and Autumnalis, 
respectively.
Figure S3. Effect of prior peak antibody level means. Posterior 
densities of peak antibody time, peak antibody level and decay rate 
for the first half of the 75 simulated individuals. Dots indicate the 
“real” distributions are posterior densities flipped vertically.

Figure S4. Effect of prior peak antibody level means. Posterior 
densities of peak antibody time, peak antibody level and decay rate 
for the second half of the 75 simulated individuals. Dots indicate the 
“real” simulated value, distributions are posterior densities flipped 
vertically.
Figure S5. Effect of prior peak antibody level standard deviations. 
Posterior densities of peak antibody time, peak antibody level and 
decay rate for the first half of the 75 simulated individuals. Dots 
indicate the “real” simulated value, distributions are posterior 
densities flipped vertically.
Figure S6. Effect of prior peak antibody level standard deviations. 
Posterior densities of peak antibody time peak antibody level and 
decay rate for the second half of the 75 simulated individuals. 
Dots indicate the “real” simulated value, distributions are posterior 
densities flipped vertically.
Figure S7. Antibody decay curves for different decay rates.
Figure S8. The number of days (window size) it takes for 
antibodies to decay from 8 to 6 log2 dilution units, for a range 
of biologically realistic decay rates. The yellow dot marks a 
decay rate close to the one estimated for serovar Pomona. Inset 
figures show the decay function for selected decay rates, with 
the window between antibody levels 8 and 6 indicated with 
dotted lines.
Figure S9. Infection window reduction (heatmap colors) for key 
correlates decay rate, infection window size and level of the first 
positive sample.
Figure S10. Correlation between peak antibody levels for serovars 
Pomona and Autumnalis. (A): Posterior means of each individual. 
(B) Posterior MCMC samples of the overall means of peak antibody 
level for the last 20,000 iterations.
Figure S11. Infection window posterior densities for individuals 
without a negative sample preceding the first positive sample. Colors 
indicate the size of the credible intervals (blue = 95%, yellow = 50%). 
Arbitrarily chosen infection windows up to 2190 days (6 years) were 
possible.
Figure S12. Infection window posterior densities for individuals 
with only a single positive sample. Colors indicate the size of the 
credible intervals (blue = 95%, yellow = 50%). Arbitrarily chosen 
infection windows up to 2190 days (6 years) were possible. Only 
individuals with a preceding negative sample are shown (others 
are included in Figure S11). Densities are sorted by posterior 
median.
Figure S13. Infection window size reduction using only the first 
positive sample for each individual. Reduction in infection window 
size plotted against Pomona antibody level (log2 dilution), with colors 
indicating the size of the original infection window size (i.e., time 
between the first positive sample and the last preceding negative).
Table S1. Hyperpriors for the different parameters.
Table S2. Statistics for the correlations between outcome variable 
‘% infection window reduction' and candidate variables, using a 
95% credible interval for the infection window posterior. Effect 
sizes are exponentiated to get relative change and are shown with 
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95% credible intervals. LOOIC values are shown with standard 
errors.
Table S3. LOOIC values for linear regression models including 
single and multiple variables fitted to outcome variable ‘% infection 
window reduction’. Sorted by LOOIC value, which are shown with 
standard errors.
Table S5. Effect of peak antibody level and decay rate on infection 
window estimation.
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